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Abstract. Trajectory abstraction is an efficient way to handle the large
amount of information included in complex trajectory data. Based on the
previous work, this paper proposes an improved framework for abstract-
ing trajectories, which consists of three major stages. First, the original
trajectories in different lengths are matched into groups according to
their similarities, and then a non-local denoising approach, based on the
wavelet thresholding technique, is performed on these groups to sum-
marize trajectories. Last, a combined version of the compacted trajec-
tories is obtained as the final trajectory abstraction. To avoid loss of
trajectory features introduced by the resampling technique, we provide
a novel method to convert trajectories in different lengths into sup-
positional equal, which serves for the similarity measurement and the
wavelet thresholding. Extensive experiments on real and synthetic tra-
jectory datasets demonstrate that the proposed trajectory abstraction
achieves very potential results dealing with complex trajectory data.

Keywords: Trajectory abstraction + Outliers detection - Different sam-
pling points + Similarity measurement - Wavelet thresholding

1 Introduction

With rapid development of location-aware sensors in a variety of new applica-
tions, massive spatial temporal data, i.e., trajectory data, will soon be accumu-
lated [1]. Trajectory data has a brand range of practical applications in many
fields such as intelligent transportation, location-based social networks [2] and
so on [3]. The analysis of trajectory data is traditionally based on clustering
to exact the patterns and underlying knowledge of these data. Unfortunately,
clustering performance degrades when handling trajectory data with complex
appearance [4].

To better understand the trajectory data, the framework [4] has been pro-
posed for abstracting trajectories from the perspective of signal processing. In
that framework, a resampling technique is firstly exploited to make trajectories
have the same number of sampling points for trajectory abstracting framework.
Extensive experiments show that the framework for trajectory abstraction gives
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very pleasant results for most trajectory data. Unfortunately, the performance
degrades in special cases in which there are very tortuous trajectories, as shown
in Figs. 4 and 5. The important shape or direction attributes of trajectories have
inevitable distortion, leading to information loss of original trajectories. This
is mainly because the resampling procedure discards original sampling points,
meanwhile new points maybe introduced in the resampled trajectories, thus
detailed information of original trajectories are changed to some extent.

This paper is a great leap of the work [4], and the main contribution is that we
develop a new method for combating the situation that trajectories have different
numbers of sampling points. In concrete, the reinforced framework starts without
resampling, and matches original trajectories to form similarity groups. Here, the
distance between trajectories is computed in a new way. That is, given any two
trajectories in a dataset, for every sampling point of each trajectory, we obtain
its corresponding point of the other trajectory by determining a position, where
has the same length percentage with the sampling point under consideration.
The distance between two trajectories is an average of all distances between
sampling points and their corresponding points. We reuse all the virtual points
in the following denoising approach. And the final combining is consistent with
the previous framework.

The rest of this paper is organized as follows. The next section covers the
related work. The improved trajectory abstracting framework is described in
Sect. 3. Experimental results are presented and discussed in Sect.4. The final
section concludes the paper.

2 Related Work

Data mining is an interdisciplinary field of computer science [5-7]. It is the com-
putational process of discovering patterns in large datasets involving methods at
the intersection of artificial intelligence, machine learning, statistics, and data-
base systems [5]. Among many data mining algorithms, clustering maybe the
most popular way to present patterns of data. Many clustering algorithms have
been proposed and developed, such as Density Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [8], Ordering Points to Identify the Clustering
Structure (OPTICS) [9], k-means [10], Statistical Information Grid (STING) [11]
and so on [12]. Due to simplifying and easily understanding, k-means is widely
used, however, it is hard to obtain the number of clusters k& adaptively, which
influences the clustering performance directly. DBSCAN is a density-based clus-
tering algorithm, which is less effective when handling high-dimensional data.
Moreover, border points that are reachable from more than one cluster can
be classified into either cluster, depending on the order in which the data is
processed.

These clustering algorithms are often used to mine information and find out-
liers from the data, but for complex trajectory data, the performance may not
be so satisfactory. To process and analyze trajectories effectively, a trajectory
abstraction framework is proposed in [4], which summarizes trajectories from
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perspective of signals. The experiments show that it is suitable to deal with
most of the general trajectory data, meanwhile some distortions maybe intro-
duced. Therefore, this paper provides a novel framework based on the previous
framework in order to handle more intractable trajectory abstracting application
and distinguish outliers in a more appropriate way.

3 The Framework for Trajectory Abstraction

3.1 Distance Measurement

In practical applications, different trajectories always have different numbers of
sampling points, which brings difficulty to measure the distance between trajec-
tory data. In the work [4], all the trajectories are firstly resampled to have the
same numbers of sampling points, making the distance measurement much eas-
ier. While in fact, the sampling technique may somehow destroy original shapes
of trajectories, especially when dealing with very tortuous trajectory data. For
instance, the sampling procedure may smooth out several turning points of a
complex trajectory. As a result, the accuracy of distance measurement can be
largely degraded. In order to improve the performance, we propose a new dis-
tance measurement to overcome the distortion generated by sampling.
In concrete, given the i-th trajectory in a dataset with m sampling points
defined as
Si ={Si1,5i2,5 3, s Sim} (1)

where S; ; is the j-th sampling point of trajectory S;. The key to compute the
distance between S; and another trajectory S; is to find out the “correspond-
ing” sampling points in S; for each point in S;. We define the points with the
equal percentage values have the “corresponding” relation. The percentage of the
sampling point S; ; is calculated by the ratio of the trajectory length between
Si1 and S; ; to the total length. Here, by length we mean the sum of Euclidean
distances between adjacent sampling points. For example, as shown in Fig. 1.
The length between S;; and S;4 is actually the length of the red line, and
similarly, the total length of the trajectory is the sum length of red and blue
segments. Notice that, the corresponding point in S; may a the new one, the
position of which is computed by percentage. With all the corresponding points
in S; being located for sampling points in .S;, we can obtain the distance between
S;1 and S; 4 by the average of all distances between the pairwise points with
corresponding relations. Figure 2 illustrates such an example of calculating the
distance between trajectories S; and S;. The corresponding sampling point of
Sik is noted as S ¢, and for S, it is S} ,. Obviously, the final distance is the
average length of all dashed lines.

Hausdorff and Euclidean distances may be the most widely used distance
measures. While in fact, Euclidean distance is simple but requires the trajecto-
ries under consideration to have equal numbers of sampling points. Hausdorff
distance does not have such requirement, but it is difficult to distinguish the
directions of the trajectories, and it fails to deal with complex trajectories with
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Fig. 2. Computation the trajectory distance between S; and S;

circular paths. By contrast, our proposed distance measurement possesses the
simplicity of Euclidean distance and the general applicability of Hausdorff dis-
tance, and simultaneously overcomes the shortcomings of them.

3.2 Trajectory Abstraction

The improved trajectory abstraction framework is based on the work [4]. Dif-
ferent from the prior work, resampling is ignored in this paper, remaining the
non-local denoising phase, including matching, thresholding and combining. Due
to different numbers of sampling points, we also make a variant in threshold-
ing. The reinforced framework can also iteratively output trajectory abstractions
with multi-granularities and outliers.

Matching. In this step, each trajectory is regarded as a reference, for the pur-
pose of matching its similar trajectories to establish groups. During the match-
ing procedure, two trajectories S; and S; is matched into the same group when
their distance is less than a threshold 7, which can be selected adaptively [4].
We adopt the new distance metric to measure the similarity between trajecto-
ries. Thus resampling can be avoided and shape feature of trajectories can be
reserved. Note that a trajectory can be matched into more than one groups.
That means a trajectory may have several duplicates in different groups, and
they are independent of each other.
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Thresholding. After matching, the wavelet thresholding technique is operated
on every group. Notice that the similarity groups consist of similar trajectories
but with different numbers of actual sampling points. Assume that the reference
trajectory is S;., and its similarity group T'G, with m trajectories is defined as

TG, ={S,|Diff(S,,S;) <1} (2)

where Dif f(.) is the new distance metric mentioned in Sect. 3.1. We perform the
wavelet thresholding on each sampling points of every trajectories in the group.
That is, given a trajectory S; from the group, we find all the virtual points in the
whole group corresponding to each actual point of this trajectory. The collection
of all virtual points together with the sampling point S} is now denoted as
Sjk = [Sjl-yl, 3/-72, ey SjJC, ey S;mL]T

3)

Thus, we transform trajectories into signals, which are then filtered by the
wavelet thresholding technique.

Figure 3 presents a simple example. Suppose we have already formed a group
of three trajectories. The red trajectory consists of two sampling points. The
green is of three sampling points and the blue is four.

Fig. 3. Construction of points for filtering in a group (Color figure online)

We do the thresholding for every sampling point, i.e., each solid point in Fig. 3
will be filtered. In the figure, each dotted circle contains three points, which are
either all solid points or a solid point with two hollow points. And the three points
in a dotted circle have the same percentage value in their respective trajectories,
and they will be filtered by wavelet thresholding. After filtering, only solid points
will update their respective trajectories in the group, and hollow points will be
discarded due to their fictionality. In case that there is a real sampling point
corresponding to the sampling point to be filtered, we always use the original
version of the real point, instead of the one being filtered.

Combining. With all groups filtered by thresholding, we obtain the filtered and
condensed trajectories in each group. Notice that a trajectory can have different
duplicates after filtering, since it is reasonable to exploit a same trajectory in
several groups. Therefore, we perform the combining, by averaging its duplicates
in all groups, to get the final form for each trajectory.
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4 Experimental Results

In this section, to evaluate the performance of the improved framework, we
have studied 7 trajectory datasets, including real and synthetic data, as listed in
Table 1. In addition, comparison with the previous method [4] has been made. For
reasons of space, only two real datasets, video! and GPS? [13-15], are illustrated
in the following.

Table 1. Evaluation on outlier detection [4]

Database Recall Precision
Improved | Previous | DBSCAN | Improved | Previous | DBSCAN

Video? 1.0 0.67 0.67 1.0 1.0 1.0
GPSP[13-15] 1.0 0.67 0.67 1.0 1.0 1.0
Highway [16] |0.93 0.89 0.94 0.89 0.89 0.84
Simulation [17]| 1.0 1.0 1.0 1.0 1.0 0.95
Edinburgh® 0.95 0.95 0.76 0.94 0.81 0.86
Aircraft® 0.95 0.88 0.89 1.0 0.95 0.81
CROSS [18] 0.93 0.98 0.93 0.91 0.92 0.81

* http://homepages.inf.ed.ac.uk/rbf/forumtracking/

P http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2
b2e13/default.aspx

¢ https://c3.nasa.gov/dashlink /resources/132/,2011

4 http://www-users.cs.umn.edu/~aleks/inclof/

As shown in Fig.4(a), the video is a really complex dataset, which includes
189 trajectories with the number of sampling points ranging from 174 to 645.
The abstraction results by the improved and the previous methods are presented
in Figs.4(b) and (c), respectively. Note that, the previous method requires the
resample process, which firstly smooths the trajectories and makes them in equal
numbers of sampling points. Obviously, it is very difficult to summarize the
trajectories due to their intricate shapes. By contrast, the performance of the
improved method is more satisfying. For instance, in Fig. 4(a), 24 blue and 1 red
trajectories seem to be similar with respect to the small waves of the lower half
parts, while obviously the red one has relatively gradual shape changes of the
upper half parts. Our improved method successfully smooths the blue trajecto-
ries, without largely losing the shape information from the overall perspective,
and clearly detects the red one as an outlier. Unfortunately, the previous method
mixes the blue trajectories with the outlier and gives the final abstraction result.

! http://www-users.cs.umn.edu/~aleks/inclof/.
2 http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-
daa38f2b2e13/default.aspx.
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(a) Original Data

(b) by improved method (c) by previous method

Fig. 4. Comparison of abstraction results on Video (Color figure online)

Figure 5(a) is the original 77 trajectories of GPS, where the red one is an
outlier. These trajectories are of different numbers of sampling points, up to
370. The abstracted trajectories of original data are in Fig. 5(b). The resampled
abstracted trajectories are in Fig.5(c). In Fig. 5(b), three normal trajectories
in blue overlap with each other, the same situation happens in Fig.5(c). The
difference is that the red anomaly trajectory is identified by our improved method
due to the appropriate distance metric, as shown in Fig. 5(b), while the previous
method treated the blue normal trajectories and the outlier as similar items due
to the smoothing by resampling, as shown in Fig. 5(c).

Additionally, we make use of recall and precision metrics [16] to quantitatively
measure the effect of our improvements in terms of anomaly detection. Table 1
shows the comparison results of our improved method, the previous method and
DBSCAN. In all, our improved method and the previous method outperform
the typical DBSCAN, and the improved version indeed enhances the ability of
handling complex trajectory data.
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Fig. 5. Comparison of abstraction results on GPS (Color figure online)

5 Conclusion

The framework of doing trajectory abstracting [4] is able to process trajectory
data more effectively than the common clustering algorithms. In order to pre-
serve the advantages of the trajectory abstraction framework and meanwhile, to
avoid the problem introduced by resampling, this paper has enhanced the pre-
vious trajectory abstracting framework to better deal with complex trajectories
with massive details. We have made progresses in trajectory thresholding, that
is, the wavelet thresholding can be handled on trajectories of various numbers
of sampling points. And we have designed a new distance metric for tortuous
and littery trajectories. The experimental results show that the improved frame-
work has a stronger ability to abstract trajectory data with varied lengths and
distinguish outliers.

Several improvements for the framework of trajectory abstraction will be
tried in our future research. The time consumption of the trajectory abstraction
should be reduced in order to handle a greater mount of trajectories efficiently.
Furthermore, the abstraction method should be reinforced to handle trajectories
of 3-Dimension or higher dimension data.
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