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Abstract. In this paper, a finite-time adaptive sliding mode control
scheme is proposed for the attitude stabilization of spacecrafts with
lumped uncertainties. By introducing an exponential function in the
reaching law design, an improved reaching law is developed such that
the faster convergence of sliding mainfold can be achieved. Then, an
adaptive controller is proposed based on the modified reaching law to
guarantee the finite time attitude stabilization of spacecrafts by adaptive
estimating the bounds of uncertainties. Besides, the chattering problem
is reduced by using a power rate term in the controller design. Simula-
tions are given to illustrate the effectiveness and superior performance
of the proposed method.
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1 Introduction

Attitude stabilization for spacecrafts has gained extensive interest in recent
years, however, it is still a challenge to achieve the attitude stabilization with
rapid convergence and high accuracy. Recently, there have been numerous
researches in the literature on spacecraft attitute control (see, for instance, [1–4]).

Due to the excellent properties such as robustness to uncertainties and faster
convergence, sliding mode control has been widely used in spacecraft attitude
control. In [2], two sliding mode controllers are proposed to drive system states
to the origin with the finite-time convergence for spacecraft attitude stabiliza-
tion. In [3], an adaptive sliding mode control (SMC) is proposed for spacecrafts
to ensure that the attitude control can be achieved with actuator saturation. In
[4], an adaptive finite-time fault-tolerant controller has been proposed for rigid
spacecrafts with external disturbances subject to four types of actuator faults.
In [5], a power rate reaching strategy based on the conventional reaching law
is applied to reduce chattering, but it increased the reaching time. Recently, an
exponential reaching law (ERL) was proposed in [6]. By introducing an expo-
nential function in the reaching law design, the faster convergence of sliding
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mode variable can be achieved. Considering the convergence rate and the chat-
tering problem, the choice of coefficient of sign function becomes sensitive. Based
on ideas in [6], this paper proposes an adaptive controller based on the mod-
ified reaching law, and the finite time attitude stabilization is guaranteed for
spacecrafts with system uncertainties and disturbances. Besides, the chattering
problem is reduced by using a power rate term in the controller design.

The rest of this paper is organized as follows. In Sect. 2, a spacecraft attitude
model is constructed based on unit quaternion and the transformed attitude
dynamics is developed in a more convenient way. In Sect. 3, an adaptive controller
with modified power reaching law (MPRL) is designed to ensure that the sliding
states can converge in finite time rapidly, then the system states can converge
into a small region through Lyapunov stability analysis. Simulation results are
presented in Sect. 4. Finally, this paper is concluded in Sect. 5.

2 Preliminaries

2.1 Spacecraft Dynamics and Kinematics Equations

Consider the following attitude kinematics and dynamics equations of the space-
craft in terms of quaternion [7]:

Jω̇ = −ω×Jω + u + d (t) (1)

q̇v =
1
2

(
q×
v + q0I3

)
ω (2)

q̇0 = −1
2
qT
v ω (3)

where ω ∈ R
3 is the angular velocity of the spacecraft; I ∈ R

3×3 is the identity
matrix; J ∈ R

3×3 is the innertia matrix of the spacecraft, u ∈ R
3 and d(t) ∈ R

3

are the control torque and the external unknow disturbances including environ-
mental disturbances, respectively. The unit quaternion Q = [q0, q1, q2, q3]

T =
[
q0, q

T
v

]T ∈ R×R
3 describes the attitude orientation and satisfies the constraint

q20 + qT
v qv = 1. The notation a× for a vector a = [a1, a2, a3]T is used to denote

the skew-symmetric matrix a× = [0,−a3, a2; a3, 0,−a1;−a2, a1, 0].
Assume that the inertia matrix J is a form of J = J0 + ΔJ , where J0 and

ΔJ denote the nominal part and the uncertain part of J , respectively. Then, (1)
can be rewritten as

J0ω̇ = −ω×J0ω + u + d (t) − ΔJω̇ − ω×ΔJω (4)

Property 1. The nominal part J0 is a symmetric and positive definite matrix
and satisfies:

J1‖x‖2 ≤ xT J0x ≤ J2‖x‖2,∀x ∈ R
3, (5)

where J1 and J2 are positive constants, denoting the lower and upper bounds of
J0, respectively.
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2.2 Transformed Spacecraft Attitude Dynamics

For a more convenient way to express the attitude dynamics controller design,
the Lagrange-like equation in [4] is utilized to describe the spacecraft attitude
dynamic (1). Let T = 1

2 (q×
v + q0I3) ∈ R

3×3, and (2) can be rewritten as

ω = P q̇v (6)

with

P = T−1 =
[
1
2

(
q×
v + q0I3

)
]−1

(7)

Then, differentiating (6) yields:

ω̇ = Ṗ q̇v + P q̈v (8)

Substituting (6) and (8) into (4) and premultiplying both sides of the result-
ing expression by PT leads to

J∗q̈v = −Ξq̇v + PT u + Td (9)

where J∗ = PT J0P , Ξ = PT J0Ṗ −PT (J0P q̇v)×
P , and Td = PT d (t)−PT ΔJω̇−

PT ω×ΔJω. Here, Td is considered as the lumped disturbances and uncertainties.
Regarding the dynamic model given in (9) and Property 1, some more properties
and assumptions are given as follows.

Property 2. [8] The inertia matrix J∗ is symmetric and positively definite, and
the matrix J̇∗ − 2Ξ satisfies the following skew-symmetric relationship:

xT
(
J̇∗ − 2Ξ

)
x = 0, ∀x ∈ R

3, (10)

Property 3. [8] The inertia matrix J∗ satisfies the following bounded condition:

Jmin‖x‖2 ≤ xT J∗x ≤ Jmax‖x‖2,∀x ∈ R
3, (11)

where Jmin and Jmax are positive constants, denoting the lower and upper
bounds of J∗, respectively.

Assumption 1. [8] To guarantee the existence of P defined in (7), the following
condition should be satisfied:

det (T ) =
1
2
q0 �= 0 ∀t ∈ [0, ∞) (12)

Assumption 2. [9] The lumped term Td of the disturbances and uncertainties
satisfies the following relationship:

‖Td‖ ≤ γ0Φ (13)

where Φ = 1 + ‖ω‖ + ‖ω‖2 and γ0 is a positive constant.
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3 Finite Time Adaptive Control

3.1 Modified Power Reaching Law

In this subsection, the sliding mainfold s ∈ R
3 is selected as

s = q̇v + αqv + βsig(qv)r (14)

where α and β are positive constants; r = r1
r2

, r1 and r2 are positive odd integers
and 0 < r1 < r2; the function sig(qv)r is defined as

sig(qv)r = [|qv1|rsign (qv1) , |qv2|rsign (qv2) , |qv3|rsign (qv3)]
T

Differentiating (14) with respect to time yields

ṡ = q̈v + αq̇v + β · r · diag
(
|qv|r−1

)
q̇v (15)

where diag
(
|qv|r−1

)
= diag

([
|qv1|r−1

, |qv2|r−1
, |qv3|r−1

])
∈ R

3×3.

Remark 1. If qvj = 0 and q̇vj �= 0, the singularity occurs because of a negative
fractional power r − 1. To avoid singularity, the first-order derivative of s is
modified as [10]

ṡ = q̈v + αq̇v + βqvr (16)

with qvr ∈ R
3 defined as

qvr,j =

⎧
⎨

⎩

r|qvj |r−1
q̇vj , if |qvj | ≥ ε and q̇vj �= 0

r|ε|r−1
q̇vj , if |qvj | < ε and q̇vj �= 0

0, q̇vj = 0
(17)

where ε is a small constant. Then, considering (9), (14), and (16), it can be
shown that

J∗ṡ = −Ξs + PT u + F + Td (18)

where F = Ξαqv + Ξβsig(qv)r + J∗αq̇v + J∗βqvr.

In this paper, a modified reaching law is proposed and expressed as

ṡ = − K

D (s)
|sj |θsign (s) (19)

D (s) = μ + (ϕ − μ) e−ϑ‖s‖ (20)

where 0 < θ < 1, K > 0, 0 < μ < 1, ϕ = 1 and ϑ > 0.
In the proposed approach, as pointed out in [6], the D(s) is strictly positive,

so it does not affect the stability of SMC. If ‖s‖ grows, D(s) goes towards μ and
K|sj |θ/D(s) would be K|sj |θ/μ, which is greater than K. In contrast, when ‖s‖
decreases, it tends to K|sj |θ/ϕ. This phenomenon makes the controller gain to be
modified between K|sj |θ/μ and K|sj |θ/ϕ. Therefore, the MPRL specifies faster
reaching speed compared with the conventional reaching law in [5] considering
similar gain K. In addition, a term |sj |θ is employed to reduce the chattering
problem which compares with the ERL in [6].
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3.2 Controller Design and Stability Analysis

The finite-time adaptive control law is designed as

u = −P

[

unom +
K

D (s) ‖P‖2 |sj |θsign (s)

]

(21)

with

unom =
(‖F‖ + γ̂0Φ) ‖s‖ s

‖Ps‖2 (22)

where γ̂0 is the estimated values of γ0, and the adaptive law is chosen as

˙̂γ0 = c0 (Φ ‖s‖ − ε0γ̂0) (23)

where c0 and ε0 > 0 are the designed parameters then the selection of c0 is
according to (29) and the initial estimated values satisfy γ̂0(0) > 0.

Lemma 1. [4] Suppose a1, a2, . . . , an are positive numbers and 0 < p < 2. Then,
the following relationship exists:

(
a2
1 + a2

2 + · · · + a2
n

)p ≤ (ap
1 + ap

2 + · · · + ap
n)2 (24)

Lemma 2. [2] Consider the nolinear system ẋ = f (x, u). Suppose that there
exist continuous function V (x), scalars λ > 0, 0 < α < 1 and 0 < η < ∞ such
that

V̇ (x) ≤ −λV α (x) + η (25)

Then, the trajectory of system ẋ = f (x, u) is pratical finite-time stable (PFS).

Lemma 3. [4] Consider the sliding mode mainfold s defined by (14). If the slid-
ing mode mainfold satisfies s = 0, then the system states qv and q̇v can converge
to qv = 0 and q̇v = 0 in finite time, respectively.

Theorem 1. Considering the attitude control systems (1)–(3), the adaptive con-
trollers in (21)–(22), and the update law in (23) under Assumptions 1-2, the slid-
ing mode mainfold s, spacecraft attitude qvj and angular velocity ωj (j = 1, 2, 3)
are locally finite-time uniformly ultimately bounded.

Proof. Consider the following Lyaounov function candidate V1

V1 =
1
2
sT J∗s +

1
2c0

γ̃2
0

V̇1 = 1
2sT J̇∗s + sT J∗ṡ − 1

c0
γ̃0 ˙̂γ0

= 1
2sT J̇∗s + sT

(−Ξs + PT u + F + Td

) − 1
c0

γ̃0 ˙̂γ0

≤ −‖F‖ ‖s‖ − K
D(s)

3∑

j=1

|s|θ+1 + ‖F‖ ‖s‖ + (‖Td‖ − γ0Φ) ‖s‖ + ε0γ̃0γ̂0

≤ − K
D(s)

3∑

j=1

|s|θ+1 + ε0γ̃0γ̂0

(26)
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Note that for any positive scalar δ0 > 1
2 , the following inequlity exists:

ε0γ̃0γ̂0 = ε0γ̃0 (−γ̃0 + γ0) ≤ −ε0(2δ0−1)
2δ0

γ̃2
0 + ε0δ0

2 γ2
0 (27)

Thus inequality (26) can be expressed as

V̇1 ≤ − K
D(s)

3∑

j=1

|s|θ+1 − ( ε0(2δ0−1)
2δ0

γ̃2
0)

θ+1
2 + ( ε0(2δ0−1)

2δ0
γ̃2
0)

θ+1
2 + ε0γ̃0γ̂0

≤ −ς

[
(
1
2sT J∗s

) θ+1
2 +

(
1

2c0
γ̃2
0

) θ+1
2

]

+ ( ε0(2δ0−1)
2δ0

γ̃2
0)

θ+1
2 + ε0γ̃0γ̂0

(28)

where

ς =
K

D (s)
(
1
2Jmax

)(θ+1)/2
, c0 =

δ0ς
2/(θ+1)

ε0 (2δ0 − 1)
(29)

Note that Lemma 1, δ0 > 1
2 and 1

2 <
θ+1

2 < 1

V̇1 ≤ −ςV
θ+1
2

1 + (
ε0 (2δ0 − 1)

2δ0
γ̃2
0)

θ+1
2 + ε0γ̃0γ̂0 (30)

According to [2], the following inequality can be obtained:

(
ε0 (2δ0 − 1)

2δ0
γ̃2
0)

θ+1
2

+ ε0γ̃0γ̂0 ≤ ε0δ0
2

γ2
0 (31)

Thus, from (30) and (31), we can obtain

V̇1 ≤ −ςV
θ+1
2

1 + φ (32)

where φ = ε0δ0
2 γ2

0 .
From (32), the sliding mainfold is finite-time uniformly ultimately bounded

by using Lemma 2. Hence, the bounded convergence region Δs is obtained as

|sj | ≤ Δs =
√

2
Jmax

(
φ

ς

) 1
θ+1

, j = 1, 2, 3 (33)

Then, the sliding mode mainfold defined in (14) can be expressed as follows:

q̇vj + αqvj + βsig(qvj)
r = ηj , |ηj | ≤ Δs (34)

Then, (34) can be written in the following two forms:

q̇vj +
(

α − ηj

qvj

)
qvj + βsig(qvj)

r = 0, (35)

q̇vj + αqvj +
(

β − ηj

sig(qvj)
r

)
sig(qvj)

r = 0, (36)
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From (35) and (36), if α − ηj

qvj
> 0 and β − ηj

sig(qvj)
r > 0, they have similar

structures to the proposed sliding mode mainfold. Therefore, by using Lemma
3, the attitude qvj converges to the regions

|qvj | ≤ |ηj |
α

≤ Δs

α
(37)

|qvj | ≤
( |ηj |

β

) 1
r

≤
(

Δs

β

) 1
r

(38)

in finite time. Finally, the attitude qvj converges to the region

|qvj | ≤ min

{
Δs

α
,

(
Δs

β

) 1
r

}

(39)

in finite time. Moreover, from (34), q̇vj converges to the region

|q̇vj | ≤ |ηj | + α |qvj | + β|qvj |r ≤ 3Δs (40)

in finite time.
It should be noticed that ‖q×

v + q0I3‖ = 1. From (2), ‖ω‖∞ ≤ 2
√

3‖q̇v‖∞ is
obtained. However, because |q̇vj | ≤ 3Δs (j = 1, 2, 3) in finite time, ‖q̇v‖∞ ≤ 3Δs
can be satisfied in finite time. Therefore, considering (6) and Assumption 1,
|ωj | ≤ 6

√
3Δs can be concluded. Based on the above analysis, the sliding mode

mainfold s, spacecraft attitude qvj and angular velocity ωj are locally finite-time
uniformly ultimately bounded. This completes the proof.

Remark 2. From (33), it can be seen that the larger parameter ς or the smaller
parameter φ will lead to the smaller Δs. Besides, as seen from (39), larger para-
meters α and β or smaller parameter r can result in the smaller accuracy of the
attitude stabilization.

Remark 3. In order to avoid the chattering problems caused by the discontinous
term s

‖Ps‖2 in (22), we employ the continuous function s
‖Ps‖2+ξ

to replace it in
the following simulation section, where ξ > 0.

4 Simulation Results

In this section, some simulation results are provided to illustrate the effectiveness
of the proposed controller. For comparison, the ERL in [5] and conventional
reaching law in [6] are also simulated. The expressions can be writen as follows
respectively

ṡ = − K

D (s)
sign (s) (41)

ṡ = −K · sign(s) (42)

where K and D (s) is similar chosen as (19) and (20), respectively.



400 M. Tao et al.

0 5 10 15 20 25
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Times(s)

Sl
id

in
g 

Su
rfa

ce

s1
s2
s3

8 10 12

−0.01

0

0.01

(a)

0 5 10 15 20 25
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Times(s)

Sl
id

in
g 

Su
rfa

ce

s1
s2
s3

8 10 12

−0.01

0

0.01

(b)

0 5 10 15 20 25
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Times(s)

Sl
id

in
g 

Su
rfa

ce

s1
s2
s3

10 12 14

−0.01

0

0.01

(c)

Fig. 1. Sliding surface with different reaching laws. (a)MPRL. (b)ERL. (c)Conventional
reaching law.
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Fig. 2. Control torque with different reaching laws. (a)MPRL. (b)ERL.
(c)Conventional reaching law.
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Fig. 3. Spacecraft attitude with different reaching laws. (a)MPRL. (b)ERL.
(c)Conventional reaching law.

Considering the spacecraft model given in (1)–(3), the nominal inertia matrix
of the spacecraft is J0 = diag ([140, 120, 130]) kg · m2 and the uncertainty in the
inertia matrix ΔJ = diag[sin(0.1t), 2sin(0.2t), 3sin(0.3t)] kg · m2. The initial
attitude orientation is chosen as qv(0) = [0.3,−0.3, 0.2]T and q0(0) = 0.8832.
The initial angualar velocity is ω(0) = [0, 0, 0]T rad/s. The external disturbance
model is d(t) = 0.005 × [sin(0.8t), cos(0.5t), cos(0.3t)]T N · m. For the sake of
fairness, the parameters given in (19)–(20), the ERL in (41) and conventional
reaching law in (42) are identical. Those parameters are chosen as K = 0.5,
μ = 0.01, θ = 0.1, ϑ = 50 and ϕ = 1. The parameters defined in (14) are chosen
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Fig. 4. Angular velocity response with different reaching laws. (a)MPRL. (b)ERL.
(c)Conventional reaching law.
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Fig. 5. Parameter estimation with different reaching laws. (a)MPRL. (b)ERL.
(c)Conventional reaching law.

as α = 0.1, β = 0.1, r1 = 3, r2 = 5. The parameters of adaptive law defined in
(23) is chosen ε0 = 0.01. The parameters in (29) is set as Jmax = 560, δ0 = 1.
The initial value of γ̂0(0) = 0.02. The parameter ξ is 0.0002.

Figures 1 and 2 show the sliding surface and control torque response, respec-
tively. If ‖s‖ grows, D(s) goes towards 0.01 and K/D(s) in (19) and ERL would
be 50, which is greater than K = 0.5 in the conventional reaching law. In con-
trast, when ‖s‖ decreases, it tends to 0.5. This phenomenon makes the controller
gain to be modified between 50 and 0.5. As shown in Figs. 1 and 2, the conver-
gence time of sliding surface using the MPRL and ERL are approximately 1.2 s,
then the convergence time of sliding surface using the conventional reaching law
is approximately 4.2 s. The MPRL and ERL outperforms the conventional reach-
ing law, with higher steady performance and shorter reaching time. In addition,
a term |sj |θ in (19) of MPRL reduces the chattering problem which compares
with the ERL and conventional reaching law obviously.

The spacecraft attitude quaternion and angular velocity are shown in Figs. 3
and 4, respectively. The results show that both approaches can realize finite-
time uniformly ultimately bounded. The convergence time of attitude quaternion
using the MPRL and ERL are approximately 10 s, which are almost faster 2 s
than the conventional reaching law. Moreover, the convergence time of angular
velocity using the MPRL and ERL are approximately 11 s, which are nearly
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faster 3 s than the conventional reaching law. Based on similar analysis, the
convergence speed of attitude quaternion and angular velocity using the MPRL
and ERL are faster than that using the conventional reaching law. The corre-
sponding estimated parameter is shown in Fig. 5. From Figs. 1, 2, 3, 4 and 5, it is
clear that the proposed MPRL method can achieve superior control performance
than the other two methods.

5 Conclusion

In this paper, the problem of attitude stabilization for spacecrafts with external
disturbance and internal uncertainty has been considered. The main contribution
of this paper is to propose an adaptive controller based on the modified reach-
ing law, and the finite time attitude stabilization is guaranteed for spacecrafts
with system uncertainties and disturbances. Besides, the chattering problem has
been reduced by using a power rate term in the controller design. Simulation
studies have been presented to verify that the proposed controller has stronger
robustness and better control performance.
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