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Abstract. This paper solves output synchronization problem for non-
identical discrete-time multi-agent systems with directed graphs. All the
agents suffer the disturbance form the leader. For the discrete-time case,
we use the stabilization region regulator method and the variable restruc-
tured method to solve the output synchronization problem. At last, we
give an example to show the effectiveness of the main result.
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1 Introduction

Multi-agent systems have been received considerable attention [1–5] due to their
distinctive advantages in many aries in recent years, such as non-minimum phase
switch stabilization [6,7], containment control [8], near-optimal control [9], dis-
tributed optimal control [10], and network packet dropouts [11]. The consensus
control is a popular problem of multi-agent systems which is to make the trajec-
tory of all the agents run onto a common trajectory [12]. This techniques also
have been widely applied to solve a lot of practical control problems.

The synchronization phenomenon is very common in the real world. Because
of its widely applications in distributed sensor fusion, formation flying and so on,
it has attracted many interest in the recent years. The synchronization control
problem of multi-agent systems could be described as follows: the main attention
is to keep synchronization by designing appropriate control laws on each agent
by using the neighbor information of the agent. Reference [12] give a unified
viewpoint between consensus of multi-agent systems and synchronization prob-
lem, in which the main unified viewpoint is the distributed control algorithm.
Directed communication graphs was considered in [13] in handling the optimal
synchronization phenomenon of discrete-time multi-agent systems based on ric-
cati design method. Basical identical linear systems was studied in [14] under a
directed interconnection and possibly time-varying structure.
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Further more, [15] considered the synchronization problem of multi-agent sys-
tems which contains the external disturbance, and an internal model method is
used to handle the case that the system matrices are also uncertain. In addition,
the exosystem is a general case and a transformation is add to the exosystem
matrix to solve the problem. This problem also called the output regulation
problem, in which the disturbance generated by an exosystem is rejected and
the outputs of each node also asymptotic reach to same trajectory of the leader’s
output. A distributed leader-follower consensus control algorithms are presented
in [16] to solve the output regulation problem for linear multi-agent systems, and
this method is also used to obtain existing multi-agent coordination solutions
to track an active leader with different dynamics and unmeasurable variables
to allow the identical agents. Then [17] considered the discrete-time multi-agent
systems and designed a stabilization region to keep the closed-loop systems with-
out the external disturbance stable.

The purpose of this paper is to address distributed output synchronization
problem for nonidentical discrete-time multi-agent systems with directed graphs.
All the agents have different dynamics with others, and the disturbance gener-
ated by the leader node also influence the followers. For the discrete-time case, we
should use the stabilization region regulator method which has been addressed
in [17]. Then we use the variable restructured method to solve the output syn-
chronization problem. At last, we give an example to improve the effectiveness
of the result.

2 Preliminaries

Some basic concepts and notations in graph theory [18] should be introduced
firstly. A weighted graph Gl = (Nl, El,Al), where N = {v1, v2, . . . , vN} is the
set of nodes, El is the node set, and an edge of Gl denoted by eij = (vi, vj) ∈ E
means that node vi receives information from node vj . A = [aij ] is a weighted
adjacency matrix, where aii = 0 and aij ≥ 0 for all i �= j. aij > 0 if
and only if there is an edge from vertex j to vertex i. The set of neighbors
of node vi is denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}. The communica-
tion topology between agents could be expressed by a diagonal matrix Dl =
block diag{Σn

j=1a1j , Σ
n
j=1a2j , . . . , Σ

n
j=1aNj}, where Σn

j=1aij , i = 1, 2, . . . , N is
called a degree matrix of Gl. The Laplacian with the directed graph Gl is defined
as Ll = Dl − Al.

There is a sequence of edges with the form (vi, vk1), (vk1 , vk2), . . . , (vkj
, vj) ∈

E composing a direct path beginning with vi ending with vj , then node vj is
reachable from node vi. A directed graph contains a directed spanning tree if
there exists at least one agent which is called root node that has a directed path
to every other agents. A node is reachable from all the other nodes of graph, the
node is called globally reachable.
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3 Problem Formulation

In this paper, two types of the system dynamics of the multi-agent systems are
given. The leaders of the agents are given as follows:{

xi(k + 1) = Aixi + Biui + Eiω,
yi = Cixi + Diui, i = 1, . . . ,N. (1)

where xi ∈ Rn and yi ∈ Rp, are the state and output of the agents. ui ∈ Rm is
the unknown consensus protocol to be designed later. ω is the exosystem state,
and the exosystem is addressed as follows:{

ω(k + 1) = A0ω,
yr = Qω,

(2)

where ω ∈ Rq is the disturbance to be rejected and/or the reference input to be
tracked, and yr ∈ Rp is the reference output.

The synchronization errors about the followers and the leader are given as
follows:

ei = yi − yr = Cixi + Diui − Qω, i = 1, . . . , N. (3)

The output synchronization problem in networks of nonidentical discrete-
time systems can be resolved if the following conditions are hold:

1. Under the appropriate distributed control law ui, the nominal form of closed-
loop system matrices are Hurwitz.

2. The output synchronization errors between the measured and reference out-
puts converge to zero, i.e.,

lim
k→∞

ei(k) = 0. (4)

4 Distributed Dynamic Feedback Design

The agents can only receive their neighbor’s information. We have to use the
distributed control method. Thus the distributed dynamic state feedback control
law is designed as follows:

⎧⎨
⎩

ηi(k + 1) = A0ηi + θL
∑N

j=0 aij(ηi − ηj),
zi(k + 1) = G1zi + G2(yi − Qηi(k)),
ui = K1ixi + K2izi,

(5)

in which zi ∈ Rs is the state of the compensator, ηi ∈ Rp is the state of the
distributed compensator. (G1, G2) incorporate the p-copy internal model of the
matrix A0, which is defined as follows:

G1 = block diag{ς1, ς2, . . . , ςp},

G2 = block diag{σ1, σ2, . . . , σp}, (6)
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in which σi is a constant column vector, ςi is a constant square matrix, for any
i = 1, . . . , p such that the minimal polynomial of A0 divides the characteristic
polynomial of ςi and (ςi, σi) is controllable.

Let

min det(λI − A0) = λsm + a1λ
sm−1 + . . . + asm−1λ + asm

be the minimal polynomial of A0. Choose ςi and σi in (6) as the following forms:

ςi = ς =

⎛
⎜⎜⎜⎜⎜⎝

0 1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1
−asm −asm−1 . . . −a2 −a1

⎞
⎟⎟⎟⎟⎟⎠

, σi = σ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠

, (7)

with s = psm,i = 1, 2, . . . , p and ςi ∈ Rsm×sm , σi ∈ Rsm×1.
Consider the distributed compensator ηi, we have:

ηi(k + 1) = A0ηi + θiL

N∑
j=0

aijηi − θiL

N∑
j=0

aijηj − θiLai0ω.

Let η(k + 1) = (ηT
1 , ηT

2 , . . . , ηN )T , then one gets:

η(k + 1) = (IN ⊗ A0)η(k) + (θIN ⊗ Iq)((D + A0) ⊗ L)η
−(θIN ⊗ Iq)(A ⊗ L)η − (θIN ⊗ Iq)(A0 ⊗ L)ω̄, (8)

in which ω̄ = 1N ⊗ ω. Then submitting the distributed control law into the
system dynamics, one gets:

xi(k + 1) = (Ai + BiK1i)xi + BiK2izi + Eiω

y(k) = (Ci + DiK1i)xi + DiK2izi

z(k + 1) = G2(Ci + DiK1i)xi + (G1 + G2DiK2i)zi − Qiηi (9)

Let x(k) = (x1(k), x2(k), . . . , xN (k))T , and z(k) = (z1(k), z2(k), . . . ,
zN (k))T , we have

x(k + 1) = (A + BK1)x + BK2z + Eω̄

z(k + 1) = (IN ⊗ G1 + (IN ⊗ G2)DK2)z + (IN ⊗ G2)(C + DK1)x, (10)

in which

A = block diag{A1, A2, . . . , AN}
B = block diag{B1, B2, . . . , BN}
K1 = block diag{K11,K12, . . . ,K1N}
K2 = block diag{K21,K22, . . . ,K2N}
C = block diag{C1, C2, . . . , CN}
D = block diag{D1,D2, . . . , DN}
E = block diag{E1, E2, . . . , EN}.
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Then the compacted closed-loop system could be obtained as follows:

ρ(k + 1) = Λρ(k) + Γ�(k), (11)

in which ρ(k) = (x(k)T , z(k)T )T , �(k) = (ω̄(k)T , η(k)T )T and

Λ =
(

A + BK1 BK2

(IN ⊗ G2)(C + DK1) IN ⊗ G1 + (IN ⊗ G2)DK2

)

Γ =
(

E 0
0 −(IN ⊗ G2)Q

)
.

To obtain the main result, we give the following assumptions and lemmas.

Assumption 1: The pairs (Ai, Bi, Ci), i = 1, . . . , N are stabilizable and
detectable.

Assumption 2: Let λ ∈ σ(A0), where σ(A0) is the spectrum of A0,

Rank

(
Ai − λIn Bi

Ci Di

)
= n + p. (12)

Assumption 3: All the eigenvalues of A0 span in the interior of the unit circle.

Lemma 1 [8]: If the Assumptions 1, 2 and 3 hold, and the matrix pair (G1, G2)
incorporates a p-copy internal model of A0, then the matrix pair

((
Ai 0

G2Ci G1

) (
Bi

G2D

))

is stabilizable.

Thus we obtain the following theorem.

Theorem 1: If the node 0 in the topology graph Gs is globally reachable, and
the Assumption 1, 2 and 3 hold, the closed-loop system matrix Λ is stable under
the distributed control law (5).

Proof: A transformation should be used as

Λt = (T ⊗ In)Λ(T−1 ⊗ In), (13)

in which T is chosen as follows: the (2k − 1)-th row is the k-th row of I2N and
the (2k)-th row of T is the (k + N)-th row of I2N with k = 1, . . . , N, and

Λt = block diag{Λ1t, Λ2t, . . . , ΛNt},

with

Λit =
(

Ai + BiK1i BiK2i

G2(Ci + DK1i) G1 + G2DiK2i

)
, i = 1, . . . , N.
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Then the matrix Λit can be rewritten as:(
Ai 0

G2Ci G1

)
+

(
Bi

G2D

) (
Ki1 Ki2

)

Therefore, according to Lemma 1, there exist appropriate K1i and K2i such
that the matrix Λ is stable.

Theorem 2: Under the Assumption 1, 2 and 3, if the node 0 in the topology
graph Gs is globally reachable, then the distributed dynamic control law (5)
could solve synchronization for nonidentical discrete-time systems.

Proof: The Sylvester equation, which can be written as follows:

Ξ(I2N ⊗ A0) = ΛΞ + Γ, (14)

with the unique solution Ξ. This theorem could be proved according to Theo-
rem 1.

4.1 Example

To illustrate the validity of the proposed controller design strategy, we consider
the system matrices of five agents as follows:

Ai =
(

0 1 + 0.1 ∗ i
1 0

)
, Bi =

(
0
1

)
, Ci =

(
1 0

)
, Ei =

(
0 0 0
0 0 i

)
,

and Di are chosen as zero matrices. The leader’s system matrix is

A0 =

⎛
⎝0 0 0

1 0 −1
0 1 0

⎞
⎠ .

Correspondingly, the internal model matrices are chosen as

G1 =

⎛
⎝ 0 1 0

−1 0 1
0 0 0

⎞
⎠ , G2 =

⎛
⎝0

0
1

⎞
⎠ .

The agents communicate information with their neighbors. The information
link can be shown in Fig. 1. At last, the tracking errors are shown in Fig. 2 by the
appropriate distributed control law. It is shown that the outputs of the agents
could reach on the same trajectories with the leader’s output.

Fig. 1. The topology graph of five agents and leader
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Fig. 2. Synchronization error of the outputs

5 Conclusion

Discrete-time multi-agent systems were studied in this paper, and distributed
output synchronization problem has been solved by the appropriate distributed
compensator and dynamic state feedback control law. Two main theorems were
addressed and proved. At last, an example was shown to improve the main result.
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