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Abstract. This paper considers implementation of desired digital spike
maps (DSmaps) in the digital spiking neurons (DSNs). The DSmap is
defined on a set of points and can describe various spike-trains. The DSN
is constructed by two shift registers and a wiring. Depending on the
wiring pattern, the DSN can generate various spike-trains. We present
a simple formula that clarifies relation between the DSmaps and DSNs.
Using the formula, desired DSmaps can be implemented in DSNs. We
then present a simple ring-coupled system of the DSNs and demonstrate
multi-phase synchronization of periodic spike-trains in Verilog simula-
tion. This coupled system will be developed into large-scale networks of
DSNs.
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isters · Multi-phase synchronization

1 Introduction

A digital spike map (DSmap) is a simple digital dynamical system defined on
a set of points [1–4]. The DSmap is regarded as a digital version of analog
one-dimensional maps such as the logistic map [5] and is relevant to several
digital systems such as cellular automata [6]. The DSmap can describe various
periodic/transient spike-trains. Spike-trains have been used in many engineering
applications including image processing [7], spike-based communication [8,9],
and spike-based time series approximation [10]. In such applications, synchro-
nization of multiple spike-trains plays a key role. Implementation/realization of
desired spike-trains and their synchronization phenomena are important not only
in fundamental study of nonlinear dynamics but also in engineering applications.

This paper studies implementation of the DSmaps in the digital spiking neu-
rons (DSNs [9–11]). First, we show that the DSmap is represented by a charac-
teristic vector and can describe various spike-trains. Based on the DSmap, we
define super-stable periodic spike-train such that all the initial points fall rapidly
into the spike-train. Such spike-trains are well suited for robust operation of engi-
neering systems such as spike-based encoders [9]. Second, we consider the DSNs
inspired by integrate-and-fire neuron models [12–14]. The DSN is constructed by
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two shift registers [15] connected by a wiring [10]. Depending on the wiring pat-
tern and initial condition, the DSN can generate various periodic spike-trains.
The dynamics of DSN is represented by a wiring vector. We give a simple formula
that clarifies relation between wiring vectors of DSNs and characteristic vectors
of DSmaps. Using the formula, desired DSmaps can be implemented in the DSNs.
As a typical phenomenon, a super-stable periodic spike-train is demonstrated in
Verilog simulation. Third, we present a simple ring-coupled system of the DSNs
based on a digital delayed connection. As a typical phenomenon, multi-phase
synchronization of periodic spike-trains is demonstrated in Verilog simulation.

The Verilog simulation and ring-coupled system will be developed into FPGA
hardware implementation of large-scale networks of DSNs. It should be noted
that the implementation of DSmaps in the DSNs and the ring-coupled system
have not discussed in previous publications [1–4,10,11].

2 Digital Spike Maps and Periodic Spike-Trains

Figure 1(a) shows a digital spike-train where N denotes basic period and θn
denotes the n-th spike-phase. Let such spike-trains be described by the DSmap

θn+1 = F (θn), θn ∈ {1, · · · , N} ≡ LN (1)

Fig. 1. Digital spike-train and digital spike map (N = 9). (a) Periodic spike-train with
period 3N . (b) DSmap of d = (6, 8, 1, 5, 2, 7, 4, 5, 2) and complete-stable periodic orbit
with period 3. (c) DSmap of d = (8, 8, 8, 2, 2, 2, 5, 5, 5) and super-stable periodic orbit
with period 3.
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As an initial spike-phase θ1 ∈ [0, N) is given, the DSmap outputs a sequence of
spike-phases {θn}. The sequence gives a spike-train

Y (τ) =
{

1 for τ = τn
0 for τ �= τn

τn = θn + N(n − 1). (2)

where τn denote the n-th spike-position. The n-th spike appears in the n-th
interval: τn ∈ [(n − 1)N,nN). The DSmap is represented by the characteristic
vector

d ≡ (d1, · · · , dN ), F (i) = di ∈ {1, · · · , N} (3)

Since the domain LN of the DSmap consists of a finite number of points, the
steady state must be a periodic spike-rain. Here we give basic definitions.

Definition 1. A point p ∈ LN is said to be a periodic point with period k if
p = F k(p) and F (p) to fk(p) are all different where F k is the k-fold composition
of F . A sequence of the periodic points {F (p), · · · , F k(p)} is said to be a periodic
orbit. A periodic orbit with period k is equivalent to a periodic spike-train with
period kN . For example, the periodic orbit with period 3 in Fig. 1 is equivalent
to periodic spike-train with period 3 × 9.

Definition 2. A point q ∈ LN is said to be an eventually periodic point with
step k if the q is not a periodic point but falls into some periodic point p after k
steps: F k(q) = p. The eventually periodic points represent transient phenomena.

Definition 3. A periodic orbit (and corresponding periodic spike-train) is said
to be complete-stable if all the eventually periodic points fall into the periodic
orbit. A periodic orbit (and corresponding periodic spike-train) is said to be a
super-stable if all the eventually periodic points fall into the periodic orbit after
1 step.

Figure 1(c) shows a super-stable periodic orbit. All the initial points fall
rapidly into the periodic orbit (and corresponding periodic spike-train). Super-
stable spike-trains are well suited for robust operation of engineering systems
such as spike-based encoders in multiplex communication [9].

3 Digital Spiking Neurons

In order to implement the DSmap, we introduce the DSN. Applying a wiring
between two shift registers, a DSN is constructed as shown in Fig. 2(a) The left
and right shift resistors are referred to as P-cells and X-cells, respectively. The
P-cells consist of Np elements and operate as a pacemaker. Only one element
can be 1 (with period Np) and all the other elements are 0:

P (τ) = (P1(τ), · · · , PNp
(τ)), Pi = 1 iff τ mod Np = i, i ∈ {1, 2, · · · , Np} (4)

where τ denotes discrete time and is represented by a positive integer.
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The X-cells consist of Nx elements and construct a state variable vector
corresponding to the membrane potential in analog neuron models. Only one
element can be 1 and all the other elements are 0.

X(τ) = (X1(τ), · · · ,XNx
(τ)) (5)

The P- and X-cells are connected by a wiring represented by the wiring vector

a = (a1, · · · , aNp
), ai = j iff Pi is connected to Xj (6)

For example, the DSN in Fig. 2 is represented by the wiring vector

a = (4, 3, 11, 8, 12, 8, 12, 12, 16)

Each branch of the wiring activates either element of the X-cells. The activated
elements construct a base signal where only one element can be 1 and all the
other elements are 0:

B(τ) = (B1(τ), · · · , BNx
(τ)), Bj(τ) = 1 iff Pi(τ) = 1 and ai = j (7)

where j ∈ {1, 2, · · · , Nx − 1}. In the DSN, X-cells are initialized such that
Xk(1) = 1 at τ = 1 for some k. For τ ≥ 2, the dynamics is defined as the
following:

– If Xj(τ) = 1 then Xj+1(τ + 1) = 1 where j ∈ {1, 2, · · · , Nx − 1}.
– If XNx

(τ) = 1 and Bj(τ) = 1 then Y (τ) = 1 and Xj(τ + 1) = 1 where
j ∈ {1, 2, · · · , Nx − 1}.

As illustrated in Fig. 2, the DSN generates a spike-train:

Y (τ) =
{

1 if XNx
(τ) = 1

0 otherwise (8)

Since the n-th spike determines the (n + 1)-th spike, a DSmap can be defined:

θn+1 = F (θn), θn ∈ {1, 2, · · · Np} (9)

where θn is the n-th spike phase, τn is the n-th spike-position, and Np is the
basic period. For simplicity, we set

Nx = 2Np − 1, 0 ≤ ai − i ≤ Np, i ∈ {1, 2, · · · , Np} (10)

In this case, one spike appears once per one basic period Np and the n-th spike
appears in the n-th interval τn ∈ {(n − 1)Np, · · · , nNp}.

Here we show an important result. If a characteristic vector d = (d1, · · · , dNp
)

of a DSmap is given, the corresponding wiring vector of a DSN is given by

a = (a1, · · · , aNp
), ai = Np − (di − i), i ∈ {1, · · · , Np} (11)

Using Eq. (11), any DSmap can be implemented in the DSN. For example, the
DSmap in Fig. 1(c) has super-stable periodic orbit and is implemented in the
DSN of the wiring vector

a = (2, 3, 4, 11, 12, 13, 11, 12, 13) ← d = (8, 8, 8, 2, 2, 2, 5, 5, 5)

That is, the super-stable periodic orbit of the DSmap in Fig. 1(c) is realized by
the super-stable spike-train of DSN in Fig. 3.
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Fig. 2. Digital spiking neuron for Np = 9 and Nx = 17. The wiring vector a =
(4, 3, 11, 8, 12, 8, 12, 12, 16). (a) P-cells, X-cells, and wiring. (b) Complete-stable periodic
spike-train with period 3Np. It corresponds to complete-stable periodic orbit with
period 3 of DSmap in Fig. 1(b)

Fig. 3. Digital spiking neuron for Np = 9 and Nx = 17. Wiring vector a =
(2, 3, 4, 11, 12, 13, 11, 12, 13). (a) P-cells, X-cells, and wiring. (b) Super-stable periodic
spike-train with period 3Np. It corresponds to super-stable periodic orbit with period
3 of DSmap in Fig. 1(c). (c) Verilog simulation of super-stable periodic spike-train with
period 3Np.
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4 Ring-Coupled Digital Spiking Neurons and Multi-phase
Synchronization

Here we present a ring-coupled system of DSNs. First, we prepare M pieces of
DSNs with a common base signal as illustrated in Fig. 4:

X1 ≡ (X1
1 , · · · ,X1

Nx
), · · · ,XM ≡ (XM

1 , · · · ,XM
Nx

) (12)

The ring-coupled-DSN is defined by the following two kinds of firing.

1. Self-firing. If Xi
j(τ) = 1 then Xi

j+1(τ + 1) = 1 for j ∈ {1, · · · , Nx − 1}
and i ∈ {1, · · · ,M}. If Xi

Nx
(τ) = 1 and Bj(τ) = 1 then Y i(τ) = 1 and

Xi
j(τ + 1) = 1. The common base signal is determined by Eq. (7).

2. Propagate-firing. If Xi
Nx

(τ) = 1 and Xi+1
k (τ) = 1 for k ∈ {1, · · · , Nx − Np}

then Xi+1
Nx−Np+1(τ + 1) = 1 where i ∈ {1, · · · ,M} and (XM+1 ≡ X1).

For example, in the case M = 3, Nx = 17, and Np = 9, the propagate-coupling
is described by

If X1
17(τ) = 1 and X2

k(τ) = 1 for k < 9 then X2
9 (τ + 1) = 1.

If X2
17(τ) = 1 and X3

k(τ) = 1 for k < 9 then X3
9 (τ + 1) = 1.

If X3
17(τ) = 1 and X1

k(τ) = 1 for k < 9 then X1
9 (τ + 1) = 1.

The firings are illustrated in Fig. 4. In the ring-coupled-DSN, the i-th DSN
outputs a spike-train

Y i(τ) =
{

1 if Xi
Nx

(τ) = 1
0 otherwise i ∈ {1, · · · ,M} (13)

We have constructed ring-coupled DSNs for M = 3, Nx = 17, and Np = 9 as
shown in Fig. 4. When each of the 3 DSNs outputs a periodic spike-train with
period 3Np before the ring-coupling, the ring-coupled DSN can exhibit 3-phase
synchronization such that

Y 1(τ) = Y 3(τ − Np), Y 2(τ) = Y 1(τ − Np), Y 3(τ) = Y 2(τ − Np)
X1(τ) = X3(τ − Np), X2(τ) = X1(τ − Np), X3(τ) = X2(τ − Np)

(14)

where Xi(τ − 3Np) = Xi(τ) for i ∈ {1, 2, 3}. Performing Verilog simulation,
we have confirmed 3-phase synchronization phenomenon of periodic spike-trains
with period 3Np as shown in Fig. 5. The periodic spike-train is super-stable before
the coupling as shown in Fig. 3 and the 3-phase synchronization is complete-
stable. This ring-coupled-DSN and its Verilog simulations will be developed into
FPGA hardware implementation of large-scale networks of DSNs and its appli-
cations.
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Fig. 4. Ring-coupled digital spiking neurons and M -phase synchronization for M = 3.

Fig. 5. M -phase synchronization with period 3Np for M = 3, Np = 9 and Nx = 17
in Verilog simulation. Before the coupling, each DSN outputs super-stable periodic
spike-train with period 3× 9 in Fig. 3. Parameters of the DSN are as in Fig. 3.

5 Conclusions

Realization of desired periodic spike-trains and multi-phase synchronization of
them are studied in this paper. As a DSmap of desired spike-train dynamics is
given, a suitable wiring vector is determined and the DSmap is implemented in
the DSN. A simple ring-coupled system of DSNs is presented and multi-phase
synchronization of periodic spike-trains is demonstrated.
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Future problems include classification of various periodic spike-trains, stabil-
ity analysis of the periodic spike-rains and synchronization phenomena, consid-
eration of various coupling methods of DSNs, and hardware implementation for
engineering applications.
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