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Chapter 11
Automatic Big Data Provenance Capture 
at Middleware Level in Advanced Big Data 
Frameworks

Anu Mary Chacko, Alfredo Cuzzocrea, and S.D. Madhu Kumar

Abstract Huge amounts of data are being generated by Internet of Things (IoT) 
devices. Termed as Big Data, this data needs to be reliably stored, extracted, and 
analyzed. Capturing provenance of such data provides a mechanism to explain the 
result of data analytics and provides greater trustworthiness to the insights gathered 
from data analytics. Capturing the provenance of the data stored in NoSQL data-
bases can help to understand how the data reached its current state. A holistic expla-
nation of the results of data analytics can be achieved through the combination of 
provenance information of the data with results of analytics. This chapter explores 
the challenges of automatic provenance capture at the middleware level in three dif-
ferent contexts: in an analytics framework like MapReduce, in NoSQL data stores 
with MapReduce analytic framework, and in NoSQL stores with SQL front ends. 
The chapter also portrays how the provenance captured in the MapReduce frame-
work is useful for improving the future executions of job reruns and anomaly detec-
tion, apart from its use in debugging.

11.1  Introduction

With the rise in usage of the Internet and social media websites, digital data is now 
treated as an asset and is used to derive insights or meaningful information. With the 
advent of the Internet of Things (IoT), the amount of data has increased exponen-
tially. Most of the data generated are unstructured and are of different file types. As 
data are generated in large volumes, they are termed as “Big Data.” Big Data can 
contain information generated by sensors, chatter in the social media like Twitter or 
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Facebook, or loads of information collected for user profiling. This data can act as 
powerful trend predictors if they can be reliably analyzed and mined. The reliability 
of the analytic results depends on how “good” the data used for analysis is, which 
in turn depends on the source of the data and transformations that the data under-
went. Data provenance is the metadata that captures the history of data from its 
creation to how it reached its current state. In our day-to-day activities, different 
levels/types of provenance are collected by audit trails, logs, and change tracking 
software. All such data gives information that contributes to the history of data or 
provenance. Provenance metadata focuses on isolating all relevant details of history 
in one metadata in a systematic way, such that the advantages of verifiability and 
querying are obtained.

With the increase in complexity of data management, data provenance research 
is gaining a lot of attention. Every aspect of provenance handling, starting from 
capture and storage to representation, security, and querying, needs efficient 
schemes so that provenance can be seamlessly used. In the literature, there are 
schemes for applications to disclose provenance explicitly and schemes to capture 
provenance automatically at operating system and middleware level. Making all 
applications provenance aware is not a feasible solution, and so automatic capture 
of provenance is needed. Automatic capture can be done at operating system or at 
middleware layer. At the operating system level, the system is not able to understand 
the context in which data is used, and so if provenance is collected at this level, it is 
very fine grained, making it difficult to query and use the provenance collected. 
Automatically capturing provenance at middleware level gives the application 
designers the flexibility to focus on logic of application without worrying about 
provenance disclosure. Especially, in the context of Big Data, where a large number 
of Big Data applications are being deployed every day, automatic provenance cap-
ture at middleware layer is a feasible option for provenance capture.

This chapter focuses on processing of IoT data on the Big Data analytic frame-
works. The next section provides a background to the work done in provenance 
research, and the rest of the chapter discusses approaches to capture provenance of 
analytics done on MapReduce framework and data stored and analyzed in NoSQL 
data stores.

11.2  Background

In eScience, many tools like Chimera, myGrid, and CMCS [1] were developed for 
provenance capture of scientific workflows. The primary focus for collecting prov-
enance in workflows was to ensure reproducibility of experiments and providing 
provisions for debugging. Provenance was very interesting to the database commu-
nity as it provided explanation for the results obtained. Tools like DBNotes [2], Trio 
[3], and PERM [4] focused on database provenance. Automatic provenance capture 
was explored in the construction of PASS [5], a modified Linux kernel that captured 
provenance of all operations happening in the kernel by observing the read/write 
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system calls. Similar approach was used in SPADE [6] where provenance capture 
scheme was instrumented into the application to capture intra-provenance at com-
pile time. Most of the works except PASS and SPADE described in the literature 
followed a disclosed provenance approach where specific applications were made 
provenance aware for domain-specific requirements.

Provenance is of interest in the area of Big Data, as provenance provides a mech-
anism to explain the results and provide proofs for the validity of data. The main 
focus areas of Big Data provenance is in storage, analytics, and data stores. 
Munniswamy et al. [7] developed PASS to work for cloud storage. They provided 
different versions that store provenance along with data in SimpleDB or Amazon 
S3. Another work in this area is by Sletzer et.al. [8] who proposed techniques to 
instrument Xen hypervisor to capture provenance of operations on the virtual hyper-
visors. In Big Data analytics, a major work was done to develop the analytic frame-
work MapReduce provenance aware. RAMP (Reduce and Map Provenance) [9] 
captures provenance of MapReduce workflows while the job executes. The prove-
nance is generated at the end of job execution resulting in a performance overhead 
of 20–70% as reported by the authors. HadoopProv [10] attempts to improve the 
performance of job execution of MapReduce jobs while capturing provenance by 
deferring the generation of provenance to the time when it is needed. Lipstick [11] 
tool enables database style workflow provenance to be captured for jobs written in 
Pig script. Titian [12] is a library that has been created for provenance support for 
jobs running in Apache Spark, and the authors claim that observed overhead for job 
execution is below 30%.

The early works in data provenance were mainly domain specific and consisted of 
making particular applications provenance aware. Through this approach, rich prov-
enance information is obtained, as the semantics of the applications is an integral 
part of the provenance capture system. But in Big Data scenario, retrofitting all 
applications to make them provenance aware is not practical. On the other hand, 
capturing provenance at the operating system level, e.g., PASS [5], x being captured. 
The main issue here is the large size of provenance and false dependencies. Hence 
there is a need for schemes to capture provenance automatically at middleware layer.

Typically, the applications or software that acts as glue between operating system 
and applications are categorized as middleware [12]. Semantically, the middleware 
layer is placed between the operating system and application layers. Middleware 
caters to multiple applications at a time. Creating middleware to make a set of appli-
cations provenance aware provides the developer with the option of capturing prov-
enance of multiple applications/data in applications in one go. In the Big Data 
landscape, where the number of applications for processing data is as well big, ret-
rofitting provenance into all applications is not a practical solution.

In the literature, there are scientific experiments that followed this approach, 
where the workflow middleware was adapted to capture provenance of all work-
flows running on top of it e.g., MyGrid [13]. By making the workflow queue prov-
enance aware, all the jobs running on it become automatically provenance aware. In 
the big data scenario, provenance capture contexts can be broadly divided into two: 
in the context of analytic tools and in case of Big Data stores. The following sec-
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tions explain the techniques proposed for capturing provenance using middleware 
approach, in analytic tool like MapReduce and NoSQL store like MongoDB.

11.3  Provenance in MapReduce Workflows

In the context of Big Data applications, the collected data is useful only if it is ame-
nable to analytics. The result of the analytics can be confidently used if and only if it 
is verifiable. So capturing provenance for analytic frameworks is a must. The major 
challenge with provenance capture is the high performance overhead caused to the 
job during provenance capture. The provenance collected is usually used for debug-
ging results. This section explores a different approach for capturing provenance of 
MapReduce workflows and explores the use of provenance collected for improving 
the execution of MapReduce jobs during incremental runs and anomaly detection.

11.3.1  Provenance Capture

In the context of MapReduce, three types of provenance can be collected – job prov-
enance (coarsely grained), data provenance (finely grained), and transformation 
provenance (process provenance):

• Job provenance is an example of coarsely grained provenance and captures the 
signature of job.

• Data provenance captures relation between the output data and the input data of 
a MapReduce job.

• Transformation provenance goes beyond the job execution and tries to capture 
details of job execution.

A lazy approach of generating provenance after the completion of job execution 
is adopted in our approach so that results of job are available for the user for review, 
while provenance is being generated. In this approach, provenance is captured by 
writing a wrapper code to the classes like Mapper and Reducer so as to capture 
details important for provenance into temporary files. At the completion of the job, 
a background MapReduce job is executed to consolidate the temporary files and 
generate provenance. Provenance thus generated constitutes the fine-grained data 
provenance. This provenance is useful for debugging the result or to understand 
flow of data from input to output.

Job provenance is the coarsely grained provenance captured by modified 
MapReduce framework so as to create signature of a particular run of a job. The 
details captured as part of job provenance are details of input-output, file names, 
input-output key types and input-output file formats, Mapper, Reducer and Combiner 
class names, MD5 hash of jar files, and offsets to which data is read in the current 
job run.
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Modified MapReduce (Lazy IncMapReduce) was tested on a cluster of nine 
DataNodes and a NameNode for Hadoop. The HBase cluster consisted of nine 
region servers and a master server. Each system was configured with 4GB RAM and 
500 GB hard drive. The results of experiment by running the above jobs are dis-
cussed next.

Provenance collection showed a performance and storage improvement for word 
count problem as shown in Figs. 11.1 and 11.2, respectively. For the word count 
problem, proposed method showed an average 50% improvement in the job com-
pletion time and an average 70% storage optimization over RAMP. This storage 
optimization is obtained as provenance collected is preprocessed and stored in 
HBase.

Another experiment was conducted to filter random Apache WebLog [14] data. A 
sample of 1 lakh weblogs was used to filter good weblogs out of ill-typed weblogs. 
Around 1 lakh logs were analyzed in Lazy IncMapReduce, and performance analy-
sis is shown in Figs. 11.3 and 11.4. HBase storage required 186% more memory 
than RAMP as shown in Fig. 11.4.

In case of WebLog filtering, for each output record, a corresponding provenance 
record is written. As the number of output records increases, the number of write 
operations increases, and hence the storage requirement becomes larger, and job 
execution time degrades. These experiments indicate that significant storage and 
performance improvements are obtained in Lazy IncMapReduce for jobs where the 
number of output keys is less than the number of input keys.

Fig. 11.1 Comparison of 
performance (job 
completion time) in word 
count problem
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Fig. 11.2 Comparison of 
storage requirement – word 
count problem

Fig. 11.3 Comparison of 
performance (job 
completion time) in 
WebLog filtering 
problem – MapReduce 
without provenance vs 
RAMP vs Lazy 
IncMapReduce
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Transformation provenance consists of details of job execution. This can be 
extracted from the various logs created as part of the job execution. Once the job 
execution is over, the logs from the different nodes are consolidated, and transfor-
mation provenance can be mined from the logs using a rule-based execution frame-
work. This is done by identifying patterns in the logs and defining rules to extract 
the information from log to deduce provenance. This provenance captures informa-
tion on MapReduce execution, like details of task and job execution, split creation, 
dataset access, etc. Here, there is no change made to the MapReduce framework, but 
provenance is deduced from the preexisting logs.

Hadoop generates detailed log for all the services running in the cluster like 
NameNode, DataNode, JobTracker, and TaskTracker. The details of job extracted 
from the logs are used to generate a transformation provenance profile for the job. 
Provenance profile is captured as XML file so as to enable easy querying. The prov-
enance profile contains complete information about the execution of the job run, 
cluster configuration information, as well as ERROR and WARNING messages 
generated.

The three provenances together provide the holistic picture about the MapReduce 
job execution and its results. In the literature the use of provenance collected has 
been demonstrated mainly for debugging of results. In the rest of this section, two 
novel uses of provenance collected are discussed: (1) the use of data and job prov-
enance to improve the workflow execution of subsequent runs of MapReduce jobs 
and (2) the use of transformation provenance for anomaly detection.

Fig. 11.4 Comparison of 
storage requirement: 
WebLog filtering 
problem – RAMP vs Lazy 
IncMapReduce
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11.3.2  Incremental MapReduce Using Provenance

In the literature, there are schemes like Incoop [15] and Itchy [16] that implement 
incremental MapReduce. Incoop [15] uses the concept of memoization and needs 
modified HDFS to implement incremental MapReduce. Itchy [15] uses the term 
provenance, but the provenance used is not conventional but a mapping between 
intermediate map result and input. Proposed approach, Lazy IncMapReduce, aims 
to reuse the provenance generated as part of workflow execution to improve the 
execution of job reruns.

In many MapReduce applications, the input data is of append only variety. For 
such MapReduce jobs, the old results can be reused, and computation can be 
restricted to the new appended input values alone. This will result in significant 
reduction in execution time. The following cases were evaluated as part of this 
work. Input file is considered to be append only:

• Case 1: Input file is appended with data or when input files are added.
• Case 2: Input file is processed as a sliding window of data.

The following section describes how Lazy IncMapReduce works for the two dif-
ferent cases described above.

Case 1: Jobs Rerun with Additional Data Appended to Input File or with 
Additional Files
When a MapReduce job is submitted by the user, its coarse-grained provenance is 
captured, and provenance store is queried to see if it is the first run of the job or 
rerun. It is considered as an incremental run if the provenance store returns a job 
with the following conditions satisfied:

• Jar file with same MD5 hash as current job
• Same Mapper, Reducer and Combiner classes as current job
• Same input files as current job
• Same type of output key and values as current job
• Same input format as current job

After verification, the current job submitted is classified as:

• New run: if no matching job is found in the provenance store, in this case, the job 
is run as a single MapReduce job with provenance capture.

• Incremental run: if a previous run of the same job is found, the input file is 
checked to see whether it is a case of new data appended to existing input files or 
new input files added. In both cases, MapReduce program runs only on the new 
data that was not processed in earlier run. Output of this job is combined with the 
output of old job by executing MapReduce job with Identity Mapper. This is the 
default Mapper class provided by Hadoop that writes all input key value pairs 
into output. This is diagrammatically illustrated in Fig. 11.5.
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Case 2: Job Rerun on Sliding Window of Input Data
Frequently there are cases where MapReduce jobs are run for a window of data 
(e.g., last 30 days data). Every consecutive day, the window slides, deleting a day’s 
information and adding a new day’s information. LazyIncMapReduce is designed to 
handle incremental runs for such MapReduce jobs that process window of input 
data using tuple level fine-grained provenance. The first run of the job processes the 
window selected with provenance capture. In the next run of the job, the window 
has some new data appended and some old data removed. The data can be consid-
ered as having three sections as shown in Fig. 11.6:

• Old data: Data which is part of the old window but not included in the current 
job’s window

• Common data: Data which is common to both old job and current job
• New data: Data which is newly added in the file and not part of old job.

The strategy for job reruns is as follows:

• Perform MapReduce on the new data.
• Refresh the previous job output file to reflect the removal of old data from input 

file. This is achieved by doing selective refresh of the output file of the previous 
run. The fine-grained provenance captured in the previous job run is used here to 
trace back the input for each output element. Depending on which part of the 
input file the input records lie, the following strategies are opted to prepare the 
refreshed output file:

 – Scenario 1: If inputs fall completely in common data, no refresh is done, and 
output file is used as such.

Fig. 11.5 Incremental MapReduce when new data is appended to input file

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…



228

 – Scenario 2: If dependent inputs fall in both common data and old data, then a 
selective refresh needs to be done for those input offsets using a MapReduce 
job.

 – Scenario 3: If the dependent inputs are completely in old data, then the records 
in the old file can be discarded.

• Combine all the results by running a MapReduce job with Identity Mapper.

11.3.2.1  Experimental Results

For the evaluation of incremental MapReduce, two jobs whose number of output 
keys is less than number of input keys were considered: word count job and grep 
job. In these two cases, input file was appended with data, and sliding window of 
data approach was tested. Performance for the incremental run was analyzed.

Case 1: Input File Appended with 500 MB Data for Incremental Run
Performance analysis was done for incremental run when an input file (4.4GB) is 
appended with additional 500 MB data for both word count job and grep job. In the 
first run, a small run time overhead of 5 s was observed. But in the incremental run, 
our prototype outperforms the traditional MapReduce with 50% of run time 
improvement. Figure 11.7 shows a reduction of 50% in execution time of incremen-
tal run of word count job, and Fig. 11.8 shows a 98% reduction in execution time of 
incremental run of grep job.

Thus, there is a significant performance improvement for job reruns in Lazy 
IncMapReduce when jobs are rerun with additional data appended in the file, as the 

Fig. 11.6 Rerun of job in incremental MapReduce for the sliding window case
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data in the previous run is not processed but output of the previous run is merged 
with MapReduce output of new data.

Case 2: Processing Input File with a Sliding Window of 500 MB Data for 
Incremental Run
To evaluate the performance of Lazy IncMapReduce in such cases, incremental 
MapReduce job was executed by moving the processing window by 
500 MB. Performance analysis of incremental MapReduce was done for both word 
count Job and grep Job. The results obtained for the word count problem is shown 
in Fig. 11.9 and for grep problem, in Fig. 11.10.

In the case of experimental run of sliding window word count problem, a perfor-
mance overhead of 400% was found. On analysis, it was found that this overhead 
was because of the bottleneck caused by NameNode during selective refresh. The 
inherent design of MapReduce gives NameNode the task of preparation of splits 

Fig. 11.7 Job execution 
time (word count problem) 
when 500 MB data is 
appended

Fig. 11.8 Job execution 
time (grep problem) when 
500 MB data is appended
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during selective refresh. When there are lots of output records that need refreshing, 
many splits have to be generated for facilitating selective refresh. Out of 1352 s of 
the incremental run, 1155 s were taken for selective refresh. The preparation of files 
for selective refresh was the main cause of the overhead. In the case of grep job, 
provenance query provided very few records for selective refresh, and so the time 
for preparing splits was greatly reduced. Thus, in the case of grep, incremental run 
in Lazy IncMapReduce gives a better performance over traditional MapReduce.

Fig. 11.9 Job execution 
time (word count problem) 
when window of 
processing is “slided” by 
500 MB

Fig. 11.10 Job execution 
time (Grep problem) when 
window of processing is 
“slided” by 500 MB
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11.3.3  Anomaly Detection Using Transformation Provenance

Execution of MapReduce is handled transparently by Hadoop. Hadoop is an open 
source project designed to optimize handling massive amount of data through paral-
lelism using inexpensive commodity hardware. The earlier versions of Hadoop con-
centrated on task distribution, and very little attention was given to security. In later 
versions, various techniques like mutual authentication, enforcement of HDFS file 
permission, using tokens for authorization, etc. were provided to enhance security. 
But Hadoop has a serious lack in detection of anomalous behavior. Hadoop does the 
data processing and scheduling in a way which is transparent to the user. There is a 
possibility that a compromised user or compromised node could do some malicious 
activity to gain additional resource usage and obstruct services to the other nodes 
for its purposes. An attacker could perform some attacks to slow down the data 
processing and create a denial of service situation in the cluster. Currently, any such 
anomalous activity would go unnoticed despite having security features enabled in 
Hadoop. Transformation provenance captured can throw light on many such mali-
cious activities happening during MapReduce workflow.

After job execution, a provenance file is generated, and this provenance profile is 
used to detect anomalous behavior. The tool developed performs the set of checks 
as listed below:

• Check if input to all the tasks are valid.
• Check if output is stored in proper location.
• Total number of tasks performed.
• Status of nodes in cluster.
• Analyze task execution times.

Checking input and output file locations from the configuration files and actual 
execution log can throw light if any malicious user has made changes for leaking 
confidential data. The check on total number of tasks performed helps to identify 
any skipped computations. Logs provide information on the status of cluster. As job 
allocation is handled transparently by the framework, the user does not know 
whether the resources are properly utilized. The task execution times on different 
nodes can further throw light on the efficiency of nodes. This was verified by simu-
lating a SYN flood attack on a slave machine in the cluster of three machines to 
make the slave system less responsive. The run times of all the map tasks were col-
lected with and without attack. The mean and standard deviation for both the set of 
values were calculated. When there is an attack, the deviation is high (approx 50%) 
from the mean indicating that the run times of map tasks vary. Figure 11.11 describes 
a sample output of anomaly detection using provenance profile.

This section described the capture of data, job, and transformation provenance 
for jobs executing in MapReduce framework and the uses of provenance captured. 
The provenance collected is not only useful for error debugging but also for improv-
ing incremental runs of jobs. Transformation provenance captured is useful in 
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detecting anomalous behavior in the cluster. The next section describes a novel 
approach to capture provenance of data stored in NoSQL data stores.

11.4  Provenance for Big Data Stores

The massive data generated from the different IoT sources are usually stored in 
highly scalable databases like NoSQL data stores. In order to have an end-to-end 
provenance captured, there needs to be provenance captured in NoSQL stores and 
also in analytic frameworks. This section explains the type of provenance required 
for NoSQL stores and approaches to capture provenance in two different contexts:

• Data stored in NoSQL store, analyzed using MapReduce Framework
• Data stored in NoSQL store, analyzed using SQL interface

11.4.1  Data Provenance Requirement in NoSQL Stores

To vouch for the credibility of data in the NoSQL stores, there is a need for three 
levels of provenance capture: tuple and schema provenances for data stored and data 
provenance for output of analytics done.

In NoSQL stores, the data on operations that cause the tuple to reach its current 
state can be categorized as how provenance. The how provenance answers the query 
on how the tuple attained its current value. Complex operations like join and aggre-
gate are not present in NoSQL queries. So in the context of data stored in NoSQL 
store, why provenance is not relevant. However when analytics are done to produce 

Fig. 11.11 Example of anomaly detection by analyzing run times in provenance profile
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meaningful insights, the why provenance becomes critical to explain the result. 
When analytics are done on the data stores, the provenance of output constitutes the 
details of the input tuples that contributed to selection of the output and history of 
how each of the input tuples reached its current state.

NoSQL databases are designed with fault-resistant logs to enable replication of 
changes to ensure transparent scalability. The logs are fixed size tables (capped col-
lection) that capture changes happening in the data store. The information from logs 
can be augmented and reused to deduce how provenance of data stored. Why prov-
enance is captured for analytics done on the data in the NoSQL data stores. Two 
strategies of analytics are explored here.

 1. Using inbuilt MapReduce
 2. Using SQL interface

In the next section, MongoDB is used as an example to demonstrate the practical 
approach for capture of “how provenance” and “why provenance.”

11.4.2  Capture of “How Provenance”

MongoDB supports basic CRUD (create, read, update, and delete) operations only. 
It provides an inbuilt MapReduce option to run complex analytic queries. The how 
provenance was tracked by setting up a tailable cursor in Python on the operation 
log (oplog) of MongoDB. Oplog is a special capped collection that keeps a rolling 
record of all operations that modify the data in the database. As provenance capture 
incurs storage overhead, the logger provides provision to select the tuples/docu-
ments that need to be tracked for provenance by using resource expression. Logger 
monitors the Oplog for any changes happening to the tuples for which provenance 
tracking is requested for. Whenever a log entry is made about tuple/collection that 
is being tracked, the cursor reads the data and deduces provenance details and 
records the provenance in an “append only” provenance collection. The information 
thus deduced from the log constitutes the how provenance and gives information on 
how a data item stored in the data store reached its current state. The following 
example demonstrates the use of provenance captured.

In the MongoDB database called “hospital,” there exists a collection called 
“patients.” To track the provenance for a particular patient, say “P123,” resource 
expression is specified as <hospital/patients/P123>. The current state of the patient 
record is shown in Fig. 11.12. “How provenance” captured is shown in Fig. 11.13.

Both data and schema provenance are available on querying and are demon-
strated by an example. Data provenance shows how the data reached its current 
state, i.e., the details of document creation and details of when each field value was 
added/updated. Schema provenance shows the addition and deletion of new fields in 
the document. For example, in the “hospital” database sample, a new field called 
“Allergy” has been added by user “Dr Jacob” on 29 April 2015 which was not there 
initially.
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11.4.3  Capture of “Why Provenance”

“Why Provenance” is significant to explain results of analysis done on data stored 
in NoSQL stores. This section explores the capture of why provenance in two sce-
narios of analytics:

 1. When MapReduce is used to conduct analytics on data stored in the NoSQL 
stores

 2. When SQL interface is used to analyze the data in the NoSQL stores.

Fig. 11.13 “How provenance” for P123

Fig. 11.12 Current state 
of patient record P123
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11.4.3.1  “Why Provenance” for Analytics Using MapReduce

Why provenance was captured for the MapReduce shipped with MongoDB.  A 
wrapper-based approach similar to the approach used in the previous section was 
used to make MapReduce provenance aware. The provenance collected character-
izes as why provenance as it gives reason/witness for why an output was obtained.

MongoDB MapReduce runs on one input collection at a time. The mapper reads 
the output of the document reader and emits them as key value pairs (ki,vi). Along 
with the input for the reducer, the mapper writes the provenance-related information 
(pi,ki) to a temporary file, file1, where pi is a provenance id that uniquely identifies 
the document which consists of key ki and value vi. The reducer applies the reducer 
logic and processes (ki,[v1,v2…vn]) and generates the output key value pair (ki,V). 
The document writer writes the key value pair (ki,V) generated by the reducer to the 
output collection and temporary file,file2.Once the MapReduce task is complete, the 
provenance logger reads file1 and file2 and extracts the ids {p1,p2,…pn} of the 
 documents with key ki from file1 and appends the set {p1,p2,…pn} to the pair (ki,V) 
in the output collection specified with MapReduce. Thus the set {p1,p2,…pn} is the 
provenance of the pair (ki,V). From this, one can identify and trace back the docu-
ments inside the collection that contributed to that particular output value.

To illustrate why provenance, a simple example is considered. The collection of 
patient’s medication bills at different times in hospital database is illustrated in 
Fig. 11.14.

The total bill for each patient can be calculated by running a MapReduce job. 
The output of the job is shown in Fig. 11.15.

Fig. 11.14 Snapshot of patient’s medical bill collection

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…



236

The output does not give any detail regarding the source documents that contrib-
uted to the result. Now if the same query was run with provenance collection, the 
why provenance and how provenance can be together viewed to have a holistic 
explanation of the result as shown in Fig. 11.16.

11.4.3.2  Provenance of NoSQL Stores Queried through SQL Interface

The SQL/MED, or Management of External Data, extension to the SQL standard 
defined by ISO/IEC 9075–9:2008 (originally defined for SQL:2003) [17] provides 
extensions to SQL to define foreign data wrappers (FDW) and data link types to 
allow SQL to manage external data. Popular commercial relational databases like 

Fig. 11.15 Snapshot of 
output MapReduce to 
consolidate total bill

Fig. 11.16 Holistic explanation of a query by combining “why provenance” and “how 
provenance”
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PostgreSQL and IBM DB2 adopted these standards so as to work with data stored 
in external data stores by providing provisions to define FDWs.

FDW defines external data views called “foreign tables” to access external data 
through foreign data wrappers. Thus, in this approach data always resides in the 
remote data store, and query manipulations are done on the “view” defined by the 
foreign table. Provenance of query results run through FDW is important for debug-
ging result, in case of unexpected results.

A novel idea for provenance representation is used in provenance model called 
PERM (Provenance Extension of the Relational Model) [4],  developed by IIT 
(Illinois Institute of Technology) database group. The provenance model defined by 
PERM [4] attaches provenance information to query results by extending the origi-
nal query result with the details of tuples that contributed toward the query result. 
PERM displays provenance by means of query rewrite mechanism which trans-
forms a normal query Q into provenance query Q+ that computes provenance of Q. 
PERM module rewrites the query so as to include provenance specific details. This 
rewritten query is a relational query and hence gets the advantage of all inbuilt 
optimizations.

When analytics are done in NoSQL stores using SQL interface, the results are 
usually presented as views. So PERM model was extended to capture provenance of 
data accessed through foreign data wrappers. The idea is demonstrated by building 
a proof of concept to analyze data in MongoDB by building a MongoDB FDW and 
accessed through modified PERM interface. An extension of PERM model was 
built in stable PostgreSQL version 9.3 and tested by writing a FDW for MongoDB 
to capture “why provenance” of SQL query run on MongoDB through PERM. The 
result of simple query versus provenance query on a SQL Select statement is shown 
in Fig. 11.17.

Fig. 11.17 Normal select query result vs provenance query result

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…



238

11.5  Summary and Conclusion

The power of Big Data generated through IoT can be leveraged only if the data 
captured can be analyzed and reliable results can be obtained. In this chapter, vari-
ous schemes for capturing provenance of Big Data analytic tools like MapReduce 
and NoSQL data stores are discussed. It was demonstrated that provenance captured 
in MapReduce framework was not only useful for debugging but also for improving 
certain classes of job reruns and detecting anomalies in the framework. Improving 
performance of workflows using provenance collected as part of the workflows is a 
significant use of provenance, as it can save computational power and time for exe-
cution. Extending the work to efficiently perform selective refresh on MapReduce 
workflow is an interesting problem. The proposed approach of capturing transfor-
mational provenance using logs and the use of transformational provenance in iden-
tifying anomalies in job execution are promising and can be further improved by 
extending the collection of logs used in analysis. The “how provenance” and “why 
provenance” captured help in providing explanation for data stored and analytics 
done on the data stored in NoSQL stores, respectively. “How provenance” and 
“Why provenance” together provide a holistic picture to explain the results of deci-
sions based on analytics on data stored in NoSQL stores.

This chapter restricted the focus to analysis of Big Data. In the context of IoT, the 
challenges in capturing provenance of data produced by sensors are very critical, 
and the area opens up many research problems which need serious research atten-
tion. Refer to [18–22].
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