
A Brain Network Inspired Algorithm:
Pre-trained Extreme Learning Machine

Yongshan Zhang1, Jia Wu2, Zhihua Cai1(B), and Siwei Jiang1

1 Department of Computer Science, China University of Geosciences,
Wuhan 430074, China

{yszhang,zhcai}@cug.edu.cn
2 Department of Computing, Faculty of Science and Engineering,

Macquarie University, Sydney, NSW 2109, Australia
jia.wu@mq.edu.au

Abstract. Extreme learning machine (ELM) is a promising learning
method for training “generalized” single hidden layer feedforward neural
networks (SLFNs), which has attracted significant interest recently for
its fast learning speed, good generalization ability and ease of imple-
mentation. However, due to its manually selected network parameters
(e.g., the input weights and hidden biases), the performance of ELM
may be easily deteriorated. In this paper, we propose a novel pre-trained
extreme learning machine (P-ELM for short) for classification problems.
In P-ELM, the superior network parameters are pre-trained by an ELM-
based autoencoder (ELM-AE) and embedded with the underlying data
information, which can improve the performance of the proposed method.
Experiments and comparisons on face image recognition and handwrit-
ten image annotation applications demonstrate that P-ELM is promising
and achieves superior results compared to the original ELM algorithm
and other ELM-based algorithms.

Keywords: Extreme learning machine · ELM-based autoencoder ·
Pre-trained parameter · Classification

1 Introduction

Extreme learning machine (ELM) [1] is a useful learning method for training
“generalized” single hidden layer feedforward neural networks (SLFNs), which
shows its good performance in various research studies [2]. Compared with tra-
ditional neural networks which adjust the network parameters iteratively, in
ELM, the input weights and hidden layer biases are randomly generated, while
the output weights are analytically determined by using Moore-Penrose (MP)
generalized inverse. Due to its extremely fast learning speed, good generalization
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ability and ease of implementation, ELM has drawn great attention in academia
[3,4]. However, the manually assigned network parameters often degrade the
performance of ELM.

In order to enhance the performance of ELM, researchers have proposed a
number of improved methods from different perspectives, such as ensemble learn-
ing [5], voting scheme [6], weighting method [7] and instance cloning [4]. Liu and
Wang [5] embedded ensemble learning into the training phase of ELM to mit-
igate the overfitting problem and improve the predictive stability. Cao et al.
[6] incorporated multiple independent ELM models into a unified framework to
enhance the performance in a voting manner. Zong et al. [7] proposed a weight-
ing scheme method for ELM by assigning different weights for each example.
The aforementioned methods for ELM have achieved good performance in some
specific problems. However, they do not solve the primary problem in ELM (i.e.,
the random generation of the network parameters). Therefore, the performance
of the above-mentioned methods may be compromised. How to select suitable
network parameters for ELM is still an opening problem.

In reality, the original data can provide valuable information according to its
different representations. Therefore, it is imperative for ELM to determine the
network parameters based on the original data. A straightforward approach to
solve the above problem is to use the idea of autoencoder. Autoencoder [8] is
a special case of artificial neural network usually used for unsupervised learn-
ing, where the output layer are with the same neurons as the input layer. In
autoencoder, the learning procedure can be divided into the processes of encod-
ing and decoding [9,10]. The input data is mapped to a high-level representation
in the encoding stage, while the high-level representation is mapped back to the
original input data in the decoding stage. By doing so, autoencoder can explore
the underlying data information and encode these information into the output
weights.

Based on the above observations, in this paper, we propose a novel pre-trained
extreme learning machine (P-ELM for short), where an ELM-based autoencoder
(ELM-AE) is adopted to pre-train the suitable network parameters. The pro-
posed P-ELM encodes the data information into the learned network parameters,
which can achieve satisfactory performance for further learning. Experiments on
face image recognition and handwritten image annotation applications demon-
strate that the proposed P-ELM consistently outperforms other state-of-the-art
ELM algorithms. The advantages of P-ELM can be summarized as follows:

– P-ELM falls into the category of data-driven methods, which can successfully
find the proper network parameters for further learning.

– P-ELM is simple in both theory and implementation, which inherits the
advantages of the original ELM.

– P-ELM is a nonlinear learning model and flexible in modeling different com-
plex real-world relationships.

The remainder of the paper is structured as follows. Section 2 surveys the
related work. Section 3 presents the proposed P-ELM method. The experiments
are demonstrated in Sect. 4. Finally, we conclude the paper in Sect. 5.
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Fig. 1. Illustration of network structures for (a) ELM and (b) ELM-AE.

2 Related Work

Extreme learning machine (ELM) is an elegant learning method, which was
originally proposed for SLFNs and then extended to “generalized” SLFNs [1]. In
ELM, the hidden neurons need not be neuron alike and the networks parame-
ters are without iterative tunning. The network structure of ELM is shown in
Fig. 1(a). The basic ELM can fundamentally be regarded as a two-stage learning
system, which can be spilt into feature mapping and parameter solving [11,12].
In the feature mapping stage, ELM randomly selects the input weights and hid-
den biases to calculate the hidden layer output matrix via an activation function.
In the parameter solving stage, the output weights are analytically determined
according to the Moore-Penrose (MP) generalized inverse and the smallest norm
least-squares solution of general linear system. To accelerate the learning speed,
Huang et al. [13] presented a constrained-optimization-based ELM and provided
two effective solution for different size of training data. The learning theories
and real-world applications of ELM are well-developed in the literature [2].

Apart from ELM-based SLFNs, the ELM theories can be also applied to
built an ELM-based autoencoder (ELM-AE) [14]. Autoencoder is always used
to be a feature extractor and usually functions as a basic unit in a multilayer
learning model [15]. In recent years, autoencoder has been widely used for tack-
ling numerous real-world applications, e.g., cross-language learning problem and
domain adaption problem. Similar to the ELM, an ELM-AE can be also regarded
as a two-stage process, where the input data is first mapped to a high-level rep-
resentation, and then the high-level latent representation is mapped back to the
original input data [16]. The network structure of ELM-AE is shown in Fig. 1(b).
The main difference between ELM and ELM-AE is the output layer. In ELM,
the output layer is to predict the target value for given data. By contrast, in
ELM-AE, the output layer is to reconstruct the original input data. Due to the
unique learning mechanism, ELM-AE extracts the informative features through
the hidden layer and encodes the underlying data information into the output
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weights. Motivated by these, we propose to employ an ELM-AE to pre-train the
network parameters for P-ELM in this paper.

3 Proposed Method

In this section, we present the proposed pre-trained extreme learning machine
(P-ELM). Specifically, P-ELM is achieved through the following steps: (1)
Employ an ELM-AE for network parameter learning; (2) Train the P-ELM model
with the learned network parameters; and (3) Predict the class labels of the test-
ing instances. Algorithm 1 reports the learning process of the proposed P-ELM.

3.1 Parameter Learning

In P-ELM, the most important aspect is to choose the suitable network para-
meters based on the original data. To this end, we use an ELM-AE to learn
the network parameters. Given N distinct training examples D= {(xi, ti)}Ni=1,
where xi∈Rn is the input data and ti∈Rm is the expectation output, the encod-
ing process in ELM-AE with L hidden neurons can be presented as the following
equation:

h(xi) = g(α·xi + b), i = 1, 2, ..., N ; (1)

where α∈RL×n is the input weight matrix, b∈RL×1 is the hidden neuron bias
vector, g(·) is an activation function, and h(xi) is the high-level latent represen-
tation for the input data xi. By contrast, the decoding process in ELM-AE can
be formulated as follows:

h(xi)� = xi, i = 1, 2, ..., N ; (2)

where �∈RL×n is the output weight matrix. Equation (2) can be also rewritten
as the compacted form based on the whole dataset:

H� = X. (3)

To enhance the performance of ELM-AE, the output weight matrix � can be
updated by minimizing the objective fuction: L(�) = 1

2 ||�||2 + C
2 ||X−H�||2.

The calculation of the output weight matrix � can be solved by Eq. (4) according
to the relationship between the number of training samples N and the number
of hidden neurons L.

� =

⎧
⎪⎪⎨

⎪⎪⎩

(
I
C

+ HTH
)−1

HTX, if N ≥ L

HT

(
I
C

+ HHT

)−1

X, if N < L

(4)

The unique parameter learning mechanism enables ELM-AE to encode the
underlying information of the original data into the output weights, which can be
used as the input weights for the P-ELM model to achieve better performance.
This is a data-driven method, which can adaptively search the suitable network
parameters based on the specific data.
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Algorithm 1. Pre-trained Extreme Learning Machine (P-ELM)
Input:

Training dataset D= {(xi, ti)}N
i=1; Any testing instance xtest ∈ Dtest;

Activation function g(·); Number of hidden neurons L; Parameter C;
Output:

The predicted class label c(xtest) of testing instance xtest;

//P-trained Parameter Learning:

1: Randomly assign the input weights α and hidden biases b for ELM-AE;
2: Calculate the hidden layer output H in ELM-AE by Eq. (1)
3: Calculate the output weights � in ELM-AE by Eq. (4);

//P-ELM Model Training:
4: Compute the input weights as �T and the hidden biases as b′, where the ith hidden

layer bias b′
i = (

∑n
j=1 �ij)/n, i = 1, 2, ..., L in P-ELM;

5: Calculate the hidden layer output matrix H′ in P-ELM by Eq. (5);
6: Calculate the output weights β in P-ELM by Eq. (7);

//Instance Label Prediction:
7: Predict the underlying class label c(xtest) for testing instance xtest;
8: Return the class label c(xtest).

3.2 Model Training

In this section, we aim to formulate the learning model of the proposed pre-
trained extreme learning machine (P-ELM). As described in the previous section,
we use the output weights � learned by ELM-AE as the input weights for
P-ELM. In P-ELM, the input weights can be represented as �T , and the hidden
layer biases can be expressed as b′, where the ith hidden layer bias is b′

i =
(
∑n

j=1 �ij)/n, i = 1, 2, ..., L. Therefore, the proposed P-ELM with L hidden
neurons can be formulated as:

ti =
∑L

j=1
βjg(�T

j ·xi + b′
j)

= g(�T ·xi + b′)β
= h′(xi)β

, i = 1, 2, ..., N ; (5)

where h′(xi) = g(�T ·xi+b′) is the hidden layer output for the input data xi and
β∈RL×m is the output weight matrix of the proposed P-ELM. Mathematically,
Eq. (5) can be rewritten as the following compacted form:

H′β = T. (6)

To calculate the output weight matrix β, Eq. (6) can be solved by minimizing
the objective function: L(β) = 1

2 ||β||2 + C
2 ||T − H′β||2. Similar to Eq. (4), the

output weight matrix β can be calculated as the following equation according
to the relationship between the number of training samples N and the number
of hidden neurons L.
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β =

⎧
⎪⎪⎨

⎪⎪⎩

(
I
C

+ H′TH′
)−1

H′TT, if N ≥ L

H′T
(

I
C

+ H′H′T
)−1

T, if N < L

(7)

The training process of P-ELM is determined by Eq. (5). Different from the
traditional ELM with randomly generated network parameters, the proposed
P-ELM uses the network parameters pre-trained by ELM-AE for model training.
By doing so, the performance of P-ELM can be improved. This is the major
difference between P-ELM and the original ELM.

3.3 Label Prediction

In the testing phase, the class labels of each testing instance is predicted by
the trained P-ELM model. The testing instances are used to calculate the out-
put of hidden layer based on the pre-trained input weights and hidden layer
biases. Then, the class labels of the testing instances can be determined by
Eq. (6). Indeed, instance label prediction in the proposed P-ELM is similar to
the prediction process in ELM.

4 Experimental Results

To validate the performance of the proposed method, the experiments are con-
ducted on face image recognition [17] and handwritten image annotation [14]
respectively. Classification accuracy [18,19] and running time [20] are used as
the evaluation metrics. The reported results are based on 10-fold cross vali-
dation (CV). In P-ELM, the parameter C is tuned by a grid-search strategy
from {0.01, 0.1, 1, 10, 100, 1000}, the sigmoid function is applied as the activation
function for the hidden layer, and the setting of the number of hidden neurons
depends on specific applications. For comparison purposes, we use four ELM-
based methods compared to P-ELM, including a faster ELM method (ELM)
[13], ensemble based ELM (EN-ELM) [5], voting based ELM (V-ELM) [6] and
weighting based ELM (W-ELM) [7].

4.1 Face Image Recognition

In this section, we report the performance of P-ELM on face image recognition
real-world application. The corresponding datasets used in the experiments are
the ORL and Yale face image recognition datasets1. The ORL dataset contains
400 face images with the size of 32 × 32, which belongs to 10 different people.
These images were taken at different times, varying the lighting, facial expres-
sions and facial details. The Yale dataset has 165 face images with the size of
32 × 32 of different facial expressions conducted by 10 different people (Fig. 2).

1 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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(a) ORL (b) Yale

Fig. 2. Example images from different face image databases: (a) ORL and (b) Yale.

In Table 1, we report the experimental results of P-ELM and other baselines
with 50 hidden neurons on two different face image datasets. The results indicate
that P-ELM are with high testing accuracy and low standard deviation compared
to other baselines. P-ELM achieves 74.50% testing accuracy with 4.06% standard
deviation on the ORL dataset, and 60.63% testing accuracy with 8.04% standard
deviation on the Yale dataset. In terms of both training time and testing time,
P-ELM is superior to EN-ELM and V-ELM, and slightly inferior to ELM and W-
ELM. Besides, the experimental results for all compared methods with different
numbers of hidden neurons are given in Fig. 3. From Fig. 3, we can observe that
P-ELM always significantly outperforms other baselines on both the ORL and
Yale datasets. P-ELM’s remarkable performance on face image recognition owes
to the unique of parameter learning mechanism, which guarantees that P-ELM
can achieve superior performance.

Table 1. Performance comparison on face image recognition.

Dataset Measure Algorithm

ELM EN-ELM V-ELM W-ELM P-ELM

ORL Accuracy (%) 69.00 69.75 72.5 57.25 74.50

Acc. Std. (%) 5.92 6.92 5.14 6.58 4.06

Training time (s) 0.0109 0.7472 0.0905 0.0106 0.0328

Testing time (s) 0.0042 0.4992 0.0094 0.0041 0.0047

Yale Accuracy (%) 51.25 50.63 53.75 52.58 60.63

Acc. Std. (%) 13.76 11.58 10.29 11.49 8.04

Training time (s) 0.0078 0.2590 0.0406 0.0086 0.0312

Testing time (s) 0.0047 0.1888 0.0187 0.0042 0.0062

4.2 Handwritten Image Annotation

For handwritten image annotation application, we report the performance of
P-ELM in this section. In the experiments, we use the USPS and MNIST hand-
written image annotation datasets2. The USPS dataset contains 9298 different
gray-scale handwritten digit images with the size of 16×16. The MNIST dataset
2 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Fig. 3. Performance comparison with respect to the number of hidden neurons on face
image recognition: (a) ORL and (b) Yale.

used in the experiments consists of 10000 images of handwritten numbers with
the size of 28 × 28, where each digital number consists of 1000 images. For the
USPS and MNIST datasets, they are both associated with 10 different categories
of “0” through “9” (Fig. 4).

(a) USPS (b) MNIST

Fig. 4. Example images from different handwritten image databases: (a) USPS and
(b) MNIST.

In Table 2, the results on handwritten image datasets show the performance
of P-ELM and other baselines with 100 hidden neurons. P-ELM achieves 91.86%
testing accuracy with 0.79% standard deviation on the USPS dataset, and
88.44% testing accuracy with 0.94% standard deviation on the MNIST dataset,
which shows its superiority compared to other baselines. In terms of training
time, P-ELM needs a little more running time than ELM, achieves slightly
superior performance than W-ELM, and runs much faster than EN-ELM and
V-ELM. In terms of testing time, P-ELM is slightly inferior to ELM and W-ELM,
and significantly superior to EN-ELM and V-ELM. In addition, the simulation
results for P-ELM and other baseline methods with various numbers of hidden
neurons are presented in Fig. 5. As can be observed from Fig. 5, P-ELM is always
superior to the baselines on the USPS dataset, and achieves better or compara-
ble performance compared to other baselines on the MNIST dataset. The above
observation suggests that P-ELM is also effective on handwritten image anno-
tation, mainly because that it uses an ELM-AE to learn the suitable network
parameters for P-ELM.
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Table 2. Performance comparison on handwritten image annotation.

Dataset Measure Algorithm

ELM EN-ELM V-ELM W-ELM P-ELM

USPS Accuracy (%) 89.44 89.61 90.32 87.91 91.86

Acc. Std. (%) 1.02 1.07 1.11 0.95 0.79

Training time (s) 0.2309 6.9748 1.6357 0.6257 0.4212

Testing time (s) 0.0156 4.7471 0.0796 0.0152 0.0172

MNIST Accuracy (%) 81.66 81.81 84.29 77.22 88.44

Acc. Std. (%) 1.24 1.45 1.17 1.74 0.94

Training time (s) 0.5647 12.9094 1.7023 0.8375 0.7192

Testing time (s) 0.0172 8.4287 0.0858 0.0203 0.0265

100 200 300 400 500 600
Number of hidden nodes

86

88

90

92

94

96

98

A
cc

ur
ac

y 
(%

)

ELM
EN-ELM
V-ELM
W-ELM
P-ELM

(a) USPS

100 200 300 400 500 600
Number of hidden nodes

75

80

85

90

95
A

cc
ur

ac
y 

(%
)

ELM
EN-ELM
V-ELM
W-ELM
P-ELM

(b) MNIST

Fig. 5. Performance comparison with respect to the number of hidden neurons on
handwritten image annotation: (a) USPS and (b) MNIST.

5 Conclusion

In this paper, we proposed a novel method called pre-trained extreme learn-
ing machine (P-ELM for short). The proposed P-ELM is a data-driven method,
which uses an ELM-AE to intelligently determine the suitable network para-
meters for diverse learning tasks. The unique parameter learning mechanism,
including the processes of encoding and decoding, ensures that P-ELM can
encode the underlying information of the original data into the network para-
meters. Experiments and comparisons on face image recognition and handwrit-
ten image annotation (each application contains two datasets) demonstrate the
superior performance of the proposed P-ELM compared to baseline methods.

Acknowledgments. This work is supported in part by the National Nature Science
Foundation of China (Grant Nos. 61403351 and 61773355), the Key Project of the
Natural Science Foundation of Hubei Province, China (Grant No. 2013CFA004), the
National Scholarship for Building High Level Universities, China Scholarship Council
(No. 201706410005), and the Self-Determined and Innovative Research Founds of CUG
(No. 1610491T05).



A Brain Network Inspired Algorithm 23

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and appli-
cations. Neurocomputing 70(1–3), 489–501 (2006)

2. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines:
a review. Neural Netw. 61, 32–48 (2015)

3. Zhang, Y., Wu, J., Cai, Z., Zhang, P., Chen, L.: Memetic extreme learning machine.
Pattern Recogn. 58, 135–148 (2016)

4. Zhang, Y., Wu, J., Zhou, C., Cai, Z.: Instance cloned extreme learning machine.
Pattern Recogn. 68, 52–65 (2017)

5. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Process.
Lett. 17(8), 754–757 (2010)

6. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine.
Inf. Sci. 185(1), 66–77 (2012)

7. Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbal-
ance learning. Neurocomputing 101(3), 229–242 (2013)

8. Ap, S.C., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V.C.,
Saha, A.: An autoencoder approach to learning bilingual word representations. In:
Advances in Neural Information Processing Systems, pp. 1853–1861 (2014)

9. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: 25th International Conference on
Machine Learning, pp. 1096–1103 (2008)

10. Wang, H., Shi, X., Yeung, D.Y.: Relational stacked denoising autoencoder for tag
recommendation. In: 29th AAAI Conference on Artificial Intelligence, pp. 3052–
3058 (2015)

11. Bai, Z., Huang, G.B., Wang, D., Wang, H., Westover, M.B.: Sparse extreme learn-
ing machine for classification. IEEE Trans. Cybern. 44(10), 1858–1870 (2014)

12. Zhang, R., Lan, Y., Huang, G.B., Xu, Z.B.: Universal approximation of extreme
learning machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw.
Learn. Syst. 23(2), 365–371 (2012)

13. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regres-
sion and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern.
42(2), 513–529 (2012)

14. Kasun, L.L.C., Zhou, H., Huang, G.B., Chi, M.V.: Representational learning with
elms for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

15. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

16. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer percep-
tron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2015)

17. Yang, Y., Wu, Q.J.: Multilayer extreme learning machine with subnetwork nodes
for representation learning. IEEE Trans. Cybern. 46(11), 2570–2583 (2016)

18. Wu, J., Cai, Z., Zeng, S., Zhu, X.: Artificial immune system for attribute weighted
naive bayes classification. In: IEEE International Joint Conference on Neural Net-
works, pp. 1–8 (2013)

19. Wu, J., Hong, Z., Pan, S., Zhu, X., Cai, Z., Zhang, C.: Multi-graph-view learning
for graph classification. In: 14th IEEE International Conference on Data Mining,
pp. 590–599 (2014)

20. Wu, J., Pan, S., Zhu, X., Zhang, C., Wu, X.: Positive and unlabeled multi-graph
learning. IEEE Trans. Cybern. 47(4), 818–829 (2017)


	A Brain Network Inspired Algorithm: Pre-trained Extreme Learning Machine
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Parameter Learning
	3.2 Model Training
	3.3 Label Prediction

	4 Experimental Results
	4.1 Face Image Recognition
	4.2 Handwritten Image Annotation

	5 Conclusion
	References


