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My tenth publication was dedicated to my 
parents. This twentieth book is also in memory 
of my parents Ghazi Ghulam Hussain 
Bahadur and Mukhtar Begum who spent the 
prime of their life in fighting for the freedom 
and independence of their motherland. At a 
very young age, my father joined a paramilitary 
organization with the mission to engage in 
peaceful struggle to free the country from 
foreign occupation. Although the struggle for 
independence started many decades before 
and various political parties participated in 
many diverse ways towards it, there is one 
event that stands out  – it took place on 19 
March 1940.

On this day, the organization my father 
belonged to decided to stage a much more 
decisive countrywide peaceful protest. The 
government, fearing the shutdown of the 
country, had already banned the gatherings, 
but, on this day, supporters and the general 
public were out in such huge numbers that the 
army patrolling the streets received orders to 
shoot to kill. Live bullets were fired: many 
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thousands were killed or injured and many 
more taken as political prisoners. That day, 
my father was leading a group of 313 men – 
totally unarmed – marching on the streets to 
oppose the ban on political activities. 
According to newspaper reports, more than 
200 of this group were killed and many dozens 
injured; majority of the remaining were 
captured and tried in the courts. There were 
13 freedom fighters who were sentenced to 
political imprisonment for life  – my father 
was one of the 13. His organization honoured 
these brave men with the titles of Ghazi 
(survivor in the fight between right and wrong) 
and Bahadur (valiant).

This brutality by foreign occupiers and the 
massacre of the unarmed public on 19 March 
1940 proved such a turning point in the 
struggle for independence that only 4  days 
later, on 23 March 1940, an all-party 
confederation passed a unanimous resolution 
demanding the formation of an independent 
state. Soon after, a declaration was signed to 
transfer power to the leading political parties. 
However, the process took another 7  years, 
and eventually the country achieved 
independence on 14 August 1947. On this 
day, all freedom fighters were released; my 
father also returned home Ghazi and 
victorious. My mother, a young girl at the 
time, was no less courageous in her struggles: 
she fully supported her husband’s mission 
and raised a young daughter totally 
independently while my father was away.

Now that the independence was gained and 
the mission accomplished, my father devoted 
his time to engaging in the study of Oriental 
languages and theology, bringing up his 



family and serving the community as a social 
activist. Achieve excellence … Make a 
difference: my parents would constantly 
remind us. Looking back at their life now, I 
am proud to say that they were certainly most 
excellent in what they achieved and 
undoubtedly made a huge difference for the 
entire nation to remember. They are my heroes 
and inspiration in my life.

Zaigham Mahmood
14 August 2017
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Preface

 Overview

Internet of Things (IoT) is a dynamic global network of self-configuring smart 
objects that are embedded with connectivity protocols to enable collection and 
exchange of data with other similar objects. It suggests a vision of a connected 
world where smart devices, intelligent objects and web-based systems are autono-
mously linked via the Internet. This is now the vision of the Internet of the Future 
that has the potential to revolutionize pervasive computing. The underlying tech-
nologies and processes include distributed computing, big data analytics, artificial 
intelligence, machine learning, signal processing and communication protocols.

This vision of the connected world is already transforming our daily lives. With 
the employment of relevant technologies, IoT can result in living in self-governing 
smart cities, driving autonomous cars in the Internet of Vehicles scenario on smart 
roads and using smart devices of diverse varieties for human comfort and ease. IoT 
is also transforming the business sector where the growth potential is expected to be 
exponential. It is predicted that there will be 20 to 50 billion connected objects by 
the year 2020.

Notwithstanding the benefits that connected digital world brings, success of the 
IoT paradigm is dependent on the network architectures, system capabilities, com-
munication protocols and ubiquitous computing technologies to support the effec-
tive and reliable physical and cyber interconnections. Since IOT presents a 
heterogeneous environment where devices from various vendors follow different 
communication protocols and utilize diverse technologies, varying data formats and 
processing mechanisms hinder the smooth interoperability between connected 
devices. Lack of ubiquitous interoperability between devices is therefore a major 
concern. Since seamless connectivity and interoperability are prerequisites in multi- 
network heterogeneous distributed environments, achieving reliable and resilient 
connectivity is vitally important. Also, the increasing sophistication of objects is 
beginning to impact on regulatory compliance which, in turn, raises additional 
issues with respect to service availability, reliability, security and device 
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 communication. A major challenge that the IoT ecosystem must also overcome is 
the risks resulting from legal issues and performance problems caused by the mass 
deployment of inefficient, insecure and/or defective devices within the IoT. So, ben-
efits of the IoT paradigm are numerous; issues and limitations are also many.

With this background, there is an urgent need for properly integrated solutions 
taking into account data and device security, signalling and device detection, device 
and data management, communication protocols and platforms, network bandwidth 
and topology, seamless connectivity and interoperability and worldwide regulations 
and legal compliance.

In this context, this book, Connected Environments for the IoT: Challenges and 
Solutions, aims to capture the state of the art on the current advances in the connec-
tivity of diverse devices in a distributed computing environment. Majority of contri-
butions in this volume focus on various aspects of device connectivity including 
communication, security, privacy, interoperability, networking, access control and 
authentication. Thirty-two researchers and practitioners of international repute have 
presented latest research developments, frameworks and methodologies, current 
trends, state-of-the-art reports, case studies and suggestions for further understand-
ing, development and enhancement of the IoT vision.

 Objectives

The aim of this volume is to present and discuss the state of the art in terms of 
frameworks, methodologies, challenges and solutions for connected environments. 
The core objectives include:

• Capturing the state-of-the-art research and practice with respect to the issues and 
limitation of connected environments

• Presenting case studies illustrating challenges, best practices and practical 
solutions

• Discussing corporate analysis and a balanced view of benefits and inherent 
limitations

• Developing a complete reference for students, researchers and practitioners of 
distributed computing

• Identifying further research directions and technologies in this area

 Organization

There are 13 chapters in Connected Environments for the IoT: Challenges and 
Solutions. These are organized in three parts, as follows:

• Part I: Challenges and Solutions. This section has a focus on issues, limitations 
and solutions relating to connectivity of IoT devices. There are five chapters. In 
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the first contribution, the emphasis is on security of IoT-enabled smart services 
in relation to enterprise information systems. The second chapter also discusses 
the security and privacy relating to connected environments but in general terms. 
The third contribution presents challenges pertaining to the management of big 
data in the context of IoT environments. The next chapter in the section suggests 
solutions to the issues and barriers inherent in the IoT paradigm through the use 
of cloud computing technologies. The last contribution discusses the service- 
level interoperability problems and solutions relating to the IoT environment.

• Part II: Methods and Frameworks. This part of the book comprises four chapters 
that focus on frameworks and latest methodologies. The first chapter presents a 
mobile IoT simulator called MobIoTSim to evaluate the behaviour of IoT systems 
and to develop IoT-based cloud applications. The next contribution presents a 
novel approach to manage hyper-connectivity in IoT through connectors that are 
equipped with variability capability; the approach is illustrated with a case study. 
The third contribution illustrates the use of the Essence Framework to model 
software development methods and proposes a practice library for the develop-
ment of IoT-based systems. The fourth chapter presents a vision of specific smart 
city domains to benefit from integration of buildings information with live data.

• Part III: Advances and Latest Research. There are four chapters in this section 
that focus on future and ongoing research. The first chapter proposes an asym-
metric schema-matching mechanism to illustrate the impact of coupling, adapt-
ability and changeability on interoperability of devices. The second contribution 
explores the challenges of automatic provenance capture at the middleware level 
in various different contexts including the MapReduce framework. The next 
chapter in the section has a focus on emerging network topologies and commu-
nication technologies presenting the relevant inherent issues, possible solutions 
and future directions. The final contribution proposes the adoption of Data 
Distribution Service as a middleware platform for IoT systems and distributed 
computing environments.

 Target Audiences

The current volume is a reference text aimed at supporting a number of potential 
audiences, including the following:

• Communication engineers and network security specialists who wish to adopt 
the newer approaches to ensure the security of data and devices for seamless 
connectivity

• Students and lecturers who have an interest in further enhancing the knowledge 
of technologies, mechanisms and frameworks relevant to the IoT environment 
from a distributed computing perspective
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• Researchers in this field who require up-to-date knowledge of the current prac-
tices, mechanisms, frameworks and limitations relevant to the IoT vision to fur-
ther enhance the connectivity between heterogeneous devices

 Zaigham Mahmood Derby, UK
Hebei, China
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Chapter 1
Security Challenges in the IoT Paradigm 
for Enterprise Information Systems

Chandrakumar Thangavel and Parthasarathy Sudhaman

Abstract A complex system has a large number of design variables, and 
 decision- making requires real-time data collected from machines, processes, and 
diverse business environments. In this context, enterprise information systems 
(EISs) are used to support data acquisition, data analytics, communication, and 
related decision- making activities. Therefore, information technology infrastructure 
for data acquisition and sharing affects the performance of an EIS greatly. Our 
objective in the present work is to investigate the impact of security in the Internet 
of Things (IoT) paradigm for enterprise information systems. The breakthrough 
potential of the IoT conjures up immense possibilities for delivering value through 
new business models across industries, products, and service offerings. However, 
making IoT technologies reliable and secure is the key to realizing the potential of 
this breakthrough concept. Ensuring security and privacy of the IoT offerings is 
therefore a major concern for users and businesses. This chapter explores the poten-
tial of IoT-enabled smart services in EISs. It identifies security and privacy concerns 
for a variety of scenarios and discusses ways to address these concerns effectively.

1.1  Introduction

Internet of Things (IoT) is characterized by heterogeneous technologies, which con-
cur to the provisioning of innovative services in various application domains [1]. 
Nowadays, the concept of IoT is multidimensional. It embraces many different 
technologies, services, and standards, and it is widely perceived as the angular stone 
of the ICT market in the next 10 years or so, at least [2–4]. The IoT is an extension 
of the Internet [5]. It gives an immediate access to information about physical 
objects and leads to innovative services with high efficiency and productivity [6]. Of 
course, this high level of heterogeneity, coupled with the wide scale and variety of 

C. Thangavel (*) • P. Sudhaman 
Department of Computer Applications, Thiagarajar College of Engineering,  
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IoT systems, is expected to magnify security threats of the current Internet, which is 
being increasingly used to allow interaction between humans, machines, and robots, 
in any combination [1]. The Internet of Things is an emerging global Internet-based 
information architecture facilitating the exchange of goods and services in global 
supply chain networks [7].

With reference to security, data anonymity, confidentiality, and integrity need to 
be guaranteed, as well as the authentication and authorization mechanisms in order 
to prevent unauthorized users (i.e., humans and devices) to access the systems. 
Whereas concerning the privacy requirement, both data protection and users’ per-
sonal information confidentiality have to be ensured, since devices may manage 
sensitive information (e.g., user habits) [8] [9]. Finally, trust is a fundamental issue 
since the IoT environment is characterized by different devices which have to pro-
cess and handle the data in compliance with user needs and rights [10] [11].

The Internet of Things, an emerging global Internet-based technical architecture 
facilitating the exchange of goods and services in global supply chain networks has 
an impact on the security and privacy of the involved stakeholders. Measures ensur-
ing the architecture’s resilience to attacks, data authentication, access control, and 
client privacy need to be established [7]. A recent study by the McKinsey Global 
Institute estimates that the IoT will have a potential economic impact of $3.9tn–
$11.1tn per year by 2025 across nine settings – homes, offices, factories, retail envi-
ronments, worksites, human health, outside environments, cities, and vehicles [12]. 
According to a recent survey by the SANS Institute covering organizations of all 
sizes, 66% of respondents are either currently involved in or are planning to imple-
ment IoT applications involving consumer devices, such as smartphones, smart 
watches, and other wearables. Smart buildings systems are increasingly being imple-
mented as operations management systems get connected to networks. The IoT holds 
much promise for the energy, utilities, medical devices, and transport sectors, which 
will see the highest levels of adoption in the near term, according to SANS, as well 
as smart buildings. Unquestionably, the main strength of the IoT idea is the high 
impact it will have on several aspects of everyday life and behavior of potential users.

From the point of view of a private user, the most obvious effects of the IoT intro-
duction are visible in both working and domestic fields. In this context, assisted liv-
ing, e-health, and enhanced learning are only a few examples of possible application 
scenarios in which the new paradigm will play a leading role in the near future [13]. 
The wide adoption of computer numerical control (CNC) and industrial robots made 
flexible manufacturing systems (FMSs) feasible; the technologies for computer- 
aided design (CAD), computer-aided manufacturing (CAM), and computer- aided 
processing planning (CAPP) made computer-integrated manufacturing (CIM) prac-
tical. In developing their EISs, more and more enterprises rely on the professional 
providers of IT software service to replace or advance their conventional systems 
[14]. Primary functions of an EIS are (1) to acquire static and dynamic data from 
objects, (2) to analyze data based on computer models, and (3) to plan and control a 
system and optimize system performances using the processed data. The implemen-
tation of a manufacturing system paradigm relies heavily on available IT [15].

C. Thangavel and P. Sudhaman
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In the rest of this chapter, we first outline the concepts and technical background 
of the IoT and the IoT infrastructure for enterprises. We then discuss the varied IoT 
application areas in Sect. 1.2 and IoT security issues and challenges in Sect. 1.3. In 
Sect. 1.4, we provide a discussion on solving the IoT security challenges in enter-
prise information systems. Finally, Sect. 1.5 presents a brief summary.

1.2  The Internet of Things: An Overview

1.2.1  Concept and Technical Background

The Internet of Things (IoT) is an emerging global Internet-based information 
architecture facilitating the exchange of goods and services in global supply chain 
networks [12]. For example, the lack of certain goods would automatically be 
reported to the provider which in turn immediately causes electronic or physical 
delivery. The basic idea of this concept is the pervasive presence around us of a 
variety of things or objects – such as radio-frequency identification (RFID) tags, 
sensors, actuators, mobile phones, etc. – which, through unique addressing schemes, 
are able to interact with each other and cooperate with their neighbors to reach com-
mon goals [13]. From a technical point of view, the architecture is based on data 
communication tools, primarily the RFID-tagged items (radio-frequency identifica-
tion) [16]. The IoT [17] has the purpose of providing an IT infrastructure facilitating 
the exchanges of “things” in a secure and reliable manner. A survey conducted by 
Atzori [18] gives a picture of the current state of the art on the IoT.  More 
specifically:

• It provides the readers with a description of the different visions of the Internet 
of Things paradigm coming from different scientific communities.

• It reviews the enabling technologies and illustrates which are the major benefits 
of spread of this paradigm in everyday life.

• It offers an analysis of the major research issues the scientific community still 
has to face.

The Internet of Things (IoT) provides new functionalities to improve the qual-
ity of life and enables technological advances in critical areas. These include per-
sonalized healthcare, emergency response, traffic management, smart 
manufacturing, defense, home security, and smart energy distribution and utiliza-
tion. New digital business models utilize the power of information to replace tra-
ditional products with innovative solutions and services leveraging IoT devices. 
Gartner’s “Hype Cycle for Emerging Technologies, 2015” [19] shows that the IoT 
is at the “peak of inflated expectations”2 and on the cusp of a multiyear, multifold 
growth. In 2020, 25 billion connected “things” will be in use [20]. This growth 
prospect is fueled by continuous reduction in the cost of computing power and the 
adoption of IPv6 technology.

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems
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In communication technologies, the transition from IPv4 to IPv6 technology 
promises unprecedented opportunity to interconnect existing as well as new ser-
vices in utilities, healthcare, education, and other businesses over the Internet, due 
to the availability of more than two billion unique IP addresses. This is an important 
aspect to realize the “smart life” dream where cities will be provisioned with real- 
time data analytics and decision support systems. However, IoT-enabled smart ser-
vices are not yet fully secure, and this is a key challenge. There are notable privacy 
concerns around data gathered from user-owned devices as well as the surrounding 
environment or other devices [21].

1.2.2  IoT Infrastructure for Enterprises

The aforementioned discussion has shown that IoT is aligned well with the architec-
ture of a manufacturing enterprise. An enterprise model consists of a set of modular 
components and their interactions. Correspondingly, each system component in an 
EIS needs an information unit to make decisions on the component’s behaviors 
based on the acquired data. Moreover, data acquisition, communication, and 
decision- making are essential functions for each module. Based on the axiomatic 
theory, the IoT is able to provide vital solutions to planning, scheduling, and con-
trolling of manufacturing systems at all levels [15].

The features of next-generation enterprise are now discussed to evaluate if an 
IoT-based EIS is capable of meeting these challenging requirements.

Decentralized Decision-Making
Domains and levels of manufacturing activities are increasing and becoming diver-
sified. Hierarchical architecture is used to the most efficient enterprise architecture 
for system integration. However, system complexity can be increased exponentially 
with the system scale and dynamics. A centralized system may lead to a significant 
time delay and inflexibility to respond changes promptly. Therefore, distributed and 
decentralized architecture would be effective means to deal with system complexity 
and dynamics.

Flat and Dynamic Organization
Prompt responses to uncertainties require distributed and decentralized enterprise 
architecture. In such a way, acquired data can be directly used for decision-making 
in real time. As far as the interactions among system components are concerned, it 
forms the challenges to distribute the information to associated components, in par-
ticular under a centralized structure. The data are collected and sent to the center 
database, and then it is sent to an object when the system receives the request from 
this object. However, a centralized model has its challenges in dealing with massive 
data and the heterogeneity of environment.

• Massive data: From the perspective of data management, information systems 
for next-generation manufacturing enterprises are facing two situations: (1) the 
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cost for decision-making unit is likely increasing with system complexity and the 
need of fast responsiveness, and (2) it causes resources redundant to maintain 
data locally and the wastes of time and resources for communications when the 
data are shared by other decision-making units.

• Heterogeneous environment: Increased and diversified manufacturing resources 
have increased the heterogeneous nature of a manufacturing environment. The 
variety exists at the aspects of personalized products, geographical distribution, 
cultures, suppliers, regulations, optional operations, and standards.

• Agility and adaptability for real-time changes: Manufacturing enterprises are 
functioned to meet customers’ needs, including functionalities, quantity, quan-
tity, delivery time, and changes. The enterprises must be capable of dealing with 
changes at reasonable time and making products available as early as possible to 
catch the market niche. Without such a capability, the profit margin will be 
reduced significantly.

• Reconfigurable capabilities: To increase system flexibility, the structures of 
hardware and software systems are not static anymore. A system at a certain time 
can be decomposed into subsystems, and these subsystems can be reconfigured 
as manufacturing resources for other tasks. Extra system components are required 
to support hardware and software system configurations. System configurability 
or modularization decides the interoperability, which is extremely important in 
the globalized market.

1.2.3  IoT Application Areas

An important area that significantly benefits from the IoT is healthcare. Connected 
healthcare offers immense possibilities including remote monitoring of patients 
with critical ailments such as diabetes, cardiac issues, and kidney malfunction. This 
enables healthcare organizations and governments to capture and analyze popula-
tion health data to identify potential health hazards at an early stage and take pre-
emptive actions. In the future, smart retail solutions will provide cashless buying 
options, eliminating the need for point of sales (POS) counters. User preference 
data collected by IoT sensors attached to display zones and dressing areas at retail 
outlets can be utilized by retailers to track fast-moving items. Retailers can also use 
this data to replace less preferred items with popular items, driving faster, and 
increased sales. IoT will also promote smart agriculture, characterized by tempera-
ture control of warehouses, dashboard-based monitoring of inventory, and predic-
tive analysis of usage and stock replenishment. Furthermore, factories can become 
more energy efficient by leveraging IoT-enabled manufacturing to analyze the usage 
and performance data gathered from sensors attached to machines. Data gathered on 
plant floors is analyzed to provide just-in-time information to floor managers, 
increasing supply chain efficiency and reducing material wastage and power utiliza-
tion. Figure 1.1 shows what people search for on Google, what people talk about on 
Twitter, and what people write about on LinkedIn. The highest score received a 
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rating of 100%; the other Internet of Things applications were ranked with a per-
centage that represents the relation to the highest score (relative ranking).

IoT-Enabled Smart Cities
With more and more people moving to cities and continuous growth in urban popu-
lation, providing basic services to the increasing number of citizens is becoming a 
huge challenge for city councils. To meet the needs of the growing population, cities 
are expanding exponentially and stretching the operational limits of various ser-
vices. In such a scenario, cities driven by IoT-enabled smart services can signifi-
cantly improve the standard of living. By leveraging the IoT, a connected environment 
of interdependent systems can be built, enhancing all aspects of city life. This can 
be achieved by embedding IoT technologies in all types of physical objects and 
artifacts ranging from clothes, home appliances, and automobiles to street lighting 
systems, transport systems, public utilities, and even the human body. In a smart 
city, the IoT-enabled digital fabric of interdependent systems will be dynamic in 
nature, with instantaneous data gathering and near real-time analytics. This will 
help city councils strategize necessary actions and ensure effective governance 
based on continuous analysis of the huge volume of data collected from subsystems. 
The insights thus gained can help manage energy efficiency of buildings, map social 
data for crime prevention, monitor flood or drought situations, and drive public 
consultation and trend analysis. Other areas of application include infrastructure 
development across housing, education, transport, medical services, employment, 
and so on [22].

Fig. 1.1 The Internet of Things application ranking
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Smart Healthcare Systems
IoT-enabled healthcare services enable remote monitoring of patients with diabetes, 
kidney malfunction, heart problems, and more. This is possible through direct, 
round-the-clock data exchange between devices like pacemakers and glucose moni-
tors implanted in patients’ bodies and health monitoring systems in hospitals. Now, 
in the event of these devices being breached or the data obtained from them being 
unauthenticated, patients’ lives are at risk.

Smart Billing and Payment Systems
In a retail outlet, IoT sensors are used to tally the purchases in a customer’s cart. 
This means customers do not need to stand in the queue for checkout and billing, 
with sensors sending the data to a cloud-based billing and payment systems. 
Customers can pay the bill through a payment app on their smartphones.

Smart Home Security Systems
IoT-enabled home security solutions and temperature control systems use sensors to 
collect and share data from multiple edge devices. If an attacker gains access to 
these smart systems through malicious means, the underlying functional logic of 
control systems is vulnerable to misuse, compromising the physical security of 
residents.

Proximity Marketing
IoT has led to the advent of proximity marketing using Bluetooth-enabled beacons. 
Billboards embedded with beacons that include IoT sensors [23] identify interested 
customers in their vicinity. By activating an app on customer smartphones, relevant 
data is gathered by sensors and sent to the cloud for analytical processing. Based on 
the information and insights gathered, personalized marketing content is sent back. 
For example, Apple leverages iBeacons [24] to allow smartphones, tablets, and 
other devices to perform actions like determining the location of a person with an 
iOS device and providing information about nearby retail outlets, coffee shops, or 
multiplexes, and Facebook [25] makes recommendations on places to visit, things 
to do, and so on.

Smart Vending Machines
Smart vending machines allow customers to choose products from the display; dur-
ing which, customer details are obtained through their smartphones by a near-field 
communication (NFC) smartphone payment system fitted to the vending machine. 
Merchants can use this data to improve stock replenishment, perform health checks 
on vending machines, and identify popular products.

1.3  Security Challenges in the IoT

The Internet of Things (IoT) is already starting to give rise to real-world applica-
tions, from connected homes and cars to health monitoring and smart utility meters. 
The Internet of Things (IoT) is finally here in 2017, and companies like Google and 
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Amazon are rushing to get out and become the main company to become the hub of 
this revolutionary concept. There have been multiple predictions over the years 
which declare that there will be at least tens of billions connected devices by 2020. 
The fundamental security weakness of the Internet of Things is that it increases the 
number of devices behind your network’s firewall. In the development of any IoT 
application, security and testing frameworks play an important role.

IoT Infrastructure for Enterprises
An enterprise model consists of a set of modular components and their interactions. 
Correspondingly, each system component in an ES needs an information unit to 
make decisions on the component’s behaviors based on the acquired data. Moreover, 
data acquisition, communication, and decision-making are essential functions for 
each module. Figure 1.2 illustrates the relations between the components in a manu-
facturing enterprise and the architecture of IoT. Based on the axiomatic theory, the 
IoT is able to provide vital solutions to planning, scheduling, and controlling of 
manufacturing systems at all levels. The manufacturing industries are hardly on our 
“first rodeo” in regard to how to properly address many of the security issues sur-
rounding the use of Ethernet networks and IP-based protocols in manufacturing 
networks and applications. Ethernet-based automation systems work was starting in 
the 1980s, and since then, multiple industrial network protocols have evolved to run 
over standard Internet Protocol (IP) and UDP communications stacks – Modbus 
TCP/IP, PROFINET, EtherNet/IP CIP, FOUNDATION HSE, etc. Communications 

Fig. 1.2 IoT for manufacturing enterprise

C. Thangavel and P. Sudhaman



11

between controllers/PLCs and workstation/server applications have evolved from 
slow serial ports to using high-speed Ethernet networks that commonly run the 
aforementioned protocols and OPC/OPC UA. Manufacturing Operations 
Management (MOM) applications like MES (Manufacturing Execution Systems), 
EMI (Enterprise Manufacturing Intelligence), APM (Asset Performance 
Management), and others are all typically networked via standard Ethernet net-
works to automation systems and enterprise business systems for information inte-
gration purposes.
All of this pervasive Ethernet/IP networking has resulted in many best practices that 
have been established for different security aspects such as network and virtual 
LAN segmentation, firewalls and selective port openings, user and application 
authentication, intrusion detection, antivirus, malware, security patching, and appli-
cation software roles and privileges..

The Internet of Things offers countless new opportunities. The definition of IoT 
security is similar to that of mobile security which includes the protection of per-
sonal and business information that is stored, collected, and transmitted from 
devices connected to the Internet [26]. In recent years, cyber threats have grown 
exponentially in both quantity and volume [27]. Security breaches and cyber heists 
are happening all around us, and the authors of research papers do not expect that to 
change. This can and should be frightening to both the companies and the users. 
There are significant emerging security issues in IoT applications, networks, and 
devices/equipment, which could have major impacts on many industries and prod-
ucts [28]. Our personal lives are rapidly becoming more convenient, more mobile, 
and more digital. While the IoT holds much promise, many security issues have 
been uncovered. Owing to the wide range of sectors involved and their impact on 
everyday life, such security issues can have serious consequences, causing damage 
and disruption to operations or, in some scenarios, even loss of life. In a smart build-
ing – where systems ranging from HVAC (heating, ventilation, and air condition-
ing), lighting, and door access controls to video surveillance and elevators are all 
interconnected – a security threat that is exploited to disrupt power or lighting could 
cause loss of life if it were something like a hospital. In office buildings, a door 
access control that is hacked could provide an intruder with unauthorized access. 
Issues with the IoT devices are far from hypothetical: one example of a threat is the 
Stuxnet worm, which has been seen to be able to disrupt industrial control systems, 
causing extensive damage. A range of security risks have been uncovered in the 
devices themselves that make up the IoT. OWASP has identified the top 10 such 
issues involved with IoT devices [29]:

• Insecure web interfaces
• Insufficient authorization/authentication
• Insecure network services
• Lack of transport encryption
• Privacy concerns
• Insecure cloud interface
• Insecure mobile interface
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• Insufficient security configurability
• Insecure software
• Poor physical security

This is echoed by recent research undertaken by HP Fortify, the findings of 
which are shown in Fig. 1.3. Overall, it found that 70% of the most commonly used 
IoT devices contain security vulnerabilities and there is an average of 25 security 
concerns per device.

Although the IoT offers tremendous opportunities for smart services across sec-
tors, it is not completely secure or risk-free. In fact, the landscape becomes complex 
due to the vast network of IoT devices and interconnected systems that are required 
to realize the numerous benefits of smart services. The scale and complexity of IoT- 
enabled services make the implementation of traditional security techniques fairly 
complex. There are unique access control challenges (specifically for wireless sen-
sor devices that can store energy for just about a few weeks to a month) and memory 
limitations (permissible upper limits being a few kilobytes) that restrict the com-
munication and processing capabilities of these devices to run complex encryption 
algorithms. These issues are further compounded by the distributed nature of the 
IoT device network, which is vital to create a system that provides context aware 
services. In addition, non-trusted entities can physically or remotely intercept and 
manipulate data captured by IoT sensor nodes. Data transmission from sensors and 
gateway devices can be passively monitored in the absence of robust encryption, 
and malicious nodes can be embedded in wireless sensor networks to interfere with 

Fig. 1.3 Device-level IoT security vulnerabilities
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neighboring nodes. Privacy is another pressing concern. Personally identifiable 
information (PII) can be gathered from gateway devices without consent and can be 
used to conduct unscrupulous activities.

Looking at the IoT security through a more technical lens, the issues can be 
analyzed by utilizing preexisting IT security frameworks and expanding them to 
include IoT. Other more technical approaches take aim at what security proce-
dures and techniques should be implemented when developing these devices. 
First, a secure boot must be performed each time the device is turned on or acti-
vated. This is most likely done through proper cryptography methods. Next, 
proper authentication is essential through the use of strong passwords (at mini-
mum) or better yet the use of X.509, an encryption authenticator, or Kerberos, 
another method of properly verifying the user [30]. Once the device and the user 
have been authenticated, secure communication must occur by the transmission 
of the data through secure encryption channels (SSH or SSL) [30]. When done 
right, encryption can be extremely secure; however, there are many older forms 
of encryption that are less secure but popular to implement because of their sim-
plicity. Finally, protection against cyber- attacks and intrusion detection mecha-
nisms must also be done through the use of firewalls that limit communication to 
only known, trusted hosts (IBM, 2015) and, additionally, embedding a device 
designed to detect and report invalid log-in attempts and other malicious activi-
ties [30]. Last, but not least, the US Federal Trade Commission (FTC) notes that 
only basic, static security approaches cannot adequately secure an IoT device. It 
recommends that all devices be designed with continuous security procedure 
updates in mind, as security problems and solutions are always evolving [31]. So 
what are some of the new security challenges that get presented with billions of 
new smart devices being interconnected in the world of the IoT? To start with, 
smart industrial devices run much smaller footprints of computing power and 
operating systems. They may be installed once, and the software in them may 
never be updated or patched. This presents new technical challenges, as the 
devices will need to be highly secure by design and impervious to virus or denial 
of service attacks.

If IoT devices are to meet their full intelligence potential, then they will have the 
ability to be self-communicating between each other and with other computing 
devices, controllers, and software applications. It sounds good that anything can 
communicate to anything or anyone on an “as-needed” basis, but the reality is that 
this needs to be properly managed for practical and security reasons.

IoT devices may or may not participate in larger/centralized security domains 
(e.g., Active Directory) in order to operate; therefore, the concept of multiple dis-
tributed security domains will likely emerge for groupings of IoT devices and be 
another new security management consideration.
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1.4  Solving the Security Challenges of Enterprise 
Architectures

IoT devices will need to intercommunicate with existing controllers, automation 
and manufacturing information networks, and applications. Therefore, existing 
security policies and approaches will need to be adapted to embrace these new IoT 
security challenges. In what follows, we propose the ways, mapped to five key 
dimensions, to address security concerns in an IoT setup:

• Secure booting – the authenticity and integrity of software on a device should be 
verified via a digital signature attached to the software image and verified by the 
device to ensure that it has been authorized to run on that device and that there 
are no runtime threats or malicious exploits present. Only then will it be allowed 
to load.

• Access control – mandatory or role-based access controls should be built into 
the operating system. If compromise of any component is detected, access to 
other parts of the system should be minimized as much as possible. This will 
help to minimize the effectiveness of any breach of security.

• Device authentication – a device should authenticate itself at the point at which 
it is plugged into the network, prior to receiving or transmitting data. Machine 
authentication only allows a device to access a network based on credentials that 
are stored in a secure storage area.

• Firewalling and IPS  – each device needs to have a firewall or deep packet 
inspection capability for controlling traffic, but this requires that protocols are 
needed to identify malicious payloads hiding on non-IT protocols. And these 
protocols need to be industry specific since, for example, smart energy grids have 
their own set of protocols governing how devices talk to each other.

• Updates and patches – the ability to deliver software updates and patches to 
thousands of devices in a way that conserves limited bandwidth and intermittent 
connectivity of embedded devices, while ensuring that there is no possibility of 
functional safety being compromised, is a necessity

It is unlikely that security will become an overarching requirement in the design 
process any time soon. There are also standards that need to be developed before 
this happens, and it is also likely that some form of regulation or specific industry 
pressure will be required in order to force manufacturers to place the necessary 
emphasis on security. Organizations should look to limit what is allowed in the 
workplace, considering the risks versus the benefits, and look at how systems are 
interconnected and therefore how risks such as malware infections can be spread.

Organizations also need to find a way to enforce data protection policies on all 
devices in use and to control what data people can access. Identity and access rights 
should be tightly managed in order that all devices and connections are authenti-
cated and authorized, and controls should be placed on what information can be 
viewed and how it is communicated and stored. All data held on devices or in transit 
should be encrypted to safeguard it from unauthorized access or loss. In terms of 
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devices that are lost or stolen, device management tools that extend to remote data 
wipe should be considered, especially for consumer devices that are personally 
owned. For devices used for business operations, systems will need to be used to 
link physical and network security together to enable a total view of incidents, 
enabling management to make decisions regarding the threat posed and how it can 
be controlled. This requires that all IoT devices are managed the same way as other 
equipments connected to the Internet and the network. All activity should be closely 
and continuously monitored to look for anomalies from normal baseline behavior, 
and organizations should ensure that all devices are correctly configured and are 
operating properly.

Manufacturing is woven into economy and society. For example, manufacturing 
took 12% of gross domestic product (GDP) and 11% of workforce in the Unites 
States in 2011 [32]. Moreover, the significance of manufacturing is far beyond the 
scope these numbers represent. For example, the manufacturing sector in the United 
States used to take 19% of GDP and 30% of workforce in the 1950s [33]; however, 
this percentage has been shrinking continually for several decades. The advance of 
manufacturing technologies relates closely to information technologies (ITs). Since 
design and operation of a manufacturing system needs numerous types of decision- 
making at all of its levels and domains of business activities, prompt and effective 
decisions not only depend on reasoning techniques, but also on the quality and 
quantity of data [34]. Every major shifting of manufacturing paradigm has been 
supported by the advancement of IT. For example, the widely adoption of computer 
numerical control (CNC) and industrial robots made flexible manufacturing sys-
tems (FMSs) feasible; the technologies for computer-aided design (CAD), 
computer- aided manufacturing (CAM), and computer-aided processing planning 
(CAPP) made computer-integrated manufacturing (CIM) practical. In developing 
their ESs, more and more enterprises rely on the professional providers of IT soft-
ware service to replace or advance their conventional systems [14]. Therefore, it 
makes sense to examine the evolution of the IT infrastructure and evaluate its impact 
on the evolution of manufacturing paradigms, when a new IT becomes influential.

1.5  Conclusion

The continual increase of the IoT devices and services requires customized security 
and privacy levels to be guaranteed. The broad overview provided in this chapter 
raises many open issues and sheds some light on research directions in the IoT secu-
rity field. Moreover, a unified vision regarding the insurance of security and privacy 
requirements in such a heterogeneous environment, involving different technologies 
and communication standards, is still missing. Suitable solutions need to be designed 
and deployed, which are independent from the exploited platform, and able to guar-
antee confidentiality, access control, and privacy for users and “things,” trustworthi-
ness among devices and users, compliance with defined security, and privacy policies. 
Current manufacturing environment has been extensively discussed to identify key 
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requirements of EISs of modern enterprises. It is found that the emerging IoT 
 infrastructure can support information systems of next-generation manufacturing 
enterprises effectively. More specifically, anytime, anywhere, anything, data acquisi-
tion systems are more than appropriate to be applied in collecting and sharing data 
among manufacturing resources. However, the application of IoT in EISs is at its 
infant stage; more researches are in demand in the areas such as modularized and 
semantic integration, standardization, and the development of enabling technologies 
for safe, reliable, and effective communication and decision-making. The Internet of 
Things is a promising technological advancement that can offer several benefits to 
the society at large. However, businesses and city councils across the globe need to 
work collectively to build secure and reliable IoT technologies and eliminate unde-
sired side effects. To realize the true potential of this technology, security and privacy 
concerns need to be effectively addressed. In addition to self- regulation, a structured 
and well-defined cyber security and privacy policy must be developed with efficient 
collaboration between governments and enterprises. It is also key to ensure that IoT-
specific legislation and industry standard protocols do not stifle innovation. This will 
allow individuals and communities to reap the advantages of the IoT and build a 
smarter world that offers intelligent solutions for big and small challenges across all 
walks of life. So the manufacturing industries can continue to accelerate their busi-
ness success by leveraging these exciting new technologies.
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Abstract The devices in the Internet of Things (IoT) environment find applications 
in a wide variety of fields, from smart homes and smart cities to smart wearables. 
Earlier predictions had estimated a huge number of connected devices in use by the 
year 2015, but it did not happen. A main reason refers to the ubiquity of IoT devices 
that has its own set of unique challenges and problems which are not easy to sur-
mount. One core issue relates to the security and connectivity vulnerabilities of 
these devices. With the number of IoT devices steadily on the rise and trends like 
BYOD (Bring Your Own Device) catching up, the challenges faced by these devices 
are steadily increasing. To understand the significance of issues relating to the con-
nectivity of IoT devices, we must learn about their unique characteristics and 
requirements. However, notwithstanding the multiple vulnerabilities, unfortunately, 
there is no silver bullet to suggest definitive solutions. Apart from securing the 
devices, there is also an urgent need to update the laws that protect data ownership 
rights and restrict access to personal data. This chapter is an effort to address privacy 
and security challenges that IoT devices face. The chapter highlights novel solutions 
that can be usefully employed to make these devices more secure. It discusses 
device trust, policies and standards, data anonymization, lightweight authentication, 
encryption, and Datagram Transport Layer Security (DTLS) techniques.

2.1  Introduction

The Internet of Things (IoT) refers to a network of interconnected “things” that have 
processing capabilities. These “things” have the ability to transfer data over a net-
work without requiring human-to-human or human-to-computer interaction. A 
“thing” can be an intelligent object from a smartphone, television, or vehicle to a 
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door, window, or even people! In this context, anything that has the ability to process 
and transfer data over a network can be a “thing.”

The use of IoT devices has been on a steep rising curve over the last few years, 
with the number of IoT devices predicted to reach a figure of 24 million by the year 
2020 [1]. Figure 2.1 shows a trend in the number of connected devices over the 
years inspired by Ericsson Mobility Report 2016 [2]. The IoT sector has been grow-
ing at a mind-boggling pace for the past two decades, but it was not always this way. 
Although, much work had been done to create a network of devices in the 1970s and 
1980s, the Internet was still in its infancy. It was only during the 1990s that the idea 
of ubiquitous computing, wearable devices, and connected environments began tak-
ing shape, laying the foundation for IoT. In the year 1994, Xerox EuroPARC’s Mik 
Lamming and Mike Flynn introduced a wearable device called Forget-Me-Not [3]. 
This device was capable of communicating wirelessly and recording its interactions 
with the environment around it. In the same year, Steve Mann a Canadian researcher 
and inventor developed a wearable wireless webcam [4]. Kevin Ashton coined the 
term “Internet of Things (IoT)” when he gave a presentation to P&G in 1999 [5]. 
Since then, with advancements in embedded systems and smartphone technology, 
the idea of IoT started gaining popularity.

Since the start of the new millennia in 2000, more and more people started using 
personal computers and mobile phones. As the number of people connected to the 
Internet grew exponentially, so did the number of devices. Today, the devices con-
nected to the Internet comfortably exceed the number of people in the world. IoT 
devices are ubiquitous, i.e., present everywhere. Most people may not realize, but 
numerous smart “things” surround them.

Fig. 2.1 Growth of connected devices
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Today, IoT devices find application in a wide variety of fields. Building and 
home automation, smart cities, smart manufacturing, smart automotive, smart wear-
ables, and healthcare are some examples. The rise of the IoT in our daily lives has 
generated a brand new wave of change for the coming future. Growth in the number 
of smart objects has not only changed the way we live our lives but is also redefining 
many sectors like business, manufacturing, etc.

This chapter is organized as follows. Section 2.1 introduces IoT, its evolution, 
and significant applications. Section 2.2 deals with IoT security risks and its chal-
lenges and outlines the data security requirements for the IoT layers. 
Recommendations for IoT data security, detailed in Section 2.3, discuss devices’ 
trust, policies, and standards. It also discusses lightweight authentication, encryp-
tion, and DTLS techniques. Sections 2.4 and 2.5 conclude the chapter and present 
the future ahead.

2.2  Connected Environments’ Security and Privacy

In this section, various risks and challenges that plague the connected environments 
are highlighted. It also details the data security requirements that need to be 
satisfied.

2.2.1  Risks and Challenges

IoT devices are set to change the future for better; however, before that happens, 
there is a need to address some serious issues that plague the rampant applications 
and usage of these devices. Considering that IoT devices gather a lot of data about 
its surroundings and the user, any security threat to these devices is a matter of grave 
concern. What if sensitive data containing information related to user’s identity, 
finance, health, or location is somehow stolen? This data may be invaluable to many 
organizations, and if the user is lucky enough, it may just be used for advertise-
ments. Realistically though, they may be able to get their hands on enough data to 
predict the health status of the user, and he/she may have to bear the burden of 
increased insurance price or even policy cancellation! This is not just applicable to 
individuals but also corporate organizations. Hackers can target networks with inad-
equate security within the workplace to steal sensitive information. With trends like 
BYOD (Bring Your Own Device) catching up, data security risks at workplaces are 
likely to rise even further. The year 2015 was predicted to be the year of IoT devices, 
but it failed to have that kind of an impact, with security giants like Kaspersky term-
ing IoT as Internet of Crappy Things [6]. The five major challenges faced by IoT 
devices are now highlighted below.
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2.2.1.1  Device Hardware and Firmware Security

Most IoT devices are resource constrained in nature, i.e., they have limited compu-
tational abilities. Most of these devices come with minimalistic architecture, which 
is just sufficient to fulfill the desired purpose. This approach, although makes 
devices cheaper to manufacture, leaves out serious loopholes, which can be easily 
exploited to make undesired use of these devices. Most of the IoT devices do not 
have a proper authentication mechanism, and it can be easy to gain access to these 
devices. All these factors make device firmware and hardware susceptible to secu-
rity threats and other risks. For example, if the device is misplaced, someone with 
even basic technical knowledge may be able to gain access to data stored in the 
device by tampering it.

2.2.1.2  Transport Layer Security

Another challenge with IoT devices is to do with the secure transfer of data. Most 
devices do not have robust encryption techniques to protect sensitive data like loca-
tion, identity of the user, and other such details, which the device may be recording.

There have been cases where the data is transferred in clear text format. A 
research paper by Wei Zhou and Selwyn Piramuthu [7] explains vulnerabilities in 
communication between a fitbit device and its cloud server. It is suggested that the 
log-in information containing the user password is sent to the website in clear text 
format and stored in log files. No encryption is applied on the data being synced to 
the server after log-in. The data is sent as plain HTTP instructions, which could eas-
ily be compromised. These limitations in transport layer security are prone to eaves-
dropping, man in middle, and determined brute-force attacks. Security firm 
Bitdefender demonstrated deciphering the Bluetooth communication between an 
android device and a smartwatch [8]. The hackers opted for persistent trial and error. 
They tried multiple username and password combinations until they were able to 
gain access to the device contents.

2.2.1.3  Weak Security of Data Stored on Cloud Servers

Most IoT devices store their data on cloud servers with whom they may communi-
cate directly or indirectly with the help of a gateway such as a smartphone. This 
provides more points of attacks for hackers. Another serious risk that data on cloud 
servers pose is the amount of personally identifiable information (PII) that they 
contain. If not properly anonymized and encrypted, data from cloud servers may be 
analyzed to reveal sensitive personal information. Highly skilled cyber criminals 
may make use of distributed denial of service (DDoS) attacks, backdoor attacks, 
SQL injection, etc. to sabotage the information stored on the cloud. All these risks 
are so real that some organizations are protecting themselves by buying data breach 
insurance, in case client data falls into the wrong hands.
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2.2.1.4  Nonexistent Laws Regarding Data Ownership and Policy 
Compliance

There is a gray area when it comes to legal policy compliance of IoT devices. This 
is because there is not much awareness regarding the risks, which these devices pose 
on the user, and there are not many laws and policies in place to protect the user in 
cases of security lapse. There is no law to restrict data-hungry enterprises like 
e-commerce sites, advertising networks, and insurance companies on the amount of 
data that they can ethically collect. Some acts and policies like Fair Information 
Practice Principles (FIPPs) and Health Insurance Portability and Accountability Act 
(HIPAA) do exist which impose certain limit on the use of consumer data for mak-
ing decisions regarding insurance, credit, or recruitment. However, they have a very 
limited effect in the IoT sphere. In addition, no clear laws govern the ownership 
rights on the amount of data collected by these devices. Ownership rights vary from 
company to company, and in many cases, the owner of a device is not necessarily 
the owner of the data collected by it. There have been cases where companies have 
tried to sell consumer data illegally.

2.2.1.5  Lack of Device Interoperability

Another grave challenge faced by IoT devices is the lack of device interoperability. 
Because of this, devices in the Internet of Things environment cannot always “talk” 
with each other, i.e., they are incapable of communicating with each other. This is 
because different manufacturers use different standards, which do not allow such 
devices to communicate. This causes a huge problem as it hinders the seamless 
experience and limits the potential of these devices. There is a need for a unified 
framework that can handle the “heterogeneity” of IoT devices and make connected 
environments truly smart.

All the above factors have made it imperative to build device trust. To realize the 
true power of connected environments, the above challenges need to be addressed 
and resolved.

2.2.2  Data Security Requirements in the IoT

There are many challenges that currently plague IoT devices, as discussed already. 
Most of these flaws are different in nature, and there is no silver bullet to take care 
of all of them. Additionally, it is not just the device that must be secured; various 
nodes through which the data is transmitted or stored also need to be secured. There 
are many requirements that IoT security must fulfill to overcome these challenges. 
However, before we get into details of security requirements, it is helpful to catego-
rize various security layers of these devices and study them in detail. IoT security 
can be classified into four layers [9]:

2 Security and Privacy Across Connected Environments
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• Device layer: It is the most basic level of security and deals with the robustness 
of the device hardware and firmware in protection against attacks to preserve 
data integrity.

• Transport layer: This layer deals with measures to make device communication 
secure. Communication could be between different devices, between device and 
gateway, or between device and cloud server.

• Cloud layer: This layer deals with algorithms and encryption techniques to make 
data stored on the cloud safe from external attacks.

• Product and data management layer: This layer is very different from the other 
three layers. It deals with concepts like Product Lifecycle Management (PLM), 
policy compliance and data ownership, adherence to IoT security standards, etc. 
This layer helps to ensure that the device is “future ready” and sticks to the con-
temporary security and legal standards.

A bottom-up approach needs to be followed while securing connected devices 
beginning with the device layer. Currently, most of embedded devices are poorly 
built and just focus on getting the job done. Considerable work has to be done to 
strengthen authentication mechanism of these devices and provide integrity of 
stored data. Manufacturers must make the device intelligent and robust enough to 
handle the complexities of connected environments. Devices must be capable of 
securing the data locally before they can transfer it. IoT devices do not just collect 
data but also transfer it over networks for multiple applications. Hence, securing the 
communication channel is very important. However, the requirements of transport 
layer security for IoT devices are a little different from traditional devices, as they 
are limited by their resource-constrained nature. It requires the use of algorithms 
that are lightweight and effective.

As mentioned before, cloud layer security is just one of the concerns. Cloud 
service providers must uphold certain benchmark for security and make use of good 
encryption algorithms and strong key management techniques. Data stored on cloud 
servers must be properly de-identified to make sure that it is not of any use in case 
of breach.

The topmost security layer is a vital cog in the wheel to obtain secure connected 
environments. It deals with various device and data management practices, which 
manufacturers, users, and policy makers might follow to bolster security in the con-
nected space. Manufacturers must have the entire product life cycle in mind and 
must be willing to provide firmware updates to tackle the risks that outdated firm-
ware poses. There is an urgent need for stricter laws regarding data ownership rights 
and legal policy compliance by companies. The risk associated with data collected 
by IoT devices must be identified, and laws must be in place to help the device users 
in case of crisis. In addition, there is a need for security standards that are univer-
sally accepted to alleviate the problem of device heterogeneity. The standards for 
device communication must be carefully chosen, keeping in mind the security and 
use of the devices.
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2.3  Recommendations for IoT Data Security

It is clear that much work needs to be done to make connected devices platforms 
secure and trustworthy. In the previous section, we outlined security requirements 
in IoT ecosystem that must be implemented to alleviate the risks and challenges 
faced by them. In this section, we provide recommendations to overcome these 
challenges to secure the respective layers.

For complete security, all four layers need to be strengthened. The device layer 
can be secured by building trust in the Internet of Things and making device firm-
ware and hardware more secure. We describe various lightweight encryption tech-
niques that can be employed to secure device data and strengthen the transport layer. 
The cloud layer can be secured with the help of some data de-identification tech-
niques that could be implemented to make sure that sensitive data is protected. We 
detail policies and guidelines that are recently proposed to protect privacy of con-
sumers from data-hungry organizations. We also suggest guidelines for future poli-
cies that can lay down restrictions on data use and put strong legislations on data 
ownership rights. Lastly, we talk about developing security standards for IoT 
devices that help to promote device interoperability and unleash the true potential of 
IoT devices. These measures help to secure the product and data management layer, 
hence achieving the target of complete security. Figure 2.2 shows different layers of 
IoT security and highlights their various risks/challenges; it also lists the security 
recommendations for each layer.

Fig. 2.2 Layers of IoT security
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2.3.1  Securing Device Firmware and Hardware

The deficiencies in IoT security have been brought to light on many occasions, and 
all these have a huge impact on trust between device and user. A pair of cybersecu-
rity engineers demonstrated one such vulnerability by successfully overriding the 
controls of a Jeep Cherokee that was on a highway, with the driver inside it [10]. The 
video in the link [10] presents the story. It is almost comical to see the driver lose 
control over the car fans, music system, and eventually engine on a busy highway. 
The hackers made use of the cellular connectivity of the car’s entertainment system 
to breach its security.

Traditionally, most of the manufacturers have not put much effort in laying out a 
systematic plan to provide end-to-end security of devices. They follow more of a 
patchwork approach in tackling the loopholes, which can be easily exploited. For 
example, in the above scenario, the car must have surely had various security 
 measures in place to prevent attacks but only to secure individual components rather 
than it being a planned, integrated security measure at a holistic level.

Events like these have made it essential for manufacturers to reconsider their 
approach for securing connected systems. They must now think of security as an 
integral part of the device right from the design stage and put together an end-to-end 
solution that keeps the entire product life cycle in mind, right from development to 
decommissioning of the device.

There are various methods to secure the device firmware. Right from securing 
the boot of the device to software isolation in case of device breach and providing 
regular updates to tackle new vulnerabilities. These methods, or rather steps, are 
discussed below:

 1. Securing the boot of the device is essentially the root of trust [11] that is neces-
sarily expected from a device. Most of the IoT devices are embedded devices 
that have a microcontroller. The creators must make sure that the software stored 
on these microcontrollers is secure and impregnable. This can be done using 
read-only memory (ROM) or flash memory to store the microcontroller soft-
ware. Once this software starts running when the device is switched on, it needs 
to make sure that the device is not loading application software that has been 
modified or tampered. This can be done by verifying the digital signature of the 
application. Various self-certification and hierarchical certification techniques 
are used to verify device signature. A tree with strong roots is difficult uproot. 
Similarly, a device with trustworthy initial software provides a strong foundation 
for securing the device.

 2. The next step is to code the software as fragments in such a way that all frag-
ments of the code are independently secure. This is called software isolation, and 
it goes a long way in restricting the severity of breach in case of software com-
promise. It ensures that a breach in one part of the system is restricted to that part 
only, hence making it difficult for a hacker to enter the system from one point of 
attack and then take control of the entire device.
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 3. Finally, to secure the firmware of the device, manufacturers must have the 
Product Lifecycle Management in mind. An old firmware is prone to increas-
ingly new attacks, and to tackle this, manufacturers must regularly release 
patches and updates as soon as new vulnerabilities are identified. They should 
also employ secure packet management (SPM), which verifies the authenticity 
of updates being patched with the help of signature keys. Regular security 
reviews by using mechanisms like side-channel attack, defense verification, trust 
boundary review, and fault injection could be employed to test the devices. 
Figure  2.3 shows the various stages of Product Lifecycle Management to 
consider.

 4. After securing the device firmware, it is now essential to secure the device from 
physical attacks, i.e., securing the device hardware. Devices in connected envi-
ronments are so widespread and ubiquitous that there can be numerous points of 
entries for an attacker, and it becomes very difficult to ensure the physical secu-
rity of the device. However, the security of the device should be so strong that the 
hackers cannot access sensitive data from the tampered devices. Hackers make 
use of various reverse engineering techniques like de-packaging of chip, micro-
probing, layout reconstruction, etc. to tamper the device. Methods like remote 
attestation and Trusted Platform Modules (TPM) are effective to tackle such 
problems.

 5. Remote attestation is a technique by which a remote server can determine if a con-
nected device can be trusted or not. It checks for the integrity of hardware and 

Fig. 2.3 Product lifecycle management
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software of the connected client. The manufacturers embed credentials in the 
device during its development, and this credential essentially is the identity of the 
device in the server. The server can then request the connected device to confirm 
its identity from time to time to check and ensure that the device is not tampered.

 6. TPM (Trusted Platform Module) is a microcontroller that authenticates the hardware 
of host. It could be thought of as the hardware counterpart of remote attestation. It 
checks if the host is authenticated (correct identity) and attested (trustworthy).

The methods and the solutions detailed above can certainly help to secure device 
and build trust between the device and the user. Some of them are inspired from a report 
by Wind Company [12], which details many more such strategies for end-to- end secu-
rity of IoT devices. However, there is no silver bullet to tackle all vulnerabilities. The 
above suggestions should be kept in mind and implemented as per the requirements of 
the devices. Manufacturers need to make sure that they not only just create a list of 
security solutions that they want in their device and implement them individually but 
also interweave these solutions to create an integrated security solution.

2.3.2  Securing the Transport Layer

Wearable smart devices and other IoT devices collect a lot of sensitive information. 
If the encryption on the device is not strong enough, there is a risk of personal infor-
mation getting into the wrong hands. Also, if the transport layer security is weak, 
then hackers can easily intercept information packets. Securing the transport layer 
means securing device communication. This is done by encrypting the channels so 
that interceptors may not able to make sense of the message in transit. Only the end 
devices must have the capability of decoding messages. As mentioned earlier, most 
of the IoT devices are made with bare minimum architecture, and this is why most 
of these devices have low computational power and cannot support complex encryp-
tion techniques. Designing lightweight cryptographic techniques entails finding the 
optimum trade-off between security, cost, and performance.

In this section, we discuss some lightweight encryption techniques that could be 
implemented to strengthen the transport layer security.

 1. Hummingbird technique [13]: It was motivated by the design of enigma machine 
and was originally created by Engels, Schweitzer, and Smith. It was developed 
with constrained devices in mind and uses a hybrid structure of block and stream 
ciphers. Other lightweight algorithms use either one of the above two mentioned 
cipher structures. The hybrid structure reduces the block size, hence reducing 
power consumption and improving performance. The encryption/decryption 
process is inspired from the enigma machine, which used rotors for decoding. 
Similarly, Hummingbird contains four small block ciphers that are virtual equiv-
alents of the rotor machine, which continuously change their internal states in a 
random way. The research paper [13] provides an in-depth security analysis of 
Hummingbird and the protection it offers against attacks like linear and differen-
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tial cryptanalysis. A better version of this algorithm, the Hummingbird 2, has 
also been covered in detail by Engels D. et al. [14]. In this new algorithm, the 
number of internal states has been increased to 128 bits. Hummingbird algorithm 
is well suited for devices like RFID tags and wireless sensor nodes.

 2. Scalable encryption algorithm (SEA) for small, embedded applications [15]: As 
the name suggests, this algorithm is scalable with respect to text, key, and pro-
cessor size as it takes these specifications as a parameter. It is a low-cost solution, 
targeted at processors with limited instruction sets. The algorithm is denoted as 
SEAn,b where n is the key size and b is the processor (word) size. This makes the 
lightweight solution good for any type of processors. Its simplistic implementa-
tion and adaptability make it a good choice for a wide array of applications. With 
concepts like smart homes and buildings gaining popularity, even small devices 
like switches and bulbs are now connected to a network. The SEA ticks all the 
right boxes for the requirements of such devices. It makes use of a limited set of 
elementary operations like bitwise XOR, AND, OR, and Word Rotation, to 
achieve its purpose. The research paper by Standaert et al. [15] provides an in- 
depth security and performance analysis and outlines its effectiveness against 
attacks like linear and differential cryptanalysis, side attacks, square attacks, and 
interpolation attacks. This algorithm is capable of performing encryption/decryp-
tion in a few milliseconds using minimum memory requirements.

 3. CryptoCop [16]: It is a lightweight and energy-efficient algorithm for wearable 
smart devices. From fitness trackers to smart watches, many options are avail-
able for the users. Since these devices are worn by the users and most of them 
have GPS and tracking capabilities, the data stored on these devices can reveal a 
lot about the user. Hence, it is essential to have good encryption of the device 
data while keeping in mind the energy and resource consumption. Most algo-
rithms use asymmetric encryption, which is computationally expensive and con-
sumes a lot of energy. In addition, most wearable devices use Bluetooth Low 
Energy (BLE) for communication, which has typically small packet size. 
CryptoCop uses symmetric algorithm, which is not just computationally less 
demanding but also uses smaller block sizes. The algorithm uses Advanced 
Encryption Standard (AES) in counter mode and uploads the AES keying mate-
rial to the device only when it is charging. Hence, it is clear that this algorithm is 
optimized for wearable devices. The research paper [16] demonstrates its feasi-
bility with real hardware on an electrocardiogram sensor. It is also resistant to 
eavesdropping and surveillance attacks.

The future is built around sensor networks. From the sensors that regulate our room 
temperature to the sensors that control room lighting and ambience, the functional-
ities are facilitated by a network of sensors. However, if a third party is able to 
control or even access the data of these sensors, it could lead to serious privacy 
violations. SPINS [17] which is security protocols for sensor networks is an inter-
esting solution to the problem. Like other IoT devices, sensor networks do not have 
hardware capable of performing asymmetric encryption techniques. A sensor net-
work also has an added challenge of broadcasting secure data to each node of the 
network that is communicated using radio frequency (RF). These problems are 
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addressed by the two blocks of SPINS: SNEP and μTESLA. SNEP takes care of 
authentication and data freshness, whereas μTESLA provides authenticated broad-
casts in resource-constrained devices. The research paper [17] provides an in-depth 
performance analysis of SPINS and demonstrates it on a prototype sensor network 
with low-power CPUs.

A very improtant application of IoT is the healthcare sector. Wearable medical 
devices (WMDs) such as heart rate and blood pressure monitors are becoming 
increasingly common. Apart from these devices, hospitals and clinics are also get-
ting smarter through the application of connected environments to monitor the 
patients in real time, store patient information, and respond to emergencies. All 
these have tremendously improved the quality of healthcare services and helped in 
providing hassle-free services to the patients. Needless to say, protection of privacy 
and confidentiality of patients is the topmost priority as medical data is very per-
sonal. The elliptic curve cryptography (ECC) in healthcare devices is very effective. 
We discuss now two separate algorithms for each of the cases of wearable health-
care devices and smart healthcare environments:

• Elliptic curve cryptography (ECC) with symmetric algorithm for wearable 
healthcare devices [18]: Most of these devices consist of sensors which are 
attached to the patient’s body and communicate using wireless networks like 
wireless body area networks (WBANs). Figure 2.4 shows an example of WBAN 
in healthcare. Elliptic curve cryptography is an asymmetric encryption tech-

Fig. 2.4 A WBAN example for healthcare
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nique, and using 160-bit key, it provides the same security level as that of an RSA 
system with 1024-bit key offers [18]. Symmetric algorithm is used to encrypt/
decrypt medical data and ECC for managing keying information. Hence, the 
advantages of symmetric and asymmetric encryption techniques are combined to 
alleviate the security issues of WBANs.

• RFID authentication schemes in healthcare environment using elliptic curve 
cryptography [19]: Most connected healthcare environments make use of RFID 
for wireless communication. RFID authentication is one of the critical steps to 
ensure secure communications in the RFID system. ECC provides good security 
even though it uses smaller key size than traditional systems making it a natural 
choice for resource-starved RFID devices. The paper [19] details its working and 
compares various lightweight and heavyweight implementations of ECC.

Security can be added to different layers of a protocol stack. To achieve end-to- 
end security, some devices delegate the application layer security to transport layer 
security. One of such techniques available is lightweight Datagram Transport Layer 
Security (DTLS) implementation in CoAP-based IoT [20]. Traditionally, DTLS 
techniques are heavy and not suitable for use in resource-constrained devices. 
However, this technique provides a lightweight implementation of DTLS, which is 
bound with Constrained Application Protocol (CoAP). It makes use of pre-shared 
key (PSK)-based implementation of DTLS technique to make it suitable for IoT 
application. The research paper [20] also demonstrates the application of this proce-
dure in home automation to control lights, temperature, and humidity sensors.

Apart from algorithms implemented on the device, we can also improve the 
transport layer by distributing the encryption process between device and gateway. 
The research paper [21] sheds light on this approach. IoT devices that are resource 
constrained, i.e., devices with low processing power, memory, and battery life are 
termed as Class-0 IoT devices. It aims at distributing the security scheme by imple-
menting low processing encryption on the device, whereas resource-hungry pro-
cesses are delegated to the gateway. The gateway has sufficient resources to perform 
transport layer security (TLS) techniques to secure the device. This is also demon-
strated in the paper [21] by implementing Advanced Encryption Standard (AES) on 
device to gateway layer.

In this section, we looked at some of the lightweight encryption algorithms avail-
able to secure IoT devices. A study reported in [22] provides literature survey on 
various lightweight encryption algorithms; it also performs in-depth comparisons. 
Algorithms can thus be chosen based on the device requirements.

2.3.3  Cloud Layer Security and Data De-identification

Many cloud servers have very weak encryption standards. Even if encryption is 
available, cloud service providers and architects handle the encryption keys. Various 
steps could be taken to limit the data stored on public cloud servers and also to 
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encrypt it. Developers of device must ensure that all the data being stored is prop-
erly de-identified beforehand. Data, if improperly de-identified, has a risk of 
re-identification.

Attribute-based encryption improves cloud layer security by securing the data 
stored on cloud servers. A third-party auditor could be used to check cloud servers’ 
reliability. In addition, we discuss a few techniques that can be used to de- anonymize 
the data stored on cloud servers, as follows:

 1. The use of attribute-based encryption (ABE) for fine-grained access control is a 
popular technique for securing cloud-based servers. The papers [23, 24] detail 
two different types of approaches of ABE. The first one uses key policy attribute- 
based encryption (KP-ABE), while the second one uses cipher text policy 
attribute- based encryption (CP-ABE) along with hierarchical identity-based 
encryption (HIBE) system. In both the methods, ABE is followed by proxy re- 
encryption and lazy re-encryption. Here the users are given access control on 
their own data. High performance, scalability, and fine-grained access control 
are some of the salient features of these techniques.

 2. A novel way to check the cloud service provider’s reliably is to introduce a third- 
party auditor (TPA) that can audit the data stored in cloud server. In most cases, 
user is not well equipped to understand the difference in security provided by 
various servers. The concept of public auditability allows the user to outsource 
this job to a third party to determine the level of security. The report generated by 
TPA could be used by the user to identify the risks of the cloud server. It also 
helps the cloud service provider to identify vulnerabilities and fix them. As per 
the method provided in the paper [25] by Wang et al., the TPA does not even 
need to request for the local copy of the data. It uses homomorphic authenticator 
to achieve this. There could be concerns regarding TPA learning about the data 
stored and misusing it. This can be avoided by using the homomorphic authenti-
cator with random masking. The research paper [25] also lists various require-
ments that are expected from the TPA and provides a detailed performance 
review of this technique.

 3. As outlined earlier, personal data stored on the cloud layer run into the risk of 
being identified. Data de-identification techniques are employed before sending 
data to the cloud. They can be very useful in protecting sensitive user data like 
medical and location data. The relevant algorithm must be efficient to identify 
and omit some keywords that are frequently used. For example, in case of medi-
cal data, information such as name of the patient, date of birth, etc. must be 
identified and omitted or hidden. For devices, which store information related to 
healthcare, a type of k-anonymity algorithm called Optimal Lattice Anonymization 
(OLA) [26] works efficiently. For location-based services, [27] provides an opti-
mal k-anonymity algorithm that makes use of grid maps and entropy. Figure 2.5 
shows an example of k-anonymity technique.
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2.3.4  Policies and Legislation

IoT devices sense, store, and transfer a huge amount of data. Taken together, the 
range of information collected could easily be in the petabyte range. Analysis per-
formed on such a big data set could reveal many interesting things; and the results 
could be used by companies to provide better services to consumers, by the govern-
ments to get a better understanding of its populace, or by e-commerce sites to under-
stand consumer preferences and display better advertisements. For example, data 
generated from sensors on a smart highway or smart cars could be analyzed to 
reveal traffic congestion patterns, peak traffic hours, and other such factors. These 
data could be used to control the traffic better and help in traffic management. 
However, the matter of concern is the amount of data collected and accessibility to 
this data. A lot of data collected by IoT devices are personal and could be analyzed 
to decode behavioral, mental, and physical aspects of a person. It could also be used 
to know about people’s interest, their location, or their schedule. All this could lead 
to borderline infringement of user privacy. The worrying part is that there are no 
rules and legislations that enforce guidelines on how much data can be collected, 
what legal measures can be taken in case of privacy violation, or even draw clear 
lines on who owns the data collected by these devices.

Though aforementioned organizations such as the FIPPs and HIPAA do exist, 
their regulations have not been updated to deal with the issues that wide-scale use 
of IoT technology has opened up. Most IoT device manufacturers are not covered 
under these acts and are not liable or answerable in case of data breach that breaks 
compliance. The importance of formulating strong legislations for these devices has 
only recently begun that is now catching attention. In January 2015, the Federal 
Trade Commission (FTC) published a staff report on privacy and security in con-
nected environments [28]. Later, in January 2016, it also issued a report titled, Big 

Fig. 2.5 K-anonymity technique example
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Data: A Tool for Inclusion or Exclusion? [29]. It was aimed at big data companies 
that collect user data in various forms; it attempted to educate them on the poten-
tially applicable laws that must be respected when they make use of user data. Also, 
in January 2015, the Food and Drug Administration (FDA) released a document 
called, General Wellness: Policy for Low Risk Devices [30]. It outlined the FDA’s 
policy regarding devices that made “general wellness” claims such as fitness track-
ers, heart rate trackers, etc. It also discussed recommendations for manufacturers to 
better manage data security and privacy risks of these devices.

All these measures provide a good sign that government organizations finally 
understand the need to update their laws regarding user data privacy. However, this 
is just the starting point, and more needs to be done to create clear rules that users 
can rely upon. There is an urgent need to upgrade policies related to data collection 
and data ownership:

 1. Governments need to come in terms with the new kinds of threats posed to secu-
rity by the use of wearables. Strong regulations and policies must be put in place 
to force device manufacturers to uphold certain standards of security to protect 
user information. Also, these policies must be strong enough to embrace manu-
facturers and cloud service providers responsible. In cases where insufficient 
security measures lead to data breach, they must not be able to get away just by 
shifting blames.

 2. Strong data ownership rights must be put in place, and the consumers must be 
informed about what data is collected from the device and where and how it is 
stored. The users must have the power to choose what data collected from them 
are stored on the server, and they must be able to delete them according to their 
convenience.

All these go a long way toward building trust in the IoT devices and IoT environ-
ment. Stricter policies ensure that personal data is not used in an unethical way.

2.3.5  IoT Standards and Device Interoperability

Most IoT devices today are manufactured as stand-alone units that are mostly inca-
pable of communicating with other IoT devices, specifically when the devices are 
from different manufacturers. All these devices use their own coding schemes for 
encryption and protocols for transferring data. Many devices relay information to 
smartphones via gateways, which act as a medium of exchange that translates the 
sensed data to a format that can be understood by the smartphone. However, these 
gateways are also device and manufacturer specific and usually support limited 
devices. This essentially means that the Internet of Things, which aims at connect-
ing various different “things” under a single network is, as of now, divided into 
small network of objects that cannot talk to each other. This is a huge hindrance to 
the ultimate objective what IoT tends to achieve.
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Let us consider an example of smart homes. Suppose a person has an intelligent 
smart home assistant installed that allows the use of voice input to control smart 
lighting system and smart switches and can access the Internet using cellular con-
nection. Also, he has installed a smart television that can be accessed using an appli-
cation on mobile. In addition, he also owns a futuristic refrigerator with many useful 
functionalities. Unfortunately, he has to access these devices separately as they do 
not recognize each other. Now imagine if these devices are built on the same secu-
rity standards. It would open up an entirely new dimension in which the owner 
could use these devices. For example, if he asks the smart assistant to locate the 
nearest grocery store, it could stream the result on the smart TV screen and tell him 
that he would soon run out of milk and eggs! This is one of the simplest examples 
and can be enhanced further as more devices are added. The possibilities that open 
up, as more and more devices become capable of interacting with each other, are 
endless.

To address the problem of device heterogeneity, there is an urgent need for IoT 
standards. Though IoT standards are still in the making, we focus our discussion on 
some of the possible solutions:

• Heterogeneous devices can be connected using a hybrid framework that com-
bines the advantages of Cloud Radio Access Network (Cloud-RAN) and 
software- defined radio (SDR) [31]. SDR-based radio units (SRUs) are capable of 
communicating with devices that use different communication technologies. 
These SRUs can act as gateways that can connect to multiple devices and com-
municate the information to a centralized server under the Cloud-RAN architec-
ture. Hence, only one SRU can be present locally to connect different devices, 
and multiple SRUs can be connected using a common centralized server. 
Figure 2.6 shows an example of Cloud-RAN architecture.

• It is a fact that most users may have no means to judge if a device upholds certain 
standards. This is not the case for other consumer products. For example, indus-
trial products in India come with an ISI marking, which is a mark that certifies 
that the product conforms to the standards set by the Bureau of Indian Standards 
(BIS). Similarly, the International Organization of Standardization (ISO) is a 
body that aims to promote international industrial and commercial standards. 
However, there is no such organization for cybersecurity to certify whether prod-
ucts uphold security standards or not. IoT giants have already begun to realize 
this, and some of them have started working together with the result being popu-
lar standards like ZigBee [32]. The research chapter [33] also provides an insight-
ful look at data security and privacy from an IoT perspective.
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2.4  Conclusion

The IoT is thought of as a concept with immense potential and unlimited applica-
tions. While this is true for most part, there is still a long way to go before this goal 
is truly realized. The biggest obstacle on this path is the security challenges sur-
rounding these devices.

Demonstrations about weak security in connected environments have made con-
sumers aware about the security hazards posed by these devices. Growing concerns 
have made manufacturers take notice, and they have slowly begun to realize the 
importance of putting privacy and security of their devices on top. This trend has 
been reciprocated in the mind-set of law and policy makers. They have begun to 
realize that the need of the hour is to protect the privacy of consumers. Similarly, 
there is growing awareness regarding the issues of device heterogeneity and boons 
of interoperability.

All of this provides a good sign that security in connected environments is on a 
road to recovery. While there is no single framework that can be employed to fix all 

Fig. 2.6 Example of SDR-based heterogeneous Cloud-RAN architecture
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issues, this chapter highlights different techniques that can be taken inspiration 
from. The best method to secure devices may depend on the purpose of the device, 
the environment it is used in, and how much sensitive information it collects. If all 
these factors are kept in mind, the ultimate goal of connecting all kinds of devices 
to the Internet can be achieved, which will change our lifestyle for the better.

2.5  Future Direction

At present, we are still finding ways to secure connected platforms and build trust in 
IoT devices. Manufacturers have to lay a lot more stress on Product Lifecycle 
Management to constantly update device firmware and keep it protected against 
vulnerabilities. Also, algorithms that are more lightweight need to be developed 
specifically for implementation in IoT sphere, keeping in mind its unique require-
ments and wide range of applications. IoT protocols and standards need to be for-
mulated to bring all IoT devices under one big umbrella. Finally, it is also the 
responsibility of the user to be aware of the threats that these devices pose to their 
security and that of people around them. When consumers take their own security 
seriously, manufacturers and governments will increase their efforts to make these 
devices secure.
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Chapter 3
Big Data Challenges for the Internet of Things 
(IoT) Paradigm

Pornpit Wongthongtham, Jaswinder Kaur, Vidyasagar Potdar, 
and Abhishek Das

Abstract Millions of devices equipped with sensors are connected together to 
communicate with each other in order to collect and exchange data. The phenome-
non of daily life objects that are interconnected through a worldwide network is 
known as the Internet of Things (IoT) or Internet of Objects. These sensors from a 
large number of devices or objects simultaneously and continuingly generate a huge 
amount of data, often referred to as Big Data. Handling this vast volume, and differ-
ent varieties, of data imposes significant challenges when time, resources, and pro-
cessing capabilities are constrained. Hence, Big Data analytics become even more 
challenging for data collected via the IoT. In this chapter, we discuss the challenges 
pertaining to Big Data in IoT; these challenges are associated with data manage-
ment, data processing, unstructured data analytics, data visualization, interoperabil-
ity, data semantics, scalability, data fusion, data integration, data quality, and data 
discovery. We present these challenges along with relevant solutions.

3.1  Introduction

The Internet of Things (IoT) paradigm asserts that each individual object in everyday 
life can be equipped with sensors which can acquire useful information about the 
objects and will be on the network in one form or another [1]. Over the past decade, 
an increasing number of objects (e.g., smart devices, cars, intelligent roadways, 
pacemakers and other personal health monitoring units, refrigerator, cattle, smart 
billboards, etc.) have been connected to the Internet, collecting and exchanging data 
without requiring human-to-human or human-to-computer interaction. This network 
infrastructure enables anything and anyone to be connected anytime and anywhere.
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At present, there are about 1.5 billion Internet-enabled PCs and over 1 billion 
Internet-enabled mobile phones [2], and it is expected that 50 to 100 billion smart 
devices will be connected to the Internet by 2020 [3]. According to IDC, the world-
wide IoT market spend will increase from $592 billion in 2014 to $1.3 trillion in 
2019 [4]. Sensors from these devices will simultaneously generate a huge amount 
of data in an automated way. In the future, 40% of all the data in the world will be 
generated by machine-to-machine communication [4].

We are all constrained by time, limited resources, and capability, making it 
impossible to manually handle this vast amount of data. This data continues to 
increase at a rapid pace because embedded sensor devices have steadily been 
increasing with advances in technology. It is the greatest force driving Big Data 
analytics. A comprehensive data analytics model or framework is needed to analyze 
this enormous amount of sophisticated data.

There are three key IoT elements which enable seamless and ubiquitous comput-
ing: (a) hardware, comprising sensors, actuators, and embedded hardware; (b) mid-
dleware, on-demand storage and computing tools for data analytics; and (c) 
presentation, perception of visualization and interpretation tools which can be 
extensively accessed on different platforms and adapted for different applications. 
IoT middleware solutions are gaining more attention in the marketplace as they 
simplify the sensor data by performing data binding, filtering, fusing, reasoning, 
etc. In addition, the variety of IoT applications that are built on top of this middle-
ware poses further challenges. The IoT middleware consists of a mechanism to 
combine high-tech infrastructure with a service-oriented architecture and sensor 
networks to provide access to discordant sensor sources in a disposition- independent 
manner [5]. The IoT middleware needs to assist users to retrieve the data streams 
required for their application. It is evident that data analytics will be critical for IoT 
in this Big Data era. In this chapter, we discuss the challenges associated with Big 
Data in IoT.

The rest of this chapter is organized as follows. Sections 3.2 and 3.3 introduce 
IoT and Big Data, respectively. Sections 3.4, 3.5 and 3.6 explain the challenges fac-
ing IoT Big Data. The challenges include data management issues presented in Sect. 
3.4, data analytics challenges presented in Sect. 3.5, and semantics challenges pre-
sented in Sect. 3.6. Section 3.7 concludes the chapter.

3.2  Internet of Things

The Internet is the most widely adopted technology, which has radically changed 
the way people communicate with each other. The Internet as we know it is a large 
network of interconnected servers that host a huge amount of valuable information. 
However, the Internet is changing rapidly, and it now connects machines, equip-
ment, sensors, actuators, home appliances, surveillance cameras, and numerous 
other objects in our environment. This communication network does not require 
constant human intervention, and this new phenomenon of an interconnected world 
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where everything is connected is referred to as IoT [6]. According to [7], the number 
of physical things that are now connected to the Internet is greater than the world’s 
population. It is estimated that 25 billion devices were connected to the Internet in 
2015, and this number is rising at an alarming rate. It is estimated that by 2020 we 
will have at least 50 billion devices feeding data to the Internet via IoT [8].

3.2.1  Definitions of the Internet of Things (IoT)

The IoT is syntactically comprised of two terms. The first term, “Internet,” focuses 
on the vision which is network oriented; the second term, “Things,” refers to the 
“objects” which are generic and are integrated to form a common framework. 
Hence, IoT is defined as “a worldwide network of interconnected objects uniquely 
addressable, based on standard communication protocols” [9]. Each and every thing 
connected to the Internet has a unique identifier such as MAC that addresses and 
communicates using the TCP/IP protocol. Radio-frequency identifiers (RFID) is a 
good example of the real power of IoT [6].

These “things” or objects interact with each other in order to accomplish a com-
mon goal. For example, smart electric cars such as Tesla have 18 sensors that work 
together automatically. This car can open the doors of a garage before the person 
arrives home; it can control the temperature, and it provides a framework whereby 
the user can design his/her own app and use this app to check the battery status and 
control the speed of the car from anywhere.

IoT is also known as the Internet of Objects; these are daily life objects that are 
interconnected through a network and possess ubiquitous intelligence [10]. IoT 
increases the Internet’s ubiquity, because it integrates the objects so that they can 
communicate with other devices/objects and with humans. Yoo, Henfridsson et al. 
[11] define IoT as the combination of components which are both physical and digi-
tal. This combination results in the development of new products and creates inno-
vative business models. Wortmann and Fluchter [12] mentioned that in IoT, physical 
things are combined with IT in the form of hardware and software, thereby improv-
ing the physical function of the associated things by means of additional IT-based 
services. With the combined IT-based services, the functionality of such things can 
be accessed locally as well as globally via the Internet. For example, home automa-
tion can convert a standard home to a smart home by using IoT devices. In a smart 
home, the homeowner can switch an air conditioner on or off before arriving home 
or switch off the lights after leaving home. The owner can also receive notification 
that an unauthorized person has entered the house and police can be called auto-
matically. Moreover, a light bulb can act as a smart security system. The physical 
function of a bulb is to illuminate a specific area, but this physical function of a bulb 
can be enhanced with IoT. With IoT capability, this bulb can be used to detect the 
presence of a human being and can work as a security system which detects the 
intruder, turns on the flashing mode, and sends a message to the homeowner’s 
smartphone.
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According to Internet Telecommunication, IoT is “a global infrastructure for the 
information society, enabling advanced services by interconnecting things based on 
existing and evolving, interoperable information and communication technologies” 
[12]. Another paradigm of IoT is Cyber-Physical Systems (CPSs) as mentioned by [13].

3.2.2  Cyber-Physical Systems

Cyber-Physical Systems (CPSs) are new generation systems which integrate both 
physical and computational capabilities and can communicate with human beings 
by using various modalities [14]. These are engineered systems which are devel-
oped from the synergy of both physical and cyber components. CPS can be applied 
in medical services, robotics, avionics, etc. [15]. Future innovative technical devel-
opments are possible with CPS because CPSs have the ability to communicate with 
the physical world by means of computation [14].

Lee [16] mentioned that in CPS computational processes, network processes and 
physical processes are integrated. Physical processes are controlled and monitored 
by the embedded computers and networks by using the feedback loops, whereby 
computations are affected by the physical processes and vice versa.

CPS needs both the computing and networking technologies to capture the phys-
ical dynamics as well as the information. CPS requires the interaction between the 
computing, physical systems, control systems, and network systems in order to 
establish the interaction among them. CPS requires new design technologies. In 
CPS, software is embedded in physical devices whose principal goal is not only 
computation but also to combine computation with physical processes [17]. 
Autopilots are a good example of CPS. Autopilots were initially used in missiles but 
were later adopted in aircrafts. Autopilots include sensors and processors that are 
used to assist the human operator in controlling the aircraft. The airplane has high 
nonlinear dynamics, so it requires more complex and advanced technologies such as 
neural network and fuzzy logic, which ensures smooth trajectory navigation [18].

Nowadays, the terms “IoT” and “CPSs” are used interchangeably, although there 
are several differences between them. According to [17], CPSs and the IoT are 
almost similar because both use the same architecture. However, a CPS has several 
characteristics that distinguish it from IoT:

• In a CPS, every physical device has cyber capability. Every device has embedded 
software and system resources such as network bandwidth, and each device has 
limited system resources.

• CPSs require a greater integration of computation and physical processes com-
pared to the IoT.

• CPSs are distributed systems which are networked by means of various network 
types such as wireless network, wired network, Bluetooth, GSM, and others.

• In a CPS, every component has different spatial and time granularity. Spatiality 
and time capabilities are the strictest constraints of CPS.
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• A CPS requires very high degree of automation. For this purpose, feedback tech-
nologies are used in these systems. The advanced feedback technologies estab-
lish easy interaction between man and machine.

• Because they are complex, large-scale systems, CPSs are reliable and secure and 
have adaptive capabilities.

3.2.3  IoT Architecture

Said and Masud [6] suggest two main architectures for IoT: a three-layered archi-
tecture and a five-layered architecture. Other than these, several special-purpose 
architectures tailored for specific contexts are also found in the literature.

3.2.3.1  Three-Layered Architecture

The earliest proposed architecture for IoT was a three-layered architecture compris-
ing a perception layer, network layer, and application layer.

The perception layer is used to identify objects in the IoT system [19]. This layer 
collects information about every object, and for this purpose, the perception layer 
uses the data gathered from RFID tags, cameras, sensors, etc. Sensors collect infor-
mation about temperature, motion, acceleration, humidity in the air, etc., and the 
perception layer passes this information to the network layer [20].

The network layer is the main component of the three-layered IoT architecture 
[19]. The function of this layer is to securely transmit to the application layer the 
information collected by the perception layer, using the software and hardware 
instruments of the Internet. The medium of transmission could be wired or wireless 
such as Wi-Fi, Bluetooth, 3G, etc. The network layer also contains the information 
and management centers [20].

The application layer connects the IoT’s social needs with industrial technology. 
It acts as a middle tier linking the industrial technology with the needs of humans. 
The applications which can be developed by IoT are smart health, smart home, 
smart farming, intelligent transportation, etc. [6].

3.2.3.2  Five-Layered Architecture

The three-layered architecture became inadequate with the rapid development of 
IoT; hence, a five-layered architecture was developed [20]. Currently, a TCP/IP pro-
tocol stack is used to facilitate communication between network hosts. Billions of 
devices are connected within the IoT system, creating a huge amount of traffic and 
requiring larger storage space. Hence, the next-generation architecture must be able 
to provide security and privacy for such a huge amount of data and should be scalable 
and interoperable [19]. So, for this purpose, five-layered architecture was proposed.
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The first layer is known as the business layer. The main function of this layer is 
to define the IoT applications and is also responsible for the management of IoT 
applications and services. The business layer ensures data privacy and creates busi-
ness models and graphs according to the information acquired from the application 
layer. Based on these generated models and graphs, one can predict future actions 
and goals.

The second layer is the application layer, the purpose of which is to determine 
the types of applications in IoT. This layer develops intelligent, safe, and authenti-
cated applications of IoT. It works similarly to the application layer of the three- 
layered architecture. IoT can develop many applications such as smart health, smart 
home, smart farming, intelligent transportation, etc.

The third layer is the processing layer which handles the information collected 
by the perception layer. This layer is responsible for storing and analyzing the infor-
mation. Functions of this layer are very critical and difficult, because the perception 
layer collects huge amounts of data about system objects. So, to handle such a huge 
amount of information, this layer uses techniques such as database software, intel-
ligent processing, and cloud computing. This layer is linked to the database, and it 
stores in the database the information received from the transport layer. This layer 
performs some computations on the information and makes decisions 
automatically.

The next layer is the transport layer. It functions like the network layer of the 
three-layered architecture. This layer is also known as the transmission layer. The 
transport layer is responsible for receiving the information from the perception 
layer and transmitting it to the processing layer and vice versa. This layer uses many 
network technologies such as Wi-Fi, Bluetooth, etc. This layer is responsible for the 
secure transmission of data between the perception layer and the processing layer.

The last, the fifth, layer is the perception layer. It works similarly to the percep-
tion layer of the three-layered architecture. This layer collects information about 
every object in the IoT system such as the temperature and location of each object. 
This layer transmits collected data into signals. The layer uses technologies such as 
RFID, GPRS, etc. for the collection of data.

3.3  Big Data

As mentioned in [21], in the last 20 years or so, there has been a great increase in 
the volume of data in every field. A report from the International Data Corporation 
(IDC) in 2011 stated that 1.8ZB data was copied and found in the world, and within 
5 years, the amount of data had increased ninefold [22]. For example, if we consider 
social media as a major source of data, it is anticipated that by mid-2019, there will 
be nearly 65 million Twitter tweets per day and around 190 million users [23]. So, 
given the colossal amount of data, “Big Data” is the term used to describe huge 
datasets. These datasets are very difficult to manage, acquire, perceive, and process 
by means of traditional tools in real-time environments.
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According to [24], Big Data is defined as the data which is so huge that it cannot 
be captured, processed, and managed using traditional techniques. Big Data includes 
massive amounts of structured, unstructured, and semi-structured data, which 
require more real-time analysis than do the traditional datasets. Moreover, Big Data 
provides the opportunity to explore new values and to acquire an in-depth under-
standing of data.

Nowadays, because of its high potential, companies and government agencies 
are becoming more interested in Big Data and have undertaken major research on 
Big Data and its applications [21]. Big Data is relatively new, although the term has 
been around for a long time and has appeared in many scientific papers [25]. Big 
Data is not only about the volume of data; it has many other features apart from size. 
In the next section, we present various definitions of Big Data.

3.3.1  Definitions and Characteristics of Big Data

According to [26], Big Data consists of three Vs: volume, velocity, and variety. 
Volume indicates that the data generated by the Internet is very high in volume 
compared to that of earlier years. Velocity refers to the speed of data generation; i.e., 
systems generate data at a very high speed compared to the speed of traditional 
systems. Variety refers to the various forms of data; that is, data is present in many 
forms on the Internet. These three Vs were originally suggested by Gartner for 
describing Big Data elements. Gantz and Reinsel [22] added a fourth V to the char-
acteristics of Big Data: value. The fourth characteristic is highly accepted because 
it defines the actual meaning and requirement of Big Data. Chen, Mao, and Liu [21] 
added a fifth V: veracity. Hence, Big Data analytics is required to disclose hidden 
data (or gather actionable insights) from very huge datasets, which are complex, 
diverse, and very big. The main characteristics of Big Data are described below, in 
more detail.

3.3.1.1  Volume

Volume indicates the data magnitude and the huge amount of different kinds of data 
which are generated by various sources, and this data is continuously increasing 
[27]. The size of Big Data is in terabytes and petabytes. IBM conducted a survey of 
1144 respondents in mid-2012 and found that only half of the respondents believed 
that a Big Data dataset exceeded one terabyte [28]. One terabyte of storage is equiv-
alent to 1500 CDs, which can store around 16 million photographs. According to 
[29], in one second, Facebook processes one million photographs, and it stores 
260 billion photographs in 20 petabytes of storage space. So, one can only imagine 
the volume of data that is being processed, managed, stored, and analyzed. The 
volume of data needs to be measured in terabytes or petabytes, because huge 
amounts of data are generated by different sources such as sensors. Hence, it is 
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difficult, if not impossible, to manage such a huge amount of data using traditional 
database techniques [30].

As an example, smart traffic management systems are one of the developments 
of IoT. Nowadays, because of affordable car prices, the number of cars on the road 
has increased significantly leading to traffic congestion. To manage congestion, 
traffic management systems are connected to the digital road map of the city, and 
traffic displays are installed within cities to guide drivers. For traffic management, 
sensors are connected to the traffic lights, and these sensors send information to a 
central server about the number of vehicles. The analytical software at central loca-
tion receives real-time data from sensors, traffic lights, and digital road maps. When 
the number of vehicles on a road exceeds the total capacity, traffic screens advise 
drivers to take a detour 1 km before the signal, which reduces both the travel time 
and the fuel consumption. This is possible because a large amount of sensor data 
from road sensors is sent to a central management system for real-time analysis. 
However, such large datasets cannot be managed using traditional database tech-
niques and therefore require Big Data analytics approaches. The analysis of such 
large datasets can reveal hidden patterns and information which are then used to 
improve the traffic management systems.

3.3.1.2  Variety

Variety refers to the heterogeneous nature of Big Data such as data that is collected 
by different types of sources such as sensors, social networks, etc. The collected 
data could be of any type such as audio, video, text, or data logs, and it could be 
structured, semi-structured, or unstructured. Structured data is data which is stored 
in tabular form in spreadsheets or in a relational database. The data which is not 
organized in a structured way is called unstructured data, such as text in the form of 
paragraphs on the Internet. Semi-structured data is the data whose formats lie 
between structured and unstructured data. The format of semi-structured data does 
not follow strict standards. An extensible markup language, XML, which is used to 
exchange data on Internet, is an example of semi-structured data. XML documents 
have data tags, which are readable by machines [27].

The data which are generated by mobile phones, such as game data, text mes-
sages, and blogs, are mostly unstructured [31]. For example, in a smart traffic man-
agement system, data from different sources such as sensors, traffic lights, and 
digital road map are analyzed for better traffic management. Every source will pro-
duce data in a different form; these different types of data presentations are man-
aged and analyzed in a central location for better decision-making.
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3.3.1.3  Velocity

Velocity indicates the speed at which the data are generated and analyzed. With the 
development of digital devices such as sensors and smartphones, an extraordinary 
amount of data is created which requires real-time analytics. Data generated through 
sensors are collected and analyzed in real time [32]. Retailers such as Amazon are 
also generating data at very high speeds. For example, Wal-mart processes approxi-
mately 1 million transactions per hour [33]. Data generated through mobile phones 
help to produce personalized offers for customers. Another example of the velocity 
of data is the data generated by traffic sensors. These sensors gather and transfer 
information in real time, because the data collected by these sensors are useful only 
if they give information to the driver before she/he reaches the congested area. 
Hence, data analysis needs to be done at an equally fast speed because data have 
time value; i.e., after a specific time, the data will no longer be useful.

3.3.1.4  Value

This is the most important characteristic of Big Data. It refers to the exploration of 
data to discover hidden patterns and values of large datasets of different types by 
using different techniques [21]. Very valuable data can be acquired by analyzing a 
huge amount of Big Data. It also has the potential to provide cost-beneficial criteria. 
For example, sensors in the IoT system of a smart traffic management system send 
huge amounts of data to a central control system, where the data are processed and 
analyzed. Data have value only if they can assist in predicting the future and current 
traffic conditions of traffic lights.

3.3.1.5  Veracity

Veracity refers to the accuracy, reliability, and truthfulness of data, which means 
that the data are noise-free and nonredundant and can therefore be confidently used 
for decision-making and for future predictions [34]. Achieving veracity of data is 
very difficult because data are produced by different sources.

3.3.2  Big Data Analytics

Big Data has demonstrated its great potential to transform decision-making in the 
business realm. Efficient and effective processes are needed to turn the high volume 
of rapidly generated and diverse data into significant information that can inform 
decision-making. Big Data analytics are the techniques used to procure and analyze 
an intelligence acquired from Big Data. There are four types of analytics which are 
presented here.
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3.3.2.1  Descriptive Analytics

Descriptive analytics are used to diagnose what has happened or is happening [35]. 
These analytics are applied to categorize, classify, and consolidate massive amounts 
of historical data in order to understand what the data imply. They include the pre-
sentation of raw data in summarized or query form to manage otherwise elusive 
information. This sort of analysis is mainly concerned with processing the very 
diverse collected data by monitoring data from device sensors and databases to 
detect patterns and trends in such data [35]. Descriptive analytics can produce data 
visualization in the form of tables, drawings, maps, interactive dashboards, charts 
(fever, pie, bar, etc.), etc. to summarize and report the trends.

3.3.2.2  Diagnostic Analytics

Diagnostic analytics are applied in order to determine why a phenomenon is occur-
ring or has occurred and to analyze the factors leading to this occurrence which may 
include the inputs and operational policies [27]. Diagnostic analytics can benefit 
from sensitivity analysis using a simulation model of the system that mimics the 
current operation.

3.3.2.3  Predictive Analytics

Predictive analytics harnesses sophisticated machine learning and data mining tech-
niques to examine the historical data in an effort to predict the upcoming future. 
Predictive analytics is capable to detect hidden patterns from data in large scale and 
cluster these data into segments which share common characteristics. Predictive 
analytics are used to estimate efficiency based on planned inputs. They can be 
applied to all domains ranging from weather forecasting and market volatility pre-
dictions to predictions of customers’ next moves based on their spending and even 
on what they tweet [27]. It also has applications in other domains such as health-
care, education, marketing, supply chain logistics, etc. In essence, predictive analyt-
ics explore and interpret patterns in order to find relationships among the data. 
Predictive analytics use simulation models to predict a future occurrence using a set 
of inputs and “what-if” scenarios.

3.3.2.4  Prescriptive Analytics

Prescriptive analytics are concerned with how we can make it happen and what the 
consequences will be [28]. Prescriptive analytics are used to identify the policies 
and inputs that will lead to a desired outcome and may include identifying changes 
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in input parameters and policies that will reduce the cycle time and increase through-
put in order to reach the desired levels. Prescriptive analytics are intended to provide 
the optimal solution(s) to an existing problem through the use of optimization and 
simulation techniques. This significantly helps decision-makers to select the best 
option.

3.4  Management Challenges of Internet of Things Big Data

In this section, we discuss the challenges of managing IoT data, including data and 
process challenges.

3.4.1  Data Challenges

Challenges associated with Big Data characteristics are discussed below.

3.4.1.1  Massive Amount of Data Collected

According to [6], the main problem is related to the huge amount of information 
which is collected through RFID. IoT systems may have millions of devices. Every 
object in the IoT generates information about itself. This generated information 
must be gathered and amounts to a massive quantity of data, producing problems of 
transmission, storage, and processing.

The transmission issue relates to the necessity of transferring all the gathered 
information in real time, which is very difficult because the bandwidth which is 
required to transfer that information might not be available at that time. Another 
problem is related to the storage of information because a large amount of space is 
required for storage and backup. The last issue is the processing problem. In order 
to determine the actions that must be taken, the information about things must be 
handled by web applications, and information must be handled in real time [36].

The volume of data is increasing day by day. As mentioned in [30], 80,000 pet-
abytes of data were stored across the world in 2000, and this is predicted to rise to 
35 zettabytes by 2020. In today’s world, many objects and/or activities are tracked 
and recorded, such as environmental data, medical data, industrial data, etc. 
Information is even recorded for every event; for example, speed cameras store 
information about speed limit breaches, etc. What we observe nowadays is that mas-
sive amounts of data are being stored, but the processing of such huge datasets is 
becoming difficult; hence, the percentage of processed data is decreasing, resulting 
in blind zones [37].
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3.4.1.2  Various Forms of Data Collected

The data which comes from sensors are sometimes combined with other unstruc-
tured data, so there is a strong relationship between sensor and other unstructured 
data. So different forms of data such as structured, semi-structured, and unstruc-
tured are collected and stored by Big Data. Of the massive amounts of data that are 
collected, only 20% is processed; the remaining 80% cannot be processed and ana-
lyzed using traditional techniques. Hence, most of the collected data are not useful 
for decision-making [30]. In addition, there needs to be a technique which can 
effectively combine structured data with unstructured images, text, or data [38].

3.4.1.3  Data Transmission Speed

The transmission speed of data on the Internet is also known as velocity. In order to 
explore and acquire some insight about the data, this high-speed data needs to be 
analyzed in real time. The current software applications can generate data streams 
at very high speeds which can be very difficult to analyze in real time [39]. This is 
still a challenge for Big Data. For example, in 1999, the data warehouse of Walmart 
could store data up to 1000 terabytes, but in 2012 it had increased to 2.5 petabytes 
of data [40]. This shows a rapid increase in data accessed through the sensors and 
presents new challenges regarding the storage processing and analysis of such high- 
speed data in real time.

3.4.1.4  Time Series for Data Analysis

Generally, in the case of sensors, some events are captured at a specific point in time. 
The data captured by specific events or at specific times are sometimes useless. 
However, if something serious happens, it must be recorded and addressed. As a 
starting point, it is good to use a static threshold to analyze the datasets, gathered at 
particular time intervals. Most technical companies find this difficult to handle [38].

3.4.1.5  Security and Privacy

In the IoT, data are transferred between objects using a wireless medium; therefore, 
it becomes critical to ensure the privacy and security of information. There could be 
a number of attacks such as physical attacks or wireless information attacks, which 
can affect the security and authenticity of the transmitted information. The attacker 
can attack the IoT devices physically or steal the information during transmission. 
Most of the IoT devices do not accept security packages, which leads to low 
self-defense.

Privacy means to ensure three things: firstly who collects the personal informa-
tion, secondly how this information is collected, and lastly the time when the infor-
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mation is gathered. Moreover, the acquired personal information must be used by an 
authorized person and should be stored on an authorized server, and only an autho-
rized client should be able to access the information [41].

3.4.2  Process Challenges

Challenges relating to the processing of Big Data are discussed below.

3.4.2.1  Selective Data Acquisition

In today’s world, data acquired using sensors and other devices are in petabytes. 
However, not all collected data are important, so data must be filtered and com-
pressed. These filters decide the data that should be collected and those that should 
be discarded. For example, if all the sensors except one are giving readings within 
an acceptable range, then it is possible that that sensor is either faulty or something 
has gone wrong in that sensing area, which should be investigated. Therefore, the 
task of designing a smart filter to make such decisions in real time presents a signifi-
cant challenge [41].

3.4.2.2  Data Extraction

The gathered information is mostly in different formats. For instance, a health 
record can comprise MRI data, prescriptions, medical reports, x-ray images, etc., all 
of which information is in different formats. In order for this information to be used 
effectively, the data must be transformed into a single structured format. Therefore, 
a new extraction process is needed that can extract the required data from the source 
and transform it into a structured format suitable for analysis. The correct design 
and maintenance of this extraction process is a big challenge [41].

3.4.2.3  Data Heterogeneity

Data gathered from diverse sources are heterogeneous in nature; hence, data pro-
cessing is not a straightforward process because finding, identifying, and under-
standing information are difficult when the data sources cannot be integrated 
seamlessly. When data are heterogeneous, analysis becomes difficult because the 
data have different structures and different semantics. Thus, the integration of het-
erogeneous data for processing in real time presents a major challenge. New data 
mapping and data integration systems need to be designed to ensure seamless inte-
gration of data from heterogeneous sources.
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3.4.2.4  Nature of Big Data

Big Data is unreliable, dynamic, heterogeneous, noisy, and interconnected [42]. 
Sometimes, noisy data is more useful than small datasets because repeated patterns 
can be extracted from general statistics. Hidden information can also be revealed 
through interrelation analysis [30]. Redundant data can sometimes be useful in find-
ing missing data and can also be analyzed to find unreliable relationships and to 
discover hidden models [43].

3.5  Analytics Challenges of the IoT Big Data

In this section, we discuss several challenges associated with IoT data analytics. 
These challenges are related to unstructured data analytics (i.e., text analytics, audio 
analytics, video analytics, and social media analytics) and visualization 
challenges.

3.5.1  Analytics Challenges over Unstructured Data

The analysis of unstructured data such as text, audio, video, and social media is dif-
ficult. Text analytics are those procedures that extract information from textual data. 
Some examples of textual data are feeds from social networks like Facebook, 
Twitter, etc. and online forums, blogs, emails, white papers and other documents, 
etc. It involves statistical analysis, natural language processing, and deep learning. 
Transforming large volumes of randomly generated text into meaningful abstracts, 
which support cue-based decision-making, is challenging. Apple’s Siri and IBM’s 
Watson are examples of commercial question answering systems which have been 
implemented in various domains like healthcare, education, finance, marketing, and 
banking, and these systems rely on complex natural language processing, informa-
tion retrieval, and knowledge-based approaches [28].

Audio analytics refer to processes that analyze and extract information from raw 
audio data. It is also known as speech analytics. Business process outsourcing 
(BPO) uses audio analytics for the effective analysis of recorded calls, which in turn 
helps to improve customer experience, appraise agent performance, elevate sales 
turnover rates, cue into customer behavior, identify service problems, and monitor 
compliance with security and privacy policies, among other tasks [27]. Audio ana-
lytics systems are designed to scrutinize a live call, forecast recommendations based 
on customers’ past interactions, and provide feedback to BPO agents in real time.

Video analytics are those procedures that monitor, analyze, and extract meaning-
ful information from raw video streams. The increased ubiquity of CCTV cameras 
and video sharing websites is leading to the proliferation of computerized video 
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analysis. However, a key challenge is the enormity of the video data. Big Data ana-
lytics overcomes the need for manual processing to automatically scrutinize and 
derive intelligence from millions of hours of streaming video. In modern times, 
video analytics have been applied in automated surveillance systems, in order to 
detect trespassing in restricted zones, identify unknown objects, and recognize spy-
ing or suspicious activities. On detection of a threat, an automated alarm goes off to 
notify the security personnel in real time. In retail outlets, data generated by CCTV 
cameras may provide business intelligence to discover the demographics, choices, 
behaviors, buying patterns, etc. of consumers [27].

Social media analytics are the processes that analyze and extract meaningful 
information from social media channels such as Facebook, Twitter, LinkedIn, 
Instagram, Wikipedia, wikiHow, YouTube, ResearchGate, Ask.com, etc. Social 
media analytics is a relatively new area. The challenges of the modern social analyt-
ics are its data-centric nature and its research which is interdisciplinary and may 
include the domains of psychology, sociology, computer science, mathematics, eco-
nomics, and statistics. The primary application of social media analytics has been in 
marketing and business management. Content generated by users (e.g., photos, vid-
eos, emotions, thoughts, etc.) and the relationships and synergy between the net-
work entities (e.g., people, businesses, and merchandise) are the different sources of 
information in social media.

3.5.2  Visualization Challenges

Visualization helps to improve the human cognitive process by quickly identifying 
interesting and significant events and patterns in collected data [44–47]. Some other 
benefits of visualization include better understanding of large datasets, quick recog-
nition of errors and outliers in datasets, facilitation of hypothesis formation from 
data, etc. [48]. A wide range of studies on visualization have been carried out, pro-
posing techniques and methods to facilitate the process in order to obtain insights 
from data; some of these techniques include visualization of unstructured temporal 
data with a parallel rendering algorithm [49], taxonomies of interaction techniques 
[50], the focus-on-context technique [51], tree maps for visualizing hierarchical 
data structure while making use of all of the available space [52], and artificial real-
ity in visualization [53].

The total amount of data generated is expected to experience a significant growth. 
However, approximately 3% of the collected data was tagged, and approximately 
0.5% of the world’s digital data was analyzed [54]. Approaches are needed to repre-
sent data in a more intuitive way to improve the understanding of data and provide 
adequate support for decision-making. Visualization is expected to assist in tackling 
some of these challenges. Visualization challenges include its applicability for a 
large volume of data, the possibility of visualization of data being presented in dif-
ferent data formats, speed, and effectiveness of data presentation.
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3.6  Semantics Challenges of the IoT Big Data

In this section, we present challenges related to IoT data semantics. These chal-
lenges are associated with data interoperability, data semantics, data scalability, 
data fusion, data integration, data quality and trustworthiness, and data discovery.

3.6.1  Data Interoperability Challenges

To make the data interoperable, semantic description of and an ontology for the data 
are required. Ontologies describe formally shared conceptualizations of a domain of 
interest [55]. Solodovnik [56] described the concept of ontology from its philo-
sophical origins to its adoption within the IT field as follows: Philosophically, 
ontology is a systematic explanation of being that describes the features of Reality. 
Nowadays Ontology is proliferating in organizing Knowledge of different domains 
managed by advanced computer tools. Ontology qualifies and relates semantic cat-
egories, dragging, however, the idea of what, since the seventeenth century, was a 
way to organize and classify objects in the world. Ontology maximizes the reusabil-
ity and interoperability of concepts, capturing new Knowledge within the most 
granular levels of information representation. Ontology is subjected to a continuous 
process of exploration, formation of hypothesis, testing and review.

Data will be interoperable for users, who use the same ontology. In most cases, 
ontology and semantic description are defined only for a specific project, but for 
achieving global semantic interoperability, a common definition of ontology and 
semantic description framework must be adopted. For this reason, the ontologies 
must be reusable by a large number of applications. The sharing of the ontologies of 
current and previous applications is an effective means of achieving semantic 
interoperability on a global level.

There are millions of heterogeneous devices in our environment. These heteroge-
neous devices must be connected in such a way that they can communicate easily. 
We need semantic interoperability which enables all the stakeholders to interpret 
and access the data from these heterogeneous devices without any issue. Within the 
IoT, objects/things are required to exchange data with other things and users on the 
Internet. This data must be processed and interpreted by machines in such a way 
that information communication can be automated in the IoT. Data semantic anno-
tation provides information that is machine interoperable, and this information can 
reveal the source of data, relationship of data with surroundings, provider of data, 
quality of data, and description of technical and nontechnical terms [57]. Therefore, 
the accessing and processing of data from a number of heterogeneous devices are 
going to become increasingly challenging in the years to come.

P. Wongthongtham et al.



57

3.6.2  Data Semantics Challenges

Millions of heterogeneous devices are connected to different types of sensors in 
order to collect real-world data and to communicate with other devices. Interoperable 
service-oriented technologies are intended to share the real-world data among these 
heterogeneous devices to integrate and fuse these semantic data [58]. Data seman-
tics is one of the major elements of data analysis. It is a challenging task to deal with 
different data structures and information types and to analyze the data as the struc-
ture of information is very complex. Also, the system does not have adequate 
knowledge enabling it to describe fully the semantic meaning of the analyzed infor-
mation. Computer cognitive resonance techniques have been proposed by [59], 
which can solve the problem by using a cognitive information system that uses 
features extracted from records and knowledge in the database. It is quite conducive 
to the analysis of the semantic data of different information records. The integration 
of various heterogeneous collections of data has become a colossal issue as the 
existing data sources are very sparse and incomplete which makes it an onerous task 
to find a logical connection between the data.

3.6.3  Data Scalability Challenges

It is challenging for data engineers to create domain knowledge models and seman-
tic annotation frameworks which can describe a huge number of devices in the 
IoT.  Domain knowledge must be associated with semantic descriptions of data 
because IoT data can refer to separate phenomena. In many applications, to define 
IoT data’s spatial aspects, linked open data (an approach that interconnects different 
resources of IoT) are used as domain knowledge. However, linked sensor data is 
mostly inconsistent and contains numerous errors. As a solution for this problem, 
most of the applications design and maintain their own domain knowledge. However, 
this limits their interoperability. Another big challenge concerns granularity descrip-
tion; if the terms and concepts are very specific, then the domain knowledge is very 
extensive. The semantic web community has done a great deal of work in develop-
ing an efficient technique for storing and querying large semantic data in a distrib-
uted environment. However, the challenges in handling semantic data are the scale 
of data developed by IoT resources, the changing status of resources and data, and 
the volatility of the IoT environment. Research should address these issues and 
develop solutions to define linked IoT data which can analyze the links between the 
resources, and semantic repositories must be developed which can access and query 
the sensory data [57].
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3.6.4  Data Fusion Challenges

Data fusion is used as a means of improving the quality of the data. Data fusion 
focuses on the computation of structured and comparable semantic data in order to 
obtain appropriate decisions. Semantic data fusion is challenging as data are 
acquired from multiple sensors, and different types of algorithms are used to 
improve the quality and accuracy of the data. Data fusion in the IoT, based on such 
multi-sensor data, produces new information. Information fusion is the major part 
of the information and comprises of several theories, techniques, and algorithms. It 
can improve the accuracy and produce more accurate results as the data is produced 
from multiple sensors and cognate information which is obtained from the affiliated 
databases. The major function of information fusion is to integrate diverse types of 
semantic data, without which the related data and information cannot be integrated, 
because it is impossible to process information fusion computation using a variety 
of algorithms as heterogeneous data cannot be correlated.

3.6.5  Data Integration Challenges

Mostly, IoT data are generated from sensor devices, humans, or a physical entity. To 
create multiple environment abstraction, this data can be merged with other data. 
This data can be combined with the processing chain in an application which already 
exists, and this data can support situation awareness. It is necessary that different 
types of data be combined seamlessly [60]. Semantic description assists this combi-
nation process by facilitating interoperability among different sources of data. 
However, to enable IoT data integration, the mapping and analysis of different 
semantic description models are required.

The combination of appropriate data that reside in a huge number of data sources 
which are heterogeneous in nature may conflict in terms of value and structure. This 
type of data integration allows the user to have a unique view of the data. Semantic 
technology is the fundamental technology of data integration. Data integration sys-
tems are commonly defined as a triple GSM, where G is the global schema, S is the 
discordant set of source schemas, and M is a mapping that maps queries between the 
source and the global schemas. For each of G and S, their respective relations are 
defined in languages which consist of symbols. In this way, huge amounts of linked 
data are transformed from the raw IoT data. Using the basic idea of data integration, 
different models at schema level are merged together when users need an integra-
tion of the relevant heterogeneous data. As a result, the data at the instance level are 
presented in a unified view to achieve data integration. By means of mapping, dif-
ferent models at schema level can be merged. These mappings are obtained in sev-
eral ways. Predefined mapping is the first method of mapping which may produce 
highly accurate data, but is not efficient. The second method is based on mapping 
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which is determined with the help of computation by following several principles 
such as the linked open data cloud. Schema level mapping is one of the main func-
tions of integrating data.

3.6.6  Data Quality and Trustworthiness Challenges

Sensor devices generate IoT data which have errors and quality issues. Quality 
means that data must be complete and accurate and must be available when required. 
The quality of data collected through sensors can change over time. For example, 
this occurs if there is any environmental change, due to any faulty device or due to 
any error in the settings of device. It is not possible to avoid inaccuracy in IoT data. 
To retrieve and process quality data, readings from IoT devices need to be detected 
and filtered, in addition to having semantic descriptions of the attributes of quality. 
This could also assist with error detection. Another main issue is trust, especially 
when data are generated by many different sources. Trustworthiness of data and 
sources can be achieved by identifying the data provider and verifying data accu-
racy and reliability, along with the semantics which describe the quality and trust 
attributes of sources and providers. Although semantics can be used to define trust 
and reliability attributes, several major issues still need to be addressed such as the 
development of a trust model, feedback, and the development of a verification 
mechanism [57].

3.6.7  Data Discovery Challenges

The efficient handling of data and storage is becoming more difficult with time as 
the volume of data and semantic description is increasing day by day. Sensor data 
must be stored with semantic descriptions, and this data can be stored temporarily 
or for a lengthy period. The main challenges include designing and developing 
repositories, publishing the semantic data, accessing the semantic data in distributed 
environments, and developing effective indexing and discovery mechanisms. To 
address these issues, an effective mechanism for information indexing, search, 
access, and query is required. Such mechanism could be used for the discovery of 
relevant data from many sources, real-time query and aggregation of multiple data 
streams, description of various events and data which are generated by many 
sources, and data discovery when semantic data is distributed among multiple 
repositories. Cloud computing is a good technical approach which can overcome 
some of these issues, but in order to handle, process, and maintain data, the solution 
must be scalable and efficient; it is not sufficient to simply develop a centralized and 
non-scalable solution and put it in the cloud [57].
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3.7  Conclusion

New properties are emerging in IoT with every passing day. Inter-conceivable 
service- oriented technologies are imperative for sharing real-world data among dis-
cordant devices to integrate and fuse multisource IoT data. The IoT can offer only 
trivial and insignificant benefits if it cannot integrate and incorporate useful infor-
mation from the data generated by multiple interconnected devices. This is where 
Big Data analytics plays a critical role and bring out the value from the information 
and data gathered by IoT devices. Hence, research in the field of Big Data analytics 
and IoT is becoming important as it has diverse application areas, especially in the 
context of smart cities. This chapter introduced and described number of challenges 
at the intersection of IoT and Big Data to provide a holistic view on how to manage 
these challenges effectively. Managing such large datasets poses substantial diffi-
culties under computing and time constraints. We elaborated the challenges associ-
ated with data management (such as size and forms of data, time series analysis, 
security, and privacy), data processing (such as data acquisition, extraction, and 
heterogeneity), unstructured data analytics, data visualization, and data semantics 
(such as interoperability, data fusion, data integration, data quality, and data discov-
ery). We then described the latest solutions to address these upcoming challenges to 
provide guidance for future research in this field. Overall, this chapter will guide 
researchers by providing the most up-to-date information on challenges and solu-
tions at the intersection of IoT and Big Data.
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Chapter 4
Using Cloud Computing to Address 
Challenges Raised by the Internet of Things

Marinela Mircea, Marian Stoica, and Bogdan Ghilic-Micu

Abstract The growing number of connected smart devices and the expansion of 
data storage capacities and data analytics make the fabric of the global interconnec-
tion of the manifold universe of human existence. On top of that, the premise of this 
type of global network of technology infrastructure enables the development of 
efficient and dynamic enterprise services. The Internet of Things (IoT) intercon-
nects real-world objects through a large variety of technologies, devices, and proto-
cols. Besides its benefits, the IoT is faced with problems and challenges related to 
scalability, interoperability, reliability, efficiency, availability, storage, and security 
(known as the Big 7 of IoT), which experts try to overcome with various solutions. 
This chapter addresses one of the solutions, namely, Cloud Computing. It dwells on 
the seven challenges in IoT and the extent to which Cloud Computing can address 
them (the Big 7 of IoT). It is an analytic approach that focuses on the new paradigms 
emerging from coupling Cloud and IoT together, which has resulted in the Cloud of 
Things or CloudIoT.

4.1  Introduction

History credits Johannes Gutenberg with the invention of the printing press 
562 years ago, though the movable type first originated in China in the twelfth cen-
tury. We cannot say the same about the Internet, which has no single recognized 
parent, but we can say for sure that the development of the Internet has influenced 
mankind as least as much as the printing press, if only for the field of information 
and the art of solving codes. It only took a small technology-enabled step to take us 
in the realm of the Internet of Things or IoT for short. From an economic angle, the 
IoT is by far the biggest business ever in electronic communication devices. 
Moreover, it is the founding stone of a digital industrial world, the successor of the 
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information and knowledge society. Just like any other element of novelty, the IoT 
comes with a host of advantages but also challenges that experts are trying to 
overcome through various solutions.

Cloud Computing comes with large storage capacities and data processing appli-
cations and provides on-demand tailored services. In the last 10 years, however, 
Cloud technology has been “troubling the waters” of enterprise architecture (at least 
in the sense of its technology component), human resources, and investment poli-
cies. In their fast-paced development, modern technology paradigms do not only 
shake the technical side of an enterprise, but they also enable a change in the way 
individuals live and work. The current economic, social, and political context can 
furnish the IoT with the features of a “selective black hole.” From the jungle of 
technology and methodological instruments, it would only absorb those elements 
which, if implemented, would answer the problems and challenges facing us today 
as well as in the future (provided we can speak of some predictability of the IoT).

The IoT involves a big volume of data and a wide range of sources of information. 
Among the problems the IoT is faced with are the collection, acquisition, processing, 
archiving, and sharing of this volume of data. Cloud Computing is part of the solu-
tion and offers unlimited on-demand storage capacity, reduced costs, fast access, 
and ease of use. Additionally, many of the IoT applications can be developed, run, 
and managed online by using Cloud-based Big Data Analytics and Cloud Storage 
facilities. The IoT can also benefit from the agility, scalability, storing capacity, and 
performance of Cloud Computing. Cloud Computing-based IoT architecture 
answers more than one challenge/problem and leads to better agility of the 
connected environment. Furthermore, interdependencies created in the operation of 
the two paradigms may result in symbiotic products designated in terms such as 
Cloud of Things (CoT) or CloudIoT.

IoT and Cloud Computing are emerging technologies with features of their own, 
which may create added value when used together. The IoT enables objects to be 
virtually represented and connected over the Internet, while Cloud Computing 
allows for the effective use of the services attached to these things, as a means of 
payment for the service provided [1]. Cloud Computing is an important element in 
the IoT architecture. Cloud services are globally accessible, irrespective of place 
and time, allowing for the data to be transferred and the objects making the network 
to interact. It also offers fast scalability, by adjusting the storage and computing 
capacities to the needs of the network.

Researchers and practitioners alike consider Cloud Computing and the IoT to be 
two complementary technologies [1, 2]. This consideration is the main reason 
why we are faced with so many proposals to integrate the two paradigms, which 
would bring benefits to specific areas, such as smart cities, smart energy, smart 
grids, smart healthcare, and smart metering [3–5]. Moreover, the features of the 
CloudIoT paradigm can help reduce the difficulties and the challenges stemming 
from the connected media [6]. Many times integration is no longer an option but a 
must. Because of the large volume of data generated by the IoT and the need for 
large storage and use capacities of virtual resources, integration with Cloud 
Computing becomes both important and necessary [7]. The need to integrate IoT 
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and Cloud Computing is also analyzed in [8], where the authors are highlighting the 
features of integration and complementarity.

The main focus of this chapter lays both on the problems and challenges of the 
IoT and the ways Cloud Computing can meet them via the three traditional services 
it supplies: Software as a Service (SaaS), Platform as a Service (PaaS), and 
Infrastructure as a Service (IaaS). This chapter is split into four parts that form a 
linear approach to the topic, viz., Introduction; Problems and Challenges of the 
Internet of Things: The Big 7 of IoT; Combining Cloud Computing and the IoT to 
Address the Inherent Challenges of IoT; and Conclusions.

This chapter opens with a short introduction of the topic, focusing on the need 
and the benefits of integrating Cloud Computing and the IoT. It continues with the 
analysis of scalability, interoperability, reliability, efficiency, availability, storage, 
and security in the IoT and the identification of major problems and challenges 
these features are faced with in the connected environment. The third part dwells on 
the benefits of Cloud Computing and IoT integration and the solutions to the 
problems and challenges identified in the previous section. This chapter ends with 
conclusions, limitations, and future research directions.

4.2  Problems and Challenges of the Internet of Things: 
The Big 7 of IoT

The IoT makes it possible for objects to interact by sharing information and providing 
services through Internet protocols. The magnitude of the connected environment 
together with the multitude of heterogeneous objects requires solutions to at least 
the following seven major challenges: scalability, interoperability, reliability, 
efficiency, availability, storage, and security. According to Gartner, by 2020, the IoT 
will include 26 billion units, which creates new challenges in all data center-related 
aspects [9]. The IoT developments also require real-time processing of Big Data 
volumes, which causes an increase in the load in data centers and generates new 
challenges with respect to security, capacity, and data analytics [10]. The challenges 
are discussed below.

4.2.1  Scalability in IoT

A scalable IoT system must allow for the connection of new devices, new users, and 
new analytical capabilities as well as for the technology able to ensure long-term 
support. Scalability in IoT must also consider the possibility to provide good- quality 
service (response time, analytics) under the circumstances of a growing number of 
new users and/or devices. Given the rapid growth of the connected devices, the fre-
quent changes in technology, the large number of interactions within the IoT, as well 
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as the growing demand for services, scalability in the IoT is still a major challenge 
of our society today.

It is not by chance that developments in technology in the past years have focused 
on higher storage and better data processing capabilities. One of the modern tech-
nologies prone to ensuring the needed scalability features in IoT is found in non- 
relational databases and the systems processing GIS data.

4.2.2  Interoperability in IoT

Considering the heterogeneity of the different systems integrated in the IoT, interop-
erability is another major challenge that the IoT must face for the successful delivery 
of services and data sharing. In spite of the fast development of the IoT systems, 
interoperability between the IoT systems comes at a high cost, even as high as $4 
trillion or 40% of the overall IoT worth by 2015, according to McKinsey report [11].

Good IoT interoperability requires platform-related standards enabling commu-
nication, operability, and integration of different kinds of devices. Despite the 
efforts of the past few years, interoperability still stays a major challenge in 
IoT. Network data acquisition, data sharing, processing, and use have so far been 
very challenging. Interoperability can be analyzed in the light of factors such as the 
level of data perception (technical, syntactical, semantic, organizational) or the 
moment when interoperability is achieved (static, dynamic) [12].

There are four directions in the analysis of information: technical (the way data 
are represented on the physical media), syntactical (syntactical constructions used 
to represent the information in the collection, transmission, recording, and process-
ing of data), semantic (the meaning of the data), and organizational (the overall 
amount of information an organization holds). With information at its core, interop-
erability can be analyzed along the four lines of information perceived: technical, 
syntactic, semantic, and organizational [13].

At the technical level, interoperability is analyzed at the level of hardware/soft-
ware components, systems, and platforms that enable machine-to-machine com-
munication (M2M). This type of analysis focuses on protocols and communication 
infrastructure. Syntactic interoperability focuses on the data formats transferred 
though the communication protocols. Many communication protocols convey data 
or contents by using high-level syntax such as HTML or XML. Semantic interoper-
ability is related to the human interpretation of the content (information) being 
shared. Semantically, information can be defined in terms of data significance and 
can be discussed in terms of information flows. Organizational interoperability 
pertains to the capability of organizations to effectively communicate and transfer 
data (information) among different types of systems, infrastructures, across various 
geographic regions and cultures. Successful organizational interoperability relies on 
the success of technical, syntactic, and semantic interoperability. Organizational 
interoperability also relies on the success of the information process. The process of 
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information communication should ensure the lowest possible redundancy between 
the sender and receiver entities, thus enabling the reception and comprehension of 
the message.

Starting from the four levels of interoperability, Fig. 4.1 identifies the challenges 
in interoperability peculiar to each level (devices, data, information, and processes).

The IoT consists in a large variety of applications, which gives rise to challenges 
in point of static interoperability (fulfillment of all conformity requests). Some level 
of non-interoperability is often accepted (for some of the protocols, for instance), 
provided it is addressed on the way (dynamic interoperability). Features of dynamic 
interoperability are found in intelligent gateways and middleware from heteroge-
neous and complex IoT environments [12].

4.2.3  Reliability in IoT

In a system, reliability is defined as the ability of the system to consistently imple-
ment a request/mission without fail/fault, a definition that also suits the IoT environ-
ment. Since the IoT consists in a vast volume of information where data needs to be 
accessed, processed, and manipulated correctly, new architectures are required to 
disseminate and process information in a reliable and effective manner.

Most of the IoT applications are required to operate for a specific time horizon, 
which asks for a longer-term investment. Under the circumstances, the network 
should be adaptable enough to adjust to the conditions of the environment or the 
required changes in the network components. Standardization efforts are critical in 
securing good reliability. Kempf et al. (2011) outline four major research areas in 

Fig. 4.1 Challenges by levels of interoperability in IoT
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standardization: reliability in the design of system architecture, reliability in the 
development of the system, support for mobile network sensor gateway communi-
cation, and reliability at transfer level [14].

Reliability in IoT can be analyzed starting from the levels of IoT architecture. 
According to the literature, IoT architecture evinces more than one type (for 
instance, IoT-A, Internet-of-Things Architecture; IIRA, Industrial Internet Reference 
Architecture) and the same stands for reference models. In this context, it is impor-
tant to look at reliability in IoT at the level of the devices, network, and the provided 
services.

Considering the number and diversity of connected devices, reliability of devices 
turns into a true challenge. Depending on the type and role of a device, the system 
should provide correct, continued, and intensive data access and good data process-
ing, even when there is no power, no or weak Wi-Fi signal, when a server or an 
access point fails.

The high number of users that are connected to the Internet for various online 
services in combination with the multitude of devices connected to the IoT network 
is challenging to network operators, as they should secure uninterrupted broad net-
work access. Network reliability is vital for the success of IoT and should be ana-
lyzed both at the level of each network provider and the IoT as a whole. At IoT level, 
there can be several types of networks or network operators in place, which may 
result in additional challenges in securing uninterrupted broad access.

Reliability in the provided services deals with ensuring a good availability, col-
lection, storage, and processing of large volumes of data taken from the IoT devices, 
with no error of failure. In the light of these considerations, reliability in IoT is 
closely connected with interoperability.

4.2.4  Efficiency in IoT

Ensuring efficiency in IoT is yet another challenge of a connected environment. The 
network should be capable to support different real-time analyses of a big volume 
of data available in the network, to satisfy the diversity of data processing requests, 
and to process data as fast as it arrives, irrespective of their storage place (data 
decentralization). Another challenge is linked to ensuring advanced data processing 
and analysis with a view to support the machine learning processes embedded in 
smart devices.

That is why the IoT structure should be supplemented with specific elements of 
artificial intelligence, such as neural networks or intelligent agents. From the same 
perspective of efficiency, we may look at the economic angle of the IoT network and 
measure the effect of its operation in a well-defined context against the effort fed 
into its operation. Moreover, by assigning the IoT a cybernetic paradigm, it turns 
into an element of the higher-order feedback loop showing a systemic behavior in 
relation to its environment. A systemic approach to the IoT automatically endows it 
with a different perspective of efficiency.
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4.2.5  Availability in IoT

So far as the availability/access is concerned, several factors come into play [15]: 
time, place, service provision, network, object, and user. Figure 4.2 presents the 
availability requirements in IoT as well as the challenges facing such 
requirements.

In addition to the six availability factors in IoT that we mentioned before, we 
should also consider the aspects pertaining to the environment, which emerge 
more and more in the current trends in technology developments, such as green 
computing, green cloud, and even green IoT, why not? This green feature is rooted 
first of all in the topic of exhaustible resources and renewable energy sources at 
the same time.

Fig. 4.2 Availability challenges in IoT
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4.2.6  Storage in IoT

The IoT generates large volumes of data that should be processed and analyzed in 
real time. This leads to a high volume of operations to be executed in data centers, 
which comes with new challenges in point of security, network capacity, and 
analytical capabilities. On top of that, the multitude of heterogeneous devices 
combined with a large volume of data creates challenges in data storage management. 
Storage management should consider at least the following IoT data-related chal-
lenges (the nine Vs of Big Data): volume, variety, velocity, variability, visualization, 
veracity, validity, volatile, and value (Fig. 4.3).

We can see that in terms of data storage capacity, next to the fundamental features 
defining the concept of Big Data (volume, velocity, variety), the IoT evinces six 
other different aspects. Each of them comes with two or three sensitive challenges 
that require a collective interpretation in the general context of the IoT.

4.2.7  Security in IoT

The IoT supposes the existence of numerous connected devices, which gives rise to 
multiple entry points and necessarily higher security risks. Moreover, more than one 
level of software, integration middleware, APIs, machine-to-machine communica-
tion, etc. necessarily result in a complex environment and high security risks [16]. 

Fig. 4.3 The addiction for nine Vs of data storage challenges in IoT
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Security in IoT is both a challenge and a top priority. Since technology is a scale 
phenomenon in our daily lives, we must ensure the security of the devices and the 
services provided to consumers. There are several dimensions to the analysis of 
security in IoT [17] including information security, information technology (IT) 
security, physical security, and operational security. Starting from the four dimen-
sions, Fig. 4.4 illustrates some of the security challenges in IoT.

Information security is first aimed at ensuring the confidentiality, integrity, and 
availability of data. In the context of the IoT, another major security element is for the 
data to preserve their non-repudiation features. Beyond the four dimensions in the 
analysis of data security in IoT, the topic remains critical. Security is the main reason 
why we see so much concern for quality assurance and the development of standard-
ization in IoT frameworks and architectures. Security also makes the main barrier in 
the way of what is now the effort to expand the IoT in the area of government.

IoT security challenges also stem from the strongly heterogeneous nature of the 
IoT components as such. In other words, the IoT may shift all the vulnerabilities of 
the digital world to the real world. Any IoT component, either an individual or an 
object, is subject to some level of exposure.

Fig. 4.4 Security challenges in IoT
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Given the major challenges and problems the connected environment is con-
fronted with, experts have never stopped looking for solutions to address them. 
Cloud Computing is a modern solution bringing important benefits through the 
three types of services it offers (IaaS, PaaS, SaaS). The next paragraphs dwell on the 
advantages of integrating Cloud Computing and the IoT in countering the problems 
and challenges described before. Focus is laid on the analysis of Cloud Computing 
in the light of the benefits and solutions it offers at the level of the Big 7 of IoT (scal-
ability, interoperability, reliability, efficiency, availability, storage, and security).

4.3  Combining Cloud Computing and the IoT to Address 
the Inherent Challenges of IoT

The three types of services offered by Cloud Computing bring important benefits in 
terms of storage, computing, resource management, analytics, the management, 
control, and coordination of network-adjusted systems and services. Service provid-
ers offer benefits to IoT at the level of each cloud type: IaaS allows for the manage-
ment of the network and hardware equipment; PaaS facilitates the management of 
the operating systems and the application environment; SaaS can manage every-
thing related to clients, applications included [18]. Cloud Computing also offers the 
IoT the possibility to control access to the resources, by means of IaaS services; 
provide data access, by means of PaaS services; or complete access to software 
applications, by means of SaaS services [19]. IoT applications offered through SaaS 
are built on PaaS infrastructure, and they make it possible to conduct enterprise 
processes by means of IoT services and software.

The IoT can make the most of the three models of Cloud Computing: public 
cloud (where the service provider makes resources available to the general public 
over the Internet), private cloud (the services and infrastructure are part of a private 
network), and hybrid cloud (both public and private options). The selection of the 
cloud models to be used in the IoT depends on specific requirements and security.

The combined use of Cloud Computing and IoT can embrace two convergent 
approaches [20]: bring IoT functionalities into cloud (cloud-centric IoT) or bring 
cloud functionalities into IoT (IoT-centric cloud). Figures 4.5 and 4.6 present the 
two approaches to the combination between Cloud Computing and IoT along the 
three types of cloud services and models. The combination between Cloud 
Computing and the Internet of Things translates in paradigmatic research in the lit-
erature, such as Cloud of Things, CloudIoT, or Cloud-based IoT.

The next sections dwell on the analysis of Cloud Computing from the point of 
view of its benefits in coping with the seven challenges in IoT (scalability, interoper-
ability, reliability, efficiency, availability, storage, and security) previously described.
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Fig. 4.5 Cloud-centric IoT

Fig. 4.6 IoT-centric Cloud Computing
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4.3.1  Scalability Through Cloud Computing

One of the main features of Cloud Computing is its flexibility in adapting to the 
growing or declining needs of the clients. Such a feature can cause cost to go down 
in IoT, where clients pay for the service they use. Cloud allows for scalability on 
several levels, such as the existing devices, the volume of data and data storage 
capacity, the diversity of data, network management, and the services attached to 
the applications (horizontal and vertical flexibility).

On-demand scalability is one of the biggest benefits of Cloud Computing. When 
we analyze the range of benefits of Cloud Computing, it is often difficult to concep-
tualize the power of on-demand scalability. Despite that, organizations can enjoy 
huge benefits when they correctly implement automated scalability. It is obvious 
that in the IoT context, the benefits of scalability come hand in hand with their 
inherent complexities. On-demand scalability of only some applications, for 
instance, asks for scalability capabilities throughout the entire cloud environment 
(e.g., multiple-instance distribution of traffic).

4.3.2  Interoperability Through Cloud Computing

The IoT comprises a variety of objects that are connected to the Internet in different 
ways, such as 2G/3G/4G, NFC, Wi-Fi, ZigBee, Bluetooth, WSAN, and Z-Wave. 
Moreover, many devices operate via a single channel, which generates difficulties 
in their interaction. One solution is to develop hubs, as they are capable to commu-
nicate through several channels and collect signals from a large range of devices 
[21]. Cloud Computing comes with standard interfaces and the portability of vari-
ous devices among various Cloud providers [22].

SaaS services enable the remote use of applications (over the Internet) by IoT 
clients, from any place and without the need to have private servers installed. Cloud 
Computing comes with independence from hardware through virtualization, which 
minimizes the dependency of applications on the basic hardware. PaaS offers mid-
dleware and interoperable architectures for data sharing and services among hetero-
geneous devices. Lately, these IoT interoperability capacities have been provided in 
Cloud through services such as metal-as-a-service and container-as-a-service.

4.3.3  Reliability Through Cloud Computing

One way in which Cloud is part of the solution to better device reliability is the 
increase in the battery life of devices (for instance, by eliminating the heavy tasks 
allocated to the devices) or the possibility to put in place a modular architecture [23, 
24]. Reliability of services is improved, too, as Cloud Computing provides a 
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disruption- tolerant infrastructure by better availability of the site-redundant Cloud 
services [22]. Cloud Computing also uses various mechanisms to ensure data syn-
chronization (ACID, atomicity, consistency, isolation, durability; BASE, basically 
available, soft state, eventual consistency), which improves transactional reliability 
and consistency. Network reliability can be improved by good traffic management. 
Cloud Computing offers control mechanisms that can manage excessive data traffic 
and check the activities to initiate new instances to be shared in traffic [25].

4.3.4  Efficiency Through Cloud Computing

Cloud Computing comes with different advantages resulting in increased efficiency 
in IoT, such as multi-zone management, allowing for high-level availability, perfor-
mance, scalability, savings, or better use of energy [22]; on-demand unlimited pro-
cessing capabilities, addressing the needs of IoT processing and allowing for highly 
complex analyses [26, 27]; real-time data processing [26, 28]; the management of 
complex events; real-time data access for objects [28]; and remote monitoring, con-
trol, coordination, and communication of objects [29].

4.3.5  Availability Through Cloud Computing

Cloud data are homogeneously treated through standard API interfaces [29], and 
they can be accessed and visualized from anywhere [28]. The Cloud environment 
offers effective solutions allowing to connect, follow, and manage any object (thing), 
irrespective of place and time, by using customized gateways and embedded appli-
cations [28]. Starting from the seven components of the availability of Cloud 
Computing services [30], Table 4.1 presents the benefits they bring to IoT.

4.3.6  Storage Through Cloud Computing

The IoT challenge related to the growing need for storage space can find a solution 
in Cloud storage, since it comes with reliability and security and it can scale-up to 
the needs of the IoT network. Through its storage methods, Cloud Computing 
offers unlimited, low-cost means to manage and analyze both structured and 
unstructured data.

Cloud infrastructure offers storage and processing capabilities able to address 
the need for IoT applications to work with Big Data. Yang et al. (2017), analyze the 
ways in which Cloud Computing can meet the challenges of Big Data (5 V) [32]:
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• Volume – a large volume of data processed by powerful computing resources;
• Variety  – the variety of multiple-entry sources is addressed through flexible 

(computing and analytical) resources and self-service advantages;
• Velocity of observation and forecasting is handled by the flexibility and on- 

demand features of Cloud Computing;

Table 4.1 Benefits of Cloud Computing availability to the IoT environment

Availability 
component Benefits of Cloud Computing to IoT environment

Continuity and 
functionality

Disaster recovery plan, at a low cost (data recovery off-site)
Operational recovery, focused on the recovery of the technology or the 
applications (on-site)
Redundant infrastructure (components, routes, power supply)
Continuous data availability (disaster recovery copies; replacement of 
onsite copies in case of incident; archiving data according to 
organizational policies and the legislation into force; data replication)
Service continuity, which makes it possible to provide the service in 
another component of the application (in case the initial component 
fails)
Loose dependencies among services, which avoid a cascading disaster
Restarting the service in case of an incident and enabling service and 
data access

Quality Flexible, anywhere and anytime real-time access to shared computing 
resources (networks, servers, applications, storage, services)
Multi-tenant virtual Cloud Computing platform
Efficient processing of the users’ requests in the context of big spatial 
data and of numerous competing requests [31]
Platform for large-scale data analysis
Complex data processing algorithms
On-demand and unlimited virtual processing power [32]

Monitoring and 
incident 
management

Environment for Cloud-based implementation, machine health 
prognostics for Big Data, and complex processing (e.g., [33])
Metrics and incident response plans, incident monitoring, notification, 
and sensing tools provided by the Cloud operator

Security and data 
access

Cloud Computing intensifies data sharing, by applying modern analytic 
tools and managing controlled access and security [34]
Third-party provision facilitates good security, incident management, 
compliance, access, and identity control [35]; security layers, 
responsibilities, and exceptions are enclosed in SLAs (service-level 
agreement)
Secured access depends on the Cloud model (public, supplied by the 
Cloud provider; private, supplied by the organization; hybrid,supplied 
by both the organization and the third-party provider)
Ensuring several layers of control, depending on requirements (physical 
security, network security, system security, application security) as well 
as security measures implemented at individual and process levels (such 
as separation of duties and change management) [35]
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• Veracity of the Big Data is relieved by self-service to select the best-matched 
services and pay-as-you-go cost model;

• Value represented as accurate forecasting with high resolution, justifiable cost, 
and customer satisfaction with on-demand, flexibility, and pay-as-you-go fea-
tures of Cloud Computing.

Cloud Computing also meets the other challenges in Big Data (see Fig. 4.3), namely:

• Variability – scenario-building techniques related to the multiple significance of 
data, with fast adjustment possibilities based on the current tasks called for 
through the data involved;

• Visualization – approaches, methods, and techniques for the smart visualization 
of multidimensional data [36];

• Validity – mechanisms to ensure the accuracy and correctness of the data in the 
models; possibilities to block potential error propagation, including errors gener-
ated by the multiple significance of data;

• Volatile – flexible approaches to archiving to facilitate the secure classification, 
indexation, search, and recovery of data during the operation of automatic moni-
toring and reporting [37], for extended (not long term) periods of time and digital 
long-term preservation, which includes the preservation of information and data, 
as well as the complete management of the support infrastructure, data, informa-
tion, and storage services (long term) [38].

4.3.7  Security Through Cloud Computing

Cloud Computing offers advanced secure multi-tenant environment with multi-role 
support and complete isolation of applications. It also ensures data integrity and 
security mechanisms for the stored resources [22]. Cloud data can be protected 
through the implementation of high-level security [26]. Nevertheless, Cloud 
Computing security is still an important challenge that, unfortunately, can propagate 
even toward the IoT. As highlighted before, for both Cloud Computing and the IoT, 
security impediments amount to barriers in the development and large-scale adop-
tion of the two paradigms in more sensitive fields such as the government.

Starting from the major challenges and problems of the IoT as well as the bene-
fits of Cloud Computing described before, Table 4.2 presents a summary of how 
Cloud Computing can offer a solution to the Big 7 of IoT.

4.4  Conclusions

The approach to the Big 7 in IoT suggested in this chapter is not necessarily exhaus-
tive. It is obvious that beyond the Big 7 of IoT, there are aspects that need further 
analysis in line with developments in technology, methodology, concepts, and legal 
requirements. Moreover, one should not lose sight of the political dimension of the 
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Table 4.2 Problems and challenges of IoT and Cloud Computing solutions

The Big 7 of IoT IoT problems and challenges
Cloud Computing benefits and 
solutions

Scalability The connection of new devices and 
new users

Flexibility in adapting to the 
growing or declining needs of the 
clients

New analytical capabilities Allows for scalability on several 
levels, such as the existing devices, 
the volume of data and data storage 
capacity, the diversity of data, 
network management, and the 
services attached to the applications 
(horizontal and vertical flexibility)

The frequent changes in technology, 
the large number of interactions 
within the IoT, as well as the growing 
demand for services

Interoperability The level of data perception (see 
Fig. 4.1): technical (communication 
infrastructure, linkage of devices), 
syntactical (legislation, data 
exchange formats), semantic 
(customized devices, information 
transmission and interpretation), 
organizational (cooperation across 
borders, linkage of processes);

Enable the remote use of 
applications (over the Internet) by 
IoT clients
Standard interfaces and the 
portability of various devices 
among various Cloud providers
Independence from hardware 
through virtualization
Middleware and interoperable 
architectures for data sharing and 
services among heterogeneous 
devices

The moment when interoperability is 
achieved (static, dynamic)

Reliability Devices (number and diversity of 
connected devices)

Device reliability (increase in the 
battery life of devices, the 
possibility to put in place a modular 
architecture)

Network (high number of users, the 
multitude of devices, several types of 
networks) Network reliability (good traffic 

management)
The provided services (availability, 
collection, storage, and processing 
of large volumes of data)

Reliability of services (a disruption-
tolerant infrastructure, various 
mechanisms to ensure data 
synchronization, which improves 
transactional reliability and 
consistency)

Efficiency Supports different real-time 
analyses of a big volume of data

Multi-zone management
On-demand unlimited processing 
capabilities

Satisfies the diversity of data 
processing requests and process 
data as fast as it arrives

Real-time data processing

Ensuring advanced data processing 
and analysis with a view to 
supporting the machine learning 
processes embedded in smart 
devices

The management of complex events
Real-time data access for objects
Remote monitoring, control, 
coordination, communication of 
objects

(continued)
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IoT paradigm that comes to strengthen once again the complexity of the approaches, 
at least from the perspective of globalization, the free movement of workers, or the 
phenomenon of migration. In this context, it is worth mentioning that national poli-
cies regarding information security, information protocols, and, last but not least, 
legal initiatives of the Big Brother family aimed at monitoring communications over 
the Web. On the other hand, the evolutionary perspective of the IoT placed it in the 
early 1990s in terms of domotic or imotic perspectives. One way or another, aspects 
still regard the same and only issue: the automation of daily human activities or the 
so-called digital human universe.

An important conclusion of our scientific study is that we must reiterate the vital 
role of individuals in the IoT context. An individual is not a mere or common com-
ponent of the IoT environment but the very entity that controls the environment by 
means of technology. The challenges in IoT regard numerous and sometimes com-
plex aspects. Despite that, the critical dimension lies with the security aspects, and 
it is security that makes the main barrier in the development of the IoT. We have 
seen that communications, computing power, and sensing capacity are key elements 
in the IoT environment. These three elements form what the literature calls the 

Table 4.2 (continued)

The Big 7 of IoT IoT problems and challenges
Cloud Computing benefits and 
solutions

Availability Anything (many things) Effective solutions allowing to 
connect, follow, and manage any 
object (thing), irrespective of place 
and time, by using customized 
gateways and embedded 
applications

Any time (all day and night)
Anywhere (many and diverse 
locations)

Any service (many services) The benefits that cloud services 
bring to IoT (details in Table 4.1)Any network (multi-protocol, 

technology, operating systems)
(details in Fig. 4.2)

Storage IoT data-related challenges (the 
nine V’s of Big Data): volume, 
variety, velocity, variability, 
visualization, veracity, validity, 
volatile, value (details in Fig. 4.3)

Cloud Computing can meet the 
challenges of Big Data
Cloud Computing benefits for the 
nine V’s of Big Data: volume, 
variety, velocity, variability, 
visualization, veracity, validity, 
volatile, value

Security Information security Advanced secure multi-tenant 
environment with multi-role 
support and complete isolation of 
applications

Information technology security

Physical security Ensures data integrity and security 
mechanisms for the stored 
resources

Operational security

(details in Fig. 4.4) Implementation of high-level 
security
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primitives of IoT trustworthiness. Recent NIST research from 2017 suggests five 
such primitives: sensor, aggregator, communication channel, eutility (related to 
installed computing power), and decision trigger [39]. Moreover, with respect to the 
issue of security, NIST identifies six elements that play a major role in stimulating 
trustworthiness in an IoT network: the environment, cost (in time and money), geo-
graphical location, the owner of the primitive, the unique identification number of 
the communication device, and the snapshot used to synchronize events.

Integration between Cloud Computing and IoT helps in solving some of the 
challenges the IoT is faced with, but it is not a panacea. Like any other technology 
solution, Cloud Computing not only comes with benefits but also with challenges 
and problems, which is something to consider in the creation of CloudIoT. One of 
the important problems facing both the IoT and Cloud is standardization. Speaking 
of security, for instance [40], we cannot fail to see that the standard package ISO 
27000-27019 on information security management systems (updated in February 
2016) is already obsolete in some respects. This happens first of all due to the fast- 
paced development of modern communication technologies and solutions. Second, 
hybrid solutions, such as Cloud sourcing or Cloud of Things, are, in their turn, 
sources of mistrust and are not covered by standards.

In spite of that, considerable effort is consistently being made to bring the IoT in 
all spheres of human existence. Therefore, we must highlight some of the manifest 
trends in politically and economically stable countries to promote the IoT government 
paradigm. Accordingly, the 2020 horizon will mark the beginning of a new era – the 
digital industrial society – thus escalating the stage of knowledge-based information 
society. Beyond the aspects linked to technology or legislation, the question whether 
to develop the IoT in symbiosis with Cloud Computing must also consider the envi-
ronment, and that is unknown, if we think of the 2020 horizon. Green computing 
philosophy thus expands its scope toward what we call green Cloud Computing today 
and what we may call the green Internet of Things in the near future.
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Chapter 5
Overcoming Service-Level Interoperability 
Challenges of the IoT

Darko Andročec

Abstract The Internet of Things (IoT) is a complex ecosystem of devices, solu-
tions, services and applications. IoT is highly heterogeneous because devices focus 
on proprietary technology and interfaces. To realize its full value, interoperability of 
‘things’ becomes an important component of the ecosystem, which must be satis-
factorily achieved. At present, however, it is impossible to manage individually a 
vast amount of different IoT devices and their application programming interfaces 
(APIs). Interoperability is therefore one of the main problems of the IoT paradigm. 
Much of the existing IoT interoperability research elaborates on techniques and 
methods to achieve interoperability. Multiple IoT standards exist today and new 
ones are being created. Different IoT standards compete; and a generally globally 
accepted standard does not currently exist. There are, in fact, many unsolved 
interoperability issues occurring at different levels, including data, service, network 
and application. This chapter focuses on service-level IoT interoperability problems 
and solutions. It reviews the use case of possible interoperability resolutions. The 
chapter also identifies future research problems related to IoT service-level 
interoperability.

5.1  Introduction

One of the most important properties of the Internet of Things (IoT) environment is 
the seamless interoperability between devices, also called ‘things’, and the services 
that these devices provide. Unfortunately, there are numerous challenges in this 
regard. However, with the development of standards and IoT protocols, innovation 
is at its peak. Yet, a satisfactory solution has not prevailed as many IoT providers 
and device manufacturers use their own protocols and APIs. In such ecosystems, it 
is difficult to achieve technical and semantic interoperability of devices and IoT 
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services to effectively communicate. IoT interoperability has become a complex 
practical and research problem.

This chapter provides a discussion of the main challenges of IoT interoperability, 
with a focus on service-level IoT interoperability. Service-level interoperability 
aims to semantically annotate services to enable their automatic or semi-automatic 
composition and orchestration based on their functional and nonfunctional proper-
ties. Semantic Web services aim at an automated solution to the following prob-
lems: description, publishing, discovery, mediation, monitoring and composition of 
services.

Known solutions to the problems will also be presented. Most researchers use 
Semantic Web technologies to tackle IoT interoperability problems. An IoT interop-
erability use case will also be presented to illustrate the implementation of IoT 
interoperability solutions at the service level. It will discuss the development of 
underlying IoT ontology, annotation of things and automatic or semi-automatic 
composition of IoT services.

The remainder of the chapter will outline interoperability: specifics of IoT 
interoperability and both recent and ongoing IoT interoperability research projects. 
Next, common interoperability issues and challenges will be presented and system-
atized. Known interoperability solutions will be discussed. The chapter will con-
clude with an IoT service-level interoperability use case and conclusions.

5.2  Interoperability

Interoperability can be defined in several ways. IEEE [1] is credited with one of the 
simplest definitions: the ability of two or more systems or components to exchange 
information and to use the information that has been exchanged. Brownsword et al. 
[2] provide the following working definition of interoperability: the ability of a col-
lection of communicating entities to (a) share specified information and (b) operate 
on that information according to an agreed operational semantics. Pokraev et al. [3] 
claim that interoperability implies that systems are able to interact (i.e., exchange 
messages), read and understand each other’s messages and share the same expecta-
tions about the effect of the message exchange.

From these definitions, three main aspects of interoperability can be identified: 
syntactic interoperability (compatible formats), semantic interoperability (meaning 
of the information) and pragmatic interoperability (effect of the exchanged informa-
tion) [3].

Vernadat [4] similarly defines interoperability as the ability for a system to com-
municate with another system and to use the functionality of the other system. Park 
and Ram [5] note that interoperability is the most critical issue facing businesses 
that use data from different information systems. According to Park and Ram [5], 
two types of interoperability are found: semantic and syntactic interoperability. 
Semantic interoperability, which exists at the knowledge level, bridges semantic 
conflicts due to differences in meanings, perspectives and assumptions. Syntactic 
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interoperability, which is interoperability at the application level, aims at software 
component cooperation with different implementation languages and development 
platforms [5].

Interoperability is a multidimensional concept that can be looked at from multi-
ple perspectives. Therefore, interoperability frameworks were developed using the 
following elements: vocabulary, concepts, principles, guidelines and recommenda-
tions. Some of the most important frameworks are ATHENA interoperability frame-
work (AIF), IDEAS interoperability framework, LISI reference model, enterprise 
interoperability framework and GridWise interoperability context-setting frame-
work [6].

Apart from interoperability frameworks, some comprehensive interoperability 
models are presented in current literature. For example, Naudet et al. [7] developed 
a general ontology of interoperability. This ontology described the ontological 
metamodeling system, as well as its problems and solutions. It can be used to diag-
nose and resolve interoperability problems. The aforementioned authors concluded 
that there were two alternative technical solutions to interoperability problems: 
bridging and homogenization [7]. Bridging uses an intermediate system (often 
called an adapter) between systems having interoperability problems. The interme-
diate system relies on the translation protocol (e.g. using mappings) to achieve 
interoperability between interacting systems [7]. Homogenization, which implies 
the unified model, acts directly on models or their representations [7]. It requires 
syntactic or semantic transformations using the defined unified model. In the fol-
lowing subsections, IoT interoperability will be described in more detail. Main IoT 
interoperability research projects will be listed.

5.2.1  IoT Interoperability

The IoT promises a world of networked intelligent devices (things). These things 
communicate mutually and constantly, as well as generate data as a basis for smart 
applications and services. Achieving point-to-point communication relies on 
interoperability [8]. Technical IoT interoperability requires that things can speak 
and be heard. Semantic IoT interoperability requires that things speak the same 
language [8]. One of the most critical semantic interoperability elements is a means 
for device identification. Currently, companies develop their own things to rely on 
proprietary standards or closed systems. Therefore, it is difficult to enable interoper-
ability. A similar situation is emerging in other fields (e.g. cloud computing) as 
company products and services compete for the market share. Interoperable IoT 
systems can increase the ability to build innovative IoT services.

5 Overcoming Service-Level Interoperability Challenges of the IoT
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5.2.2  Research Projects on IoT Interoperability

IoT interoperability is a popular research theme. It is well founded because of prom-
ises of IoT possible future capabilities of citizens’ life improvements, (e.g. by 
European past FP7 and current Horizon 2020 initiatives). This chapter will list 
important research projects, as well as their achievements or future goals. The 
OpenIoT [9] FP7 project provided an open IoT platform to enable semantic IoT 
service interoperability in the cloud. Based on W3C Semantic Sensor Networks 
(SSN) ontology, it enabled semantic annotations of sensors. OpenIoT used Linked 
Data technologies to link related sensor data. The project’s focus was to achieve 
interoperability among sensors’ data. Another FP7 project, IoT.est. [10], developed 
a framework for IoT service creation and testing to enable test-driven and semantic 
control of IoT service lifecycle. The EU FP7 project IoT@Work [11] aimed at self-
anagement features in factory automation systems. The main concept of the project 
is Plug&Work, which represented the ability of devices to autoconfigure themselves 
for different automation applications. The GAMBAS consortium [12] developed 
the middleware and Java-based SDK for smart city applications to address context 
data acquisition and interoperable data integration. IoT6 [13] designed IPv6-based 
SOA to achieve interoperability among smart thing components, applications and 
services. The SmartAgriFood FP7 project [14] addressed the food and agribusiness 
as a use case for the future Internet. Interoperability was identified as one of the 
most important requirements for agri-food logistics.

IoT interoperability is a popular research theme as confirmed by recent Horizon 
2020 European research projects. The first BIG IoT (Bridging the Interoperability 
Gap of the Internet of Things) plans to implement BIG IoT APIs for use by various 
IoT platforms [15]. It seeks to create marketplaces for IoT services and applications 
[15]. Through the common API, it is easier to develop software for different IoT 
platforms. Three key IoT interoperability pillars have been identified, viz. (1) com-
mon API, (2) well-defined information models and (3) an IoT marketplace [15]. 
BigIoT is a part of IoT-EPI (European Initiative for IoT Platform Development).

The next ongoing project is INTER-IoT [16]. This aims to design, implement 
and test an open cross-layer framework for interoperability across the software 
stack among different IoT platforms [15]. The project’s main use cases are (e/m)
Health and transportation and logistics.

VICINITY (open virtual neighbourhood network to connect IoT infrastructures 
and smart objects) [17] plans to build a device and standard agnostic platform for 
interoperability. This project focuses on a virtual neighbourhood where users con-
trol and share smart objects.

Using semantic-based technologies, FIESTA-IoT [18] seeks to create an inter-
connection and interoperability of diverse IoT platforms and test-beds. It focuses on 
the federation of different IoT test-beds and enables experimentation as service for 
IoT experiments. The annotation process enables data in standards semantics by 
using FIESTA-IoT ontology.
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symbIoTe [19] provides an interoperability framework for cooperation of verti-
cal IoT platforms, IoT platform federations and cross-domain IoT application 
development. The framework is built using an IoT stack connecting the cloud to 
smart objects and IoT gateways. It aims to design an architecture for the intercon-
nection of existing IoT platforms at different levels (e.g. application, cloud, smart 
space and device domain) [19].

5.3  Interoperability Issues and Challenges

Interoperability is a multidimensional concept with multiple levels of problems, 
issues and conflicts. The European interoperability framework identified four levels 
of interoperability, viz. legal, organizational, semantic and technical. This chapter 
focuses on the technical and semantic interoperability issues, especially at the ser-
vice level. Table 5.1 lists some related works for classifying interoperability issues. 
The main categories of interoperability issues defined by Sheth and Kashyap [20] 
are domain definition incompatibility (attributes have different domain definitions), 
entity definition incompatibility (descriptors used for the same entity are partially 
compatible), data value incompatibility (inconsistency between related data), 
abstraction level incompatibility (the same entity is represented at different levels of 
abstraction) and schematic discrepancy (data in one database corresponds to schema 

Table 5.1 Database and service interoperability issues

Author/s Domain Identified interoperability issues

Sheth and 
Kashyap [20]

Issues among multiple 
databases

Domain definition incompatibility, entity definition 
incompatibility, data value incompatibility, 
abstraction level incompatibility, schematic 
discrepancy

Parent and 
Spaccapietra 
[21]

Data interoperability 
problems during 
database integration

Heterogeneity conflicts, generalization/
specialization conflicts, description conflicts, 
structural conflicts, fragmentation conflicts, 
metadata conflicts, data conflicts

Park and Ram 
[5]

Semantic conflicts 
among databases

Data-level conflicts (data-value conflicts, data 
representation conflicts, data-unit conflicts, data 
precision conflict), schema-level conflicts (naming 
conflicts, entity-identifier problems, aggregation 
conflicts, schematic discrepancies)

Haslhofer and 
Klas [22]

Metadata 
interoperability at 
model level

Naming conflicts, identification conflicts, 
constraints conflicts, abstraction level 
incompatibilities, multilateral correspondences, 
meta-level discrepancy, domain coverage

Ponnekanti and 
Fox [24]

Web service 
interoperability

Missing methods, extra fields, different types for 
service inputs/outputs, cardinality mismatches

Nagarajan et al. 
[23]

Web services 
heterogeneities

Attribute level incompatibilities, entity definition 
incompatibilities and abstraction level 
incompatibilities
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elements in another). Parent and Spaccapietra [21] distinguished seven categories of 
database interoperability problems:

• Heterogeneity conflicts (different data models)
• Generalization/specialization conflicts (different generalization/specialization 

hierarchies and different classification abstractions)
• Description conflicts (types have different properties and/or their properties are 

described differently)
• Structural conflicts (different structures of related types)
• Fragmentation conflicts (the same object is depicted by decomposition into dif-

ferent elements)
• Metadata conflicts
• Data conflicts (data instances have different values for the same properties)

Data-level conflicts [5] include data-value conflicts (the data value has different 
meaning in different databases), data representation conflicts (such as different rep-
resentations of date and time), data-unit conflicts (different units used in different 
databases) and data precision conflicts. Data-level conflicts can occur at the attribute 
level or at the entity level. Structural heterogeneities [22] occur at the model level in 
the form of naming conflicts (different names of model elements representing the 
same real object), identification conflicts (model elements identifiable by their name 
or identifier), constraints conflicts (different definition of constraints in different 
models), abstraction level incompatibilities (different generalization of aggregation 
of the same real-world object), multilateral correspondences (an element from one 
model corresponds to multiple models in another model), meta-level discrepancy 
(the same elements in one model could be modelled differently in another model) 
and domain coverage (real-world concepts described in one model are missing from 
the other model).

The main classes of heterogeneities in Web services are [23] attribute level 
incompatibilities (different descriptions used to model similar attributes), entity 
definition incompatibilities (different descriptions are used to model similar enti-
ties) and abstraction level incompatibilities (different levels of abstraction).

The general database and service interoperability issues as shown in Table 5.1 
are relevant for the IoT domain. Much of the things are sensors generating a large 
amount of data. For this reason, data interoperability is very important for the IoT 
context. Things as a service have the basic properties of services. Therefore, IoT 
service interoperability issues are similar to other service-oriented architectures’ 
issues.

There are also IoT-specific interoperability issues. European Research Cluster on 
the Internet of Things (IERC) listed the following IoT technical interoperability 
challenges [25]: (1) efforts to address interoperability protocols, (2) reduction of 
ambiguities in specifications and (3) tests to ensure minimum levels of interopera-
bility. There is also a list of the most important IoT semantic interoperability chal-
lenges [25]: integration of things and IoT data, linking and annotation of IoT data 
sources, management of virtual sensors, efficient discovery of things and IoT data 
sources and development of tools for analysis and visualization of semantic 
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IoT. These challenges can be mapped into requirements for IoT services and appli-
cations using semantic technologies. In the next section, prominent solutions for the 
interoperability issues will be listed.

5.4  Interoperability Solutions

Linked Data can be used to link heterogeneous data formats since there is not a 
general agreement on annotating IoT data [25]. Proposing abstract models for 
semantic descriptions in IoT is useful in solving some interoperability problems. 
The following subsections will list Semantic Web initiatives and languages, as well 
as existing work on IoT interoperability at the service level. Semantic Web (ontol-
ogy-driven approach) is the most promising technology in solving IoT service-level 
interoperability issues. Semantic annotations can be solved by naming conflicts on 
an attribute and entity level, as well as attribute entity conflicts [23]. Mapping of 
schema isomorphism conflicts in both directions requires additional context infor-
mation [23]. Mappings of data representation conflicts, data scaling conflicts, gen-
eralization conflicts and aggregation conflicts are possible in only one direction 
(from a more detailed version to the more general) [23].

5.4.1  IoT Standards Initiatives

Several standardization organizations and groups are working to create open stan-
dards for IoT. Although there are many standards, a single standard has not pre-
vailed. The active IoT standard initiative is discussed in Table 5.2. The list is based 
on the Postscapes website [26]. Additional information was included after studying 
the standards and initiatives.

5.4.2  Semantic Web Services

Many service-level interoperability problems can be solved by using Semantic Web 
services. Current Web services provide only syntactical descriptions. Thus, Web 
service integration must be done manually. Semantic Web services are the integra-
tion of Semantic Web and service-oriented architecture implemented in the form of 
Web services. Semantic Web services aim at an automated solution to the following 
problems: description, publishing, discovery, mediation, monitoring and composi-
tion of services.

New languages should be used to implement Semantic Web service. OWL-S 
(Semantic Markup for Web Services) [27] is the ontology of services that enables 
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Table 5.2 IoT standard initiatives

Organization Initiative Brief description

IEEE IEEE P2413 This draft standard defines an architectural framework 
for the IoT

802.15.4 IEEE Standard for Low-Rate Wireless Networks
IETF CoRE 

(Constrained 
RESTful 
Environments)

CoRE provides a framework for resource-oriented 
applications intended to run on constrained IP networks 
with limited packet sizes and a high degree of packet 
loss

ITU JCA-IoT The ITU’s joint coordination activity on IoT
More than 200 
participating 
partners and 
members

OneM2M The global standards initiative for machine-to-machine 
communications and the IoT. Formed in 2012 by eight 
of the world’s ICT standards development 
organizations, oneM2 M provides a necessary 
framework for interoperability between the many 
M2 M and IoT technologies being introduced

IMC IMC IoT M2 M 
Council

It offers detailed case studies of IoT and M2 M 
technologies usage

OCF (Open 
Connectivity 
Foundation)

OIC specification OIC is based on the resource-oriented architecture and 
defines a resource model for IoT resources definition, 
endpoint and resource discovery, advertisement, 
monitoring and maintenance

W3C Semantic Sensor 
Network 
Ontology

This ontology is developed by the W3C Semantic 
Sensor Networks Incubator Group (SSN-XG). The 
ontology describes sensors and observations, and 
related concepts, and it does not describe domain 
concepts, time and locations

Web of Things 
Community 
Group

The aim of the group is to accelerate the adoption of 
Web technologies as a basis for enabling services for 
the combination of the Internet of Things with rich 
descriptions of things and the context in which they are 
used

XSF (XMMP 
Standards 
Foundation)

XMPP The open standard for instant messaging, presence and 
real-time communication and collaboration

OMG (Object 
Management 
Group)

DDS DDS is a middleware protocol and API for IoT 
data-centric connectivity

OMA (Open 
Mobile Alliance)

LWM2M A common set of standards for managing light weight 
and low capability IoT devices on a variety of networks

OASIS MQTT A lightweight publish/subscribe reliable messaging 
transport protocol for M2 M/IoT. It is approved by 
ISO/IEC JTC1

AMQP Advanced Messaging Queuing Protocol
ISO/IEC IoT Special 

Working Group
ISO work group on IoT

AIM IoT Committee The committee’s mission is to educate and support 
AIM members about IoT
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users and/or software agents to discover, invoke and compose Web services. This 
ontology, defined by using a Web Ontology Language (OWL), has three main parts:

• The service profile for specifying the service’s purpose and functionality
• The process model for describing the operation of the service
• The grounding containing details on how to use a service

The next initiative, the Web Service Modelling Ontology (WSMO) [28], 
describes aspects related to Semantic Web services. As extension of the Web Service 
Modelling Framework (WSMF), it consists of four elements: ontologies, goals, 
Web service descriptions and mediators. WSMO refines and extends this framework 
by developing the ontology for the core elements of Semantic Web services. It also 
develops the description language consisting of nonfunctional, functional and 
behavioural aspects of Web services.

WSMO and OWL-S are heavyweight solutions for Semantic Web services. They 
introduce new languages founded on expressive formalisms, as well as promote the 
semantics-first modelling approach [29]. Heavyweight solutions are complex in 
terms of modelling and computation [30]. Lightweight approaches reduce the com-
plexity and enhance existing SOA capabilities by adding intelligent and automated 
integration to existing service descriptions [31]. Lightweight service ontologies use 
bottom-up modelling. The most known lightweight approaches include WSMO-
Lite, SAWSDL, MicroWSMO, hRESTS and SA-REST. Lightweight service anno-
tation models are cost-effective because it is faster to work on semantic 
annotation.

5.4.3  Existing Works on Service-Level IoT Interoperability

Many works exist on service-level IoT interoperability and its solutions. A federated 
discovery service proposed by Gomes et al. [32] encompassed an ontology-based 
information model to semantically describe resources and IoT services. The service 
used SSN and SAN ontology, Basic Geo Vocabulary and OWL-S for modelling 
services. Nambi et  al. [33] created a unified knowledge base for IoT to use and 
extend existing resources, locations, context, domains, policies and service ontolo-
gies. Nambi et al. [33] considered these as a main tool for service composition and 
discovery. Spallazi et al. [34] extended the semantic sensor network ontology with 
concepts and roles describing actuators. Androcec and Vrcek [35] proposed a frame-
work for things as a service interoperability including composition of sensors and 
actuators at service level, as well as their integration with existing cloud services. 
Qu et al. [36] proposed the specification of dynamic services for things by extending 
OWL-S with service status ontology to describe information like the waiting queue 
and current status of the entities involved in the services. Hur et al. [37] presented a 
semantic approach to automatically generate a service description and deployment 
of different things to various IoT platforms. They also proposed the semantic 
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service description ontology to support the translation of a platform-specific con-
figuration into semantic metadata using a common knowledge scheme.

Fattah et al. [38] introduced a concept of composite virtual objects to compose 
services and create collaboration among physical objects. Soldatos et al. [39] pre-
sented design principles for IoT in cloud environments in which their framework 
used linked sensor data and W3C semantic sensor networks ontology. Akasiadis 
et al. [40] presented an approach for developing applications on an IoT platform to 
build a complex service to determine the number of people inside a smart room. 
Sezer et al. [41] developed a smart home sensor ontology based on SSN ontology 
and their simulation environment. Li et al. [42] proposed an architecture for inte-
grating semantics into M2  M/IoT service delivery platforms in which semantics 
integrate with various APIs. oneM2 M is developing a service layer for resource-
oriented architecture and service-oriented architecture.

Thoma et al. [43] described an approach to integrate smart objects and enterprise 
IT systems using Linked USDL for semantic endpoint descriptions. Their solution 
was evaluated with CoAP, UDP and 6LoWPAN. Jia et al. [44] presented the archi-
tecture of cross-layer IoT services platform based on semantics. They defined an 
IoT service ontology model and semantic-based IoT service description language 
OWL-Siot. The ebbits platform [45] provided a middleware for the integration of 
heterogeneous industrial devices and sensors, as well as a model-driven develop-
ment toolkit. Ryu et al. [46] proposed an integrated semantic service platform to 
support ontological models in different IoT services of a smart city. The main prob-
lems addressed were semantic discovery, dynamic semantic representation and 
semantic IoT data repositories. Qu et al. [47], showing the framework with entities 
represented as Semantic Web services, automatically created a sequence of IoT ser-
vices. They used the following set of ontologies: goal, role, constraint, message, 
status, space-time and activity ontology. Kim et al. [48] presented a semantic ontol-
ogy model for IoT devices, resources and services. Virtual objects included things 
with their profiles.

Kovatsch et al. [49] used RESTdesc description format and semantic reasoning 
to create IoT mashups of resource-constrained IoT devices. Additionally, they 
developed a semantic IDE tool for the experimentation and design of RESTdesc 
descriptions for IoT devices. Hasemann et al. [50] used RDF documents to describe 
IoT devices, including services, sensors and capabilities. A sensor can autoconfig-
ure itself, connect to the internet and provide Linked Data without manual interven-
tion. Vecchio et al. [51] semantically described physical devices as virtual objects 
and exposed their functionalities as IoT services. Furthermore, they used a cognitive 
management framework to tune key application parameters and provide self-config-
uration functionality of virtual objects. Chun et al. [52] proposed the IoT directory 
supporting semantic description, discovery and integration of an IoT object. It took 
into consideration complex relationships among things that change with time. Desai 
et al. [53] proposed a gateway and Semantic Web-enabled IoT architecture to pro-
vide interoperability between systems. This utilized established communication and 
data standards, including XMPP, CoAP and MQTT. The mentioned gateway per-
forms translation between different messaging protocols.
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Kiljander et al. [54] presented a semantic-level interoperability architecture for 
pervasive computing and IoT. They divided IoT into numerous local smart spaces 
managed by a semantic information broker. Wang et al. [55] proposed a sensing 
network ontology description model for IoT. Their work provided another way to 
semantically annotate sensing devices and their generated data. Den Hartog et al. 
[56] identified 48 semantic assets describing properties of smart appliances in smart 
homes. Based on these concepts, they designed reference ontology for smart things. 
Ara et al. [57] proposed a web of objects-based user-centric semantic service com-
position methodology for IoT. They designed an ontology model for a virtual object 
and composite virtual object. They used a service composition algorithm to create 
composite services and semantic descriptions. The next section will present a use 
case showing how to solve IoT service-level interoperability issues.

5.5  Use Case

In this section, a service-level IoT interoperability use case is presented. First, the 
section will develop the ontology used to semantically annotate things, their ser-
vices and existing cloud APIs. Next, the section will present a procedure to annotate 
and compose things as a service. Semantic Web technologies are utilized in the use 
case. It will show that most of the service-level interoperability problems can be 
completely or partially solved using an ontology-driven approach, as well as 
Semantic Web languages, technologies and tools. The aim of service interoperabil-
ity is to enable automatic or semi-automatic composition of services. The use case 
will show how this can be achieved with IoT services. To compose IoT services, the 
service-level incompatibilities presented in Table  5.1 must be taken into 
consideration.

5.5.1  Development of the Thing-as-a-Service Ontology

For the purpose of this research, the Ontology Development 101 [58] methodology 
was selected. The open-source tool, Protégé, and OWL were also selected. The rep-
resentation of IoT devices and things as services is determined as the domain of the 
ontology. This ontology is used to semantically annotate things as a service. The 
information in the ontology should provide answers to the following questions: 
What concepts describe IoT devices and things as services? How are mappings of 
data types supported among heterogeneous things and existing cloud services?

As a basis for the ontology, this chapter used concepts defined in the W3C 
defined SSN ontology [59]. The paper [59] is often cited in relevant research papers; 
existing IoT interoperability projects use or extend this ontology to semantically 
describe sensors. Next, the chapter used the actuator concepts from semantic actua-
tor network ontology developed by Spalazzi et  al. [34]. This ontology described 
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actuators, operations and related concepts. It extends the aforementioned SSN 
ontology. A total of 173 defined classes were organized in 24 top-level classes (see 
Fig. 5.1). Some top-level classes are directly inherited from SSN and SAN ontol-
ogy, including DesignedArtifact, Feature of Interest, InformationObject, Input, 
Method, Object, Output, PhysicalObject, Process, Region, Event, Quality and 
Situation. Class API represents vendor application programming interfaces. 
DataTypeMapper are instances used for data type mappings. Subclasses of 
IoTAcceptanceFactors represent IoT acceptance factors. IoTProtocols contains sub-
classes describing main IoT protocols. IoTSecurityProblems list the most important 
IoT security problems. The OWL class Service describes REST services, SOAP 
services, cloud services and things as a service. ServiceDataType describes data 

Fig. 5.1 The main hierarchy of the IoT ontology
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types used and inputs or outputs of services. ServicePrivacyFactors list main pri-
vacy factors for using IoT services. ThingCharacteristic describes the characteris-
tics of physical objects (things); WebThing is a digital representation of a physical 
object accessible via REST API. Table 5.3 lists sample classes from the ontology. 
The properties of classes that describe the internal structure of concepts along with 
their corresponding domains and ranges were also defined.

Due to a lack of gold standards and corpus of data, the human evaluation and 
application-based evaluation were chosen. Some tools eliminated OWL syntax 
errors and known ontology anomalies. First, the logical consistency of the devel-
oped ontologies was checked by means of the Pellet reasoner (incorporated in the 
used Protégé 5 tool). Furthermore, the Web-based tool, Ontology Pitfall Scanner! 
(OOPS!) [60], detected possible ontology anomalies. The tool identifies 41 ontol-
ogy pitfalls. The ontology was evaluated using the public OOPS! tool. Seven cases 
of one minor problem were found (see Fig. 5.2). Evaluation results by tool show that 
minor problems were not actual problems. Correcting them improved the ontology. 
Next, ontology was evaluated by human experts. They were sent a brief ontology 
description with figures of class hierarchy and a link of the complete ontology 
stored on GitHub. They were then asked to answer questions on completeness, con-
ciseness, consistency and flexibility of the ontology. After their initial feedback, the 
ontology was revised and improved. Experts e-mailed additional comments as 
newer versions of the ontology were created.

The ontology can be used to semantically annotate various smart things. The 
ontology can be viewed at https://github.com/dandrocec/IoTOntology.

The ontology is richer than any existing IoT ontology. It contains concepts that 
can be used to annotate services and existing cloud services (via cloud provider 
APIs). It can annotate privacy, security and supported protocols as nonfunctional 
properties of things and services. Main IoT security problems are listed as sub-
classes of IoTSecurityProblems OWL class and are derived from OWAPS IoT secu-
rity guidelines [61]. IoT acceptance factors and service privacy factors are listed in 
the ontology as subclasses of IoTAcceptanceFactors and ServicePrivacyFactors. 
IoT protocols are defined as subclasses of the following OWL classes: 
IoTDataProtocols, IoTDiscoveryProtocols, IoTInfrastructureProtocols and 
IoTTransportProtocols.

5.5.2  Achieving Service-Level IoT Interoperability

Concepts from the ontology are used to semantically annotate things and services, 
as well as their functional and nonfunctional properties. To test semantic annota-
tions, two simple things were used: (1) Arduino Yun with temperature sensor and (2) 
littleBits with cloudBits to connect to their cloud platform and two LED actuators. 
The basis of the solution was the usage of thing-as-a-service framework as pre-
sented in [35]. Additionally, the JSON-LD [62] file was stored on things to describe 
the sensors/actuators, supporting IoT protocols, and known interoperability/privacy 
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Table 5.3 Sample classes from the ontology

Class Super class Description

API Thing It represents vendors’ application 
programming interfaces (APIs)

DataTypeMapper Thing Its instances are used for data type 
mappings

Operation Thing, Situation Operation
ActuatorOperation Operation Operation that results in a change 

of the world’s state, i.e. hasEffect 
object property has a value

SensoryOperation Operation Operation that returns a parameter
Output Thing Any information that is reported 

from a process
PhysicalObject Thing Physical object
Actuator PhysicalObject An actuator can do (implements) 

acting: an actuator is any entity 
that can follow an acting method 
and thus control some Property of 
a FeatureOfInterest. Actuator may 
be physical device or any other 
thing that can follow an acting 
method to control a Property

Acting Device Actuator, Device An acting device is a device that 
implements acting

Service Thing Service
CloudService Service Cloud service
IaaSService CloudService Infrastructure as a service
PaaSService CloudService Platform as a service
SaaSService CloudService Software as a service
RESTService Service REST service
SOAPService Service SOAP service
ThingAsAService Service Thing as a service
ServiceDataType Thing Data types for input and outputs 

of the services
ComplexServiceDataType ServiceDataType Complex service data type
SimpleServiceDataType ServiceDataType Simple service data type
WebThing Thing A Web Thing (or simply Thing) is 

a digital representation of a 
physical object accessible via a 
RESTful Web API

SemanticWebThing WebThing It additionally supports semantic 
annotations using this (open IoT) 
ontology
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problems. JSON-LD is an attempt to create a simple method to add semantics to 
existing JSON documents. In that way, a particular thing can connect to concepts 
from the described ontology. Next, sensors were connected using a customized 
open-source project, Global Sensor Networks (GSN) [63]. GSN provided virtual 
sensors to abstract implementation details on accessing sensor data and user needs 
to specify XML-based deployment descriptors. This task could be done semi-auto-
matically when the server received a JSON-LD identification file from the thing that 
contains whether the thing contains sensors and of what types. It is possible to 
uniquely access data when different types of sensors are registered in GSN.

On the next level, Web services can represent different things, sensors and actua-
tors. GSN contains REST API. Therefore, these services can access sensors. For 
actuators, services can be built semi-automatically by using JSON-LD descriptions 
of things and services. When services are semantically annotated, things can be 
composed as services. This considers security and privacy features, as well as sup-
ported protocols. Simple scenario tested the aforementioned approach. Web ser-
vices read data from temperature sensors connected to Arduino Yun, motion trigger 
sensors connected to littleBits cloudBit and push data to LED actuators connected 
to littleBits cloudBit [35]. For example, a Java Web service client application was 
created to check if motion was detected. If so, the Web service for LED actuators 
was called to activate LEDs connected to littleBits [35].

Fig. 5.2 OOPS! evaluation results
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5.6  Conclusion

Various capabilities of things, a variety of possible IoT services and nonaccepted 
standards exist. Therefore, IoT interoperability will remain for a certain amount of 
time, as well as complex research and practical problems. This chapter listed IoT 
service-level interoperability issues and challenges. Existing work on data (data-
base) and service interoperability was listed and systematized using tables. IoT ser-
vices have similar issues to other types of services. In addition, they have a variety 
of IoT capabilities, sensor data formats and protocols supported by things. IoT stan-
dards initiatives were also listed. There are several promising IoT standard initia-
tives. Yet, one standard has not prevailed. IoT remains a dynamic field. Many 
companies and start-ups develop individual innovative things and IoT services, 
including proprietary protocols, services and APIs.

Solutions to known interoperability problems are listed. Semantic Web and 
Semantic Web services are the most used solutions to IoT interoperability problems 
at the service level. The chapter listed the most recent works on the resolution of IoT 
interoperability problems by means of Semantic Web. The use case presented how 
to practically achieve IoT interoperability on a small practical example.

Most of the solutions use ontology. While there are many IoT ontologies, there is 
no consensus on which to use. Mapping of existing IoT ontologies is a promising 
future work. Many solutions are based on W3C SSN ontology [59]. However, it 
only describes basic concepts on sensors. Therefore, it should be upgraded to 
include actuators, complex things and services. This was achieved in this chapter’s 
use case. The next problem was choosing an IoT service based on functional and 
nonfunctional properties. Other promising future research topics include the avail-
ability of search and register IoT services. Self-identification and auto-configuration 
of things remain unsolved. End users see basically IoT as a set of services, so 
achieving the interoperability of IoT services is very important
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Chapter 6
Simulating Sensor Devices for Experimenting 
with IoT Cloud Systems

Tamas Pflanzner, Marta Fidrich, and Attila Kertesz

Abstract As a growing number of powerful devices join the Internet, a new world 
of smart devices is being formed. This new trend is due to the emergence of the 
Internet of Things (IoT) paradigm, which also has a significant impact on the global 
Internet traffic. There are also more and more cloud providers offering IoT-specific 
services, since cloud computing has the potential to satisfy IoT needs such as hiding 
data generation and processing and visualization of tasks. While each cloud pro-
vider offers its own set of features, two critical features they all have in common are 
the ability to connect devices and to store the data generated by those devices. Using 
the capabilities of smartphones, many things can be simulated simultaneously sup-
porting most types of IoT devices. In this chapter, we introduce and categorize IoT 
cloud providers and classify common IoT applications. Based on these findings, we 
propose a mobile IoT simulator called MobIoTSim that helps researchers to learn 
IoT device handling without buying real sensors and to test and demonstrate IoT 
applications utilizing multiple devices. We also show how to develop gateway ser-
vices in cloud environments that can be connected to MobIoTSim to manage the 
simulated devices and evaluate device handling scalability. By using this tool, 
developers can examine the behavior of IoT systems and develop and evaluate IoT 
cloud applications in a more convenient and efficient way.

6.1  Introduction

The Cluster of European Research Projects on the Internet of Things considers the 
Internet of Things (IoT) as a vital part of future Internet [1]. They define IoT as a 
dynamic global network infrastructure with self-configuring capabilities using 
interoperable communication protocols. Things in this network interact and com-
municate among themselves and the environment, exchange sensor data, and react 
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autonomously to events by triggering actions mostly without direct human 
intervention.

According to a Gartner report [2], there will be 30 billion devices always online 
and more than 200 billion devices discontinuously online by 2020, which calls for 
an ecosystem that provides means to interconnect and control these devices. With 
the help of cloud solutions, user data can be stored in a remote location and can be 
accessed from anywhere. The concept of cloud computing has been pioneered by 
commercial companies with the promise to allow elastic construction of virtual 
infrastructures, which attracted users early on. Its technical motivation has been 
introduced in [3]. Gubbi et al. [4] have suggested that to support the IoT vision, the 
current computing paradigm needs to go beyond traditional mobile computing sce-
narios, and cloud computing has the potential to address these needs as it is able to 
hide data generation, processing, and visualization tasks. For this reason, there are 
more and more cloud providers offering IoT-specific services (e.g., Google Cloud 
Platform and IBM Bluemix platform). Some of these IoT features are unique, but 
every IoT cloud provider has the basic capabilities to connect and store data from 
devices. Many things have to be managed at the same time, and a wide range of 
devices and data formats are available; therefore, creating and examining such 
applications are not trivial. The aim of our research is to support the proliferation of 
IoT with the help of mobile and cloud technologies, thus to enable experimenting 
with complex systems consisting of interdependent components that work together 
to enable the creation and management of user applications. To manage the hetero-
geneity of protocols and data structures used in the IoT cloud systems, smartphones 
and tablets can provide useful assistance [5].

The main contributions of this chapter are (i) to introduce and categorize IoT 
cloud providers, (ii) to present a classification of common IoT applications, (iii) to 
propose a mobile IoT simulator called MobIoTSim that helps researchers to learn 
IoT device handling without buying real sensors and to test and demonstrate IoT 
applications utilizing multiple devices, (iv) to introduce how to develop cloud gate-
way services to manage the simulated devices, and (v) to evaluate the scalability of 
MobIoTSim device management feature.

The remainder of this chapter is structured as follows: Section 6.2 introduces 
related works. Section 6.3 gathers cloud providers offering IoT features, and Section 
6.4 presents a classification of various IoT applications. Section 6.5 introduces our 
proposed IoT device simulator called MobIoTSim and demonstrates its utilization 
with cloud gateways, evaluates its performance, and highlights future development 
plans. Finally, the contributions are summarized in Section 6.6.

6.2  Related Works

Recently, there has been an increasing competition between the leading vendors in 
the cloud market, such as Amazon, Microsoft, Google, and Salesforce. Each of 
them promotes its own, mostly incompatible cloud standards and formats [6], pre-
venting them from agreeing on a widely accepted, standardized way to utilize 
clouds in the IoT field. However, an interoperable cloud environment would benefit 
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customers, as they could migrate their virtual machines, data, and applications 
between cloud providers without setting data at risk. The integration of IoT and 
clouds has been envisioned by Botta et al. [7] by summarizing their main properties, 
features, underlying technologies, and open issues. A solution for merging IoT and 
clouds is proposed by Nastic et al. [8]. They argue that system designers and opera-
tions managers face numerous challenges to realize IoT cloud systems in practice, 
due to the complexity and diversity of their requirements in terms of IoT resources 
consumption, customization, and runtime governance. These related works also 
serve as a motivation to our research by raising the need for managing a large num-
ber of protocols and data formats by means of simulation.

The existing simulators used to examine IoT systems are general network simu-
lators, e.g., NetSim [9], Qualnet [10], and OMNeT++ [11]. With these tools IoT- 
related processes can be examined such as device placement planning and network 
interference. The OMNeT++ discrete event simulation environment [11] is a generic 
tool for simulating communication networks, multiprocessors, and other distributed 
systems. It can be used in numerous domains from queuing network simulations to 
wireless and ad hoc network simulations, from business process simulation to peer- 
to- peer networks.

There are some more specific IoT simulators closer to our approach. Han et al. 
have designed DPWSim [12], which is a simulation tool kit to support the develop-
ment of service-oriented and event-driven IoT applications with the aim to support 
the OASIS standard Devices Profile for Web Services (DPWS). Though this enables 
the use of web services on smart and resource-constrained devices, it also limits its 
application scope. The SimpleIoTSimulator [13] is an IoT Sensor/device simulator 
that is able to create test environments made up of thousands of sensors and gate-
ways on a computer. It supports many of the common IoT protocols (e.g., CoAP, 
MQTT, HTTP). Its drawback is that it needs a 64-bit Red Hat Enterprise Linux 
environment to be installed. Our approach is more focused on IoT device simulation 
with smartphones, which is easier to be combined with real-world applications. The 
Automaton Simulator [14] seems to be the closest to our concept. It simulates vir-
tual sensors, actuators, and devices with unique behaviors. With this tool complex, 
dynamic systems can be created for specific applications. Unlike our open mobile 
solution, it is a commercial, web-based environment with very limited 
documentation.

The motivation behind our research is that more and more cloud platform provid-
ers have started to offer IoT-specific services to ease the development of IoT cloud 
applications, but cases where many heterogeneous things need to be managed are 
hard to realize and examine. For example, smart city application scenarios using 
LoRa [15] or SIGFOX [16] technologies are very expensive and time-consuming to 
set up with real devices; hence, a base station costs more than a thousand Euros with 
a lot of configuration work. Therefore, we propose to use simulated devices with a 
cloud gateway in order to ease the development and testing of such systems.
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6.3  Providers Enabling IoT Clouds

The IBM Bluemix platform [17] is an IoT-enabled cloud solution offered by IBM. It 
can be used for quick development of cloud-based applications that take advantage 
of the data generated by the sensors and devices. Products of several major device 
manufacturers are supported, such as ARM, the Electronics B&B, Intel, Multi-Tech 
Systems, and Texas Instruments, but other individual cases can also be solved on the 
platform. Data generated by the equipment is sent by the popular and lightweight 
MQTT protocol to the cloud. The service allows the users to configure, manage the 
devices, and to store the history of generated data or stream real-time data to the 
application. The data transfer can be done through secure APIs.

To illustrate the inner workings of the platform, a real-time data visualization 
demo is also provided. To use it, first a data provider should be configured, which is 
in the simplest case a smartphone, but it is possible to use a TI SensorTag, ARM 
Mbed, Raspberry Pi, Intel, and other devices. The opened browser page on the 
smartphone can send real-time data of the phone’s movement to the cloud applica-
tion. The framework also provides a predefined web-based sensor simulator [18] 
that is able to act as three simulated sensors, sending temperature and humidity 
values through websockets.

The Bluemix platform offers several specialized services to support the develop-
ment of cloud applications. Some examples of these services are Push for messag-
ing, Cloudant NoSQL DB to manage NoSQL databases, Geospatial Analytics for 
location tracking, and IBM Analytics for Hadoop computations. The supported lan-
guages for application development are Java, JavaScript, GO, PHP, Python, and 
Ruby. In terms of costs, a price calculator helps to determine a monthly fee for a 
30-day trial period. Twenty devices can be connected and 100 MB of data can be 
sent to the devices for free, which is enough for about 50,000 messages. 1GB stor-
age space can also be used in this period.

The Google IoT solution [19] is part of the Google Cloud Platform, which 
includes various Google services. The scalability is an excellent feature in this plat-
form. It allows devices to be connected, and it collects data and visualizes them. The 
data sent from the devices are received by the Google Load Balancer and forwards 
to instances of the AppEngine applications. In general, the main part of the applica-
tion is the AppEngine, which may use other services. Compute intensive tasks are 
supported by the Compute Engine. The Cloud Storage and the Cloud SQL manages 
data. It is possible to send data with streams to the BigQuery service, which is ideal 
if we want to work with real-time data. In IoT systems, the visualization is an 
important feature; it is supported in real time using the Google Charts. Google is 
also strong in managing a large amount of data processing, which is important, 
since there are many devices generating huge amount of data in IoT systems. Google 
Firebase plays an important role in the management of the devices. It was originally 
designed to assist mobile devices (like MBaaS). It provides synchronized real-time 
database and authentication and is capable of offline operations.
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Amazon Web Services is a collection of services that make up a cloud computing 
platform, which are based on 11 geographical regions across the world. The most 
central and well-known services are Amazon EC2 (Elastic Compute Cloud) and 
Amazon S3 (Simple Storage Service). The products are offered to large and small 
companies as a service to provide large computing capacity faster and cheaper than 
the client company building and maintaining an actual physical server farm. AWS 
automatically handles the details such as resource provisioning, load balancing, 
scaling, and monitoring. One can create applications in PHP, Java, Python, Ruby, 
node.js,. NET, Go, or in a Docker container that runs on an application server with 
a database. An environment using the default settings will run a single Amazon EC2 
micro instance and an Elastic Load Balancer. Additional instances will be added if 
needed, to handle any peaks in workload or traffic. Each Amazon EC2 instance is 
built from an Amazon Machine Image which can be an Amazon Linux AMI or an 
Amazon Windows Server 2008 R2 AMI by default.

Amazon is also a cloud platform provider, since it has many components to build 
applications with. This allows for more general usage, but not so many details, 
which could make the developer’s job easier. With the three main components 
(Cognito for user management, Mobile Analytics, and Simple Notification Service), 
the mobile solution is a valuable part for the whole Amazon cloud offering. This is 
still not mature enough for enterprise usage, because the lack of integration and 
security.

Amazon IoT connects devices to services and other devices with a secure way. 
The device state is synchronized, so messages can be sent even if the device is 
offline. The Rule Engine helps to convert the data for services.

Azure [20] is a cloud computing platform, which allows developers to publish 
web applications running on different frameworks, written in different program-
ming languages such as any. NET language, node.js, php, Python, and Java. Azure 
Web Sites support a website creation wizard that can be used to create a blank site 
or use one of the several pre-configured sites. Developers can add or modify content 
of the website via multiple deployment methods: TFS, FTP, CodePlex, GitHub, 
Dropbox, Bitbucket, Mercurial, or git. Developers can select the place where their 
website will be hosted from several Microsoft data centers around the globe. Azure 
Traffic Manager routes traffic manually or automatically between websites in differ-
ent regions. Web sites are hosted on IIS 8.0, running on a custom version of Windows 
Server 2012. The component relating to IoT called IoT Hub can communicate with 
devices with protocols like MQTT, AMQP, and HTTP, but it is possible to imple-
ment other protocols too.

The main IoT-related properties of these cloud providers are shown in Table 6.1. 
Summarizing the comparison tables, Google, Amazon, Azure, and Bluemix have 
the highest variety of IoT-related services. The MQTT (or other IoT protocol) 
should be a basic functionality to an IoT cloud platform, but many providers have 
just a REST interface. IoT applications in Google can be composed of many con-
nected services, which make it complex providing more freedom for the developers. 
They are also very good at scaling and performance, and this complexity is compen-
sated by the simplicity of Firebase.
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From this survey, we can see that the most popular cloud providers have already 
realized the need for IoT support, and most of them provide reasonably good solu-
tions for IoT application development. Nevertheless, interoperability issues still 
exist, and applications managing a large number of different IoT devices are hard to 
develop and evaluate. Bluemix has also identified the need for a sensor or device 
simulator, but its tool is meant to serve simple demonstration purposes. Our aim is 
to design a generic solution to this problem.

6.4  A Survey of Common IoT Cloud Applications

In order to reveal current IoT application properties, we studied and investigat-ed 16 
IoT cloud uses from various application areas, including smart home, smart city, 
and smart region. Telemedicine [21] is also an important area; it was originally cre-
ated to treat patients far away from local health facilities or in areas with shortages 
of medical professionals. Nowadays, it is becoming a tool for convenient medical 
care: waste less time in waiting rooms or get quick care for minor but urgent cases. 
More precisely, telemedicine is a type of medical service where the service provider 
and the recipient do not meet directly; contact is established through some sort of 
data transfer system. Technically, telemedicine is a screening, diagnostic, therapeu-
tic, or rehabilitation aiding system supported by info-communication tools, where 
the necessary presence of the medical staff is provided from a distance through 
online connection.

Functionality of telemedicine services can fall into the following categories:

Table 6.1 Cloud IoT features

Provider Bluemix Google Amazon Azure

Open source no no no no
Hosting closed closed closed closed
Server languages many many many many
Client languages Java, JS Java, Python C, JS C, Java, JS
Mobile SDK Android, iOS Android, iOS Android, iOS Android, iOS, WP
Protocols MQTT REST MQTT, REST MQTT, AMQP, REST
Data store yes yes yes yes
BLOB no yes yes yes
GEO yes yes yes yes
Push. not yes yes yes yes
Trigger yes yes yes yes
Visualization yes yes yes N/A
Protocols MQTT REST MQTT, REST MQTT, AMQP, REST
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• Decision support: digital encyclopedias, medical leaflets, and guidelines.
• Teleconsultation systems are primarily made to assist the communication of phy-

sicians with all the parties involved.
• Monitoring applications provide information on bioparameters with the help of 

sensors.
• Register/diary applications require patients to give data regularly in order to pro-

vide useful information for the physician for an upcoming visit.
• Educational applications teach patients or professionals.

Telemedicine has several advantages, like more convenient, accessible care for 
patients, saves on healthcare costs, extends access to consults from specialists, 
increasing patient engagement, and better quality patient care. On the other hand, it 
also has some shortcomings, such as it requires technical training and equipment; 
some telemedicine models may reduce care continuity and may reduce in-person 
interactions with doctors, and navigating the changing policy and reimbursement 
landscape can be tricky.

With the recent growth of wearables, mobile medical devices, and consumer- 
friendly health apps, patients are starting to use technology to monitor and track 
their health. As people are becoming more proactive, they will be more open to vari-
ous alternatives to manage their health. The key to success of telemedicine is having 
the right health tracking tools and the smart modules that able to analyze bioparam-
eters and medical data, such as blood pressure or glucose level. With recent advances 
in Artificial Intelligence, smart modules are becoming smarter and smarter. 
Telemedicine is going to be part of the everyday life.

Next, we introduce and describe the applications we found in this area, and in the 
following sections, we present a number of use case scenarios to gather the IoT 
properties of these products and offerings and compile them into a taxonomy.

Use Case 1
The Mimo [22] project develops smart products that are created for babies for better 
sleep and for parents for more sleepless nights. It measures the baby’s breathing, 
temperature, body position, and activity level. It can send alerts and nightly reports 
to a smartphone. It uses ultralow-power Bluetooth connection. The caretakers can 
see the sensor information in real time. There are some extra products, for example, 
if the baby temperature is not optimal, a smart thermostat can change the room 
temperature, or if the baby is moving, a webcam can be used to check on the baby.

Use Case 2
The Vitality GlowPack [23] solutions can be used instead of the standard pill bottle 
top, to upgrade it to a smart pill bottle. It connects via Bluetooth to the user’s smart-
phone, and an application reminds the patient to take the pills at the right time. 
There is a lamp unit with the product; if the bottle is not opened when the patient 
needs to take the medicine, the lamp and the bottle top start to flash and then flash 
with playing music, or if these are not effective, the user can get an SMS or phone 
call. Usually there are two or three times a patient needs to take the medicine, so 
there is no much need for a high-speed network. There are some other applications 
to extend the use of the bottle cap, for example, the patient can alert a user if a drug 
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interaction is needed or can notify the user that two pills cannot be taken at the same 
time. If there is a connection between the smart top and the local pharmacy, it can 
ask for a refill if the application is low on medicine.

Use Case 3
AmSmart [24] is a smart home and home security solution. It includes high-quality 
home alarm system, IP cameras with HD quality, automated door opening, smart-
plugs, and heat and light control. The system can be controlled with a smartphone. 
If the alarm goes off, it is automatically sent to predefined receivers like guards, 
neighbors, or family members.

Use Case 4
Smart outlets [25] are designed to implement the smart electrical outlet concept. A 
user can remotely control the appliances or set timers from a smartphone. The num-
ber of IoT devices can be different, but on average we can say it is a medium- sized 
environment. It can communicate with different networks, but the Wi-Fi is the main 
profile. The monitoring and energy saving opportunities are big with this product.

Use Case 5
Key Finder Tags [26] are location sensors that attach to one’s utilities as key fobs or 
stick-on tags. Some have its own cellular data connection and GPS so they can 
report the position from everywhere. The simple versions only have Bluetooth con-
nection and can make a beeping sound or light signals. The smartphone can request 
the device to show its position. Some advanced tags are with a really useful reverse 
function, so if the user has the smart key fob, but can’t find the phone, after pushing 
the fob, the phone will signal its position.

Use Case 6
Wireless plant sensors [27] help to take care of our plants. These indoor or outdoor 
sensor systems use Wi-Fi connection to send status info about the plants and have 
different algorithms for different plant types to water them. To set a timer is a simple 
solution to not forget to water the plants. The size of the system may vary from few 
home plants to an industry size system.

Use Case 7
The Bigbelly [28] smart waste and recycling system helps to figure out if a particu-
lar trash needs to be emptied. It is a solar-powered system, so no electricity is neces-
sary for fullness level sensing or communication with the Bigbelly cloud. The 
system is designed to provide smart trash cans for a whole city.

Use Case 8
Outdoor lighting is an important part of the strategic asset base for cities, munici-
palities, and large enterprises. Echelon [29] offers a sophisticated, comprehensive, 
open standards-based approach to outdoor lighting control that makes it easy and 
affordable for lighting owners to increase the efficiency, safety, and versatility of 
their municipal and commercial lighting systems.
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Use Case 9
Open Source Lion Tracking Collars [30] is an open-source wildlife tracking collar 
system to help conservationists protect the last 2000 lions living in the wild in 
Southern Kenya and safeguard the Maasai herder cattle, restoring Maasai land to a 
working ecosystem.

Use Case 10
The smart parking [31] system can detect if the parking spot is reserved with a mag-
netic sensor. The cellular network is an option to send the data to the Save9 cloud 
and use it to provide smart parking solutions.

Use Case 11
The optic chemical sensors [32] are silicon devices mainly based on microelec-
trodes and specific sensing layers, such as silicon nitride for pH measurement. 
These devices for water monitoring can be integrated into a multi-parametric micro-
system together with conductivity, redox potential, temperature, and other sensors 
for water monitoring applications.

Use Case 12
With the Phenonet Project [33], plant breeders can evaluate the performance of dif-
ferent wheat varieties using measurements taken from remote sensors. These sen-
sors monitor things like soil temperature, humidity, and air temperature and are 
often used for crop variety trials. This allows farmers to forecast harvest time, 
improve plant health, plant irrigation time, and determine frost and heat events.

Use Case 13
AquamatiX [34] help cities to better control the flow of water by embedding sensors 
in water pipes throughout the distribution network and connecting them to pump 
control systems. These sensors monitor water flow, feeding the data back to facili-
tate optimized water pumping throughout the system. By minimizing the amount of 
water in the pipes, cities can reduce the amount lost to leakage and prevent the for-
mation of new leaks. In the process, the system also saves energy by reducing the 
need for pumping. Moreover, by distributing water monitoring throughout the net-
work, these technologies can detect abrupt events, like bursts, facilitating faster 
response and minimizing water loss.

Use Case 14
The newest Samsung smart refrigerators [35] have a big touchscreen, where the 
family calendar can be seen, notes, or photos. Three cameras are built in, and every 
time the door closes, fresh photos are sent to the user’s smartphones. This can be 
very helpful in the middle of a shopping.

Use Case 15
The latest GE Evolution Series Tier 4 Locomotive [36] is loaded with 250 sensors 
to measure staggering 150,000 data points in a minute. This data combined with 
other incoming streams of data from informational and operating systems help in 
anticipating events and help take driving decisions in real time.
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Use Case 16
Based in Ireland, the CleanGrow’s [37] project helps with monitoring the crop 
nutrients making use of a carbon nanotube-based sensor system. This information 
helps farmers to alter maturity rate or color of the crop production. As opposed to 
analog devices used conventionally, the CleanGrow device uses a nanotube sensor 
that detects quantity and presence of specific ion in the production.

Summary
Finally, we categorized the previously seen IoT applications according to four cat-
egories: context, number of devices, sensors, and connection type. In Table 6.2, we 
map the IoT use cases introduced in the survey to the categories of the taxonomy.

It can be seen from the table that the number of users is usually small scale and 
the number of devices is usually medium scale. This can be explained with the com-
plexity of deploying large-scale systems. The sensor types and the context of the use 
cases are really diverse, this comes from the nature of these systems (available 
everywhere), and they are generally used to help us in our everyday lives. Usually, 
we expect from devices to have low energy consumption, because usually they work 
with a battery. Regarding networking capabilities, we can examine the data genera-
tion frequency and data sizes of the transferred messages; they are generally low 
and small per device. Concerning the type of the networks, it can be seen that the 
wireless networks are dominating, and the bandwidth and error rate of these net-
work are not as good as in wired networks.

Table 6.2 Comparison table of IoT use cases

Use case Context No. of devices Sensors Connection type

1 Body/health Small scale Motion Short range/Bluetooth
2 Body/health Small scale Open/close Short range/Bluetooth
3 Building/home Medium scale Photo Long range/Wi-Fi
4 Building/office Medium scale Electric Long range/TCP/IP
5 Building/home Small scale GPS Short range/Bluetooth
6 Industry Medium scale Photo Long range/Wi-Fi
7 City Medium scale Load Long range/cellular
8 City Large scale Light Long range/Wi-Fi
9 Environment Medium scale GPS Long range/cellular
10 City Large scale Magnetic Long range/cellular
11 City Small scale Chemical Long range/cellular
12 Environment Medium scale Humidity Long range/cellular
13 City Medium scale Flow Long range/cellular
14 Building/home Small scale Photo Long range/Wi-Fi
15 Industry Large scale GPS Long range/cellular
16 Environment Large scale Chemical Long range/cellular
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6.5  The Mobile IoT Device Simulator

The main purpose of our mobile IoT device simulator, called MobIoTSim, is to help 
cloud application developers to learn IoT device handling without buying real sen-
sors and to test and demonstrate IoT applications utilizing multiple devices. The 
structure of the application lets users create IoT environment simulations in a fast 
and efficient way with the options for custom settings.

6.5.1  Requirements for an IoT Cloud Simulator

We identified the following incremental challenges relating to IoT networks:

• IoT devices are battery powered.
• They communicate using low-power wireless technologies (e.g., IEEE 802.11, 

IEEE 802.15.4, Bluetooth).
• There are different resource constraints of devices (e.g., on CPU, memory, 

connectivity).
• IoT networks are very dynamic as network conditions can change rapidly.
• They are heterogeneous: there is a large spread on device capabilities (e.g., pow-

erful cameras, low-cost temperature sensors); additionally there are sources (sen-
sors) and sinks of information (actuators).

• They are very dynamic: the networking environment in an IoT environment is 
largely unstructured and can vary rapidly.

There are different kinds of IoT environments; hence, their static or dynamic 
properties and the number of utilized devices can affect the design of such a simula-
tor. For example, a connected house can be regarded as a static environment, because 
its devices are usually in one place, possibly with wired connection, providing reli-
able network stability. The dynamic environment is more complex to simulate, in 
such cases we would like to simulate a broader part of the environment considering 
Wi-Fi interference, battery lifetime, and locations of the devices.

We are not aiming at simulating whole IoT systems and networks, but we still 
want to aid the design, development, and testing processes of these systems. Our 
goal is to develop a mobile IoT device simulator that can emulate real devices and 
sensors, thus it can be used in the previously mentioned processes instead of real 
resources.

The requirements for basic functionalities of such a simulator are to send and 
receive messages, generate sensor data (for one or more devices), and react to 
received messages. These capabilities are sufficient to use the simulator in IoT sys-
tem analysis. Requirements for advanced functionalities such as simulating network 
errors, recording and replaying concrete simulation cases, and connecting real IoT 
devices to the simulator can contribute to the analysis of more realistic system.
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In our work, we planned to support the basic functionalities with the following 
settings:

• A simulated device should have an ID or tokens for authentication.
• The generated sensor data should be made available in binary, plain text, or 

JSON format with metadata like date, time, and device state.
• Finally MQTT or REST communication protocols should be supported.

6.5.2  Architecture and Usage

Our mobile IoT device simulator can simulate one or more IoT devices, and it is 
implemented as a mobile application for the Android platform. Sensor data genera-
tion of the simulated devices are random-generated values in the range given by the 
user. The data sending frequency can also be specified for every device. The appli-
cation uses MQTT protocol to send the data with the use of the Eclipse Paho open- 
source library. The data is represented in a structured JSON object compatible with 
the IBM IoT Foundation message format [38].

Screenshots of the simulator can be seen in Fig. 6.1. After starting the MobIoTSim 
Android application, the user can navigate to the cloud settings or the device’s 
screens. The first one can be used to define the connection parameters of a gateway 
residing in a cloud. These parameters are organization ID, URL, port and connec-
tion type for communicating with its MQTT server and optional parameters: appli-
cation ID, auth key, and auth token, e.g., for accessing visualized data. Users can 
also select predefined settings from templates, an example parameter setting for the 
Bluemix Quickstart demo gateway can be seen in Fig. 6.1a.

The devices screen shows the list of currently simulated devices. Each device can 
be started/stopped or edited (see Fig. 6.1b). A new device can be added by clicking 
on a button below the list. The creation of a new device and editing the details of an 
existing device are managed by the same screen, the device settings screen (see 
Fig. 6.1c). Here, the user can specify a device type, an ID of the device, a token (to 
authenticate with the MQTT server of the gateway), the data generation frequency, 
and the parameters with the range for random numeric value generation. For cloud 
application testing, a great feature is to record sensor data and networking events, 
and later it can be replayed again many times, with exactly the same scenario.

In order to exemplify the usability of MobIoTSim, we connected it to the 
Quickstart application (i.e., demo gateway) of the IBM IoT Foundation with an 
MQTT server [39] (with the settings shown in Fig. 6.1a). Once we registered a simu-
lated device to the MQTT server of the IBM IoT Foundation system and started it in 
MobIoTSim (like MobIoT_test01 as shown in Fig. 6.1b), the data generated by the 
device is continuously sent to the demo gateway. A screenshot of the received and 
visualized data in the IBM IoT Foundation demo gateway can be seen in Fig. 6.2.

We also developed an own gateway service in the IBM Bluemix platform that is 
able to manage more devices simultaneously and to send a notification to the 
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MobIoTSim device simulator by responding to critical sensor values. This gateway 
service is basically an extended version of the IoT visualization application [40] of 
the IBM Internet of Things Cloud. It has a web-based graphical interface to visual-
ize sensor data coming from MobIoTSim. Messages (defined in JSON format) 
received from the simulated devices are managed by an MQTT server. It can also be 
used to send responses (or notifications) back to the simulated IoT devices in 
MobIoTSim.

Figure 6.3a shows how to connect the simulator to this gateway. Since it has a 
predefined template called Bluemix, we only need to specify an organization ID and 
the connection type (TCP or secure TLS) (the URL is given in the template) to 
enable connection to the MQTT server, while the application ID, the auth key, and 
token can be retrieved by registering to the gateway service (these parameters can 
be used later to sign in to the data visualization site of the gateway). The simulated 
devices also need to be registered to the MQTT server of the gateway service by 
specifying their device and type identifiers and sensor data thresholds, which replies 
with their token identifiers (to be used for device setting as shown in Fig. 6.1c). 

Fig. 6.3 Screenshots for using an own gateway: (a) Cloud settings, (b) Devices screen showing a 
warning
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Once these settings are made, simulated devices can be defined and started in the 
same way as shown previously for the demo gateway. With this own gateway, we 
can create advanced scenarios, such as managing more devices and responding to 
critical sensor data coming from the simulated devices. Figure 6.3b shows a situa-
tion in which a warning message is sent to a device (named MobIoT_test01  in 
MobIoTSim), when sensor data values are over/under a predefined threshold. 
Figure 6.4 shows the GUI of the own Bluemix gateway service by depicting the data 
received from a selected simulated device.

We have also created a gateway service in Azure IoT Hub [20] and connected 
MobIoTSim to it. In this way we can envision an inter-cloud scenario, in which 
simulated devices in MobIoTSim can send data to gateways in Bluemix and Azure 
clouds simultaneously. Figure 6.5 shows screenshots of the Azure IoT Hub, includ-
ing the gateway service called SED-IoT-App and a MobIoTSim device called 
javadevice. We also included a screenshot on the usage tab, showing 23 received 
messages.

6.5.3  Evaluation of the Multiple Device Simulation Scalability

We created a refined android application to focus on the scalability testing of 
MobIoTSim. This application is a simplified version of MobIoTSim, containing 
only its device handling functionalities, by providing access to low-level configura-
tions, e.g., specifying the number of threads for the simulated devices. It collects 
detailed statistical data regarding the simulation by measuring elapsed times for 
executing certain functions. It also connects to a Bluemix cloud IoT gateway and 
sends MQTT messages to it. When we performed the evaluations, the number of 
simulated devices was limited to 20 by the Bluemix platform.

There is a settings part of this application, where the number of devices, the mes-
sage frequency, the number of used threads, and the message content type can be 
set. The content type can be a simple JSON object with one random parameter or an 
OpenWeatherMap structured JSON structure describing cities and their randomly 
generated weather values. Other settings are hardcoded to the application for this 
testing, like the address of the Bluemix IoT service MQTT broker. After starting the 
test, the statistics can be accessed by pressing the STAT button.

Fig. 6.4 Data visualization in an own gateway service in Bluemix
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The statistical information has two main parts: the Settings and the actual 
Statistics part. In the Settings, we can find the number of used threads, the address 
of the MQTT broker, the number of simulated devices, the frequency of the mes-
sages, the generated clientID of one device, the MQTT topic where the messages 
were sent, the content type, and an example of JSON message. The Statistics part 
contains measured values like the duration of the simulation, the overall messages 
sent, and the total number of errors in the initialization, connection, or send process 
of the devices. The average times of the MQTT initialization, connection, and mes-
sage send methods and the average overall time cost of a message exchange cycle. 
An important measure is regarding the real-time difference between the cycles of a 
device. If the message frequency is set to 1 s in the settings, we should know if it 
was achieved or not in the testing. It can happen that during the simulation the 

Fig. 6.5 Connection with an Azure gateway service
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 simulated device cannot start the message-sending method every second, because 
the other devices would not let it to get the required resources, like CPUs. The aver-
age required time of a random-generated message is measured, too.

The tests were made with a Samsung S5 smartphone and a node.js visualization 
application in Bluemix. The most informative tests were made with 1 s message 
frequency, simulating 10 to 20 devices and using 3 to 12 threads. The message con-
tents were five random-generated values in a JSON object. The duration of each 
tests was 1 min.

The test results showed that the random data generalization consumes almost 
negligible time, so it does not interference with the simulation. First, we started 
using three threads, because the Samsung S5 has four cores, but from the results in 
Table 6.3, we can see that the number of threads is an important factor. With ten 
simulated devices, the three threads struggled, requiring approximately 1.5 s for the 
devices to start a message-sending cycle again, instead of the 1 s from the previous 
settings. With four threads the problem was solved. If the number of simulated 
devices grows, more threads are needed. For 15 devices, the threads are not enough, 
but 6 can manage the tasks. This can be seen in Fig. 6.6, where the blue line is the 
number of sent messages and the red line is the time between sending cycles. For 20 
devices, the 6 threads look weak, and for the required performance, we needed 8 
threads.

We also made additional tests to find out the limits of MobIoTSim using 20 
simulated devices. The minimum time required to send a message is around 0.5 s, 
because if the frequency is 0.5 or 0.25 s, there is no difference in the measurements 
even with 16 threads. As a result, the simulator can send a total of 2300 messages 
per minute with 20 registered devices to Bluemix.

Table 6.3 MQTT device simulation

Used threads Number of devices Message count Send time Time between cycles

3 10 441 405 1374
4 10 588 403 1023
6 10 610 431 991
8 10 603 435 993
12 10 610 462 999
3 15 432 406 2078
4 15 593 402 1531
6 15 863 411 1048
8 15 908 425 988
12 15 915 420 997
3 20 433 402 2766
4 20 583 401 2054
6 20 843 407 1402
8 20 1153 404 1030
12 20 1219 433 993
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6.5.4  Future Extensions

We plan to extend MobIoTSim our research in several directions. First, we believe 
that gateway templates could provide useful means for experimenting with the sim-
ulator. Currently, the previously introduced gateway services for the IBM Bluemix 
platform and Azure IoT Hub are available, but we plan to support additional, popu-
lar cloud providers, e.g., Amazon and Google. A general, platform independent 
gateway would also be useful. It could be realized with a cloud visualization appli-
cation consisting of three main parts: the data collection, the database, and the visu-
alization part. We already started to design such a general solution, where data 
collection is managed by an MQTT broker and a REST server. The database could 
be excluded, if the data storage is not necessary and the data streaming is possible 
directly to the visualization part, but for advanced features like displaying data his-
tory or statistical reports it is useful. The visualization part will be supported by live 
charts showing the data coming from the IoT devices in real time, and statistical 
data will also be available.

We also plan to support larger, scalable experiments in the future. For this pur-
pose, we will use a scripting language to be able to specify the devices and their 
properties and to schedule their activities. The bulk addition of devices future can be 
useful for larger tests, this way the user can add more than one instance of a device 
with one click. In the background, the application should register these devices to the 
gateway automatically, so the required authorization token cannot be a problem.

The network errors are common problems in real IoT systems, therefore we also 
plan to investigate this issue in more detail. The current version of MobIoTSim can 

Fig. 6.6 Number of sent messages and time between send cycles
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only generate random errors upon request (with a static setting). However, more 
complex simulations can also model the IoT network more accurately by consider-
ing wireless interference and propagation models. Those networking conditions are 
typically considered by wireless network simulators such as NS-3 [41]. While such 
an extension makes the simulations more realistic, it will also significantly increase 
setup time and computation time of such simulations.

6.6  Conclusion

In this chapter, we presented our results toward developing a general purpose IoT 
device simulator. We overviewed the available IoT cloud providers and the most 
common IoT application scenarios. Then, we introduced the requirements and per-
formed design steps of our mobile IoT simulator called MobIoTSim, which is capa-
ble of simulating more IoT devices by generating real-time sensor data. We have 
also developed private gateway services in the IBM Bluemix and Microsoft Azure 
platforms that can be connected to MobIoTSim to manage the simulated devices 
and to send notifications to the simulator by responding to critical sensor values. By 
using this tool, researchers and developers can examine the behavior of IoT systems 
and develop and evaluate IoT cloud applications more efficiently. Finally, we evalu-
ated the scalability of the device management component of MobIoTSim.

Our future work will address the extension of MobIoTSim with predefined data 
generation templates and a basic propagation and loss model to simulate the net-
work transmission. Further gateway developments for different cloud providers are 
also planned to ease integration with other clouds and foster inter-cloud 
deployments.
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Chapter 7
Managing Heterogeneous Communication 
Challenges in the Internet of Things Using 
Connector Variability

Muhammed Cagri Kaya, Mahdi Saeedi Nikoo, Selma Suloglu, 
Bedir Tekinerdogan, and Ali H. Dogru

Abstract Internet of Things (IoT) comprises smart systems that embrace 
 computational and physical elements. In these systems, physical and software com-
ponents are often tightly coupled. They are used widely in today’s technological 
systems, such as smart buildings, avionics, self-driving cars, etc. IoT systems are 
typically developed using hardware and software components with different interac-
tion types. This chapter introduces an approach to manage hyper-connectivity in the 
IoT through connectors that are equipped with variability capability. Computational 
and physical elements in IoT-based systems are represented as components. 
Different types of communications among these components are abstracted and 
managed in the definition of connectors. XCOSEML is a modelling language that 
leverages the variability concept for the component-oriented development method-
ology. Variable connectors of XCOSEML are employed to address the hyper-con-
nectivity challenges of the IoT domain. In our approach, systems are designed with 
XCOSEML constructs, and IoT domain needs are mapped to connector mecha-
nisms. The heterogeneity in IoT communications is addressed by connector vari-
ability. The proposed approach is illustrated with a case study for proof of concept.
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7.1  Introduction

Internet of Things (IoT) offers new capabilities to the distributed software intensive 
systems. Many devices are being connected to the Internet offering the availability 
of location-agnostic use: an already existing device that has been allocated some-
where in the physical world can be made a part of a new application, or its services 
can be utilized by different applications. Also, location-dependent services such as 
weather sensors in a specific city can be incorporated in various systems.

This kind of usage with widespread purposes is great; however, it comes with 
certain costs. There is no limit to types and capabilities of units that can be con-
nected incorporating their own communication styles. They may be abiding with 
existing communication protocols or may have their own ways of sending and 
receiving data and commands. Consequently, a system’s developer faces the 
problem of noncompatible devices trying to be integrated in a system. The scale 
of the diversity of what these units do and how they connect renders the job of the 
developer a difficult one. This problem is expressed as the heterogeneity in IoT 
and further, the multitude of communication techniques is expressed as 
hyper-connectivity.

Communication heterogeneity has been investigated in the literature to quite 
some extend. For example, heterogeneity among cooperating wireless sensor net-
works (WSNs) is referred in [1]. Device and protocol heterogeneity among different 
nodes of a WSN test bed are discussed in a survey on WSN test beds [2]. Different 
communication technologies in a smart home environment are investigated in [3]. 
Solutions to this problem are generally proposed through gateways handling differ-
ent protocols at different levels of communication (such as application level or 
transport level) in some research [3–5]. However, they do not have the modular 
design perspective in terms of software components. Patel et al. [6] suggest devel-
opment of IoT applications using software components without taking variability 
into consideration. In the work of Pradhan et al. [7], large-scale IoT applications are 
handled in a higher level of abstraction (like systems of systems), and the natural 
heterogeneity is considered as product line variability. However, they do not have 
explicit definition of connectors with the power of configurability.

This research is an effort towards offering a solution to such heterogeneity and 
hyper-connectivity. If a system integrated across a computer network such as the 
Internet can be visualized as nodes and links where procedural capabilities are mod-
elled by the nodes and their connections modelled as links, naturally the architec-
tural view “components and connectors” is associated. However, the goal in this 
chapter is not to use component-based modelling only for rigid definitions of differ-
ent systems. Rather, a more flexible option is desired where a degree of variability 
in the “product” can be achieved through more flexible approaches: configuring or 
adapting a smaller number of more established constituents, namely, components. 
The variability concept has proven itself in the industry. Current trend, however, is 
applying variability to components that are mainly providing the functional units of 
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a solution. Variability is also destined for connectors in this research, assuming dif-
ferent adaptation and communication tasks concerning the components.

The rest of the chapter includes a section on topic background that provides 
some brief information on IoT and Component-Based Software Engineering 
(CBSE). Then, a case study and problem description are explained before the sec-
tion where heterogeneity and hyper-connectivity in IoT are explained. The 
XCOSEML language is explained, and hyper-connectivity and heterogeneity mod-
elling in IoT are shown based on the case study. We discuss the applicability of our 
approach at the discussion section. After discussion and related work sections, the 
chapter ends with a conclusion.

7.2  Background

In this section, we provide the background that is required for the study. IoT and 
CBSE are included in the discussion.

7.2.1  Internet of Things

Nowadays, IoT has become a hot topic in the industry, but the concept is not new. It 
was in the early 2000s that Kevin Ashton was laying the foundation of the concept 
at Massachusetts Institute of Technology (MIT) that we call it as the IoT today. The 
idea was simply suggesting that if all objects in daily life were equipped with identi-
fiers and wireless connectivity, they could communicate with each other. At the 
time, the vision required major technological advances. Today, many of the obsta-
cles have been settled. The improvements in the communication medium include 
Internet Protocol version 6 (IPv6) and its support of billions of devices, improve-
ments in mobile data coverage, advances in battery technology and low-cost elec-
tronic devices and sensors.

The building blocks of the IoT are smart objects that are cyber-physical or 
embedded systems that connect to the Internet. The idea of the IoT undoubtedly 
presents immense opportunities but it also involves several technical and social 
challenges [8, 9]. An IoT system makes computing truly ubiquitous – this is the idea 
proposed by Mark Weiser in the early 1990s [10]. Atzori et al. [11] identify the IoT 
as the realization of three paradigms: Internet-oriented (middleware), things- 
oriented (sensors) and semantic-oriented (knowledge). Although describing the IoT 
in this way is because of the interdisciplinary nature of it, the real power of IoT can 
be seen in the application domains with these paradigms meeting one another.

IoT basically describes a world in which devices and sensors are connected to the 
Internet via wired and wireless communication technologies. These sensors use dif-
ferent local connectivity such as Radio-Frequency Identification (RFID), Wi-Fi, 
Bluetooth and ZigBee. Also, they use wide-area connectivity such as General Packet 
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Radio Service (GPRS), Global System for Mobile Communications (GSM) and 
third-generation (3G) technologies. IoT presents connectivity for both living and 
nonliving things including people, places and objects. Sensors are the central part of 
IoT. Using the sensors attached to physical entities, new information is gained from 
the data produced by the sensors monitoring different conditions of the environment, 
such as temperature, light, location, motion, etc. Communication mostly was 
employed among people and machines in the past. IoT-enabled objects bring new 
aspects to this concept. It is expected in the future that objects will have identities and 
connectivity so that you will be able to track, identify or communicate with them.

7.2.2  Component-Based Software Engineering

CBSE emerged as a reuse paradigm in the late 1990s. Component-based systems 
are realizations of complex and large-scale software systems based on reusable 
building blocks, namely, components. CBSE offers processes and methodologies to 
define, model, implement and integrate loosely coupled and independent compo-
nents. Starting from the 1990s, the core idea of Component-Based Software 
Development (CBSD) has been to integrate prebuilt software components for devel-
oping software systems rather than building them from scratch. Components have 
interfaces that indicate functionalities and behaviour whose implementation details 
are hidden. With specified interfaces, components can be integrated and deployed 
easily, even with third party components. As the demand for software systems grows 
for larger size and more complex requirements, component reusability and its man-
agement throughout the development process become an inevitable fundamental 
characteristic.

For handling connections by separating interaction and computation concerns in 
CBSD, there have been approaches defining connectors explicitly. In [12], by ana-
lysing existing component interactions, a connector taxonomy and classification are 
provided. They define service types and connector types. Some type of connectors 
deals with data communication among components (such as procedure call and 
events), and some others require additional processes to be done on data (such as 
unit conversion) or to coordinate the components in the system (such as arbitrators). 
These additional operations can be included into the definition of connectors.

There are very few studies in the IoT world that consider component-based 
application development. In [6], authors present an application development frame-
work – a domain model for the IoT that captures the generic concepts and associa-
tions to represent IoT systems. This work does not specify any details about the 
paradigms concerning communication among software components. Pradhan et al. 
[7] propose UMRELA, which is an abstract feature model and uses product line 
concepts to represent commonalities and variation points in heterogeneous distrib-
uted applications. The work also presents Application Management Framework 
(AMF) as a system prototype that uses the UMRELA. However, the contribution 
does not discuss the communication interoperability.
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7.3  Case Study and Problem Description

In this section, we describe the problem statement using an IoT case study on a 
smart office system that will be used throughout the chapter. We will use the case 
study for both explaining the problem and the solution.

7.3.1  Case Study: Smart Office

A smart office application is used as a case study to illustrate the heterogeneous 
communication needs and hyper-connectivity in an IoT system. This system is 
designed for providing employees a comfortable working place. It can also be 
extended with additional capabilities, such as security. Appliances and devices in 
this system can communicate with each other through different communication 
types and protocols. We describe a relatively small smart office system for the sake 
of simplicity. In our case, the smart office system can automatically or on demand 
make coffee and keep the temperature of the environment at a desired value. People 
can check the temperature, humidity and light level of the office by using their smart 
phones. They can request video or photo from the security camera that is connected 
to the local network. They can control the air conditioner and the coffee machine 
directly using their smart phones from the same office or from another room in the 
same building.

The smart office system is described in Fig. 7.1. A software-defined radio (SDR) 
connected to a personal computer (PC) is used to ease the communication with 

Fig. 7.1 Illustration of the example smart office system
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other devices that use different communication protocols. This assembly is referred 
to as “computer” in the remaining part of the chapter. A security camera is con-
nected to the computer via a wired connection and uses User Datagram Protocol 
(UDP) protocol to transmit data. A sensor that is capable of measuring the tempera-
ture (in Celsius), humidity and light level is placed in the office. It uses the ZigBee 
protocol to communicate with other devices. Another ZigBee-supported device is 
the air conditioner that can work autonomously and can be controlled by the user 
remotely. There is also a coffee machine in the office that can make coffee automati-
cally if lights are turned on in the office or by receiving commands from users’ 
smart phones. It can be reached only through Bluetooth communication. Smart 
phones can communicate through Wi-Fi and Bluetooth, and they are used by people 
to monitor the desired information and to interact with other devices in the office.

7.3.2  Problem Description

In the smart office environment, devices use different communication protocols. In 
our case study, users control air conditioner, use sensor to get measurements and use 
security camera through their smart phones. However smart phones do not contain 
a ZigBee unit. The security camera is only connected to the local network and it can 
be reached through wired connection. Also, the air conditioner and the coffee 
machine use the sensor in their automatic mode. Coffee machine also does not have 
a ZigBee unit, and the air conditioner cannot communicate with the sensor directly. 
Coffee machine can only be reached through Bluetooth. Smart phones can use 
Bluetooth to control the coffee machine if they are in the same office. However, due 
to the short range of Bluetooth, it cannot be used from other offices in the same 
building.

Using a generic protocol among all devices or producing devices capable of sup-
porting all possible protocols at once is not realistic and feasible when different 
device characteristics, vendors, power and computation constraints of the devices 
and their purpose of usage are considered. Moreover, an IoT configuration is not 
static but dynamic, that is, new IoT devices may be added and removed from the 
configuration at different times.

To address the required various interactions, the components should adapt their 
communication channels with interacting parties which in turn bring the duty of 
multi interaction management to the component. This increases complexity and 
decreases reusability of both components and connectors as the interaction logic is 
hidden inside the communicating components. Following the separation of  concerns 
principle, where components carry out their core functionality and connectors sat-
isfy interaction needs, a highly reusable and dynamic infrastructure is needed.
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7.4  Heterogeneity and Hyper-Connectivity in IoT

As a structure to enable integration of various applications and devices with diverse 
capabilities, IoT provides flexibility through a plug and play approach. Although 
IoT seems promising, the heterogeneity and the hyper-connectivity seriously 
impede the integration of different components. Its diversity shapes heterogeneous 
environments which interconnect different types of applications (software) and 
things (physical devices such as sensors and smart devices). In essence, the com-
plexity of interconnectivity lies in the variability of interaction semantics and 
functionalities.

IoT is an architecture that comprises a set of components together with their 
properties and connections requirements (via connectors) [13]. Software (applica-
tions) and hardware parts (things/devices) are considered as components of IoT. This 
architecture also employs a set of design decisions with respect to different views 
and viewpoints. Basically, heterogeneity in IoT reflects architectural elements: 
components represented via their interfaces, connectors and behaviour. Besides, the 
IoT architectures can be analysed in data, function and process dimensions as 
detailed in the following paragraphs.

Data dimension comprises the information which resides in the components and 
is shared with the other ones. Within this dimension, heterogeneity occurs where 
interacting components try to exchange different types, structures or semantics of 
data. For instance, a temperature sensor sends its sensory data in Celsius to a 
SCADA (Supervisory Control and Data Acquisition) system which processes the 
data in Fahrenheit.

Function dimension indicates the tasks that the component achieves. 
Heterogeneity in this dimension leads to discrepancy at either the semantic or syn-
tactic levels, while a mobile application requests the status of sensors as a single 
response where each sensor sends its status separately.

Process dimension includes the collaborative behaviour of the interacting com-
ponents to achieve a goal which is realized by component composition. Processes 
can be analysed via interaction properties:

• Behaviour (Interaction Logic): The flow of the collaborative behaviour
• Connector (Interaction Type, Task and Protocol): The way components use to 

connect with others

Heterogeneity is handled in process sub-dimensions of behaviour and connector. 
Heterogeneity in behaviour occurs when interacting components follow different 
workflows or when application of a set of changes is required with inclusion/exclu-
sion of a component. Heterogeneity at the connector level is a prominent one which 
leads to hyper-connectivity  – multiple means of communication among IoT 
 components. Multiple communication protocols and broad and short-range proto-
cols are widely used introducing heterogeneity: RFID, ZigBee, Bluetooth (1.0, 2.0, 
3.0 and 4.0, Bluetooth Low Energy), Wi-Fi, GSM (2G, 3G, 4G, 5G), Z-Wave, etc. 
Having these in mind, the needs to address hyper-connectivity in IoT are listed in 
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Table 7.1 where architectural elements (with their sub-elements) are listed along 
with associated heterogeneity.

Concerning hyper-connectivity, components working with different protocols 
shall join/participate in component interaction. Constraints on interacting compo-
nents shall be taken into consideration. Components which use different protocols 
such as Wi-Fi and Bluetooth shall seamlessly communicate with each other (com-
patibility) in all dimensions: function, data and process.

7.5  XCOSEML

XCOSEML [14] is a text-based domain-specific language with variability support 
for component-oriented development paradigm. It is named after a graphical model-
ling language – Component-Oriented Software Engineering Modelling Language 
(COSEML).

COSEML is proposed to be used with the Component-Oriented Software 
Engineering (COSE) approach [15]. The COSE approach emerged based on the 
idea of exploiting the component concept throughout all stages of development 
unlike CBSD. As a text-based version of its predecessor COSEML, XCOSEML is 
equipped with variability support. The primary target is to bring the advantages of 
component technology and benefits of using variability together. XCOSEML’s vari-
ability approach is inspired from the Orthogonal Variability Model (OVM) [16] and 
Covamof [17]. It separates variability specifications from other specifications, to be 
associated by using mapping constructs.

There are six types of constructs defined in XCOSEML: package, component, 
interface, connector, configuration interface and composition specification. Package 
represents the logical organization of a system or a part of a system. It can be used 
to show system level entities and can be represented by a component. It can contain 
further packages, but there must be components at the leaf level. A component rep-
resents physical code. In component-oriented development, it is assumed that the 
code was implemented before. If the desired component cannot be found, it can be 

Table 7.1 Analysis of IoT heterogeneity

Architectural 
element Sub-elements Realized by

Heterogeneity 
dimension

1.Components Functions Component 
interfaces

Function

Parameters of the 
functions

Data

2. Connectors Type Connectors Function, data, 
processTask

Protocol
3. Interaction Behaviour Composition Process
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implemented from scratch as a final choice. Functionality of a component is shown 
through one or more interfaces.

XCOSEML did not have detailed connector definition when it was first defined, 
and the provided connector definition did not support variability. In a recent work 
[18], the language was enhanced with connector variability, and the definition of 
connector has been extended. In [18], the connector definition is enriched by adding 
connector’s service type and connector type, as suggested by Oussalah et al. [19] 
based on the connector taxonomy of Mehta et al. [12]. Moreover, the interacting 
interfaces of components and their caller and responder methods are defined explic-
itly. As some connector types necessitate, connector operations are added to the 
connector definition. For example, unit conversion process between two compo-
nents is done by a connector. This process is abstracted with the “operation” key-
word and an identifier in the connector definition.

Connectors invoke the interface of a component for a desired functionality. An 
interface shows the methods that the component has with the classification of pro-
vided and required. Provided methods represent the functionality that the compo-
nent performs itself. A component must have at least one provided method in its 
interface. The functionality that the component expects from other components is 
listed as required methods.

The configuration interface is where the variability specification of the system is 
defined. It contains variation points, variants and constraints among different varia-
tion points and variants. It defines high-level “Configuration” variation points that 
are able to resolve low-level variation points by mapping relations when they are 
bound to a specific variant or a set of variants. “External” variation points are shown 
to developers for customization purposes. Configuration variation points also can be 
tagged as external. “Internal” variation points are bound by other (generally con-
figuration) variation points to hide the details from the developer. Packages and 
components can have configuration interfaces.

Composition specification is the process model of XCOSEML and shows inter-
actions among the system components through connectors. In early versions of the 
language, messaging among components was explicitly shown in the composition. 
After a detailed connector definition in [18], connectors are employed to represent 
the messaging between two components (an atomic interaction) and connectors 
appear in the composition specification that is saved as the composition file. 
Composition specification also has composite interactions: sequence, parallel and 
repeat. As their names suggest, they are used to group atomic interactions to be 
executed in a sequence, in parallel and iteratively, respectively. Composition speci-
fications can only be defined for the package level in XCOSEML.

System configuration is conducted through composition specification in 
XCOSEML. In other words, first variability is bound in the interaction model, and 
then other constructs are chosen according to this interaction selection. Variability 
options in the configuration interface are shown with tags in composition 
 specification to choose a desired interaction. After desired variants are provided, 
corresponding interactions are included in the configured composition specification 
by using the variability tags. Then, interacting components and related connectors 
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are allocated in the final system based on the chosen interactions. As connectors 
refer to the interacting component interfaces and their methods, these interfaces and 
methods are also included in the final product. Therefore, XCOSEML has variabil-
ity support for system composition, components, interfaces and connectors.

Before system customization, i.e. configuring the models that contain variability 
to obtain a functioning system, model checking can be applied to domain models. 
The SNIP model checker [20] is employed for this purpose that is based on the 
featured transition system (FTS) [21] approach. This tool uses textual variability 
language (TVL) [22] and fPromela, an extended version of the process modelling 
language Promela of the SPIN model checker [23] with variability, as the input 
models. XCOSEML’s configuration interface (variability model) and composition 
specification (process model that contains variability) can be transformed for verifi-
cation to TVL and fPromela, respectively. Therefore, all possible products of the 
system family can be checked against errors and deadlocks. A semiautomated tool 
for this transformation and model checking process for XCOSEML models is intro-
duced in [24].

After configured system models are obtained, components and connectors in the 
model are matched to the existing implemented ones. Our modelling language has 
an abstract modelling view and it encourages developers to visualize the system as 
decomposed units independent of implementation details. Therefore, it does not 
restrict the usage of different implementation languages and component models. If 
the desired components, connectors or interfaces cannot be found or they do not 
exist, they can be developed by choosing any programming paradigm.

In this chapter, XCOSEML connector definition is extended to meet heteroge-
neous communication challenges and hyper-connectivity in IoT. As we propose a 
solution for communication heterogeneity in the network protocol level, we extend 
the connector definition by showing the communication protocols of components 
explicitly.

7.6  Modelling Hyper-connectivity Using XCOSEML

In this section, we provide an approach to modelling heterogeneity and hyper- 
connectivity in the IoT environment using the XCOSEML language. We illustrate 
the approach using the case study presented in Sect. 7.3.

The proposed approach suggests variability-intensive component-oriented mod-
elling of IoT systems. Our focus is on separating functioning units from communi-
cation concerns and solving heterogeneity and hyper-connectivity issues of the 
systems exploiting connectors.

The first step of the development is system decomposition. Figure 7.2 illustrates 
the decomposition for smart office system. The system itself is an abstract entity that 
is composed of physical and computational components and represented as a pack-
age. Air conditioner, smart phone, security camera, sensor and coffee machine are 
components of the smart office system and they are shown in Fig. 7.2 with “_comp” 
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suffix appended to their names. Functionalities of components are exposed through 
interfaces. In this system, we define one interface for each component. It is also pos-
sible to add more than one interface for each component according to the design and 
the system requirements. Along with interface symbols as shown in Fig. 7.2, we 
used the “_int” suffix appended to their names to indicate interfaces. Provided meth-
ods and required methods are shown in the separate sections of the interfaces. For 
example, “setAC-ON” is a provided method in the “AirConditioner_int” interface, 
and “getCurrentTemperature” is a method representing the required functionality 
for the system operation. Listing 7.1 represents XCOSEML model of the air condi-
tioner component and its interface.

Fig. 7.2 System decomposition of the smart office system
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Communication concerns are handled in connectors in XCOSEML. We place a 
single connector between two components for any kind of communication as an 
architectural design decision. Different communication needs must be discovered to 
identify the “service type” and “connector type” of connectors. After detecting 
system’s connector types, existing connectors are searched for reuse. If they cannot 
be used directly, necessary modifications are done or new connectors are developed 
from scratch. In the case study, the smart phone needs to communicate with all other 
components. Moreover, the air conditioner and the coffee machine need to 
communicate with the sensor. Connectors are shown with blue lines between 
components. Their names contain “_conn” suffix as shown in Fig. 7.2. As can be 
seen in Fig. 7.2, the smart phone and the sensor communicate through two 
connectors: one of them is of service type “communication” and the other one is 
“conversion”.

XCOSEML allows connector variability by directly choosing connectors and by 
configuring selected connectors. This capability leads designers to first think of a 
connector’s service type and connector type. Also, similar communication concerns 
can be defined in the same connector. Then, the connector is customized consider-
ing purpose of usage.

Communication occurs between two components defining the two ends of a 
connector. Even if the communication is multicast or broadcast type, connectors 
have a source and a destination as we consider destinations individually at the mod-
elling level. Both sides of the interacting components can have different communi-
cation protocols. Based on the heterogeneity of the communication protocols of 
IoT devices, XCOSEML connector definition is extended considering this two-
sided structure. Listings 7.2 and 7.3 show the connectors “SP-CM_conn” and 
 “SP-S- Conv_conn” of the smart office system. A connector definition starts with 
the name of the connector. Then service type and connector types are included. 

Listing 7.1 The Air Conditioner Component and Its Interface in 
XCOSEML

AirConditioner_comp component
1 Component AirConditioner_comp
2   Interface AirConditioner_int
AirConditioner_int interface
1 Interface Air Conditioner_int
2   Provided Methods
3     setAC-ON
4   Required Methods
5     getCurrentTemperature
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Listing 7.2 An excerpt from the SP-CM_conn connector in XCOSEML

1 Connector SP-CM_conn
2   ServiceType communication
3   ConnectorType procedurecall
4   ConnectorMessage makeCoffee {
5     RequesterInterface SmartPhone_int
6     MethodOut requestCoffee
7     ResponderInterface CoffeeMachine_int
8     MethodIn prepareCoffee
9     RequesterProtocol Bluetooth
10     ResponderProtocol Bluetooth}
11   …
12   ConnectorMessage makeCoffeeR {
13     RequesterInterface SmartPhone_int
14     MethodOut remoteMakeCoffee
15     ResponderInterface CoffeeMachine_int
16     MethodIn prepareCoffee
17     RequesterProtocol WiFi
18     ResponderProtocol Bluetooth}

Listing 7.3 The SP-S-Conv_conn connector in XCOSEML

1 Connector SP-S-Conv_conn
2   ServiceType conversion
3   ConnectorType adaptor
4   ConnectorMessage askTempF {
5     RequesterInterface SmartPhone_int
6     MethodOut requestTemperatureF
7     ResponderInterface Sensor_int
8     MethodIn measureTemperature
9     RequesterProtocol WiFi
10     ResponderProtocol ZigBee
11     Operation C2F}
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Interacting component interfaces and their methods are inserted in a structure 
called “Connector Message”. The communication protocols for the interacting 
components are defined as “Requester Protocol” and “Responder Protocol”. The 
“source” side of the connector corresponds to the requester and “destination” to the 
responder. SP- CM_conn in Listing 7.2, connects the smart phone and the coffee 
machine components. Both of the devices can use Bluetooth. Therefore, SP-CM_
conn indicates both requester and responder protocols as Bluetooth in the “make-
Coffee” message in Listing 7.2, lines 9 and 10. This message is used for short-range 
communication due to the limitation of Bluetooth. However, employees want to 
send commands to the machine from outside of the office in order not to waste time 
to wait for preparation. The “makeCoffeeR” message is used for this purpose 
(between lines 12 and 18). This time the connector uses the computer (PC + SDR) 
in the office as a communication medium. The connector uses Wi-Fi to send the 
request from the smart phone to the computer, and then the computer transmits this 
request to the coffee machine via Bluetooth.

Listing 7.4 shows the variability model of the system, “SmartOffice_conf” 
configuration specification. Here, an external variation point is defined with 
three alternative variants. Binding time of this variation point is “development 
time” as line 7 indicates. Variability is used in XCOSEML to select desired 
interactions in the process model. An example process model, “SmartOffice_
cmps” composition specification, is given in Listing 7.5. Variability is shown 
with tags that start and end with a “#” symbol before an interaction. A tag 
becomes active only when its condition holds and it affects only one interaction 
(atomic or composite). In Listing 7.5, all interactions are atomic, and there are 
no dependencies among the variants.

Listing 7.4 Configuration interface of smart office system in XCOSEML

1 Configuration SmartOffice_conf of Package SmartOffice_pckg
2     externalVP officeTypeChoice:
3        alternative
4           variant basic
5           variant standard
6           variant advanced
7        bindingTime devtime
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SmartOffice_cmps in Listing 7.5 starts with the name of the composition. The 
variability model, in the form of a configuration interface, is imported in line 2. 
Components and connectors that take part in the interactions are also imported in 
lines 3 and 4. Context parameters, between lines 5 and 7, are global variables that 
can be used in any interaction in the file. Their values are tracked with guard 
statements such as in line 10. Composition specifications include interactions after 
a “Method” keyword and an identifier (line 8). In this process, the first interaction 
appears in line 9. Interacting components are shown at the left-hand side and 
right-hand side of an arrow operator (−> or <−) that indicates the request direction 
of the interaction. The connector and its corresponding message, which are used 
for the interaction, are given in curly braces ({}). The dot operator is used to 
separate the connector and its message. In this interaction, “SmartPhone_comp” 
requests temperature from “Sensor_comp”. All communication details – which 
interfaces are used, which methods are invoked for this communication, protocols 
of requester and responder components – are embedded in the connector. Here, the 
smart phone uses Wi-Fi and the sensor responds with ZigBee. Computer is used 
for mediation.

The sensor is able to send the temperature in Celsius. For the users that need the 
Fahrenheit degree, the system should provide a solution. This unit conversion is not 
the job of either the requester or the responder component considering separation of 
concerns. Conversion must be done in the connector. For this purpose, “SP-S- 
Conv_conn” connector is defined with service type “conversion” and connector 
type “adaptor” (in Listing 7.3). In addition to different communication protocols, a 
connector needs to represent the conversion operation. This is modelled with the 
“operation” keyword in the connector message in Listing 7.3 line 11. Corresponding 
interaction is given in Listing 7.5 at line 10. When the guard condition holds, the 
interaction occurs. Context parameters in guards can be set at development time; 
they also can be changed at run time. In this case, it is just checked once in the 
sequence of execution. If the parameter “converter” is set to “true” at the system 
development, the interaction will be executed. XCOSEML has the “parallel” inter-
action type to model the creation of a thread that can keep track of the changes on 
the value of a context parameter at run time.

In line 11 of Listing 7.5, turning the air conditioner on by the smart phone is 
provided with a variability tag. When “basic” or “standard” variants are selected for 
the “officeTypeChoice” variation point, the smart phone sends the “AC-ON” mes-
sage to the air conditioner in the configured composition specification. This com-
munication requires combining two components that use Wi-Fi and ZigBee. If the 
“advanced” variant is selected (line 12), the air conditioner requests the temperature 
of the environment from the sensor to turn itself on automatically. Both the air con-
ditioner and the sensor use ZigBee communication. Similarly, the coffee machine 
requests the light level of the environment to prepare coffee when the employees 
come to office and turn on the lights (line 14). This is also included in the “advanced” 
version and requires Bluetooth and ZigBee communication.

The language also allows the configuration inside of a connector for a particular 
communication. In Listing 7.5 at lines 15 and 16, the smart phone communicates 
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with the security camera through the same connector (SP-SC_conn). However, the 
security camera provides only photo of the environment when “standard” variant is 
selected via the “getPhoto” message of the connector (line 15) and provides a video 
stream when the “advanced” variant is selected via the “getVideo” message (line 
16). This communication is conducted through a wired UDP connection between 
the security camera and the computer and through Wi-Fi between the computer and 
the smart phone.

7.7  Discussion

A modelling perspective has been introduced to component-oriented development, 
especially addressing the issues related with the heterogeneity and hyper- 
connectivity in IoT-based systems. However, this scope is conforming to a broader 
study to allow more automated system development through a variability-centric 
approach. Previous work [25] has laid out the foundations for propagation of con-
figuration actions from high-level models towards executability in a top-down man-
ner that includes the processes and components of a software intensive system. For 
a future goal that assumes well-matured domain engineering, fundamentally speci-
fications only relating to variability should lead to a well-automated production of 
executable systems. The outcome of this research can be utilized as a step towards 
such a goal.

For the broader context of the older work related with defining the adaptation 
among components and web services, there has been attempts to classify the opera-
tions in the data, function and control dimensions. This research allocates execut-
able code in terms of “operations” inside “messages” in the connector that essentially 
are bringing in any kind of computational capability relating to those dimensions.

Traditionally, component-centric approaches have allocated the bulk of the tasks 
in the components and left the connectors as less complex items serving the compo-
nent connections. However, this research increased the responsibility of the connec-
tor element, allocating important tasks such as those surfacing with the problems 
related to IoT hyper-connectivity. A similar concept, that is “adaptors”, manifesting 
themselves previously as a component kind, or a design pattern, is now allocated in 
the connectors. It is observed through the experimentation that moving such tasks 
out of components to the connectors frees the components from noncohesive accom-
modations. Separation of concerns has been achieved to an extent. The “aspect” of 
adaptation is isolated and allocated in a more adept construct. A natural task alloca-
tion shapes up where more functional tasks are with components and communication- 
related tasks are within the connectors.

A decision has been made to only allow two-end connectors in adapting different 
protocols. A multiport connector involving more than two components was avoided 
that would almost function like an enterprise service bus, in a local scale. This deci-
sion offers better modularity to the component models for the solutions. Adaptations 
for one pair of components at a time result in a library of connectors that could be 
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utilized by ease and at need. There is no limit to the number or type of connectors 
that can be employed among any number of components.

Where to deploy a connector will continue to be studied as different IoT applica-
tions will suggest optimized adaptations: software or hardware will be one related 
question. Our approach is emphasizing the modelling view and can accommodate 
different deployment alternatives at this abstraction level. Also the model-driven 
approaches in configuring variability solutions in different platforms have proven 
feasible. The distributed nature of component-based systems makes it possible to 
deploy a component at different nodes in a networked setting. Even, run-time alloca-
tions are potentially possible. The suggested connectors are similar to  components in 
this regard – their allocation is just like that of components; connectors are also com-
putational units that are prepared for reuse. After the correct allocation of a connector 
between the components in a decomposition model, its deployment can be decided 
based on implementation-level optimizations. XCOSEML is fundamentally serving 
the decomposition view of software architecture. A connector can be deployed 
together with one of the connected components or even at a separate platform that is 
along the connection path of the two components. Likewise, the implementation tech-
nology could be software or hardware, as the implementation decisions will suggest.

SDR is a promising solution at the implementation level to cope with communica-
tion heterogeneity in an IoT environment. With a broad frequency range (e.g. 
70 MHz–6 GHz), it can handle many wireless communication protocols without a 
need for a new device per protocol. SDR and its hosting PC comprise a good medium 
to deploy our connector. However, we do not need to have a specific hardware to 
implement connectors or components as we have an abstract modelling view. For 
example, a PC equipped with Wi-Fi, ZigBee and Bluetooth capabilities and having a 
wired connection is enough to implement our case study without including an SDR.

There are limitations to the solutions offered in this research. Although effort has 
been exerted to provide a generic approach for addressing the variability and hyper- 
connectivity in IoT, solutions in this direction are yet young, and new research is being 
conducted by different teams around the world currently. There may be different 
requirements arising that could suggest some adaptation to our mechanisms. Also, 
there is a lack of industrial-level experience. The proposed approach works well in 
example problems and assignments conducted in academic settings. An analogy could 
be made to the “orchestration” facilities offered for the Service- Oriented Architecture 
(SOA) where the overall organization of multiparty services can be specified. A new 
unit with a different connection technology can be integrated through specifying its 
protocol for connection with the existing system. Therefore, new developments in the 
IoT technologies are expected to be contained within the framework of this approach 
by the specification of their adaptation mechanisms in corresponding connectors.
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7.8  Related Work

In this section, we describe the related work about connector modelling and vari-
ability in connectors. Also hyper-connectivity and heterogeneity in IoT systems are 
covered.

A detailed connector definition is provided by Oussalah et al. [19]. Their connec-
tor specification includes nonfunctional properties, service and connector types 
based on the connector taxonomy provided in [12]. However, they do not propose a 
mechanism for variability support. There are also some approaches that consider 
connector as a variable asset, while not defining operations and detailed  specification 
for connectors. For example, in [26], an approach is proposed to model component 
and connector view of software architecture based on OVM using UML annota-
tions. With the same limitations, a hierarchical variability modelling is proposed 
that has mapping on connectors in the work of Haber et al. [27]. Guendouz et al. 
[28] propose an approach that integrates Software Product Line Engineering (SPLE) 
and CBSE whereby annotations are used to describe variability on architectural ele-
ments including connectors. Details on connectors, however, are not explicitly 
defined.

In the context of autonomic computing, Cetina et al. [29] introduce Model-Based 
Reconfiguration Engine (MoRE) focusing on adaptation to changes in context at 
run time. The dynamic reconfiguration of architectural elements is achieved through 
activation/deactivation of features following reconfiguration. Reconfiguration of 
communication channels is used as a way of incorporating variability in interaction 
among components through OSGi (Open Service Gateway Initiative) Wire class 
specifications. However, the variability logic of connectors is hidden in the feature 
model where the management of variability becomes difficult in large-scale 
systems.

In [30], an extension of LISA (Language for Integration Software Architecture) 
with variability is proposed where OVM is employed to configure architectural ele-
ments. Variability in connectors is achieved by specifications of variation points and 
variants that is linked with port definitions belonging to a specific component.

Desai et al. [5] suggest an IoT interoperability architecture based on services. 
Their work utilizes proxies and gateways, as constructs that associate with connec-
tors, thus coming close to the approach offered in this chapter in terms of their 
association with the connector concept. However, their work does not leverage on 
variability.

In another approach, Issarny and Bennaceur [31] present a survey on state-of- 
the-art of interoperability in heterogeneous and distributed systems. They discuss 
multiple perspectives to be considered in this regard. They claim that consideration 
of only application-level interfaces to achieve interoperability among heteroge-
neous components is not enough, the middleware involved, plus the underlying net-
work environments need to be taken into account as well. They argue that despite 
the large amount of research done on the topic, it still remains an open and challeng-
ing problem to be addressed.
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Hallsteinsen et al. [32] consider connector variability through adaptation of mid-
dleware where one or more components and their connections are dynamically 
reconfigured with respect to the context. They utilize plans and utility functions by 
means of Quality of Service (QoS) properties. De Poorter et al. [33] introduce a 
solution to enable connectivity for heterogeneous objects in IoT through their IDRA 
architecture that connects units directly. However, this is not through component 
connectors or employing variability. Authors in [34] discuss the significance of 
communication heterogeneity among sensors which are using different communi-
cation platforms. They discuss the need for powerful devices that use different com-
munication protocols to manage device communication.

Another valuable work was carried out regarding functional and nonfunctional 
interoperability of connectors under the Connect project which targets heteroge-
neous network systems [35]. By protocol interoperability, they offer a framework 
which figures out both functional and behavioural harmony of a set of components 
that are willing to achieve a goal. By fulfilling coordinator and mediator needs, the 
connector seamlessly glues components together relying on the sequences of mes-
sages visible at their interfaces.

The extension of the X-MAN component model with feature models, FX-MAN 
[36] incorporates features with logical architecture of the system which is modelled 
as a tree of interacting components. Product families are constructed by the use of 
variation operators and family connectors (F-Select and F-Sequencer) defined in the 
logical architecture. However, most of the connector variability logic is hidden in 
the logical architecture. The developer cannot configure different variations of a 
connector that glues two or more components.

Authors in [37] use two types of cyber connectors. For one-to-one communica-
tion, a call-return connector is used and for one-to-many communication, a publish- 
subscribe connector is used. They mention the extension possibilities for these 
connector types to support other communication and network specifications. 
Moreover, different types of connectors are used for a controller unit of a quadrotor 
in [38]. Communication from higher layers to lower layers is handled by the send- 
receive connector, whereas the publish-subscribe connector is used for the opposite 
direction.

7.9  Conclusion

To address the complexity related with the heterogeneity and hyper-connectivity in 
IoT-based systems, variability mechanisms have been allocated in the connector 
constituents of the component-based software development approaches. A smart 
office example is provided for the demonstration of a possible solution employing 
the new connector definition. Experimentations have pointed to an efficient model-
ling outcome that enables the developers to separate their concerns about compo-
nent functionalities and their adaptation or communication needs.
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This approach, if accepted by the industry, may develop with its specific engi-
neering practices. The early experimentations resulted with some lessons learned. 
Our examples suggested the inclusion of only two-end connectors (those connect-
ing not more than two components) where different adaptations and conversions for 
serving a variety of messages in two directions are included. Different connectors 
should be employed between any connected pairs of components. Different connec-
tors should be deployed for even between the same pair of components for very 
different communication needs. Conforming to the existing connector types has 
also proven effective in our modelling assessments for different problems. 
Connectors to be defined should preferably be the suggested types, based on their 
assumed responsibilities.

Future work definitely will benefit from industrial applications. Our vision had 
been to offer solutions to the mentioned problem within the fast deployment of 
large-scale systems. To cater to this view, this research can be expanded by integra-
tion with variability-centric system development frameworks: building blocks for 
enabling the automated propagation of variability decisions and related configura-
tions can be studied. Support for connector selection, configuration or even devel-
opment can be provided through further tools to be developed that can guide 
intelligent and automated activities based on well-established domain knowledge.
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Chapter 8
Adopting the Essence Framework to Derive 
a Practice Library for the Development  
of IoT Systems

Görkem Giray, Bedir Tekinerdogan, and Eray Tüzün

Abstract The Internet of Things (IoT) is a global network of smart devices which 
enables these objects to collect and exchange data. Research in the IoT is still pro-
gressing, and it is now being applied in various domains. One of the key observa-
tions is that the development of IoT systems is not trivial and needs to be carefully 
managed to meet the required functional and quality concerns. Due to the heteroge-
neous aspects including software, hardware, and communication, developing the 
IoT systems implies various challenges that need to be explicitly considered in the 
development process and successfully resolved. Unfortunately, less focus has been 
provided so far on the development methods for the IoT systems. To address the 
particular IoT development concerns, we analyze and discuss the existing approaches 
that target the development of IoT systems. For this purpose, we use the Essence 
Framework, which has been recently developed as a framework for modeling vari-
ous kinds of software development practices and methods. We propose an initial 
practice library, which can be used to develop and/or tailor project-specific IoT 
system development methods.

8.1  Introduction

The Internet of Things (IoT) is a global network of smart devices, which enables 
these objects to collect and exchange data. An IoT system consists of many different 
devices including software, hardware, and communication elements.
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Research in the IoT is progressing at various levels and from different perspec-
tives [1]. In this context, various reference architectures have been proposed, differ-
ent sensor and actuator technologies are being investigated, and different 
communication protocols have been proposed. In addition, IoT is being applied in 
different application domains, and the size as well as the complexity of IoT systems 
is growing rapidly. Similar to the development of other systems, it is important that 
IoT systems are developed in a systematic manner in order to achieve a proper sys-
tem with respect to both the functional and nonfunctional requirements. So far, 
several IoT system development methods have been proposed in the literature, but a 
broader focus on development methods for IoT is still missing.

In this chapter, we explicitly focus on the development methods dedicated to IoT 
systems and environments. The development of IoT systems is not trivial and needs 
to be carefully managed to support the communication between the stakeholders, to 
support the analysis of the design decisions, and to derive the IoT system that meets 
the required functional and quality concerns. Unfortunately, not enough focus has 
been provided so far on the development methods for IoT systems. Due to the het-
erogeneous aspects including software, hardware, and communication, developing 
IoT systems implies various challenges that need to be explicitly considered in the 
development process. To address these concerns, we analyze and discuss the some 
of the existing approaches that focus on the development of IoT systems. For this 
purpose, we intend to use the Essence Framework, which has been recently devel-
oped as a framework for modeling various kinds of software development practices 
and methods. We also propose an initial practice library, which can be used to 
develop and/or tailor project-specific IoT system development methods. This prac-
tice library consists of generic practices from software engineering (such as use 
case), from project management (such as project initiation), and IoT-specific prac-
tices derived from two IoT system development methods [2, 3].

The remainder of the chapter is organized as follows. In Sect. 8.2, we present the 
background including IoT and the Essence Framework. In Sect. 8.3, we summarize 
the existing IoT system development methods in the literature. We propose a prac-
tice library for IoT system development based on the Essence Framework in Sect. 
8.4. Section 8.5 provides the discussion. Section 8.6 includes the related work, and 
finally Sect. 8.7 concludes the chapter.

8.2  Background

In this section, we first provide a conceptual model for IoT systems. Subsequently, 
we present the Essence Framework in Sect. 8.2.2.
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8.2.1  Internet of Things

Figure 8.1 illustrates a conceptual model for IoT systems, which is based on the 
AIOTI Domain Model [4]. Referring to this figure, an Entity of Interest (EoI) or 
Thing is an object (such as room, book, laptop, a sensing device) including attri-
butes that describe it and its state that is relevant from a user or an application per-
spective. The EoI has an observable state (e.g., temperature) that is observed by a 
Sensor (e.g., thermometer or tag reader). An Actuator can make changes to the EoI 
through an action. The interaction between a User and EoI is mediated by an IoT 
Service which is associated with a Virtual Entity, a digital representation of the EoI. 
Different kinds of digital representations of EoIs can be used such as objects, 3D 
models, avatars, or even a social network account. Some Virtual Entities can also 
interact with other Virtual Entities to fulfill their goal. An important aspect in the 
IoT is that changes in the properties of a Thing and its corresponding Virtual Entity 
needs to be synchronized. This is usually realized by an IoT Device that is embed-
ding into, attached to, or simply placed in close vicinity of the Thing. The IoT 
Device can interact with other devices and includes software components that imple-
ment the IoT Services.

Entity of Interest
(Thing)

IoT Device

Sensor Actuator

affectsobserves

Software 
Component

IoT ServiceUser Virtual Entityinvokes associated
with

runs on

interacts with

represents

interacts with

interacts with

Fig. 8.1 A conceptual model for IoT systems
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In the following subsection, we discuss the Essence Framework that was recently 
introduced by the SEMAT (Software Engineering Method and Theory) community 
[5] and published as a standard by the Object Management Group (OMG) [6].

8.2.2  The Essence Framework

The Essence Framework was introduced by the SEMAT [5] and published by OMG 
[6]. Its specification consists of an Essence Language and the Essence Kernel, as 
illustrated in Fig.  8.2. The Essence Language is basically a meta-model used to 
define practices and methods for system and software engineering. The Essence 
Kernel is a set of elements used to form a common ground for describing a software 
engineering endeavor and represented in terms of the Essence Language. These two 
components provide a common ground for understanding, comparing, and combin-
ing software development practices and methods.

As illustrated in Fig. 8.2, practices and methods can be represented using the 
Essence Language. A practice is defined as a systematic and repeatable way of 
achieving a predefined objective [7]. Practices can be seen as reusable ways of 
doing things in software development endeavors. Concretely, a method is composed 
of the Essence Kernel and a set of practices. The Essence Framework aims to set a 
ground for building a library of practices from which one can build methods respect-
ing the actual needs of a specific software development project. This way, it can 
boost the reusability of best practices. Moreover, the Essence Kernel provides a 
base for starting with establishing a specific method. A library of practices has been 
launched recently [8].

The core elements of the Essence Language used in this work are shown in 
Fig.  8.3. An Alpha (Abstract-Level Progress Health Attribute) is defined as an 
important dimension whose state should be progressed and tracked during a project. 
Work products are concrete representations of Alphas and describe them by provid-
ing evidence for states of Alphas. Progress in work products is tracked through level 

OMG Specification

Essence Language Essence Kernel

Practice

is based on

Method

is represented in

Fig. 8.2 The essence 
framework architecture
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of details. Both state of Alphas and level of details of work products are checked 
against checklist items. Activities update level of details of work products and cause 
progress in states of Alphas. Activities are organized into activity spaces, which 
target changes in Alpha states through the activities they contain. Patterns are used 
for defining complex concepts made up of practice or kernel elements. For instance, 
a role can be defined by a pattern involving required competencies, responsibility 
for work products, and participation in activities.

The Essence Framework is based on Meta-Object Facility (MOF) architecture 
[9]. Figure 8.4 illustrates three layers with some sample concepts and neglects the 
fourth layer for the sake of simplicity. The Essence Language resides in layer 2 and 
provides a meta-model for method engineering. Practices and methods are defined 
in layer 1 by instantiating meta-model concepts. In Fig. 8.4, Opportunity, which is 
an instance of Alpha, is a part of the Essence Kernel. Business model is an instance 
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Fig. 8.3 Partial conceptual model of the essence language
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of work product and can be arbitrarily defined as part of a practice by a method 
engineer. The layer 0 includes the actual concepts in a specific software develop-
ment project, for instance, a particular business model document written for a spe-
cific project.

The Essence Kernel, which resides in layer 1  in Fig. 8.4, provides a common 
basis for defining software engineering practices by instantiating three concepts of 
the Essence Language: Alpha, activity space, and competency. The Essence Kernel 
includes 7 Alphas, 15 activity spaces, and 6 competencies [6]. It defines states of all 
7 Alphas along with their checklist items; on the other hand, it does not define any 
activity or work product.

The Essence specification provides a graphical syntax of its language elements. 
Table  8.1 illustrates the language elements used in this chapter along with their 
symbols.

The Essence Kernel provides seven Alphas along with their interrelationships (as 
illustrated in Fig. 8.5), which can be considered as a general, core domain model of 
software engineering. The Alphas are organized into three areas of concern, namely, 
customer, solution, and endeavor concerns [6]. Customer concern addresses the 
business perspective; solution concern examines the specification and development 
of software system; and endeavor concern scrutinizes the team and the way it per-
forms its work.

The Essence Kernel also provides the states of each Alpha along with their initial 
checklists. As an example, the states of Opportunity Alpha and the checklist of its 
“identified” state are illustrated in the left and right sides of Fig. 8.6, respectively. 
The states of the seven Alphas and the items of the initial checklists cannot be 
changed, since these are forming the standard common ground. On the other hand, 
sub-Alphas can be defined to support seven Alphas. Moreover, the checklists of the 
seven Alphas can be extended by adding new checklist items (without changing the 
standard ones). In addition, the states of new sub-Alphas and their checklists should 
be defined by team according to specific needs of a particular project.

In summary, the Essence Language can be used to model the existing IoT system 
development methods or describe new methods. Moreover, the Essence Kernel can 
form a base to understand the portions of the methods addressing the development 
of software components of IoT systems.

Table 8.1 A partial illustration of the graphical syntax of the essence language

Alpha Work Product Activity space Practice Pattern

Alpha state Level of detail Activity Kernel

G. Giray et al.



157

8.3  IoT System Development Methods

We identified six IoT system development methods in the literature after applying a 
thorough domain analysis process. Domain scoping and domain modeling are two 
basic activities in the domain analysis process. Defining the scope and selecting 
proper knowledge sources constitute domain scoping. In this case, the scope is 
made up of IoT system development methods in the literature. In the domain model-
ing activity, we modeled these methods using the Essence Framework as presented 
in the following sections.

8.3.1  The Ignite IoT Methodology

The Ignite IoT Methodology [2] (abbreviated as “Ignite” in this chapter) aims to 
provide guidelines for developing products (systems in this case) for the IoT. The 
methodology consists of best practices and deals with enterprise, product, and 
project levels and aimed at various IoT stakeholders including product managers, 
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Fig. 8.5 Alphas in essence kernel and their interrelationships (Adopted from Ref. [6])
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project managers, and solution architects. Ignite has two major groups of 
activities:

• IoT Strategy Execution encompasses defining an IoT strategy and a project port-
folio (consisting of projects related to IoT) supporting this strategy. IoT Strategy 
Execution is about business perspective and involves identifying and managing 
opportunities, as well as making decisions on how to realize projects addressing 
these opportunities (such as internal project, external acquisition, spin-off, etc.).

• IoT Solution Delivery supports IoT system design and IoT project management 
along with some artifacts such as project templates, checklists, and solution 
architecture blueprints. IoT Solution Delivery is about realizing an IoT system, 
which is conceptually defined during IoT Strategy Execution, and has a life cycle 
consisting of planning, building, and running. Planning starts with project initia-
tion, in which an initial system design and a project organization chart are deliv-
ered. Moreover, an analysis of stakeholders, environment, requirements, risks, 
and resources should be conducted. After the initiation, the tasks are managed 
under seven work streams: (1) project management, (2) cross-cutting tasks, (3) 
solution infrastructure and operations, (4) backend services, (5) communication 
services, (6) on-asset components, and (7) asset preparation.

Fig. 8.6 The states of opportunity alpha and the checklist for the first state (Adopted from Ref. [6])
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These two groups of activities should be synchronized to keep the project port-
folio in line with the strategy and revise the strategy according to the outcomes of 
the project portfolio.

8.3.2  The IoT Methodology

The IoT Methodology [3] (abbreviated as “IoT-Meth” in this chapter) is a generic, 
lightweight method built on iterative prototyping and lean start-up approaches. It 
consists of best practices, tried and tested tools, protocols, and solutions used in 
real-world projects. IoT-Meth comprises the following steps, which should be exe-
cuted iteratively:

 1. The first step named “cocreate” encompasses the identification of problem areas 
by communicating with stakeholders, especially end users. The result is some 
ideas on opportunities or potential problems to be refined in the next step.

 2. In the second step named “ideate,” some of the ideas identified in the former step 
are further elaborated to be communicated with project managers, designers, and 
implementers. An artifact named IoT Canvas can be used in brainstorming ses-
sions with stakeholders to identify and validate high-level requirements.

 3. The third step named “Q & A” involves analyzing refined ideas further to close 
the gap between idea and implementation. Further analysis of domain and 
requirements along with validation of requirements is performed.

 4. The requirements are mapped to an architecture and infrastructure in the step 
named “IoT OSI.” An artifact named as IoT-Architecture Reference Model can 
be used in this step.

 5. “Prototyping” encompasses building prototypes and iterating toward minimal 
viable IoT systems. The forthcoming iteration plans are revised according to the 
assessments of prototypes.

 6. The last step named “deploy” closes the feedback loop by deploying the IoT 
system. In most cases, feedbacks trigger improvements in the system.

8.3.3  IoT Application Development

This is an approach to IoT application development (abbreviated as “IoT-AD” in 
this chapter) that consists of a development methodology and a concrete develop-
ment framework realizing this methodology [10]. IoT-AD treats the concerns of IoT 
domain in four areas, namely, domain, functional, deployment, and platform. 
IoT-AD proposes to specify the behavior of an IoT system using high-level abstrac-
tions and compile these abstractions to code. To this end, it provides a set of model-
ing languages and some automation techniques.
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8.3.4  ELDAMeth

ELDAMeth (Event-driven Lightweight Distilled state charts-based Agents 
Methodology) is an agent-oriented methodology for developing smart objects (SO), 
which are considered as fundamental building blocks of IoT systems [11]. 
ELDAMeth has three main phases, namely, modeling, simulation, and implementa-
tion. In the modeling phase, a detailed design is produced to be translated into 
platform- independent code. Simulation phase encompasses the verification of 
platform- independent code against requirements through simulation. Platform- 
specific code is developed and tested in the implementation phase.

8.3.5  Software Product Line Process to Develop Agents 
for the IoT

Ayala et  al. [12] applied software product line engineering (SPLE) approach to 
development of agents for IoT systems (abbreviated as “SPLP-IoT” in this chapter). 
What is borrowed from SPLE is identifying commonalities among software agents 
and developing a common reference architecture. To this end, the domain engineer-
ing phase is responsible for establishing a reusable platform and thus defining the 
commonality and variability of a multi-agent system. Two key work products, IoT 
multi-agent system variability model and IoT multi-agent system architecture, are 
produced in this phase. The application engineering part encompasses building 
agents, which meet specific application requirements, by exploiting variability 
model and leveraging IoT multi-agent system architecture.

8.3.6  A General Software Engineering Methodology for IoT

A general software engineering (SE) methodology for IoT (abbreviated as “GSEM- 
IoT” in this chapter) proposes some general guidelines for developing IoT systems 
[13]. GSEM-IoT involves three phases, namely, analysis, design, and implementa-
tion. In the analysis phase, actors, requirements, and existing infrastructure are 
identified and analyzed. Avatars, groups, and coalitions are designed in the design 
phase. The implementation phase is about implementing avatars and coordinators 
along with deployment.
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8.4  Proposed IoT System Development Practice Library 
Based on the Essence Framework

Methods play an important role in developing quality systems. Therefore, many 
practices and methods have been proposed in system and software engineering, 
including six methods for IoT system development. All of these proposed methods 
are monolithic [14] and are hard to reuse in every IoT-related project. Moreover, 
extracting various practices from these methods and reusing them as a combined 
new method is another challenge. On the other hand, it is generally accepted that 
each project is unique and needs a tailored method to run it. Therefore, it makes 
sense to have a practice library consisting of reusable pieces validated in real-world 
projects.

In this chapter, we present the results of our initial analysis and modeling of the 
current IoT system development methods based on the Essence Framework. The 
process of modeling a practice or method based on the Essence Framework is called 
essentialization [15]. We used the approach proposed in [16] for essentialization. 
We worked through the practices, which address the Alphas in the customer concern 
illustrated in Fig. 8.5. Moreover, we present an initial practice library mainly derived 
from Ignite and IoT-Meth methods. The reason we have chosen these methods is 
that they are more appropriate to be broken down into reusable practices.

Ignite addresses the customer concern by two practices named IoT Opportunity 
Identification and IoT Opportunity Management, illustrated in Figs. 8.7 and 8.8, 
respectively. IoT Opportunity Identification practice is about generating and refin-
ing IoT Opportunities. Each opportunity can be progressed and tracked using a 
sub-Alpha named IoT Opportunity. The practice contains activities regarding gen-
eration, initial assessment, and refinement of IoT Opportunities. Structured and 
open idea generation approaches are two ways of generating IoT Opportunity ideas. 
St. Gallen Business Model Navigator and Innovation Project Canvas are work 

Fig. 8.7 An Ignite 
practice: IoT Opportunity 
Identification
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 products, which can be used for refining IoT Opportunity idea. The output of refin-
ing an idea is an IoT Opportunity idea sketch work product.

As illustrated in Fig. 8.8, IoT Opportunity Management practice involves devel-
oping a business model to get funding. This practice can provide progress on IoT 
Opportunity sub-Alpha. This progress is achieved by developing a business model. 
An input for this business model work product is IoT Opportunity idea sketch, 
which is produced within the scope of IoT Opportunity Identification. Another 
important activity is assessing impact and risk.

The first two steps of IoT-Meth are directly related to the customer concern. 
Cocreate practice (Fig. 8.9) is about identifying problems, which can be solved by 
developing IoT systems. Since these problems can be identified through stakeholder 
involvement, the practice has activities for eliciting information from stakeholders 
using some approaches.

IoT Opportunity Management
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model

develop 
business 
model

assess impact 
and risk

Fig. 8.8 An ignite 
practice: IoT opportunity 
management
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The second step of IoT-Meth involves ideate practice (Fig. 8.10), in which prob-
lems are elaborated further to be communicated with project managers, designers, 
and implementers. IoT-Meth proposes to use a work product named IoT Canvas for 
brainstorming with various stakeholders. Therefore, IoT Canvas has information 
both for customer and solution areas of concern. Moreover, ideate practice has 
“identify key actors” activity for the customer concern and the rest of activities for 
the solution concern.

IoT-AD starts with modeling the domain in which an IoT system will be devel-
oped. It examines application architecture and logic according to the requirements 
along with deployment- and platform-specific concerns. As a result, IoT-AD pro-
poses activities and work products for the solution concern. ELDAMeth expects 
requirements and high-level design model to begin developing an agent for an IoT 
system. It does not cover any activity regarding the customer concern. SPLP-IoT 
method takes domain and application requirements as an input. Therefore, it 
addresses the solution concern by proposing some activities and work products.

GSEM-IoT starts with identifying stakeholders in its analysis phase. It proposes 
three abstract classes of actors, namely, global managers, local managers, and users 
to address the different components of an IoT system. Apart from this, it does not 
contain any guideline regarding the customer concern. Therefore, we can conclude 
that GSEM-IoT does not contain any practice in the customer area of concern.

The practices of Ignite and IoT-Meth, which are modeled in this chapter, cause 
some state changes in stakeholders and Opportunity Alphas, as shown in Fig. 8.11. 
From this figure, we can infer that there are practices whose objectives are overlap-
ping. GSEM-IoT mentions about identifying key actors, which partially addresses 
recognized state of stakeholders Alpha.

Figure 8.12 illustrates the idea of having a practice library for IoT system devel-
opment projects. This vision is explained in [6, 7] in general terms and exemplified 
in [14, 15] for the IoT domain.

Ideate
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The practices shown in Fig. 8.12 have been obtained from different sources. Use 
case and user story practices are well-known in software engineering domain. They 
are also defined as practices in [8]. Some practices from project management 
domain are essential to every system/software development project. It is suggested 
that Ignite should be complemented with project management practices [2], prefer-
ably proposed by PMBOK [17]. Therefore, our practice library involves project 
initiation and project planning practices, which are defined in PMBOK (Project 
Management Body of Knowledge) as well. IoT Opportunity Identification (IoT 
Opp. Ide.), IoT Opportunity Management (IoT Opp. Man.), IoT System Analysis 
(IoT Sys. Ana.), IoT Functional Design (IoT Func. Des.), and IoT Technical Design 
(IoT Tech. Des.) have been derived from Ignite [2]. Cocreate, ideate, and Q&A 
practices have been derived from IoT-Meth [3]. As shown in Fig. 8.11, some of the 
practices proposed by Ignite and IoT-Meth are overlapping according to the Essence 
Framework. Therefore, some of the practices can be compared before using them as 
a building block of a tailored method. Ignite also states that it does not cover any 
practice regarding IoT device management. Therefore, we added two illustrative 
practices, namely, IoT device design and IoT device manufacturing. When IoT 
device manufacturing is needed for an IoT project, appropriate practices can be used 
to fulfill these needs.

8.5  Discussion

The use of a practice library is important for documenting, reusing, improving, and 
enhancing the body of knowledge in system and software engineering. The descrip-
tions of some methods state the areas they do not cover. For instance, Scrum prac-
tice does not define how to specify requirements. Scrum practice should be 
complemented with a practice to specify requirements, such as use case, user story, 
or any other practice. As a second example, Ignite complements its content using 
PMBOK practices. Moreover, it explicitly states that it does not cover any practice 
on IoT device management. As a result, such a practice library, a language to define 
practices (the Essence Language), and a common ground (the Essence Kernel) are 
beneficial both for practitioners and method engineers. From method engineering 
perspective, we can also observe that there are overlapping activities in Ignite and 
IoT-Meth. This means that two separate efforts are put on achieving the same or 
similar objective. Such a library can direct method engineers’ effort to the areas 
where new practices are needed.

In our case, the Essence Kernel constitutes the common ground for the practice 
library. On the other hand, the Essence Kernel is originally designed for software 
engineering. Therefore, it will not cover all parts of an IoT project, since such projects 
include IoT devices, sensors, actuators, etc. (as shown in Fig. 8.1). Having a system 
engineering kernel is an enhancement area, which is already identified in [18].

The book that describes Ignite [2] includes a semi-structured description of the 
method along with many project-specific details. While essentializing Ignite, we 
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had difficulty in separating the description of the method, which is much more gen-
eral, from project-specific details. A practice library makes it possible to define a 
method using the Essence Language by capturing the essentials and separating the 
details [7]. In addition, IoT-Meth is described only by a short presentation [3], 
which is far from guiding a team for an IoT system development project. The 
method engineers designing IoT-Meth may benefit from the Essence Language, the 
Essence Kernel, and a system engineering kernel (not in place yet) to structure more 
knowledge and experience from real-world projects and present these to system and 
software engineering body of knowledge in the form of a practice library.

Besides providing a practice library, the Essence Kernel also provides a medium 
to assess the status of a project (using Alphas and checklists) and decide on the next 
steps. This actionable nature of the Essence Kernel is also useful in complex projects. 
One of the challenges of IoT system development projects is the involvement of 
many stakeholders with different backgrounds [10]. Key stakeholders can extend the 
Essence Kernel at the initiation stage of an IoT system development project by defin-
ing sub-Alphas collaboratively. Such a tracking mechanism can constitute a common 
ground among the stakeholders during the project. For this purpose, as an example, 
Ignite proposes a work product named IoT Project Dimensions, which can be used to 
conduct project assessment and compare different IoT projects [2]. The Alpha con-
cept of the Essence Language is more general, which can be applicable to all system 
and software development projects and cover IoT Project Dimensions as well.

8.6  Related Work

The Essence Framework specification includes some demonstrations of essential-
izing of some practices, such as Scrum, user story, Unified Process, and waterfall 
life cycle [6]. Essentialized version of Scrum is presented in [19]. In this study, the 
authors illustrate how the practices of Scrum, XP, and DevOps can be combined to 
establish a method. A partial essentialized version of Nexus is presented in [16]. 
References [14, 15] involve an introduction to the establishment of a practice library 
for IoT system development and the essentialization of Ignite. In this chapter, we 
use the same idea of having a practice library and propose an initial library after 
partially analyzing two IoT system development methods.

The Software and Systems Process Engineering Meta-model (SPEM) is a pro-
cess engineering meta-model as well as a conceptual framework, which can provide 
the necessary concepts for modeling, documenting, presenting, managing, inter-
changing, and enacting development methods and processes [20]. Both the Essence 
Framework and the SPEM provide a language to define practices and methods. In 
addition to this, the Essence Framework also provides a generic domain model of 
software engineering, which is the Essence Kernel. As illustrated in Fig. 8.4, the 
Essence Framework provides a language at layer 2 and the Essence Kernel at layer 
1, whereas SPEM provides only a meta-model, which resides at layer 2. The Essence 
Kernel forms a base to understand, compare, and combine practices and methods. 
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Moreover, the Essence Framework emphasizes the importance of tracking progress 
and health of a project using Alphas and sub-Alphas.

8.7  Conclusion

The IoT is a recent paradigm that has a pervasive impact on society. For many dif-
ferent application domains, IoT concepts will become an important innovation. 
Developing IoT-based systems however appears to be different from traditional 
software-intensive systems. In this chapter, we have discussed the application of the 
Essence Framework for building an initial practice library using practices derived 
from two different IoT system development methods, as well as more generic prac-
tices from software engineering and project management domains. In principle, it 
appears that the Essence Framework is to a large extent expressive to model soft-
ware portion of IoT system development methods. An improvement area can be the 
development of a system engineering kernel to cover hardware and communication 
aspects of IoT systems. The application of the Essence Framework to the IoT meth-
ods also highlighted some of the shortcomings or incomplete aspects for developing 
IoT systems using the current IoT development methods. Hence, we think that our 
study is of value for both providing insight in the Essence Framework and IoT 
methods. On the one hand, the results of our study can be used to enhance the 
Essence Framework; on the other hand, these results could be used to enhance exist-
ing IoT development methods or create even novel IoT methods. Our future work 
will indeed include the development of a novel IoT method based on the observa-
tions from this study. Further we will apply the IoT method for developing real IoT 
systems.
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Chapter 9
Integration of Buildings Information with Live 
Data from IoT Devices

Zohreh Pourzolfaghar and Markus Helfert

Abstract Information generated by smart buildings is a valuable asset that can be 
utilised by various groups of stakeholders in smart cities. These stakeholders can 
benefit from such information in order to provide additional valuable services. The 
added value is achievable if there is access to buildings information integrated with 
the live data being generated and collected from smart devices and sensors residing 
within the Internet of Things (IoT) environment. Notwithstanding the prominence 
of this combination, there are some barriers relating to the integration of buildings 
information with the live data. With the aim of examining such barriers, this chapter 
primarily focuses on information exchanges between various domains in smart cit-
ies. It also provides a vision on specific domains that can benefit from integration of 
buildings information with other live data. This can impact and improve the quality 
of various e-services. This chapter describes the barriers and suggests solutions to 
realise these visions. At the end of this chapter, a summary of the barriers is pro-
vided and discussed followed by proposals for future research topics to provide 
solutions to the inherent barriers.

9.1  Introduction

The concept of smart cities has emerged during the last few years to describe how 
investments in human and social capital and modern ICT infrastructure and 
e- services fuel sustainable growth and quality of life, being enabled by appropriate 
management of natural resources and through a participative government [1]. 
Smart buildings refer to a suite of technologies used to design, construct and oper-
ate the buildings more efficiently [2]. To enable smart buildings, Zhou [3] stated 
that a wide range of information needs to be available from varied sources. Baetens 
[4] suggested that the smart buildings include different smart features, analytics 
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and sensors used to monitor and control the power supply through renewable 
energy, smart metering technologies and smart windows. Zhou [3] also expressed 
that most of the smart technologies exploit information about the buildings design 
and operation specifications at a later stage as far as smart buildings are concerned. 
This can be valuable, for example, to estimate energy consumptions for industrial 
or marketing purposes.

Smart buildings information can be utilised by various groups of stakeholders 
in smart cities. These diverse groups of stakeholders may take advantage of the 
information and add more values to their services. Some examples of these indus-
tries are facility management, utility companies and smart commerce. Maintenance 
companies can use buildings information to speed up the maintenance processes, 
as well as improving the efficiency of their services. Likewise, utility companies 
need to know the buildings specifications to estimate energy consumptions of the 
buildings. Moreover, actual over usage of energy consumption can be compared 
with estimated buildings energy consumption from the design phase. In this way, 
useful information can be provided on energy consumption to promote energy 
savings behaviours.

Similarly, related to smart commerce, traditional and online retailers can profit 
from accessing the buildings information. The retailers can manage the demands 
based on the specifications for the devices and materials used for the buildings in an 
urban area. In this way, they have the opportunity to advertise their products for the 
right potential customers. Moreover, integration of the buildings information with 
the live data (produced by the sensors embedded in installed equipment) can pro-
vide retailers with useful information about the faulty devices and potential future 
demands. Likewise, they will have the opportunity to inform the customers on the 
new products having advantages like lower energy consumption.

To achieve the above-mentioned goals, there is a need to integrate the buildings 
information with the live data from the Internet of Things (IoT) devices on the status 
of devices, energy consumption and devices specification in different spaces of 
buildings. However, integrating the buildings information with the live data is not 
easily accessible for the potential users. The problem is attributable to the difficulty 
in accessing the buildings information, as well as the challenge to integrate this 
information with the live data from heterogeneous sources.

In this chapter, first we explain how information sharing between various 
domains may transform a city to a smart city. Then we will have more concentration 
on smart buildings and potential users of the buildings information in the other 
smart domains. For this purpose, a number of potential smart industries which may 
take advantage of the combination of this valuable information are introduced. The 
remainder of this chapter presents and discusses the barriers preventing the integra-
tion of the live data with the buildings information.
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9.2  Information Management in Smart Cities

As Wenge [5] expressed, successfully deploying smart systems alone is not enough 
to make an entire city smart. They emphasised that the city is not truly smart if only 
a single system can meet the citizens’ needs. In other words, the intelligent city is 
different from a smart city, and the validity of any city’s claim to be smart has to be 
based on something more than its use of information and communication technolo-
gies [6, 7]. Indeed, integration, information sharing and communication between 
many various domains can facilitate making a city smart (see Fig. 9.1). This implies 
that contrary to the traditional cities, the smart cities require to innovate and connect 
establish infrastructures for the citizens and organisations. Indeed, the ultimate goal 
of the smart cities is to improve the quality of life and sustainable economic growth. 
To achieve these goals, various drivers like efficient services, appropriate interactions 
with community and city infrastructure, monitoring and planning play pivotal roles.

On the other hand, a variety of IoT devices are producing a huge amount of infor-
mation in each smart city domain. To realise the efficiency of the intended services, 
information systems infrastructures across different domains need to be able to 
interact with each other.

Bischof [8] discussed at length the challenges and issues arising from the nature 
of different smart city data sources, their various formats and often changing data 
quality. They lay emphasis on providing semantic interoperability as well as data 
integration. Anthopoulos [9] showed through examination of various use cases that 
the cities around the world encounter common challenges in areas such as informa-
tion sharing and exchange. As a consequence, the effective information flow 
between the smart city stakeholders and also the provision of good quality informa-
tion are the two critical issues of this era. In a smart city, the information is created 
and stored in different systems and services. However, there is a gap in their abilities 

Fig. 9.1 Communication and integration of smart systems in smart cities
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to transfer this information to the other smart domains and utilise it for the other 
areas in an efficient and effective way. Some researchers, e.g. Anthopoulos [9], have 
considered the information exchange as an upcoming challenge in the smart cities. 
It is also noteworthy that it is costly and non-secure for standalone services to 
exchange information. This is why most societies fail to exploit the potentials of this 
valuable property. In the next section, the merits associated with the information 
exchange are elucidated for some potential users in the smart city context.

9.2.1  Smart Buildings

With the advent of IoT technologies, cities inevitably move towards environments 
recognised by full integration and semantics. As Pan [10] pinpointed, diverse appli-
cation areas of such technologies are often summarised with terms such as ‘smart 
city’, ‘smart home’, ‘smart buildings’ and lately smart commerce. As such, smart 
environments include smart objects, such as houses, buildings, sustainable urban 
infrastructure, cars, sensor technology and a lot more. Within these environments, 
through the application of semantic web technologies and intelligent applications, 
we are able to offer personalised, responsive and intuitive systems. According to 
Baetens [4], smart buildings are prominent examples of smart environments and 
include different smart features, analytics and sensors used to monitor and control 
the power supply through renewable energy, smart metering technologies, etc.

According to some researchers, smart buildings describe ‘a suite of technologies 
used to make the design, construction, and operation of the buildings more effi-
cient’. To realise the exact meaning of smartness in the smart buildings and gain full 
benefit from the IoT devices and technologies, it is inevitable to integrate the build-
ings information with the live data obtained from the IoT devices (see Fig. 9.2).

Smart buildings are embedded with large amounts of latent data from different 
sources, e.g. the IoT devices, sensors and the like. Integration of this data with the 
buildings information can highly impact the efficiency of services provided by vari-
ous industries such as facility management companies, utility companies, smart 
commerce and so forth. Nonetheless, the potential users of this information, e.g. 
facility management companies, are still unable to fully derive benefit from the 
buildings information. This problem is attributable to some challenges in sharing 
the buildings information with the potential users from the other smart industries. In 
the following section, we introduce some potential users.

9.2.2  Users of Buildings Information

Smart buildings information is a valuable asset which can be utilised by various 
groups of stakeholders, e.g. city councils for urban and infrastructure planning, and 
maintenance/facility management companies to speed up their services and utility 
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companies to estimate energy consumption. In the following subsections, a number 
of potential users of the buildings information are discussed. Then, we describe 
their current approaches to provide their services. At the end of each subsection, we 
illustrate how they can provide more added values to their services by utilising the 
buildings information and the live captured data.

9.2.2.1  Buildings Maintenance

Facility management is a profession that encompasses multiple disciplines to ensure 
functionality of the built environment by integrating the people, the place, the pro-
cess and the technology. Likewise, facility management organisations are respon-
sible for providing and delivering timely, quality, professional facility management 
analysis and consulting support services for the customers [11]. According to Lavy 
and Jawadekar [12], facility management activities depend on the accuracy and 
accessibility of the information created in the design and the construction phases. 
This information is maintained throughout the operations and the maintenance 
phase. Referring to the General Service Administration (GSA) [13], lack of this 
information can result in cost overruns, inefficient buildings operations and untimely 
resolution of client requests. In order to provide efficient services, facility manage-
ment departments should ensure that all the equipment installed in building spaces 
are in active status and work properly. Moreover, they are responsible for providing 
repair/replacement services at the earliest possible time.

Fig. 9.2 Realisation of smart buildings by integration of buildings information with live data
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The errors and failures are normally reported by the users of the building spaces. 
However, some common areas are used for special purposes such as meetings, sem-
inars, lectures and all that. To ensure that all the devices in these common areas are 
working properly, it is indispensable to inspect these spaces on a timely basis. 
Normally, these types of inspections take a considerable time from the facility man-
agement staffs for the areas which even need no further action to be taken. This 
happens in the digital era when most of the buildings are equipped with the IoT 
devices and sensors. These devices provide huge amounts of valuable data which 
can be used in combination with the buildings information and add more values to 
the facility management services. For instance, movement sensors in a space can 
report whether a room is occupied or not. At the same time, light sensors in this 
space should switch off the light in case of inoccupation for a given time. The ‘on’ 
status signal from the light sensor besides an unoccupied report can raise a failure 
report on the light sensor.

Obviously, combination of the live data from the IoT devices and the embedded 
sensors can add more values by early replacement of the faulty device. For this 
purpose, there is a need to have a list of the installed devices integrated with the 
buildings spaces information. Moreover, the live part of this integrated information 
needs to be structured with the ability to be updated over time. To illustrate the use-
fulness of this combination, a list of faulty devices for buildings spaces and their 
costs can be prepared and reported to the senior managers. An immense number of 
similar cases can be exemplified and implemented, in case of having access to the 
buildings spaces information along with the live data from the IoT devices and sen-
sors. Notwithstanding the importance of this combination, there are still some bar-
riers to integrate the buildings information with the live captured data.

9.2.2.2  Smart Energy

A smart energy system is a cost-effective, sustainable and secure energy system in 
which renewable energy production, infrastructures and consumption are integrated 
and coordinated through energy services, active users and enabling technologies. 
Regarding the increased efforts for energy saving and energy cost reduction, utility 
companies attempt to find new ways to promote more effective ways of energy 
usage. Towards this, they need to evaluate energy consumption and estimate energy 
consumption costs.

For the purpose of estimating energy consumption for buildings, many researches 
have been conducted. In this regard, Capozzoli [14] proclaimed that it is exceed-
ingly paramount to have the capability to quickly and reliably estimate the build-
ings’ energy consumption, especially for the public authorities and institutions that 
own and manage large building stocks. For the purpose of predicting and estimating 
the energy consumption, some innovative techniques including machine learning, 
data mining, discovery in database [15] and regression models [16] have been 
developed and applied. Other researches, e.g. Asadi [17] emphasised that predicting 
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building energy consumption depends on multiple variables such as buildings char-
acteristics, energy systems characteristics, etc.

Likewise, Chai [18] expressed that the smart grid is regarded as the next- 
generation power system to fulfil the energy consumption challenges. Smart grids 
have been defined as the power grid systems that incorporate a smart metering infra-
structure capable of sensing and measuring power consumption from consumers 
with the integration of advanced information and communication techniques [19]. 
In this relation, demand response management (DRM) has been introduced as one 
of the main features in smart grids. Mohsenian-Rad [20] and Zugno [2] explained 
that DRM refers to the routines implemented to control the energy consumption at 
the customer side and aims to improve the energy efficiency and reduce the costs. 
As such, Karnouskos [21] predicted that in the future, the heterogeneous devices 
will be able to measure and share their energy consumption and actively participate 
in house-wide or buildings-wide energy management systems.

Despite the plethora of research on using the mathematical methods to predict 
the energy consumption, still researchers believe that having access to the buildings 
information can highly impact the reliability of consumption prediction and estima-
tion for the buildings. As the precedent researches have predicted, nowadays, many 
buildings are equipped with IoT and smart devices with sensing and measuring 
capabilities. Although this information is produced for building spaces, they are not 
accessible for the potential users in the domain of smart energy. In other words, still 
this valuable asset has not been thoroughly involved in energy management sys-
tems. Indeed, to estimate or predict the buildings energy consumption, there is an 
essential need to have sufficient technical information about building spaces, 
installed equipment as well as live data from IoT and smart devices.

9.2.2.3  Smart Commerce

Pan [10] introduced the smart commerce by means of using the information about 
consumption to improve the marketing affairs. Many small businesses can take 
advantage of this information and technical knowledge. Yan [22] elucidated that 
both kinds of traditional and online retailers can always gain profit from having 
information about customers’ needs. As such, they concurred that the market infor-
mation is vital for a firm’s decision-making processes. In addition, Yan [22] laid 
emphasis on the forecast information accuracy effect on the profit of the traditional 
and online retailers. In this context, he expounded that major retailers such as Marks 
& Spencer, A&P grocery stores and Von’s Supermarket have made substantial 
investment in the development of tracking information systems, while being 
engaged in ongoing marketing research to improve the information accuracy [23]. 
In the light of the studied literature on retailers’ efforts, it is indispensable for these 
small business owners to inspect their customers’ needs.

Many businesses and manufacturers providing services and products for build-
ings can similarly gain benefit from the consumers’ information. This information 
can be related to the building components, e.g. windows, air conditions, pipes, 
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bulbs, etc., or diverse types of IoT devices and sensor, e.g. light sensors, cameras, 
fire alarms, etc. Some recent researches have been conducted to specify the avail-
ability of building components in the market. For instance, Baetens [4] performed a 
survey on the types of smart windows which are currently available on the market. 
However, these types of researches have a concentration on the market side, and still 
there is a need to make the information from the customer side available to the busi-
nesses. For instance, in case of having access to the buildings information integrated 
with the live data, plenty of faulty reports for some devices can disclose perfor-
mance issues and consequently fewer future demands for some products. As such, 
manufacturers can use this information to improve quality of their products.

9.3  Challenges and Barriers

With the advancement of technologies related to ‘Internet of Things’, we inevitably 
move towards environments characterised by full integration and semantics. 
Nonetheless, there are some barriers on the way of benefiting from this integration. 
Some of the barriers stem from various phases of the buildings life cycle, including 
the design, construction and operation. The design phase of the buildings is an 
imperative stage through which fundamental information is created. This informa-
tion is preserved in various forms of plans, report, tables and so forth. In the next 
phase, i.e. the construction phase, due to variety of changes as a result of different 
reasons, some updates are produced. These updates are essential for the further steps 
of the buildings life cycle. In the operation phase, the IoT devices and sensors are 
responsible for providing information on the current status of the building spaces.

The main barrier originated from the buildings life cycle is that the buildings 
information is not available in a digital format. For the majority of the existing and 
even under-construction buildings, architectural, mechanical and all other plans are 
only available in nondigital formats. Likewise, despite using new emerging tech-
nologies, i.e. BIM, to transform the building plans and specifications into the digital 
format, still the digital buildings information is not available for the other industries. 
In other words, the users need to have professional skills to use the software associ-
ated with the BIM models to be able to access the buildings information.

Another aspect of the integration problem is related to the smart technologies 
and the IoT devices. These devices have been developed for the environmental mon-
itoring applications [24] or for combinational usage of different context data from 
different sources [25]. The provided information by these technologies and devices 
scatters across the separated data storages and in heterogeneous formats. Integration 
of the data from variety of IoT devices with the digital buildings information is a 
daunting challenge by itself. All these barriers are the reasons to frustration as for 
fully benefiting from the buildings information integrated with the live data.

In the following subsections, more detail is provided about all the recognised 
barriers associated with the above-mentioned issues.
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9.3.1  Barriers Associated with the Design Phase

Creation of the buildings information begins from the early design phase. The 
design process of a buildings is a tacit-dominated phase [26, 27], in which multi- 
disciplinary professionals are sharing and exchanging their knowledge. As Ibrahim 
and Nissen [28] illuminated, the tacitness of the knowledge can augment the prob-
ability of the knowledge loss. As such, Pourzolfaghar [29] pinpointed that the 
knowledge created by the design professionals tends to reside in their minds as tacit 
knowledge when not explicitly documented during the design phase of the building 
projects. This knowledge is invaluable for later use which is why it should be perse-
vered. Therefore, a fraction of the valuable building information is not available due 
to knowledge loss phenome. To overcome this challenge, Pourzolfaghar [30] devel-
oped a theoretical knowledge-based framework to explicate and preserve this 
knowledge. However, more research work was needed to put this framework into 
the practice.

Despite losing a fraction of the valuable knowledge, the rest of the buildings 
information is handed over to the further phases to develop the operational plans. 
The building plans are normally developed using professional software, e.g. 
AutoCad, Revitt and so on. All the details for the plans are available in these envi-
ronments. However, accessing the details of the plans is only possible for the users 
who have the skills to use these professional environments. As well, for the con-
struction phase, normally the paper version of the plans is used. Apparently, the 
digital version of the buildings information is not utilisable for the users who are not 
familiar with the software associated with building plans. In the best condition, the 
plans are stored in a portable document format (commonly referred to as PDF). As 
a result, the stored information in this format cannot be combined with digital infor-
mation from the other sources.

The other issue is related to the overall information about buildings energy con-
sumption and infrastructural estimations. This information is presented in the form 
of reports as the outcome of the conceptual design phase. The detailed design of the 
mechanical and electrical plans is based on the estimations reported in the early 
design phase. This information can play a pivotal role in providing overall energy 
consumption estimation for a building. Availability of this information for all the 
buildings in an urban area can be utilised for infrastructure planning in the cities. 
However, this information is not stored in a digital format along with the other 
buildings information.

9.3.2  Barriers Associated with the Construction Phase

The construction phase of the building projects is a vibrant phase in which many 
changes arise. The changes can be the results of various aspects, e.g. design modifi-
cations, differing site conditions and so on. These types of changes are norms in the 
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construction phase. As Pettee [31] stressed, there is a need to document these 
changes as the updates on the buildings information and specifications. The updated 
version of the building plans is called ‘as-built’ plans used to show the final version 
of the implemented works. Updating the building plan is a tedious task for contrac-
tors; and providing the as-built plans is often overlooked until the end of the project. 
Obviously, the delay in the documentation activities can impact the accuracy of the 
updated information.

The process of updating the plans requires that any changes modifying the origi-
nal design be incorporated into the plans. Nonetheless, the contractors are not inter-
ested in it because of various reasons, e.g. lack of staff, time, budget, commitment, 
etc. Outdated plans can cause many problems in the construction and operation 
phases. In principle, the main consequence of this problem leads to an informational 
gap between the two consequential phases of the construction and operation. Later, 
in the operation phase, the updated information is required for many different pur-
poses, e.g. for refurbishment of the buildings, repairing or replacing the installed 
devices. Another consequence of the outdated plans can be attributed to the build-
ings information modelling technologies. By developing the models based on as- 
design plans, the accuracy of the models is not ensured. In Sect. 9.3.4, more details 
are provided on the challenges for buildings information models.

9.3.3  Barriers Associated with the Operations Phase

The technologies developed over the last years for smart environments are currently 
summarised as the ‘Internet of Things’. These technologies produce invaluable 
information for security management, control management and many other mana-
gerial aspects during the buildings operation phase. Schaffers [32] stated that the 
application of the IoT paradigm to an urban context is of particular interest as it 
responds to the strong push of the governments to adopt ICT solutions in the man-
agement of public affairs to realise the smart city concept. The IoT devices are 
designed to support the smart city vision, which aims at exploiting the ICTs to 
provide added-value services for the administration of the city and for the citizens 
([33]. As they stressed, by enabling an easy access and interaction with a wide vari-
ety of devices, the IoT will foster the development of a number of applications to 
provide new services to citizens, companies and public administrations.

As [34] emphasised, the IoT paradigm finds application in many different 
domains, such as home automation, industrial automation, medical aids, energy 
management and smart grids, facility management and many others. However, a 
significant challenge remains to design and maintain the connectivity of smart sys-
tems by an integrated information system being able to support business processes 
and interoperability between the systems. As an example, Pan [35] conducted a 
research to build a unique IoT experimental test-bed for energy efficiency and build-
ing intelligence. In their research, they encountered a challenge to organise and 
integrate heterogeneous IoT devices to work together as a coherent system. 
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Likewise, Al-Fuqaha [36] underscored that the heterogeneity of the IoT elements 
needs a thorough solution to make ubiquitous IoT services a reality. To overcome 
the existing challenges, many researchers have been conducted, e.g. on communica-
tion enabling the use of wireless sensor network (WSNs) [37], enabling technolo-
gies and application services using a centralised cloud vision [38], enabling 
technologies with emphasis on the RFID and its potential applications [39], etc. 
Simultaneously, some other researchers, e.g. Gluhak [40], presented the IoT chal-
lenges to bridge the gap between the research and practical aspects.

In summary, most research work has been conducted to overcome the heteroge-
neity challenges for the IoT devices and sensors. Consequently, many of these 
researches have proposed solutions to attenuate the recognised challenges. 
Nevertheless, we believe that there are more potential benefits to the smart cities as 
long as the live data is integrated with the buildings information. In other words, 
building environments are still unable to fully benefit from the integration of build-
ings information with the live data captured from the IoT devices and sensors. 
Moreover, it is fundamental to bridge the gaps between the research and practice. 
For instance, it would be worthy to explore and recognise the information required 
for any specific industry and concentrate on defining meaningful linkages between 
the buildings information and the live data. In the following section, some research 
topics are suggested for future studies in this field.

9.3.4  Barriers Associated with Buildings Information Models

Over the last decade, buildings information modelling (BIM) technologies have 
been developed to manage the buildings information [41]. The BIM models contain 
valuable information about the building spaces and the installed devices in the 
buildings. However, the buildings information in BIM models are only available 
through the developed BIM models for the buildings. Moreover, still a large number 
of challenges are faced by BIM models, e.g. a pertinent semantic format for the 
maintenance stage [42], computerised facility management system integration [43] 
and updated data for as-built BIM models [41].

As further explanation for the latter challenge, the BIM models are mostly devel-
oped based on the existing plans for the buildings and are not incorporated with the 
IoT devices and sensors specifications which have been installed later for manage-
ment purposes (e.g. for security management, energy consumption, etc.). In this 
condition, there is no possibility to update the buildings information regarding the 
new installed devices. Therefore, there is a high risk when there is a lack of updated 
information on the new devices for BIM models. Moreover, Mikučionienė [44] 
reported that the data required for the maintenance stage and the usable format are 
not necessarily stored in BIM. Maintenance companies need a specific type of infor-
mation for the processes. For instance, they need to receive some information like 
the warranty of the device, technical information and building space as soon as a 
fault occurs. This can happen in case of the existence of a linkage between BIM 
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models and all the installed IoT devices ad sensors. Similarly, Construction 
Operations Building Information Exchange (COBie) has been criticised for its 
inability to ensure comprehensive semantic data for the maintenance stage [14].

Similarly, several researchers have reported challenges for the maintenance 
stage. As Winch [45] and Shen [42] stated, some identified challenges relate to 
interoperability, interfaces with other systems as well as integration of wired and 
wireless sensor networks to enhance the live data collection during the construction 
phase and controlling the access to the project information. In line with this, Motawa 
and Almarshad [46] proclaimed that the building maintenance requires a compre-
hensive information system that captures/retrieves the information on the building 
maintenance components and all its related building components. Although they 
proposed an integrated information/knowledge system, this system was limited to 
capturing and retrieving data during the maintenance phase. Obviously, many 
researches have proposed methods and models to integrate the buildings informa-
tion with the captured data to facilitate the building maintenance. However, inade-
quate data integration is a current challenge faced by building information models 
which stems from differences in the data syntax, schema or semantics [44]. Cohen 
[47] defined data integration as ‘the combination of data from different sources with 
unified access to the data for its users’. Regarding the above-mentioned points, inte-
gration of data from diverse sources has been introduced as a challenge which pre-
vents the potential users from taking advantage of the values of the integrated data.

9.3.5  Summary of the Challenges

Based on the reviewed literature, some barriers have been recognised as hampering 
the benefits gained from the valuable buildings information integrated with the live 
captured data in the building environments. What follows is a summary of these 
obstacles. First, no digital buildings information is accessible for the potential users 
in the smart cities, e.g. for facility management, utility companies, etc. The other 
barrier is related to the data captured form the IoT devices and sensors. This infor-
mation scatters across the separated data storages and in heterogeneous formats. 
Consequently, integration of the buildings information with the live captured data 
has been recognised as the third barrier.

Although, during the last decades, BIM technologies have emerged for digitalis-
ing buildings information, this digital information needs to be available to other 
domains. Difficulty of extracting the buildings information from BIM models and 
making it accessible to the potential users is another barrier. A summary of the rec-
ognised barriers and their associated origins is provided in Table 9.1.

By reviewing the information provided in Table 9.1, it is evident that the recog-
nised barriers are associated with three various aspects. The first group of the barri-
ers arises from the design phase of the building projects. More details in the second 
column of Table 9.1 are to describe the origins of the barriers. The barriers for the 
design phase are mostly related to lack of explication on the fraction of the buildings 
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information which can be useful for the construction industry, as well as the other 
industries in the smart cities.

The second group of barriers are mostly associated with the IoT devices and their 
challenges for interoperability and integrity issues. Many researches have been con-
ducted to propose solutions to provide communications between various IoT sys-
tems. Nonetheless, there is a need to investigate the applicability of these 
communications between the IoT devices applications and systems in the construc-
tion industry. Then, the next step would be to deal with the integration of the out-
comes of these applications and systems with the digital buildings information.

The last group of barriers is related to the sematic and the format of the digital-
ised version of the buildings information through BIM technologies. Although huge 
efforts have been exerted in favour of developing these technologies, still there is 
long journey ahead to make the digital buildings information available for other 
smart domains. For this purpose, it is vital to recognise and extract the required 
information for various industries.

Table 9.1 Summary of the challenges to integrate the buildings information and the live data

Challenges 
associated with Recognised challenges

Design phase Tacitness of knowledge during the design phase of the buildings leads to 
loss of some parts of valuable buildings information
The buildings information is stored in the form of architectural, 
mechanical plans or other plans (e.g. DWG format or reports) and is not 
accessible for the users of the other industries
The general information about energy consumption is not available in the 
digital format (e.g. for authorities or utility companies)
The information about the installed devices is not available for 
commercial purposes (e.g. for demand management purpose)

Construction phase High risk of missing the updated buildings information
High risk of handing over not updated plans to the operation phase
Due to delays on documenting the changes, accuracy of the updates is 
not ensured

Operation phase To organise and integrate heterogeneous IoT devices to work together
Various applications and software store the live data in various formats
Aggregation of the live data captured by various devices is a challenge
Integration of the data from the IoT devices and sensors with the 
buildings information

BIM models In BIM models, the buildings information is not available in digital 
format for the other industries
Extraction of the buildings information from BIM models
High risk of not updated information on the new devices for BIM models
Accessing the buildings information is possible by using the BIM 
environment and needs professional skills
The data required for potential users and the usable format are not 
necessarily stored in BIM
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9.4  Conclusion

Various industries in smart cities can benefit from information from other domains 
to provide more effective services for the citizens. The buildings information is one 
of the essential sources of information in smart cities which can be utilised by many 
industries, e.g. facility management, smart grid, smart commerce, etc. Buildings 
information is created during various phases of a building life cycle. Live data is a 
dynamic part of the building information which is produced by IoT devices during 
the operation phase. Integration of the building information with the live data can 
assist many industries in providing more efficient services to the smart cities’ citi-
zens. However, there are barriers which disallow the potential users to take advan-
tage from aggregation of the building information and the live data. In this chapter, 
we introduced some potential users of the building information. Simultaneously, we 
discussed the ways they may improve their services utilising the buildings 
information.

Then, the origins of the barriers were explored and explained thoroughly. Based 
on the studied literature, two main areas associated with these challenges were rec-
ognised, including (1) the barriers stemming from different phases of the building 
life cycle including the design, construction and operations and (2) the barriers 
associated with BIM models for the buildings. By bearing these studies and findings 
in mind, this chapter culminates by suggesting some areas for future research to 
remove the recognised barriers. The suggested areas are stated as follows:

• Development of a method to digitalise the buildings information created during 
the design phase

• Development of a method to use the data captured from the IoT devices to update 
the building plans during the construction phase

• Development of a method to integrate the buildings information with the live 
captured data from IoT devices during the operation phase

• Development of a method to extract the required buildings information from 
BIM models

• Development of a framework to recognise the required buildings information for 
the targeted smart industries

• Establishment of an open storage to preserve the integrated information in an 
appropriate format consistent with the construction industry standards with the 
ability of being shared with the other industries for improving their services

The proposed areas of the research can be put together to help integrate the build-
ings information with the live data available to the industries in the smart cities.
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Chapter 10
Interoperability in the Internet of Things 
with Asymmetric Schema Matching

José Carlos Martins Delgado

Abstract Interoperability is one of the main challenges of the Internet of Things 
environments, given the huge number of interconnected devices and the wide range 
of manufacturers and models. The classical solution, symmetric interoperability, in 
which both interacting devices share the same data schema, usually leads to a 
coupling problem, since a device cannot change its schema without changing it as 
well in the devices with which it interacts. This chapter proposes asymmetric 
interoperability mechanism, in which the schema used to produce a message does 
not need to be identical to the schema of the messages expected by the receiver. This 
leads to a lower coupling level and allows a device to interact with others, which 
send or receive messages with different schemas, and to replace another one with a 
new schema without impairing existing interactions. This asymmetry in 
interoperability is based on the concept of structural compliance and conformance, 
which state that schemas need only be compatible in the message components that 
are actually used and not in the full message schema. A simple interoperability 
framework and a model of coupling, adaptability and changeability are presented to 
illustrate the impact of these concepts. A few implementation examples are also 
provided.

10.1  Introduction

The Internet of Things (IoT) paradigm is currently experiencing an explosive 
growth. Gartner [1] estimated that, by the end of 2016, around 6.4  billion IoT 
devices were in use, with a forecast of 20.8 billion for 2020. Other analysts predict 
much higher numbers [2]. Independently of the numbers, the fact is that there will 
be a huge number of devices, from a large number of manufacturers with a wide 
variety of models, all needing to interact. Interoperability is thus one of the main 
challenges of the IoT environments [3]. The obvious solution is to define standard 
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APIs that all devices should implement, thereby making interaction between devices 
an achievable goal. In practice, however, several issues conspire to make this a hard 
problem to overcome:

• De jure standards require time for technology to settle down, something unlikely 
to readily occur in such a young and vigorous field as IoT.

• De facto standards can only be imposed by a giant provider, such as Amazon or 
Microsoft. Again, this is not easy to achieve, given the enormous variability of 
manufacturers, devices and applications.

• Even if a standard is successful, its main usefulness rests with the consumers, by 
reducing the vendor lock-in. For providers, it can be a straitjacket that hampers 
differentiation from competition and added value from additional, vendor- 
specific features (which leads to vendor lock-in). This expresses the conflicting 
nature of standards.

Without standard application programming interfaces (APIs), interoperability is 
possible if interacting devices agree on data and/or service schemas, typically based 
on data description languages such as Extensible Markup Language (XML) [4] and 
JavaScript Object Notation (JSON) [5] and on service models such as Service- 
Oriented Architecture (SOA) [6] and Representational State Transfer (REST) [7]. 
These technologies were not conceived for small devices requiring weak computing 
power, such as those typically found in the IoT, but their main disadvantage is that 
they are symmetric, in the sense that both the sender and receiver of a message must 
use the same schema. This means that:

• Sharing a schema description, such as an XML Schema file or a Web Services 
Description Language (WSDL) file

• Agreeing, prior to interaction, on a fixed schema (typical of JSON-based data)

This entails more coupling than actually needed, because the interacting devices 
need to support all the data values valid for the schema, even if they use only a 
fraction of these values. Worse, they do not even allow variations on the schema, 
which means that a sender can only interact with the specific receiver for which it 
was designed. To solve this problem, we propose to use asymmetric interoperability, 
based on the concepts of compliance and conformance, as follows:

• The schema of the sender must comply with that of the receiver. This means that 
the schema of the sender needs to include all the mandatory features of the 
schema of the receiver but may or may not include the optional features (if not 
specified, the receiver may use default values) and may include any additional 
feature, not present in the schema of the receiver, which will ignore it.

• The schema of the receiver needs to conform to the schema that the sender 
requires. This means that the receiver needs to implement at least all the features 
that the sender expects that the receiver supports but can also implement others 
that the sender does not know about.

Compliance allows a sender to meaningfully transmit a message to many receiv-
ers, not just to one that implements the same schema as the sender. Conformance 
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allows a receiver to meaningfully receive messages from many senders, not just 
from those that implement the same schema. Both are ways to reduce coupling 
between the interacting devices and to increase the interoperability range. Taking a 
basic API (standard or not) as a starting point, variations to that API are allowed at 
both the sender and the receiver, as long as compliance and conformance hold. 
There is no longer the need to stick to a fixed API. It should be noted that interacting 
devices can reverse the roles of sender and receiver during a message-based transac-
tion (request and response) or by changing the device that takes the initiative to start 
a transaction.

This chapter is structured as follows. Section 10.2 describes some of the existing 
technologies relevant to the context of this chapter. Section 10.3 describes what 
device interaction involves, whereas Sects. 10.4, 10.5 and 10.6 detail some of the 
interoperability, coupling and adaptability and changeability aspects, respectively. 
Section 10.7 discusses the importance of the architectural style used for device 
interaction. Section 10.8 lays out the main proposal of this chapter, asymmetric 
interoperability, and Sects. 10.9 and 10.10 discuss the underlying data model and 
asymmetric interoperability concepts (compliance and conformance), respectively. 
Finally, Sect. 10.11 provides some illustrative examples.

10.2  Background

The Internet of Things (IoT) has definitely become mainstream [8] and is now the 
subject of active research [9, 10]. The Internet World Stats (http://www.
internetworldstats.com/stats.htm) estimates the number of Internet human users to 
be around 3.7  billion in 2017, almost half the worldwide population of roughly 
7.5 billion people. By 2050, the worldwide population is expected to grow to around 
9.5 billion.

This contrasts with the conservative Gartner predictions [1]; according to which, 
in 2017, the number of IoT devices will be comparable to the worldwide human 
population, whereas in 2020 that number will have roughly tripled, and it is almost 
impossible to predict what that number will be by 2050!

The number of Internet-enabled devices is thus clearly growing much faster than 
the number of Internet human users, which means that the Internet is no longer 
dominated by humans but rather by smart devices that are small computers and 
require technologies suitable to them, instead of those conventionally used in 
Internet browsers. The sheer number and diversity of IoT devices entail an enormous 
problem in interconnecting the applications running on the devices. The Internet is 
global, distributed and huge, while still requiring that any device, subject to specific 
interoperability requirements, be able to interact with any other device.

Distributed interoperability is not specific of the IoT context. It has been studied 
in domains such as enterprise cooperation [11], e-government services [12], cloud 
computing [13] and healthcare applications [14]. Most of these domains involve 
applications running on full-fledged servers, not on the much simpler IoT devices, 
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such as those involved in sensor networks [15] and vehicular [16] networks. The 
two main technological solutions for distributed interoperability, Web Services [17] 
and RESTful APIs [18], are based on data description languages such as XML and 
JSON.

SOA [19] is the architectural style underlying Web Services and models real- 
world entities by the behaviour (services) they can offer. REST [7] is the architectural 
style underlying RESTful APIs and models real-world entities by the structural state 
(resources) they can exhibit. A continuing debate has been going on over the past 
years about which architectural style – SOA or REST – is more adequate to specific 
classes of applications. The literature comparing these styles is vast [20, 21], usually 
with arguments more on technological issues than on conceptual and modelling 
arguments. [22] have made proposals to integrate SOA and RESTful services.

Although, these architectural styles and technologies have been able to connect 
distributed, independent and heterogeneous applications, they entail a significant 
level of coupling, in the sense that interacting applications need to share the same 
data description schema. A change in one application will most likely imply a 
change in the other.

Many metrics have been proposed to assess the maintainability of distributed 
systems, based essentially on structural features. Babu and Darsi [23] present an 
extensive set of metrics for service coupling, cohesion and complexity. Other 
authors focus on dynamic, rather than static, coupling. The authors of [24] present 
a survey of metrics for assessing coupling during program execution. Although 
centred on object-oriented programming, many of these metrics can also apply to 
distributed systems. There are also approaches trying to combine structural coupling 
with other levels of coupling, such as semantics [25].

We are also interested in compliance [26] and conformance [27] as the founda-
tional mechanisms to ensure partial interoperability and thus minimize coupling. 
These mechanisms have also been studied in specific contexts, such as choreogra-
phy [28], modelling [29], programming [30] and standards [31].

Searching for an interoperable device can be done in the conventional way, by 
schema matching with similarity algorithms [32] and ontology matching and 
mapping [33]. However, this does not ensure that interoperability and manual 
adaptations are usually unavoidable. Requiring that names of corresponding 
components be the same, when matching schemas, is limitative. An ontology 
matching and mapping [33] can be performed, but it is not easy to map different 
things. Compliance and conformance can come to the rescue, if ontology concepts 
are defined structurally in terms of more basic concepts that define an upper ontology 
[34]. Then, ontology mapping is just a question of checking compliance and 
conformance between concepts in two different ontologies.
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10.3  Interaction Between Devices

As in most distributed systems, IoT devices interact by sending each other mes-
sages. When a given device needs to make some request or notification to another 
device, the former plays the role of consumer of the functionality provided by the 
latter, which plays the role of provider. A typical interaction is initiated by the con-
sumer, which sends a request message to the provider, through some interconnect-
ing network, which may cause the provider, upon executing the request, to answer 
with a response message, as illustrated by Fig. 10.1.

This interaction makes sense only if the provider is able to understand what the 
consumer is requesting and reacts and responds accordingly to what the consumer 
expects. If the consumer and the provider were modules within the same application, 
this would be a simple task. The network would simply be a reliable pointer, and the 
module compatibility would be checked by a type system that relies on shared type 
names and inheritance hierarchies.

In a distributed environment, however, type sharing is not guaranteed, since 
devices and their applications evolve independently, and messages cannot be 
assumed to be correct. The goal of achieving such a simple interaction can be 
decomposed into the following objectives:

 1. The request message reaches the provider, through a network.
 2. The provider is willing to accept and to process the request.
 3. The provider validates the request, according to its requirements for requests.
 4. The provider understands what the consumer is requesting.
 5. The reaction of the provider and the corresponding effects, as a consequence of 

executing the request message, fulfil the expectations of the consumer regarding 
that reaction.

 6. The response message reaches the consumer.
 7. The consumer is willing to accept and to process the response.
 8. The consumer validates the response, according to its requirements for the 

response.
 9. The consumer understands what the provider is responding.
 10. The consumer reacts appropriately to the response, fulfilling the purpose of the 

provider in sending that response.

Fig. 10.1 Details of a message-based interaction between two IoT devices

10 Interoperability in the Internet of Things with Asymmetric Schema Matching



194

What this means is that it is not enough for a device to send a request to another 
one and hope that everything goes well. Both request and response need to be 
validated and understood by the device that receives it. In general, meaningfully 
sending a message (the response reverses the roles of the consumer and the producer 
as sender and receiver, with regard to the request) entails the following aspects:

• Willingness (objectives 2 and 7). Both sender and receiver are devices that need 
to interact and, by definition, are willing to accept requests and responses, by 
running applications that expose services. However, non-functional aspects such 
as response times or security requirements can impose constraints.

• Intent (objectives 4 and 9). Sending a message must have a given intent, inherent 
to the interaction to which it belongs. This is related to the motivation to interact 
and the goals to achieve with that interaction.

• Content (objectives 3 and 8). This concerns the generation and interpretation of 
the content of a message by the sender, expressed by some representation, in 
such a way that the receiver is also able to interpret it.

• Transfer (objectives 1 and 6). The message content needs to be successfully 
transferred from the context of the sender to the context of the receiver.

• Reaction (objectives 5 and 10). This concerns the reaction of the receiver upon 
reception of a message, which should produce effects according to the 
expectations of the sender.

Device interaction is a complex issue with many factors, such as:

• Interoperability  – Guaranteeing that one device understands the requests of 
another and reacts according to what is expected.

• Coupling  – Mutual dependencies between devices, with the goal of reducing 
them as much as possible, to avoid unnecessary constraints to the evolution and 
variability of devices.

• Adaptability  – Maintaining interoperability, even when interacting devices 
change some of their characteristics.

• Architectural style – Choosing how devices are modelled has a relevant impact 
on how devices interact.

• Reliability – Maintaining interoperability, even in the presence of unanticipated 
failures.

• Security – Ensuring interoperability is allowed only intentionally and with autho-
rized and certified devices.

• Performance – Ensuring that interactions complete faster than agreed response 
times.

• Scalability  – Ensuring that performance levels do not decrease substantially 
when the number of interacting devices increases.

To limit its breadth and scope, this chapter concentrates on the first three of the 
above, which deal with the basic aspects of device interaction. These are detailed in 
the following sections.
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10.4  Interoperability

There is no universally accepted definition of interoperability, since its meaning can 
vary accordingly to the perspective, context and domain under consideration. 
Although limited to information, the 24765 standard [35] provides the probably most 
cited definition of interoperability as “the ability of two or more systems or compo-
nents to exchange information and to use the information that has been exchanged”.

Inspired by Fig. 10.1 in the context of IoT, we interpret this definition as “the 
ability of two or more devices to exchange messages and to react to them according 
to some pattern or contract that fulfils the constraints and expectations of all devices 
involved”. What this really means cannot be taken as a whole but rather needs to be 
detailed, as the previous section has already hinted with the various aspects involved 
in an interaction, namely, intent, content, reaction and transfer.

Interoperability involves several abstraction layers, from low-level networking 
issues to high-level aspects reflecting the purpose of the interaction. Layering is an 
abstraction mechanism useful to deal with complexity. One early example is the 
Open Systems Interconnection (OSI) reference model [36], with seven layers, 
although it concentrates on the networking issues. This chapter proposes a different 
layering mechanism, detailing higher-level issues, as described in Table 10.1.

Using the Category column as the top organizing feature, Table  10.1 can be 
briefly described in the following way:

• Symbiotic. This category expresses the interaction nature of two interacting 
devices in a mutually beneficial agreement. This can be a tight coordination 
under a common governance, if the devices are controlled by the same entity, a 
joint-venture agreement, if there are two substantially aligned clusters of devices 
or a mere collaboration involving a partnership agreement and if some goals are 
shared.

• Pragmatic. The interaction between a consumer and a provider is done in the 
context of a contract, which is implemented by a choreography that coordinates 
processes, which in turn implement workflow behaviour by orchestrating service 
invocations.

• Semantic. Interacting devices must be able to understand the meaning of the 
content of the messages exchanged, both requests and responses. This implies 
compatibility in rules, knowledge and ontologies, so that meaning is not lost 
when transferring a message from the context of the sender to that of the receiver.

• Syntactic. This category deals mainly with form, rather than content. Each mes-
sage has a structure, composed by data (primitive objects) according to some 
structural definition (its schema). The data in messages need to be serialized to 
be sent over the channel, using formats such as XML or JSON.

• Connective. The main objective in this category is to transfer a message from one 
device to another, regardless of its content. This usually involves enclosing that 
content in another message with control information and implementing a 
message protocol over a communications network protocol and possibly involv-
ing routing gateways.
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This is a maximalist model, in the sense that all layers are involved in every 
interaction. Even the simplest interaction has a purpose, is part of a choreography, 
involves meaning, has a structure and needs a network to send the messages. 
However, in practice most of these layers are dealt with tacitly (based on unverified 
assumptions that are supported by documentation at best) or empirically (based on 
verified assumptions but hidden by already existing specifications or tools).

The most relevant layers are typically the structure (schema), those below it, and 
interface (service). The ontology layer (concept) has gained relevance in the last few 
years [37], given the high variability of devices in the IoT context and the need to 
resort to semantics to clarify the meaning of the schemas and of the services’ 
interface.

10.5  Coupling

All these interoperability layers, as mentioned above, constitute an expression of 
device coupling, leading to two conflicting aspects:

Table 10.1 Layers of interoperability between IoT devices

Category Layer Main concern Description

Symbiotic (purpose 
and intent)

Coordination Governance Motivations to have the 
interaction, with varying 
levels of mutual knowledge 
of governance, strategy and 
goals

Alignment Joint venture
Collaboration Partnership

Pragmatic (reaction 
and effects)

Contract Choreography Management of the effects 
of the interaction at the 
levels of choreography, 
process and service

Workflow Process
Interface Service

Semantic (meaning of 
content)

Inference Rule base Interpretation of a message 
in context, at the levels of 
rule, known application 
components and relations 
and definition of concepts

Knowledge Knowledge base
Ontology Concept

Syntactic (notation of 
representation)

Structure Schema Representation of 
application components, in 
terms of composition, 
primitive components and 
their serialization format in 
messages

Predefined type Primitive object
Serialization Message format

Connective (transfer 
protocol)

Messaging Message protocol Lower-level formats and 
network protocols involved 
in transferring a message 
from the context of the 
sender to that of the receiver

Routing Gateway
Communication Network protocol
Physics Media protocol
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• Coupling – Decoupled devices (with no interactions or dependencies between 
them) can evolve freely and independently, which favours adaptability, change-
ability and even reliability (if one fails, there is no impact on the other). Therefore, 
coupling should be avoided as much as possible.

• Interoperability  – Devices need to interact to cooperate towards common or 
complementary objectives, which implies that some degree of previously agreed 
mutual knowledge is indispensable.

The more feature devices make known to others, the easier it is to provide 
interoperability but the greater coupling it can get. Therefore, the fundamental 
problem of device interaction is to provide the maximum decoupling possible 
(exposing the minimum possible number of features) while ensuring the minimum 
interoperability requirements. In other words, the main goal is to ensure that each 
device knows just enough about others to be able to interoperate with them but no 
more than that, to avoid unnecessary dependencies and constraints. This is an 
instance of the principle of least knowledge [38].

The usefulness of Table 10.1 lies in providing a framework that allows coupling 
details to be better understood, namely, at which interoperability layers they occur 
and what is involved in each layer, instead of having just a blurry notion of 
dependency. In this respect, it constitutes a tool to analyse and to compare different 
coupling models and technologies. Reducing the coupling increases the following:

• The probability of finding suitable alternatives or replacements for a given device
• The set of devices with which some device is compatible, as a consumer or as a 

provider

Figure 10.2 depicts the scenario of a device immersed in its environment, in 
which it acts as a provider for a set of devices (its consumers), from which it receives 
requests or event notifications and, as a consumer of another set of devices (its 
providers), to which it sends requests or event notifications. Coupling between this 
device and others expresses not only how much it depends on its providers but also 
how much its consumers depend on it.

Fig. 10.2 Coupling between a device and its consumers and providers
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Dependency on a device can be assessed by the fraction of its features that 
impose constraints on other devices. Two coupling metrics can be defined from the 
point of view of a given device (Fig. 10.2):

• CF (forward coupling), which expresses how much a device is dependent on its 
providers, is defined as:
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where:

P is the set of providers that this device uses.
|P| denotes the cardinality of P.
Upi is the number of features that this device uses in provider i.
Tpi is the total number of features that provider i exposes.
Ni is the number of providers with which this device is compatible as a consumer, in 

all uses of features of provider i by this device.

• CB (backward coupling), which expresses how much impact a device has on its 
consumers, is defined as:
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where:

C is the set of consumers that use this device as provider.
|C| denotes the cardinality of C.
Uci is the number of features of this device that consumer i uses.
Tc is the total number of features that this device exposes.
M is the number of known devices that are compatible with this application and can 

replace it, as a provider.

The conclusion from metric 10.1 is that the existence of alternative providers to 
a device reduces its forward coupling CF, since more devices (with which this device 
is compatible, as a consumer) dilute the dependency. Similarly, the conclusion from 
metric 10.2 is that the existence of alternatives to a device as a provider reduces the 
system dependency on it, thereby reducing the impact that device may have on its 
potential consumers and therefore its backward coupling CB.

In either case, increasing the number of compatible alternatives implies reducing 
the number of features required for compatibility. Less constraints generally mean 
more compatible devices. Lower coupling is the basic tenet underlying this chapter. 
Section 10.10 shows how this can be done.
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10.6  Adaptability and Changeability

An adaptation of a device is a set of changes made to that device due to a new speci-
fication. This implicitly assumes that the device already exists and that the changes 
made correspond to a solution to bridge the differences between the previous and 
the new specification. We assume that devices can be atomic (not composed of oth-
ers) or structured (composed of other devices, recursively until atomic devices are 
reached). There must be a finite set of atomic resource types, upon which a device 
ontology can be built. We consider only the structural aspects and assume that adap-
tations and changes to atomic devices are also atomic.

The similarity between a device after adaptation and its previous specification is 
defined recursively in terms of the similarities of its components as:
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where:

T is the set of components of this device.
Si is the similarity of component i (recursively) of the device.

A similarity of 1 means that nothing has changed, whereas a similarity of 0 
means that all components of a device have changed.

The adaptability of a device expresses how easily it can suffer a given adapta-
tion. As a metric, a value of 0 in adaptability means that the device cannot be adapted 
and is unable to support the new intended specification, due to some limitation, and 
a value of 1 means that the cost or effort of adaptation is zero. It depends essentially 
on two factors:

• The forward decoupling DF, the decoupling between the device and its provider. 
We use decoupling instead of coupling to reflect what we want to achieve.

 D CF F= −1  (10.4)

• The similarity S between the specification of the device before and after the 
adaptation.

Adaptability A is directly proportional to these two factors:

 A D SF= ⋅  (10.5)
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Adaptability does not depend on which devices use the device being adapted and 
reflects only the ability (can it be adapted?) and the cost/effort to adapt it. Many 
changes (low S) or a high dependency on other devices (low DF) reduces adaptability. 
The complementary adaptation question (may it be adapted?) is included in its 
changeability property Ch [39], defined here as:

 Ch D D SB F= ⋅ ⋅  (10.6)

or

 Ch D AB= ⋅  (10.7)

in which

 D CB B= −1  (10.8)

DB is the backward decoupling between the device being adapted and its con-
sumers, expressing the impact of the adaptation of the device. If many consumer 
devices are affected (low DB), changeability becomes lower than desirable. All the 
factors in Eq. 10.6 vary between 0 and 1. Any low value becomes dominant and 
imposes a low value on the changeability, which translates to a poor device 
architecture or implementation.

The conclusion from this equation is that a device is more changeable (impacts 
less its consumers and its use of providers) for a given similarity (which expresses 
the degree of changes made) if it has a higher forward and backward decoupling 
(lower coupling). This is in line with the conclusion of the previous section.

10.7  Architectural Style

An architectural style can be defined as a collection of design patterns, guidelines 
and best practices to design the architecture of a system [40]. SOA [6] and REST [7] 
are the main architectural styles in use today for distributed system interoperability.

In SOA, each problem-domain entity should be modelled as closely as possible, 
in a one-to-one mapping. A small change in the problem should yield a small change 
in the SOA model. Each entity has its own interface, which means that a consumer 
using the functionality of a provider needs to know the operations and semantics of 
the interface of the latter. The REST proponents contend that this is an unacceptable 
coupling, hampering scalability and changeability. A consumer should only know 
the provider’s link (Uniform Resource Identifier – URI – in Web terms), obtain a 
representation of it (an universal operation) and from then onwards follow the links 
contained in that representation by using only a fixed set of universal operations, 
supported by all the devices [41].
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Fielding, the creator of REST, designated this as “hypermedia as the engine of 
application state” (HATEOAS) [42]. The basic idea is that the client (consumer) 
needs to know very little about the server (provider), since it only follows the links 
that the server provides, and that the server needs to know nothing about the client, 
which has the responsibility to decide which link to follow. The intended goal is to 
minimize coupling (both in terms of interface and of choreography) and to maximize 
scalability. However, this is an elusive goal.

Apparently, if the server changes the links it sends in the responses, the client 
will follow this change automatically by using the new links. The problem, however, 
is that this is not as general as it may seem, since the client must be able to understand 
the structure of the responses. It is not merely a question of blindly following all the 
links in a response. To achieve this, REST imposes the constraint that the schema of 
returned representations is shared with the client. Moreover, just stating the data 
syntax (using languages such as XML or JSON) is not enough. The semantics and 
the actual set of names used (the schema, in fact) must be known by both client and 
server [43].

This is no different from what happens with SOA, in which the schema of the 
service interface must be shared between consumer and provider. SOA is guided by 
services (behaviour), whereas REST is guided by resources (state). REST uses 
schemas of resources instead of services, but the coupling is still there.

What REST indeed does is to trade interface variability for structure variability, 
something that SOA lacks. REST cleanly separates the mechanism of traversing the 
graph of possible interaction states from the processing of individual graph nodes 
(interaction states) [44]. Therefore, varying the structure allows changing the overall 
behaviour without affecting the traversal mechanism. However, this requires that all 
nodes are treated alike, which means that all nodes must have the same interface. 
This implies decomposing the SOA-style objects into their most elementary 
components and treats them all as first-class resources, which in turn leads to a state 
diagram (instead of a class diagram) programming style.

The main problem with this is that the model is no longer guided by the static 
entities of the problem, in an object-oriented fashion, but rather by state, as an 
automaton. Most people will find it harder to model state transitions than static 
entities (classes). This is not a problem for simpler applications that can be organized 
in a CRUD (Create, Read, Update and Delete) approach, a natural method when 
structured state is the guiding concept. However, for more complex applications in 
which behaviour and information hiding (including state) are fundamental factors, 
it becomes a relevant issue.

It turns out that many applications are simple and the technologies typically used 
to implement REST are simpler, lighter and in many cases cheaper than those used 
to implement SOA (viz. SOAP-based Web Services), which justifies the growing 
popularity of RESTful applications and their APIs. The level of resource coupling 
in REST, however, is not lower than that of service coupling in SOA, since both 
require that the schemas used are known by both interacting devices.

It should also be noted that SOA lacks support for structured resources. Services 
(the set of operations supported by a resource) have just one level, offering operations 
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but hiding any internal structured state. Structure is a natural occurrence in most 
problem domains, and, in this respect, REST is a better match.

10.8  Asymmetric Interoperability

Independently of whether IoT devices are modelled as services or as resources, their 
interaction is message based. Messages are serialized data structures described by 
schemas, and the typical interoperability solution used in distributed systems is to 
share the message’s schema between the sender and the receiver of that message, as 
illustrated by Fig. 10.3.

This is designated symmetric interoperability, since both sender and receiver 
need to have the same knowledge about the message. The sender can produce any 
structured value allowed by the message schema, and therefore the receiver needs to 
be able to read any of these values as well. Both sender and receiver work on the 
same message, with the same schema.

This is reminiscent of the document-based interoperability, using data descrip-
tion languages such as XML or JSON, in which a writer produces a document 
according to some schema and the reader uses the same schema to validate and to 
read the contents of the document. The document is now replaced by the message, 
but the principle is the same. This has the following main drawbacks:

• The receiver needs to deal with the message using the schema of the sender, 
which produced the message. This usually implies endowing the receiver with a 
stub (interface code) that knows the schema and how to access the message 
components (data binding).

• The receiver needs to deal with the message using the ontology (viz. message 
component names) of the sender, which produced the message. An ontology 
mapping, between the message and the receiver, is required for the receiver to be 
able to interpret the message’s semantics.
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Fig. 10.3 Symmetric message-based interaction
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• The sender and the receiver are coupled for the entire range of values supported 
by the schema, even if only a fraction of that range is actually used in the 
interactions. When this happens, coupling is higher than the interacting devices 
actually require.

The first step towards solving these problems is to recognize that device interac-
tion is inherently asymmetric:

• The roles of sender and receiver (or consumer and provider) are different. One 
requests, and the other provides.

• The ontologies of the two are most likely different, particularly when we con-
sider the enormous variability of devices and respective manufacturers.

• The set of message values that the sender can generate does not have to match the 
set of message values that the receiver can accept.

Nevertheless, in most cases, interaction is made symmetric artificially by design, 
i.e. sender and receiver are designed together, to work together, under some common 
specification. However, this hampers decoupling and changeability, which 
constitutes one of the main criticisms to the SOA architectural style.

This chapter contends that device interaction should assume its inherent asym-
metry, replacing Fig. 10.3 by Fig. 10.4.

Figure 10.4 can be described in the following way:

• The message sent by the sender includes a self-description but only about the 
message’s concrete value (which may be structured), designated here value 
schema, since it is valid only for this value, not a range of values.

• The receiver specifies and exposes a type schema, in line with what schema 
description languages support (schemas that are satisfied by a range of values). 
This schema specifies the range of message values that the receiver is willing to 
accept.

• When the message arrives at the receiver, the message’s value schema is com-
pared with the type schema of the receiver, in the compliance checker. If the 
former complies with the latter, the message is accepted, which in practice means 
that the value of the message is one of those that satisfy the receiver’s type 
schema.
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• Prior to sending messages, the sender can use the type schemas exposed by 
potential receivers to check compliance and thus discover suitable receivers.

• If compliance of a received message holds, the message’s value is structurally 
assigned to the data template, which is a data structure that satisfies the type 
schema and is partly filled in with default values for the components in the type 
schema that are optional, i.e. their minimum cardinality (number of occurrences) 
is zero.

• Structural assignment involves mapping the value schema of the message to the 
type schema, by assigning the message to the data template, component by 
component (not as a whole value), according to the following basic rules:

 – Components in the message that do not comply with any component in the 
data template are ignored (not assigned).

 – Optional components in the data template with no counterpart in the message 
keep their default value.

 – Components in the data template that have counterparts in the message have 
their values set to the corresponding message’s component values.

 – Structured components are assigned by recursive application of these rules.

• After this, the components of the data template are completely populated and 
ready to be accessed by the receiver. Each message received populates a new 
instance of the data template.

The main advantages of asymmetric interoperability are the following:

• The receiver deals only with a schema it already knows, the one for which it was 
designed. There is no need for a stub to deal with the schema shared with the 
sender.

• The mapping between the message and the data template is done in a universal 
manner, by the message-based platform, and does not depend on the receiver’s 
schema.

• The structural assignment rules mean that coupling is reduced by comparison 
with symmetric interoperability, since:

 – Only the actually involved components are used in the structural assignment.
 – Only one message value, instead of all satisfying a schema, is involved in the 

compliance check between the message and the schema of the receiver.
 – Additional and less stringent component matching rules are possible besides 

having a common name, such as by position and by type.

To detail these issues, we need a data model that specifies the primitive data 
types and the data structuring mechanisms.

J.C.M. Delgado



205

10.9  A Foundational Data Model

A common baseline, universally agreed and known by all interacting devices, is 
needed to act as a foundation for interoperability, much in the same way as XML 
and XML Schema support XML-based interactions. Basically, what is needed is as 
follows:

• A set of built-in data types and the respective values, considered atomic (not 
composed of other values)

• A set of structuring mechanisms that enable the construction of arbitrarily com-
plex structured (non-atomic) types and the respective values

The actual choice of these sets is not important in the context of this chapter. The 
conclusions will be the same whichever these sets are, since we reason at a generic 
level. For illustration purposes, Table 10.2 provides possible sets of built-in types 
and structuring mechanisms, loosely based on those of XML.

The Union types are simply sets of types, each of which may be any of those in 
Table 10.2. Values belong to (satisfy) a Union type if they belong to at least one of 
its member types. It is important to note that, contrary to many type systems, a value 
does not actually belong to just one type but to all that it satisfies. What satisfaction 
means is explained in Sect. 10.10.

The Record and List structured types consist of a set of components (not neces-
sarily belonging to the same type), each of which has the attributes described in 
Table 10.3. Attribute letters are used in Sect. 10.10.

In Fig. 10.4, we notice that:

• A value schema is a data type in which the type attribute of each component has 
been reduced to a single value and its cardinality has been fixed (the minimum 
and maximum cardinalities are identical). Therefore, it corresponds to the data 
structure of the message with self-description.

• A type schema corresponds to what Tables 10.2 and 10.3 describe.
• A data template is a type schema that additionally specifies, for each component 

with a minimum cardinality of zero (therefore optional in a message that satisfies 
the type schema), a default minimum cardinality and the corresponding values. 

Table 10.2 Possible sets of built-in and structured data types

Data type category Data type Description

Built-in types Integer Integer numbers
Float Real numbers
Boolean True or false
String Strings

Structured types Record An unordered set of components
List An ordered set of components

Choice type Union A set of data types, any of which can be 
chosen
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If the message includes a matching component, it is assigned to the correspond-
ing component of the data template; if the message does not include such a com-
ponent, the default information is used. In any case, the data template becomes 
fully populated after the structural assignment, even if the message lacks some 
components. This does not work for mandatory components (those with a mini-
mum cardinality greater than zero).

10.10  Compliance and Conformance

Asymmetric interoperability (Fig. 10.4) assumes that, unlike symmetric interoper-
ability (Fig. 10.3), the schema of a message does not have to be the same as the 
schema the receiver is expecting. This decreases coupling, since the message’s 
value schema just needs to comply with the minimum requirements (mandatory 
components) of the receiver’s type schema.

In other words, the two schemas (of the message and of the receiver) have only 
to match partially. This enables the receiver to receive messages from different 
senders, as long as they match the relevant part of the receiver’s schema. In the same 
vein, we can consider the case of replacing the receiver with another one, with a 
different schema, as an alternative to the first one. This can occur due to evolution 
of the receiver (replaced by a new version) or by resorting to a new receiver 
altogether.

Allowing a receiver to be able to interpret messages from different senders, and 
a sender to be able to send messages to different receivers, is just what is needed to 
decrease coupling, as Eqs. 10.1 and 10.2 show. Note that a sender/receiver pair deals 
with one message, whereas a consumer/provider pair may require two sender/
receiver pairs, for the request and response messages, but the considerations are 
valid for each of these messages.

These use and replace relationships lead to two important schema relations, 
which are central to asymmetric interoperability:

Table 10.3 Attributes specified for each component of the structured types

Attribute Letter Description

Name N Name of the component, possibly qualified by some ontology (just on 
Records)

Position P Ordering number of the component (on Records, position is the order 
by which components appear in the specification)

Type T Type of the component (any of the types of Table 10.2)
Minimum 
cardinality

m Minimum number of occurrences of components with this name

Maximum 
cardinality

M Maximum number of occurrences of components with this name
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• Compliance [26]. The sender must satisfy (comply with) the minimum set of 
requirements established by the receiver to accept requests sent to it.

• Conformance [27]. The alternative receiver must satisfy the maximum set of 
requirements established by the original receiver to accept requests sent to it. 
Therefore, the alternative receiver is able to take the form of (conform to) the 
original receiver and to continue to support any existing sender.

These relations are not symmetric (e.g. if X complies with Y, Y does not neces-
sarily comply with X) but are transitive (e.g. if X complies with Y and Y complies 
with Z, then X complies with Z).

Figure 10.5 illustrates these relations between several IoT devices, from the point 
of view of a request message.

In semantic terms:

• Compliance means that the set of possible message values sent by a sender is a 
subset of the set of values that satisfy the type schema of the receiver.

• Conformance means that the set of values that satisfy the type schema of an 
alternative receiver is a superset of the set of values that satisfy the type schema 
of the original receiver.

This means that, as long as compliance and conformance hold, the receiver can 
accept messages from different senders and that a sender can start using an 
alternative receiver without noticing the difference with respect to the original 
receiver. The compliance and conformance relations obey the following rules 
(denoting compliance and conformance between types X and Y by X◄Y and X►Y, 
respectively):

Fig. 10.5 Illustration of the compliance and conformance relations
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• Each built-in type complies with and conforms to just itself, with the exception 
that Integer complies with Float (subset) and Float conforms to Integer 
(superset).

• A Union type U complies with a built-in type B only if each member type of U 
complies with type B.

• A Union type V conforms to a built-in type C only if at least one member type of 
V conforms to type C.

• Tables 10.4 and 10.5, respectively, describe compliance and conformance 
between the more complex types, structured and choice.

Note that, in a type W conformant to a type Z, any additional components (not in 
Z) need to be optional, so that values that complied with Z still comply with W. This 
means that a receiver with data template (Fig. 10.4) of type Z can be replaced by a 
receiver with data template of type W, without impairing interoperability.

Table 10.4 Rules for compliance of a type X with another type Y

◄ Type Y

Type X Record List Union
Record If, for each Yi, there is a Xj such 

that XjN = YiN, XjT◄YiT, Xjm ≥ Yim 
and XjM ≤ YiM

If, for each Yi, there is a Xj such 
that XjP = YiP, XjT◄YiT, Xjm ≥ Yim 
and XjM ≤ YiM

If X complies with 
at least one Yi

List If, for each Yi, there is a Xj such 
that XjP = YiP, XjT◄YiT, Xjm ≥ Yim 
and XjM ≤ YiM

If, for each Yi, there is a Xj such 
that XjP = YiP, XjT◄YiT, Xjm ≥ Yim 
and XjM ≤ YiM

If X complies with 
at least one Yi

Union If all Xj comply with Yi If all Xi comply with Yi If each Xj complies 
with at least one Yi

The subscripts i and j designate component/member type, and the letters designate component 
attributes (Table 10.3)

Table 10.5 Rules for conformance of a type W to another type Z

► Type Z

Type 
W

Record List Union

Record If, for each Zi, there is a Wj 
such that WjN = ZiN, WjT►ZiT, 
Wjm ≤ Zim and WjM ≥ ZiM, and 
for all remaining Wj, Wjm = 0

If, for each Zi, there is a Wj such 
that WjP = ZiP, WjT►ZiT, 
Wjm ≤ Zim and WjM ≥ ZiM, and 
for all remaining Wj, Wjm = 0

If W conforms to 
all Zi

List If, for each Zi, there is a Wj 
such that WjP = ZiP, WjT►ZiT, 
Wjm ≤ Zim and WjM ≥ ZiM, and 
for all remaining Wj, Wjm = 0

If, for each Zi, there is a Wj such 
that WjP = ZiP, WjT►ZiT, 
Wjm ≤ Zim and WjM ≥ ZiM, and 
for all remaining Wj, Wjm = 0

If W conforms to 
all Zi

Union If at least one of Wj conforms 
to Z

If at least one Wj conforms to Z If, for each Zi, there 
is at least one Wj 
that conforms to it

The subscripts i and j designate component/member type, and the letters designate component 
attributes (Table 10.3)
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Mapping Records to Lists and Lists to Records allow structural assignment by 
position instead by name, considering the position of each named component in 
Records as the position it occupies in its definition or declaration.

There is still another possibility, mapping by component type. In this case, com-
ponents are assigned to those that comply with (or conform to) the other type. The 
advantage of this is to avoid needing to have exactly the same name in correspond-
ing components. This cannot always be used, since different components can have 
the same type but different semantics. These rules can lead to ambiguities, i.e. 
matching solutions that are not unique, in particular when unions are involved. In 
this case, the solution adopted can depend on the implementation. Types should be 
chosen to avoid ambiguities, or a compiler can check for them and generate an error 
if it is the case.

Extending the compliance and conformance concepts to services, at the interface 
layer (Table 10.1), is straightforward. Consider a service C (the consumer) and a 
service P (the provider). C can invoke some of the operations of P. For each invoked 
operation, we consider:

• Crq – The type of the request message, sent by the consumer
• Prq – The type of the request message, expected by the provider
• Prp – The type of the response message, sent by the provider
• Crp – The type of the response message, expected by the consumer

A consumer C is compliant with (can use) a provider P (C◄P) if, for all opera-
tions i of P that C invokes, Crqi◄Prqi and Prpi◄Crpi. Structural assignment is used 
to assign a message received (either request or response) to the data template of the 
receiver (Fig. 10.4).

In a similar way, a provider S is conformant to (can replace) a provider P (S►P) 
if, for all operations i of P, Srqi►Prqi and Prpi►Srpi.

10.11  Examples

Compliance and conformance, as described in this chapter, apply to data types and 
can be used directly in RESTful APIs, by a client that receives a resource 
representation from a server. Compliance means that the schema of that representation 
just needs to comply with the schema that the client expects, not actually be the 
latter. Conformance means that the client can be replaced by another one that 
conforms to the original one but can include different features. This lowers coupling 
with respect to the current RESTful platforms.

To illustrate these concepts, suppose that we have an IoT device that implements 
a weather sensor with a RESTful API. Upon reception of a GET request, it returns 
a representation of itself according to the JSON data shown in Listing 10.1.
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{
 "temperature": 20,
 "temperature_unit": "Celsius",
 "average_temperature": 16.3,
 "humidity": 72.5
}

Listing 10.1 A representation of a weather sensor, in JSON.

The actual JSON Schema used to produce these data is irrelevant for asymmetric 
interoperability. It could be one of many. The receiver should assume that the 
message’s schema has just one value (no variability) and is precisely what the mes-
sage states, with its components, names, types and values.

Now, suppose that we have a simple client, which just reads the temperature and 
expects data with the schema shown in Listing 10.2.

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "required": ["temperature", "temperature_unit"],
 "properties": {
 "temperature": { "type": "number" },
 "temperature_unit": { "enum": ["Celsius", "Fahrenheit"] },
 }
}

Listing 10.2 A JSON Schema describing data expected by a simple client

The weather sensor’s schema complies with the client’s schema. The temperature 
property accepts any number, which includes the 20 stated by the weather sensor’s 
representation. The weather sensor uses just the Celsius scale in temperature_unit, 
which is also a subset of the scales supported by the client. The client ignores the 
average_temperature and humidity properties of the weather sensor’s representation.

Compliance means that the representation of the weather sensor can be structur-
ally assigned to the client’s data template (see Fig. 10.4). The client’s code will only 
have access to the properties it has declared in its own schema and will never know 
that the representation returned by the weather sensor had additional properties.

This is mapping by component names and requires the same ontology (same 
component names on both schemas). This can be avoided by mapping by position, 
as shown in Listing 10.3, in which component names are different, but the relative 
positions are the same, and the component types match. In this case, the temperature 
component is assigned to the temp component, and the temperature_unit component 
is assigned to the unit component.

J.C.M. Delgado



211

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "required": ["temp", "unit"],
 "properties": {
 "temp": { "type": "number" },
 "unit": { "enum": ["Celsius", "Fahrenheit"] },
 }
}

Listing 10.3 A JSON Schema describing the data expected by a client with a com-
patible but different ontology

Finally, mapping can still be done by type (without component names), which 
can even support components in different positions, as long as the mapping of 
component types is unambiguous, as shown in Listing 10.4. In this case, components 
have to be specified in a JSON array, since they have no name, but the rules of 
Table 10.4 support this. Note that the order of the components is not the same as in 
the previous listings, to show that the order is not relevant in mapping by type. 
However, the first component to match a type is used, and the data returned by the 
weather sensor has three components that match the type number, which means that 
mapping by type should be used with care and only when there is no ambiguity.

{
 "$schema": "http://json-schema.org/schema#",
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 { "enum": ["Celsius", "Fahrenheit"] },
 { "type": "number" }
 ]
}

Listing 10.4 A JSON Schema describing the data expected by a client, without 
component names

Current technologies support only mapping by name, which means that Listings 
10.3 and 10.4 are illustrative only.

Now, suppose that we replace the client of Listing 10.2 with a new version that 
is now able to make use of the average_temperature and humidity properties of the 
weather sensor’s representation. Its schema is represented in Listing 10.5.
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{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "required": ["temperature", "temperature_unit"],
 "properties": {
 "temperature": { "type": "number" },
 "temperature_unit": { "enum": ["Celsius", "Fahrenheit"] },
 "average_temperature": { "type": "number" },
 "humidity": { "type": "number" }
 }
}

Listing 10.5 A JSON Schema describing a new client, conformant to the previous 
one

This new client conforms to the old one, since it includes the properties of the 
latter and the additional properties are optional (not required). The reason for this is 
that, for a transparent client replacement, the new client must also accept all the 
weather sensor representations that the old client could accept, which means that 
properties ignored by the old client cannot be mandatory in the new client. Similar 
examples could be provided using XML Schema, but these would be more verbose.

Compliance and conformance can also be defined for services, in particular for 
Web Services, using XML, with the rules described in the previous section. Due to 
space limitations, service compliance and conformance are not illustrated here, and 
the reader is referred to [45] for an example.

Using symmetric interoperability, the communications interface with general- 
purpose programming languages, at either side of the interacting devices, is usually 
done with stubs, with code generated automatically from the shared schema, 
typically resorting to annotations. If the schema changes, the stubs have to be 
generated again, on both sides of the interaction. With asymmetric interoperability, 
the schemas of the sender and of the receiver become independent. They just need 
to comply, and as long as compliance is not impaired, one can be changed without 
impact on the other.

As an example, consider that the weather sensor is implemented by a C# applica-
tion, which includes a class to describe the representation returned by the weather 
sensor in a RESTful API, such as the one shown in Listing 10.6. This C# class is 
simply composed of the data components in Listing 10.1, using auto- implemented 
properties as a concise way to define private data fields with public get and set 
accessors.
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public class WeatherSensorRepresentation
{
 public int temperature { get; set; }
 public string temperature_unit { get; set; }
 public double average_temperature { get; set; }
 public double humidity { get; set; }
}

Listing 10.6 C# class used to generate the representation of the weather sensor

The weather sensor application either includes a JSON generator method in this 
class or has a general method that produces JSON from data fields, by reflection. 
There is no JSON Schema involved, only straight serialization to JSON. Assuming 
that the client application is written in Java (just to have another programming 
language), it needs to specify a data template (Fig.  10.4), against which the 
compliance of the weather sensor representation will be checked.

A Java class needs to be programmed for this, but, unlike the C# class, which 
represents just one structured value, it needs to include the variability allowed by the 
client’s schema. This can be done by using Java annotations, as illustrated by Listing 
10.7, which implements the data template of the client with the schema described 
by Listing 10.5, more complete than the one of Listing 10.2.

@Record
public class ClientDataTemplate
{
 private temperature double;

 @Union("Celsius")
 @Union("Fahrenheit")
 private temperature_unit String;

 @Optional
 private average_temperature double = 0;

 @Optional
 private humidity double = 0;

 . . . /* getters and setters */
}

Listing 10.7 Simplified implementation of the client’s data template

The @Record annotation indicates that this data template is a record (Table 10.2). 
All data members will be exposed for compliance matching. Those annotated with 
@Optional may be missing from the received message. The @Union annotation 
(which can be repeated) indicates the allowed values for the data member they apply 
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to. Listing 10.8 illustrates the declaration of repeated annotations in Java. We need 
to define not only the Union annotation itself but also a containing annotation 
UnionSet, which will enable to collect the various alternatives for the union into an 
array.

@Repeatable(UnionSet.class)
@interface Union { String name() }

@Retention(RetentionPolicy.RUNTIME)
@interface UnionSet { Union[] value() }

Listing 10.8 Simplified example of declaration of the @Union annotation

When a message is received, at runtime, the platform’s endpoint creates an 
instance of the ClientDataTemplate class, gets its annotations, parses the message 
and, by reflection, tries to match (using the compliance rules described in the 
previous section) and structurally assign each component of the message to a 
component in the data template. The annotations indicate the structural type of the 
template (record, in this example) and its variability (optional components and 
unions). Extra components in the message are ignored, missing components that are 
optional in the data template (otherwise there is no compliance) use default values, 
and the values of matching components are assigned to the corresponding values of 
the data template. After this, the complete data template can be processed by the 
receiver’s application.

The most relevant aspect of this mechanism is that the receiving application does 
not deal with the message, only with the data template and the components for 
which it has been designed. The assignment of relevant parts of the message to the 
data template is done in a universal way, independently of the types of the actual 
message or data template. These types have become decoupled, except for the 
components that are really needed for the interaction (minimum coupling possible).

In addition, it should be noted that the serialization format (text such as XML 
and JSON or binary such as Concise Binary Object Representation – CBOR [46] – 
and Efficient XML Interchange, EXI [47]) is not relevant in the context of this 
chapter. As long as they can be parsed and the semantic information (viz. component 
names) is present, this mechanism can be implemented. Naturally, both sender and 
receiver need to use the same serialization format.

10.12  Conclusion

The fundamental problem of device interaction is to provide the maximum decou-
pling possible (exposing the minimum possible number of features) while ensuring 
the minimum interoperability requirements, without which interaction is not 
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possible. This ensures that each device knows just enough about others to be able to 
interoperate with them but no more than that, to avoid unnecessary dependencies 
and constraints.

Symmetric interoperability, in which both interacting devices share the same 
data schema, usually leads to a coupling problem, since a device cannot change its 
schema without changing it in the other(s) device(s) as well. Interacting devices are 
locked into each other, coupled for all the message values allowed by the schema, 
even if not all are actually used. Asymmetric interoperability, on the other hand, 
assumes that the schema used to produce a message does not have to be identical to 
the schema of the messages expected by the receiver.

This chapter has shown that the above discussion:

• Leads to a lower coupling level
• Allows a device:

 – To send messages to different devices (each expecting a different message 
schema)

 – To receive messages from different devices (each with its own message 
schema)

 – To replace another one, now with a changed schema, as long as the new 
schema can support all the characteristics of the old one

In this context, asymmetry entails the following ideas:

• Compliance – At the receiver, instead of validating an incoming message against 
a schema shared with the sender, check whether the message fulfils the minimum 
requirements of the receiver’s schema.

• Conformance – A receiver device can be changed or replaced by another one, 
without impact on those sending messages to it, if the schema of the new receiver 
includes all the features of the old one and does not mandatorily require new 
ones. In this way, a device can send messages to the new receiver without noticing 
that it has been changed.

• Universal reception mechanism  – The receiver does not see the message’s 
schema. Compliance checking and the assignment of the compliant parts of the 
message to the receiver’s data template (the receiver’s view of the message) are 
done in a universal manner by the message-based platform, independently of the 
actual schemas used.

These interoperability features contribute to reduce coupling and to increase the 
range of devices that can interact with a given device. This is especially relevant in 
the Internet of Things, in which devices interact in huge numbers and with a wide 
range of characteristics, and therefore reducing the interoperability problems is of 
paramount importance.
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Chapter 11
Automatic Big Data Provenance Capture 
at Middleware Level in Advanced Big Data 
Frameworks

Anu Mary Chacko, Alfredo Cuzzocrea, and S.D. Madhu Kumar

Abstract Huge amounts of data are being generated by Internet of Things (IoT) 
devices. Termed as Big Data, this data needs to be reliably stored, extracted, and 
analyzed. Capturing provenance of such data provides a mechanism to explain the 
result of data analytics and provides greater trustworthiness to the insights gathered 
from data analytics. Capturing the provenance of the data stored in NoSQL data-
bases can help to understand how the data reached its current state. A holistic expla-
nation of the results of data analytics can be achieved through the combination of 
provenance information of the data with results of analytics. This chapter explores 
the challenges of automatic provenance capture at the middleware level in three dif-
ferent contexts: in an analytics framework like MapReduce, in NoSQL data stores 
with MapReduce analytic framework, and in NoSQL stores with SQL front ends. 
The chapter also portrays how the provenance captured in the MapReduce frame-
work is useful for improving the future executions of job reruns and anomaly detec-
tion, apart from its use in debugging.

11.1  Introduction

With the rise in usage of the Internet and social media websites, digital data is now 
treated as an asset and is used to derive insights or meaningful information. With the 
advent of the Internet of Things (IoT), the amount of data has increased exponen-
tially. Most of the data generated are unstructured and are of different file types. As 
data are generated in large volumes, they are termed as “Big Data.” Big Data can 
contain information generated by sensors, chatter in the social media like Twitter or 
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Facebook, or loads of information collected for user profiling. This data can act as 
powerful trend predictors if they can be reliably analyzed and mined. The reliability 
of the analytic results depends on how “good” the data used for analysis is, which 
in turn depends on the source of the data and transformations that the data under-
went. Data provenance is the metadata that captures the history of data from its 
creation to how it reached its current state. In our day-to-day activities, different 
levels/types of provenance are collected by audit trails, logs, and change tracking 
software. All such data gives information that contributes to the history of data or 
provenance. Provenance metadata focuses on isolating all relevant details of history 
in one metadata in a systematic way, such that the advantages of verifiability and 
querying are obtained.

With the increase in complexity of data management, data provenance research 
is gaining a lot of attention. Every aspect of provenance handling, starting from 
capture and storage to representation, security, and querying, needs efficient 
schemes so that provenance can be seamlessly used. In the literature, there are 
schemes for applications to disclose provenance explicitly and schemes to capture 
provenance automatically at operating system and middleware level. Making all 
applications provenance aware is not a feasible solution, and so automatic capture 
of provenance is needed. Automatic capture can be done at operating system or at 
middleware layer. At the operating system level, the system is not able to understand 
the context in which data is used, and so if provenance is collected at this level, it is 
very fine grained, making it difficult to query and use the provenance collected. 
Automatically capturing provenance at middleware level gives the application 
designers the flexibility to focus on logic of application without worrying about 
provenance disclosure. Especially, in the context of Big Data, where a large number 
of Big Data applications are being deployed every day, automatic provenance cap-
ture at middleware layer is a feasible option for provenance capture.

This chapter focuses on processing of IoT data on the Big Data analytic frame-
works. The next section provides a background to the work done in provenance 
research, and the rest of the chapter discusses approaches to capture provenance of 
analytics done on MapReduce framework and data stored and analyzed in NoSQL 
data stores.

11.2  Background

In eScience, many tools like Chimera, myGrid, and CMCS [1] were developed for 
provenance capture of scientific workflows. The primary focus for collecting prov-
enance in workflows was to ensure reproducibility of experiments and providing 
provisions for debugging. Provenance was very interesting to the database commu-
nity as it provided explanation for the results obtained. Tools like DBNotes [2], Trio 
[3], and PERM [4] focused on database provenance. Automatic provenance capture 
was explored in the construction of PASS [5], a modified Linux kernel that captured 
provenance of all operations happening in the kernel by observing the read/write 
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system calls. Similar approach was used in SPADE [6] where provenance capture 
scheme was instrumented into the application to capture intra-provenance at com-
pile time. Most of the works except PASS and SPADE described in the literature 
followed a disclosed provenance approach where specific applications were made 
provenance aware for domain-specific requirements.

Provenance is of interest in the area of Big Data, as provenance provides a mech-
anism to explain the results and provide proofs for the validity of data. The main 
focus areas of Big Data provenance is in storage, analytics, and data stores. 
Munniswamy et al. [7] developed PASS to work for cloud storage. They provided 
different versions that store provenance along with data in SimpleDB or Amazon 
S3. Another work in this area is by Sletzer et.al. [8] who proposed techniques to 
instrument Xen hypervisor to capture provenance of operations on the virtual hyper-
visors. In Big Data analytics, a major work was done to develop the analytic frame-
work MapReduce provenance aware. RAMP (Reduce and Map Provenance) [9] 
captures provenance of MapReduce workflows while the job executes. The prove-
nance is generated at the end of job execution resulting in a performance overhead 
of 20–70% as reported by the authors. HadoopProv [10] attempts to improve the 
performance of job execution of MapReduce jobs while capturing provenance by 
deferring the generation of provenance to the time when it is needed. Lipstick [11] 
tool enables database style workflow provenance to be captured for jobs written in 
Pig script. Titian [12] is a library that has been created for provenance support for 
jobs running in Apache Spark, and the authors claim that observed overhead for job 
execution is below 30%.

The early works in data provenance were mainly domain specific and consisted of 
making particular applications provenance aware. Through this approach, rich prov-
enance information is obtained, as the semantics of the applications is an integral 
part of the provenance capture system. But in Big Data scenario, retrofitting all 
applications to make them provenance aware is not practical. On the other hand, 
capturing provenance at the operating system level, e.g., PASS [5], x being captured. 
The main issue here is the large size of provenance and false dependencies. Hence 
there is a need for schemes to capture provenance automatically at middleware layer.

Typically, the applications or software that acts as glue between operating system 
and applications are categorized as middleware [12]. Semantically, the middleware 
layer is placed between the operating system and application layers. Middleware 
caters to multiple applications at a time. Creating middleware to make a set of appli-
cations provenance aware provides the developer with the option of capturing prov-
enance of multiple applications/data in applications in one go. In the Big Data 
landscape, where the number of applications for processing data is as well big, ret-
rofitting provenance into all applications is not a practical solution.

In the literature, there are scientific experiments that followed this approach, 
where the workflow middleware was adapted to capture provenance of all work-
flows running on top of it e.g., MyGrid [13]. By making the workflow queue prov-
enance aware, all the jobs running on it become automatically provenance aware. In 
the big data scenario, provenance capture contexts can be broadly divided into two: 
in the context of analytic tools and in case of Big Data stores. The following sec-
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tions explain the techniques proposed for capturing provenance using middleware 
approach, in analytic tool like MapReduce and NoSQL store like MongoDB.

11.3  Provenance in MapReduce Workflows

In the context of Big Data applications, the collected data is useful only if it is ame-
nable to analytics. The result of the analytics can be confidently used if and only if it 
is verifiable. So capturing provenance for analytic frameworks is a must. The major 
challenge with provenance capture is the high performance overhead caused to the 
job during provenance capture. The provenance collected is usually used for debug-
ging results. This section explores a different approach for capturing provenance of 
MapReduce workflows and explores the use of provenance collected for improving 
the execution of MapReduce jobs during incremental runs and anomaly detection.

11.3.1  Provenance Capture

In the context of MapReduce, three types of provenance can be collected – job prov-
enance (coarsely grained), data provenance (finely grained), and transformation 
provenance (process provenance):

• Job provenance is an example of coarsely grained provenance and captures the 
signature of job.

• Data provenance captures relation between the output data and the input data of 
a MapReduce job.

• Transformation provenance goes beyond the job execution and tries to capture 
details of job execution.

A lazy approach of generating provenance after the completion of job execution 
is adopted in our approach so that results of job are available for the user for review, 
while provenance is being generated. In this approach, provenance is captured by 
writing a wrapper code to the classes like Mapper and Reducer so as to capture 
details important for provenance into temporary files. At the completion of the job, 
a background MapReduce job is executed to consolidate the temporary files and 
generate provenance. Provenance thus generated constitutes the fine-grained data 
provenance. This provenance is useful for debugging the result or to understand 
flow of data from input to output.

Job provenance is the coarsely grained provenance captured by modified 
MapReduce framework so as to create signature of a particular run of a job. The 
details captured as part of job provenance are details of input-output, file names, 
input-output key types and input-output file formats, Mapper, Reducer and Combiner 
class names, MD5 hash of jar files, and offsets to which data is read in the current 
job run.
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Modified MapReduce (Lazy IncMapReduce) was tested on a cluster of nine 
DataNodes and a NameNode for Hadoop. The HBase cluster consisted of nine 
region servers and a master server. Each system was configured with 4GB RAM and 
500 GB hard drive. The results of experiment by running the above jobs are dis-
cussed next.

Provenance collection showed a performance and storage improvement for word 
count problem as shown in Figs. 11.1 and 11.2, respectively. For the word count 
problem, proposed method showed an average 50% improvement in the job com-
pletion time and an average 70% storage optimization over RAMP. This storage 
optimization is obtained as provenance collected is preprocessed and stored in 
HBase.

Another experiment was conducted to filter random Apache WebLog [14] data. A 
sample of 1 lakh weblogs was used to filter good weblogs out of ill-typed weblogs. 
Around 1 lakh logs were analyzed in Lazy IncMapReduce, and performance analy-
sis is shown in Figs. 11.3 and 11.4. HBase storage required 186% more memory 
than RAMP as shown in Fig. 11.4.

In case of WebLog filtering, for each output record, a corresponding provenance 
record is written. As the number of output records increases, the number of write 
operations increases, and hence the storage requirement becomes larger, and job 
execution time degrades. These experiments indicate that significant storage and 
performance improvements are obtained in Lazy IncMapReduce for jobs where the 
number of output keys is less than the number of input keys.

Fig. 11.1 Comparison of 
performance (job 
completion time) in word 
count problem
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Fig. 11.2 Comparison of 
storage requirement – word 
count problem

Fig. 11.3 Comparison of 
performance (job 
completion time) in 
WebLog filtering 
problem – MapReduce 
without provenance vs 
RAMP vs Lazy 
IncMapReduce
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Transformation provenance consists of details of job execution. This can be 
extracted from the various logs created as part of the job execution. Once the job 
execution is over, the logs from the different nodes are consolidated, and transfor-
mation provenance can be mined from the logs using a rule-based execution frame-
work. This is done by identifying patterns in the logs and defining rules to extract 
the information from log to deduce provenance. This provenance captures informa-
tion on MapReduce execution, like details of task and job execution, split creation, 
dataset access, etc. Here, there is no change made to the MapReduce framework, but 
provenance is deduced from the preexisting logs.

Hadoop generates detailed log for all the services running in the cluster like 
NameNode, DataNode, JobTracker, and TaskTracker. The details of job extracted 
from the logs are used to generate a transformation provenance profile for the job. 
Provenance profile is captured as XML file so as to enable easy querying. The prov-
enance profile contains complete information about the execution of the job run, 
cluster configuration information, as well as ERROR and WARNING messages 
generated.

The three provenances together provide the holistic picture about the MapReduce 
job execution and its results. In the literature the use of provenance collected has 
been demonstrated mainly for debugging of results. In the rest of this section, two 
novel uses of provenance collected are discussed: (1) the use of data and job prov-
enance to improve the workflow execution of subsequent runs of MapReduce jobs 
and (2) the use of transformation provenance for anomaly detection.

Fig. 11.4 Comparison of 
storage requirement: 
WebLog filtering 
problem – RAMP vs Lazy 
IncMapReduce
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11.3.2  Incremental MapReduce Using Provenance

In the literature, there are schemes like Incoop [15] and Itchy [16] that implement 
incremental MapReduce. Incoop [15] uses the concept of memoization and needs 
modified HDFS to implement incremental MapReduce. Itchy [15] uses the term 
provenance, but the provenance used is not conventional but a mapping between 
intermediate map result and input. Proposed approach, Lazy IncMapReduce, aims 
to reuse the provenance generated as part of workflow execution to improve the 
execution of job reruns.

In many MapReduce applications, the input data is of append only variety. For 
such MapReduce jobs, the old results can be reused, and computation can be 
restricted to the new appended input values alone. This will result in significant 
reduction in execution time. The following cases were evaluated as part of this 
work. Input file is considered to be append only:

• Case 1: Input file is appended with data or when input files are added.
• Case 2: Input file is processed as a sliding window of data.

The following section describes how Lazy IncMapReduce works for the two dif-
ferent cases described above.

Case 1: Jobs Rerun with Additional Data Appended to Input File or with 
Additional Files
When a MapReduce job is submitted by the user, its coarse-grained provenance is 
captured, and provenance store is queried to see if it is the first run of the job or 
rerun. It is considered as an incremental run if the provenance store returns a job 
with the following conditions satisfied:

• Jar file with same MD5 hash as current job
• Same Mapper, Reducer and Combiner classes as current job
• Same input files as current job
• Same type of output key and values as current job
• Same input format as current job

After verification, the current job submitted is classified as:

• New run: if no matching job is found in the provenance store, in this case, the job 
is run as a single MapReduce job with provenance capture.

• Incremental run: if a previous run of the same job is found, the input file is 
checked to see whether it is a case of new data appended to existing input files or 
new input files added. In both cases, MapReduce program runs only on the new 
data that was not processed in earlier run. Output of this job is combined with the 
output of old job by executing MapReduce job with Identity Mapper. This is the 
default Mapper class provided by Hadoop that writes all input key value pairs 
into output. This is diagrammatically illustrated in Fig. 11.5.
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Case 2: Job Rerun on Sliding Window of Input Data
Frequently there are cases where MapReduce jobs are run for a window of data 
(e.g., last 30 days data). Every consecutive day, the window slides, deleting a day’s 
information and adding a new day’s information. LazyIncMapReduce is designed to 
handle incremental runs for such MapReduce jobs that process window of input 
data using tuple level fine-grained provenance. The first run of the job processes the 
window selected with provenance capture. In the next run of the job, the window 
has some new data appended and some old data removed. The data can be consid-
ered as having three sections as shown in Fig. 11.6:

• Old data: Data which is part of the old window but not included in the current 
job’s window

• Common data: Data which is common to both old job and current job
• New data: Data which is newly added in the file and not part of old job.

The strategy for job reruns is as follows:

• Perform MapReduce on the new data.
• Refresh the previous job output file to reflect the removal of old data from input 

file. This is achieved by doing selective refresh of the output file of the previous 
run. The fine-grained provenance captured in the previous job run is used here to 
trace back the input for each output element. Depending on which part of the 
input file the input records lie, the following strategies are opted to prepare the 
refreshed output file:

 – Scenario 1: If inputs fall completely in common data, no refresh is done, and 
output file is used as such.

Fig. 11.5 Incremental MapReduce when new data is appended to input file

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…



228

 – Scenario 2: If dependent inputs fall in both common data and old data, then a 
selective refresh needs to be done for those input offsets using a MapReduce 
job.

 – Scenario 3: If the dependent inputs are completely in old data, then the records 
in the old file can be discarded.

• Combine all the results by running a MapReduce job with Identity Mapper.

11.3.2.1  Experimental Results

For the evaluation of incremental MapReduce, two jobs whose number of output 
keys is less than number of input keys were considered: word count job and grep 
job. In these two cases, input file was appended with data, and sliding window of 
data approach was tested. Performance for the incremental run was analyzed.

Case 1: Input File Appended with 500 MB Data for Incremental Run
Performance analysis was done for incremental run when an input file (4.4GB) is 
appended with additional 500 MB data for both word count job and grep job. In the 
first run, a small run time overhead of 5 s was observed. But in the incremental run, 
our prototype outperforms the traditional MapReduce with 50% of run time 
improvement. Figure 11.7 shows a reduction of 50% in execution time of incremen-
tal run of word count job, and Fig. 11.8 shows a 98% reduction in execution time of 
incremental run of grep job.

Thus, there is a significant performance improvement for job reruns in Lazy 
IncMapReduce when jobs are rerun with additional data appended in the file, as the 

Fig. 11.6 Rerun of job in incremental MapReduce for the sliding window case
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data in the previous run is not processed but output of the previous run is merged 
with MapReduce output of new data.

Case 2: Processing Input File with a Sliding Window of 500 MB Data for 
Incremental Run
To evaluate the performance of Lazy IncMapReduce in such cases, incremental 
MapReduce job was executed by moving the processing window by 
500 MB. Performance analysis of incremental MapReduce was done for both word 
count Job and grep Job. The results obtained for the word count problem is shown 
in Fig. 11.9 and for grep problem, in Fig. 11.10.

In the case of experimental run of sliding window word count problem, a perfor-
mance overhead of 400% was found. On analysis, it was found that this overhead 
was because of the bottleneck caused by NameNode during selective refresh. The 
inherent design of MapReduce gives NameNode the task of preparation of splits 

Fig. 11.7 Job execution 
time (word count problem) 
when 500 MB data is 
appended

Fig. 11.8 Job execution 
time (grep problem) when 
500 MB data is appended
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during selective refresh. When there are lots of output records that need refreshing, 
many splits have to be generated for facilitating selective refresh. Out of 1352 s of 
the incremental run, 1155 s were taken for selective refresh. The preparation of files 
for selective refresh was the main cause of the overhead. In the case of grep job, 
provenance query provided very few records for selective refresh, and so the time 
for preparing splits was greatly reduced. Thus, in the case of grep, incremental run 
in Lazy IncMapReduce gives a better performance over traditional MapReduce.

Fig. 11.9 Job execution 
time (word count problem) 
when window of 
processing is “slided” by 
500 MB

Fig. 11.10 Job execution 
time (Grep problem) when 
window of processing is 
“slided” by 500 MB

A.M. Chacko et al.



231

11.3.3  Anomaly Detection Using Transformation Provenance

Execution of MapReduce is handled transparently by Hadoop. Hadoop is an open 
source project designed to optimize handling massive amount of data through paral-
lelism using inexpensive commodity hardware. The earlier versions of Hadoop con-
centrated on task distribution, and very little attention was given to security. In later 
versions, various techniques like mutual authentication, enforcement of HDFS file 
permission, using tokens for authorization, etc. were provided to enhance security. 
But Hadoop has a serious lack in detection of anomalous behavior. Hadoop does the 
data processing and scheduling in a way which is transparent to the user. There is a 
possibility that a compromised user or compromised node could do some malicious 
activity to gain additional resource usage and obstruct services to the other nodes 
for its purposes. An attacker could perform some attacks to slow down the data 
processing and create a denial of service situation in the cluster. Currently, any such 
anomalous activity would go unnoticed despite having security features enabled in 
Hadoop. Transformation provenance captured can throw light on many such mali-
cious activities happening during MapReduce workflow.

After job execution, a provenance file is generated, and this provenance profile is 
used to detect anomalous behavior. The tool developed performs the set of checks 
as listed below:

• Check if input to all the tasks are valid.
• Check if output is stored in proper location.
• Total number of tasks performed.
• Status of nodes in cluster.
• Analyze task execution times.

Checking input and output file locations from the configuration files and actual 
execution log can throw light if any malicious user has made changes for leaking 
confidential data. The check on total number of tasks performed helps to identify 
any skipped computations. Logs provide information on the status of cluster. As job 
allocation is handled transparently by the framework, the user does not know 
whether the resources are properly utilized. The task execution times on different 
nodes can further throw light on the efficiency of nodes. This was verified by simu-
lating a SYN flood attack on a slave machine in the cluster of three machines to 
make the slave system less responsive. The run times of all the map tasks were col-
lected with and without attack. The mean and standard deviation for both the set of 
values were calculated. When there is an attack, the deviation is high (approx 50%) 
from the mean indicating that the run times of map tasks vary. Figure 11.11 describes 
a sample output of anomaly detection using provenance profile.

This section described the capture of data, job, and transformation provenance 
for jobs executing in MapReduce framework and the uses of provenance captured. 
The provenance collected is not only useful for error debugging but also for improv-
ing incremental runs of jobs. Transformation provenance captured is useful in 
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detecting anomalous behavior in the cluster. The next section describes a novel 
approach to capture provenance of data stored in NoSQL data stores.

11.4  Provenance for Big Data Stores

The massive data generated from the different IoT sources are usually stored in 
highly scalable databases like NoSQL data stores. In order to have an end-to-end 
provenance captured, there needs to be provenance captured in NoSQL stores and 
also in analytic frameworks. This section explains the type of provenance required 
for NoSQL stores and approaches to capture provenance in two different contexts:

• Data stored in NoSQL store, analyzed using MapReduce Framework
• Data stored in NoSQL store, analyzed using SQL interface

11.4.1  Data Provenance Requirement in NoSQL Stores

To vouch for the credibility of data in the NoSQL stores, there is a need for three 
levels of provenance capture: tuple and schema provenances for data stored and data 
provenance for output of analytics done.

In NoSQL stores, the data on operations that cause the tuple to reach its current 
state can be categorized as how provenance. The how provenance answers the query 
on how the tuple attained its current value. Complex operations like join and aggre-
gate are not present in NoSQL queries. So in the context of data stored in NoSQL 
store, why provenance is not relevant. However when analytics are done to produce 

Fig. 11.11 Example of anomaly detection by analyzing run times in provenance profile
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meaningful insights, the why provenance becomes critical to explain the result. 
When analytics are done on the data stores, the provenance of output constitutes the 
details of the input tuples that contributed to selection of the output and history of 
how each of the input tuples reached its current state.

NoSQL databases are designed with fault-resistant logs to enable replication of 
changes to ensure transparent scalability. The logs are fixed size tables (capped col-
lection) that capture changes happening in the data store. The information from logs 
can be augmented and reused to deduce how provenance of data stored. Why prov-
enance is captured for analytics done on the data in the NoSQL data stores. Two 
strategies of analytics are explored here.

 1. Using inbuilt MapReduce
 2. Using SQL interface

In the next section, MongoDB is used as an example to demonstrate the practical 
approach for capture of “how provenance” and “why provenance.”

11.4.2  Capture of “How Provenance”

MongoDB supports basic CRUD (create, read, update, and delete) operations only. 
It provides an inbuilt MapReduce option to run complex analytic queries. The how 
provenance was tracked by setting up a tailable cursor in Python on the operation 
log (oplog) of MongoDB. Oplog is a special capped collection that keeps a rolling 
record of all operations that modify the data in the database. As provenance capture 
incurs storage overhead, the logger provides provision to select the tuples/docu-
ments that need to be tracked for provenance by using resource expression. Logger 
monitors the Oplog for any changes happening to the tuples for which provenance 
tracking is requested for. Whenever a log entry is made about tuple/collection that 
is being tracked, the cursor reads the data and deduces provenance details and 
records the provenance in an “append only” provenance collection. The information 
thus deduced from the log constitutes the how provenance and gives information on 
how a data item stored in the data store reached its current state. The following 
example demonstrates the use of provenance captured.

In the MongoDB database called “hospital,” there exists a collection called 
“patients.” To track the provenance for a particular patient, say “P123,” resource 
expression is specified as <hospital/patients/P123>. The current state of the patient 
record is shown in Fig. 11.12. “How provenance” captured is shown in Fig. 11.13.

Both data and schema provenance are available on querying and are demon-
strated by an example. Data provenance shows how the data reached its current 
state, i.e., the details of document creation and details of when each field value was 
added/updated. Schema provenance shows the addition and deletion of new fields in 
the document. For example, in the “hospital” database sample, a new field called 
“Allergy” has been added by user “Dr Jacob” on 29 April 2015 which was not there 
initially.
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11.4.3  Capture of “Why Provenance”

“Why Provenance” is significant to explain results of analysis done on data stored 
in NoSQL stores. This section explores the capture of why provenance in two sce-
narios of analytics:

 1. When MapReduce is used to conduct analytics on data stored in the NoSQL 
stores

 2. When SQL interface is used to analyze the data in the NoSQL stores.

Fig. 11.13 “How provenance” for P123

Fig. 11.12 Current state 
of patient record P123
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11.4.3.1  “Why Provenance” for Analytics Using MapReduce

Why provenance was captured for the MapReduce shipped with MongoDB.  A 
wrapper-based approach similar to the approach used in the previous section was 
used to make MapReduce provenance aware. The provenance collected character-
izes as why provenance as it gives reason/witness for why an output was obtained.

MongoDB MapReduce runs on one input collection at a time. The mapper reads 
the output of the document reader and emits them as key value pairs (ki,vi). Along 
with the input for the reducer, the mapper writes the provenance-related information 
(pi,ki) to a temporary file, file1, where pi is a provenance id that uniquely identifies 
the document which consists of key ki and value vi. The reducer applies the reducer 
logic and processes (ki,[v1,v2…vn]) and generates the output key value pair (ki,V). 
The document writer writes the key value pair (ki,V) generated by the reducer to the 
output collection and temporary file,file2.Once the MapReduce task is complete, the 
provenance logger reads file1 and file2 and extracts the ids {p1,p2,…pn} of the 
 documents with key ki from file1 and appends the set {p1,p2,…pn} to the pair (ki,V) 
in the output collection specified with MapReduce. Thus the set {p1,p2,…pn} is the 
provenance of the pair (ki,V). From this, one can identify and trace back the docu-
ments inside the collection that contributed to that particular output value.

To illustrate why provenance, a simple example is considered. The collection of 
patient’s medication bills at different times in hospital database is illustrated in 
Fig. 11.14.

The total bill for each patient can be calculated by running a MapReduce job. 
The output of the job is shown in Fig. 11.15.

Fig. 11.14 Snapshot of patient’s medical bill collection
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The output does not give any detail regarding the source documents that contrib-
uted to the result. Now if the same query was run with provenance collection, the 
why provenance and how provenance can be together viewed to have a holistic 
explanation of the result as shown in Fig. 11.16.

11.4.3.2  Provenance of NoSQL Stores Queried through SQL Interface

The SQL/MED, or Management of External Data, extension to the SQL standard 
defined by ISO/IEC 9075–9:2008 (originally defined for SQL:2003) [17] provides 
extensions to SQL to define foreign data wrappers (FDW) and data link types to 
allow SQL to manage external data. Popular commercial relational databases like 

Fig. 11.15 Snapshot of 
output MapReduce to 
consolidate total bill

Fig. 11.16 Holistic explanation of a query by combining “why provenance” and “how 
provenance”
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PostgreSQL and IBM DB2 adopted these standards so as to work with data stored 
in external data stores by providing provisions to define FDWs.

FDW defines external data views called “foreign tables” to access external data 
through foreign data wrappers. Thus, in this approach data always resides in the 
remote data store, and query manipulations are done on the “view” defined by the 
foreign table. Provenance of query results run through FDW is important for debug-
ging result, in case of unexpected results.

A novel idea for provenance representation is used in provenance model called 
PERM (Provenance Extension of the Relational Model) [4],  developed by IIT 
(Illinois Institute of Technology) database group. The provenance model defined by 
PERM [4] attaches provenance information to query results by extending the origi-
nal query result with the details of tuples that contributed toward the query result. 
PERM displays provenance by means of query rewrite mechanism which trans-
forms a normal query Q into provenance query Q+ that computes provenance of Q. 
PERM module rewrites the query so as to include provenance specific details. This 
rewritten query is a relational query and hence gets the advantage of all inbuilt 
optimizations.

When analytics are done in NoSQL stores using SQL interface, the results are 
usually presented as views. So PERM model was extended to capture provenance of 
data accessed through foreign data wrappers. The idea is demonstrated by building 
a proof of concept to analyze data in MongoDB by building a MongoDB FDW and 
accessed through modified PERM interface. An extension of PERM model was 
built in stable PostgreSQL version 9.3 and tested by writing a FDW for MongoDB 
to capture “why provenance” of SQL query run on MongoDB through PERM. The 
result of simple query versus provenance query on a SQL Select statement is shown 
in Fig. 11.17.

Fig. 11.17 Normal select query result vs provenance query result
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11.5  Summary and Conclusion

The power of Big Data generated through IoT can be leveraged only if the data 
captured can be analyzed and reliable results can be obtained. In this chapter, vari-
ous schemes for capturing provenance of Big Data analytic tools like MapReduce 
and NoSQL data stores are discussed. It was demonstrated that provenance captured 
in MapReduce framework was not only useful for debugging but also for improving 
certain classes of job reruns and detecting anomalies in the framework. Improving 
performance of workflows using provenance collected as part of the workflows is a 
significant use of provenance, as it can save computational power and time for exe-
cution. Extending the work to efficiently perform selective refresh on MapReduce 
workflow is an interesting problem. The proposed approach of capturing transfor-
mational provenance using logs and the use of transformational provenance in iden-
tifying anomalies in job execution are promising and can be further improved by 
extending the collection of logs used in analysis. The “how provenance” and “why 
provenance” captured help in providing explanation for data stored and analytics 
done on the data stored in NoSQL stores, respectively. “How provenance” and 
“Why provenance” together provide a holistic picture to explain the results of deci-
sions based on analytics on data stored in NoSQL stores.

This chapter restricted the focus to analysis of Big Data. In the context of IoT, the 
challenges in capturing provenance of data produced by sensors are very critical, 
and the area opens up many research problems which need serious research atten-
tion. Refer to [18–22].
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Chapter 12
Networking Topologies and Communication 
Technologies for the IoT Era

P. Beaulah Soundarabai and Pethuru Raj Chelliah

Abstract A kind of deeper and decisive connectivity is the most indispensable 
requirement for the projected and promised IoT era. To start with, every common 
and casual thing in our midst gets systematically digitized. There are several pecu-
liar advantages being accrued out of the digitization process as well as any digitized 
entities/smart objects/sentient materials. The digitization technologies, if appropri-
ately leveraged, can make ordinary objects in our daily environments into extraor-
dinary articles. Digitized elements are self-, surroundings-, and situation-aware 
individually as well as collectively. Not only the physical assets but also all kinds of 
mechanical, electrical, electronics, and IT devices in our places are accordingly 
instrumented and interconnected. They are interconnected to purposefully and pre-
cisely communicate, collaborate, corroborate, and correlate to be innately cognitive 
in their operations, offerings, and outputs. Further on, everyday electronics, instru-
ments, machines, equipment, wares, utensils, robots, and other fixed, portable, 
wearable, hearable, implantable, mobile, and nomadic devices in our personal, pro-
fessional, and social environments are seamlessly integrated. This integration is 
made feasible with the help of cloud-hosted (traditional IT servers and private, pub-
lic, and hybrid clouds) cyber applications, services, and data sources in order to be 
empowered adequately to join in the mainstream computing. Even fog or edge com-
puting is beginning to blossom so that localized and user-centric devices are capable 
of forming ad hoc clouds of devices. The main objective of fog computing is to set 
a stimulating foundation for producing next-generation, real-time, insights-filled, 
context-aware, event-driven, and people-centric applications. Thus, clearly we are 
heading toward the tightly interconnected world. This chapter is specially crafted 
for conveying all about the emerging network topologies and communication tech-
nologies; key limitations of these technologies have also been discussed. In addi-
tion, the chapter provides details on how the inherent issues can be tackled so that 

P. Beaulah Soundarabai 
Department of Computer Science, Christ University, Bangalore, India
e-mail: beaulah.s@christuniversity.in 

P.R. Chelliah (*) 
Reliance Jio Cloud, Bangalore, India
e-mail: peterindia@gmail.com

mailto:beaulah.s@christuniversity.in
mailto:peterindia@gmail.com


242

the expressed liabilities, vulnerabilities, threats, drawbacks, and loopholes can be 
surmounted toward secure, safe, and smart IoT era.

12.1  Introduction

The technologically inspired capability of instrumenting and interconnecting com-
putationally powerful as well as resource-constrained devices (physical, mechanical, 
electrical, and electronics) with one another in the vicinity as well as with cloud-
hosted software applications and data sources over any network is to enable the 
devices to exhibit a kind of shrewdness and sagacity in their operations and outputs. 
Not only everyday instruments, machines, appliances, wares, utensils, equipment, 
etc. but also common and casual articles such as cots, chairs, cups, tables, pipes, 
doors, sofas, windows, etc. in our personal, professional, and social environments 
are being technically tuned and turned to exhibit hitherto unforeseen smart behavior 
and to join in the mainstream computing. Further on, the environments wherein 
those embedded yet empowered devices are being deployed in large numbers ulti-
mately become smart in their contributions for the occupants and owners of the envi-
ronment. These transitions are being enabled through the systematic leverage of 
hugely powerful edge technologies such as disposable and diminutive sensors, actu-
ators, chips, controllers, codes, stickers, pads, tags, labels, specks, smart dust, etc. 
That is, the aura and era of the Internet of things (IoT) have started to beckon and 
dawn upon us powerfully with the overwhelming use of promising, proven, and 
potential technologies. Our living, working, social, edutainment, and entertainment 
places are being systematically decked and demonstrated to be lively and lovely. The 
methodical adoption and adaptation of scores of digitization and distribution tech-
nologies are to bring a series of disruptions and transformations in our lives. The 
much-anticipated digital living, economy, and the world are bound to see the light at 
the end of the long tunnel. The capabilities such as connectivity, networking, com-
munication, integration, and orchestration of digital elements, devices, and IT sys-
tems are imperative to seamlessly share their unique capabilities and capacities.

In this chapter, we are extensively covering the connectivity technologies, topol-
ogies and tools, and their contributions for setting up and sustaining smarter envi-
ronments (smarter homes, hospitals, hotels, etc.) and ultimately the smarter planet.

12.1.1  Describing the Context

A growing array of open standards is being formulated, framed, and polished by 
domain experts, industry consortiums, and standard bodies to make the IoT idea 
more visible, viable, and valuable. National governments across the globe are set-
ting up special expert groups in order to come out with pragmatic policies and 
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procedures to take forward the solemn and sublime ideals of IoT and to realize the 
strategic significance of the IoT paradigm in conceiving, concretizing, and provid-
ing a bevy of context-aware and citizen-centric services to ensure and enhance peo-
ples’ living. Research students, scholars, and scientists are working collaboratively 
toward identifying the implementation challenges and overcoming them via differ-
ent means and ways especially standards-sticking technological solutions. This 
chapter is specially crafted to throw light on the emerging integration tools and 
techniques in order to integrate and orchestrate digitized and connected entities and 
elements, some typical integration scenarios being as follows:

• Sensor and actuator networks
• Device-to-device (D2D) integration
• Cloud-to-cloud (C2C) integration
• Device and sensor-to-cloud (D2C) integration [1]

Figure 12.1 gives a glimpse of how disparate devices are getting connected with one 
another indirectly.

Fig. 12.1 Connected sensors and actuators
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12.1.2  IoT Communication Protocol Requirements

One definition of IoT refers to connecting devices to the Internet that were not pre-
viously connected. A factory owner may connect high-powered lights. A triathlete 
may connect a battery-powered heart-rate monitor. A home or building automation 
provider may connect a wireless sensor with no line power source. But the impor-
tant thing here is that in all the above cases, the “thing” must communicate through 
the Internet to be considered an “IoT” node. Since it must use the Internet, it must 
also adhere to the Internet Engineering Task Force’s (IETF) Internet protocol suite. 
However, the Internet has historically connected resource-rich devices with lots of 
power, memory, and connection options. As such, its protocols have been consid-
ered too heavy to apply wholesale for applications in the emerging IoT.

There are other aspects of the IoT which also drive modifications to IETF’s work. 
In particular, networks of IoT end nodes will be lossy, and the devices attached to 
them will be very low power, saddled with constrained resources, and expected to 
live for years. The requirements for both the network and its end devices might look 
like the Table 12.1. This new model needs new, lightweight protocols that do not 
require a lot of resources. Considering these unique needs, gaining a deeper knowl-
edge of IoT connectivity and data transmission protocols is paramount. This chapter 
is specifically crafted for that.

12.1.3  The Growing Importance of the IoT Paradigm

The ensuing era of IoT is to play a very stellar role in shaping up our everyday envi-
ronments. The IoT concept is an engrossing and essential disruption for everyone in 
this extremely connected world. In this section, we discuss the prime and paramount 
shifts sweeping the entire human society. It is an important point to note that there 
are a number of noteworthy technology-induced transitions happening in the IT 
field.

Table 12.1 Comparison of wireless technologies and their usefulness in IoT

Technologies/factors Bluetooth low 802.15.4 Wifi

Cost Excellent Very good Fairly good
Security Fairly good Fairly good Excellent
Power consumption Excellent Excellent Very poor
Ecosystem Excellent Very poor Excellent
Reliability Excellent Fairly good Fairly good
Ease of Use Excellent Fairly good Excellent
Range Fairly good Good Excellent
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12.1.4  The Meteoric Rise of Device Ecosystem

With innumerable devices, sensors, controllers, and actuators getting fervently 
deployed in distributed and decentralized fashion in important locations such as 
offices, manufacturing floors, retail stores, food joints, shopping plazas, nuclear 
installations, forest and border areas, critical junctions, malls, entertainment cen-
ters, etc., the amount of data getting generated and collected goes up tremendously. 
The machine-generated data is far larger than man-generated data.

The device ecosystem is embracing a bevy of miniaturization technologies to be 
slim and sleek yet smart in their operations, outlooks, and outputs. That is, multifac-
eted devices are hitting the market in plenty. For example, highly miniaturized yet 
mesmerizing smartphones are being produced in millions these days. Smartphones 
are not only connecting people with people but also turning out to be capable of 
operating machines locally as well as remotely [2].

Digitization and distribution are gaining a lot of ground in the present days; 
thereby all kinds of tangible items in our home and social and office environments 
are getting transfigured to be computational, communicative, sensitive, perceptive, 
capable of knowledge discovery and dissemination, decision enabling, and accom-
plishing. That is, ordinary articles become extraordinary. Casually found objects in 
our working, walking, and wandering places become digitized. Thus, IT-enabled 
things are cognitive enough to seamlessly and spontaneously join in the mainstream 
computing process. In short, every tangible thing gets emboldened to be smart, 
every electronics becomes smarter, and every human being is set to become the 
smartest in his or her actions, reactions, and decision making with the pervasive, 
unceasing, and unobtrusive assistance of service-oriented and smartness-ingrained 
devices, game consoles, media players, consumer electronics, and business as well 
as IT services and communication networks.

Extreme and deeper connectivity is another well-known phenomenon in order to 
establish and sustain ad hoc connectivity among dissimilar and distributed devices 
to share their unique capabilities. Further on, it is all about the purposeful integra-
tion with remote off-premise, on-demand, and online applications. These days, 
devices are accordingly instrumented in the factory itself to collect or generate data 
from their environments and users to be transmitted to centralized control systems. 
That is, lately, devices are empowered by embedding a number of newer modules 
internally. In addition, devices are enabled to connect with outside world.

12.1.5  The Emergence of Sensor and Actuator Networks

Sensing is tending to be ubiquitous. Sensors are being touted as the eyes and ears of 
next-generation software applications. A number of technologies especially minia-
turization, networking, communication, etc. are contributing immensely to the 
unprecedented success of the sensing paradigm. Sensors are becoming exceptionally 
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tiny to be easily disposable, disappearing, and yet elegantly deft. Therefore, sensors, 
which are typically low-cost, power, and memory systems, are gradually and gra-
ciously penetrative, pervasive, and persuasive. Sensors are becoming smart in the 
sense that they are able to conserve and preserve their battery energy in order to 
prolong their lives. Smart sensors are capable of buffering and transmitting the data 
captured or generated. Sensors are increasingly complying with the mesh topology 
toward increased maneuverability and reliability. Sensors are mainly for environ-
mental and asset monitoring. All kinds of physical, mechanical, electrical, electron-
ics, and IT systems are being fitted with a variety of sensors for monitoring, 
measuring, and managing various aspects, conditions, and situations of the systems. 
For example, all kinds of vehicles and their body parts are being fitted with smart 
sensors in order to proactively and preemptively attend their needs in time so that any 
kind of collapse and failure can be prevented. Smartphones are being embedded with 
numerous sensors. Even large-scale IT data centers and server farms are being sen-
sor-enabled in order to capture their operational values [3].

Thus, sensors are very vital for our everyday environments especially rough and 
tough ones. Sensors are being networked toward taking data from sensors to remote 
control systems. There are data fusion algorithms in plenty in order to dynamically cap-
ture and aggregate various sensor values to come out with composite indicators. Further 
on, there are ways and mechanisms being prescribed in order to eliminate all kinds of 
sensor data impurities, deviations, deficiencies, and disturbances so that the primary 
needs of data trustworthiness and timeliness are being fulfilled. Increasingly sensor data 
are subjected to a litany of investigations in order to squeeze out valuable intelligence for 
taking informed decisions in time. There is a growing array of sensor-centric data trans-
mission protocols. Further on, sensor data modeling is an interesting phenomenon.

There are industry-strength data formats for unique and unambiguous represen-
tation, exchange, and persistence and interpretation. The list of sensor-centric soft-
ware services is steadily growing. Sensor gateways, middleware, brokers, adaptors, 
connectors, drivers, and controllers are being leveraged in order to collect and trans-
mit sensor data. There are frameworks and platforms to speed up the process of 
sensor-cloud integration so that sensor data can be accumulated in one centralized 
place to enable cloud-based data analytics. Sensor data and the insights extracted 
out of it are tactically and strategically sound for various service providers. Thought- 
provoking industry and personal and social use cases are being published with the 
continued growth and adoption of the sensor technology. Actuation is generally 
based on sensing, and hence actuators and sensors go hand in hand. Actuators are 
the ones that accomplish the execution based on the sensor findings.

Sensors and actuators are therefore the essential ingredients for any environment 
to be smart. Actuators are designed in such a way to receive sensor values and act 
strictly based on that. Thus, networking of sensors and actuators turns out to be an 
important affair for setting and sustaining smarter environments [4]. Clouds are the 
most sought-after IT infrastructures for hosting sensor-specific platforms and appli-
cations. With sensor data analytics being crucial for formulating sophisticated and 
people-centric applications, sensor data analytics platforms are increasingly 
deployed in clouds.
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The pragmatic use cases out of sensor networks are emerging and evolving. A 
wireless sensor network (WSN) is a network formed by a large number of sensor 
nodes where each node is equipped with a sensor to detect different physical phe-
nomena such as light, heat, pressure, presence, gas, etc. WSNs are regarded as a 
revolutionary information gathering method to build next-generation people-centric 
IoT applications. There are several research papers depicting the growing and glow-
ing sensor applications in the peer-reviewed sensor journals, e.g., [5, 6].

Body sensor networks (BSNs) are also very popular challenges related to IoT. 
BSNs are to improve the quality of life and for providing ambient assisted living 
(AAL) facility. BSNs ensure improved healthcare of disabled, debilitated, and dis-
eased people. Also, they improve our daily routines such as playing sports. The 
distributed and changeable character of BSNs introduces new concerns and chal-
lenges to solve. As per experts, the research in the area of BSNs must cover low- 
level hardware design to higher-level communication and data fusion algorithms, up 
to top-level applications.

12.1.6  Sensor-to-Cloud Integration

Sensor and actuator data need to be taken to nearby or faraway clouds for storage 
and analytics. There are multiple cloud options ranging from off-premise and on- 
premise to edge clouds. Public clouds are typically for historical, comprehensive, 
and batch processing, whereas interactive, stream, and real-time processing in a 
secure fashion are better accomplished by edge/fog clouds wherein proximate or 
local processing gets done comfortably. Edge or fog clouds are being formed 
dynamically by clubbing and clustering together several resource-intensive devices 
in the particular environment. Connected devices are bound to produce futuristic 
fog clouds as there is a lot of interest in real-time analytics for gathering tactical and 
timely insights. Increasingly IoT application enablement platforms (AEPs) situated 
at cloud environments in association with IoT data analytics platforms are able to 
receive ground-level data and work on it to carve out pragmatic intelligence.

There are several unique advantages being associated with clouds these days. 
Clouds are being positioned and prescribed as the best-in-class IT infrastructure for 
sensor data storage and analytics. Cloud infrastructures inherently support IT 
resource elasticity, application/workload scalability, etc. through IT consolidation, 
centralization, federation, sharing, automation, and virtualization techniques and 
tools. Geographically established clouds are getting integrated through standards 
and brokers; thereby distributed resource and service orchestration get facilitated 
with just a single click. Data virtualization and information visualization platforms 
are seamlessly integrated with data analytics platforms to speed up the transition 
from data to actionable insights that gets disseminated to machines as well as men 
in time to proceed with the accurate actuation and execution with clarity and 
confidence.
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In summary, everyday objects are being equipped with embedding sensors to 
gain the communication capability. This will create a range of potentially powerful 
and promising services in many different domains. Fire, flame, and fall detection 
procedures are automated through the employment of several sorts of sensors. 
Similarly, there are multiple scenarios being identified and articulated well for sen-
sor and actuator networking. Thus the fact that sensors are talking to local as well as 
remote sensors, actuators, and applications collectively as well as individually, is 
going to be a real game-changer for the forthcoming IoT world.

12.2  Deciphering the IoT Connectivity Methods

In the last few years, the Internet of things (IoT) idea has been drawing a huge atten-
tion from academic professors and industry practitioners. The worldwide enterprises 
and organizations are striving hard and stretching further to use this strategic idea 
efficiently and elegantly so that they can derive the required strength to keep up their 
brand value and the position in the coming decades. Figure 12.2 vividly illustrates how 
ground-level physical assets get networked with one another as well as integrated with 
off-premise/on-premise/edge infrastructures in order to deposit data to be crunched 
instantaneously to squeeze out usable and reusable intelligence. There are three promi-
nent layers in any IoT system/environment setup. The first layer is all about collecting 
the environmental as well as digitized assets’ state information. Once the timely and 
trustworthy data gets collected, they need to be transmitted to data processing, storage, 
mining, and analysis systems toward knowledge discovery and dissemination.

Fig. 12.2 Layers of IoT
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According to Machina Research, the low-power wide area (LPWA) network will 
outperform 2G, 3G, and 4G by providing a higher rate of IoT connectivity. It also 
predicts that there would be around 50 billion connected things by the year 2020. 
LPWA networks also support M2M applications which are usually deployed in 
remote areas and require longer battery life as they might be kept unattended for a 
longer duration. So, these characteristics of LPWA technology provide an apt solu-
tion for many IoT applications [7].

The backbone of IoT is the connectivity of devices. It networks with people, 
things, and software applications and transfers data between them through the 
Internet communication infrastructure, which is public and open. And through that, 
a variety of everyday activities are monitored, controlled remotely, and studied for 
further intelligence. If there is no interconnection, there will not be any communica-
tion between smart objects and devices. Therefore it is very important to understand 
the IoT network topology.

12.3  Network Topologies

There are plenty of purpose-specific and agnostic devices which are of different 
varieties. Thus many factors will affect the working and performance of IoT if the 
right topology for optimal networking is not chosen. A network topology is a 
method through which the objects of the IoT are arranged in the network. The 
majorly used IoT network protocols are point-to-point (P2P), star, and mesh. These 
are briefly discussed in the following sections.

12.3.1  Point-to-Point (P2P)

P2P topology devices communicate with each other directly without the interven-
tion of cloud services. These P2P networks have a great potential for scalability, 
distributed system for data sharing, and robustness as peers are connected to other 
devices independently. In alternative P2P protocols [5] [6], there are hash functions 
used to choose the devices to be connected with them randomly. Adaptive P2P pro-
tocols [8] are also available to have a self-organized topology which allows the peer 
to directly choose and connect with them so as to get the desired data from them. 
This model is resistant to the attacks and active peers get the connection, and mali-
cious nodes are avoided through the choice-based selection of peers. Peers in the 
network are warned with the identity of malicious nodes so that the malicious nodes 
are completely avoided for communication. Each node can choose a limit x as the 
number of peers with which it wants to connect; this is useful to save the 
bandwidth.
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12.3.2  Star Topology

In this type of topology, each object is connected to the data center through its dedi-
cated cloud services. Most of the internet services work in this type of topology. The 
centralized approach makes it easier to control and manage as data is received, 
processed, and analyzed in a single data center. The entire devices in the network 
can be hacked by hacking a single server. It is not much scalable; as the number of 
devices increases, the collection and processing of data also increase which makes 
it difficult to maintain the cloud service architecture due to the centralized approach. 
There is also a high latency as the devices communicate with each other through the 
same network.

12.3.3  Mesh

In this model, each device is connected to all other devices in the network, and each 
can send and receive data among them. This is the mostly used topology for IoT, as 
all the devices are connected to all other devices in the network and through this 
data transfer among the devices are enabled completely without much delay. Each 
module works independently as a centralized module. Its major limitation is that it 
is tough to implement as each object should know the address of the other devices; 
adding a new device into an existing topology would complicate the hardware 
implementation. If wireless communication is used such as nrf24L01RF, the imple-
mentation would be easier than the wired communication. These radio frequency 
models are widely used in healthcare wearable devices as they do not require line of 
sight for data transfer.

Figure 12.3 illustrates the relevance of application protocols such as REST, 
CoAP, etc. in establishing IoT systems. There are data communication protocols 
such as ZigBee, WiFi, Bluetooth, etc. for establishing connectivity between devices 
as shown in the figure. Figure 12.4 extends the personal and local area networks to 
the remote software applications via the public Internet. The various technologies 
contributing for such kinds of people-centric applications are described pictorially. 
Table 12.1 clearly delineates the various factors of IoT protocols.

IoT is the driving force for a wide variety of manufacturing firms, and it scales 
from a single confined device up to enormous devices with embedded techniques; 
using cloud infrastructure, they get connected in the real time.
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12.4  Wireless Technologies

12.4.1  Low-Power Wide Area Network (LPWAN)

Low-power wide area network is the latest wireless technology that uses low bit rate 
(bandwidth) long distant communication by consuming low battery power. So it is 
also known as low-power network (LPN). Its main aims are to achieve the following 
features so as to address the economy and the power concerns than the mobile net-
work standards:

• Long communication range (10 KM to 50 KM)
• Low bandwidth
• Low cost

Network technologies could not provide a long range with low cost and bandwidth 
wherein LPWAN is meant for most of the IoT and M2M business solutions which 
majorly use sensor applications. Traditional network technologies are of a wired 
network. Due to the introduction of 802.11 standards,the huge impact has been 
made on the market because of wireless communication.

Fig. 12.3 Application protocols of IoT
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Table 12.2 shows the comparison of various wireless technologies for the very 
important factors of range and the bandwidth ranging from low to high. It is very 
clear that LPWAN is the one and only wireless technology which offers a long range 
of data transfer with low bandwidth. It uses very few base stations and gateways to 
cover a long range of up to 50 km. It also has very good network coverage in rural 
regions where there is more open space. It is expected that the most of the 50 billion 
connected objects in the year 2020 will use LPWAN for the transmission of data. 
Applications that use smoke detectors, parking management, healthcare bands, GPS 
services, etc. use LPWAN to connect their sensors which are cost effective at the 
same time they are also rapid.

The protocols of IoT are categorized into many levels such as infrastructure, 
communication, network, security, etc. We will see infrastructure protocols and 
communication data protocols in detail.

Fig. 12.4 IoT networking
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12.5  Infrastructure Protocols

12.5.1  Context Centric Networking

This protocol is from the project CCNX that developed an architecture for the data 
sharing by avoiding the limitations of scalability and security. This protocol can be 
deployed on an existing network with the help of middleware software; this has tre-
mendous power on content networking. CCN is an open protocol and so it can be 
altered as required. Its only goal is to make a dynamic and secured and massively 
scalable network to a varied set of devices to communicate and share data with them.

This protocol is exclusively for such environments with high-speed data com-
munication where the source and destination are heterogeneous in nature. The tra-
ditional source-destination TCP/IP model does not provide the best solution. In 
CCN [9], the content publishers create named payload packets with content object 
messages. Signatures are used with the packets to secure the content with the com-
bination of name, publisher’s id, and the payload. The consumers or clients issue an 
interesting message as a request with the name of the desired content. This request 
traverses all over the network and kept in a table called Pending Interest Table (PIT) 
[10]. When a content object matches with the interest, then the content object is sent 
to the client on a reverse path by following the information on the PIT. Along the 
way, this content object can be cached, and the matched one with the interest mes-
sage may be then used. This content is self-identifiable as the security binding is of 
interest [11], publisher key and the payload it can be decrypted at any point in time. 
This provides a complete security of data in the network.

Table 12.2 Comparison of 
wireless technologies for the 
range and bandwidth

Range Bandwidth Wireless technologies

Short range Low Bluetooth 802.15.3
RFID NFC
WBAN 802.15.3

Medium 802.11a
802.11b
802.11 g

High 802.11c
802.11 ad
802.11 g

Medium range Low WPAN 802.15.3
Medium ZigBee 802.15.4

2G, 3G
High 4G, 5G

Long range Low LPWAN
Medium VSAT
High –
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12.5.2  LoRaWAN

Long-range (LoRa) WAN is an exclusive LPWAN design, which is meant for the 
wireless objects that work with battery power right from a small region to global level 
networks. It addresses the key design issues of IoT such as mobility, unidirectional 
and bidirectional connectivity, and communication along with localization services. 
It provides a high level of independence to the developers and to the business. 
LoRaWAN has the star of star topology in its network architecture that has a transpar-
ent bridge called gateways, between the network servers and the smart objects. All 
these objects are enabled with broadcast, multicast, and unicast communication, and 
the required one can be chosen dynamically according to the mass distribution of data 
to efficiently handle the communication time and the bandwidth.

Different data rates and frequency channels are used for the communication 
between the gateways and smart objects. Based on the communication range and the 
duration of the message, the data rate is selected. It is because of these different data 
rates and the wide-spectrum technology; the communications do not interfere with 
one another by creating the virtual channels and thus increase the gateway’s capac-
ity. The adaptive data rate is used for managing each end device’s data rate and 
frequency output. The security of the data communication of Internet of things is 
essential as it is the universal problem that involves lots and lots of confidential 
personal data of the individual and the society. This is achieved by encryption layers 
such as:

• Unique network key (EUI64) for the security on the network level
• Unique application key (EUI64) for the security on end to end in the application 

level
• Device-specific key (EUI128)

Longer range, high robustness, multipath resistance, Doppler resistance, and less 
power consumption are the key characteristics of LoRa. LoRa transceivers can 
operate between 137 MHz to 1020 MHz, and so they are used in licensed bands. 
They are also often deployed in ISM bands (Europe, 868 MHz and 433 MHz; the 
United States, 915 MHz and 433 MHz). The LoRa physical layer is enabled to be 
used with any MAC layer, but LoRaWAN is the MAC which is majorly used as it 
operates in the star topology.

Apart from the size of the payload, the communication parameters such as 
spreading factor (SF), bandwidth, carrier frequency (CF), and coding rate(CR) have 
a significant impact on the airtime of LoRa transmission. A packet of 20 bytes can 
have the airtime ranging from 9 milliseconds to 2.2 s based on the choice of these 
parameters [12]. We shall also discuss the emerging low-power technologies.
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12.5.3  Narrowband IoT

Narrowband is the initiative from 3rd Generation Partnership Project (3GPP) that 
writes standards for the cellular network for the devices which require very low data 
rate in the mobile communication and are powered by batteries. It is an LPWAN 
standard designed for mobile IoT. NB-IoT technology will connect the smart things 
such as simple wearable in the coverage area as they require very low battery power 
and low data rate. It majorly focuses on low-cost, low battery power, and a large 
number of things connected in an indoor coverage area. It can be deployed to inband 
spectrum which is allocated to long-term evolution (LTE) or stand-alone spectrum.

12.5.4  NB-IoT Vs LoRa

NB-IoT and LoRa technologies are unique in comparison with each other as they 
serve different commercial and technical requirements and are exclusively for dif-
ferent applications such as the technologies like WiFi and Bluetooth. LoRa works 
with unlicensed spectrum below 1 GHz which procures no cost for the applications 
using it, whereas NB-IoT uses licensed bands which are less than 1 GHz. The bands 
from 500 MHz to 1 GHz are optimum for the long-range communications. LoRa 
and LoRaWAN are asynchronous protocol and used for simple implementation and 
cost effectiveness but cannot offer a better quality of service (QoS). NB-IoT is a 
time-slotted protocol which is very much optimal for the quality of service but can-
not provide a durable battery lifetime comparing LoRa. The higher-level applica-
tions which really require the assurance of QoS opt for NB-IoT, and the lower-end 
business solutions prefer LoRa. NB-IoT is the best option for applications that 
require very frequent communications, low latency rate, and a large volume of data 
transfers. The applications which look for durable battery life and lower cost and do 
not need frequent communication opt for LoRa.

12.6  Technologies for Applications

At any point in time, there will not be only one technology that will rule the world 
of IoT. The deployment strategies, application nature, and requirements, technical 
differences, device specifications etc. will decide the technology as its best fit. As 
the number of devices getting connected to IoT grows day by day, the underlying 
networking technologies are also expected to scale up to the growing needs where 
the expected number of smart things is not in millions but in tens of billions. For 
instance, if we consider the electric meters, these devices require high data flow and 
low latency with frequent communication. As they are connected to the electric 
power source, they do not require low battery power with a long life of the battery. 

12 Networking Topologies and Communication Technologies for the IoT Era



256

The power grids of electric meters have to be monitored continuously to take deci-
sions on interruptions, power consumptions, load, etc. NB-IoT would be better for 
this application as it is static, has frequent communication, and has high data rates 
and it is easy to give a better coverage through NB-IoT rather. LoRaWAN might not 
be a solution for this as this is mainly for low latency which is not required for elec-
tric meters at all.

Consider smart building application, which focuses on monitoring the tempera-
ture, moisture, humidity, water flow, electric leakages, security, etc. and in turn 
alerts the administrator of the building with alarms or messages immediately to 
safeguard the building. Such applications will have many numbers of sensors which 
are of low cost and with high battery life. These sensors do not require frequent 
communication, and so LoRa might be a better solution for this kind of 
applications.

12.6.1  Random Phase Multiple Access (RPMA)

Random phase multiple access technologies are a combination of technologies that 
uses low-power wide area channel access method exclusively designed for wireless 
machine-to-machine communication. It has been designed by ingénue [12]. It uses 
2.4 GHz spectrum which is free of cost and can cover up to 300 square miles which 
takes nearly 30 cellular towers to cover the same area. In the static position, its 
speed is 642 kbps for uplink and 156 kbps for downlink which is 10 times speedier 
than the dial-up connection. On the move, its speed drops down to 2 kbps, and this 
speed is more than enough for almost all the IoT mobile objects.

The special feature of RPMA is that it has backward compatibility with network 
longevity for decades. RPMA provides reliable network coverage and reliable mes-
sage transmission. In the open space like desserts and large swathes of lands, it has 
the coverage of 450 square miles, and in the land, with tall buildings and trees, its 
coverage drops to 300 square miles as the radio waves require more access points. 
It has optimization in all layers of the protocol for low-power consumption; long 
battery life is assured by adaptive data rates. In the case of a cellular network, the 
battery power drains out quickly due to the overheads of the protocols used, but 
RPMA has the minimized protocol overhead which leads to durable battery life. All 
these abovesaid advantages would be useless if there is no unprecedented coverage. 
It can penetrate through concrete inside buildings and underground to reach the 
devices by giving a broad range of coverage.
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12.6.2  Time Synchronized Mesh Protocol (TSMP)

This is a protocol developed by Dust Networks as a communication protocol for self-
organizing wireless networks of independent devices. These devices synchronize 
with each other from time to time, and they communicate with each other in their 
time slot as in the case of round robin or time division multiplexing [13]. They trans-
mit and receive signals over a common path by synchronized switching, and each 
signal is available in the common signal path for a fraction of the time period. So this 
protocol requires high-speed transmission. This protocol is designed for a reliable 
data delivery even in a noisy environment. Channel hopping is used to avoid the 
packet interference by sending the TSMP packets with different radio channels.

DigiMesh is another protocol of the same type developed by Digi International. 
They adopt routing protocols such as Dynamic Source Routing (DSR) and Adhoc 
On-Demand Distant Vector Routing (AODV). TSMA tries to achieve the 
following:

• Reliability – with low battery power with a higher rate of packet delivery for all 
its sensor nodes. [14]

• Scalability – this protocol is scalable to thousands of nodes in the mesh topology 
in the same radio frequency (RF).

• Security – TSMP authenticates all the packets so as to provide integrity and secu-
rity for all its data packets.

• Environment and climate – TSMP nodes can operate between the temperature of 
−40 degree Celsius to 85 degree Celsius and also with varied radio frequency 
noise levels with a layer 4 of quality of service (QoS).

12.6.3  Nano-Internet Protocol (NanoIP)

Nano-Internet protocol creates a miniature of the internet-like network for its 
embedded devices majorly sensor devices [15]. It avoids the overhead of TCP/IP by 
keeping the local addressing for its wireless network. This protocol is used for the 
subcategory of IoT, known as Internet of Nano-things which is the interconnection 
of nano-things with the existing internet communication. But it requires different 
network architecture. Exclusive architectures are proposed for intra-body networks 
for healthcare monitoring-related applications and for interconnected office where 
each and every internal component of objects in the office is provided with trans-
ceivers that allow them to be connected all the time in the network. The user can 
track of his entire office not only his employees but all his office gadgets from any-
where easily. The components such as nano-routers, nano-nodes, and nano- 
microinterface devices and gateways are required for this nanoIP protocol.

Different channel-accessing models are required for nano-networks depending 
on the data and how they are encoded. Carrier sensing-based MAC protocols [16] 
will not work with this pulse-based communication as there is no carrier signal 
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available for sensing. Very complex protocols cannot be used for the simple nanode-
vices. Synchronization of these nanodevices is also a very open research issue. The 
short pulses transmitted by the nanodevices might face collisions among the other 
nodes as they all try to access the same communication channel.

These protocols use help to connect the host name to IP address within the net-
work and also help to see the list of URLs that are being broadcast by the peers in 
the network using bluetooth low-energy beacon (BLEB). There are protocols such 
as Universal Plug and Play that uses open connectivity. These protocols permit the 
peer devices to view each other device’s presence on the network and establish the 
network services for data sharing.

12.6.4  Multicast Domain Name System (mDNS)

The small networks which do not have a local name server use this multicast DNS 
that resolves hostname with IP address. In this protocol, when a client wants to 
resolve a host name, it sends a probe query message looking for the host having the 
same name. The particular host machine will now multicast a message with its IP 
address, and all the nodes in the same subnet can use this message to update their 
cache memories. Table 12.3 describes the various fields of query message present in 
the template of mDNS.

Table 12.3 Query message format of mDNS

Field Meaning

Length of 
the field (in 
bits)

QNAME Name of the node to which the query is addressed to String size 
of the name

QTYPE The type of the query, i.e. the type of resource record which 
should be returned in responses. All the records of the answer, 
name servers, additional records are together called is resource 
records

16

UNICAST- 
RESPONSE

Boolean flag indicating whether a unicast response is desired. 
This is majorly used to avoid the broadcast in the network. If 
this field is set, then the reply should go as a direct unicast 
message to the node which has sent the query through which 
unnecessary broadcast to the whole network is avoided

1 or 0

QCLASS Class code. The code of the resource record being requested by 
the client

15
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12.7  Communication Data Protocols

12.7.1  Message Queuing Telemetry Transport (MQTT)

This message queuing telemetry transport protocol is exclusively designed for 
machine-to-machine connection so as to have a lightweight data transfer between 
the devices. It uses low bandwidth but has high latency, and it is an unreliable net-
work. It was developed by IBM in 1999. This protocol is suitable for mobile devices 
where the battery power and bandwidth utilization are very crucial. It uses TCP/IP 
port 1883 and TCP/IP port 8883 for using it over Secured Socket Layers (SSL). 
MQTT does not provide security as it is a lightweight protocol, but the security can 
be achieved by adding a layer of an application that encrypts the data in that level. 
MQTT-SN is another variation of MQTT which exclusively used the machine-to- 
machine and mobile applications that involve sensors. [17].

12.7.2  Constrained Application Protocol (CoAP)

This is a special web-based data transfer protocol for the usage among the con-
strained nodes such as very low battery power, bandwidth, and lossy networks. 
These nodes generally have a simple microcontroller with a low RAM and 
ROM. IPV6 on low-power personal area network usually has a high level of packet 
loss and error rates with a very less throughput. This CoAP is for such nodes and 
networks so as to utilize the battery power smartly and achieving automation. It sup-
ports multicasting and has very low overhead, and so it is very simple for con-
strained applications and environments such as M2M applications and IoT 
applications.

The key characteristics of CoAP are as follows:

• Web-based protocol for M2M and constrained applications
• Supports unicast and multicast at the same time
• Uses asynchronous message passing and achieves simplicity
• Supports URIs
• Uses simple caching techniques
• Minimizes the complexity of HTTP by using RESTful protocol
• Low overhead for the header and has low parsing complexity
• Supports content type and discovery of resources (CoAP services)
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12.7.3  Extensible Messaging and Presence Protocol (XMPP)

XMPP is for open technologies that support instant messaging, presence, multiuser 
chat, video calls, voice calls, routing of XML data and lightly weighted middleware 
with the content association. This protocol is a discovery against the closed instant 
messaging [14]. Key Characteristics of XMPP are:

• Simple: XMPP protocols are very simple, open, and free which are easily imple-
mentable and understandable. There are multiple implementations freely avail-
able for clients, servers, libraries, server, and client components.

• Standard: It follows Internet Engineering Task Force standard (IETF) to make 
the XML streaming protocols. Its specifications are available as RFC 3920, RFC 
3921, RFC 6120, RFC 6162, and RFC 7622.

• Popular: there are more than 10,000 XMPP servers and millions of users for the 
XMPP’s instant messaging across the world. Google Talk is one among the 
instant messaging application. It enables the users to build and deploy real-time 
applications using its varied services.

• Secured: End-to-end encryption is used to secure all its communication, and the 
server can be removed from the public network at any point of time.

• Distributed architecture: The decentralized architecture of XMPP can be adapted 
by any user to run their own XMPP server making the organizations and indi-
viduals to experience the fun in communication.

• Flexible: XMPP also provides network management, content organization, gam-
ing, chatting, audio and video sharing, web services, remote system collabora-
tion, and monitoring with cloud computing.

• Scalable: Through the power of XML, any application and functionality can be 
built on top of XMPP protocols making it scalable vertically.

XMPP-IoT is another version of XMPP where it is dedicated to people-to- 
people, people-to-machine, machine-to-people, and M2M communications effec-
tively. Software implementation for the toolkits, client, server, and client and server 
components is available in major programming languages.

12.7.4  Data-Distribution Service for Real-Time Systems (DDS)

It is a middleware protocol which revolves around the data connectivity and distri-
bution. By integrating the system components, it provides data connectivity with 
low latency and high scalable and reliable architecture for Internet of things.

It abstracts the application from the core operating system. This protocol acts as 
the middleware between the application software and operating system and makes 
the system components to interact with each other without concentrating on how to 
pass a message between the system and application. It allows various programming 
languages to write the application program and to share data across the operating 
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system and processor architectures. The connectivity, data discovery, scalability, 
QoS, and security are taken care by the middleware. Features of DDS include:

• Data centric – DDS provides quality of service-based data sharing by enabling 
the applications to publish and subscribe to topics that are identified with their 
topic names. Subscription specifies the content filters and time and filters only 
the sublevel data which are published on the particular topic but not the complete 
content of topic thus reduces the data size being transferred in the communica-
tion network. It also forces all the messages to include the metadata such as 
contextual information that the DDS need to understand when it receives the 
data. Thus DDS knows the type of text and controls the order of sharing the data.

• Data space transparency – DDS keeps the data storage transparently by keep-
ing the local and global data in the application with the single directory view. So 
every data looks like it is stored in the local storage, and requesting for this data 
is also in the same way as of accessing the local data. If the data is in the remote 
nodes, then DDS takes care of sending the request to appropriate node.

• The quality of service (QoS) – Data reliability and security for the real-time 
data are provided by what each node needs. DDS efficiently decides what part of 
the whole topic data is required by the node and sends only that part of data. It 
also tracks whether the data reaches the destination, and if it does not reach, the 
middleware implements the reliability algorithm and retransmits the data to the 
destination till it receives it. When the systems change their locations, DDS 
makes the changes in the system registers, and the sending and receiving to such 
location-changed systems is taken care of effectively. It sends the update mes-
sages as a multicast to many remote nodes in a single instance. As data undergoes 
lots of changes from time to time, DDS updates the different version numbers 
and automatically translates the data as and when updated. It also encrypts the 
data on the fly.

• Dynamic discovery – As the nodes keep changing their location, DDS takes care 
of tracking them, and the client and server do not need to know their physical IP 
addresses. The dynamic discovery of DDS helps to achieve this, and it also dis-
covers the publishing data and also works with the different machine architec-
tures. The addition of any communication participant on any type of operating 
system platform or hardware platform is achievable by the tremendous power of 
DDS.

• Scalable architecture  – DDS architecture is capable of adding from a small 
device to an enormous architecture of cloud systems. It also scales to thousands 
and millions of nodes and delivers data in a very high-speed network and also 
manages the data objects reliably. It has a high availability and security to all its 
data in a single communication channel.
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12.8  Communication Protocols

Various communication protocols are listed below:

• Ethernet – Ethernet is used in local area networks, metropolitan area networks, 
and wide area networks. It follows the IEEE 802.3 standard and supports higher 
bit rates and longer distance communication. It was the first one to replace the 
wired LAN-like token ring and ARCNET.  It has a good backward 
compatibility.

• IEEE 802.15.4 is a standard that defines the operations for low-rate wireless 
personal area network (LR-WPAN) in its physical layer and media access layer. 
By keeping these protocols as the basis, ZigBee, ISA100.11a, WirelessHART, 
and MiWi have been proposed as the extended standard. The upper layers have 
been developed in these new standards. IEEE 802.15.4 can be used with 
6LoWPAN and Internet protocols for building wireless embedded Internet.

• NFC  – IoT networks which require a very close communication can use this 
Near-Field Communication (NFC). When we use our identity card over a card 
reader for entry into offices, it uses NFC for such applications. It is based on ISO/
IEC 18092:2004 standard and uses a center frequency of 13.56 MHz with the 
data rate of up to 420 kbps. The range can vary from few meters which are shorter 
range compared to the wireless sensor networks. When two NFC-enabled devices 
are brought nearer to each other, they can establish a network communication 
automatically without any prior configuration or setup. The devices can exchange 
data such as small text messages, audio, and small image files. Some features of 
NFC include ease of implementation and use, automatic and instant connectivity, 
no requirement for prior configuration, and smart key access for security.

• ANT& ANT+ − ANT and ANT+ are wireless sensor network technology that 
has a protocol stack for wireless communications with a semiconductor radios 
operating in the 2.4 GHz to communicate using the standard protocols for coex-
istence, data representation, security, and reliability by including error 
detection.

• Bluetooth – Bluetooth works in 2.4 GHz ISM band personal area network with 
frequency hopping. It can range up to 100 m with the data exchange rate maxi-
mum of 3 Mbps. Wireless headphones and speakers use Bluetooth, and simple 
audio, video, and text messages can be exchanged through Bluetooth.

• Bluetooth Low Energy (BLE) – BLE is derived from Bluetooth, which is used 
for low battery power devices and with less data usage. Whenever there is no data 
exchange requires, BLE continues to be in sleep mode. BLE is majorly used in 
wearable healthcare tracking and monitoring devices and for fitness-related 
applications.

• ZigBee – The ZigBee protocol uses the 802.15.4 standard, and it is a mesh LAN 
protocol with 2.4 GHz frequency range with 250 kbps. It is exclusively designed 
for building and home automation applications such as switching on and off of 
lights and thermostats. It can connect up to 1024 nodes in the network within 
200-m range. [18]
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• EnOcean – EnOcean is an energy-harvesting wireless technology which works 
at a low frequency. Its transmit range is up to 30 m indoors and 300 m outdoors. 
It is for applications with extremely low-power requirement such as smart build-
ings, wireless control of lights and fans, etc. These energy-harvesting technolo-
gies use power generation elements to convert energy from various sources to 
electric energy from natural sources like solar cells, electro-thermal elements, 
light, wind, vibration, and hydro-energy. There is a lot of research happening in 
the energy harvest technology which can easily solve the quick power loss factor 
in the wireless sensor nodes which are used in IoT ecosystem.

• WiFi and WiMAX – These protocols are based on the standard IEEE 802.16 
and are intended for wireless metropolitan area network (MAN). Its transmission 
range can go up to 50 km for fixed stations, and for mobile devices it is between 
5 km and 15 km. WiMax works with the frequency between 2.5 GHz to 5.8 GHz, 
and its data transfer rate is up to 40 Mbps.

• Narrowband IoT (NB-IoT)  – Narrowband IoT is designed for low-power 
devices and can be used for M2M for low-power devices. It follows LPWAN 
radio technology standard and used to connect a wide range of devices that use 
cellular telecommunication bands. It is based on a DSSS modulation. It focuses 
on low-cost, low battery power aims at connecting a large number of devices 
with the indoor applications.

12.8.1  5G Technology

The 2G technology was designed for voice and 5G for voice and data; 4G is for 
broadband internetwork applications; 5G is aimed at fusing the capabilities of com-
puting techniques with the data everywhere, and so trillions and zillions of things in 
the connected world such as wearable devices to home automation nanodevices 
exchange data without worrying about the computing power and speed as the 5G 
network can do all these processes as and when required. 5G will not only be faster 
but also smarter; all the devices with sensors which are location aware, and context- 
aware objects will sense the data and work together with each other automatically 
without the intervention of human being. The 5 g technology uses network func-
tions virtualization and software-defined network to achieve all its goals. The fea-
tures of 5G that support IoT are as follows:

• The massive number of heterogeneous devices to be connected which are more 
than 200% of the number of devices in the existing networks

• Enables high data transfer (100 times more than the traditional networks)
• Low latency between the sender and receiver devices
• Consistent quality of services (QoS) and quality of experiences (QoE)
• Achieving the abovesaid goals with the reduction of cost
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12.8.2  Software-Defined Networking (SDN)

The spread of IoT has created new paradigms among the networking and network-
ing protocols in the current and future networks as IoT welcomes heterogeneous 
devices and heterogeneous networking approaches and protocols. The entire IoT 
environment has a broad networking of several networks, devices and objects, and 
nano-objects with heterogeneity. The integration of IoT with software-defined net-
working is to coordinate with the different types of payload that emerge from IoT 
elements. The structure and the modular level of IoT controller are determined 
through the SDN controller, and it has to interact with the higher-level controllers 
and to respond to the IoT activities.

SDN is the protocol through which the network control is modularized from and 
separated from the lower-level networking devices and is embedded in a software 
tool known as SDN controller. The networking services thus get abstracted from the 
lower-level components, and the higher network is independent of these modules. 
Application layer takes care of the user applications, and the components of SDN 
stay in the control layer and interaction with the infrastructure layer which contains 
all the networking components and with the application layer components.

The core of the SDN is its SDN controller which controls the whole network. 
The SDN controller looks to be a logical switch for the network components. This 
brings the complete independence to the networking devices to concentrate on their 
own application functionality alone without the intervention of networking over-
heads. The network administrators can change the network settings at any time with 
the help of SDN software. SDN uses OpenFlow protocol for all such activities. The 
core advantages of SDN are briefly presented below:

• Centralized control of heterogeneous network devices: The network that uses 
SDN protocol for communication can get the centralized control with the help of 
SDN controller irrespective of the type and or manufacture of the device.

• Complete automation: SDN framework enables the complete automation of 
networking functionalities and thus eliminates the dependencies and operational 
cost and error rates.

• High-level security: Configuring each network device is not at all required 
in SDN framework, and this feature eliminates all the possible security threats 
and other reliable issues that might be faced during the implementation 
otherwise.

• Flexibility: SDN protocol provides flexibility to user applications and runtime 
changes to the configuration and thus flexibility and improves the user 
experiences.
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12.8.3  Network Functions Virtualization (NFV)

NFV is a virtualization technology that provides network services without the need 
customization of hardware appliances for each of them. It designs the communica-
tion network, its various functionalities, and the procedure of operational principles. 
SDN used NFV for the virtualization and the management skills of SDN together 
with NFC give the advantage of both the paradigms.

As NFC is an evolving approach, lots of research issues such as addressing of 
migration of a virtual machine and their services, higher availability and reliable 
services of NFC have to be designed effectively.

12.8.4  Specialized IoT Networks

We have seen mobile networks. There are unique networks getting formed and 
firmed for wearable, implantable, portables, nomadic, and wireless devices. There 
are body area networks, car area networks, personal area networks, etc. with the 
addition of special-purpose devices, sensors, actuators, controllers, stickers, codes, 
etc. Drones, robots, home, building, industry automation systems, etc. mandate for 
highly advanced protocols, as articulated below:

• Wearable devices (shoes, watch, glasses, belt, etc.) can be used to detect biomet-
ric information. Figure 12.5 depicts the majorly used wearable devices used for 
biometric data communication.

• Smart devices collect the information and communicate with the control center 
and/or medical server using the Internet. The diagram below clearly depicts the 
devices, how they communicate with one another, how the data gets collected 
and transferred to data storage and processing systems in order to crunch the 
aggregated data to squeeze out actionable insights.

12.9  Sample IoT Networking Architecture

Figure 12.6 clearly accentuates and articulates how different and distributed devices 
can find, bind, and leverage each other’s unique device-centric services in order to 
fulfill the goals of producing people-centric, real-time, adaptive, and context-aware 
applications. The various protocols come handy in linking various devices, data 
sources, and software systems in order to fulfill the varying requirements of indi-
viduals, innovators, and institutions.

12 Networking Topologies and Communication Technologies for the IoT Era



266

12.10  Conclusion

The emerging and evolving network topologies and communication technologies 
are foretelling the speedy arrival of the anticipated IoT era. As there is a widespread 
recognition that the IoT technologies and tools are bound to bring in the desired 
digital transformation, there are a variety of concerted and collaborative research 
activities in order to identify the brewing limitations and surmount them through 
path-breaking technologically sound solutions. Connectivity is one such issue, and 

Fig. 12.5 Wearable IoT networks

Fig. 12.6 Data communication protocols for the diverse things of the Internet
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there are several enabling connectivity protocols being formulated and firmed. As 
connectivity is the core requirement for the projected IoT era, we are to dig deeper 
and dwell at length about various data transmission protocols.

In this chapter, we have incorporated the relevant details about the connectivity 
mechanisms and communication protocols. There are several initiatives in the com-
munication space to simplify, streamline, and speed up the process of setting IoT 
applications, services, and environments. This chapter has supplied the pros and 
cons of each of those protocols in order to empower our readers to take the correct 
decisions. As most of the IoT devices are embedded and resource-constrained, we 
have given the preference for lightweight and energy-efficient protocols in our 
chapter. There are specific protocols coming up fast in order to target specific indus-
try verticals and applications.
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Chapter 13
Data Distribution Service-Based Architecture 
Design for the Internet of Things Systems

Bedir Tekinerdogan, Ömer Köksal, and Turgay Çelik

Abstract The Internet of Things (IoT) is the internetworking of people and physi-
cal devices often called “things” that enable the collection and exchange of data. 
The number of connections between people and things, as well as the volume of 
data that is generated by the “things,” is dramatically increasing. In this context, 
various kinds of data are generated by multiple heterogeneous devices, which oper-
ate in different ways and used by different applications with different aims. To real-
ize the distributed execution of IoT systems over multiple resources, different 
requirements and quality factors must be satisfied. Traditionally, to reduce the effort 
for developing distributed systems, middleware architectures have been introduced 
that provide common services such as name and directory services, discovery, data 
exchange, synchronization, and transaction services, etc. To address the needs and 
integration of IoT systems, the adoption of middleware seems to be a feasible solu-
tion. The Data Distribution Service (DDS) is a middleware that is directly related to 
data-intensive systems and explicitly considers the quality of service. It is a standard 
data-centric publish-subscribe programming model and specification for distributed 
systems that has been applied for the development of high-performance distributed 
systems such as in the defense, finance, automotive, and simulation domains. In this 
chapter, we explore and propose the adoption of DDS as a middleware platform for 
IoT systems. For this, we first describe the requirements for IoT systems and present 
the IoT reference architecture. Subsequently, we provide a DDS-based architecture 
for IoT systems based on the Views and Beyond Approach.
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13.1  Introduction

The Internet of Things (IoT) is the internetworking of people and physical devices 
that enable the collection and exchange of data [25]. The number of connections 
between people and things as well as the volume of data that is generated is dramati-
cally increasing. In this situation, various kinds of data are generated by multiple 
kinds of devices, which operate and are processed in different ways, and used by 
different applications. To realize the distributed execution of IoT systems over mul-
tiple resources, different specific requirements and quality factors must be 
satisfied.

Traditionally, to reduce the effort for developing distributed systems, middleware 
architectures have been introduced that provide common services such as name and 
directory services, discovery, data exchange, synchronization, transaction services, 
etc. To address the needs and integration of IoT systems, the adoption of middle-
ware seems to be a feasible solution. A middleware that is directly related to data- 
intensive systems in which quality of service is important is the Data Distribution 
Service (DDS) [1]. The DDS is a standard data-centric publish-subscribe program-
ming model and specification for distributed systems that has been applied for the 
development of high-performance distributed systems such as in the defense, 
finance, automotive, and simulation domains.

In this chapter, we explore and propose the adoption of DDS as a middleware 
platform for IoT systems. For this, we first describe the requirements for IoT sys-
tems and present the IoT reference architecture. Subsequently, we provide a DDS- 
based architecture for IoT systems based on the Views and Beyond Approach. We 
illustrate our approach for the architecture design of IoT-based smart city 
engineering.

The remainder of the chapter is organized as follows. In Sect. 13.2, we provide 
the background on software architecture modeling which is necessary for under-
standing the architecture views in subsequent sections. In Sect. 13.3, we describe 
the IoT architecture using selected viewpoints. Section 13.4 presents the architec-
ture models specific for DDS. Based on the architecture models from Sects. 13.3 
and 13.4, we present the DDS-based IoT architecture in Sect. 13.5. Section 13.6 
concludes the chapter.

13.2  Software Architecture Modeling

Architectural drivers define the concerns of the stakeholders which shape the archi-
tecture [2]. A stakeholder is defined as an individual, team, or organization with 
interests in or concerns about a system. Each of the stakeholders’ concerns impacts 
the early design decisions that the architect makes. A common practice is to model 
and document different architectural views for describing the architecture according 
to the stakeholders’ concerns. An architectural view is a representation of a set of 
system elements and relations associated with them to support a particular concern. 
Having multiple views helps to separate the concerns and as such support the 
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modeling, understanding, communication, and analysis of the software architecture 
for different stakeholders. Architectural views conform to viewpoints that represent 
the conventions for constructing and using a view. Obviously, the notion of view-
point now plays an important role in modeling and documenting architectures [3]. 
So far, most architectural viewpoints seem to have been primarily used either to 
support the communication among stakeholders or at best to provide a blueprint for 
the detailed design.

In this chapter, we use the Views and Beyond framework in which predefined 
viewpoints are organized into three categories including module styles, component- 
and- connector styles, and allocation styles [1]. Module styles are used to show how 
the system is structured as a set of implementation units. Component and connector 
styles are used to show how the system is structured as a set of runtime elements. 
Allocation styles are used to show how the software elements are mapped to non- 
software elements in its environment. We adopt two viewpoints for our purposes 
including layered viewpoint and deployment viewpoint.

The layered viewpoint reflects the division of software modules called layers. In 
a layered architecture, the system is depicted as a set of layers which are stacked on 
top of each other. Hereby, a layer can only access the next lower layer, and callbacks 
from lower layers to higher layers are not allowed. In the following sections, we 
note that both IoT and DDS systems include a layered architecture. In addition to 
the layered viewpoint, we also apply the deployment viewpoint, which is used to 
show how the software elements are allocated to hardware of a computing platform. 
It is useful for analyzing and tuning certain quality attributes of the system such as 
performance, reliability, and security.

13.3  The Internet of Things Architecture

Architectural modeling techniques help to divide and conquer complex applications 
such as IoT systems to enable successful realization. In this section, we provide a generic 
conceptual model comprising a feature model and the layered view for IoT systems.

13.3.1  Conceptual Model

Figure 13.1. provides a conceptual model including the relations among the basic 
IoT concepts. The model has been adopted from the AIOTI (Alliance of IoT 
Innovation) Domain Model (AIOTI WG03 2015) [4]. The domain model represents 
the basic concepts and relationships in the domain at the highest level. In the model, 
User interacts with a physical entity of the physical world, a thing. The User can be 
a human person or a software agent that has a goal, for the completion of which the 
interaction with the physical environment must be performed through the mediation 
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of the IoT. A thing is a discrete, identifiable part of the physical environment that 
can be of interest to the User for the completion of his goal. Things can be any 
physical entity such as humans, cars, animals, or computers.

The interaction between a User and the Thing is mediated by an IoT Service 
which is associated with a Virtual Entity, a digital representation of the physical 
entity. A Thing can be represented in the digital world by a Virtual Entity. Different 
kinds of digital representations of Things can be used such as objects, 3D models, 
avatars, objects, or even a social network account. Some Virtual Entities can also 
interact with other Virtual Entities to fulfill their goal.

An important aspect of the IoT is that changes in the properties of a Thing and its 
corresponding Virtual Entity need to be synchronized. This is usually realized by an 
IoT device that is embedding into, attached to, or simply placed in close vicinity of 
the Thing. In principle, we can identify three devices including sensors, tags, and 
actuators. Sensors are used to measure the state of things they monitor. Essentially, 
sensors take a mechanical, optical, magnetic, or thermal signal and convert this into 
voltage and current. This provided data can then be processed and used to define the 
required action. Tags are devices to support the identification process typically 
using specialized sensors called readers. The identification process can be different 
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Fig. 13.1 Conceptual model for IoT
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including optical as in the case of bar codes and QR code, or RF-based. Actuators 
are employed to change or affect the things.

13.3.2  Feature Model

In this section, we provide a feature-driven overview of IoT and its session layer 
protocols [21–24, 26]. A feature diagram is a tree with the root and descendent 
nodes. The root represents a concept, and nodes are the features. Feature diagrams 
might show mandatory features as well as variant features which can be represented 
as optional or alternative features. A feature configuration is a set of features which 
describes a member of the represented concept. A feature constraint restricts the 
possible selections of features to define configurations. The legend (abstract syntax) 
used for the feature diagrams is given in Fig. 13.2.

Figure 13.3 shows a feature diagram representing the layers of the IoT architec-
ture. This diagram is similar to the layer diagram of the IoT given in the next 
section.

Feature

Optional feature

[i-j]
Feature group with 
cardinality i– j

Mandatory feature

Fig. 13.2 Legend for the 
feature diagrams to be used 
in modeling IoT
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Protocol
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Protocol
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Protocol

Application 
Protocol

Security 
Protocol

Management
Protocol

Fig. 13.3 Top level feature diagram of IoT
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The session layer is responsible for setting up and taking down of the association 
between the IoT connection points. The session layer provides services-related 
issues of the session such as initiation, maintenance, and disconnection. As such, 
frequency and duration of various types of sessions are related to the session layer. 
Selection of the session layer protocol depends on many factors such as data size, 
the number of devices to be connected, latency, etc. Depending on the application 
requirements, different session layer protocols might be used in session layer of the 
IoT application. Focusing on the session protocols, we have derived the feature 
diagram given in Fig. 13.4.

The mandatory features in the feature diagram are protocol type, source target, 
transport type, and architecture. Although, transport type belongs to the network 
layer, it is shown as a mandatory feature in Fig. 13.5 since it is closely related to the 
protocol characteristics. Some widely used session layer protocol types are given 
below:

• Message Queuing Telemetry Transport (MQTT): One of the most popular proto-
cols to collect device data and communicate with servers [5].

• Extensible Messaging and Presence Protocol (XMPP): A protocol based on 
exchanges of XML messages in real time that is defined to connect devices to 
servers [6].

• Advanced Message Queuing Protocol(AMQP): A queuing system designed to 
connect servers to each other [7].

• Data Distribution Service (DDS): A fast data bus for integrating devices and 
systems [8].

• The Constrained Application Protocol (CoAP): A specialized web-based proto-
col to be used in constrained nodes and constrained networks [9].

There are three types of source-target relations available in session layer proto-
cols: Device-to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S) 
as shown in Fig.  13.4. In some literature sources, these features are named as 
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machine-to-machine (M2M), machine-to-cloud (M2C), and cloud-to-cloud (C2C), 
respectively. DDS and CoAP are used for M2M communication, whereas MQTT 
and XMPP are used for M2C, and AMQP is used for S2S communication. Session 
layer protocols are closely related to the transport type. Session layer protocols use 
either UDP or TCP for the transport. DDS and CoAP support both UDP and TCP.

The focus of this chapter is the application of the DDS protocol.

13.3.3  Layered View

Various reference architectures have been suggested by many researchers for the 
IoT which is usually represented as a layered architecture with a various set of lay-
ers. Hereby, a layer simply represents a grouping of modules that offers a cohesive 
set of services. Based on the literature review, we provide the reference architecture 
as shown in Fig. 13.5.

The reference architecture consists of four layers including device/datalink layer, 
network layer, session layer, and application layer. The device layer includes the 
capabilities for the things in the network. The network layer provides functionality 
for networking connectivity and transport capabilities. The IoT layer consists of 
functionality for generic support capabilities (such as data processing or data stor-
age) and specific support capabilities for the particular applications. The application 
layer contains the IoT application.

The security layer is a sidecar layer relating to the other four layers and provides 
the security functionality. Finally, the management layer supports capabilities such 
as device management, local network topology management, and traffic and con-
gestion management.

Device Layer

Network Layer

Session Layer

Security
Layer

Management
Layer

Application Layer

Fig. 13.5 Layered view of IoT architecture
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13.3.4  Deployment View

Figure 13.6 shows the deployment view of IoT-based systems. In essence, we can 
identify two distinct nodes: the IoT node and the Product Cloud node. The IoT node 
includes modules for sensors, actuators, smart UI, and applications. Within the IoT 
network, multiple IoT nodes can exist which is shown with the asterisk symbol (*). 
The cloud node includes functionality for data storage, application platform, the 
analytics engine, and the cloud applications. Again, we could have more than one 
cloud node.

13.4  Data Distribution Service

Data Distribution Service (DDS) for real-time system [1] is standardized by Object 
Management Group (OMG) [10] in 2004, and the latest release is submitted in 2015 
[11]. DDS is a data-centric middleware for high-performance machine-to-machine 
communications. In this section, we describe the basic background information for 
Data Distribution Service (DDS). Detailed information about DDS can be found in 
different studies in the literature (e.g., [1, 12–16]).
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Application 
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Fig. 13.6 Deployment view of IoT architecture
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13.4.1  Conceptual Model

Figure 13.7 presents the conceptual model for DDS middleware. In this figure, the 
concept domain is a logical concept which represents the set of applications that can 
communicate with each other. Several domains can be defined within the same DDS 
system to indicate a different set of applications communications with each other. 
One or more domain participants might exist in each domain. Domain participants 
represent the local membership of the application to the assigned domain. Publishers 
are responsible for data production and updates. Publishers include one or more 
data writers that publish the different types of data. Similarly, subscribers are 
responsible for receiving published data and making it available to the participant. 
A subscriber includes one or more data readers to access published data in a type- 
safe manner. Domain participants might include one publisher and one subscriber at 
most. The communication between data readers and data writers is established via 
topics. A topic defines a unique name, data type, and a set of quality services to the 
published/subscribed data. Publishers write the data to the topics, and subscribers 
read the data in topics.

Communication between applications can only be realized only if the topic 
names and the defined quality of service (QoS) parameters match. DDS provides 
the ability to attach QoS parameters to all these entities to specify the behavior of a 
service such as rate of publication, rate of subscription, how long the data is valid, 
etc. QoS are also useful for several quality factors such as reliability, durability, and 
scalability which simplifies complex network programming.
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Domain Entity Domain
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QoS Policy

TopicPublisher Subscriber

Data
Writer

Data
Reader

*.. 1 * .. *

* .. 1

* .. 11 .. *
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Fig. 13.7 Reference architecture for DDS-based systems
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13.4.2  Feature Model

Based on a thorough domain analysis of DDS middleware systems, we have derived 
a feature model that is shown in Fig. 13.8. The figure represents the feature model 
for publish-subscribe systems. The DDS concepts are shown in bold. In general, 
publish-subscribe middleware systems can be distinguished based on the type and 
the service model. Regarding the type, we can identify data-centric, message- 
centric, or object-centric approaches. In the message-centric approach, the middle-
ware is not aware of the content of the data; it is just responsible for transmitting the 
messages among participants. In data-centric approach, the middleware is aware of 
the content and can impose quality of service parameter values on the data. In 
object-centric approaches, the middleware is responsible for transmitting objects 
among participants. As shown in the figure, DDS is a data-centric approach.

The service model of publish-subscribe middleware can be characterized based 
on (1) communications model and (2) architecture model. Communication model 
defines communication approach that is applied by the participants. The communi-
cation approach on its turn can be based on data distribution, shared data, queuing, 
and remote procedure call. The architecture model of a middleware can be either 
centralized or decentralized denoting whether the data flows through a central unit 
or not. Further, the architecture model can include a broker that manages the data 
flow. The architecture can be unbrokered, i.e., there is no broker defined or multi- 
brokered, whereby multiple brokers manage the data flow. As shown in the figure, 
the architecture model for DDS is decentralized and unbrokered.
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Fig. 13.8 Feature model of publish-subscribe systems (DDS components highlighted)
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13.4.3  Layered View

The DDS can be modeled as a three-layer structure as shown in Fig. 13.9, and as 
mentioned below:

• The Data-Centric Publish Subscribe (DCPS) layer provides efficient delivery of 
the shared information to the related recipients. DCPS layer is in the specifica-
tion and it is mandatory for the DDS implementations.

• The optional Data Local Reconstruction Layer (DLRL) enables simple integra-
tion of the services defined in DCPS layer into the application layer. The aim of 
this is to provide a seamless integration with object-oriented language 
constructs.

• Finally, an additional specification DDS Interoperability Wire Protocol is pro-
vided, which is needed for supporting the interoperability among different DDS 
implementations.

The last layer shown in Fig. 13.9 is related to the transport. DDS might use both 
UDP and TCP in the transport layer. But DDS also supports UDP and multicast 
UDP. In fact, one of the powerful features of the DDS is supporting multicast UDP 
that enables high-performance machine-to-machine communication. On the other 
hand, since multicast and UDP transports are not supported by many wide area 
networks (WANs), some additional concepts like interconnection services or rout-
ers shall be used in DDS systems to assure end-to-end QoS in WANs [17]. For fur-
ther details about these specifications, we refer to OMG DDS Specifications [1].

13.4.4  Deployment View

A typical DDS-based system is deployed on a number of application nodes. As 
stated before, publish-subscribe interaction pattern has been applied in several 
applications and infrastructures, which share similar structure and concepts. 
Figure 13.10 shows the result of a domain analysis to publish-subscribe systems and 

Application
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Data Centric Publish/Subscribe

DDS Interoperability Wire Protocol (DDSI)

UDP / IP

Fig. 13.9 Layered 
architecture of the DDS 
with the DDS 
specifications (Adapted 
from [11])
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represents the deployment view of DDS-based systems. Refer to Sect. 13.4.1 on 
DDS conceptual model, for detailed information about DDS concepts (such as pub-
lishers, subscribers, topics, etc.).

Defining the deployment view of a DDS-based system is a crucial step in design. 
The deployment model defined determines the allocation of domain participant 
instances throughout the available physical resources such as available memory and 
computing power. Although many different deployment alternatives can be defined 
readily, designing the deployment extremely effects the performance of the overall 
system.

Sometimes, it is possible to deploy all domain participants (publishers and sub-
scribers) to the same node. But such a deployment design cancels the benefits of 
distributed computing causing single point of failure. On the other extreme, deploy-
ing domain participants has many side effects such as increasing communication 
overhead and inefficient use of resources. So, it is always advised to analyze the 
domain participants’ communication structure through topics and designing the 
deployment model accordingly.
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Fig. 13.10 Deployment view for DDS-based systems

B. Tekinerdogan et al.



281

13.5  DDS-Based IoT Architecture

In this section, we present the architecture for DDS-based IoT systems. For this, in 
Sect. 13.5.1, we first present the conceptual model that shows the integration of the 
earlier conceptual models for DDS and IoT. Subsequently, we present the layered 
view in Sect. 13.5.2 and deployment view in Sect. 13.5.3.

13.5.1  Conceptual Model

Figure 13.11 shows the conceptual model for the DDS-based IoT architecture. 
Similar to the IoT conceptual model as shown in Fig. 13.1, the concept IoT device 
can be a sensor, tag, or actuator which observe, identify, or act on an IoT Thing. A 
thing has a virtual representation. The DDS concepts Publisher, Subscriber, 
DataWriter, and DataReader are in the Virtual Entity. Services, that is, topics in 
DDS are thus associated with these elements. Domain participants can include a 
number of Virtual Entities. Similar to DDS, a DDS entity can specify QoS 
parameters.
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Fig. 13.11 Conceptual model for publish-subscribe-based IoT Systems
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13.5.2  Layered View

Figure 13.13 shows the layered view that combines the layered view of DDS with 
that of IoT. The dominant decomposition is taken from the IoT reference architec-
ture as defined earlier in Fig. 13.5. Hence the layers are similar to the IoT layers. 
What is specific is the session layer which now includes the concepts of DDS 
including DLRL, Data-Centric Publish Subscribe, and DDSI [12] (Fig. 13.12).

13.5.3  Deployment View

Figure 13.13 presents the layered view for the DDS-IoT system. In essence, it 
defines two different nodes, that is, the IoT node and the Product Cloud node. The 
IoT node now communicates using the DDS. Hence it includes an application mod-
ule that realizes the DDS concepts. That is, it includes the domain participants and 
herewith the subscribers and publishers. The Product Cloud nodes are similar to the 
IoT deployment model.
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13.5.4  DDS-Based IoT Architecture in Action

We provided different perspectives for architectural modeling of DDS-based IoT 
systems. In this section, we discuss some use cases of these models and views.

In the conceptual model Sect. 13.5.1, we provided a metamodel for DDS-based 
IoT systems. This metamodel can be used to develop a modeling environment, e.g., 
by using Eclipse Modeling Project [18]. Such a modeling environment can be used 
to analyze and design complex IoT systems before realization.

The model that we provided in the layered model Sect. (13.5.2) shows high-level 
decomposition of an IoT system. This model can be used for deciding the high-level 
system components, separation of development teams, and different expertise areas 
that an IoT team has to have. This layered view also provides a foundation for IoT 
frameworks that will speed up the development of large-scale systems.

The model that we provided in the deployment model (Sect. 13.5.3) can be used 
for developing a modeling environment that enables modeling allocation of system 
components to available resources. In addition to manual component distribution, 
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the deployment model architecture can be used as a foundation for a tool that will 
enable generation of feasible deployment models for DDS-based IoT systems. We 
developed a tool similar to the reference architecture presented in [19] for distrib-
uted simulation systems.

13.6  Conclusion

The IoT has now become an important paradigm that is invasive in different applica-
tion domains. One of the important issues for the IoT is the management of com-
munication and distribution aspects. To support the communication among the 
different DDS nodes, it is important to adopt a feasible middleware. In this context, 
the DDS is considered as a potential middleware for IoT because of its focus on 
event-driven communication in which quality of service is also explicitly defined. 
Research on both paradigms, that is, IoT and DDS, have so far been carried almost 
independently. In recent years, we now observe a growing interest in the application 
of DDS for IoT. The results of our study can be considered from this perspective. 
Our main focus in this chapter was on the architecture design of a DDS-based IoT 
system. So far no systematic approach has been provided yet to model the architec-
ture for DDS-based IoT. We have performed a systematic approach in which we 
adopted architecture viewpoints for modeling DDS, IoT, and finally DDS-based IoT 
systems. Since both the DDS and IoT are often represented as layered structures, we 
have applied the layered viewpoint to represent the DDS-based IoT. Further, we 
have also defined the deployment view for DDS-IoT.  We can state that we suc-
ceeded to integrate and represent the architecture models that can be used to model 
DDS-based IoT systems for various application domains. In our future work, we 
intend to enhance our study for adopting other architecture viewpoints. Also, we 
aim to adopt the viewpoints for real-world industrial IoT projects in which DDS is 
applied.
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