
Computer Communications and Networks

Zaigham Mahmood Editor

Connected
Environments
for the Internet
of Things
Challenges and Solutions

Computer Communications and Networks

Series editors
Prof. Jacek Rak
Gdansk University of Technology
Faculty of Electronics, Telecommunications and Informatics
Department of Computer Communications
Gdansk, Poland

Prof. A.J. Sammes
Cyber Security Centre
Faculty of Technology
De Montfort University
Leicester, UK

The Computer Communications and Networks series is a range of textbooks,
monographs and handbooks. It sets out to provide students, researchers, and non-
specialists alike with a sure grounding in current knowledge, together with
comprehensible access to the latest developments in computer communications and
networking.

Emphasis is placed on clear and explanatory styles that support a tutorial
approach, so that even the most complex of topics is presented in a lucid and
intelligible manner.

More information about this series at http://www.springer.com/series/4198

http://www.springer.com/series/4198

Zaigham Mahmood
Editor

Connected Environments for
the Internet of Things
Challenges and Solutions

ISSN 1617-7975 ISSN 2197-8433 (electronic)
Computer Communications and Networks
ISBN 978-3-319-70101-1 ISBN 978-3-319-70102-8 (eBook)
https://doi.org/10.1007/978-3-319-70102-8

Library of Congress Control Number: 2017961318

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editor
Zaigham Mahmood
Debesis Education UK
University of Derby
Derby, UK

Shijiazhuang Tiedao University
Shijiazhuang Shi, China

https://doi.org/10.1007/978-3-319-70102-8

My tenth publication was dedicated to my
parents. This twentieth book is also in memory
of my parents Ghazi Ghulam Hussain
Bahadur and Mukhtar Begum who spent the
prime of their life in fighting for the freedom
and independence of their motherland. At a
very young age, my father joined a paramilitary
organization with the mission to engage in
peaceful struggle to free the country from
foreign occupation. Although the struggle for
independence started many decades before
and various political parties participated in
many diverse ways towards it, there is one
event that stands out – it took place on 19
March 1940.

On this day, the organization my father
belonged to decided to stage a much more
decisive countrywide peaceful protest. The
government, fearing the shutdown of the
country, had already banned the gatherings,
but, on this day, supporters and the general
public were out in such huge numbers that the
army patrolling the streets received orders to
shoot to kill. Live bullets were fired: many

Dedication

thousands were killed or injured and many
more taken as political prisoners. That day,
my father was leading a group of 313 men –
totally unarmed – marching on the streets to
oppose the ban on political activities.
According to newspaper reports, more than
200 of this group were killed and many dozens
injured; majority of the remaining were
captured and tried in the courts. There were
13 freedom fighters who were sentenced to
political imprisonment for life – my father
was one of the 13. His organization honoured
these brave men with the titles of Ghazi
(survivor in the fight between right and wrong)
and Bahadur (valiant).

This brutality by foreign occupiers and the
massacre of the unarmed public on 19 March
1940 proved such a turning point in the
struggle for independence that only 4 days
later, on 23 March 1940, an all-party
confederation passed a unanimous resolution
demanding the formation of an independent
state. Soon after, a declaration was signed to
transfer power to the leading political parties.
However, the process took another 7 years,
and eventually the country achieved
independence on 14 August 1947. On this
day, all freedom fighters were released; my
father also returned home Ghazi and
victorious. My mother, a young girl at the
time, was no less courageous in her struggles:
she fully supported her husband’s mission
and raised a young daughter totally
independently while my father was away.

Now that the independence was gained and
the mission accomplished, my father devoted
his time to engaging in the study of Oriental
languages and theology, bringing up his

family and serving the community as a social
activist. Achieve excellence … Make a
difference: my parents would constantly
remind us. Looking back at their life now, I
am proud to say that they were certainly most
excellent in what they achieved and
undoubtedly made a huge difference for the
entire nation to remember. They are my heroes
and inspiration in my life.

Zaigham Mahmood
14 August 2017

ix

Preface

 Overview

Internet of Things (IoT) is a dynamic global network of self-configuring smart
objects that are embedded with connectivity protocols to enable collection and
exchange of data with other similar objects. It suggests a vision of a connected
world where smart devices, intelligent objects and web-based systems are autono-
mously linked via the Internet. This is now the vision of the Internet of the Future
that has the potential to revolutionize pervasive computing. The underlying tech-
nologies and processes include distributed computing, big data analytics, artificial
intelligence, machine learning, signal processing and communication protocols.

This vision of the connected world is already transforming our daily lives. With
the employment of relevant technologies, IoT can result in living in self-governing
smart cities, driving autonomous cars in the Internet of Vehicles scenario on smart
roads and using smart devices of diverse varieties for human comfort and ease. IoT
is also transforming the business sector where the growth potential is expected to be
exponential. It is predicted that there will be 20 to 50 billion connected objects by
the year 2020.

Notwithstanding the benefits that connected digital world brings, success of the
IoT paradigm is dependent on the network architectures, system capabilities, com-
munication protocols and ubiquitous computing technologies to support the effec-
tive and reliable physical and cyber interconnections. Since IOT presents a
heterogeneous environment where devices from various vendors follow different
communication protocols and utilize diverse technologies, varying data formats and
processing mechanisms hinder the smooth interoperability between connected
devices. Lack of ubiquitous interoperability between devices is therefore a major
concern. Since seamless connectivity and interoperability are prerequisites in multi-
network heterogeneous distributed environments, achieving reliable and resilient
connectivity is vitally important. Also, the increasing sophistication of objects is
beginning to impact on regulatory compliance which, in turn, raises additional
issues with respect to service availability, reliability, security and device

x

 communication. A major challenge that the IoT ecosystem must also overcome is
the risks resulting from legal issues and performance problems caused by the mass
deployment of inefficient, insecure and/or defective devices within the IoT. So, ben-
efits of the IoT paradigm are numerous; issues and limitations are also many.

With this background, there is an urgent need for properly integrated solutions
taking into account data and device security, signalling and device detection, device
and data management, communication protocols and platforms, network bandwidth
and topology, seamless connectivity and interoperability and worldwide regulations
and legal compliance.

In this context, this book, Connected Environments for the IoT: Challenges and
Solutions, aims to capture the state of the art on the current advances in the connec-
tivity of diverse devices in a distributed computing environment. Majority of contri-
butions in this volume focus on various aspects of device connectivity including
communication, security, privacy, interoperability, networking, access control and
authentication. Thirty-two researchers and practitioners of international repute have
presented latest research developments, frameworks and methodologies, current
trends, state-of-the-art reports, case studies and suggestions for further understand-
ing, development and enhancement of the IoT vision.

 Objectives

The aim of this volume is to present and discuss the state of the art in terms of
frameworks, methodologies, challenges and solutions for connected environments.
The core objectives include:

• Capturing the state-of-the-art research and practice with respect to the issues and
limitation of connected environments

• Presenting case studies illustrating challenges, best practices and practical
solutions

• Discussing corporate analysis and a balanced view of benefits and inherent
limitations

• Developing a complete reference for students, researchers and practitioners of
distributed computing

• Identifying further research directions and technologies in this area

 Organization

There are 13 chapters in Connected Environments for the IoT: Challenges and
Solutions. These are organized in three parts, as follows:

• Part I: Challenges and Solutions. This section has a focus on issues, limitations
and solutions relating to connectivity of IoT devices. There are five chapters. In

Preface

xi

the first contribution, the emphasis is on security of IoT-enabled smart services
in relation to enterprise information systems. The second chapter also discusses
the security and privacy relating to connected environments but in general terms.
The third contribution presents challenges pertaining to the management of big
data in the context of IoT environments. The next chapter in the section suggests
solutions to the issues and barriers inherent in the IoT paradigm through the use
of cloud computing technologies. The last contribution discusses the service-
level interoperability problems and solutions relating to the IoT environment.

• Part II: Methods and Frameworks. This part of the book comprises four chapters
that focus on frameworks and latest methodologies. The first chapter presents a
mobile IoT simulator called MobIoTSim to evaluate the behaviour of IoT systems
and to develop IoT-based cloud applications. The next contribution presents a
novel approach to manage hyper-connectivity in IoT through connectors that are
equipped with variability capability; the approach is illustrated with a case study.
The third contribution illustrates the use of the Essence Framework to model
software development methods and proposes a practice library for the develop-
ment of IoT-based systems. The fourth chapter presents a vision of specific smart
city domains to benefit from integration of buildings information with live data.

• Part III: Advances and Latest Research. There are four chapters in this section
that focus on future and ongoing research. The first chapter proposes an asym-
metric schema-matching mechanism to illustrate the impact of coupling, adapt-
ability and changeability on interoperability of devices. The second contribution
explores the challenges of automatic provenance capture at the middleware level
in various different contexts including the MapReduce framework. The next
chapter in the section has a focus on emerging network topologies and commu-
nication technologies presenting the relevant inherent issues, possible solutions
and future directions. The final contribution proposes the adoption of Data
Distribution Service as a middleware platform for IoT systems and distributed
computing environments.

 Target Audiences

The current volume is a reference text aimed at supporting a number of potential
audiences, including the following:

• Communication engineers and network security specialists who wish to adopt
the newer approaches to ensure the security of data and devices for seamless
connectivity

• Students and lecturers who have an interest in further enhancing the knowledge
of technologies, mechanisms and frameworks relevant to the IoT environment
from a distributed computing perspective

Preface

xii

• Researchers in this field who require up-to-date knowledge of the current prac-
tices, mechanisms, frameworks and limitations relevant to the IoT vision to fur-
ther enhance the connectivity between heterogeneous devices

 Zaigham Mahmood Derby, UK
Hebei, China

Preface

xiii

Acknowledgements

I acknowledge the help and support of the following colleagues during the review,
development and editing phases of this text:

• Prof. Zhengxu Zhao, Shijiazhuang Tiedao University, Hebei, China
• Dr. Alfredo Cuzzocrea, University of Trieste, Trieste, Italy
• Dr. Emre Erturk, Eastern Institute of Technology, New Zealand
• Prof. Jing He, Kennesaw State University, Kennesaw, GA, USA
• Josip Lorincz, FESB-Split, University of Split, Croatia
• Aleksandar Milić, University of Belgrade, Serbia
• Prof. Sulata Mitra, Indian Institute of Engineering Science and Technology,

Shibpur, India
• Dr. S. Parthasarathy, Thiagarajar College of Engineering, Tamil Nadu, India
• Daniel Pop, Institute e-Austria Timisoara, West University of Timisoara,

Romania
• Dr. Pethuru Raj, IBM Cloud Center of Excellence, Bangalore, India
• Dr. Muthu Ramachandran, Leeds Beckett University, Leeds, UK
• Dr. Lucio Agostinho Rocha, State University of Campinas, Brazil
• Dr. Saqib Saeed, University of Dammam, Saudi Arabia
• Prof. Claudio Sartori, University of Bologna, Bologna, Italy
• Dr. Mahmood Shah, University of Central Lancashire, Preston, UK
• Dr. Fareeha Zafar, GC University, Lahore, Pakistan

I would also like to thank the contributors to this book: 32 authors and co-authors,
from academia as well as industry from around the world, who collectively submit-
ted 13 chapters. Without their efforts in developing quality contributions, conform-
ing to the guidelines and meeting often the strict deadlines, this text would not have
been possible.

Grateful thanks are also due to the members of my family – Rehana, Zoya,
Imran, Hanya, Arif and Ozair – for their continued support and encouragement.

xiv

Every good wish, also, for the youngest in our family: Eyaad Imran Rashid Khan
and Zayb-un-Nisa Khan.

Zaigham MahmoodDebesis Education, Derby, UK
Shijiazhuang Tiedao University, Hebei, China
14 August 2017

Acknowledgements

xv

Other Springer Books by Zaigham Mahmood

Data Science and Big Data Computing: Frameworks and Methodologies
This reference text has a focus on data science and provides practical guidance on
big data analytics. Expert perspectives are provided by an authoritative collection of
36 researchers and practitioners, discussing latest developments and emerging
trends, presenting frameworks and innovative methodologies and suggesting best
practices for efficient and effective data analytics. ISBN: 978-3-319-31859-2

Connectivity Frameworks for Smart Devices: The Internet of Things from a
Distributed Computing Perspective
This is an authoritative reference that focuses on the latest developments on the
Internet of Things. It presents state of the art on the current advances in the connec-
tivity of diverse devices and focuses on the communication, security, privacy, access
control and authentication aspects of the device connectivity in distributed environ-
ments. ISBN: 978-3-319-33122-5

Software Project Management for Distributed Computing: Life-Cycle
Methods for Developing Scalable and Reliable Tools
This unique volume explores cutting-edge management approaches to developing
complex software that is efficient, scalable, sustainable and suitable for distributed
environments. Emphasis is on the use of the latest software technologies and frame-
works for life-cycle methods, including design, implementation and testing stages
of software development. ISBN: 978-3319-543246

Cloud Computing: Methods and Practical Approaches
The benefits associated with cloud computing are enormous; yet the dynamic, vir-
tualized and multi-tenant nature of the cloud environment presents many challenges.
To help tackle these, this volume provides illuminating viewpoints and case studies
to present current research and best practices on approaches and technologies for
the emerging cloud paradigm. ISBN: 978-1-4471-5106-7

Cloud Computing: Challenges, Limitations and R&D Solutions
This reference text reviews the challenging issues that present barriers to greater
implementation of the cloud computing paradigm, together with the latest research

xvi

into developing potential solutions. This book presents case studies and analysis of
the implications of the cloud paradigm, from a diverse selection of researchers and
practitioners of international repute. ISBN: 978-3-319-10529-1

Continued Rise of the Cloud: Advances and Trends in Cloud Computing
This reference volume presents latest research and trends in cloud-related technolo-
gies, infrastructure and architecture. Contributed by expert researchers and practi-
tioners in the field, this book presents discussions on current advances and practical
approaches including guidance and case studies on the provision of cloud-based
services and frameworks. ISBN: 978-1-4471-6451-7

Software Engineering Frameworks for the Cloud Computing Paradigm
This is an authoritative reference that presents the latest research on software devel-
opment approaches suitable for distributed computing environments. Contributed
by researchers and practitioners of international repute, the book offers practical
guidance on enterprise-wide software deployment in the cloud environment. Case
studies are also presented. ISBN: 978-1-4471-5030-5

Cloud Computing for Enterprise Architectures
This reference text, aimed at system architects and business managers, examines the
cloud paradigm from the perspective of enterprise architectures. It introduces fun-
damental concepts, discusses principles and explores frameworks for the adoption
of cloud computing. The book explores the inherent challenges and presents future
directions for further research. ISBN: 978-1-4471-2235-7

Requirements Engineering for Service and Cloud Computing
This text aims to present and discuss the state of the art in terms of methodologies,
trends and future directions for requirements engineering for the service and cloud
computing paradigm. Majority of the contributions in the book focus on require-
ments elicitation, requirements specifications, requirements classification and
requirements validation and evaluation. ISBN: 978-3319513096

User Centric E-Government: Challenges and Opportunities
This text presents a citizens-focused approach to the development and implementa-
tion of electronic government. The focus is twofold: discussion on challenges of
service availability and e-service operability on diverse smart devices, as well as on
opportunities for the provision of open, responsive and transparent functioning of
world governments. ISBN: 978-3319594415

Other Springer Books by Zaigham Mahmood

xvii

Contents

Part I Challenges and Solutions

 1 Security Challenges in the IoT Paradigm for Enterprise
Information Systems ... 3
Chandrakumar Thangavel and Parthasarathy Sudhaman

 2 Security and Privacy Across Connected Environments 19
V. Vijayaraghavan and Rishav Agarwal

 3 Big Data Challenges for the Internet of Things (IoT) Paradigm 41
Pornpit Wongthongtham, Jaswinder Kaur, Vidyasagar Potdar,
and Abhishek Das

 4 Using Cloud Computing to Address Challenges
Raised by the Internet of Things ... 63
Marinela Mircea, Marian Stoica, and Bogdan Ghilic-Micu

 5 Overcoming Service-Level Interoperability
Challenges of the IoT .. 83
Darko Andročec

Part II Methods and Frameworks

 6 Simulating Sensor Devices for Experimenting
with IoT Cloud Systems.. 105
Tamas Pflanzner, Marta Fidrich, and Attila Kertesz

 7 Managing Heterogeneous Communication Challenges
in the Internet of Things Using Connector Variability 127
Muhammed Cagri Kaya, Mahdi Saeedi Nikoo, Selma Suloglu,
Bedir Tekinerdogan, and Ali H. Dogru

xviii

 8 Adopting the Essence Framework to Derive a Practice
Library for the Development of IoT Systems 151
Görkem Giray, Bedir Tekinerdogan, and Eray Tüzün

 9 Integration of Buildings Information with Live Data
from IoT Devices ... 169
Zohreh Pourzolfaghar and Markus Helfert

Part III Advances and Latest Research

 10 Interoperability in the Internet of Things with Asymmetric
Schema Matching .. 189
José Carlos Martins Delgado

 11 Automatic Big Data Provenance Capture at Middleware
Level in Advanced Big Data Frameworks .. 219
Anu Mary Chacko, Alfredo Cuzzocrea, and S.D. Madhu Kumar

 12 Networking Topologies and Communication Technologies
for the IoT Era... 241
P. Beaulah Soundarabai and Pethuru Raj Chelliah

 13 Data Distribution Service-Based Architecture Design
for the Internet of Things Systems .. 269
Bedir Tekinerdogan, Ömer Köksal, and Turgay Çelik

 Index ... 287

Contents

xix

Contributors

Rishav Agarwal Indian Institute of Technology, Guwahati, Assam, India

Darko Andročec Department of Information Systems Development, Faculty of
Organization and Informatics, University of Zagreb, Varaždin, Croatia

P. Beaulah Soundarabai Department of Computer Science, Christ University,
Bangalore, India

Turgay Çelik OPSGENIE, Ankara, Turkey

Anu Mary Chacko National Institute of Technology Calicut, Kozhikode, Kerala,
India

Pethuru Raj Chelliah Reliance Jio Cloud, Bangalore, India

Alfredo Cuzzocrea University of Trieste and ICAR-CNR, Trieste, Italy

Abhishek Das Tripura University (A Central University), Agartala, India

José Carlos Martins Delgado Instituto Superior Técnico, Universidade de Lisboa,
Porto Salvo, Portugal

Ali H. Dogru Department of Computer Engineering, Middle East Technical
University, Ankara, Turkey

Marta Fidrich Software Engineering Department, University of Szeged, Szeged,
Hungary

Bogdan Ghilic-Micu Department of Economic Informatics and Cybernetics, The
Bucharest University of Economic Studies, Bucharest, Romania

Görkem Giray Independent Researcher, Izmir, Turkey

Markus Helfert Lero – The Irish Software Research Centre, School of Computing,
Dublin City University, Dublin, Ireland

Jaswinder Kaur Curtin University, Perth, Australia

xx

Muhammed Cagri Kaya Department of Computer Engineering, Middle East
Technical University, Ankara, Turkey

Attila Kertesz Software Engineering Department, University of Szeged, Szeged,
Hungary

Ömer Köksal Information Technology Group, Wageningen University,
Wageningen, The Netherlands

S.D. Madhu Kumar National Institute of Technology Calicut, Kozhikode, Kerala,
India

Marinela Mircea Department of Economic Informatics and Cybernetics, The
Bucharest University of Economic Studies, Bucharest, Romania

Tamas Pflanzner Software Engineering Department, University of Szeged,
Szeged, Hungary

Vidyasagar Potdar Curtin University, Perth, Australia

Zohreh Pourzolfaghar Lero – The Irish Software Research Centre, School of
Computing, Dublin City University, Dublin, Ireland

Mahdi Saeedi Nikoo Department of Computer Engineering, Middle East Technical
University, Ankara, Turkey

Marian Stoica Department of Economic Informatics and Cybernetics, The
Bucharest University of Economic Studies, Bucharest, Romania

Parthasarathy Sudhaman Department of Computer Applications, Thiagarajar
College of Engineering, Madurai, Tamil Nadu, India

Selma Suloglu Sosoft Information Technologies, Ankara, Turkey

Bedir Tekinerdogan Information Technology Group, Wageningen University,
Wageningen, The Netherlands

Chandrakumar Thangavel Department of Computer Applications, Thiagarajar
College of Engineering, Madurai, Tamil Nadu, India

Eray Tüzün Technology and Academy Directorate, Havelsan, Ankara, Turkey

V. Vijayaraghavan Infosys Limited, Bangalore, India

Pornpit Wongthongtham Curtin University, Perth, Australia

Contributors

xxi

About the Editor

Prof. Dr. Zaigham Mahmood Professor Mahmood is a published author of 21
books, 6 of which are dedicated to electronic government and the other 15 focus on
the subjects of cloud computing, data science, big data, Internet of Things, smart
cities, project management and software engineering, including the textbook Cloud
Computing: Concepts, Technology & Architecture which is also published in Korean
and Chinese languages. Additionally, he is developing two new books to appear
later in 2018. He has also published more than 100 articles and book chapters and
organized numerous conference tracks and workshops.

Professor Mahmood is the editor-in-chief of the Journal of E-Government
Studies and Best Practices as well as the series editor-in-chief of the IGI book series
on E-Government and Digital Divide. He is a senior technology consultant at
Debesis Education in the UK and a professor at Shijiazhuang Tiedao University in
Hebei, China. He further holds positions as foreign professor at NUST and IIU in
Islamabad, Pakistan. He has served as a reader (associated professor) at the
University of Derby, UK, and professor extraordinaire at the North-West University,
Potchefstroom, South Africa. Professor Mahmood is also a certified cloud comput-
ing instructor and a regular speaker at international conferences devoted to cloud
computing and e-government. His specialized areas of research include distributed
computing, project management and e-government.

Part I
Challenges and Solutions

3© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_1

Chapter 1
Security Challenges in the IoT Paradigm
for Enterprise Information Systems

Chandrakumar Thangavel and Parthasarathy Sudhaman

Abstract A complex system has a large number of design variables, and
 decision- making requires real-time data collected from machines, processes, and
diverse business environments. In this context, enterprise information systems
(EISs) are used to support data acquisition, data analytics, communication, and
related decision- making activities. Therefore, information technology infrastructure
for data acquisition and sharing affects the performance of an EIS greatly. Our
objective in the present work is to investigate the impact of security in the Internet
of Things (IoT) paradigm for enterprise information systems. The breakthrough
potential of the IoT conjures up immense possibilities for delivering value through
new business models across industries, products, and service offerings. However,
making IoT technologies reliable and secure is the key to realizing the potential of
this breakthrough concept. Ensuring security and privacy of the IoT offerings is
therefore a major concern for users and businesses. This chapter explores the poten-
tial of IoT-enabled smart services in EISs. It identifies security and privacy concerns
for a variety of scenarios and discusses ways to address these concerns effectively.

1.1 Introduction

Internet of Things (IoT) is characterized by heterogeneous technologies, which con-
cur to the provisioning of innovative services in various application domains [1].
Nowadays, the concept of IoT is multidimensional. It embraces many different
technologies, services, and standards, and it is widely perceived as the angular stone
of the ICT market in the next 10 years or so, at least [2–4]. The IoT is an extension
of the Internet [5]. It gives an immediate access to information about physical
objects and leads to innovative services with high efficiency and productivity [6]. Of
course, this high level of heterogeneity, coupled with the wide scale and variety of

C. Thangavel (*) • P. Sudhaman
Department of Computer Applications, Thiagarajar College of Engineering,
Madurai, Tamil Nadu, India
e-mail: t.chandrakumar@gmail.com

mailto:t.chandrakumar@gmail.com

4

IoT systems, is expected to magnify security threats of the current Internet, which is
being increasingly used to allow interaction between humans, machines, and robots,
in any combination [1]. The Internet of Things is an emerging global Internet-based
information architecture facilitating the exchange of goods and services in global
supply chain networks [7].

With reference to security, data anonymity, confidentiality, and integrity need to
be guaranteed, as well as the authentication and authorization mechanisms in order
to prevent unauthorized users (i.e., humans and devices) to access the systems.
Whereas concerning the privacy requirement, both data protection and users’ per-
sonal information confidentiality have to be ensured, since devices may manage
sensitive information (e.g., user habits) [8] [9]. Finally, trust is a fundamental issue
since the IoT environment is characterized by different devices which have to pro-
cess and handle the data in compliance with user needs and rights [10] [11].

The Internet of Things, an emerging global Internet-based technical architecture
facilitating the exchange of goods and services in global supply chain networks has
an impact on the security and privacy of the involved stakeholders. Measures ensur-
ing the architecture’s resilience to attacks, data authentication, access control, and
client privacy need to be established [7]. A recent study by the McKinsey Global
Institute estimates that the IoT will have a potential economic impact of $3.9tn–
$11.1tn per year by 2025 across nine settings – homes, offices, factories, retail envi-
ronments, worksites, human health, outside environments, cities, and vehicles [12].
According to a recent survey by the SANS Institute covering organizations of all
sizes, 66% of respondents are either currently involved in or are planning to imple-
ment IoT applications involving consumer devices, such as smartphones, smart
watches, and other wearables. Smart buildings systems are increasingly being imple-
mented as operations management systems get connected to networks. The IoT holds
much promise for the energy, utilities, medical devices, and transport sectors, which
will see the highest levels of adoption in the near term, according to SANS, as well
as smart buildings. Unquestionably, the main strength of the IoT idea is the high
impact it will have on several aspects of everyday life and behavior of potential users.

From the point of view of a private user, the most obvious effects of the IoT intro-
duction are visible in both working and domestic fields. In this context, assisted liv-
ing, e-health, and enhanced learning are only a few examples of possible application
scenarios in which the new paradigm will play a leading role in the near future [13].
The wide adoption of computer numerical control (CNC) and industrial robots made
flexible manufacturing systems (FMSs) feasible; the technologies for computer-
aided design (CAD), computer-aided manufacturing (CAM), and computer- aided
processing planning (CAPP) made computer-integrated manufacturing (CIM) prac-
tical. In developing their EISs, more and more enterprises rely on the professional
providers of IT software service to replace or advance their conventional systems
[14]. Primary functions of an EIS are (1) to acquire static and dynamic data from
objects, (2) to analyze data based on computer models, and (3) to plan and control a
system and optimize system performances using the processed data. The implemen-
tation of a manufacturing system paradigm relies heavily on available IT [15].

C. Thangavel and P. Sudhaman

5

In the rest of this chapter, we first outline the concepts and technical background
of the IoT and the IoT infrastructure for enterprises. We then discuss the varied IoT
application areas in Sect. 1.2 and IoT security issues and challenges in Sect. 1.3. In
Sect. 1.4, we provide a discussion on solving the IoT security challenges in enter-
prise information systems. Finally, Sect. 1.5 presents a brief summary.

1.2 The Internet of Things: An Overview

1.2.1 Concept and Technical Background

The Internet of Things (IoT) is an emerging global Internet-based information
architecture facilitating the exchange of goods and services in global supply chain
networks [12]. For example, the lack of certain goods would automatically be
reported to the provider which in turn immediately causes electronic or physical
delivery. The basic idea of this concept is the pervasive presence around us of a
variety of things or objects – such as radio-frequency identification (RFID) tags,
sensors, actuators, mobile phones, etc. – which, through unique addressing schemes,
are able to interact with each other and cooperate with their neighbors to reach com-
mon goals [13]. From a technical point of view, the architecture is based on data
communication tools, primarily the RFID-tagged items (radio-frequency identifica-
tion) [16]. The IoT [17] has the purpose of providing an IT infrastructure facilitating
the exchanges of “things” in a secure and reliable manner. A survey conducted by
Atzori [18] gives a picture of the current state of the art on the IoT. More
specifically:

• It provides the readers with a description of the different visions of the Internet
of Things paradigm coming from different scientific communities.

• It reviews the enabling technologies and illustrates which are the major benefits
of spread of this paradigm in everyday life.

• It offers an analysis of the major research issues the scientific community still
has to face.

The Internet of Things (IoT) provides new functionalities to improve the qual-
ity of life and enables technological advances in critical areas. These include per-
sonalized healthcare, emergency response, traffic management, smart
manufacturing, defense, home security, and smart energy distribution and utiliza-
tion. New digital business models utilize the power of information to replace tra-
ditional products with innovative solutions and services leveraging IoT devices.
Gartner’s “Hype Cycle for Emerging Technologies, 2015” [19] shows that the IoT
is at the “peak of inflated expectations”2 and on the cusp of a multiyear, multifold
growth. In 2020, 25 billion connected “things” will be in use [20]. This growth
prospect is fueled by continuous reduction in the cost of computing power and the
adoption of IPv6 technology.

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

6

In communication technologies, the transition from IPv4 to IPv6 technology
promises unprecedented opportunity to interconnect existing as well as new ser-
vices in utilities, healthcare, education, and other businesses over the Internet, due
to the availability of more than two billion unique IP addresses. This is an important
aspect to realize the “smart life” dream where cities will be provisioned with real-
time data analytics and decision support systems. However, IoT-enabled smart ser-
vices are not yet fully secure, and this is a key challenge. There are notable privacy
concerns around data gathered from user-owned devices as well as the surrounding
environment or other devices [21].

1.2.2 IoT Infrastructure for Enterprises

The aforementioned discussion has shown that IoT is aligned well with the architec-
ture of a manufacturing enterprise. An enterprise model consists of a set of modular
components and their interactions. Correspondingly, each system component in an
EIS needs an information unit to make decisions on the component’s behaviors
based on the acquired data. Moreover, data acquisition, communication, and
decision- making are essential functions for each module. Based on the axiomatic
theory, the IoT is able to provide vital solutions to planning, scheduling, and con-
trolling of manufacturing systems at all levels [15].

The features of next-generation enterprise are now discussed to evaluate if an
IoT-based EIS is capable of meeting these challenging requirements.

Decentralized Decision-Making
Domains and levels of manufacturing activities are increasing and becoming diver-
sified. Hierarchical architecture is used to the most efficient enterprise architecture
for system integration. However, system complexity can be increased exponentially
with the system scale and dynamics. A centralized system may lead to a significant
time delay and inflexibility to respond changes promptly. Therefore, distributed and
decentralized architecture would be effective means to deal with system complexity
and dynamics.

Flat and Dynamic Organization
Prompt responses to uncertainties require distributed and decentralized enterprise
architecture. In such a way, acquired data can be directly used for decision-making
in real time. As far as the interactions among system components are concerned, it
forms the challenges to distribute the information to associated components, in par-
ticular under a centralized structure. The data are collected and sent to the center
database, and then it is sent to an object when the system receives the request from
this object. However, a centralized model has its challenges in dealing with massive
data and the heterogeneity of environment.

• Massive data: From the perspective of data management, information systems
for next-generation manufacturing enterprises are facing two situations: (1) the

C. Thangavel and P. Sudhaman

7

cost for decision-making unit is likely increasing with system complexity and the
need of fast responsiveness, and (2) it causes resources redundant to maintain
data locally and the wastes of time and resources for communications when the
data are shared by other decision-making units.

• Heterogeneous environment: Increased and diversified manufacturing resources
have increased the heterogeneous nature of a manufacturing environment. The
variety exists at the aspects of personalized products, geographical distribution,
cultures, suppliers, regulations, optional operations, and standards.

• Agility and adaptability for real-time changes: Manufacturing enterprises are
functioned to meet customers’ needs, including functionalities, quantity, quan-
tity, delivery time, and changes. The enterprises must be capable of dealing with
changes at reasonable time and making products available as early as possible to
catch the market niche. Without such a capability, the profit margin will be
reduced significantly.

• Reconfigurable capabilities: To increase system flexibility, the structures of
hardware and software systems are not static anymore. A system at a certain time
can be decomposed into subsystems, and these subsystems can be reconfigured
as manufacturing resources for other tasks. Extra system components are required
to support hardware and software system configurations. System configurability
or modularization decides the interoperability, which is extremely important in
the globalized market.

1.2.3 IoT Application Areas

An important area that significantly benefits from the IoT is healthcare. Connected
healthcare offers immense possibilities including remote monitoring of patients
with critical ailments such as diabetes, cardiac issues, and kidney malfunction. This
enables healthcare organizations and governments to capture and analyze popula-
tion health data to identify potential health hazards at an early stage and take pre-
emptive actions. In the future, smart retail solutions will provide cashless buying
options, eliminating the need for point of sales (POS) counters. User preference
data collected by IoT sensors attached to display zones and dressing areas at retail
outlets can be utilized by retailers to track fast-moving items. Retailers can also use
this data to replace less preferred items with popular items, driving faster, and
increased sales. IoT will also promote smart agriculture, characterized by tempera-
ture control of warehouses, dashboard-based monitoring of inventory, and predic-
tive analysis of usage and stock replenishment. Furthermore, factories can become
more energy efficient by leveraging IoT-enabled manufacturing to analyze the usage
and performance data gathered from sensors attached to machines. Data gathered on
plant floors is analyzed to provide just-in-time information to floor managers,
increasing supply chain efficiency and reducing material wastage and power utiliza-
tion. Figure 1.1 shows what people search for on Google, what people talk about on
Twitter, and what people write about on LinkedIn. The highest score received a

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

8

rating of 100%; the other Internet of Things applications were ranked with a per-
centage that represents the relation to the highest score (relative ranking).

IoT-Enabled Smart Cities
With more and more people moving to cities and continuous growth in urban popu-
lation, providing basic services to the increasing number of citizens is becoming a
huge challenge for city councils. To meet the needs of the growing population, cities
are expanding exponentially and stretching the operational limits of various ser-
vices. In such a scenario, cities driven by IoT-enabled smart services can signifi-
cantly improve the standard of living. By leveraging the IoT, a connected environment
of interdependent systems can be built, enhancing all aspects of city life. This can
be achieved by embedding IoT technologies in all types of physical objects and
artifacts ranging from clothes, home appliances, and automobiles to street lighting
systems, transport systems, public utilities, and even the human body. In a smart
city, the IoT-enabled digital fabric of interdependent systems will be dynamic in
nature, with instantaneous data gathering and near real-time analytics. This will
help city councils strategize necessary actions and ensure effective governance
based on continuous analysis of the huge volume of data collected from subsystems.
The insights thus gained can help manage energy efficiency of buildings, map social
data for crime prevention, monitor flood or drought situations, and drive public
consultation and trend analysis. Other areas of application include infrastructure
development across housing, education, transport, medical services, employment,
and so on [22].

Fig. 1.1 The Internet of Things application ranking

C. Thangavel and P. Sudhaman

9

Smart Healthcare Systems
IoT-enabled healthcare services enable remote monitoring of patients with diabetes,
kidney malfunction, heart problems, and more. This is possible through direct,
round-the-clock data exchange between devices like pacemakers and glucose moni-
tors implanted in patients’ bodies and health monitoring systems in hospitals. Now,
in the event of these devices being breached or the data obtained from them being
unauthenticated, patients’ lives are at risk.

Smart Billing and Payment Systems
In a retail outlet, IoT sensors are used to tally the purchases in a customer’s cart.
This means customers do not need to stand in the queue for checkout and billing,
with sensors sending the data to a cloud-based billing and payment systems.
Customers can pay the bill through a payment app on their smartphones.

Smart Home Security Systems
IoT-enabled home security solutions and temperature control systems use sensors to
collect and share data from multiple edge devices. If an attacker gains access to
these smart systems through malicious means, the underlying functional logic of
control systems is vulnerable to misuse, compromising the physical security of
residents.

Proximity Marketing
IoT has led to the advent of proximity marketing using Bluetooth-enabled beacons.
Billboards embedded with beacons that include IoT sensors [23] identify interested
customers in their vicinity. By activating an app on customer smartphones, relevant
data is gathered by sensors and sent to the cloud for analytical processing. Based on
the information and insights gathered, personalized marketing content is sent back.
For example, Apple leverages iBeacons [24] to allow smartphones, tablets, and
other devices to perform actions like determining the location of a person with an
iOS device and providing information about nearby retail outlets, coffee shops, or
multiplexes, and Facebook [25] makes recommendations on places to visit, things
to do, and so on.

Smart Vending Machines
Smart vending machines allow customers to choose products from the display; dur-
ing which, customer details are obtained through their smartphones by a near-field
communication (NFC) smartphone payment system fitted to the vending machine.
Merchants can use this data to improve stock replenishment, perform health checks
on vending machines, and identify popular products.

1.3 Security Challenges in the IoT

The Internet of Things (IoT) is already starting to give rise to real-world applica-
tions, from connected homes and cars to health monitoring and smart utility meters.
The Internet of Things (IoT) is finally here in 2017, and companies like Google and

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

10

Amazon are rushing to get out and become the main company to become the hub of
this revolutionary concept. There have been multiple predictions over the years
which declare that there will be at least tens of billions connected devices by 2020.
The fundamental security weakness of the Internet of Things is that it increases the
number of devices behind your network’s firewall. In the development of any IoT
application, security and testing frameworks play an important role.

IoT Infrastructure for Enterprises
An enterprise model consists of a set of modular components and their interactions.
Correspondingly, each system component in an ES needs an information unit to
make decisions on the component’s behaviors based on the acquired data. Moreover,
data acquisition, communication, and decision-making are essential functions for
each module. Figure 1.2 illustrates the relations between the components in a manu-
facturing enterprise and the architecture of IoT. Based on the axiomatic theory, the
IoT is able to provide vital solutions to planning, scheduling, and controlling of
manufacturing systems at all levels. The manufacturing industries are hardly on our
“first rodeo” in regard to how to properly address many of the security issues sur-
rounding the use of Ethernet networks and IP-based protocols in manufacturing
networks and applications. Ethernet-based automation systems work was starting in
the 1980s, and since then, multiple industrial network protocols have evolved to run
over standard Internet Protocol (IP) and UDP communications stacks – Modbus
TCP/IP, PROFINET, EtherNet/IP CIP, FOUNDATION HSE, etc. Communications

Fig. 1.2 IoT for manufacturing enterprise

C. Thangavel and P. Sudhaman

11

between controllers/PLCs and workstation/server applications have evolved from
slow serial ports to using high-speed Ethernet networks that commonly run the
aforementioned protocols and OPC/OPC UA. Manufacturing Operations
Management (MOM) applications like MES (Manufacturing Execution Systems),
EMI (Enterprise Manufacturing Intelligence), APM (Asset Performance
Management), and others are all typically networked via standard Ethernet net-
works to automation systems and enterprise business systems for information inte-
gration purposes.
All of this pervasive Ethernet/IP networking has resulted in many best practices that
have been established for different security aspects such as network and virtual
LAN segmentation, firewalls and selective port openings, user and application
authentication, intrusion detection, antivirus, malware, security patching, and appli-
cation software roles and privileges..

The Internet of Things offers countless new opportunities. The definition of IoT
security is similar to that of mobile security which includes the protection of per-
sonal and business information that is stored, collected, and transmitted from
devices connected to the Internet [26]. In recent years, cyber threats have grown
exponentially in both quantity and volume [27]. Security breaches and cyber heists
are happening all around us, and the authors of research papers do not expect that to
change. This can and should be frightening to both the companies and the users.
There are significant emerging security issues in IoT applications, networks, and
devices/equipment, which could have major impacts on many industries and prod-
ucts [28]. Our personal lives are rapidly becoming more convenient, more mobile,
and more digital. While the IoT holds much promise, many security issues have
been uncovered. Owing to the wide range of sectors involved and their impact on
everyday life, such security issues can have serious consequences, causing damage
and disruption to operations or, in some scenarios, even loss of life. In a smart build-
ing – where systems ranging from HVAC (heating, ventilation, and air condition-
ing), lighting, and door access controls to video surveillance and elevators are all
interconnected – a security threat that is exploited to disrupt power or lighting could
cause loss of life if it were something like a hospital. In office buildings, a door
access control that is hacked could provide an intruder with unauthorized access.
Issues with the IoT devices are far from hypothetical: one example of a threat is the
Stuxnet worm, which has been seen to be able to disrupt industrial control systems,
causing extensive damage. A range of security risks have been uncovered in the
devices themselves that make up the IoT. OWASP has identified the top 10 such
issues involved with IoT devices [29]:

• Insecure web interfaces
• Insufficient authorization/authentication
• Insecure network services
• Lack of transport encryption
• Privacy concerns
• Insecure cloud interface
• Insecure mobile interface

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

12

• Insufficient security configurability
• Insecure software
• Poor physical security

This is echoed by recent research undertaken by HP Fortify, the findings of
which are shown in Fig. 1.3. Overall, it found that 70% of the most commonly used
IoT devices contain security vulnerabilities and there is an average of 25 security
concerns per device.

Although the IoT offers tremendous opportunities for smart services across sec-
tors, it is not completely secure or risk-free. In fact, the landscape becomes complex
due to the vast network of IoT devices and interconnected systems that are required
to realize the numerous benefits of smart services. The scale and complexity of IoT-
enabled services make the implementation of traditional security techniques fairly
complex. There are unique access control challenges (specifically for wireless sen-
sor devices that can store energy for just about a few weeks to a month) and memory
limitations (permissible upper limits being a few kilobytes) that restrict the com-
munication and processing capabilities of these devices to run complex encryption
algorithms. These issues are further compounded by the distributed nature of the
IoT device network, which is vital to create a system that provides context aware
services. In addition, non-trusted entities can physically or remotely intercept and
manipulate data captured by IoT sensor nodes. Data transmission from sensors and
gateway devices can be passively monitored in the absence of robust encryption,
and malicious nodes can be embedded in wireless sensor networks to interfere with

Fig. 1.3 Device-level IoT security vulnerabilities

C. Thangavel and P. Sudhaman

13

neighboring nodes. Privacy is another pressing concern. Personally identifiable
information (PII) can be gathered from gateway devices without consent and can be
used to conduct unscrupulous activities.

Looking at the IoT security through a more technical lens, the issues can be
analyzed by utilizing preexisting IT security frameworks and expanding them to
include IoT. Other more technical approaches take aim at what security proce-
dures and techniques should be implemented when developing these devices.
First, a secure boot must be performed each time the device is turned on or acti-
vated. This is most likely done through proper cryptography methods. Next,
proper authentication is essential through the use of strong passwords (at mini-
mum) or better yet the use of X.509, an encryption authenticator, or Kerberos,
another method of properly verifying the user [30]. Once the device and the user
have been authenticated, secure communication must occur by the transmission
of the data through secure encryption channels (SSH or SSL) [30]. When done
right, encryption can be extremely secure; however, there are many older forms
of encryption that are less secure but popular to implement because of their sim-
plicity. Finally, protection against cyber- attacks and intrusion detection mecha-
nisms must also be done through the use of firewalls that limit communication to
only known, trusted hosts (IBM, 2015) and, additionally, embedding a device
designed to detect and report invalid log-in attempts and other malicious activi-
ties [30]. Last, but not least, the US Federal Trade Commission (FTC) notes that
only basic, static security approaches cannot adequately secure an IoT device. It
recommends that all devices be designed with continuous security procedure
updates in mind, as security problems and solutions are always evolving [31]. So
what are some of the new security challenges that get presented with billions of
new smart devices being interconnected in the world of the IoT? To start with,
smart industrial devices run much smaller footprints of computing power and
operating systems. They may be installed once, and the software in them may
never be updated or patched. This presents new technical challenges, as the
devices will need to be highly secure by design and impervious to virus or denial
of service attacks.

If IoT devices are to meet their full intelligence potential, then they will have the
ability to be self-communicating between each other and with other computing
devices, controllers, and software applications. It sounds good that anything can
communicate to anything or anyone on an “as-needed” basis, but the reality is that
this needs to be properly managed for practical and security reasons.

IoT devices may or may not participate in larger/centralized security domains
(e.g., Active Directory) in order to operate; therefore, the concept of multiple dis-
tributed security domains will likely emerge for groupings of IoT devices and be
another new security management consideration.

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

14

1.4 Solving the Security Challenges of Enterprise
Architectures

IoT devices will need to intercommunicate with existing controllers, automation
and manufacturing information networks, and applications. Therefore, existing
security policies and approaches will need to be adapted to embrace these new IoT
security challenges. In what follows, we propose the ways, mapped to five key
dimensions, to address security concerns in an IoT setup:

• Secure booting – the authenticity and integrity of software on a device should be
verified via a digital signature attached to the software image and verified by the
device to ensure that it has been authorized to run on that device and that there
are no runtime threats or malicious exploits present. Only then will it be allowed
to load.

• Access control – mandatory or role-based access controls should be built into
the operating system. If compromise of any component is detected, access to
other parts of the system should be minimized as much as possible. This will
help to minimize the effectiveness of any breach of security.

• Device authentication – a device should authenticate itself at the point at which
it is plugged into the network, prior to receiving or transmitting data. Machine
authentication only allows a device to access a network based on credentials that
are stored in a secure storage area.

• Firewalling and IPS – each device needs to have a firewall or deep packet
inspection capability for controlling traffic, but this requires that protocols are
needed to identify malicious payloads hiding on non-IT protocols. And these
protocols need to be industry specific since, for example, smart energy grids have
their own set of protocols governing how devices talk to each other.

• Updates and patches – the ability to deliver software updates and patches to
thousands of devices in a way that conserves limited bandwidth and intermittent
connectivity of embedded devices, while ensuring that there is no possibility of
functional safety being compromised, is a necessity

It is unlikely that security will become an overarching requirement in the design
process any time soon. There are also standards that need to be developed before
this happens, and it is also likely that some form of regulation or specific industry
pressure will be required in order to force manufacturers to place the necessary
emphasis on security. Organizations should look to limit what is allowed in the
workplace, considering the risks versus the benefits, and look at how systems are
interconnected and therefore how risks such as malware infections can be spread.

Organizations also need to find a way to enforce data protection policies on all
devices in use and to control what data people can access. Identity and access rights
should be tightly managed in order that all devices and connections are authenti-
cated and authorized, and controls should be placed on what information can be
viewed and how it is communicated and stored. All data held on devices or in transit
should be encrypted to safeguard it from unauthorized access or loss. In terms of

C. Thangavel and P. Sudhaman

15

devices that are lost or stolen, device management tools that extend to remote data
wipe should be considered, especially for consumer devices that are personally
owned. For devices used for business operations, systems will need to be used to
link physical and network security together to enable a total view of incidents,
enabling management to make decisions regarding the threat posed and how it can
be controlled. This requires that all IoT devices are managed the same way as other
equipments connected to the Internet and the network. All activity should be closely
and continuously monitored to look for anomalies from normal baseline behavior,
and organizations should ensure that all devices are correctly configured and are
operating properly.

Manufacturing is woven into economy and society. For example, manufacturing
took 12% of gross domestic product (GDP) and 11% of workforce in the Unites
States in 2011 [32]. Moreover, the significance of manufacturing is far beyond the
scope these numbers represent. For example, the manufacturing sector in the United
States used to take 19% of GDP and 30% of workforce in the 1950s [33]; however,
this percentage has been shrinking continually for several decades. The advance of
manufacturing technologies relates closely to information technologies (ITs). Since
design and operation of a manufacturing system needs numerous types of decision-
making at all of its levels and domains of business activities, prompt and effective
decisions not only depend on reasoning techniques, but also on the quality and
quantity of data [34]. Every major shifting of manufacturing paradigm has been
supported by the advancement of IT. For example, the widely adoption of computer
numerical control (CNC) and industrial robots made flexible manufacturing sys-
tems (FMSs) feasible; the technologies for computer-aided design (CAD),
computer- aided manufacturing (CAM), and computer-aided processing planning
(CAPP) made computer-integrated manufacturing (CIM) practical. In developing
their ESs, more and more enterprises rely on the professional providers of IT soft-
ware service to replace or advance their conventional systems [14]. Therefore, it
makes sense to examine the evolution of the IT infrastructure and evaluate its impact
on the evolution of manufacturing paradigms, when a new IT becomes influential.

1.5 Conclusion

The continual increase of the IoT devices and services requires customized security
and privacy levels to be guaranteed. The broad overview provided in this chapter
raises many open issues and sheds some light on research directions in the IoT secu-
rity field. Moreover, a unified vision regarding the insurance of security and privacy
requirements in such a heterogeneous environment, involving different technologies
and communication standards, is still missing. Suitable solutions need to be designed
and deployed, which are independent from the exploited platform, and able to guar-
antee confidentiality, access control, and privacy for users and “things,” trustworthi-
ness among devices and users, compliance with defined security, and privacy policies.
Current manufacturing environment has been extensively discussed to identify key

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

16

requirements of EISs of modern enterprises. It is found that the emerging IoT
 infrastructure can support information systems of next-generation manufacturing
enterprises effectively. More specifically, anytime, anywhere, anything, data acquisi-
tion systems are more than appropriate to be applied in collecting and sharing data
among manufacturing resources. However, the application of IoT in EISs is at its
infant stage; more researches are in demand in the areas such as modularized and
semantic integration, standardization, and the development of enabling technologies
for safe, reliable, and effective communication and decision-making. The Internet of
Things is a promising technological advancement that can offer several benefits to
the society at large. However, businesses and city councils across the globe need to
work collectively to build secure and reliable IoT technologies and eliminate unde-
sired side effects. To realize the true potential of this technology, security and privacy
concerns need to be effectively addressed. In addition to self- regulation, a structured
and well-defined cyber security and privacy policy must be developed with efficient
collaboration between governments and enterprises. It is also key to ensure that IoT-
specific legislation and industry standard protocols do not stifle innovation. This will
allow individuals and communities to reap the advantages of the IoT and build a
smarter world that offers intelligent solutions for big and small challenges across all
walks of life. So the manufacturing industries can continue to accelerate their busi-
ness success by leveraging these exciting new technologies.

References

 1. Sicari S, Rizzardi A, Grieco LA, Coen-Porisini A (2015) Security, privacy and trust in internet
of things: the road ahead. Comput Netw 76:146–164

 2. Emmerson B, Win-Win Mag J (2010) M2M: the internet of 50 billion devices. Huawei
(4):19–22

 3. Boswarthick D, Elloumi O, Hersent O (2012) M2M communications: a systems approach, 1st
edn. Wiley Publishing, Hoboken

 4. Hersent O, Boswarthick D, Elloumi O (2012) The internet of things: key applications and
protocols, 2nd edn. Wiley Publishing, Chichester

 5. Fleisch E (2010) What is the internet of things: an economics perspective, Auto-ID labs white
paper, WP-BIZAPP-053

 6. Bandyopadhyay D, Sen J (2011) Internet of things: Applications and challenges in technology
and standardization. Wirel Pers Commun 58:49–59

 7. Weber RH (2010) Internet of things–new security and privacy challenges. Comput Law Secur
Rev 26(1):23–30

 8. Feng H, Fu W (2010) Study of recent development about privacy and security of the internet
of things. In: 2010 international conference on Web Information Systems and Mining (WISM),
Sanya, pp 91–95

 9. Roman R, Zhou J, Lopez J (2013) On the features and challenges of security and privacy in
distributed internet of things. Comput Netw 57(10):2266–2279

 10. Anderson J, Rainie L (2014) The internet of things will thrive by 2025. PewResearch Internet
Project. www.pewinternet.org/2014/05/14/internet-of-things/

 11. Bandyopadhyay S, Sengupta M, Maiti S, Dutta S (2011) A survey of middleware for inter-
net of things. In: Third international conferences, WiMo 2011 and CoNeCo 2011, Ankara,
pp 288–296

C. Thangavel and P. Sudhaman

http://www.pewinternet.org/2014/05/14/internet-of-things

17

 12. Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin J, Aharon D. Unlocking the poten-
tial of the internet of things. McKinsey Global Institute. Accessed June 2015

 13. Giusto D, Iera A, Morabito G, Atzori L (eds) (2010) The internet of things. Springer. ISBN:
978-1-4419-1673-0

 14. Li Q, Wang ZY, Li WH, Li J, Wang C, Du RY (2013) Applications integration in a hybrid cloud
computing environment: Modelling and platform. Enterp Inf Syst 7(3):237–271

 15. Bi Z, Da Xu L, Wang C (2014) Internet of things for enterprise systems of modern manufactur-
ing. IEEE Trans Ind Inform 10(2):1537–1546

 16. RFID is a technology used to identify, track and locate assets; the universal, unique identifica-
tion of individual items through the EPC is encoded in an inexpensive RFID tag

 17. The term “IoT” has been “invented” by Kevin Ashton in a presentation in 1998 (see Gerald
Santucci, Paper for the International Conference on Future Trends of the Internet, From
Internet of Data to Internet of Things, at p. 2 Available at: ftp://ftp.cordis.europa.eu/pub/fp7/
ict/docs/enet/20090128-speech-iot-conference-lux_en.pdf

 18. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw
54(15):2787–2805

 19. Gartner (2015) Hype cycle for emerging technologies, 2015. http://www.gartner.com/
document/3100227?ref=lib. Accessed 30 July 2015

 20. Gartner (2014) Gartner says 4.9 billion connected “Things” will be in use in 2015. http://www.
gartner.com/newsroom/id/2905717. Accessed 8 July 2015

 21. Chaudhuri A (2015) Address security and privacy concerns to fully tap into IoT’s potential.
http://www.tcs.com/offerings/it_infrastructure/Pages/default.aspx

 22. Government of India (2015) Smart Cities Mission: Ministry of Urban Development:
Government of India, June 2015. http://smartcities.gov.in/writereaddata/SmartCityGuidelines.
pdf https://www.gov.uk/government/uploads/system/uploads/attachment_data. Accessed 21
July 2015

 23. Cloud Security Alliance (2015) Security guidance for early adopters of the Internet of Things
(IoT). https://downloads.cloudsecurityalliance.org/whitepapers/Security_Guidance_for_
Early_Adopters_of_the_Internet_of_Things.pdf. Accessed 18 June 2015

 24. Apple Inc. (2015) iOS: understanding iBeacon. https://support.apple.com/en-ap/HT202880.
Accessed 3 July 2015

 25. Facebook (2015) Engage people who visit your business. https://www.facebook.com/
business/a/facebook-bluetooth-beacons. Accessed 18 June 2015

 26. Weber RH (2015) Internet of things: privacy issues revisited. Comput Law Secur Rev
31(5):618–627

 27. Hodgson K (2015) The internet of [security] things. SDM magazine. Available: http://www.
sdmmag.com/articles/91564-the-internet-of-security-things

 28. Accenture (2015) Security call to action. Available: https://www.accenture.com/
t20160122T014933__w__/usen/_acnmedia/Accenture/Conversion-Assets/Microsites/
Documents22/Accenture-Security-Call-to-Action-pdf#zoom=50

 29. OWASP (2015) Internet of things top 10 projects’. www.owasp.org/index.php/OWASP_
Internet_of_Things_Top_Ten_Project. Accessed Aug 2015

 30. IBM (2015) IBM point of view: internet of things security. Available: http://public.dhe.ibm.
com/common/ssi/ecm/ra/en/raw14382usen/RAW14382USEN.PDF

 31. FTC (2015) Careful connections. Available: https://www.ftc.gov/system/files/documents/
plain-language/pdf0199-carefulconnections-buildingsecurityinternetofthings.pdf

 32. Ettlinger M, Gordon K (2011) The importance and promise of American manufacturing, cen-
ter for American process [online]. Available: http://cdn.theatlantic.com/static/mt/assets/busi-
nessAmerican_Manufacturing%20.pdf. Accessed 29 Jan 2014

 33. Lehtihet A, Wilson D, Susman G (2010) Future of manufacturing in the U.S. [online].
Available: http://www.smeal.psu.edu/cmtoc/research/nist1fut.pdf. Accessed 29 Jan 2014

 34. Dumitrache I, Caramihai SI (2010) The intelligent manufacturing paradigm in knowledge
society. In: Knowledge management, InTech, pp 36–56, ISBN 978-953-7619-94-7

1 Security Challenges in the IoT Paradigm for Enterprise Information Systems

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/enet/20090128-speech-iot-conference-lux_en.pdf
ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/enet/20090128-speech-iot-conference-lux_en.pdf
http://www.gartner.com/document/3100227?ref=lib
http://www.gartner.com/document/3100227?ref=lib
http://www.gartner.com/newsroom/id/2905717
http://www.gartner.com/newsroom/id/2905717
http://www.tcs.com/offerings/it_infrastructure/Pages/default.aspx
http://smartcities.gov.in/writereaddata/SmartCityGuidelines.pdf
http://smartcities.gov.in/writereaddata/SmartCityGuidelines.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data
https://downloads.cloudsecurityalliance.org/whitepapers/Security_Guidance_for_Early_Adopters_of_the_Internet_of_Things.pdf
https://downloads.cloudsecurityalliance.org/whitepapers/Security_Guidance_for_Early_Adopters_of_the_Internet_of_Things.pdf
https://support.apple.com/en-ap/HT202880
https://www.facebook.com/business/a/facebook-bluetooth-beacons
https://www.facebook.com/business/a/facebook-bluetooth-beacons
http://www.sdmmag.com/articles/91564-the-internet-of-security-things
http://www.sdmmag.com/articles/91564-the-internet-of-security-things
https://www.accenture.com/t20160122T014933__w__/usen/_acnmedia/Accenture/Conversion-Assets/Microsites/Documents22/Accenture-Security-Call-to-Action-pdf#zoom=50
https://www.accenture.com/t20160122T014933__w__/usen/_acnmedia/Accenture/Conversion-Assets/Microsites/Documents22/Accenture-Security-Call-to-Action-pdf#zoom=50
https://www.accenture.com/t20160122T014933__w__/usen/_acnmedia/Accenture/Conversion-Assets/Microsites/Documents22/Accenture-Security-Call-to-Action-pdf#zoom=50
http://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project
http://public.dhe.ibm.com/common/ssi/ecm/ra/en/raw14382usen/RAW14382USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/ra/en/raw14382usen/RAW14382USEN.PDF
https://www.ftc.gov/system/files/documents/plain-language/pdf0199-carefulconnections-buildingsecurityinternetofthings.pdf
https://www.ftc.gov/system/files/documents/plain-language/pdf0199-carefulconnections-buildingsecurityinternetofthings.pdf
http://cdn.theatlantic.com/static/mt/assets/businessAmerican_Manufacturing .pdf
http://cdn.theatlantic.com/static/mt/assets/businessAmerican_Manufacturing .pdf
http://www.smeal.psu.edu/cmtoc/research/nist1fut.pdf

19© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_2

Chapter 2
Security and Privacy Across Connected
Environments

V. Vijayaraghavan and Rishav Agarwal

Abstract The devices in the Internet of Things (IoT) environment find applications
in a wide variety of fields, from smart homes and smart cities to smart wearables.
Earlier predictions had estimated a huge number of connected devices in use by the
year 2015, but it did not happen. A main reason refers to the ubiquity of IoT devices
that has its own set of unique challenges and problems which are not easy to sur-
mount. One core issue relates to the security and connectivity vulnerabilities of
these devices. With the number of IoT devices steadily on the rise and trends like
BYOD (Bring Your Own Device) catching up, the challenges faced by these devices
are steadily increasing. To understand the significance of issues relating to the con-
nectivity of IoT devices, we must learn about their unique characteristics and
requirements. However, notwithstanding the multiple vulnerabilities, unfortunately,
there is no silver bullet to suggest definitive solutions. Apart from securing the
devices, there is also an urgent need to update the laws that protect data ownership
rights and restrict access to personal data. This chapter is an effort to address privacy
and security challenges that IoT devices face. The chapter highlights novel solutions
that can be usefully employed to make these devices more secure. It discusses
device trust, policies and standards, data anonymization, lightweight authentication,
encryption, and Datagram Transport Layer Security (DTLS) techniques.

2.1 Introduction

The Internet of Things (IoT) refers to a network of interconnected “things” that have
processing capabilities. These “things” have the ability to transfer data over a net-
work without requiring human-to-human or human-to-computer interaction. A
“thing” can be an intelligent object from a smartphone, television, or vehicle to a

V. Vijayaraghavan (*)
Infosys Limited, Bangalore, India
e-mail: Vijayaraghavan_V01@infosys.com

R. Agarwal
Indian Institute of Technology, Guwahati, Assam, India

mailto:Vijayaraghavan_V01@infosys.com

20

door, window, or even people! In this context, anything that has the ability to process
and transfer data over a network can be a “thing.”

The use of IoT devices has been on a steep rising curve over the last few years,
with the number of IoT devices predicted to reach a figure of 24 million by the year
2020 [1]. Figure 2.1 shows a trend in the number of connected devices over the
years inspired by Ericsson Mobility Report 2016 [2]. The IoT sector has been grow-
ing at a mind-boggling pace for the past two decades, but it was not always this way.
Although, much work had been done to create a network of devices in the 1970s and
1980s, the Internet was still in its infancy. It was only during the 1990s that the idea
of ubiquitous computing, wearable devices, and connected environments began tak-
ing shape, laying the foundation for IoT. In the year 1994, Xerox EuroPARC’s Mik
Lamming and Mike Flynn introduced a wearable device called Forget-Me-Not [3].
This device was capable of communicating wirelessly and recording its interactions
with the environment around it. In the same year, Steve Mann a Canadian researcher
and inventor developed a wearable wireless webcam [4]. Kevin Ashton coined the
term “Internet of Things (IoT)” when he gave a presentation to P&G in 1999 [5].
Since then, with advancements in embedded systems and smartphone technology,
the idea of IoT started gaining popularity.

Since the start of the new millennia in 2000, more and more people started using
personal computers and mobile phones. As the number of people connected to the
Internet grew exponentially, so did the number of devices. Today, the devices con-
nected to the Internet comfortably exceed the number of people in the world. IoT
devices are ubiquitous, i.e., present everywhere. Most people may not realize, but
numerous smart “things” surround them.

Fig. 2.1 Growth of connected devices

V. Vijayaraghavan and R. Agarwal

21

Today, IoT devices find application in a wide variety of fields. Building and
home automation, smart cities, smart manufacturing, smart automotive, smart wear-
ables, and healthcare are some examples. The rise of the IoT in our daily lives has
generated a brand new wave of change for the coming future. Growth in the number
of smart objects has not only changed the way we live our lives but is also redefining
many sectors like business, manufacturing, etc.

This chapter is organized as follows. Section 2.1 introduces IoT, its evolution,
and significant applications. Section 2.2 deals with IoT security risks and its chal-
lenges and outlines the data security requirements for the IoT layers.
Recommendations for IoT data security, detailed in Section 2.3, discuss devices’
trust, policies, and standards. It also discusses lightweight authentication, encryp-
tion, and DTLS techniques. Sections 2.4 and 2.5 conclude the chapter and present
the future ahead.

2.2 Connected Environments’ Security and Privacy

In this section, various risks and challenges that plague the connected environments
are highlighted. It also details the data security requirements that need to be
satisfied.

2.2.1 Risks and Challenges

IoT devices are set to change the future for better; however, before that happens,
there is a need to address some serious issues that plague the rampant applications
and usage of these devices. Considering that IoT devices gather a lot of data about
its surroundings and the user, any security threat to these devices is a matter of grave
concern. What if sensitive data containing information related to user’s identity,
finance, health, or location is somehow stolen? This data may be invaluable to many
organizations, and if the user is lucky enough, it may just be used for advertise-
ments. Realistically though, they may be able to get their hands on enough data to
predict the health status of the user, and he/she may have to bear the burden of
increased insurance price or even policy cancellation! This is not just applicable to
individuals but also corporate organizations. Hackers can target networks with inad-
equate security within the workplace to steal sensitive information. With trends like
BYOD (Bring Your Own Device) catching up, data security risks at workplaces are
likely to rise even further. The year 2015 was predicted to be the year of IoT devices,
but it failed to have that kind of an impact, with security giants like Kaspersky term-
ing IoT as Internet of Crappy Things [6]. The five major challenges faced by IoT
devices are now highlighted below.

2 Security and Privacy Across Connected Environments

22

2.2.1.1 Device Hardware and Firmware Security

Most IoT devices are resource constrained in nature, i.e., they have limited compu-
tational abilities. Most of these devices come with minimalistic architecture, which
is just sufficient to fulfill the desired purpose. This approach, although makes
devices cheaper to manufacture, leaves out serious loopholes, which can be easily
exploited to make undesired use of these devices. Most of the IoT devices do not
have a proper authentication mechanism, and it can be easy to gain access to these
devices. All these factors make device firmware and hardware susceptible to secu-
rity threats and other risks. For example, if the device is misplaced, someone with
even basic technical knowledge may be able to gain access to data stored in the
device by tampering it.

2.2.1.2 Transport Layer Security

Another challenge with IoT devices is to do with the secure transfer of data. Most
devices do not have robust encryption techniques to protect sensitive data like loca-
tion, identity of the user, and other such details, which the device may be recording.

There have been cases where the data is transferred in clear text format. A
research paper by Wei Zhou and Selwyn Piramuthu [7] explains vulnerabilities in
communication between a fitbit device and its cloud server. It is suggested that the
log-in information containing the user password is sent to the website in clear text
format and stored in log files. No encryption is applied on the data being synced to
the server after log-in. The data is sent as plain HTTP instructions, which could eas-
ily be compromised. These limitations in transport layer security are prone to eaves-
dropping, man in middle, and determined brute-force attacks. Security firm
Bitdefender demonstrated deciphering the Bluetooth communication between an
android device and a smartwatch [8]. The hackers opted for persistent trial and error.
They tried multiple username and password combinations until they were able to
gain access to the device contents.

2.2.1.3 Weak Security of Data Stored on Cloud Servers

Most IoT devices store their data on cloud servers with whom they may communi-
cate directly or indirectly with the help of a gateway such as a smartphone. This
provides more points of attacks for hackers. Another serious risk that data on cloud
servers pose is the amount of personally identifiable information (PII) that they
contain. If not properly anonymized and encrypted, data from cloud servers may be
analyzed to reveal sensitive personal information. Highly skilled cyber criminals
may make use of distributed denial of service (DDoS) attacks, backdoor attacks,
SQL injection, etc. to sabotage the information stored on the cloud. All these risks
are so real that some organizations are protecting themselves by buying data breach
insurance, in case client data falls into the wrong hands.

V. Vijayaraghavan and R. Agarwal

23

2.2.1.4 Nonexistent Laws Regarding Data Ownership and Policy
Compliance

There is a gray area when it comes to legal policy compliance of IoT devices. This
is because there is not much awareness regarding the risks, which these devices pose
on the user, and there are not many laws and policies in place to protect the user in
cases of security lapse. There is no law to restrict data-hungry enterprises like
e-commerce sites, advertising networks, and insurance companies on the amount of
data that they can ethically collect. Some acts and policies like Fair Information
Practice Principles (FIPPs) and Health Insurance Portability and Accountability Act
(HIPAA) do exist which impose certain limit on the use of consumer data for mak-
ing decisions regarding insurance, credit, or recruitment. However, they have a very
limited effect in the IoT sphere. In addition, no clear laws govern the ownership
rights on the amount of data collected by these devices. Ownership rights vary from
company to company, and in many cases, the owner of a device is not necessarily
the owner of the data collected by it. There have been cases where companies have
tried to sell consumer data illegally.

2.2.1.5 Lack of Device Interoperability

Another grave challenge faced by IoT devices is the lack of device interoperability.
Because of this, devices in the Internet of Things environment cannot always “talk”
with each other, i.e., they are incapable of communicating with each other. This is
because different manufacturers use different standards, which do not allow such
devices to communicate. This causes a huge problem as it hinders the seamless
experience and limits the potential of these devices. There is a need for a unified
framework that can handle the “heterogeneity” of IoT devices and make connected
environments truly smart.

All the above factors have made it imperative to build device trust. To realize the
true power of connected environments, the above challenges need to be addressed
and resolved.

2.2.2 Data Security Requirements in the IoT

There are many challenges that currently plague IoT devices, as discussed already.
Most of these flaws are different in nature, and there is no silver bullet to take care
of all of them. Additionally, it is not just the device that must be secured; various
nodes through which the data is transmitted or stored also need to be secured. There
are many requirements that IoT security must fulfill to overcome these challenges.
However, before we get into details of security requirements, it is helpful to catego-
rize various security layers of these devices and study them in detail. IoT security
can be classified into four layers [9]:

2 Security and Privacy Across Connected Environments

24

• Device layer: It is the most basic level of security and deals with the robustness
of the device hardware and firmware in protection against attacks to preserve
data integrity.

• Transport layer: This layer deals with measures to make device communication
secure. Communication could be between different devices, between device and
gateway, or between device and cloud server.

• Cloud layer: This layer deals with algorithms and encryption techniques to make
data stored on the cloud safe from external attacks.

• Product and data management layer: This layer is very different from the other
three layers. It deals with concepts like Product Lifecycle Management (PLM),
policy compliance and data ownership, adherence to IoT security standards, etc.
This layer helps to ensure that the device is “future ready” and sticks to the con-
temporary security and legal standards.

A bottom-up approach needs to be followed while securing connected devices
beginning with the device layer. Currently, most of embedded devices are poorly
built and just focus on getting the job done. Considerable work has to be done to
strengthen authentication mechanism of these devices and provide integrity of
stored data. Manufacturers must make the device intelligent and robust enough to
handle the complexities of connected environments. Devices must be capable of
securing the data locally before they can transfer it. IoT devices do not just collect
data but also transfer it over networks for multiple applications. Hence, securing the
communication channel is very important. However, the requirements of transport
layer security for IoT devices are a little different from traditional devices, as they
are limited by their resource-constrained nature. It requires the use of algorithms
that are lightweight and effective.

As mentioned before, cloud layer security is just one of the concerns. Cloud
service providers must uphold certain benchmark for security and make use of good
encryption algorithms and strong key management techniques. Data stored on cloud
servers must be properly de-identified to make sure that it is not of any use in case
of breach.

The topmost security layer is a vital cog in the wheel to obtain secure connected
environments. It deals with various device and data management practices, which
manufacturers, users, and policy makers might follow to bolster security in the con-
nected space. Manufacturers must have the entire product life cycle in mind and
must be willing to provide firmware updates to tackle the risks that outdated firm-
ware poses. There is an urgent need for stricter laws regarding data ownership rights
and legal policy compliance by companies. The risk associated with data collected
by IoT devices must be identified, and laws must be in place to help the device users
in case of crisis. In addition, there is a need for security standards that are univer-
sally accepted to alleviate the problem of device heterogeneity. The standards for
device communication must be carefully chosen, keeping in mind the security and
use of the devices.

V. Vijayaraghavan and R. Agarwal

25

2.3 Recommendations for IoT Data Security

It is clear that much work needs to be done to make connected devices platforms
secure and trustworthy. In the previous section, we outlined security requirements
in IoT ecosystem that must be implemented to alleviate the risks and challenges
faced by them. In this section, we provide recommendations to overcome these
challenges to secure the respective layers.

For complete security, all four layers need to be strengthened. The device layer
can be secured by building trust in the Internet of Things and making device firm-
ware and hardware more secure. We describe various lightweight encryption tech-
niques that can be employed to secure device data and strengthen the transport layer.
The cloud layer can be secured with the help of some data de-identification tech-
niques that could be implemented to make sure that sensitive data is protected. We
detail policies and guidelines that are recently proposed to protect privacy of con-
sumers from data-hungry organizations. We also suggest guidelines for future poli-
cies that can lay down restrictions on data use and put strong legislations on data
ownership rights. Lastly, we talk about developing security standards for IoT
devices that help to promote device interoperability and unleash the true potential of
IoT devices. These measures help to secure the product and data management layer,
hence achieving the target of complete security. Figure 2.2 shows different layers of
IoT security and highlights their various risks/challenges; it also lists the security
recommendations for each layer.

Fig. 2.2 Layers of IoT security

2 Security and Privacy Across Connected Environments

26

2.3.1 Securing Device Firmware and Hardware

The deficiencies in IoT security have been brought to light on many occasions, and
all these have a huge impact on trust between device and user. A pair of cybersecu-
rity engineers demonstrated one such vulnerability by successfully overriding the
controls of a Jeep Cherokee that was on a highway, with the driver inside it [10]. The
video in the link [10] presents the story. It is almost comical to see the driver lose
control over the car fans, music system, and eventually engine on a busy highway.
The hackers made use of the cellular connectivity of the car’s entertainment system
to breach its security.

Traditionally, most of the manufacturers have not put much effort in laying out a
systematic plan to provide end-to-end security of devices. They follow more of a
patchwork approach in tackling the loopholes, which can be easily exploited. For
example, in the above scenario, the car must have surely had various security
 measures in place to prevent attacks but only to secure individual components rather
than it being a planned, integrated security measure at a holistic level.

Events like these have made it essential for manufacturers to reconsider their
approach for securing connected systems. They must now think of security as an
integral part of the device right from the design stage and put together an end-to-end
solution that keeps the entire product life cycle in mind, right from development to
decommissioning of the device.

There are various methods to secure the device firmware. Right from securing
the boot of the device to software isolation in case of device breach and providing
regular updates to tackle new vulnerabilities. These methods, or rather steps, are
discussed below:

 1. Securing the boot of the device is essentially the root of trust [11] that is neces-
sarily expected from a device. Most of the IoT devices are embedded devices
that have a microcontroller. The creators must make sure that the software stored
on these microcontrollers is secure and impregnable. This can be done using
read-only memory (ROM) or flash memory to store the microcontroller soft-
ware. Once this software starts running when the device is switched on, it needs
to make sure that the device is not loading application software that has been
modified or tampered. This can be done by verifying the digital signature of the
application. Various self-certification and hierarchical certification techniques
are used to verify device signature. A tree with strong roots is difficult uproot.
Similarly, a device with trustworthy initial software provides a strong foundation
for securing the device.

 2. The next step is to code the software as fragments in such a way that all frag-
ments of the code are independently secure. This is called software isolation, and
it goes a long way in restricting the severity of breach in case of software com-
promise. It ensures that a breach in one part of the system is restricted to that part
only, hence making it difficult for a hacker to enter the system from one point of
attack and then take control of the entire device.

V. Vijayaraghavan and R. Agarwal

27

 3. Finally, to secure the firmware of the device, manufacturers must have the
Product Lifecycle Management in mind. An old firmware is prone to increas-
ingly new attacks, and to tackle this, manufacturers must regularly release
patches and updates as soon as new vulnerabilities are identified. They should
also employ secure packet management (SPM), which verifies the authenticity
of updates being patched with the help of signature keys. Regular security
reviews by using mechanisms like side-channel attack, defense verification, trust
boundary review, and fault injection could be employed to test the devices.
Figure 2.3 shows the various stages of Product Lifecycle Management to
consider.

 4. After securing the device firmware, it is now essential to secure the device from
physical attacks, i.e., securing the device hardware. Devices in connected envi-
ronments are so widespread and ubiquitous that there can be numerous points of
entries for an attacker, and it becomes very difficult to ensure the physical secu-
rity of the device. However, the security of the device should be so strong that the
hackers cannot access sensitive data from the tampered devices. Hackers make
use of various reverse engineering techniques like de-packaging of chip, micro-
probing, layout reconstruction, etc. to tamper the device. Methods like remote
attestation and Trusted Platform Modules (TPM) are effective to tackle such
problems.

 5. Remote attestation is a technique by which a remote server can determine if a con-
nected device can be trusted or not. It checks for the integrity of hardware and

Fig. 2.3 Product lifecycle management

2 Security and Privacy Across Connected Environments

28

software of the connected client. The manufacturers embed credentials in the
device during its development, and this credential essentially is the identity of the
device in the server. The server can then request the connected device to confirm
its identity from time to time to check and ensure that the device is not tampered.

 6. TPM (Trusted Platform Module) is a microcontroller that authenticates the hardware
of host. It could be thought of as the hardware counterpart of remote attestation. It
checks if the host is authenticated (correct identity) and attested (trustworthy).

The methods and the solutions detailed above can certainly help to secure device
and build trust between the device and the user. Some of them are inspired from a report
by Wind Company [12], which details many more such strategies for end-to- end secu-
rity of IoT devices. However, there is no silver bullet to tackle all vulnerabilities. The
above suggestions should be kept in mind and implemented as per the requirements of
the devices. Manufacturers need to make sure that they not only just create a list of
security solutions that they want in their device and implement them individually but
also interweave these solutions to create an integrated security solution.

2.3.2 Securing the Transport Layer

Wearable smart devices and other IoT devices collect a lot of sensitive information.
If the encryption on the device is not strong enough, there is a risk of personal infor-
mation getting into the wrong hands. Also, if the transport layer security is weak,
then hackers can easily intercept information packets. Securing the transport layer
means securing device communication. This is done by encrypting the channels so
that interceptors may not able to make sense of the message in transit. Only the end
devices must have the capability of decoding messages. As mentioned earlier, most
of the IoT devices are made with bare minimum architecture, and this is why most
of these devices have low computational power and cannot support complex encryp-
tion techniques. Designing lightweight cryptographic techniques entails finding the
optimum trade-off between security, cost, and performance.

In this section, we discuss some lightweight encryption techniques that could be
implemented to strengthen the transport layer security.

 1. Hummingbird technique [13]: It was motivated by the design of enigma machine
and was originally created by Engels, Schweitzer, and Smith. It was developed
with constrained devices in mind and uses a hybrid structure of block and stream
ciphers. Other lightweight algorithms use either one of the above two mentioned
cipher structures. The hybrid structure reduces the block size, hence reducing
power consumption and improving performance. The encryption/decryption
process is inspired from the enigma machine, which used rotors for decoding.
Similarly, Hummingbird contains four small block ciphers that are virtual equiv-
alents of the rotor machine, which continuously change their internal states in a
random way. The research paper [13] provides an in-depth security analysis of
Hummingbird and the protection it offers against attacks like linear and differen-

V. Vijayaraghavan and R. Agarwal

29

tial cryptanalysis. A better version of this algorithm, the Hummingbird 2, has
also been covered in detail by Engels D. et al. [14]. In this new algorithm, the
number of internal states has been increased to 128 bits. Hummingbird algorithm
is well suited for devices like RFID tags and wireless sensor nodes.

 2. Scalable encryption algorithm (SEA) for small, embedded applications [15]: As
the name suggests, this algorithm is scalable with respect to text, key, and pro-
cessor size as it takes these specifications as a parameter. It is a low-cost solution,
targeted at processors with limited instruction sets. The algorithm is denoted as
SEAn,b where n is the key size and b is the processor (word) size. This makes the
lightweight solution good for any type of processors. Its simplistic implementa-
tion and adaptability make it a good choice for a wide array of applications. With
concepts like smart homes and buildings gaining popularity, even small devices
like switches and bulbs are now connected to a network. The SEA ticks all the
right boxes for the requirements of such devices. It makes use of a limited set of
elementary operations like bitwise XOR, AND, OR, and Word Rotation, to
achieve its purpose. The research paper by Standaert et al. [15] provides an in-
depth security and performance analysis and outlines its effectiveness against
attacks like linear and differential cryptanalysis, side attacks, square attacks, and
interpolation attacks. This algorithm is capable of performing encryption/decryp-
tion in a few milliseconds using minimum memory requirements.

 3. CryptoCop [16]: It is a lightweight and energy-efficient algorithm for wearable
smart devices. From fitness trackers to smart watches, many options are avail-
able for the users. Since these devices are worn by the users and most of them
have GPS and tracking capabilities, the data stored on these devices can reveal a
lot about the user. Hence, it is essential to have good encryption of the device
data while keeping in mind the energy and resource consumption. Most algo-
rithms use asymmetric encryption, which is computationally expensive and con-
sumes a lot of energy. In addition, most wearable devices use Bluetooth Low
Energy (BLE) for communication, which has typically small packet size.
CryptoCop uses symmetric algorithm, which is not just computationally less
demanding but also uses smaller block sizes. The algorithm uses Advanced
Encryption Standard (AES) in counter mode and uploads the AES keying mate-
rial to the device only when it is charging. Hence, it is clear that this algorithm is
optimized for wearable devices. The research paper [16] demonstrates its feasi-
bility with real hardware on an electrocardiogram sensor. It is also resistant to
eavesdropping and surveillance attacks.

The future is built around sensor networks. From the sensors that regulate our room
temperature to the sensors that control room lighting and ambience, the functional-
ities are facilitated by a network of sensors. However, if a third party is able to
control or even access the data of these sensors, it could lead to serious privacy
violations. SPINS [17] which is security protocols for sensor networks is an inter-
esting solution to the problem. Like other IoT devices, sensor networks do not have
hardware capable of performing asymmetric encryption techniques. A sensor net-
work also has an added challenge of broadcasting secure data to each node of the
network that is communicated using radio frequency (RF). These problems are

2 Security and Privacy Across Connected Environments

30

addressed by the two blocks of SPINS: SNEP and μTESLA. SNEP takes care of
authentication and data freshness, whereas μTESLA provides authenticated broad-
casts in resource-constrained devices. The research paper [17] provides an in-depth
performance analysis of SPINS and demonstrates it on a prototype sensor network
with low-power CPUs.

A very improtant application of IoT is the healthcare sector. Wearable medical
devices (WMDs) such as heart rate and blood pressure monitors are becoming
increasingly common. Apart from these devices, hospitals and clinics are also get-
ting smarter through the application of connected environments to monitor the
patients in real time, store patient information, and respond to emergencies. All
these have tremendously improved the quality of healthcare services and helped in
providing hassle-free services to the patients. Needless to say, protection of privacy
and confidentiality of patients is the topmost priority as medical data is very per-
sonal. The elliptic curve cryptography (ECC) in healthcare devices is very effective.
We discuss now two separate algorithms for each of the cases of wearable health-
care devices and smart healthcare environments:

• Elliptic curve cryptography (ECC) with symmetric algorithm for wearable
healthcare devices [18]: Most of these devices consist of sensors which are
attached to the patient’s body and communicate using wireless networks like
wireless body area networks (WBANs). Figure 2.4 shows an example of WBAN
in healthcare. Elliptic curve cryptography is an asymmetric encryption tech-

Fig. 2.4 A WBAN example for healthcare

V. Vijayaraghavan and R. Agarwal

31

nique, and using 160-bit key, it provides the same security level as that of an RSA
system with 1024-bit key offers [18]. Symmetric algorithm is used to encrypt/
decrypt medical data and ECC for managing keying information. Hence, the
advantages of symmetric and asymmetric encryption techniques are combined to
alleviate the security issues of WBANs.

• RFID authentication schemes in healthcare environment using elliptic curve
cryptography [19]: Most connected healthcare environments make use of RFID
for wireless communication. RFID authentication is one of the critical steps to
ensure secure communications in the RFID system. ECC provides good security
even though it uses smaller key size than traditional systems making it a natural
choice for resource-starved RFID devices. The paper [19] details its working and
compares various lightweight and heavyweight implementations of ECC.

Security can be added to different layers of a protocol stack. To achieve end-to-
end security, some devices delegate the application layer security to transport layer
security. One of such techniques available is lightweight Datagram Transport Layer
Security (DTLS) implementation in CoAP-based IoT [20]. Traditionally, DTLS
techniques are heavy and not suitable for use in resource-constrained devices.
However, this technique provides a lightweight implementation of DTLS, which is
bound with Constrained Application Protocol (CoAP). It makes use of pre-shared
key (PSK)-based implementation of DTLS technique to make it suitable for IoT
application. The research paper [20] also demonstrates the application of this proce-
dure in home automation to control lights, temperature, and humidity sensors.

Apart from algorithms implemented on the device, we can also improve the
transport layer by distributing the encryption process between device and gateway.
The research paper [21] sheds light on this approach. IoT devices that are resource
constrained, i.e., devices with low processing power, memory, and battery life are
termed as Class-0 IoT devices. It aims at distributing the security scheme by imple-
menting low processing encryption on the device, whereas resource-hungry pro-
cesses are delegated to the gateway. The gateway has sufficient resources to perform
transport layer security (TLS) techniques to secure the device. This is also demon-
strated in the paper [21] by implementing Advanced Encryption Standard (AES) on
device to gateway layer.

In this section, we looked at some of the lightweight encryption algorithms avail-
able to secure IoT devices. A study reported in [22] provides literature survey on
various lightweight encryption algorithms; it also performs in-depth comparisons.
Algorithms can thus be chosen based on the device requirements.

2.3.3 Cloud Layer Security and Data De-identification

Many cloud servers have very weak encryption standards. Even if encryption is
available, cloud service providers and architects handle the encryption keys. Various
steps could be taken to limit the data stored on public cloud servers and also to

2 Security and Privacy Across Connected Environments

32

encrypt it. Developers of device must ensure that all the data being stored is prop-
erly de-identified beforehand. Data, if improperly de-identified, has a risk of
re-identification.

Attribute-based encryption improves cloud layer security by securing the data
stored on cloud servers. A third-party auditor could be used to check cloud servers’
reliability. In addition, we discuss a few techniques that can be used to de- anonymize
the data stored on cloud servers, as follows:

 1. The use of attribute-based encryption (ABE) for fine-grained access control is a
popular technique for securing cloud-based servers. The papers [23, 24] detail
two different types of approaches of ABE. The first one uses key policy attribute-
based encryption (KP-ABE), while the second one uses cipher text policy
attribute- based encryption (CP-ABE) along with hierarchical identity-based
encryption (HIBE) system. In both the methods, ABE is followed by proxy re-
encryption and lazy re-encryption. Here the users are given access control on
their own data. High performance, scalability, and fine-grained access control
are some of the salient features of these techniques.

 2. A novel way to check the cloud service provider’s reliably is to introduce a third-
party auditor (TPA) that can audit the data stored in cloud server. In most cases,
user is not well equipped to understand the difference in security provided by
various servers. The concept of public auditability allows the user to outsource
this job to a third party to determine the level of security. The report generated by
TPA could be used by the user to identify the risks of the cloud server. It also
helps the cloud service provider to identify vulnerabilities and fix them. As per
the method provided in the paper [25] by Wang et al., the TPA does not even
need to request for the local copy of the data. It uses homomorphic authenticator
to achieve this. There could be concerns regarding TPA learning about the data
stored and misusing it. This can be avoided by using the homomorphic authenti-
cator with random masking. The research paper [25] also lists various require-
ments that are expected from the TPA and provides a detailed performance
review of this technique.

 3. As outlined earlier, personal data stored on the cloud layer run into the risk of
being identified. Data de-identification techniques are employed before sending
data to the cloud. They can be very useful in protecting sensitive user data like
medical and location data. The relevant algorithm must be efficient to identify
and omit some keywords that are frequently used. For example, in case of medi-
cal data, information such as name of the patient, date of birth, etc. must be
identified and omitted or hidden. For devices, which store information related to
healthcare, a type of k-anonymity algorithm called Optimal Lattice Anonymization
(OLA) [26] works efficiently. For location-based services, [27] provides an opti-
mal k-anonymity algorithm that makes use of grid maps and entropy. Figure 2.5
shows an example of k-anonymity technique.

V. Vijayaraghavan and R. Agarwal

33

2.3.4 Policies and Legislation

IoT devices sense, store, and transfer a huge amount of data. Taken together, the
range of information collected could easily be in the petabyte range. Analysis per-
formed on such a big data set could reveal many interesting things; and the results
could be used by companies to provide better services to consumers, by the govern-
ments to get a better understanding of its populace, or by e-commerce sites to under-
stand consumer preferences and display better advertisements. For example, data
generated from sensors on a smart highway or smart cars could be analyzed to
reveal traffic congestion patterns, peak traffic hours, and other such factors. These
data could be used to control the traffic better and help in traffic management.
However, the matter of concern is the amount of data collected and accessibility to
this data. A lot of data collected by IoT devices are personal and could be analyzed
to decode behavioral, mental, and physical aspects of a person. It could also be used
to know about people’s interest, their location, or their schedule. All this could lead
to borderline infringement of user privacy. The worrying part is that there are no
rules and legislations that enforce guidelines on how much data can be collected,
what legal measures can be taken in case of privacy violation, or even draw clear
lines on who owns the data collected by these devices.

Though aforementioned organizations such as the FIPPs and HIPAA do exist,
their regulations have not been updated to deal with the issues that wide-scale use
of IoT technology has opened up. Most IoT device manufacturers are not covered
under these acts and are not liable or answerable in case of data breach that breaks
compliance. The importance of formulating strong legislations for these devices has
only recently begun that is now catching attention. In January 2015, the Federal
Trade Commission (FTC) published a staff report on privacy and security in con-
nected environments [28]. Later, in January 2016, it also issued a report titled, Big

Fig. 2.5 K-anonymity technique example

2 Security and Privacy Across Connected Environments

34

Data: A Tool for Inclusion or Exclusion? [29]. It was aimed at big data companies
that collect user data in various forms; it attempted to educate them on the poten-
tially applicable laws that must be respected when they make use of user data. Also,
in January 2015, the Food and Drug Administration (FDA) released a document
called, General Wellness: Policy for Low Risk Devices [30]. It outlined the FDA’s
policy regarding devices that made “general wellness” claims such as fitness track-
ers, heart rate trackers, etc. It also discussed recommendations for manufacturers to
better manage data security and privacy risks of these devices.

All these measures provide a good sign that government organizations finally
understand the need to update their laws regarding user data privacy. However, this
is just the starting point, and more needs to be done to create clear rules that users
can rely upon. There is an urgent need to upgrade policies related to data collection
and data ownership:

 1. Governments need to come in terms with the new kinds of threats posed to secu-
rity by the use of wearables. Strong regulations and policies must be put in place
to force device manufacturers to uphold certain standards of security to protect
user information. Also, these policies must be strong enough to embrace manu-
facturers and cloud service providers responsible. In cases where insufficient
security measures lead to data breach, they must not be able to get away just by
shifting blames.

 2. Strong data ownership rights must be put in place, and the consumers must be
informed about what data is collected from the device and where and how it is
stored. The users must have the power to choose what data collected from them
are stored on the server, and they must be able to delete them according to their
convenience.

All these go a long way toward building trust in the IoT devices and IoT environ-
ment. Stricter policies ensure that personal data is not used in an unethical way.

2.3.5 IoT Standards and Device Interoperability

Most IoT devices today are manufactured as stand-alone units that are mostly inca-
pable of communicating with other IoT devices, specifically when the devices are
from different manufacturers. All these devices use their own coding schemes for
encryption and protocols for transferring data. Many devices relay information to
smartphones via gateways, which act as a medium of exchange that translates the
sensed data to a format that can be understood by the smartphone. However, these
gateways are also device and manufacturer specific and usually support limited
devices. This essentially means that the Internet of Things, which aims at connect-
ing various different “things” under a single network is, as of now, divided into
small network of objects that cannot talk to each other. This is a huge hindrance to
the ultimate objective what IoT tends to achieve.

V. Vijayaraghavan and R. Agarwal

35

Let us consider an example of smart homes. Suppose a person has an intelligent
smart home assistant installed that allows the use of voice input to control smart
lighting system and smart switches and can access the Internet using cellular con-
nection. Also, he has installed a smart television that can be accessed using an appli-
cation on mobile. In addition, he also owns a futuristic refrigerator with many useful
functionalities. Unfortunately, he has to access these devices separately as they do
not recognize each other. Now imagine if these devices are built on the same secu-
rity standards. It would open up an entirely new dimension in which the owner
could use these devices. For example, if he asks the smart assistant to locate the
nearest grocery store, it could stream the result on the smart TV screen and tell him
that he would soon run out of milk and eggs! This is one of the simplest examples
and can be enhanced further as more devices are added. The possibilities that open
up, as more and more devices become capable of interacting with each other, are
endless.

To address the problem of device heterogeneity, there is an urgent need for IoT
standards. Though IoT standards are still in the making, we focus our discussion on
some of the possible solutions:

• Heterogeneous devices can be connected using a hybrid framework that com-
bines the advantages of Cloud Radio Access Network (Cloud-RAN) and
software- defined radio (SDR) [31]. SDR-based radio units (SRUs) are capable of
communicating with devices that use different communication technologies.
These SRUs can act as gateways that can connect to multiple devices and com-
municate the information to a centralized server under the Cloud-RAN architec-
ture. Hence, only one SRU can be present locally to connect different devices,
and multiple SRUs can be connected using a common centralized server.
Figure 2.6 shows an example of Cloud-RAN architecture.

• It is a fact that most users may have no means to judge if a device upholds certain
standards. This is not the case for other consumer products. For example, indus-
trial products in India come with an ISI marking, which is a mark that certifies
that the product conforms to the standards set by the Bureau of Indian Standards
(BIS). Similarly, the International Organization of Standardization (ISO) is a
body that aims to promote international industrial and commercial standards.
However, there is no such organization for cybersecurity to certify whether prod-
ucts uphold security standards or not. IoT giants have already begun to realize
this, and some of them have started working together with the result being popu-
lar standards like ZigBee [32]. The research chapter [33] also provides an insight-
ful look at data security and privacy from an IoT perspective.

2 Security and Privacy Across Connected Environments

36

2.4 Conclusion

The IoT is thought of as a concept with immense potential and unlimited applica-
tions. While this is true for most part, there is still a long way to go before this goal
is truly realized. The biggest obstacle on this path is the security challenges sur-
rounding these devices.

Demonstrations about weak security in connected environments have made con-
sumers aware about the security hazards posed by these devices. Growing concerns
have made manufacturers take notice, and they have slowly begun to realize the
importance of putting privacy and security of their devices on top. This trend has
been reciprocated in the mind-set of law and policy makers. They have begun to
realize that the need of the hour is to protect the privacy of consumers. Similarly,
there is growing awareness regarding the issues of device heterogeneity and boons
of interoperability.

All of this provides a good sign that security in connected environments is on a
road to recovery. While there is no single framework that can be employed to fix all

Fig. 2.6 Example of SDR-based heterogeneous Cloud-RAN architecture

V. Vijayaraghavan and R. Agarwal

37

issues, this chapter highlights different techniques that can be taken inspiration
from. The best method to secure devices may depend on the purpose of the device,
the environment it is used in, and how much sensitive information it collects. If all
these factors are kept in mind, the ultimate goal of connecting all kinds of devices
to the Internet can be achieved, which will change our lifestyle for the better.

2.5 Future Direction

At present, we are still finding ways to secure connected platforms and build trust in
IoT devices. Manufacturers have to lay a lot more stress on Product Lifecycle
Management to constantly update device firmware and keep it protected against
vulnerabilities. Also, algorithms that are more lightweight need to be developed
specifically for implementation in IoT sphere, keeping in mind its unique require-
ments and wide range of applications. IoT protocols and standards need to be for-
mulated to bring all IoT devices under one big umbrella. Finally, it is also the
responsibility of the user to be aware of the threats that these devices pose to their
security and that of people around them. When consumers take their own security
seriously, manufacturers and governments will increase their efforts to make these
devices secure.

References

 1. Meola A (2016) What is the Internet of Things (IoT). http://www.businessinsider.com/what-
is-the-internet-of-things-definition-2016-8. Accessed Mar 2017

 2. Qureshi R (2016) Ericsson mobility report, June 2016. https://www.ericsson.com/res/
docs/2016/ericsson-mobility-report-2016.pdf. Accessed Mar 2017

 3. Lamming M, Flynn M (1994) “Forget-me-not” Intimate computing in support of human
memory, 94 International Symposium on next generation human interface, Technical Report
EPC- 1994- 103, 2–4 Feb 1994

 4. Media (2002) A brief history of wearable computing. www.media.mit.edu/wearables/lizzy/
timeline.html#1981b. Accessed Mar 2017

 5. Ashton K (2009) That ‘internet of things’ thing, 22 June 2009. http://www.rfidjournal.com/
articles/view?4986. Accessed Mar 2017

 6. Drozhzhin A (2015) Internet of crappy things, 19 Feb 2015, https://blog.kaspersky.com/inter-
net-of-crappy-things/7667/. Accessed March 2017

 7. Zhou W, Piramuthu S (2014) Security/privacy of wearable fitness tracking IoT devices. In: 9th
Iberian Conference on Information Systems and Technologies (CISTI), pp 1–5, 18–21 June
2014

 8. Arsene L (2014) Bitdefender research exposes security risks of android wearable devices,
12 Sept 2014. www.darkreading.com/partner-perspectives/bitdefender/bitdefender-research-
exposes-security-risks-of-android-wearable-devices-/a/d-id/1318005. Accessed Mar 2017

 9. Scully P (2016) Understanding IoT Security – Part 1 of 3: IoT security architecture on the
device and communication layers, 29 Nov 2016. https://iot-analytics.com/understanding-iot-
security-part-1-iot-security-architecture/. Accessed Mar 2017

2 Security and Privacy Across Connected Environments

http://www.businessinsider.com/what-is-the-internet-of-things-definition-2016-8
http://www.businessinsider.com/what-is-the-internet-of-things-definition-2016-8
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
http://www.media.mit.edu/wearables/lizzy/timeline.html#1981b
http://www.media.mit.edu/wearables/lizzy/timeline.html#1981b
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
https://blog.kaspersky.com/internet-of-crappy-things/7667/
https://blog.kaspersky.com/internet-of-crappy-things/7667/
http://www.darkreading.com/partner-perspectives/bitdefender/bitdefender-research-exposes-security-risks-of-android-wearable-devices-/a/d-id/1318005
http://www.darkreading.com/partner-perspectives/bitdefender/bitdefender-research-exposes-security-risks-of-android-wearable-devices-/a/d-id/1318005
https://iot-analytics.com/understanding-iot-security-part-1-iot-security-architecture/
https://iot-analytics.com/understanding-iot-security-part-1-iot-security-architecture/

38

 10. Greenberg A (2015) Hackers remotely kill a jeep on the highway – with me in it, 21 July 2015.
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/. Accessed Mar 2017

 11. Loisel Y, di Vito S (2015) Securing the IoT 2 – secure boot as a root of trust. http://www.
embedded.com/design/safety-and-security/4438300/Securing-the-IoT--Part-2---Secure-boot-
as-rooot-of-trust-. Accessed Mar 2017

 12. White Paper (2017) Building trust in the internet of things, (2017), Wind Report
 13. Engels D, Fan X, Gong G, Hu H, Smith EM (2010) Hummingbird: ultra-lightweight cryptog-

raphy for resource-constrained devices. In: Sion R et al (eds) Financial cryptography and data
security. FC 2010. Lecture notes in computer science, vol 6054. Springer, Berlin/Heidelberg

 14. Engels D, Saarinen MJO, Schweitzer P, Smith EM (2011) The hummingbird-2 lightweight
authenticated encryption algorithm. In: Juels A, Paar C (eds) RFID. Security and privacy.
RFIDSec 2011. Lecture notes in computer science, vol 7055. Springer, Berlin/Heidelberg

 15. Standaert FX, Piret G, Gershenfeld N, Quisquater JJ (2006) SEA: a scalable encryption algo-
rithm for small embedded applications. In: Domingo-Ferrer J, Posegga J, Schreckling D (eds)
Smart card research and advanced applications. CARDIS 2006. Lecture notes in computer
science, vol 3928. Springer, Berlin/Heidelberg

 16. Snader R, Kravets R, Harris AF (2016) CryptoCop: lightweight, energy-efficient encryption
and privacy for wearable devices. In WearSys 2016 – Proceedings of the 2016 Workshop on
Wearable Systems and Applications, co-locatedssssss with MobiSys 2016, pp 7–12. [2935647]
Association for Computing Machinery, Inc. doi:https://doi.org/10.1145/2935643.2935647,
25–30 June 2016

 17. Perrig A, Szewczyk R, Tygar J et al (2002) SPINS: security protocols for sensor networks.
ACM J Wirel Netw 8(5):521–534

 18. Young Sil Lee, Esko Alasaarela, Hoon Jae Lee (2014) An efficient scheme using elliptic
curve cryptography (ECC) with symmetric algorithm for healthcare system. Int J Secur Appl
8(3):63–70

 19. He D, Zeadally S (2015) An analysis of RFID authentication schemes for internet of things in
healthcare environment using elliptic curve cryptography. IEEE Internet Things J 2(1):72–83

 20. Lakkundi V, Singh K (2014) Lightweight DTLS implementation in CoAP-based Internet of
Things, vol. 00, no, pp 7–11. In: Advanced Computing and Communications (ADCOM), 2014
20th annual international conference, 19–22 Sept 2014

 21. King J, Awad AI (2016) A distributed security mechanism for resource-constrained IoT
devices. Informatica Int J Comput Inform (Slovenia) 40(1):133–143

 22. Eisenbarth T, Kumar S, Paar C, Poschmann A, Uhsadel L (2007) A survey of lightweight-
cryptography implementations. IEEE Des Test 24(6):522–533

 23. Yu S, Wang C, Ren K, Lou W (2010) Achieving secure, scalable, and fine-grained access con-
trol in cloud computing. In: Proceedings of IEEE INFOCOM’10, San Diego, CA, USA, March
2010

 24. Wang G, Liu Q, Wu J (2010) Hierarchical attribute-based encryption for fine-grained access
control in cloud storage services. In: Proceedings of the ACM conference Computer and
Communications Security (ACM CCS), Chicago, IL, 4–8 Oct 2010

 25. Wang C, Wang Q, Ren K, Lou W (2010) Privacy-preserving public auditing for storage secu-
rity in cloud computing. In: INFOCOM’10 proceedings of the 29th conference on information
communications, pp 525–533, 14–19 Mar 2010

 26. El Emam K, Dankar FK, Issa R, Jonker E, Amyot D et al (2009) A globally optimal k- anonymity
method for the de-identification of health data. J Am Med Inform Assoc 16:670–682

 27. Felix JGC (2015) Anonymity in preference-aware location-based services without third
trusted-party. In: 12th EAI international conference mobile and ubiquitous systems, Coimbra,
Portugal

 28. FTC (2015) Internet of things, FTC Staff report, January 2015
 29. FTC (2016) A tool for inclusion or exclusion, (2016), FTC report Big Data, January 2016
 30. General Wellness: Policy for Low Risk Devices (2016) FDA document, July 2016

V. Vijayaraghavan and R. Agarwal

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.embedded.com/design/safety-and-security/4438300/Securing-the-IoT--Part-2---Secure-boot-as-rooot-of-trust
http://www.embedded.com/design/safety-and-security/4438300/Securing-the-IoT--Part-2---Secure-boot-as-rooot-of-trust
http://www.embedded.com/design/safety-and-security/4438300/Securing-the-IoT--Part-2---Secure-boot-as-rooot-of-trust
https://doi.org/10.1145/2935643.2935647

39

 31. ERCIM News 101 (2015) Special theme: the internet of things and the web of things,
April 2015

 32. Zigbee (2017) The ZigBee Alliance. http://www.zigbee.org/zigbeealliance/. Accessed
Mar 2017

 33. Varadharajan V et al (2016) Data security and privacy in the internet of things (iot) envi-
ronment. In: Mahmood Z (ed) Connectivity frameworks for smart devices. Springer, Cham,
pp 261–281

2 Security and Privacy Across Connected Environments

http://www.zigbee.org/zigbeealliance/

41© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_3

Chapter 3
Big Data Challenges for the Internet of Things
(IoT) Paradigm

Pornpit Wongthongtham, Jaswinder Kaur, Vidyasagar Potdar,
and Abhishek Das

Abstract Millions of devices equipped with sensors are connected together to
communicate with each other in order to collect and exchange data. The phenome-
non of daily life objects that are interconnected through a worldwide network is
known as the Internet of Things (IoT) or Internet of Objects. These sensors from a
large number of devices or objects simultaneously and continuingly generate a huge
amount of data, often referred to as Big Data. Handling this vast volume, and differ-
ent varieties, of data imposes significant challenges when time, resources, and pro-
cessing capabilities are constrained. Hence, Big Data analytics become even more
challenging for data collected via the IoT. In this chapter, we discuss the challenges
pertaining to Big Data in IoT; these challenges are associated with data manage-
ment, data processing, unstructured data analytics, data visualization, interoperabil-
ity, data semantics, scalability, data fusion, data integration, data quality, and data
discovery. We present these challenges along with relevant solutions.

3.1 Introduction

The Internet of Things (IoT) paradigm asserts that each individual object in everyday
life can be equipped with sensors which can acquire useful information about the
objects and will be on the network in one form or another [1]. Over the past decade,
an increasing number of objects (e.g., smart devices, cars, intelligent roadways,
pacemakers and other personal health monitoring units, refrigerator, cattle, smart
billboards, etc.) have been connected to the Internet, collecting and exchanging data
without requiring human-to-human or human-to-computer interaction. This network
infrastructure enables anything and anyone to be connected anytime and anywhere.

P. Wongthongtham (*) • J. Kaur • V. Potdar
Curtin University, Perth, Australia
e-mail: p.wongthongtham@curtin.edu.au

A. Das
Tripura University (A Central University), Agartala, India

mailto:p.wongthongtham@curtin.edu.au

42

At present, there are about 1.5 billion Internet-enabled PCs and over 1 billion
Internet-enabled mobile phones [2], and it is expected that 50 to 100 billion smart
devices will be connected to the Internet by 2020 [3]. According to IDC, the world-
wide IoT market spend will increase from $592 billion in 2014 to $1.3 trillion in
2019 [4]. Sensors from these devices will simultaneously generate a huge amount
of data in an automated way. In the future, 40% of all the data in the world will be
generated by machine-to-machine communication [4].

We are all constrained by time, limited resources, and capability, making it
impossible to manually handle this vast amount of data. This data continues to
increase at a rapid pace because embedded sensor devices have steadily been
increasing with advances in technology. It is the greatest force driving Big Data
analytics. A comprehensive data analytics model or framework is needed to analyze
this enormous amount of sophisticated data.

There are three key IoT elements which enable seamless and ubiquitous comput-
ing: (a) hardware, comprising sensors, actuators, and embedded hardware; (b) mid-
dleware, on-demand storage and computing tools for data analytics; and (c)
presentation, perception of visualization and interpretation tools which can be
extensively accessed on different platforms and adapted for different applications.
IoT middleware solutions are gaining more attention in the marketplace as they
simplify the sensor data by performing data binding, filtering, fusing, reasoning,
etc. In addition, the variety of IoT applications that are built on top of this middle-
ware poses further challenges. The IoT middleware consists of a mechanism to
combine high-tech infrastructure with a service-oriented architecture and sensor
networks to provide access to discordant sensor sources in a disposition- independent
manner [5]. The IoT middleware needs to assist users to retrieve the data streams
required for their application. It is evident that data analytics will be critical for IoT
in this Big Data era. In this chapter, we discuss the challenges associated with Big
Data in IoT.

The rest of this chapter is organized as follows. Sections 3.2 and 3.3 introduce
IoT and Big Data, respectively. Sections 3.4, 3.5 and 3.6 explain the challenges fac-
ing IoT Big Data. The challenges include data management issues presented in Sect.
3.4, data analytics challenges presented in Sect. 3.5, and semantics challenges pre-
sented in Sect. 3.6. Section 3.7 concludes the chapter.

3.2 Internet of Things

The Internet is the most widely adopted technology, which has radically changed
the way people communicate with each other. The Internet as we know it is a large
network of interconnected servers that host a huge amount of valuable information.
However, the Internet is changing rapidly, and it now connects machines, equip-
ment, sensors, actuators, home appliances, surveillance cameras, and numerous
other objects in our environment. This communication network does not require
constant human intervention, and this new phenomenon of an interconnected world

P. Wongthongtham et al.

43

where everything is connected is referred to as IoT [6]. According to [7], the number
of physical things that are now connected to the Internet is greater than the world’s
population. It is estimated that 25 billion devices were connected to the Internet in
2015, and this number is rising at an alarming rate. It is estimated that by 2020 we
will have at least 50 billion devices feeding data to the Internet via IoT [8].

3.2.1 Definitions of the Internet of Things (IoT)

The IoT is syntactically comprised of two terms. The first term, “Internet,” focuses
on the vision which is network oriented; the second term, “Things,” refers to the
“objects” which are generic and are integrated to form a common framework.
Hence, IoT is defined as “a worldwide network of interconnected objects uniquely
addressable, based on standard communication protocols” [9]. Each and every thing
connected to the Internet has a unique identifier such as MAC that addresses and
communicates using the TCP/IP protocol. Radio-frequency identifiers (RFID) is a
good example of the real power of IoT [6].

These “things” or objects interact with each other in order to accomplish a com-
mon goal. For example, smart electric cars such as Tesla have 18 sensors that work
together automatically. This car can open the doors of a garage before the person
arrives home; it can control the temperature, and it provides a framework whereby
the user can design his/her own app and use this app to check the battery status and
control the speed of the car from anywhere.

IoT is also known as the Internet of Objects; these are daily life objects that are
interconnected through a network and possess ubiquitous intelligence [10]. IoT
increases the Internet’s ubiquity, because it integrates the objects so that they can
communicate with other devices/objects and with humans. Yoo, Henfridsson et al.
[11] define IoT as the combination of components which are both physical and digi-
tal. This combination results in the development of new products and creates inno-
vative business models. Wortmann and Fluchter [12] mentioned that in IoT, physical
things are combined with IT in the form of hardware and software, thereby improv-
ing the physical function of the associated things by means of additional IT-based
services. With the combined IT-based services, the functionality of such things can
be accessed locally as well as globally via the Internet. For example, home automa-
tion can convert a standard home to a smart home by using IoT devices. In a smart
home, the homeowner can switch an air conditioner on or off before arriving home
or switch off the lights after leaving home. The owner can also receive notification
that an unauthorized person has entered the house and police can be called auto-
matically. Moreover, a light bulb can act as a smart security system. The physical
function of a bulb is to illuminate a specific area, but this physical function of a bulb
can be enhanced with IoT. With IoT capability, this bulb can be used to detect the
presence of a human being and can work as a security system which detects the
intruder, turns on the flashing mode, and sends a message to the homeowner’s
smartphone.

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

44

According to Internet Telecommunication, IoT is “a global infrastructure for the
information society, enabling advanced services by interconnecting things based on
existing and evolving, interoperable information and communication technologies”
[12]. Another paradigm of IoT is Cyber-Physical Systems (CPSs) as mentioned by [13].

3.2.2 Cyber-Physical Systems

Cyber-Physical Systems (CPSs) are new generation systems which integrate both
physical and computational capabilities and can communicate with human beings
by using various modalities [14]. These are engineered systems which are devel-
oped from the synergy of both physical and cyber components. CPS can be applied
in medical services, robotics, avionics, etc. [15]. Future innovative technical devel-
opments are possible with CPS because CPSs have the ability to communicate with
the physical world by means of computation [14].

Lee [16] mentioned that in CPS computational processes, network processes and
physical processes are integrated. Physical processes are controlled and monitored
by the embedded computers and networks by using the feedback loops, whereby
computations are affected by the physical processes and vice versa.

CPS needs both the computing and networking technologies to capture the phys-
ical dynamics as well as the information. CPS requires the interaction between the
computing, physical systems, control systems, and network systems in order to
establish the interaction among them. CPS requires new design technologies. In
CPS, software is embedded in physical devices whose principal goal is not only
computation but also to combine computation with physical processes [17].
Autopilots are a good example of CPS. Autopilots were initially used in missiles but
were later adopted in aircrafts. Autopilots include sensors and processors that are
used to assist the human operator in controlling the aircraft. The airplane has high
nonlinear dynamics, so it requires more complex and advanced technologies such as
neural network and fuzzy logic, which ensures smooth trajectory navigation [18].

Nowadays, the terms “IoT” and “CPSs” are used interchangeably, although there
are several differences between them. According to [17], CPSs and the IoT are
almost similar because both use the same architecture. However, a CPS has several
characteristics that distinguish it from IoT:

• In a CPS, every physical device has cyber capability. Every device has embedded
software and system resources such as network bandwidth, and each device has
limited system resources.

• CPSs require a greater integration of computation and physical processes com-
pared to the IoT.

• CPSs are distributed systems which are networked by means of various network
types such as wireless network, wired network, Bluetooth, GSM, and others.

• In a CPS, every component has different spatial and time granularity. Spatiality
and time capabilities are the strictest constraints of CPS.

P. Wongthongtham et al.

45

• A CPS requires very high degree of automation. For this purpose, feedback tech-
nologies are used in these systems. The advanced feedback technologies estab-
lish easy interaction between man and machine.

• Because they are complex, large-scale systems, CPSs are reliable and secure and
have adaptive capabilities.

3.2.3 IoT Architecture

Said and Masud [6] suggest two main architectures for IoT: a three-layered archi-
tecture and a five-layered architecture. Other than these, several special-purpose
architectures tailored for specific contexts are also found in the literature.

3.2.3.1 Three-Layered Architecture

The earliest proposed architecture for IoT was a three-layered architecture compris-
ing a perception layer, network layer, and application layer.

The perception layer is used to identify objects in the IoT system [19]. This layer
collects information about every object, and for this purpose, the perception layer
uses the data gathered from RFID tags, cameras, sensors, etc. Sensors collect infor-
mation about temperature, motion, acceleration, humidity in the air, etc., and the
perception layer passes this information to the network layer [20].

The network layer is the main component of the three-layered IoT architecture
[19]. The function of this layer is to securely transmit to the application layer the
information collected by the perception layer, using the software and hardware
instruments of the Internet. The medium of transmission could be wired or wireless
such as Wi-Fi, Bluetooth, 3G, etc. The network layer also contains the information
and management centers [20].

The application layer connects the IoT’s social needs with industrial technology.
It acts as a middle tier linking the industrial technology with the needs of humans.
The applications which can be developed by IoT are smart health, smart home,
smart farming, intelligent transportation, etc. [6].

3.2.3.2 Five-Layered Architecture

The three-layered architecture became inadequate with the rapid development of
IoT; hence, a five-layered architecture was developed [20]. Currently, a TCP/IP pro-
tocol stack is used to facilitate communication between network hosts. Billions of
devices are connected within the IoT system, creating a huge amount of traffic and
requiring larger storage space. Hence, the next-generation architecture must be able
to provide security and privacy for such a huge amount of data and should be scalable
and interoperable [19]. So, for this purpose, five-layered architecture was proposed.

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

46

The first layer is known as the business layer. The main function of this layer is
to define the IoT applications and is also responsible for the management of IoT
applications and services. The business layer ensures data privacy and creates busi-
ness models and graphs according to the information acquired from the application
layer. Based on these generated models and graphs, one can predict future actions
and goals.

The second layer is the application layer, the purpose of which is to determine
the types of applications in IoT. This layer develops intelligent, safe, and authenti-
cated applications of IoT. It works similarly to the application layer of the three-
layered architecture. IoT can develop many applications such as smart health, smart
home, smart farming, intelligent transportation, etc.

The third layer is the processing layer which handles the information collected
by the perception layer. This layer is responsible for storing and analyzing the infor-
mation. Functions of this layer are very critical and difficult, because the perception
layer collects huge amounts of data about system objects. So, to handle such a huge
amount of information, this layer uses techniques such as database software, intel-
ligent processing, and cloud computing. This layer is linked to the database, and it
stores in the database the information received from the transport layer. This layer
performs some computations on the information and makes decisions
automatically.

The next layer is the transport layer. It functions like the network layer of the
three-layered architecture. This layer is also known as the transmission layer. The
transport layer is responsible for receiving the information from the perception
layer and transmitting it to the processing layer and vice versa. This layer uses many
network technologies such as Wi-Fi, Bluetooth, etc. This layer is responsible for the
secure transmission of data between the perception layer and the processing layer.

The last, the fifth, layer is the perception layer. It works similarly to the percep-
tion layer of the three-layered architecture. This layer collects information about
every object in the IoT system such as the temperature and location of each object.
This layer transmits collected data into signals. The layer uses technologies such as
RFID, GPRS, etc. for the collection of data.

3.3 Big Data

As mentioned in [21], in the last 20 years or so, there has been a great increase in
the volume of data in every field. A report from the International Data Corporation
(IDC) in 2011 stated that 1.8ZB data was copied and found in the world, and within
5 years, the amount of data had increased ninefold [22]. For example, if we consider
social media as a major source of data, it is anticipated that by mid-2019, there will
be nearly 65 million Twitter tweets per day and around 190 million users [23]. So,
given the colossal amount of data, “Big Data” is the term used to describe huge
datasets. These datasets are very difficult to manage, acquire, perceive, and process
by means of traditional tools in real-time environments.

P. Wongthongtham et al.

47

According to [24], Big Data is defined as the data which is so huge that it cannot
be captured, processed, and managed using traditional techniques. Big Data includes
massive amounts of structured, unstructured, and semi-structured data, which
require more real-time analysis than do the traditional datasets. Moreover, Big Data
provides the opportunity to explore new values and to acquire an in-depth under-
standing of data.

Nowadays, because of its high potential, companies and government agencies
are becoming more interested in Big Data and have undertaken major research on
Big Data and its applications [21]. Big Data is relatively new, although the term has
been around for a long time and has appeared in many scientific papers [25]. Big
Data is not only about the volume of data; it has many other features apart from size.
In the next section, we present various definitions of Big Data.

3.3.1 Definitions and Characteristics of Big Data

According to [26], Big Data consists of three Vs: volume, velocity, and variety.
Volume indicates that the data generated by the Internet is very high in volume
compared to that of earlier years. Velocity refers to the speed of data generation; i.e.,
systems generate data at a very high speed compared to the speed of traditional
systems. Variety refers to the various forms of data; that is, data is present in many
forms on the Internet. These three Vs were originally suggested by Gartner for
describing Big Data elements. Gantz and Reinsel [22] added a fourth V to the char-
acteristics of Big Data: value. The fourth characteristic is highly accepted because
it defines the actual meaning and requirement of Big Data. Chen, Mao, and Liu [21]
added a fifth V: veracity. Hence, Big Data analytics is required to disclose hidden
data (or gather actionable insights) from very huge datasets, which are complex,
diverse, and very big. The main characteristics of Big Data are described below, in
more detail.

3.3.1.1 Volume

Volume indicates the data magnitude and the huge amount of different kinds of data
which are generated by various sources, and this data is continuously increasing
[27]. The size of Big Data is in terabytes and petabytes. IBM conducted a survey of
1144 respondents in mid-2012 and found that only half of the respondents believed
that a Big Data dataset exceeded one terabyte [28]. One terabyte of storage is equiv-
alent to 1500 CDs, which can store around 16 million photographs. According to
[29], in one second, Facebook processes one million photographs, and it stores
260 billion photographs in 20 petabytes of storage space. So, one can only imagine
the volume of data that is being processed, managed, stored, and analyzed. The
volume of data needs to be measured in terabytes or petabytes, because huge
amounts of data are generated by different sources such as sensors. Hence, it is

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

48

difficult, if not impossible, to manage such a huge amount of data using traditional
database techniques [30].

As an example, smart traffic management systems are one of the developments
of IoT. Nowadays, because of affordable car prices, the number of cars on the road
has increased significantly leading to traffic congestion. To manage congestion,
traffic management systems are connected to the digital road map of the city, and
traffic displays are installed within cities to guide drivers. For traffic management,
sensors are connected to the traffic lights, and these sensors send information to a
central server about the number of vehicles. The analytical software at central loca-
tion receives real-time data from sensors, traffic lights, and digital road maps. When
the number of vehicles on a road exceeds the total capacity, traffic screens advise
drivers to take a detour 1 km before the signal, which reduces both the travel time
and the fuel consumption. This is possible because a large amount of sensor data
from road sensors is sent to a central management system for real-time analysis.
However, such large datasets cannot be managed using traditional database tech-
niques and therefore require Big Data analytics approaches. The analysis of such
large datasets can reveal hidden patterns and information which are then used to
improve the traffic management systems.

3.3.1.2 Variety

Variety refers to the heterogeneous nature of Big Data such as data that is collected
by different types of sources such as sensors, social networks, etc. The collected
data could be of any type such as audio, video, text, or data logs, and it could be
structured, semi-structured, or unstructured. Structured data is data which is stored
in tabular form in spreadsheets or in a relational database. The data which is not
organized in a structured way is called unstructured data, such as text in the form of
paragraphs on the Internet. Semi-structured data is the data whose formats lie
between structured and unstructured data. The format of semi-structured data does
not follow strict standards. An extensible markup language, XML, which is used to
exchange data on Internet, is an example of semi-structured data. XML documents
have data tags, which are readable by machines [27].

The data which are generated by mobile phones, such as game data, text mes-
sages, and blogs, are mostly unstructured [31]. For example, in a smart traffic man-
agement system, data from different sources such as sensors, traffic lights, and
digital road map are analyzed for better traffic management. Every source will pro-
duce data in a different form; these different types of data presentations are man-
aged and analyzed in a central location for better decision-making.

P. Wongthongtham et al.

49

3.3.1.3 Velocity

Velocity indicates the speed at which the data are generated and analyzed. With the
development of digital devices such as sensors and smartphones, an extraordinary
amount of data is created which requires real-time analytics. Data generated through
sensors are collected and analyzed in real time [32]. Retailers such as Amazon are
also generating data at very high speeds. For example, Wal-mart processes approxi-
mately 1 million transactions per hour [33]. Data generated through mobile phones
help to produce personalized offers for customers. Another example of the velocity
of data is the data generated by traffic sensors. These sensors gather and transfer
information in real time, because the data collected by these sensors are useful only
if they give information to the driver before she/he reaches the congested area.
Hence, data analysis needs to be done at an equally fast speed because data have
time value; i.e., after a specific time, the data will no longer be useful.

3.3.1.4 Value

This is the most important characteristic of Big Data. It refers to the exploration of
data to discover hidden patterns and values of large datasets of different types by
using different techniques [21]. Very valuable data can be acquired by analyzing a
huge amount of Big Data. It also has the potential to provide cost-beneficial criteria.
For example, sensors in the IoT system of a smart traffic management system send
huge amounts of data to a central control system, where the data are processed and
analyzed. Data have value only if they can assist in predicting the future and current
traffic conditions of traffic lights.

3.3.1.5 Veracity

Veracity refers to the accuracy, reliability, and truthfulness of data, which means
that the data are noise-free and nonredundant and can therefore be confidently used
for decision-making and for future predictions [34]. Achieving veracity of data is
very difficult because data are produced by different sources.

3.3.2 Big Data Analytics

Big Data has demonstrated its great potential to transform decision-making in the
business realm. Efficient and effective processes are needed to turn the high volume
of rapidly generated and diverse data into significant information that can inform
decision-making. Big Data analytics are the techniques used to procure and analyze
an intelligence acquired from Big Data. There are four types of analytics which are
presented here.

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

50

3.3.2.1 Descriptive Analytics

Descriptive analytics are used to diagnose what has happened or is happening [35].
These analytics are applied to categorize, classify, and consolidate massive amounts
of historical data in order to understand what the data imply. They include the pre-
sentation of raw data in summarized or query form to manage otherwise elusive
information. This sort of analysis is mainly concerned with processing the very
diverse collected data by monitoring data from device sensors and databases to
detect patterns and trends in such data [35]. Descriptive analytics can produce data
visualization in the form of tables, drawings, maps, interactive dashboards, charts
(fever, pie, bar, etc.), etc. to summarize and report the trends.

3.3.2.2 Diagnostic Analytics

Diagnostic analytics are applied in order to determine why a phenomenon is occur-
ring or has occurred and to analyze the factors leading to this occurrence which may
include the inputs and operational policies [27]. Diagnostic analytics can benefit
from sensitivity analysis using a simulation model of the system that mimics the
current operation.

3.3.2.3 Predictive Analytics

Predictive analytics harnesses sophisticated machine learning and data mining tech-
niques to examine the historical data in an effort to predict the upcoming future.
Predictive analytics is capable to detect hidden patterns from data in large scale and
cluster these data into segments which share common characteristics. Predictive
analytics are used to estimate efficiency based on planned inputs. They can be
applied to all domains ranging from weather forecasting and market volatility pre-
dictions to predictions of customers’ next moves based on their spending and even
on what they tweet [27]. It also has applications in other domains such as health-
care, education, marketing, supply chain logistics, etc. In essence, predictive analyt-
ics explore and interpret patterns in order to find relationships among the data.
Predictive analytics use simulation models to predict a future occurrence using a set
of inputs and “what-if” scenarios.

3.3.2.4 Prescriptive Analytics

Prescriptive analytics are concerned with how we can make it happen and what the
consequences will be [28]. Prescriptive analytics are used to identify the policies
and inputs that will lead to a desired outcome and may include identifying changes

P. Wongthongtham et al.

51

in input parameters and policies that will reduce the cycle time and increase through-
put in order to reach the desired levels. Prescriptive analytics are intended to provide
the optimal solution(s) to an existing problem through the use of optimization and
simulation techniques. This significantly helps decision-makers to select the best
option.

3.4 Management Challenges of Internet of Things Big Data

In this section, we discuss the challenges of managing IoT data, including data and
process challenges.

3.4.1 Data Challenges

Challenges associated with Big Data characteristics are discussed below.

3.4.1.1 Massive Amount of Data Collected

According to [6], the main problem is related to the huge amount of information
which is collected through RFID. IoT systems may have millions of devices. Every
object in the IoT generates information about itself. This generated information
must be gathered and amounts to a massive quantity of data, producing problems of
transmission, storage, and processing.

The transmission issue relates to the necessity of transferring all the gathered
information in real time, which is very difficult because the bandwidth which is
required to transfer that information might not be available at that time. Another
problem is related to the storage of information because a large amount of space is
required for storage and backup. The last issue is the processing problem. In order
to determine the actions that must be taken, the information about things must be
handled by web applications, and information must be handled in real time [36].

The volume of data is increasing day by day. As mentioned in [30], 80,000 pet-
abytes of data were stored across the world in 2000, and this is predicted to rise to
35 zettabytes by 2020. In today’s world, many objects and/or activities are tracked
and recorded, such as environmental data, medical data, industrial data, etc.
Information is even recorded for every event; for example, speed cameras store
information about speed limit breaches, etc. What we observe nowadays is that mas-
sive amounts of data are being stored, but the processing of such huge datasets is
becoming difficult; hence, the percentage of processed data is decreasing, resulting
in blind zones [37].

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

52

3.4.1.2 Various Forms of Data Collected

The data which comes from sensors are sometimes combined with other unstruc-
tured data, so there is a strong relationship between sensor and other unstructured
data. So different forms of data such as structured, semi-structured, and unstruc-
tured are collected and stored by Big Data. Of the massive amounts of data that are
collected, only 20% is processed; the remaining 80% cannot be processed and ana-
lyzed using traditional techniques. Hence, most of the collected data are not useful
for decision-making [30]. In addition, there needs to be a technique which can
effectively combine structured data with unstructured images, text, or data [38].

3.4.1.3 Data Transmission Speed

The transmission speed of data on the Internet is also known as velocity. In order to
explore and acquire some insight about the data, this high-speed data needs to be
analyzed in real time. The current software applications can generate data streams
at very high speeds which can be very difficult to analyze in real time [39]. This is
still a challenge for Big Data. For example, in 1999, the data warehouse of Walmart
could store data up to 1000 terabytes, but in 2012 it had increased to 2.5 petabytes
of data [40]. This shows a rapid increase in data accessed through the sensors and
presents new challenges regarding the storage processing and analysis of such high-
speed data in real time.

3.4.1.4 Time Series for Data Analysis

Generally, in the case of sensors, some events are captured at a specific point in time.
The data captured by specific events or at specific times are sometimes useless.
However, if something serious happens, it must be recorded and addressed. As a
starting point, it is good to use a static threshold to analyze the datasets, gathered at
particular time intervals. Most technical companies find this difficult to handle [38].

3.4.1.5 Security and Privacy

In the IoT, data are transferred between objects using a wireless medium; therefore,
it becomes critical to ensure the privacy and security of information. There could be
a number of attacks such as physical attacks or wireless information attacks, which
can affect the security and authenticity of the transmitted information. The attacker
can attack the IoT devices physically or steal the information during transmission.
Most of the IoT devices do not accept security packages, which leads to low
self-defense.

Privacy means to ensure three things: firstly who collects the personal informa-
tion, secondly how this information is collected, and lastly the time when the infor-

P. Wongthongtham et al.

53

mation is gathered. Moreover, the acquired personal information must be used by an
authorized person and should be stored on an authorized server, and only an autho-
rized client should be able to access the information [41].

3.4.2 Process Challenges

Challenges relating to the processing of Big Data are discussed below.

3.4.2.1 Selective Data Acquisition

In today’s world, data acquired using sensors and other devices are in petabytes.
However, not all collected data are important, so data must be filtered and com-
pressed. These filters decide the data that should be collected and those that should
be discarded. For example, if all the sensors except one are giving readings within
an acceptable range, then it is possible that that sensor is either faulty or something
has gone wrong in that sensing area, which should be investigated. Therefore, the
task of designing a smart filter to make such decisions in real time presents a signifi-
cant challenge [41].

3.4.2.2 Data Extraction

The gathered information is mostly in different formats. For instance, a health
record can comprise MRI data, prescriptions, medical reports, x-ray images, etc., all
of which information is in different formats. In order for this information to be used
effectively, the data must be transformed into a single structured format. Therefore,
a new extraction process is needed that can extract the required data from the source
and transform it into a structured format suitable for analysis. The correct design
and maintenance of this extraction process is a big challenge [41].

3.4.2.3 Data Heterogeneity

Data gathered from diverse sources are heterogeneous in nature; hence, data pro-
cessing is not a straightforward process because finding, identifying, and under-
standing information are difficult when the data sources cannot be integrated
seamlessly. When data are heterogeneous, analysis becomes difficult because the
data have different structures and different semantics. Thus, the integration of het-
erogeneous data for processing in real time presents a major challenge. New data
mapping and data integration systems need to be designed to ensure seamless inte-
gration of data from heterogeneous sources.

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

54

3.4.2.4 Nature of Big Data

Big Data is unreliable, dynamic, heterogeneous, noisy, and interconnected [42].
Sometimes, noisy data is more useful than small datasets because repeated patterns
can be extracted from general statistics. Hidden information can also be revealed
through interrelation analysis [30]. Redundant data can sometimes be useful in find-
ing missing data and can also be analyzed to find unreliable relationships and to
discover hidden models [43].

3.5 Analytics Challenges of the IoT Big Data

In this section, we discuss several challenges associated with IoT data analytics.
These challenges are related to unstructured data analytics (i.e., text analytics, audio
analytics, video analytics, and social media analytics) and visualization
challenges.

3.5.1 Analytics Challenges over Unstructured Data

The analysis of unstructured data such as text, audio, video, and social media is dif-
ficult. Text analytics are those procedures that extract information from textual data.
Some examples of textual data are feeds from social networks like Facebook,
Twitter, etc. and online forums, blogs, emails, white papers and other documents,
etc. It involves statistical analysis, natural language processing, and deep learning.
Transforming large volumes of randomly generated text into meaningful abstracts,
which support cue-based decision-making, is challenging. Apple’s Siri and IBM’s
Watson are examples of commercial question answering systems which have been
implemented in various domains like healthcare, education, finance, marketing, and
banking, and these systems rely on complex natural language processing, informa-
tion retrieval, and knowledge-based approaches [28].

Audio analytics refer to processes that analyze and extract information from raw
audio data. It is also known as speech analytics. Business process outsourcing
(BPO) uses audio analytics for the effective analysis of recorded calls, which in turn
helps to improve customer experience, appraise agent performance, elevate sales
turnover rates, cue into customer behavior, identify service problems, and monitor
compliance with security and privacy policies, among other tasks [27]. Audio ana-
lytics systems are designed to scrutinize a live call, forecast recommendations based
on customers’ past interactions, and provide feedback to BPO agents in real time.

Video analytics are those procedures that monitor, analyze, and extract meaning-
ful information from raw video streams. The increased ubiquity of CCTV cameras
and video sharing websites is leading to the proliferation of computerized video

P. Wongthongtham et al.

55

analysis. However, a key challenge is the enormity of the video data. Big Data ana-
lytics overcomes the need for manual processing to automatically scrutinize and
derive intelligence from millions of hours of streaming video. In modern times,
video analytics have been applied in automated surveillance systems, in order to
detect trespassing in restricted zones, identify unknown objects, and recognize spy-
ing or suspicious activities. On detection of a threat, an automated alarm goes off to
notify the security personnel in real time. In retail outlets, data generated by CCTV
cameras may provide business intelligence to discover the demographics, choices,
behaviors, buying patterns, etc. of consumers [27].

Social media analytics are the processes that analyze and extract meaningful
information from social media channels such as Facebook, Twitter, LinkedIn,
Instagram, Wikipedia, wikiHow, YouTube, ResearchGate, Ask.com, etc. Social
media analytics is a relatively new area. The challenges of the modern social analyt-
ics are its data-centric nature and its research which is interdisciplinary and may
include the domains of psychology, sociology, computer science, mathematics, eco-
nomics, and statistics. The primary application of social media analytics has been in
marketing and business management. Content generated by users (e.g., photos, vid-
eos, emotions, thoughts, etc.) and the relationships and synergy between the net-
work entities (e.g., people, businesses, and merchandise) are the different sources of
information in social media.

3.5.2 Visualization Challenges

Visualization helps to improve the human cognitive process by quickly identifying
interesting and significant events and patterns in collected data [44–47]. Some other
benefits of visualization include better understanding of large datasets, quick recog-
nition of errors and outliers in datasets, facilitation of hypothesis formation from
data, etc. [48]. A wide range of studies on visualization have been carried out, pro-
posing techniques and methods to facilitate the process in order to obtain insights
from data; some of these techniques include visualization of unstructured temporal
data with a parallel rendering algorithm [49], taxonomies of interaction techniques
[50], the focus-on-context technique [51], tree maps for visualizing hierarchical
data structure while making use of all of the available space [52], and artificial real-
ity in visualization [53].

The total amount of data generated is expected to experience a significant growth.
However, approximately 3% of the collected data was tagged, and approximately
0.5% of the world’s digital data was analyzed [54]. Approaches are needed to repre-
sent data in a more intuitive way to improve the understanding of data and provide
adequate support for decision-making. Visualization is expected to assist in tackling
some of these challenges. Visualization challenges include its applicability for a
large volume of data, the possibility of visualization of data being presented in dif-
ferent data formats, speed, and effectiveness of data presentation.

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

http://ask.com

56

3.6 Semantics Challenges of the IoT Big Data

In this section, we present challenges related to IoT data semantics. These chal-
lenges are associated with data interoperability, data semantics, data scalability,
data fusion, data integration, data quality and trustworthiness, and data discovery.

3.6.1 Data Interoperability Challenges

To make the data interoperable, semantic description of and an ontology for the data
are required. Ontologies describe formally shared conceptualizations of a domain of
interest [55]. Solodovnik [56] described the concept of ontology from its philo-
sophical origins to its adoption within the IT field as follows: Philosophically,
ontology is a systematic explanation of being that describes the features of Reality.
Nowadays Ontology is proliferating in organizing Knowledge of different domains
managed by advanced computer tools. Ontology qualifies and relates semantic cat-
egories, dragging, however, the idea of what, since the seventeenth century, was a
way to organize and classify objects in the world. Ontology maximizes the reusabil-
ity and interoperability of concepts, capturing new Knowledge within the most
granular levels of information representation. Ontology is subjected to a continuous
process of exploration, formation of hypothesis, testing and review.

Data will be interoperable for users, who use the same ontology. In most cases,
ontology and semantic description are defined only for a specific project, but for
achieving global semantic interoperability, a common definition of ontology and
semantic description framework must be adopted. For this reason, the ontologies
must be reusable by a large number of applications. The sharing of the ontologies of
current and previous applications is an effective means of achieving semantic
interoperability on a global level.

There are millions of heterogeneous devices in our environment. These heteroge-
neous devices must be connected in such a way that they can communicate easily.
We need semantic interoperability which enables all the stakeholders to interpret
and access the data from these heterogeneous devices without any issue. Within the
IoT, objects/things are required to exchange data with other things and users on the
Internet. This data must be processed and interpreted by machines in such a way
that information communication can be automated in the IoT. Data semantic anno-
tation provides information that is machine interoperable, and this information can
reveal the source of data, relationship of data with surroundings, provider of data,
quality of data, and description of technical and nontechnical terms [57]. Therefore,
the accessing and processing of data from a number of heterogeneous devices are
going to become increasingly challenging in the years to come.

P. Wongthongtham et al.

57

3.6.2 Data Semantics Challenges

Millions of heterogeneous devices are connected to different types of sensors in
order to collect real-world data and to communicate with other devices. Interoperable
service-oriented technologies are intended to share the real-world data among these
heterogeneous devices to integrate and fuse these semantic data [58]. Data seman-
tics is one of the major elements of data analysis. It is a challenging task to deal with
different data structures and information types and to analyze the data as the struc-
ture of information is very complex. Also, the system does not have adequate
knowledge enabling it to describe fully the semantic meaning of the analyzed infor-
mation. Computer cognitive resonance techniques have been proposed by [59],
which can solve the problem by using a cognitive information system that uses
features extracted from records and knowledge in the database. It is quite conducive
to the analysis of the semantic data of different information records. The integration
of various heterogeneous collections of data has become a colossal issue as the
existing data sources are very sparse and incomplete which makes it an onerous task
to find a logical connection between the data.

3.6.3 Data Scalability Challenges

It is challenging for data engineers to create domain knowledge models and seman-
tic annotation frameworks which can describe a huge number of devices in the
IoT. Domain knowledge must be associated with semantic descriptions of data
because IoT data can refer to separate phenomena. In many applications, to define
IoT data’s spatial aspects, linked open data (an approach that interconnects different
resources of IoT) are used as domain knowledge. However, linked sensor data is
mostly inconsistent and contains numerous errors. As a solution for this problem,
most of the applications design and maintain their own domain knowledge. However,
this limits their interoperability. Another big challenge concerns granularity descrip-
tion; if the terms and concepts are very specific, then the domain knowledge is very
extensive. The semantic web community has done a great deal of work in develop-
ing an efficient technique for storing and querying large semantic data in a distrib-
uted environment. However, the challenges in handling semantic data are the scale
of data developed by IoT resources, the changing status of resources and data, and
the volatility of the IoT environment. Research should address these issues and
develop solutions to define linked IoT data which can analyze the links between the
resources, and semantic repositories must be developed which can access and query
the sensory data [57].

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

58

3.6.4 Data Fusion Challenges

Data fusion is used as a means of improving the quality of the data. Data fusion
focuses on the computation of structured and comparable semantic data in order to
obtain appropriate decisions. Semantic data fusion is challenging as data are
acquired from multiple sensors, and different types of algorithms are used to
improve the quality and accuracy of the data. Data fusion in the IoT, based on such
multi-sensor data, produces new information. Information fusion is the major part
of the information and comprises of several theories, techniques, and algorithms. It
can improve the accuracy and produce more accurate results as the data is produced
from multiple sensors and cognate information which is obtained from the affiliated
databases. The major function of information fusion is to integrate diverse types of
semantic data, without which the related data and information cannot be integrated,
because it is impossible to process information fusion computation using a variety
of algorithms as heterogeneous data cannot be correlated.

3.6.5 Data Integration Challenges

Mostly, IoT data are generated from sensor devices, humans, or a physical entity. To
create multiple environment abstraction, this data can be merged with other data.
This data can be combined with the processing chain in an application which already
exists, and this data can support situation awareness. It is necessary that different
types of data be combined seamlessly [60]. Semantic description assists this combi-
nation process by facilitating interoperability among different sources of data.
However, to enable IoT data integration, the mapping and analysis of different
semantic description models are required.

The combination of appropriate data that reside in a huge number of data sources
which are heterogeneous in nature may conflict in terms of value and structure. This
type of data integration allows the user to have a unique view of the data. Semantic
technology is the fundamental technology of data integration. Data integration sys-
tems are commonly defined as a triple GSM, where G is the global schema, S is the
discordant set of source schemas, and M is a mapping that maps queries between the
source and the global schemas. For each of G and S, their respective relations are
defined in languages which consist of symbols. In this way, huge amounts of linked
data are transformed from the raw IoT data. Using the basic idea of data integration,
different models at schema level are merged together when users need an integra-
tion of the relevant heterogeneous data. As a result, the data at the instance level are
presented in a unified view to achieve data integration. By means of mapping, dif-
ferent models at schema level can be merged. These mappings are obtained in sev-
eral ways. Predefined mapping is the first method of mapping which may produce
highly accurate data, but is not efficient. The second method is based on mapping

P. Wongthongtham et al.

59

which is determined with the help of computation by following several principles
such as the linked open data cloud. Schema level mapping is one of the main func-
tions of integrating data.

3.6.6 Data Quality and Trustworthiness Challenges

Sensor devices generate IoT data which have errors and quality issues. Quality
means that data must be complete and accurate and must be available when required.
The quality of data collected through sensors can change over time. For example,
this occurs if there is any environmental change, due to any faulty device or due to
any error in the settings of device. It is not possible to avoid inaccuracy in IoT data.
To retrieve and process quality data, readings from IoT devices need to be detected
and filtered, in addition to having semantic descriptions of the attributes of quality.
This could also assist with error detection. Another main issue is trust, especially
when data are generated by many different sources. Trustworthiness of data and
sources can be achieved by identifying the data provider and verifying data accu-
racy and reliability, along with the semantics which describe the quality and trust
attributes of sources and providers. Although semantics can be used to define trust
and reliability attributes, several major issues still need to be addressed such as the
development of a trust model, feedback, and the development of a verification
mechanism [57].

3.6.7 Data Discovery Challenges

The efficient handling of data and storage is becoming more difficult with time as
the volume of data and semantic description is increasing day by day. Sensor data
must be stored with semantic descriptions, and this data can be stored temporarily
or for a lengthy period. The main challenges include designing and developing
repositories, publishing the semantic data, accessing the semantic data in distributed
environments, and developing effective indexing and discovery mechanisms. To
address these issues, an effective mechanism for information indexing, search,
access, and query is required. Such mechanism could be used for the discovery of
relevant data from many sources, real-time query and aggregation of multiple data
streams, description of various events and data which are generated by many
sources, and data discovery when semantic data is distributed among multiple
repositories. Cloud computing is a good technical approach which can overcome
some of these issues, but in order to handle, process, and maintain data, the solution
must be scalable and efficient; it is not sufficient to simply develop a centralized and
non-scalable solution and put it in the cloud [57].

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

60

3.7 Conclusion

New properties are emerging in IoT with every passing day. Inter-conceivable
service- oriented technologies are imperative for sharing real-world data among dis-
cordant devices to integrate and fuse multisource IoT data. The IoT can offer only
trivial and insignificant benefits if it cannot integrate and incorporate useful infor-
mation from the data generated by multiple interconnected devices. This is where
Big Data analytics plays a critical role and bring out the value from the information
and data gathered by IoT devices. Hence, research in the field of Big Data analytics
and IoT is becoming important as it has diverse application areas, especially in the
context of smart cities. This chapter introduced and described number of challenges
at the intersection of IoT and Big Data to provide a holistic view on how to manage
these challenges effectively. Managing such large datasets poses substantial diffi-
culties under computing and time constraints. We elaborated the challenges associ-
ated with data management (such as size and forms of data, time series analysis,
security, and privacy), data processing (such as data acquisition, extraction, and
heterogeneity), unstructured data analytics, data visualization, and data semantics
(such as interoperability, data fusion, data integration, data quality, and data discov-
ery). We then described the latest solutions to address these upcoming challenges to
provide guidance for future research in this field. Overall, this chapter will guide
researchers by providing the most up-to-date information on challenges and solu-
tions at the intersection of IoT and Big Data.

References

 1. Aggarwal CC, Ashish N, Sheth A (2013) The internet of things: a survey from the data-centric
perspective. In: Managing and mining sensor data. Springer, Boston, pp 383–428

 2. Perera C, Vasilakos AV (2016) A knowledge-based resource discovery for internet of things.
Knowl-Based Syst 109:122–136

 3. Sundmaeker H, Guillemin P, Friess P, Woelfflé S (2010) Vision and challenges for realising
the internet of things. The Cluster of European Research projects on the Internet of Things,
European Commission

 4. Verizon (2016) State of the market: internet of things 2016
 5. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, archi-

tectural elements, and future directions. Future Gener Comput Syst 29:1645–1660
 6. Said O, Masud M (2013) Towards internet of things: survey and future vision. Int J Comput

Netw IJCN 5:1–17
 7. Said O, Tolba A (2012) SEAIoT: scalable e-health architecture based on internet of things. Int

J Comput Appl 59
 8. Evans D (2012) The internet of things how the next evolution of the internet is changing every-

thing (April 2011). White Paper. Cisco Internet Business Solutions Group (IBSG)
 9. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw

54:2787–2805
 10. Xia F, Yang LT, Wang L, Vinel A (2012) Internet of things. Int J Commun Syst 25:1101
 11. Yoo Y, Henfridsson O, Lyytinen K (2010) Research commentary—the new organizing logic of

digital innovation: an agenda for information systems research. Inf Syst Res 21:724–735

P. Wongthongtham et al.

61

 12. Wortmann F, Flüchter K (2015) Internet of things. Bus Inf Syst Eng 57:221–224
 13. Salim F, Haque U (2015) Urban computing in the wild: a survey on large scale participation

and citizen engagement with ubiquitous computing, cyber physical systems, and internet of
things. Int J Hum-Comput Stud 81:31–48. https://doi.org/10.1016/j.ijhcs.2015.03.003

 14. Baheti R, Gill H (2011) Cyber-physical systems. Impact Control Technol 12:161–166
 15. ZHANG Y, XIE F, DONG Y et al (2013) High fidelity virtualization of cyber-physical systems.

Int J Model Simul Sci Comput 4:1340005
 16. Lee EA (2006) Cyber-physical systems-are computing foundations adequate. 2
 17. Wan J, Yan H, Suo H, Li F (2011) Advances in cyber-physical systems research. TIIS

5:1891–1908
 18. Chao H, Cao Y, Chen Y (2010) Autopilots for small unmanned aerial vehicles: a survey. Int

J Control Autom Syst 8:36–44
 19. Khan R, Khan SU, Zaheer R, Khan S (2012) Future internet: the internet of things architecture,

possible applications and key challenges. IEEE:257–260
 20. Wu M, Lu T-J, Ling F-Y et al (2010) Research on the architecture of internet of things.

IEEE:V5-484–V5-487
 21. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209
 22. Gantz J, Reinsel D (2011) Extracting value from chaos. IDC Iview 1142:1–12
 23. Schonfeld E (2010) Costolo: twitter now has 190 million users tweeting 65 million times a day.

Techcrunch June 8
 24. Manyika J, Chui M, Brown B et al (2011) Big data: the next frontier for innovation, competi-

tion, and productivity
 25. Hashem IAT, Yaqoob I, Anuar NB et al (2015) The rise of “big data” on cloud computing:

review and open research issues. Inf Syst 47:98–115
 26. Zikopoulos P, Eaton C (2011) Understanding big data: analytics for enterprise class hadoop

and streaming data. McGraw-Hill Osborne Media, New York
 27. Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int

J Inf Manag 35:137–144
 28. Schroeck M, Shockley R, Smart J et al (2012) Analytics: the real-world use of big data: how

innovative enterprises extract value from uncertain data, executive report. IBM Institute for
Business Value Saïd Business School, University of Oxford

 29. Beaver D, Kumar S, Li HC et al (2010) Finding a needle in haystack: facebook’s photo storage,
pp 1–8

 30. Nasser T, Tariq RS (2015) Big data challenges. J Comput Eng Inf Technol 4:3
 31. Russom P (2011) Big data analytics. TDWI Best Pract Rep Fourth Quart:1–35
 32. Cukier K (2010) Data, data everywhere: a special report on managing information. Economist

Newspaper, London
 33. Ragothaman B, Prabha MS, Jose E, Sarojini B (2016) A survey on big data and internet of

things. World Sci News 41:174
 34. Shao G, Shin S-J, Jain S (2014) Data analytics using simulation for smart manufacturing. In:

Proceedings 2014 winter simulation conference. IEEE Press, pp 2192–2203
 35. Lakshman TV, Madhow U (1997) The performance of TCP/IP for networks with high

bandwidth- delay products and random loss. IEEEACM Trans Netw ToN 5:336–350
 36. Vilamovska A-M, Hatziandreu E, Schindler HR et al (2009) Study on the requirements and

options for RFID application in healthcare
 37. Deshpande B (2016) 3 challenges unique to IoT analytics. https://www.owler.com/reports/

simafore/3-challenges-unique-to-iot-analytics/1476315363392
 38. Yassin AT (2014) Analyzing 6Vs of big data using system dynamics. In: 2nd scientific confer-

ence of the College of Science 2014
 39. McNulty E (2014) Understanding Big Data: The Seven Vs. http://dataconomy.com/2014/05/

seven-vs-big-data/
 40. Chan H, Perrig A (2003) Security and privacy in sensor networks. Computer 36:103–105

3 Big Data Challenges for the Internet of Things (IoT) Paradigm

https://doi.org/10.1016/j.ijhcs.2015.03.003
https://www.owler.com/reports/simafore/3-challenges-unique-to-iot-analytics/1476315363392
https://www.owler.com/reports/simafore/3-challenges-unique-to-iot-analytics/1476315363392
http://dataconomy.com/2014/05/seven-vs-big-data/
http://dataconomy.com/2014/05/seven-vs-big-data/

62

 41. Labrinidis A, Jagadish HV (2012) Challenges and opportunities with big data. Proc VLDB
Endow 5:2032–2033

 42. Katal A, Wazid M, Goudar RH (2013) Big data: issues, challenges, tools and good practices.
IEEE:404–409

 43. Pradeepa A, Thanamani A (2013) Significant trends of big data analytics in social network.
NGM Coll, India

 44. Bauer MI, Johnson-Laird PN (1993) How diagrams can improve reasoning. Psychol Sci
4:372–378

 45. Larkin JH, Simon HA (1987) Why a diagram is (sometimes) worth ten thousand words. Cogn
Sci 11:65–100

 46. Mayer RE, Gallini JK (1990) When is an illustration worth ten thousand words? J Educ
Psychol 82:715

 47. Card SK, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using
vision to think. Morgan Kaufmann, San Francisco

 48. Ware C (2012) Information visualization: perception for design. Elsevier, Amsterdam
 49. Ma K-L, Stompel A, Bielak J et al (2003) Visualizing very large-scale earthquake simulations.

In: Supercomput. 2003 ACMIEEE conference IEEE, pp 48–48
 50. Yi JS, ah Kang Y, Stasko J (2007) Toward a deeper understanding of the role of interaction in

information visualization. IEEE Trans Vis Comput Graph 13:1224–1231
 51. Lamping J, Rao R, Pirolli P (1995) A focus+ context technique based on hyperbolic geometry

for visualizing large hierarchies. In: Proceedings of the SIGCHI conference on human factors
in computing systems. ACM Press/Addison-Wesley Publishing Co, pp 401–408

 52. Johnson B, Shneiderman B (1991) Tree-maps: a space-filling approach to the visualization of
hierarchical information structures. In: Proceedings of 2nd conference on visualization. IEEE
Computer Society Press, pp 284–291

 53. Erickson T (1986) Artificial realities as data visualization environments: problems and pros-
pects. Virtual Real-Appl Explor:3–22

 54. Tam NT, Song I (2016) Big data visualization. In: Information science and applications ICISA
2016. Springer, pp 399–408

 55. Gruber TR (1993) Toward principles for the design of ontologies used for knowledge sharing
 56. Solodovnik I (2010) ONTOLOGY: from philosophy to ICT and related areas
 57. Payam B, Wei W, Cory H, Kerry T (2012) Semantics for the internet of things: early progress

and back to the future. Int J Semantic Web Inf Syst IJSWIS 1:1–21. https://doi.org/10.4018/
jswis.2012010101

 58. Nugraheni E, Akbar S, Saptawati GAP (2016) Framework of semantic data warehouse for
heterogeneous and incomplete data. In: Region 10 symposium. TENSYMP 2016 IEEE. IEEE,
pp 161–166

 59. Ogiela L, Ogiela MR (2015) Semantic data analysis algorithms supporting decision-making
processes. In: Broadband Wireless Computing and Communication Applications. BWCCA
2015 10th international conference on IEEE, pp 494–496

 60. Sheth AP (2011) Computing for human experience: semantics empowered cyber-physical,
social and ubiquitous computing beyond the Web

P. Wongthongtham et al.

https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.4018/jswis.2012010101

63© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_4

Chapter 4
Using Cloud Computing to Address
Challenges Raised by the Internet of Things

Marinela Mircea, Marian Stoica, and Bogdan Ghilic-Micu

Abstract The growing number of connected smart devices and the expansion of
data storage capacities and data analytics make the fabric of the global interconnec-
tion of the manifold universe of human existence. On top of that, the premise of this
type of global network of technology infrastructure enables the development of
efficient and dynamic enterprise services. The Internet of Things (IoT) intercon-
nects real-world objects through a large variety of technologies, devices, and proto-
cols. Besides its benefits, the IoT is faced with problems and challenges related to
scalability, interoperability, reliability, efficiency, availability, storage, and security
(known as the Big 7 of IoT), which experts try to overcome with various solutions.
This chapter addresses one of the solutions, namely, Cloud Computing. It dwells on
the seven challenges in IoT and the extent to which Cloud Computing can address
them (the Big 7 of IoT). It is an analytic approach that focuses on the new paradigms
emerging from coupling Cloud and IoT together, which has resulted in the Cloud of
Things or CloudIoT.

4.1 Introduction

History credits Johannes Gutenberg with the invention of the printing press
562 years ago, though the movable type first originated in China in the twelfth cen-
tury. We cannot say the same about the Internet, which has no single recognized
parent, but we can say for sure that the development of the Internet has influenced
mankind as least as much as the printing press, if only for the field of information
and the art of solving codes. It only took a small technology-enabled step to take us
in the realm of the Internet of Things or IoT for short. From an economic angle, the
IoT is by far the biggest business ever in electronic communication devices.
Moreover, it is the founding stone of a digital industrial world, the successor of the

M. Mircea (*) • M. Stoica • B. Ghilic-Micu
Department of Economic Informatics and Cybernetics, The Bucharest University
of Economic Studies, Bucharest, Romania
e-mail: mmircea@ase.ro

mailto:mmircea@ase.ro

64

information and knowledge society. Just like any other element of novelty, the IoT
comes with a host of advantages but also challenges that experts are trying to
overcome through various solutions.

Cloud Computing comes with large storage capacities and data processing appli-
cations and provides on-demand tailored services. In the last 10 years, however,
Cloud technology has been “troubling the waters” of enterprise architecture (at least
in the sense of its technology component), human resources, and investment poli-
cies. In their fast-paced development, modern technology paradigms do not only
shake the technical side of an enterprise, but they also enable a change in the way
individuals live and work. The current economic, social, and political context can
furnish the IoT with the features of a “selective black hole.” From the jungle of
technology and methodological instruments, it would only absorb those elements
which, if implemented, would answer the problems and challenges facing us today
as well as in the future (provided we can speak of some predictability of the IoT).

The IoT involves a big volume of data and a wide range of sources of information.
Among the problems the IoT is faced with are the collection, acquisition, processing,
archiving, and sharing of this volume of data. Cloud Computing is part of the solu-
tion and offers unlimited on-demand storage capacity, reduced costs, fast access,
and ease of use. Additionally, many of the IoT applications can be developed, run,
and managed online by using Cloud-based Big Data Analytics and Cloud Storage
facilities. The IoT can also benefit from the agility, scalability, storing capacity, and
performance of Cloud Computing. Cloud Computing-based IoT architecture
answers more than one challenge/problem and leads to better agility of the
connected environment. Furthermore, interdependencies created in the operation of
the two paradigms may result in symbiotic products designated in terms such as
Cloud of Things (CoT) or CloudIoT.

IoT and Cloud Computing are emerging technologies with features of their own,
which may create added value when used together. The IoT enables objects to be
virtually represented and connected over the Internet, while Cloud Computing
allows for the effective use of the services attached to these things, as a means of
payment for the service provided [1]. Cloud Computing is an important element in
the IoT architecture. Cloud services are globally accessible, irrespective of place
and time, allowing for the data to be transferred and the objects making the network
to interact. It also offers fast scalability, by adjusting the storage and computing
capacities to the needs of the network.

Researchers and practitioners alike consider Cloud Computing and the IoT to be
two complementary technologies [1, 2]. This consideration is the main reason
why we are faced with so many proposals to integrate the two paradigms, which
would bring benefits to specific areas, such as smart cities, smart energy, smart
grids, smart healthcare, and smart metering [3–5]. Moreover, the features of the
CloudIoT paradigm can help reduce the difficulties and the challenges stemming
from the connected media [6]. Many times integration is no longer an option but a
must. Because of the large volume of data generated by the IoT and the need for
large storage and use capacities of virtual resources, integration with Cloud
Computing becomes both important and necessary [7]. The need to integrate IoT

M. Mircea et al.

65

and Cloud Computing is also analyzed in [8], where the authors are highlighting the
features of integration and complementarity.

The main focus of this chapter lays both on the problems and challenges of the
IoT and the ways Cloud Computing can meet them via the three traditional services
it supplies: Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). This chapter is split into four parts that form a
linear approach to the topic, viz., Introduction; Problems and Challenges of the
Internet of Things: The Big 7 of IoT; Combining Cloud Computing and the IoT to
Address the Inherent Challenges of IoT; and Conclusions.

This chapter opens with a short introduction of the topic, focusing on the need
and the benefits of integrating Cloud Computing and the IoT. It continues with the
analysis of scalability, interoperability, reliability, efficiency, availability, storage,
and security in the IoT and the identification of major problems and challenges
these features are faced with in the connected environment. The third part dwells on
the benefits of Cloud Computing and IoT integration and the solutions to the
problems and challenges identified in the previous section. This chapter ends with
conclusions, limitations, and future research directions.

4.2 Problems and Challenges of the Internet of Things:
The Big 7 of IoT

The IoT makes it possible for objects to interact by sharing information and providing
services through Internet protocols. The magnitude of the connected environment
together with the multitude of heterogeneous objects requires solutions to at least
the following seven major challenges: scalability, interoperability, reliability,
efficiency, availability, storage, and security. According to Gartner, by 2020, the IoT
will include 26 billion units, which creates new challenges in all data center-related
aspects [9]. The IoT developments also require real-time processing of Big Data
volumes, which causes an increase in the load in data centers and generates new
challenges with respect to security, capacity, and data analytics [10]. The challenges
are discussed below.

4.2.1 Scalability in IoT

A scalable IoT system must allow for the connection of new devices, new users, and
new analytical capabilities as well as for the technology able to ensure long-term
support. Scalability in IoT must also consider the possibility to provide good- quality
service (response time, analytics) under the circumstances of a growing number of
new users and/or devices. Given the rapid growth of the connected devices, the fre-
quent changes in technology, the large number of interactions within the IoT, as well

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

66

as the growing demand for services, scalability in the IoT is still a major challenge
of our society today.

It is not by chance that developments in technology in the past years have focused
on higher storage and better data processing capabilities. One of the modern tech-
nologies prone to ensuring the needed scalability features in IoT is found in non-
relational databases and the systems processing GIS data.

4.2.2 Interoperability in IoT

Considering the heterogeneity of the different systems integrated in the IoT, interop-
erability is another major challenge that the IoT must face for the successful delivery
of services and data sharing. In spite of the fast development of the IoT systems,
interoperability between the IoT systems comes at a high cost, even as high as $4
trillion or 40% of the overall IoT worth by 2015, according to McKinsey report [11].

Good IoT interoperability requires platform-related standards enabling commu-
nication, operability, and integration of different kinds of devices. Despite the
efforts of the past few years, interoperability still stays a major challenge in
IoT. Network data acquisition, data sharing, processing, and use have so far been
very challenging. Interoperability can be analyzed in the light of factors such as the
level of data perception (technical, syntactical, semantic, organizational) or the
moment when interoperability is achieved (static, dynamic) [12].

There are four directions in the analysis of information: technical (the way data
are represented on the physical media), syntactical (syntactical constructions used
to represent the information in the collection, transmission, recording, and process-
ing of data), semantic (the meaning of the data), and organizational (the overall
amount of information an organization holds). With information at its core, interop-
erability can be analyzed along the four lines of information perceived: technical,
syntactic, semantic, and organizational [13].

At the technical level, interoperability is analyzed at the level of hardware/soft-
ware components, systems, and platforms that enable machine-to-machine com-
munication (M2M). This type of analysis focuses on protocols and communication
infrastructure. Syntactic interoperability focuses on the data formats transferred
though the communication protocols. Many communication protocols convey data
or contents by using high-level syntax such as HTML or XML. Semantic interoper-
ability is related to the human interpretation of the content (information) being
shared. Semantically, information can be defined in terms of data significance and
can be discussed in terms of information flows. Organizational interoperability
pertains to the capability of organizations to effectively communicate and transfer
data (information) among different types of systems, infrastructures, across various
geographic regions and cultures. Successful organizational interoperability relies on
the success of technical, syntactic, and semantic interoperability. Organizational
interoperability also relies on the success of the information process. The process of

M. Mircea et al.

67

information communication should ensure the lowest possible redundancy between
the sender and receiver entities, thus enabling the reception and comprehension of
the message.

Starting from the four levels of interoperability, Fig. 4.1 identifies the challenges
in interoperability peculiar to each level (devices, data, information, and processes).

The IoT consists in a large variety of applications, which gives rise to challenges
in point of static interoperability (fulfillment of all conformity requests). Some level
of non-interoperability is often accepted (for some of the protocols, for instance),
provided it is addressed on the way (dynamic interoperability). Features of dynamic
interoperability are found in intelligent gateways and middleware from heteroge-
neous and complex IoT environments [12].

4.2.3 Reliability in IoT

In a system, reliability is defined as the ability of the system to consistently imple-
ment a request/mission without fail/fault, a definition that also suits the IoT environ-
ment. Since the IoT consists in a vast volume of information where data needs to be
accessed, processed, and manipulated correctly, new architectures are required to
disseminate and process information in a reliable and effective manner.

Most of the IoT applications are required to operate for a specific time horizon,
which asks for a longer-term investment. Under the circumstances, the network
should be adaptable enough to adjust to the conditions of the environment or the
required changes in the network components. Standardization efforts are critical in
securing good reliability. Kempf et al. (2011) outline four major research areas in

Fig. 4.1 Challenges by levels of interoperability in IoT

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

68

standardization: reliability in the design of system architecture, reliability in the
development of the system, support for mobile network sensor gateway communi-
cation, and reliability at transfer level [14].

Reliability in IoT can be analyzed starting from the levels of IoT architecture.
According to the literature, IoT architecture evinces more than one type (for
instance, IoT-A, Internet-of-Things Architecture; IIRA, Industrial Internet Reference
Architecture) and the same stands for reference models. In this context, it is impor-
tant to look at reliability in IoT at the level of the devices, network, and the provided
services.

Considering the number and diversity of connected devices, reliability of devices
turns into a true challenge. Depending on the type and role of a device, the system
should provide correct, continued, and intensive data access and good data process-
ing, even when there is no power, no or weak Wi-Fi signal, when a server or an
access point fails.

The high number of users that are connected to the Internet for various online
services in combination with the multitude of devices connected to the IoT network
is challenging to network operators, as they should secure uninterrupted broad net-
work access. Network reliability is vital for the success of IoT and should be ana-
lyzed both at the level of each network provider and the IoT as a whole. At IoT level,
there can be several types of networks or network operators in place, which may
result in additional challenges in securing uninterrupted broad access.

Reliability in the provided services deals with ensuring a good availability, col-
lection, storage, and processing of large volumes of data taken from the IoT devices,
with no error of failure. In the light of these considerations, reliability in IoT is
closely connected with interoperability.

4.2.4 Efficiency in IoT

Ensuring efficiency in IoT is yet another challenge of a connected environment. The
network should be capable to support different real-time analyses of a big volume
of data available in the network, to satisfy the diversity of data processing requests,
and to process data as fast as it arrives, irrespective of their storage place (data
decentralization). Another challenge is linked to ensuring advanced data processing
and analysis with a view to support the machine learning processes embedded in
smart devices.

That is why the IoT structure should be supplemented with specific elements of
artificial intelligence, such as neural networks or intelligent agents. From the same
perspective of efficiency, we may look at the economic angle of the IoT network and
measure the effect of its operation in a well-defined context against the effort fed
into its operation. Moreover, by assigning the IoT a cybernetic paradigm, it turns
into an element of the higher-order feedback loop showing a systemic behavior in
relation to its environment. A systemic approach to the IoT automatically endows it
with a different perspective of efficiency.

M. Mircea et al.

69

4.2.5 Availability in IoT

So far as the availability/access is concerned, several factors come into play [15]:
time, place, service provision, network, object, and user. Figure 4.2 presents the
availability requirements in IoT as well as the challenges facing such
requirements.

In addition to the six availability factors in IoT that we mentioned before, we
should also consider the aspects pertaining to the environment, which emerge
more and more in the current trends in technology developments, such as green
computing, green cloud, and even green IoT, why not? This green feature is rooted
first of all in the topic of exhaustible resources and renewable energy sources at
the same time.

Fig. 4.2 Availability challenges in IoT

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

70

4.2.6 Storage in IoT

The IoT generates large volumes of data that should be processed and analyzed in
real time. This leads to a high volume of operations to be executed in data centers,
which comes with new challenges in point of security, network capacity, and
analytical capabilities. On top of that, the multitude of heterogeneous devices
combined with a large volume of data creates challenges in data storage management.
Storage management should consider at least the following IoT data-related chal-
lenges (the nine Vs of Big Data): volume, variety, velocity, variability, visualization,
veracity, validity, volatile, and value (Fig. 4.3).

We can see that in terms of data storage capacity, next to the fundamental features
defining the concept of Big Data (volume, velocity, variety), the IoT evinces six
other different aspects. Each of them comes with two or three sensitive challenges
that require a collective interpretation in the general context of the IoT.

4.2.7 Security in IoT

The IoT supposes the existence of numerous connected devices, which gives rise to
multiple entry points and necessarily higher security risks. Moreover, more than one
level of software, integration middleware, APIs, machine-to-machine communica-
tion, etc. necessarily result in a complex environment and high security risks [16].

Fig. 4.3 The addiction for nine Vs of data storage challenges in IoT

M. Mircea et al.

71

Security in IoT is both a challenge and a top priority. Since technology is a scale
phenomenon in our daily lives, we must ensure the security of the devices and the
services provided to consumers. There are several dimensions to the analysis of
security in IoT [17] including information security, information technology (IT)
security, physical security, and operational security. Starting from the four dimen-
sions, Fig. 4.4 illustrates some of the security challenges in IoT.

Information security is first aimed at ensuring the confidentiality, integrity, and
availability of data. In the context of the IoT, another major security element is for the
data to preserve their non-repudiation features. Beyond the four dimensions in the
analysis of data security in IoT, the topic remains critical. Security is the main reason
why we see so much concern for quality assurance and the development of standard-
ization in IoT frameworks and architectures. Security also makes the main barrier in
the way of what is now the effort to expand the IoT in the area of government.

IoT security challenges also stem from the strongly heterogeneous nature of the
IoT components as such. In other words, the IoT may shift all the vulnerabilities of
the digital world to the real world. Any IoT component, either an individual or an
object, is subject to some level of exposure.

Fig. 4.4 Security challenges in IoT

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

72

Given the major challenges and problems the connected environment is con-
fronted with, experts have never stopped looking for solutions to address them.
Cloud Computing is a modern solution bringing important benefits through the
three types of services it offers (IaaS, PaaS, SaaS). The next paragraphs dwell on the
advantages of integrating Cloud Computing and the IoT in countering the problems
and challenges described before. Focus is laid on the analysis of Cloud Computing
in the light of the benefits and solutions it offers at the level of the Big 7 of IoT (scal-
ability, interoperability, reliability, efficiency, availability, storage, and security).

4.3 Combining Cloud Computing and the IoT to Address
the Inherent Challenges of IoT

The three types of services offered by Cloud Computing bring important benefits in
terms of storage, computing, resource management, analytics, the management,
control, and coordination of network-adjusted systems and services. Service provid-
ers offer benefits to IoT at the level of each cloud type: IaaS allows for the manage-
ment of the network and hardware equipment; PaaS facilitates the management of
the operating systems and the application environment; SaaS can manage every-
thing related to clients, applications included [18]. Cloud Computing also offers the
IoT the possibility to control access to the resources, by means of IaaS services;
provide data access, by means of PaaS services; or complete access to software
applications, by means of SaaS services [19]. IoT applications offered through SaaS
are built on PaaS infrastructure, and they make it possible to conduct enterprise
processes by means of IoT services and software.

The IoT can make the most of the three models of Cloud Computing: public
cloud (where the service provider makes resources available to the general public
over the Internet), private cloud (the services and infrastructure are part of a private
network), and hybrid cloud (both public and private options). The selection of the
cloud models to be used in the IoT depends on specific requirements and security.

The combined use of Cloud Computing and IoT can embrace two convergent
approaches [20]: bring IoT functionalities into cloud (cloud-centric IoT) or bring
cloud functionalities into IoT (IoT-centric cloud). Figures 4.5 and 4.6 present the
two approaches to the combination between Cloud Computing and IoT along the
three types of cloud services and models. The combination between Cloud
Computing and the Internet of Things translates in paradigmatic research in the lit-
erature, such as Cloud of Things, CloudIoT, or Cloud-based IoT.

The next sections dwell on the analysis of Cloud Computing from the point of
view of its benefits in coping with the seven challenges in IoT (scalability, interoper-
ability, reliability, efficiency, availability, storage, and security) previously described.

M. Mircea et al.

73

Fig. 4.5 Cloud-centric IoT

Fig. 4.6 IoT-centric Cloud Computing

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

74

4.3.1 Scalability Through Cloud Computing

One of the main features of Cloud Computing is its flexibility in adapting to the
growing or declining needs of the clients. Such a feature can cause cost to go down
in IoT, where clients pay for the service they use. Cloud allows for scalability on
several levels, such as the existing devices, the volume of data and data storage
capacity, the diversity of data, network management, and the services attached to
the applications (horizontal and vertical flexibility).

On-demand scalability is one of the biggest benefits of Cloud Computing. When
we analyze the range of benefits of Cloud Computing, it is often difficult to concep-
tualize the power of on-demand scalability. Despite that, organizations can enjoy
huge benefits when they correctly implement automated scalability. It is obvious
that in the IoT context, the benefits of scalability come hand in hand with their
inherent complexities. On-demand scalability of only some applications, for
instance, asks for scalability capabilities throughout the entire cloud environment
(e.g., multiple-instance distribution of traffic).

4.3.2 Interoperability Through Cloud Computing

The IoT comprises a variety of objects that are connected to the Internet in different
ways, such as 2G/3G/4G, NFC, Wi-Fi, ZigBee, Bluetooth, WSAN, and Z-Wave.
Moreover, many devices operate via a single channel, which generates difficulties
in their interaction. One solution is to develop hubs, as they are capable to commu-
nicate through several channels and collect signals from a large range of devices
[21]. Cloud Computing comes with standard interfaces and the portability of vari-
ous devices among various Cloud providers [22].

SaaS services enable the remote use of applications (over the Internet) by IoT
clients, from any place and without the need to have private servers installed. Cloud
Computing comes with independence from hardware through virtualization, which
minimizes the dependency of applications on the basic hardware. PaaS offers mid-
dleware and interoperable architectures for data sharing and services among hetero-
geneous devices. Lately, these IoT interoperability capacities have been provided in
Cloud through services such as metal-as-a-service and container-as-a-service.

4.3.3 Reliability Through Cloud Computing

One way in which Cloud is part of the solution to better device reliability is the
increase in the battery life of devices (for instance, by eliminating the heavy tasks
allocated to the devices) or the possibility to put in place a modular architecture [23,
24]. Reliability of services is improved, too, as Cloud Computing provides a

M. Mircea et al.

75

disruption- tolerant infrastructure by better availability of the site-redundant Cloud
services [22]. Cloud Computing also uses various mechanisms to ensure data syn-
chronization (ACID, atomicity, consistency, isolation, durability; BASE, basically
available, soft state, eventual consistency), which improves transactional reliability
and consistency. Network reliability can be improved by good traffic management.
Cloud Computing offers control mechanisms that can manage excessive data traffic
and check the activities to initiate new instances to be shared in traffic [25].

4.3.4 Efficiency Through Cloud Computing

Cloud Computing comes with different advantages resulting in increased efficiency
in IoT, such as multi-zone management, allowing for high-level availability, perfor-
mance, scalability, savings, or better use of energy [22]; on-demand unlimited pro-
cessing capabilities, addressing the needs of IoT processing and allowing for highly
complex analyses [26, 27]; real-time data processing [26, 28]; the management of
complex events; real-time data access for objects [28]; and remote monitoring, con-
trol, coordination, and communication of objects [29].

4.3.5 Availability Through Cloud Computing

Cloud data are homogeneously treated through standard API interfaces [29], and
they can be accessed and visualized from anywhere [28]. The Cloud environment
offers effective solutions allowing to connect, follow, and manage any object (thing),
irrespective of place and time, by using customized gateways and embedded appli-
cations [28]. Starting from the seven components of the availability of Cloud
Computing services [30], Table 4.1 presents the benefits they bring to IoT.

4.3.6 Storage Through Cloud Computing

The IoT challenge related to the growing need for storage space can find a solution
in Cloud storage, since it comes with reliability and security and it can scale-up to
the needs of the IoT network. Through its storage methods, Cloud Computing
offers unlimited, low-cost means to manage and analyze both structured and
unstructured data.

Cloud infrastructure offers storage and processing capabilities able to address
the need for IoT applications to work with Big Data. Yang et al. (2017), analyze the
ways in which Cloud Computing can meet the challenges of Big Data (5 V) [32]:

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

76

• Volume – a large volume of data processed by powerful computing resources;
• Variety – the variety of multiple-entry sources is addressed through flexible

(computing and analytical) resources and self-service advantages;
• Velocity of observation and forecasting is handled by the flexibility and on-

demand features of Cloud Computing;

Table 4.1 Benefits of Cloud Computing availability to the IoT environment

Availability
component Benefits of Cloud Computing to IoT environment

Continuity and
functionality

Disaster recovery plan, at a low cost (data recovery off-site)
Operational recovery, focused on the recovery of the technology or the
applications (on-site)
Redundant infrastructure (components, routes, power supply)
Continuous data availability (disaster recovery copies; replacement of
onsite copies in case of incident; archiving data according to
organizational policies and the legislation into force; data replication)
Service continuity, which makes it possible to provide the service in
another component of the application (in case the initial component
fails)
Loose dependencies among services, which avoid a cascading disaster
Restarting the service in case of an incident and enabling service and
data access

Quality Flexible, anywhere and anytime real-time access to shared computing
resources (networks, servers, applications, storage, services)
Multi-tenant virtual Cloud Computing platform
Efficient processing of the users’ requests in the context of big spatial
data and of numerous competing requests [31]
Platform for large-scale data analysis
Complex data processing algorithms
On-demand and unlimited virtual processing power [32]

Monitoring and
incident
management

Environment for Cloud-based implementation, machine health
prognostics for Big Data, and complex processing (e.g., [33])
Metrics and incident response plans, incident monitoring, notification,
and sensing tools provided by the Cloud operator

Security and data
access

Cloud Computing intensifies data sharing, by applying modern analytic
tools and managing controlled access and security [34]
Third-party provision facilitates good security, incident management,
compliance, access, and identity control [35]; security layers,
responsibilities, and exceptions are enclosed in SLAs (service-level
agreement)
Secured access depends on the Cloud model (public, supplied by the
Cloud provider; private, supplied by the organization; hybrid,supplied
by both the organization and the third-party provider)
Ensuring several layers of control, depending on requirements (physical
security, network security, system security, application security) as well
as security measures implemented at individual and process levels (such
as separation of duties and change management) [35]

M. Mircea et al.

77

• Veracity of the Big Data is relieved by self-service to select the best-matched
services and pay-as-you-go cost model;

• Value represented as accurate forecasting with high resolution, justifiable cost,
and customer satisfaction with on-demand, flexibility, and pay-as-you-go fea-
tures of Cloud Computing.

Cloud Computing also meets the other challenges in Big Data (see Fig. 4.3), namely:

• Variability – scenario-building techniques related to the multiple significance of
data, with fast adjustment possibilities based on the current tasks called for
through the data involved;

• Visualization – approaches, methods, and techniques for the smart visualization
of multidimensional data [36];

• Validity – mechanisms to ensure the accuracy and correctness of the data in the
models; possibilities to block potential error propagation, including errors gener-
ated by the multiple significance of data;

• Volatile – flexible approaches to archiving to facilitate the secure classification,
indexation, search, and recovery of data during the operation of automatic moni-
toring and reporting [37], for extended (not long term) periods of time and digital
long-term preservation, which includes the preservation of information and data,
as well as the complete management of the support infrastructure, data, informa-
tion, and storage services (long term) [38].

4.3.7 Security Through Cloud Computing

Cloud Computing offers advanced secure multi-tenant environment with multi-role
support and complete isolation of applications. It also ensures data integrity and
security mechanisms for the stored resources [22]. Cloud data can be protected
through the implementation of high-level security [26]. Nevertheless, Cloud
Computing security is still an important challenge that, unfortunately, can propagate
even toward the IoT. As highlighted before, for both Cloud Computing and the IoT,
security impediments amount to barriers in the development and large-scale adop-
tion of the two paradigms in more sensitive fields such as the government.

Starting from the major challenges and problems of the IoT as well as the bene-
fits of Cloud Computing described before, Table 4.2 presents a summary of how
Cloud Computing can offer a solution to the Big 7 of IoT.

4.4 Conclusions

The approach to the Big 7 in IoT suggested in this chapter is not necessarily exhaus-
tive. It is obvious that beyond the Big 7 of IoT, there are aspects that need further
analysis in line with developments in technology, methodology, concepts, and legal
requirements. Moreover, one should not lose sight of the political dimension of the

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

78

Table 4.2 Problems and challenges of IoT and Cloud Computing solutions

The Big 7 of IoT IoT problems and challenges
Cloud Computing benefits and
solutions

Scalability The connection of new devices and
new users

Flexibility in adapting to the
growing or declining needs of the
clients

New analytical capabilities Allows for scalability on several
levels, such as the existing devices,
the volume of data and data storage
capacity, the diversity of data,
network management, and the
services attached to the applications
(horizontal and vertical flexibility)

The frequent changes in technology,
the large number of interactions
within the IoT, as well as the growing
demand for services

Interoperability The level of data perception (see
Fig. 4.1): technical (communication
infrastructure, linkage of devices),
syntactical (legislation, data
exchange formats), semantic
(customized devices, information
transmission and interpretation),
organizational (cooperation across
borders, linkage of processes);

Enable the remote use of
applications (over the Internet) by
IoT clients
Standard interfaces and the
portability of various devices
among various Cloud providers
Independence from hardware
through virtualization
Middleware and interoperable
architectures for data sharing and
services among heterogeneous
devices

The moment when interoperability is
achieved (static, dynamic)

Reliability Devices (number and diversity of
connected devices)

Device reliability (increase in the
battery life of devices, the
possibility to put in place a modular
architecture)

Network (high number of users, the
multitude of devices, several types of
networks) Network reliability (good traffic

management)
The provided services (availability,
collection, storage, and processing
of large volumes of data)

Reliability of services (a disruption-
tolerant infrastructure, various
mechanisms to ensure data
synchronization, which improves
transactional reliability and
consistency)

Efficiency Supports different real-time
analyses of a big volume of data

Multi-zone management
On-demand unlimited processing
capabilities

Satisfies the diversity of data
processing requests and process
data as fast as it arrives

Real-time data processing

Ensuring advanced data processing
and analysis with a view to
supporting the machine learning
processes embedded in smart
devices

The management of complex events
Real-time data access for objects
Remote monitoring, control,
coordination, communication of
objects

(continued)

M. Mircea et al.

79

IoT paradigm that comes to strengthen once again the complexity of the approaches,
at least from the perspective of globalization, the free movement of workers, or the
phenomenon of migration. In this context, it is worth mentioning that national poli-
cies regarding information security, information protocols, and, last but not least,
legal initiatives of the Big Brother family aimed at monitoring communications over
the Web. On the other hand, the evolutionary perspective of the IoT placed it in the
early 1990s in terms of domotic or imotic perspectives. One way or another, aspects
still regard the same and only issue: the automation of daily human activities or the
so-called digital human universe.

An important conclusion of our scientific study is that we must reiterate the vital
role of individuals in the IoT context. An individual is not a mere or common com-
ponent of the IoT environment but the very entity that controls the environment by
means of technology. The challenges in IoT regard numerous and sometimes com-
plex aspects. Despite that, the critical dimension lies with the security aspects, and
it is security that makes the main barrier in the development of the IoT. We have
seen that communications, computing power, and sensing capacity are key elements
in the IoT environment. These three elements form what the literature calls the

Table 4.2 (continued)

The Big 7 of IoT IoT problems and challenges
Cloud Computing benefits and
solutions

Availability Anything (many things) Effective solutions allowing to
connect, follow, and manage any
object (thing), irrespective of place
and time, by using customized
gateways and embedded
applications

Any time (all day and night)
Anywhere (many and diverse
locations)

Any service (many services) The benefits that cloud services
bring to IoT (details in Table 4.1)Any network (multi-protocol,

technology, operating systems)
(details in Fig. 4.2)

Storage IoT data-related challenges (the
nine V’s of Big Data): volume,
variety, velocity, variability,
visualization, veracity, validity,
volatile, value (details in Fig. 4.3)

Cloud Computing can meet the
challenges of Big Data
Cloud Computing benefits for the
nine V’s of Big Data: volume,
variety, velocity, variability,
visualization, veracity, validity,
volatile, value

Security Information security Advanced secure multi-tenant
environment with multi-role
support and complete isolation of
applications

Information technology security

Physical security Ensures data integrity and security
mechanisms for the stored
resources

Operational security

(details in Fig. 4.4) Implementation of high-level
security

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

80

primitives of IoT trustworthiness. Recent NIST research from 2017 suggests five
such primitives: sensor, aggregator, communication channel, eutility (related to
installed computing power), and decision trigger [39]. Moreover, with respect to the
issue of security, NIST identifies six elements that play a major role in stimulating
trustworthiness in an IoT network: the environment, cost (in time and money), geo-
graphical location, the owner of the primitive, the unique identification number of
the communication device, and the snapshot used to synchronize events.

Integration between Cloud Computing and IoT helps in solving some of the
challenges the IoT is faced with, but it is not a panacea. Like any other technology
solution, Cloud Computing not only comes with benefits but also with challenges
and problems, which is something to consider in the creation of CloudIoT. One of
the important problems facing both the IoT and Cloud is standardization. Speaking
of security, for instance [40], we cannot fail to see that the standard package ISO
27000-27019 on information security management systems (updated in February
2016) is already obsolete in some respects. This happens first of all due to the fast-
paced development of modern communication technologies and solutions. Second,
hybrid solutions, such as Cloud sourcing or Cloud of Things, are, in their turn,
sources of mistrust and are not covered by standards.

In spite of that, considerable effort is consistently being made to bring the IoT in
all spheres of human existence. Therefore, we must highlight some of the manifest
trends in politically and economically stable countries to promote the IoT government
paradigm. Accordingly, the 2020 horizon will mark the beginning of a new era – the
digital industrial society – thus escalating the stage of knowledge-based information
society. Beyond the aspects linked to technology or legislation, the question whether
to develop the IoT in symbiosis with Cloud Computing must also consider the envi-
ronment, and that is unknown, if we think of the 2020 horizon. Green computing
philosophy thus expands its scope toward what we call green Cloud Computing today
and what we may call the green Internet of Things in the near future.

References

 1. Zhou J, Leppänen T, Harjula E, Ylianttila M, Ojala T, Yu C, Jin H, Yang LT (2013) CloudThings:
a common architecture for integrating the internet of things with Cloud Computing. In:
Proceedings of the 2013 IEEE 17th international conference on computer supported coopera-
tive work in design, pp 651–657, Canada, 27–29 June 2013

 2. Chao HC (2011) Internet of things and Cloud Computing for future internet. In: Chang RS,
Kim T, Peng SL (eds) Security-enriched urban computing and smart grid. Springer, Berlin/
Heidelberg

 3. Alhakbani N, Hassan MM, Hossain MA, Alnuem M (2014) A framework of adaptive interac-
tion support in Cloud-based Internet of Things (IoT) environment. In: Fortino G, Di Fatta G,
Li W, Ochoa S, Cuzzocrea A, Pathan M (eds) Internet and distributed computing systems.
Springer, Cham, pp 136–146

 4. Aitken R, Chandra V, Myers J, Sandhu B, Shifren L, Yeric G (2014) Device and technology
implications of the Internet of Things. In: VLSI technology: digest of technical papers, pp 1–4,
2014 Symposium on VLSI technology digest of technical papers, 11 Sept 2014

M. Mircea et al.

81

 5. Gomes MM, Righi RR, da Costa CA (2014) Future directions for providing better IoT infra-
structure. In: Proceedings of the 2014 ACM international joint conference on pervasive and
ubiquitous computing, pp 51–54, UbiComp’14 Adjunct, Seattle, 13–17 Sept 2014

 6. Botta A, de Donato W, Persico V, Pescapé A (2016) Integration of Cloud Computing and inter-
net of things: a survey, Futur Gener Comput Syst 56:684–700

 7. Aazam M, Khan I, Alsaffar AA, Huh E-N (2014) Cloud of Things: Integrating Internet of
Things and Cloud Computing and the issues involved. In: Applied sciences and technol-
ogy, pp 414–419, 11th International Bhurban conference on Applied Sciences & Technology
(IBCAST) Islamabad, 14th–18th January 2014

 8. Liu Y, Dong B, Guo B, Yang J, Peng W (2015) Combination of Cloud Computing and Internet
of Things (IOT) in medical monitoring systems. International Journal of Hybrid Information
Technology 8(12):367–376

 9. Gartner (2014) The impact of the internet of things on data centers. Gartner report, 18 March,
2014. http://www.gartner.com/newsroom/id/2684915. Accessed 3 Feb 2017

 10. Davis R (2014) 7 big problems with the internet of things. 19 March 2014, http://www.
cmswire.com/cms/internet-of-things/7-big-problems-with-the-internet-of-things-024571.php.
Accessed 3 Feb 2017

 11. Iconectiv (2016) Overcoming interoperability challenges in the internet of things. Telcordia
Technologies, September 2016. http://www.iconectiv.com/sites/default/files/2016-09/appid_
wp_overcoming-interoperability-challenges-iot.pdf. Accessed 3 Feb 2017

 12. IERC (2015) Internet of things IoT semantic interoperability: research challenges, best prac-
tices, recommendations and next steps. European Research Cluster on the Internet of Things,
March 2015. http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_
Semantic_Interoperability_Final.pdf. Accessed 3 Feb 2017

 13. Van der Veer H, Wiles A (2008) Achieving technical interoperability – the ETSI approach,
ETSI 3rd edition, April 2008. http://www.etsi.org/images/files/ETSIWhitePapers/IOP%20
whitepaper%20Edition%203%20final.pdf. Accessed 3 Feb 2017

 14. Kempf J, Arkko J, Beheshti N, Yedavalli K (2011) Thoughts on reliability in the internet
of things, March 2011. https://www.iab.org/wp-content/IAB-uploads/2011/03/Kempf.pdf.
Accessed 3 Feb 2017

 15. Bagula BA (2016) Internet-of-things and big data: promises and challenges for the develop-
ing world, 11 May 2016. http://unctad.org/meetings/en/Presentation/ecn162016p16_Bagula-
UWC_en.pdf. Accessed 3 Feb 2017

 16. Kocher C (2014) The internet of things: challenges and opportunities, 17 Nov 2014. http://
sandhill.com/article/the-internet-of-things-challenges-and-opportunities/. Accessed 3 Feb 2017

 17. Liwei R (2015) IoT security: problems, challenges and solution. http://www.snia.org/
sites/default/files/DSS-Summit-2015/presentations/Liwei-Ren_Iot_Security_Problems_
Challenges_revision.pdf. Accessed 20 Jan 2017

 18. Singh J, Pasquier T, Bacon J, Ko H, Eyers D (2016) Twenty security considerations for cloud-
supported internet of things. Internet Things J 3(3):269–284

 19. Soldatos J (2016) IoT tutorial: chapter 4 – internet of things in the Clouds, 30 May 2016.
https://www.linkedin.com/pulse/iot-tutorial-chapter-4-internet-things-clouds-john-soldatos.
Accessed 3 Feb 2017

 20. Abraham S (2016) IoT – Internet of Things, 26 Sept 2016. http://www.slideshare.net/
SherinCAbraham/internet-of-things-with-cloud-computing-and-m2m-communication.
Accessed 3 Feb 2017

 21. Workflow Studios (2016) Taming the internet of things with the Cloud, 22 March 2016. http://
workflowstudios.com/taming-the-internet-of-things-with-the-cloud/. Accessed 3 Feb 2017

 22. Llorente I (2012) Key challenges in Cloud Computing to enable future internet of things, 18
Jan 2012. http://www.slideshare.net/llorente/challenges-in-cloud-computing-to-enable-future-
internet-of-things-v03. Accessed 3 Feb 2017

 23. Yun M, Yuxin B (2010) Research on the architecture and key technology of Internet of
Things (IoT) applied on smart grid. In: Advances in energy engineering (ICAEE), pp 69–72.
International Conference on Advances in Energy Engineering, Beijing, 19–20 June 2010

4 Using Cloud Computing to Address Challenges Raised by the Internet of Things

http://www.gartner.com/newsroom/id/2684915
http://www.cmswire.com/cms/internet-of-things/7-big-problems-with-the-internet-of-things-024571.php
http://www.cmswire.com/cms/internet-of-things/7-big-problems-with-the-internet-of-things-024571.php
http://www.iconectiv.com/sites/default/files/2016-09/appid_wp_overcoming-interoperability-challenges-iot.pdf
http://www.iconectiv.com/sites/default/files/2016-09/appid_wp_overcoming-interoperability-challenges-iot.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/IOP whitepaper Edition 3 final.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/IOP whitepaper Edition 3 final.pdf
https://www.iab.org/wp-content/IAB-uploads/2011/03/Kempf.pdf
http://unctad.org/meetings/en/Presentation/ecn162016p16_Bagula-UWC_en.pdf
http://unctad.org/meetings/en/Presentation/ecn162016p16_Bagula-UWC_en.pdf
http://sandhill.com/article/the-internet-of-things-challenges-and-opportunities/
http://sandhill.com/article/the-internet-of-things-challenges-and-opportunities/
http://www.snia.org/sites/default/files/DSS-Summit-2015/presentations/Liwei-Ren_Iot_Security_Problems_Challenges_revision.pdf
http://www.snia.org/sites/default/files/DSS-Summit-2015/presentations/Liwei-Ren_Iot_Security_Problems_Challenges_revision.pdf
http://www.snia.org/sites/default/files/DSS-Summit-2015/presentations/Liwei-Ren_Iot_Security_Problems_Challenges_revision.pdf
https://www.linkedin.com/pulse/iot-tutorial-chapter-4-internet-things-clouds-john-soldatos
http://www.slideshare.net/SherinCAbraham/internet-of-things-with-cloud-computing-and-m2m-communication
http://www.slideshare.net/SherinCAbraham/internet-of-things-with-cloud-computing-and-m2m-communication
http://workflowstudios.com/taming-the-internet-of-things-with-the-cloud/
http://workflowstudios.com/taming-the-internet-of-things-with-the-cloud/
http://www.slideshare.net/llorente/challenges-in-cloud-computing-to-enable-future-internet-of-things-v03
http://www.slideshare.net/llorente/challenges-in-cloud-computing-to-enable-future-internet-of-things-v03

82

 24. Wang C, Bi Z, Xu LD (2014) Iot and Cloud Computing in automation of assembly modeling
systems. IEEE Trans Ind Inf 10(2):1426–1434

 25. Bauer E, Adams R (2012) Reliable cloud computing – key considerations, 16 July 2012.
https://insight.nokia.com/reliable-cloud-computing-key-considerations. Accessed 3 Feb 2017

 26. Dash SK, Mohapatra S, Pattnaik PK (2010) A survey on application of wireless sensor network
using Cloud Computing. Int J Comput Sci Eng Technol 1(4):50–55

 27. Parwekar P (2011) From internet of things towards cloud of things. In: Computer and
Communication Technology (ICCCT), 2011 2nd international conference on computer and
communication technology, pp 329–333, Allahabad, 15–17 Sept 2011

 28. Rao BP, Saluia P, Sharma N, Mittal A, Sharma SV (2012) Cloud computing for internet of
things & sensing based applications. In: Sensing Technology (ICST), 2012 sixth international
conference on sensing technology, pp 374–380, West Bengal, 18–21 Dec 2012

 29. Fox GC, Kamburugamuve S, Hartman RD (2012) Architecture and measured characteristics
of a cloud based internet of things. In: Collaboration Technologies and Systems (CTS), 2012
International Conference on Collaboration Technologies and Systems, pp 6–12, Colorado,
21–25 May 2012

 30. Czarnowski A (2014) Service availability (in the clouds), 24 Mar 2014. http://ec.europa.eu/
justice/contract/files/expert_groups/discussion_paper_service_availability_en.pdf. Accessed 3
Feb 2017

 31. Zhong Y, Han J, Zhang T, Li Z, Fang J, Chen G (2012) Towards parallel spatial query process-
ing for big spatial data. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), pp 2085–2094, Shanghai, 21–25, May 2012

 32. Yang C, Huang Q, Li Z, Liu K, Hu F (2017) Big data and cloud computing: innovation oppor-
tunities and challenges. International Journal of Digital Earth 10(1):13–53, 03 Nov 2016

 33. Yang C, Liu C, Zhang X, Nepal S, Chen J (2015a) A time efficient approach for detecting
errors in big sensor data on Cloud. IEEE Transactions on Parallel and Distributed Systems
26(2):329–339

 34. Radke AM, Tseng MM (2015) Design considerations for building distributed supply chain
management systems based on Cloud Computing. Journal of Manufacturing Science and
Engineering 137(4):1–7

 35. Cloud Security Alliance (2011) Security guidance for critical areas of focus in cloud com-
puting V3.0. https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/
csaguide.v3.0.pdf. Accessed 3 Feb 2017

 36. Bernatavičienė J, Dzemyda G, Kurasova O, Marcinkevičius I, Medvedev V, Treigys P
(2016) Cloud Computing approach for intelligent visualization of multidimensional data. In:
Advances in stochastic and deterministic global optimization, pp 73–85, 5 Nov 2016

 37. IBM (2011) Cloud-based data archiving service, July 2011. http://www-935.ibm.com/ser-
vices/be/en/it-services/cloud-based_data_archiving.pdf. Accessed 3 Feb 2017

 38. Chad T, Yangaro S (2013) Digital data archive and preservation in the cloud – what to do
and what not to do. http://www.snia.org/sites/default/education/tutorials/2013/spring/cloud/
ChadThibodeau-SebastianZangaro_Digital_Data_Archive_and_Preservation.pdf. Accessed 3
Feb 2017

 39. NIST (2017) National Institute of Standards and Technology, Draft NIST-IR-8063, 30 Jan
2017. http://csrc.nist.gov/publications/PubsDrafts.html#NIST-IR-8063. Accessed 3 Feb 2017

 40. ISO (2016) ISO/IEC 27000:2016(en). International Organization for Standardization, Standard
for Information Technology – Security techniques – Information security management systems.
https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-4:v1:en. Accessed 3 Feb 2017

M. Mircea et al.

https://insight.nokia.com/reliable-cloud-computing-key-considerations
http://ec.europa.eu/justice/contract/files/expert_groups/discussion_paper_service_availability_en.pdf
http://ec.europa.eu/justice/contract/files/expert_groups/discussion_paper_service_availability_en.pdf
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf
http://www-935.ibm.com/services/be/en/it-services/cloud-based_data_archiving.pdf
http://www-935.ibm.com/services/be/en/it-services/cloud-based_data_archiving.pdf
http://www.snia.org/sites/default/education/tutorials/2013/spring/cloud/ChadThibodeau-SebastianZangaro_Digital_Data_Archive_and_Preservation.pdf
http://www.snia.org/sites/default/education/tutorials/2013/spring/cloud/ChadThibodeau-SebastianZangaro_Digital_Data_Archive_and_Preservation.pdf
http://csrc.nist.gov/publications/PubsDrafts.html#NIST-IR-8063
https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-4:v1:en

83© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_5

Chapter 5
Overcoming Service-Level Interoperability
Challenges of the IoT

Darko Andročec

Abstract The Internet of Things (IoT) is a complex ecosystem of devices, solu-
tions, services and applications. IoT is highly heterogeneous because devices focus
on proprietary technology and interfaces. To realize its full value, interoperability of
‘things’ becomes an important component of the ecosystem, which must be satis-
factorily achieved. At present, however, it is impossible to manage individually a
vast amount of different IoT devices and their application programming interfaces
(APIs). Interoperability is therefore one of the main problems of the IoT paradigm.
Much of the existing IoT interoperability research elaborates on techniques and
methods to achieve interoperability. Multiple IoT standards exist today and new
ones are being created. Different IoT standards compete; and a generally globally
accepted standard does not currently exist. There are, in fact, many unsolved
interoperability issues occurring at different levels, including data, service, network
and application. This chapter focuses on service-level IoT interoperability problems
and solutions. It reviews the use case of possible interoperability resolutions. The
chapter also identifies future research problems related to IoT service-level
interoperability.

5.1 Introduction

One of the most important properties of the Internet of Things (IoT) environment is
the seamless interoperability between devices, also called ‘things’, and the services
that these devices provide. Unfortunately, there are numerous challenges in this
regard. However, with the development of standards and IoT protocols, innovation
is at its peak. Yet, a satisfactory solution has not prevailed as many IoT providers
and device manufacturers use their own protocols and APIs. In such ecosystems, it
is difficult to achieve technical and semantic interoperability of devices and IoT

D. Andročec (*)
Department of Information Systems Development, Faculty of Organization and Informatics,
University of Zagreb, Varaždin, Croatia
e-mail: dandrocec@foi.hr

mailto:dandrocec@foi.hr

84

services to effectively communicate. IoT interoperability has become a complex
practical and research problem.

This chapter provides a discussion of the main challenges of IoT interoperability,
with a focus on service-level IoT interoperability. Service-level interoperability
aims to semantically annotate services to enable their automatic or semi-automatic
composition and orchestration based on their functional and nonfunctional proper-
ties. Semantic Web services aim at an automated solution to the following prob-
lems: description, publishing, discovery, mediation, monitoring and composition of
services.

Known solutions to the problems will also be presented. Most researchers use
Semantic Web technologies to tackle IoT interoperability problems. An IoT interop-
erability use case will also be presented to illustrate the implementation of IoT
interoperability solutions at the service level. It will discuss the development of
underlying IoT ontology, annotation of things and automatic or semi-automatic
composition of IoT services.

The remainder of the chapter will outline interoperability: specifics of IoT
interoperability and both recent and ongoing IoT interoperability research projects.
Next, common interoperability issues and challenges will be presented and system-
atized. Known interoperability solutions will be discussed. The chapter will con-
clude with an IoT service-level interoperability use case and conclusions.

5.2 Interoperability

Interoperability can be defined in several ways. IEEE [1] is credited with one of the
simplest definitions: the ability of two or more systems or components to exchange
information and to use the information that has been exchanged. Brownsword et al.
[2] provide the following working definition of interoperability: the ability of a col-
lection of communicating entities to (a) share specified information and (b) operate
on that information according to an agreed operational semantics. Pokraev et al. [3]
claim that interoperability implies that systems are able to interact (i.e., exchange
messages), read and understand each other’s messages and share the same expecta-
tions about the effect of the message exchange.

From these definitions, three main aspects of interoperability can be identified:
syntactic interoperability (compatible formats), semantic interoperability (meaning
of the information) and pragmatic interoperability (effect of the exchanged informa-
tion) [3].

Vernadat [4] similarly defines interoperability as the ability for a system to com-
municate with another system and to use the functionality of the other system. Park
and Ram [5] note that interoperability is the most critical issue facing businesses
that use data from different information systems. According to Park and Ram [5],
two types of interoperability are found: semantic and syntactic interoperability.
Semantic interoperability, which exists at the knowledge level, bridges semantic
conflicts due to differences in meanings, perspectives and assumptions. Syntactic

D. Andročec

85

interoperability, which is interoperability at the application level, aims at software
component cooperation with different implementation languages and development
platforms [5].

Interoperability is a multidimensional concept that can be looked at from multi-
ple perspectives. Therefore, interoperability frameworks were developed using the
following elements: vocabulary, concepts, principles, guidelines and recommenda-
tions. Some of the most important frameworks are ATHENA interoperability frame-
work (AIF), IDEAS interoperability framework, LISI reference model, enterprise
interoperability framework and GridWise interoperability context-setting frame-
work [6].

Apart from interoperability frameworks, some comprehensive interoperability
models are presented in current literature. For example, Naudet et al. [7] developed
a general ontology of interoperability. This ontology described the ontological
metamodeling system, as well as its problems and solutions. It can be used to diag-
nose and resolve interoperability problems. The aforementioned authors concluded
that there were two alternative technical solutions to interoperability problems:
bridging and homogenization [7]. Bridging uses an intermediate system (often
called an adapter) between systems having interoperability problems. The interme-
diate system relies on the translation protocol (e.g. using mappings) to achieve
interoperability between interacting systems [7]. Homogenization, which implies
the unified model, acts directly on models or their representations [7]. It requires
syntactic or semantic transformations using the defined unified model. In the fol-
lowing subsections, IoT interoperability will be described in more detail. Main IoT
interoperability research projects will be listed.

5.2.1 IoT Interoperability

The IoT promises a world of networked intelligent devices (things). These things
communicate mutually and constantly, as well as generate data as a basis for smart
applications and services. Achieving point-to-point communication relies on
interoperability [8]. Technical IoT interoperability requires that things can speak
and be heard. Semantic IoT interoperability requires that things speak the same
language [8]. One of the most critical semantic interoperability elements is a means
for device identification. Currently, companies develop their own things to rely on
proprietary standards or closed systems. Therefore, it is difficult to enable interoper-
ability. A similar situation is emerging in other fields (e.g. cloud computing) as
company products and services compete for the market share. Interoperable IoT
systems can increase the ability to build innovative IoT services.

5 Overcoming Service-Level Interoperability Challenges of the IoT

86

5.2.2 Research Projects on IoT Interoperability

IoT interoperability is a popular research theme. It is well founded because of prom-
ises of IoT possible future capabilities of citizens’ life improvements, (e.g. by
European past FP7 and current Horizon 2020 initiatives). This chapter will list
important research projects, as well as their achievements or future goals. The
OpenIoT [9] FP7 project provided an open IoT platform to enable semantic IoT
service interoperability in the cloud. Based on W3C Semantic Sensor Networks
(SSN) ontology, it enabled semantic annotations of sensors. OpenIoT used Linked
Data technologies to link related sensor data. The project’s focus was to achieve
interoperability among sensors’ data. Another FP7 project, IoT.est. [10], developed
a framework for IoT service creation and testing to enable test-driven and semantic
control of IoT service lifecycle. The EU FP7 project IoT@Work [11] aimed at self-
anagement features in factory automation systems. The main concept of the project
is Plug&Work, which represented the ability of devices to autoconfigure themselves
for different automation applications. The GAMBAS consortium [12] developed
the middleware and Java-based SDK for smart city applications to address context
data acquisition and interoperable data integration. IoT6 [13] designed IPv6-based
SOA to achieve interoperability among smart thing components, applications and
services. The SmartAgriFood FP7 project [14] addressed the food and agribusiness
as a use case for the future Internet. Interoperability was identified as one of the
most important requirements for agri-food logistics.

IoT interoperability is a popular research theme as confirmed by recent Horizon
2020 European research projects. The first BIG IoT (Bridging the Interoperability
Gap of the Internet of Things) plans to implement BIG IoT APIs for use by various
IoT platforms [15]. It seeks to create marketplaces for IoT services and applications
[15]. Through the common API, it is easier to develop software for different IoT
platforms. Three key IoT interoperability pillars have been identified, viz. (1) com-
mon API, (2) well-defined information models and (3) an IoT marketplace [15].
BigIoT is a part of IoT-EPI (European Initiative for IoT Platform Development).

The next ongoing project is INTER-IoT [16]. This aims to design, implement
and test an open cross-layer framework for interoperability across the software
stack among different IoT platforms [15]. The project’s main use cases are (e/m)
Health and transportation and logistics.

VICINITY (open virtual neighbourhood network to connect IoT infrastructures
and smart objects) [17] plans to build a device and standard agnostic platform for
interoperability. This project focuses on a virtual neighbourhood where users con-
trol and share smart objects.

Using semantic-based technologies, FIESTA-IoT [18] seeks to create an inter-
connection and interoperability of diverse IoT platforms and test-beds. It focuses on
the federation of different IoT test-beds and enables experimentation as service for
IoT experiments. The annotation process enables data in standards semantics by
using FIESTA-IoT ontology.

D. Andročec

87

symbIoTe [19] provides an interoperability framework for cooperation of verti-
cal IoT platforms, IoT platform federations and cross-domain IoT application
development. The framework is built using an IoT stack connecting the cloud to
smart objects and IoT gateways. It aims to design an architecture for the intercon-
nection of existing IoT platforms at different levels (e.g. application, cloud, smart
space and device domain) [19].

5.3 Interoperability Issues and Challenges

Interoperability is a multidimensional concept with multiple levels of problems,
issues and conflicts. The European interoperability framework identified four levels
of interoperability, viz. legal, organizational, semantic and technical. This chapter
focuses on the technical and semantic interoperability issues, especially at the ser-
vice level. Table 5.1 lists some related works for classifying interoperability issues.
The main categories of interoperability issues defined by Sheth and Kashyap [20]
are domain definition incompatibility (attributes have different domain definitions),
entity definition incompatibility (descriptors used for the same entity are partially
compatible), data value incompatibility (inconsistency between related data),
abstraction level incompatibility (the same entity is represented at different levels of
abstraction) and schematic discrepancy (data in one database corresponds to schema

Table 5.1 Database and service interoperability issues

Author/s Domain Identified interoperability issues

Sheth and
Kashyap [20]

Issues among multiple
databases

Domain definition incompatibility, entity definition
incompatibility, data value incompatibility,
abstraction level incompatibility, schematic
discrepancy

Parent and
Spaccapietra
[21]

Data interoperability
problems during
database integration

Heterogeneity conflicts, generalization/
specialization conflicts, description conflicts,
structural conflicts, fragmentation conflicts,
metadata conflicts, data conflicts

Park and Ram
[5]

Semantic conflicts
among databases

Data-level conflicts (data-value conflicts, data
representation conflicts, data-unit conflicts, data
precision conflict), schema-level conflicts (naming
conflicts, entity-identifier problems, aggregation
conflicts, schematic discrepancies)

Haslhofer and
Klas [22]

Metadata
interoperability at
model level

Naming conflicts, identification conflicts,
constraints conflicts, abstraction level
incompatibilities, multilateral correspondences,
meta-level discrepancy, domain coverage

Ponnekanti and
Fox [24]

Web service
interoperability

Missing methods, extra fields, different types for
service inputs/outputs, cardinality mismatches

Nagarajan et al.
[23]

Web services
heterogeneities

Attribute level incompatibilities, entity definition
incompatibilities and abstraction level
incompatibilities

5 Overcoming Service-Level Interoperability Challenges of the IoT

88

elements in another). Parent and Spaccapietra [21] distinguished seven categories of
database interoperability problems:

• Heterogeneity conflicts (different data models)
• Generalization/specialization conflicts (different generalization/specialization

hierarchies and different classification abstractions)
• Description conflicts (types have different properties and/or their properties are

described differently)
• Structural conflicts (different structures of related types)
• Fragmentation conflicts (the same object is depicted by decomposition into dif-

ferent elements)
• Metadata conflicts
• Data conflicts (data instances have different values for the same properties)

Data-level conflicts [5] include data-value conflicts (the data value has different
meaning in different databases), data representation conflicts (such as different rep-
resentations of date and time), data-unit conflicts (different units used in different
databases) and data precision conflicts. Data-level conflicts can occur at the attribute
level or at the entity level. Structural heterogeneities [22] occur at the model level in
the form of naming conflicts (different names of model elements representing the
same real object), identification conflicts (model elements identifiable by their name
or identifier), constraints conflicts (different definition of constraints in different
models), abstraction level incompatibilities (different generalization of aggregation
of the same real-world object), multilateral correspondences (an element from one
model corresponds to multiple models in another model), meta-level discrepancy
(the same elements in one model could be modelled differently in another model)
and domain coverage (real-world concepts described in one model are missing from
the other model).

The main classes of heterogeneities in Web services are [23] attribute level
incompatibilities (different descriptions used to model similar attributes), entity
definition incompatibilities (different descriptions are used to model similar enti-
ties) and abstraction level incompatibilities (different levels of abstraction).

The general database and service interoperability issues as shown in Table 5.1
are relevant for the IoT domain. Much of the things are sensors generating a large
amount of data. For this reason, data interoperability is very important for the IoT
context. Things as a service have the basic properties of services. Therefore, IoT
service interoperability issues are similar to other service-oriented architectures’
issues.

There are also IoT-specific interoperability issues. European Research Cluster on
the Internet of Things (IERC) listed the following IoT technical interoperability
challenges [25]: (1) efforts to address interoperability protocols, (2) reduction of
ambiguities in specifications and (3) tests to ensure minimum levels of interopera-
bility. There is also a list of the most important IoT semantic interoperability chal-
lenges [25]: integration of things and IoT data, linking and annotation of IoT data
sources, management of virtual sensors, efficient discovery of things and IoT data
sources and development of tools for analysis and visualization of semantic

D. Andročec

89

IoT. These challenges can be mapped into requirements for IoT services and appli-
cations using semantic technologies. In the next section, prominent solutions for the
interoperability issues will be listed.

5.4 Interoperability Solutions

Linked Data can be used to link heterogeneous data formats since there is not a
general agreement on annotating IoT data [25]. Proposing abstract models for
semantic descriptions in IoT is useful in solving some interoperability problems.
The following subsections will list Semantic Web initiatives and languages, as well
as existing work on IoT interoperability at the service level. Semantic Web (ontol-
ogy-driven approach) is the most promising technology in solving IoT service-level
interoperability issues. Semantic annotations can be solved by naming conflicts on
an attribute and entity level, as well as attribute entity conflicts [23]. Mapping of
schema isomorphism conflicts in both directions requires additional context infor-
mation [23]. Mappings of data representation conflicts, data scaling conflicts, gen-
eralization conflicts and aggregation conflicts are possible in only one direction
(from a more detailed version to the more general) [23].

5.4.1 IoT Standards Initiatives

Several standardization organizations and groups are working to create open stan-
dards for IoT. Although there are many standards, a single standard has not pre-
vailed. The active IoT standard initiative is discussed in Table 5.2. The list is based
on the Postscapes website [26]. Additional information was included after studying
the standards and initiatives.

5.4.2 Semantic Web Services

Many service-level interoperability problems can be solved by using Semantic Web
services. Current Web services provide only syntactical descriptions. Thus, Web
service integration must be done manually. Semantic Web services are the integra-
tion of Semantic Web and service-oriented architecture implemented in the form of
Web services. Semantic Web services aim at an automated solution to the following
problems: description, publishing, discovery, mediation, monitoring and composi-
tion of services.

New languages should be used to implement Semantic Web service. OWL-S
(Semantic Markup for Web Services) [27] is the ontology of services that enables

5 Overcoming Service-Level Interoperability Challenges of the IoT

90

Table 5.2 IoT standard initiatives

Organization Initiative Brief description

IEEE IEEE P2413 This draft standard defines an architectural framework
for the IoT

802.15.4 IEEE Standard for Low-Rate Wireless Networks
IETF CoRE

(Constrained
RESTful
Environments)

CoRE provides a framework for resource-oriented
applications intended to run on constrained IP networks
with limited packet sizes and a high degree of packet
loss

ITU JCA-IoT The ITU’s joint coordination activity on IoT
More than 200
participating
partners and
members

OneM2M The global standards initiative for machine-to-machine
communications and the IoT. Formed in 2012 by eight
of the world’s ICT standards development
organizations, oneM2 M provides a necessary
framework for interoperability between the many
M2 M and IoT technologies being introduced

IMC IMC IoT M2 M
Council

It offers detailed case studies of IoT and M2 M
technologies usage

OCF (Open
Connectivity
Foundation)

OIC specification OIC is based on the resource-oriented architecture and
defines a resource model for IoT resources definition,
endpoint and resource discovery, advertisement,
monitoring and maintenance

W3C Semantic Sensor
Network
Ontology

This ontology is developed by the W3C Semantic
Sensor Networks Incubator Group (SSN-XG). The
ontology describes sensors and observations, and
related concepts, and it does not describe domain
concepts, time and locations

Web of Things
Community
Group

The aim of the group is to accelerate the adoption of
Web technologies as a basis for enabling services for
the combination of the Internet of Things with rich
descriptions of things and the context in which they are
used

XSF (XMMP
Standards
Foundation)

XMPP The open standard for instant messaging, presence and
real-time communication and collaboration

OMG (Object
Management
Group)

DDS DDS is a middleware protocol and API for IoT
data-centric connectivity

OMA (Open
Mobile Alliance)

LWM2M A common set of standards for managing light weight
and low capability IoT devices on a variety of networks

OASIS MQTT A lightweight publish/subscribe reliable messaging
transport protocol for M2 M/IoT. It is approved by
ISO/IEC JTC1

AMQP Advanced Messaging Queuing Protocol
ISO/IEC IoT Special

Working Group
ISO work group on IoT

AIM IoT Committee The committee’s mission is to educate and support
AIM members about IoT

D. Andročec

91

users and/or software agents to discover, invoke and compose Web services. This
ontology, defined by using a Web Ontology Language (OWL), has three main parts:

• The service profile for specifying the service’s purpose and functionality
• The process model for describing the operation of the service
• The grounding containing details on how to use a service

The next initiative, the Web Service Modelling Ontology (WSMO) [28],
describes aspects related to Semantic Web services. As extension of the Web Service
Modelling Framework (WSMF), it consists of four elements: ontologies, goals,
Web service descriptions and mediators. WSMO refines and extends this framework
by developing the ontology for the core elements of Semantic Web services. It also
develops the description language consisting of nonfunctional, functional and
behavioural aspects of Web services.

WSMO and OWL-S are heavyweight solutions for Semantic Web services. They
introduce new languages founded on expressive formalisms, as well as promote the
semantics-first modelling approach [29]. Heavyweight solutions are complex in
terms of modelling and computation [30]. Lightweight approaches reduce the com-
plexity and enhance existing SOA capabilities by adding intelligent and automated
integration to existing service descriptions [31]. Lightweight service ontologies use
bottom-up modelling. The most known lightweight approaches include WSMO-
Lite, SAWSDL, MicroWSMO, hRESTS and SA-REST. Lightweight service anno-
tation models are cost-effective because it is faster to work on semantic
annotation.

5.4.3 Existing Works on Service-Level IoT Interoperability

Many works exist on service-level IoT interoperability and its solutions. A federated
discovery service proposed by Gomes et al. [32] encompassed an ontology-based
information model to semantically describe resources and IoT services. The service
used SSN and SAN ontology, Basic Geo Vocabulary and OWL-S for modelling
services. Nambi et al. [33] created a unified knowledge base for IoT to use and
extend existing resources, locations, context, domains, policies and service ontolo-
gies. Nambi et al. [33] considered these as a main tool for service composition and
discovery. Spallazi et al. [34] extended the semantic sensor network ontology with
concepts and roles describing actuators. Androcec and Vrcek [35] proposed a frame-
work for things as a service interoperability including composition of sensors and
actuators at service level, as well as their integration with existing cloud services.
Qu et al. [36] proposed the specification of dynamic services for things by extending
OWL-S with service status ontology to describe information like the waiting queue
and current status of the entities involved in the services. Hur et al. [37] presented a
semantic approach to automatically generate a service description and deployment
of different things to various IoT platforms. They also proposed the semantic

5 Overcoming Service-Level Interoperability Challenges of the IoT

92

service description ontology to support the translation of a platform-specific con-
figuration into semantic metadata using a common knowledge scheme.

Fattah et al. [38] introduced a concept of composite virtual objects to compose
services and create collaboration among physical objects. Soldatos et al. [39] pre-
sented design principles for IoT in cloud environments in which their framework
used linked sensor data and W3C semantic sensor networks ontology. Akasiadis
et al. [40] presented an approach for developing applications on an IoT platform to
build a complex service to determine the number of people inside a smart room.
Sezer et al. [41] developed a smart home sensor ontology based on SSN ontology
and their simulation environment. Li et al. [42] proposed an architecture for inte-
grating semantics into M2 M/IoT service delivery platforms in which semantics
integrate with various APIs. oneM2 M is developing a service layer for resource-
oriented architecture and service-oriented architecture.

Thoma et al. [43] described an approach to integrate smart objects and enterprise
IT systems using Linked USDL for semantic endpoint descriptions. Their solution
was evaluated with CoAP, UDP and 6LoWPAN. Jia et al. [44] presented the archi-
tecture of cross-layer IoT services platform based on semantics. They defined an
IoT service ontology model and semantic-based IoT service description language
OWL-Siot. The ebbits platform [45] provided a middleware for the integration of
heterogeneous industrial devices and sensors, as well as a model-driven develop-
ment toolkit. Ryu et al. [46] proposed an integrated semantic service platform to
support ontological models in different IoT services of a smart city. The main prob-
lems addressed were semantic discovery, dynamic semantic representation and
semantic IoT data repositories. Qu et al. [47], showing the framework with entities
represented as Semantic Web services, automatically created a sequence of IoT ser-
vices. They used the following set of ontologies: goal, role, constraint, message,
status, space-time and activity ontology. Kim et al. [48] presented a semantic ontol-
ogy model for IoT devices, resources and services. Virtual objects included things
with their profiles.

Kovatsch et al. [49] used RESTdesc description format and semantic reasoning
to create IoT mashups of resource-constrained IoT devices. Additionally, they
developed a semantic IDE tool for the experimentation and design of RESTdesc
descriptions for IoT devices. Hasemann et al. [50] used RDF documents to describe
IoT devices, including services, sensors and capabilities. A sensor can autoconfig-
ure itself, connect to the internet and provide Linked Data without manual interven-
tion. Vecchio et al. [51] semantically described physical devices as virtual objects
and exposed their functionalities as IoT services. Furthermore, they used a cognitive
management framework to tune key application parameters and provide self-config-
uration functionality of virtual objects. Chun et al. [52] proposed the IoT directory
supporting semantic description, discovery and integration of an IoT object. It took
into consideration complex relationships among things that change with time. Desai
et al. [53] proposed a gateway and Semantic Web-enabled IoT architecture to pro-
vide interoperability between systems. This utilized established communication and
data standards, including XMPP, CoAP and MQTT. The mentioned gateway per-
forms translation between different messaging protocols.

D. Andročec

93

Kiljander et al. [54] presented a semantic-level interoperability architecture for
pervasive computing and IoT. They divided IoT into numerous local smart spaces
managed by a semantic information broker. Wang et al. [55] proposed a sensing
network ontology description model for IoT. Their work provided another way to
semantically annotate sensing devices and their generated data. Den Hartog et al.
[56] identified 48 semantic assets describing properties of smart appliances in smart
homes. Based on these concepts, they designed reference ontology for smart things.
Ara et al. [57] proposed a web of objects-based user-centric semantic service com-
position methodology for IoT. They designed an ontology model for a virtual object
and composite virtual object. They used a service composition algorithm to create
composite services and semantic descriptions. The next section will present a use
case showing how to solve IoT service-level interoperability issues.

5.5 Use Case

In this section, a service-level IoT interoperability use case is presented. First, the
section will develop the ontology used to semantically annotate things, their ser-
vices and existing cloud APIs. Next, the section will present a procedure to annotate
and compose things as a service. Semantic Web technologies are utilized in the use
case. It will show that most of the service-level interoperability problems can be
completely or partially solved using an ontology-driven approach, as well as
Semantic Web languages, technologies and tools. The aim of service interoperabil-
ity is to enable automatic or semi-automatic composition of services. The use case
will show how this can be achieved with IoT services. To compose IoT services, the
service-level incompatibilities presented in Table 5.1 must be taken into
consideration.

5.5.1 Development of the Thing-as-a-Service Ontology

For the purpose of this research, the Ontology Development 101 [58] methodology
was selected. The open-source tool, Protégé, and OWL were also selected. The rep-
resentation of IoT devices and things as services is determined as the domain of the
ontology. This ontology is used to semantically annotate things as a service. The
information in the ontology should provide answers to the following questions:
What concepts describe IoT devices and things as services? How are mappings of
data types supported among heterogeneous things and existing cloud services?

As a basis for the ontology, this chapter used concepts defined in the W3C
defined SSN ontology [59]. The paper [59] is often cited in relevant research papers;
existing IoT interoperability projects use or extend this ontology to semantically
describe sensors. Next, the chapter used the actuator concepts from semantic actua-
tor network ontology developed by Spalazzi et al. [34]. This ontology described

5 Overcoming Service-Level Interoperability Challenges of the IoT

94

actuators, operations and related concepts. It extends the aforementioned SSN
ontology. A total of 173 defined classes were organized in 24 top-level classes (see
Fig. 5.1). Some top-level classes are directly inherited from SSN and SAN ontol-
ogy, including DesignedArtifact, Feature of Interest, InformationObject, Input,
Method, Object, Output, PhysicalObject, Process, Region, Event, Quality and
Situation. Class API represents vendor application programming interfaces.
DataTypeMapper are instances used for data type mappings. Subclasses of
IoTAcceptanceFactors represent IoT acceptance factors. IoTProtocols contains sub-
classes describing main IoT protocols. IoTSecurityProblems list the most important
IoT security problems. The OWL class Service describes REST services, SOAP
services, cloud services and things as a service. ServiceDataType describes data

Fig. 5.1 The main hierarchy of the IoT ontology

D. Andročec

95

types used and inputs or outputs of services. ServicePrivacyFactors list main pri-
vacy factors for using IoT services. ThingCharacteristic describes the characteris-
tics of physical objects (things); WebThing is a digital representation of a physical
object accessible via REST API. Table 5.3 lists sample classes from the ontology.
The properties of classes that describe the internal structure of concepts along with
their corresponding domains and ranges were also defined.

Due to a lack of gold standards and corpus of data, the human evaluation and
application-based evaluation were chosen. Some tools eliminated OWL syntax
errors and known ontology anomalies. First, the logical consistency of the devel-
oped ontologies was checked by means of the Pellet reasoner (incorporated in the
used Protégé 5 tool). Furthermore, the Web-based tool, Ontology Pitfall Scanner!
(OOPS!) [60], detected possible ontology anomalies. The tool identifies 41 ontol-
ogy pitfalls. The ontology was evaluated using the public OOPS! tool. Seven cases
of one minor problem were found (see Fig. 5.2). Evaluation results by tool show that
minor problems were not actual problems. Correcting them improved the ontology.
Next, ontology was evaluated by human experts. They were sent a brief ontology
description with figures of class hierarchy and a link of the complete ontology
stored on GitHub. They were then asked to answer questions on completeness, con-
ciseness, consistency and flexibility of the ontology. After their initial feedback, the
ontology was revised and improved. Experts e-mailed additional comments as
newer versions of the ontology were created.

The ontology can be used to semantically annotate various smart things. The
ontology can be viewed at https://github.com/dandrocec/IoTOntology.

The ontology is richer than any existing IoT ontology. It contains concepts that
can be used to annotate services and existing cloud services (via cloud provider
APIs). It can annotate privacy, security and supported protocols as nonfunctional
properties of things and services. Main IoT security problems are listed as sub-
classes of IoTSecurityProblems OWL class and are derived from OWAPS IoT secu-
rity guidelines [61]. IoT acceptance factors and service privacy factors are listed in
the ontology as subclasses of IoTAcceptanceFactors and ServicePrivacyFactors.
IoT protocols are defined as subclasses of the following OWL classes:
IoTDataProtocols, IoTDiscoveryProtocols, IoTInfrastructureProtocols and
IoTTransportProtocols.

5.5.2 Achieving Service-Level IoT Interoperability

Concepts from the ontology are used to semantically annotate things and services,
as well as their functional and nonfunctional properties. To test semantic annota-
tions, two simple things were used: (1) Arduino Yun with temperature sensor and (2)
littleBits with cloudBits to connect to their cloud platform and two LED actuators.
The basis of the solution was the usage of thing-as-a-service framework as pre-
sented in [35]. Additionally, the JSON-LD [62] file was stored on things to describe
the sensors/actuators, supporting IoT protocols, and known interoperability/privacy

5 Overcoming Service-Level Interoperability Challenges of the IoT

https://github.com/dandrocec/IoTOntology

96

Table 5.3 Sample classes from the ontology

Class Super class Description

API Thing It represents vendors’ application
programming interfaces (APIs)

DataTypeMapper Thing Its instances are used for data type
mappings

Operation Thing, Situation Operation
ActuatorOperation Operation Operation that results in a change

of the world’s state, i.e. hasEffect
object property has a value

SensoryOperation Operation Operation that returns a parameter
Output Thing Any information that is reported

from a process
PhysicalObject Thing Physical object
Actuator PhysicalObject An actuator can do (implements)

acting: an actuator is any entity
that can follow an acting method
and thus control some Property of
a FeatureOfInterest. Actuator may
be physical device or any other
thing that can follow an acting
method to control a Property

Acting Device Actuator, Device An acting device is a device that
implements acting

Service Thing Service
CloudService Service Cloud service
IaaSService CloudService Infrastructure as a service
PaaSService CloudService Platform as a service
SaaSService CloudService Software as a service
RESTService Service REST service
SOAPService Service SOAP service
ThingAsAService Service Thing as a service
ServiceDataType Thing Data types for input and outputs

of the services
ComplexServiceDataType ServiceDataType Complex service data type
SimpleServiceDataType ServiceDataType Simple service data type
WebThing Thing A Web Thing (or simply Thing) is

a digital representation of a
physical object accessible via a
RESTful Web API

SemanticWebThing WebThing It additionally supports semantic
annotations using this (open IoT)
ontology

D. Andročec

97

problems. JSON-LD is an attempt to create a simple method to add semantics to
existing JSON documents. In that way, a particular thing can connect to concepts
from the described ontology. Next, sensors were connected using a customized
open-source project, Global Sensor Networks (GSN) [63]. GSN provided virtual
sensors to abstract implementation details on accessing sensor data and user needs
to specify XML-based deployment descriptors. This task could be done semi-auto-
matically when the server received a JSON-LD identification file from the thing that
contains whether the thing contains sensors and of what types. It is possible to
uniquely access data when different types of sensors are registered in GSN.

On the next level, Web services can represent different things, sensors and actua-
tors. GSN contains REST API. Therefore, these services can access sensors. For
actuators, services can be built semi-automatically by using JSON-LD descriptions
of things and services. When services are semantically annotated, things can be
composed as services. This considers security and privacy features, as well as sup-
ported protocols. Simple scenario tested the aforementioned approach. Web ser-
vices read data from temperature sensors connected to Arduino Yun, motion trigger
sensors connected to littleBits cloudBit and push data to LED actuators connected
to littleBits cloudBit [35]. For example, a Java Web service client application was
created to check if motion was detected. If so, the Web service for LED actuators
was called to activate LEDs connected to littleBits [35].

Fig. 5.2 OOPS! evaluation results

5 Overcoming Service-Level Interoperability Challenges of the IoT

98

5.6 Conclusion

Various capabilities of things, a variety of possible IoT services and nonaccepted
standards exist. Therefore, IoT interoperability will remain for a certain amount of
time, as well as complex research and practical problems. This chapter listed IoT
service-level interoperability issues and challenges. Existing work on data (data-
base) and service interoperability was listed and systematized using tables. IoT ser-
vices have similar issues to other types of services. In addition, they have a variety
of IoT capabilities, sensor data formats and protocols supported by things. IoT stan-
dards initiatives were also listed. There are several promising IoT standard initia-
tives. Yet, one standard has not prevailed. IoT remains a dynamic field. Many
companies and start-ups develop individual innovative things and IoT services,
including proprietary protocols, services and APIs.

Solutions to known interoperability problems are listed. Semantic Web and
Semantic Web services are the most used solutions to IoT interoperability problems
at the service level. The chapter listed the most recent works on the resolution of IoT
interoperability problems by means of Semantic Web. The use case presented how
to practically achieve IoT interoperability on a small practical example.

Most of the solutions use ontology. While there are many IoT ontologies, there is
no consensus on which to use. Mapping of existing IoT ontologies is a promising
future work. Many solutions are based on W3C SSN ontology [59]. However, it
only describes basic concepts on sensors. Therefore, it should be upgraded to
include actuators, complex things and services. This was achieved in this chapter’s
use case. The next problem was choosing an IoT service based on functional and
nonfunctional properties. Other promising future research topics include the avail-
ability of search and register IoT services. Self-identification and auto-configuration
of things remain unsolved. End users see basically IoT as a set of services, so
achieving the interoperability of IoT services is very important

Acknowledgement This chapter has been fully supported by the Croatian Science Foundation
under the project IP-2014-09-3877.

References

 1. IEEE (1991) IEEE Standard computer dictionary: a compilation of IEEE standard computer
glossaries. New York

 2. Brownsword LL, Carney DJ, Fisher D, et al (2004) Current perspectives on interoperability,
pp 1–51

 3. Pokraev S, Quartel D, Steen MWA, Reichert M (2007) Semantic service modeling: enabling
system interoperability. In: Doumeingts G, Müller J, Morel G, Vallespir B (eds) Enterprise
Interoperability. Springer, London, pp 221–230

 4. Vernadat F (1996) Enterprise modeling and integration: principles and applications. Chapman
& Hall, London/New York

D. Andročec

99

 5. Park J, Ram S (2004) Information systems interoperability. ACM Trans Inf Syst 22:595–632.
https://doi.org/10.1145/1028099.1028103

 6. Loutas N, Kamateri E, Tarabanis K, D’Andria F (2011) D 1.2 Cloud4SOA cloud semantic
interoperability framework

 7. Naudet Y, Latour T, Guedria W, Chen D (2010) Towards a systemic formalisation of interoper-
ability. Comput Ind 61:176–185. https://doi.org/10.1016/j.compind.2009.10.014

 8. Kominers P (2012) Interoperability case study: internet of things (IoT), p 19
 9. Soldatos J, Kefalakis N, Hauswirth M et al (2015) OpenIoT: open source internet-of-things in

the cloud. In: Podnar Žarko I, Pripužić K, Serrano M (eds) Interoperability open-source solu-
tion internet things. Springer International Publishing, Cham, pp 13–25

 10. De S, Carrez F, Reetz E et al (2013) Test-enabled architecture for IoT service creation and pro-
visioning. In: Galis A, Gavras A (eds) Future internet. Springer, Berlin/Heidelberg, pp 233–245

 11. Gusmeroli S, Piccione S, Rotondi D (2012) IoT@Work automation middleware system design
and architecture. In: 2012 IEEE 17th conference emerging technology and factory automation
ETFA. IEEE, Krakow, pp 1–8

 12. Apolinarski W, Iqbal U, Parreira JX (2014) The GAMBAS middleware and SDK for smart city
applications. In: 2014 IEEE international conference pervasive computing and communca-
tions workshop PERCOM Workshop. IEEE, Budapest, Hungary, pp 117–122

 13. Ziegler S, Crettaz C, Ladid L et al (2013) IoT6 – moving to an IPv6-based future IoT. In: Galis
A, Gavras A (eds) Future internet. Springer, Berlin/Heidelberg, pp 161–172

 14. Verdouw CN, Sundmaeker H, Meyer F et al (2013) Smart agri-food logistics: requirements
for the future internet. In: Kreowski H-J, Scholz-Reiter B, Thoben K-D (eds) Dynamics in
logistics. Springer, Berlin/Heidelberg, pp 247–257

 15. Bröring A, Schmid S, Schindhelm C-K, et al Enabling IoT ecosystems through platform
interoperability. http://www.arne-broering.de/BIG%20IoT%20-%20Vision.pdf. Accessed 19
Jan 2017

 16. Ganzha M, Paprzycki M, Pawlowski W, et al (2016) Semantic technologies for the IoT – an
inter-IoT perspective. In: 2016 IEEE first international conference internet--things design.
implement IoTDI. IEEE, Berlin, Germany, pp 271–276

 17. Hovstø A, Oravec V, Samovich N, et al (2016) Deliverable D1.1 requirements capture frame-
work, pp 1–61

 18. Lanza J, Sanchez L, Gomez D et al (2016) A proof-of-concept for semantically interoper-
able federation of IoT experimentation facilities. Sensors 16:1006. https://doi.org/10.3390/
s16071006

 19. Soursos S, Zarko IP, Zwickl P, et al (2016) Towards the cross-domain interoperability of
IoT platforms. In: 2016 European conference networks and communcations EuCNC. IEEE,
Athens, Greece, pp 398–402

 20. Sheth AP, Kashyap V (1993) So far (Schematically) yet so near (Semantically). In: Proceedings
IFIP WG 26 database semantics conference on interoper database system North-Holland
Publishing Co., pp 283–312

 21. Parent C, Spaccapietra S (2000) Database integration: the key to data interoperability. In:
Advances object-oriented data model. Springer, Heidelberg, pp 221–253

 22. Haslhofer B, Klas W (2010) A survey of techniques for achieving metadata interoperability.
ACM Comput Surv 42:1–37. https://doi.org/10.1145/1667062.1667064

 23. Nagarajan M, Verma K, Sheth AP, Miller JA (2007) Ontology driven data mediation in web
services. Int J Web Serv Res 4:104–126. https://doi.org/10.4018/jwsr.2007100105

 24. Ponnekanti SR, Fox A (2004) Interoperability among independently evolving web services. In:
Middle-ware 04 proceedings 5th ACMIFIPUSENIX international conference on middleware,
Springer, Toronto, Canada, pp 331–351

 25. Serrano M, Barnaghi P, Carrez F, et al (2015) IoT semantic interoperability: research chal-
lenges, best practices, recommendations and next steps. IERC

 26. Postscapes (2017) Internet of things toolkit. In: Internet things toolkit – stand. initiat. http://
postscapes2.webhook.org/internet-of-things-resources/#technical. Accessed 23 Jan 2017

5 Overcoming Service-Level Interoperability Challenges of the IoT

https://doi.org/10.1145/1028099.1028103
https://doi.org/10.1016/j.compind.2009.10.014
http://www.arne-broering.de/BIG IoT - Vision.pdf
https://doi.org/10.3390/s16071006
https://doi.org/10.3390/s16071006
https://doi.org/10.1145/1667062.1667064
https://doi.org/10.4018/jwsr.2007100105
http://postscapes2.webhook.org/internet-of-things-resources/#technical
http://postscapes2.webhook.org/internet-of-things-resources/#technical

100

 27. Martin D, Burstein M, Hobbs J, et al (2004) OWL-S: semantic markup for web services
 28. Roman D, Lausen H, Keller U, et al (2007) D2v1.4. Web service modeling ontology (WSMO).

29 June 2013
 29. Fensel D, Kopecky J, Komazec S (2010) Light-weight annotations
 30. Pedrinaci C (2009) Lightweight semantic annotations for services on the web
 31. Vitvar T, Kopecky J, Viskova J, et al (2009) Chapter 5 semantic web services architecture

with lightweight descriptions of services. In: Advanced computing. Elsevier, Amsterdam,
pp 177–224

 32. Gomes P, Cavalcante E, Rodrigues T et al (2015) A federated discovery service for the internet
of things. In: Proceedings 2Nd workshop middleware context-aware application IoT. ACM,
New York, pp 25–30

 33. Nambi SNAU, Sarkar C, Prasad RV, Rahim A (2014) A unified semantic knowledge base for
IoT. In: 2014 IEEE world forum internet things WF-IoT. IEEE. Seoul, pp 575–580

 34. Spalazzi L, Taccari G, Bernardini A (2014) An internet of things ontology for earthquake
emergency evaluation and response. IEEE, pp 528–534

 35. Androcec D, Vrcek N (2016) Thing as a service interoperability: review and framework pro-
posal. IEEE, pp 309–316

 36. Qu C, Liu F, Tao M, Deng D (2016) An OWL-S based specification model of dynamic entity
services for Internet of Things. J AMBIENT Intelligence Humaniz Comput 7:73–82. https://
doi.org/10.1007/s12652-015-0302-y

 37. Hur K, Jin X, Lee KH (2015) Automated deployment of IoT services based on semantic
description. In: Internet things WF-IoT 2015 IEEE 2nd world forum on, pp 40–45

 38. Fattah SMM, Kim HS, Chong I (2016) Design of composite virtual objects for service entity
creation in WoO based IoT environment. In: 2016 International conference on information
networking. ICOIN, pp 372–374

 39. Soldatos J, Kefalakis N (2014) Design principles for utility-driven services and cloud-based
computing modelling for the internet of things. Int J WEB GRID Serv 10:139–167. https://doi.
org/10.1504/IJWGS.2014.060254

 40. Akasiadis C, Tzortzis G, Spyrou E, Spyropoulos C (2015) Developing complex services in an
IoT ecosystem. In: Internet things WF-IoT 2015 IEEE 2nd world forum on, pp 52–56

 41. Sezer OB, Can SZ, Dogdu E (2015) Development of a smart home ontology and the implemen-
tation of a semantic sensor network simulator: an internet of things approach. In: International
conference on collaboration technologies and systems. CTS 2015, pp 12–18

 42. Li H, Seed D, Flynn B, et al (2016) Enabling semantics in an M2M/IoT service delivery plat-
form. In: 2016 IEEE Tenth International conference semantic computing ICSC, pp 206–213

 43. Thoma M, Braun T, Magerkurth C (2014) Enterprise integration of smart objects using
semantic service descriptions. In: 2014 IEEE wireless communcation and network conference
WCNC, pp 3426–3431

 44. Jia B, Liu S, Yang Y (2014) Fractal cross-layer service with integration and interaction in
internet of things. Int J Distrib Sens Netw 10(3):760248. https://doi.org/10.1155/2014/760248

 45. Conzon D, Brizzi P, Kasinathan P, et al (2015) Industrial application development exploit-
ing IoT vision and model driven programming. In: 2015 18th International conference on
Intelligence in next generation networks. ICIN, pp 168–175

 46. Ryu M, Kim J, Yun J (2015) Integrated semantics service platform for the internet of things: a
case study of a smart office. Sensors 15:2137–2160. https://doi.org/10.3390/s150102137

 47. Qu C, Liu F, Tao M (2015) Ontologies for the transactions on IoT. Int J Distrib Sens Netw.
https://doi.org/10.1155/2015/934541

 48. Kim Y, Lee S, Chong I (2014) Orchestration in distributed web-of-objects for creation of user-
centered IoT service capability. Wirel Pers Commun 78:1965–1980. https://doi.org/10.1007/
s11277-014-2056-9

 49. Kovatsch M, Hassan YN, Mayer S (2015) Practical semantics for the Internet of Things:
Physical states, device mashups, and open questions. In: 2015 5th International conference on
the internet of things (IOT), pp 54–61

D. Andročec

https://doi.org/10.1007/s12652-015-0302-y
https://doi.org/10.1007/s12652-015-0302-y
https://doi.org/10.1504/IJWGS.2014.060254
https://doi.org/10.1504/IJWGS.2014.060254
https://doi.org/10.1155/2014/760248
https://doi.org/10.3390/s150102137
https://doi.org/10.1155/2015/934541
https://doi.org/10.1007/s11277-014-2056-9
https://doi.org/10.1007/s11277-014-2056-9

101

 50. Hasemann H, Kroller A, Pagel M (2012) RDF provisioning for the Internet of Things. In: 3rd
IEEE International conference on the internet of things (IOT), pp 143–150

 51. Vecchio M, Sasidharan S, Marcelloni F, Giaffreda R (2013) Reconfiguration of environ-
mental data compression parameters through cognitive IoT technologies. In: 2013 IEEE 9th
International conference wireless mobile computing networking and communication WiMob,
pp 141–146

 52. Chun S, Seo S, Oh B, Lee KH (2015) Semantic description, discovery and integration for
the internet of things. In: IEEE International conference on semantic computing (ICSC),
pp 272–275

 53. Desai P, Sheth A, Anantharam P (2015) Semantic gateway as a service architecture for IoT
interoperability. In: 2015 IEEE International conference mobile services. IEEE, New York,
pp 313–319

 54. Kiljander J, D’elia A, Morandi F et al (2014) Semantic interoperability architecture for per-
vasive computing and internet of things. IEEE Access 2:856–873. https://doi.org/10.1109/
ACCESS.2014.2347992

 55. Wang X, An H, Xu Y, Wang S (2015) Sensing network element ontology description model
for internet of things. In: 2015 2nd International conference on information science control
engineering. ICISCE. IEEE, Shanghai, pp 471–475

 56. den Hartog F, Daniele L, Roes J (2015) Toward semantic interoperability of energy using and
producing appliances in residential environments. In: 2015 12th Annu. IEEE consumer com-
muncatons network conference CCNC, pp 170–175

 57. Ara SS, Shamszaman ZU, Chong I (2014) Web-of-objects based user-centric semantic ser-
vice composition methodology in the internet of things. Int J Distrib Sens Netw. https://doi.
org/10.1155/2014/482873

 58. Noy NF, McGuinness DL (2001) Ontology development 101: a guide to creating your first
ontology

 59. Compton M, Barnaghi P, Bermudez L et al (2012) The SSN ontology of the W3C semantic
sensor network incubator group. Web Semant Sci Serv Agents World Wide Web 17:25–32.
https://doi.org/10.1016/j.websem.2012.05.003

 60. Poveda-Villalón M, Suárez-Figueroa MC, Gomez-Perez, Asuncion A (2012) Validating ontol-
ogies with OOPS! In: EKAW12 Proceedings 18th international conference on knowledge
engineering. knowledge managagement. Springer, Galway, pp 267–281

 61. OWAPS (2016) IoT security guidance. In: IoT security guidelines. https://www.owasp.org/
index.php/IoT_Security_Guidance. Accessed 30 Jan 2017

 62. Lanthaler M, Gütl C (2012) On using JSON-LD to create evolvable RESTful services. ACM,
New York, p 25

 63. Aberer K, Hauswirth M, Salehi A (2006) The global sensor networks middleware for effi-
cient and flexible deployment and interconnection of sensor networks. Ecole Polytechnique
Federale de Lausanne, Lausanne

5 Overcoming Service-Level Interoperability Challenges of the IoT

https://doi.org/10.1109/ACCESS.2014.2347992
https://doi.org/10.1109/ACCESS.2014.2347992
https://doi.org/10.1155/2014/482873
https://doi.org/10.1155/2014/482873
https://doi.org/10.1016/j.websem.2012.05.003
https://www.owasp.org/index.php/IoT_Security_Guidance
https://www.owasp.org/index.php/IoT_Security_Guidance

Part II
Methods and Frameworks

105© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_6

Chapter 6
Simulating Sensor Devices for Experimenting
with IoT Cloud Systems

Tamas Pflanzner, Marta Fidrich, and Attila Kertesz

Abstract As a growing number of powerful devices join the Internet, a new world
of smart devices is being formed. This new trend is due to the emergence of the
Internet of Things (IoT) paradigm, which also has a significant impact on the global
Internet traffic. There are also more and more cloud providers offering IoT-specific
services, since cloud computing has the potential to satisfy IoT needs such as hiding
data generation and processing and visualization of tasks. While each cloud pro-
vider offers its own set of features, two critical features they all have in common are
the ability to connect devices and to store the data generated by those devices. Using
the capabilities of smartphones, many things can be simulated simultaneously sup-
porting most types of IoT devices. In this chapter, we introduce and categorize IoT
cloud providers and classify common IoT applications. Based on these findings, we
propose a mobile IoT simulator called MobIoTSim that helps researchers to learn
IoT device handling without buying real sensors and to test and demonstrate IoT
applications utilizing multiple devices. We also show how to develop gateway ser-
vices in cloud environments that can be connected to MobIoTSim to manage the
simulated devices and evaluate device handling scalability. By using this tool,
developers can examine the behavior of IoT systems and develop and evaluate IoT
cloud applications in a more convenient and efficient way.

6.1 Introduction

The Cluster of European Research Projects on the Internet of Things considers the
Internet of Things (IoT) as a vital part of future Internet [1]. They define IoT as a
dynamic global network infrastructure with self-configuring capabilities using
interoperable communication protocols. Things in this network interact and com-
municate among themselves and the environment, exchange sensor data, and react

T. Pflanzner (*) • M. Fidrich • A. Kertesz
Software Engineering Department, University of Szeged, Szeged, Hungary
e-mail: tamas.pflanzner@inf.u-szeged.hu

mailto:tamas.pflanzner@inf.u-szeged.hu

106

autonomously to events by triggering actions mostly without direct human
intervention.

According to a Gartner report [2], there will be 30 billion devices always online
and more than 200 billion devices discontinuously online by 2020, which calls for
an ecosystem that provides means to interconnect and control these devices. With
the help of cloud solutions, user data can be stored in a remote location and can be
accessed from anywhere. The concept of cloud computing has been pioneered by
commercial companies with the promise to allow elastic construction of virtual
infrastructures, which attracted users early on. Its technical motivation has been
introduced in [3]. Gubbi et al. [4] have suggested that to support the IoT vision, the
current computing paradigm needs to go beyond traditional mobile computing sce-
narios, and cloud computing has the potential to address these needs as it is able to
hide data generation, processing, and visualization tasks. For this reason, there are
more and more cloud providers offering IoT-specific services (e.g., Google Cloud
Platform and IBM Bluemix platform). Some of these IoT features are unique, but
every IoT cloud provider has the basic capabilities to connect and store data from
devices. Many things have to be managed at the same time, and a wide range of
devices and data formats are available; therefore, creating and examining such
applications are not trivial. The aim of our research is to support the proliferation of
IoT with the help of mobile and cloud technologies, thus to enable experimenting
with complex systems consisting of interdependent components that work together
to enable the creation and management of user applications. To manage the hetero-
geneity of protocols and data structures used in the IoT cloud systems, smartphones
and tablets can provide useful assistance [5].

The main contributions of this chapter are (i) to introduce and categorize IoT
cloud providers, (ii) to present a classification of common IoT applications, (iii) to
propose a mobile IoT simulator called MobIoTSim that helps researchers to learn
IoT device handling without buying real sensors and to test and demonstrate IoT
applications utilizing multiple devices, (iv) to introduce how to develop cloud gate-
way services to manage the simulated devices, and (v) to evaluate the scalability of
MobIoTSim device management feature.

The remainder of this chapter is structured as follows: Section 6.2 introduces
related works. Section 6.3 gathers cloud providers offering IoT features, and Section
6.4 presents a classification of various IoT applications. Section 6.5 introduces our
proposed IoT device simulator called MobIoTSim and demonstrates its utilization
with cloud gateways, evaluates its performance, and highlights future development
plans. Finally, the contributions are summarized in Section 6.6.

6.2 Related Works

Recently, there has been an increasing competition between the leading vendors in
the cloud market, such as Amazon, Microsoft, Google, and Salesforce. Each of
them promotes its own, mostly incompatible cloud standards and formats [6], pre-
venting them from agreeing on a widely accepted, standardized way to utilize
clouds in the IoT field. However, an interoperable cloud environment would benefit

T. Pflanzner et al.

107

customers, as they could migrate their virtual machines, data, and applications
between cloud providers without setting data at risk. The integration of IoT and
clouds has been envisioned by Botta et al. [7] by summarizing their main properties,
features, underlying technologies, and open issues. A solution for merging IoT and
clouds is proposed by Nastic et al. [8]. They argue that system designers and opera-
tions managers face numerous challenges to realize IoT cloud systems in practice,
due to the complexity and diversity of their requirements in terms of IoT resources
consumption, customization, and runtime governance. These related works also
serve as a motivation to our research by raising the need for managing a large num-
ber of protocols and data formats by means of simulation.

The existing simulators used to examine IoT systems are general network simu-
lators, e.g., NetSim [9], Qualnet [10], and OMNeT++ [11]. With these tools IoT-
related processes can be examined such as device placement planning and network
interference. The OMNeT++ discrete event simulation environment [11] is a generic
tool for simulating communication networks, multiprocessors, and other distributed
systems. It can be used in numerous domains from queuing network simulations to
wireless and ad hoc network simulations, from business process simulation to peer-
to- peer networks.

There are some more specific IoT simulators closer to our approach. Han et al.
have designed DPWSim [12], which is a simulation tool kit to support the develop-
ment of service-oriented and event-driven IoT applications with the aim to support
the OASIS standard Devices Profile for Web Services (DPWS). Though this enables
the use of web services on smart and resource-constrained devices, it also limits its
application scope. The SimpleIoTSimulator [13] is an IoT Sensor/device simulator
that is able to create test environments made up of thousands of sensors and gate-
ways on a computer. It supports many of the common IoT protocols (e.g., CoAP,
MQTT, HTTP). Its drawback is that it needs a 64-bit Red Hat Enterprise Linux
environment to be installed. Our approach is more focused on IoT device simulation
with smartphones, which is easier to be combined with real-world applications. The
Automaton Simulator [14] seems to be the closest to our concept. It simulates vir-
tual sensors, actuators, and devices with unique behaviors. With this tool complex,
dynamic systems can be created for specific applications. Unlike our open mobile
solution, it is a commercial, web-based environment with very limited
documentation.

The motivation behind our research is that more and more cloud platform provid-
ers have started to offer IoT-specific services to ease the development of IoT cloud
applications, but cases where many heterogeneous things need to be managed are
hard to realize and examine. For example, smart city application scenarios using
LoRa [15] or SIGFOX [16] technologies are very expensive and time-consuming to
set up with real devices; hence, a base station costs more than a thousand Euros with
a lot of configuration work. Therefore, we propose to use simulated devices with a
cloud gateway in order to ease the development and testing of such systems.

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

108

6.3 Providers Enabling IoT Clouds

The IBM Bluemix platform [17] is an IoT-enabled cloud solution offered by IBM. It
can be used for quick development of cloud-based applications that take advantage
of the data generated by the sensors and devices. Products of several major device
manufacturers are supported, such as ARM, the Electronics B&B, Intel, Multi-Tech
Systems, and Texas Instruments, but other individual cases can also be solved on the
platform. Data generated by the equipment is sent by the popular and lightweight
MQTT protocol to the cloud. The service allows the users to configure, manage the
devices, and to store the history of generated data or stream real-time data to the
application. The data transfer can be done through secure APIs.

To illustrate the inner workings of the platform, a real-time data visualization
demo is also provided. To use it, first a data provider should be configured, which is
in the simplest case a smartphone, but it is possible to use a TI SensorTag, ARM
Mbed, Raspberry Pi, Intel, and other devices. The opened browser page on the
smartphone can send real-time data of the phone’s movement to the cloud applica-
tion. The framework also provides a predefined web-based sensor simulator [18]
that is able to act as three simulated sensors, sending temperature and humidity
values through websockets.

The Bluemix platform offers several specialized services to support the develop-
ment of cloud applications. Some examples of these services are Push for messag-
ing, Cloudant NoSQL DB to manage NoSQL databases, Geospatial Analytics for
location tracking, and IBM Analytics for Hadoop computations. The supported lan-
guages for application development are Java, JavaScript, GO, PHP, Python, and
Ruby. In terms of costs, a price calculator helps to determine a monthly fee for a
30-day trial period. Twenty devices can be connected and 100 MB of data can be
sent to the devices for free, which is enough for about 50,000 messages. 1GB stor-
age space can also be used in this period.

The Google IoT solution [19] is part of the Google Cloud Platform, which
includes various Google services. The scalability is an excellent feature in this plat-
form. It allows devices to be connected, and it collects data and visualizes them. The
data sent from the devices are received by the Google Load Balancer and forwards
to instances of the AppEngine applications. In general, the main part of the applica-
tion is the AppEngine, which may use other services. Compute intensive tasks are
supported by the Compute Engine. The Cloud Storage and the Cloud SQL manages
data. It is possible to send data with streams to the BigQuery service, which is ideal
if we want to work with real-time data. In IoT systems, the visualization is an
important feature; it is supported in real time using the Google Charts. Google is
also strong in managing a large amount of data processing, which is important,
since there are many devices generating huge amount of data in IoT systems. Google
Firebase plays an important role in the management of the devices. It was originally
designed to assist mobile devices (like MBaaS). It provides synchronized real-time
database and authentication and is capable of offline operations.

T. Pflanzner et al.

109

Amazon Web Services is a collection of services that make up a cloud computing
platform, which are based on 11 geographical regions across the world. The most
central and well-known services are Amazon EC2 (Elastic Compute Cloud) and
Amazon S3 (Simple Storage Service). The products are offered to large and small
companies as a service to provide large computing capacity faster and cheaper than
the client company building and maintaining an actual physical server farm. AWS
automatically handles the details such as resource provisioning, load balancing,
scaling, and monitoring. One can create applications in PHP, Java, Python, Ruby,
node.js,. NET, Go, or in a Docker container that runs on an application server with
a database. An environment using the default settings will run a single Amazon EC2
micro instance and an Elastic Load Balancer. Additional instances will be added if
needed, to handle any peaks in workload or traffic. Each Amazon EC2 instance is
built from an Amazon Machine Image which can be an Amazon Linux AMI or an
Amazon Windows Server 2008 R2 AMI by default.

Amazon is also a cloud platform provider, since it has many components to build
applications with. This allows for more general usage, but not so many details,
which could make the developer’s job easier. With the three main components
(Cognito for user management, Mobile Analytics, and Simple Notification Service),
the mobile solution is a valuable part for the whole Amazon cloud offering. This is
still not mature enough for enterprise usage, because the lack of integration and
security.

Amazon IoT connects devices to services and other devices with a secure way.
The device state is synchronized, so messages can be sent even if the device is
offline. The Rule Engine helps to convert the data for services.

Azure [20] is a cloud computing platform, which allows developers to publish
web applications running on different frameworks, written in different program-
ming languages such as any. NET language, node.js, php, Python, and Java. Azure
Web Sites support a website creation wizard that can be used to create a blank site
or use one of the several pre-configured sites. Developers can add or modify content
of the website via multiple deployment methods: TFS, FTP, CodePlex, GitHub,
Dropbox, Bitbucket, Mercurial, or git. Developers can select the place where their
website will be hosted from several Microsoft data centers around the globe. Azure
Traffic Manager routes traffic manually or automatically between websites in differ-
ent regions. Web sites are hosted on IIS 8.0, running on a custom version of Windows
Server 2012. The component relating to IoT called IoT Hub can communicate with
devices with protocols like MQTT, AMQP, and HTTP, but it is possible to imple-
ment other protocols too.

The main IoT-related properties of these cloud providers are shown in Table 6.1.
Summarizing the comparison tables, Google, Amazon, Azure, and Bluemix have
the highest variety of IoT-related services. The MQTT (or other IoT protocol)
should be a basic functionality to an IoT cloud platform, but many providers have
just a REST interface. IoT applications in Google can be composed of many con-
nected services, which make it complex providing more freedom for the developers.
They are also very good at scaling and performance, and this complexity is compen-
sated by the simplicity of Firebase.

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

110

From this survey, we can see that the most popular cloud providers have already
realized the need for IoT support, and most of them provide reasonably good solu-
tions for IoT application development. Nevertheless, interoperability issues still
exist, and applications managing a large number of different IoT devices are hard to
develop and evaluate. Bluemix has also identified the need for a sensor or device
simulator, but its tool is meant to serve simple demonstration purposes. Our aim is
to design a generic solution to this problem.

6.4 A Survey of Common IoT Cloud Applications

In order to reveal current IoT application properties, we studied and investigat-ed 16
IoT cloud uses from various application areas, including smart home, smart city,
and smart region. Telemedicine [21] is also an important area; it was originally cre-
ated to treat patients far away from local health facilities or in areas with shortages
of medical professionals. Nowadays, it is becoming a tool for convenient medical
care: waste less time in waiting rooms or get quick care for minor but urgent cases.
More precisely, telemedicine is a type of medical service where the service provider
and the recipient do not meet directly; contact is established through some sort of
data transfer system. Technically, telemedicine is a screening, diagnostic, therapeu-
tic, or rehabilitation aiding system supported by info-communication tools, where
the necessary presence of the medical staff is provided from a distance through
online connection.

Functionality of telemedicine services can fall into the following categories:

Table 6.1 Cloud IoT features

Provider Bluemix Google Amazon Azure

Open source no no no no
Hosting closed closed closed closed
Server languages many many many many
Client languages Java, JS Java, Python C, JS C, Java, JS
Mobile SDK Android, iOS Android, iOS Android, iOS Android, iOS, WP
Protocols MQTT REST MQTT, REST MQTT, AMQP, REST
Data store yes yes yes yes
BLOB no yes yes yes
GEO yes yes yes yes
Push. not yes yes yes yes
Trigger yes yes yes yes
Visualization yes yes yes N/A
Protocols MQTT REST MQTT, REST MQTT, AMQP, REST

T. Pflanzner et al.

111

• Decision support: digital encyclopedias, medical leaflets, and guidelines.
• Teleconsultation systems are primarily made to assist the communication of phy-

sicians with all the parties involved.
• Monitoring applications provide information on bioparameters with the help of

sensors.
• Register/diary applications require patients to give data regularly in order to pro-

vide useful information for the physician for an upcoming visit.
• Educational applications teach patients or professionals.

Telemedicine has several advantages, like more convenient, accessible care for
patients, saves on healthcare costs, extends access to consults from specialists,
increasing patient engagement, and better quality patient care. On the other hand, it
also has some shortcomings, such as it requires technical training and equipment;
some telemedicine models may reduce care continuity and may reduce in-person
interactions with doctors, and navigating the changing policy and reimbursement
landscape can be tricky.

With the recent growth of wearables, mobile medical devices, and consumer-
friendly health apps, patients are starting to use technology to monitor and track
their health. As people are becoming more proactive, they will be more open to vari-
ous alternatives to manage their health. The key to success of telemedicine is having
the right health tracking tools and the smart modules that able to analyze bioparam-
eters and medical data, such as blood pressure or glucose level. With recent advances
in Artificial Intelligence, smart modules are becoming smarter and smarter.
Telemedicine is going to be part of the everyday life.

Next, we introduce and describe the applications we found in this area, and in the
following sections, we present a number of use case scenarios to gather the IoT
properties of these products and offerings and compile them into a taxonomy.

Use Case 1
The Mimo [22] project develops smart products that are created for babies for better
sleep and for parents for more sleepless nights. It measures the baby’s breathing,
temperature, body position, and activity level. It can send alerts and nightly reports
to a smartphone. It uses ultralow-power Bluetooth connection. The caretakers can
see the sensor information in real time. There are some extra products, for example,
if the baby temperature is not optimal, a smart thermostat can change the room
temperature, or if the baby is moving, a webcam can be used to check on the baby.

Use Case 2
The Vitality GlowPack [23] solutions can be used instead of the standard pill bottle
top, to upgrade it to a smart pill bottle. It connects via Bluetooth to the user’s smart-
phone, and an application reminds the patient to take the pills at the right time.
There is a lamp unit with the product; if the bottle is not opened when the patient
needs to take the medicine, the lamp and the bottle top start to flash and then flash
with playing music, or if these are not effective, the user can get an SMS or phone
call. Usually there are two or three times a patient needs to take the medicine, so
there is no much need for a high-speed network. There are some other applications
to extend the use of the bottle cap, for example, the patient can alert a user if a drug

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

112

interaction is needed or can notify the user that two pills cannot be taken at the same
time. If there is a connection between the smart top and the local pharmacy, it can
ask for a refill if the application is low on medicine.

Use Case 3
AmSmart [24] is a smart home and home security solution. It includes high-quality
home alarm system, IP cameras with HD quality, automated door opening, smart-
plugs, and heat and light control. The system can be controlled with a smartphone.
If the alarm goes off, it is automatically sent to predefined receivers like guards,
neighbors, or family members.

Use Case 4
Smart outlets [25] are designed to implement the smart electrical outlet concept. A
user can remotely control the appliances or set timers from a smartphone. The num-
ber of IoT devices can be different, but on average we can say it is a medium- sized
environment. It can communicate with different networks, but the Wi-Fi is the main
profile. The monitoring and energy saving opportunities are big with this product.

Use Case 5
Key Finder Tags [26] are location sensors that attach to one’s utilities as key fobs or
stick-on tags. Some have its own cellular data connection and GPS so they can
report the position from everywhere. The simple versions only have Bluetooth con-
nection and can make a beeping sound or light signals. The smartphone can request
the device to show its position. Some advanced tags are with a really useful reverse
function, so if the user has the smart key fob, but can’t find the phone, after pushing
the fob, the phone will signal its position.

Use Case 6
Wireless plant sensors [27] help to take care of our plants. These indoor or outdoor
sensor systems use Wi-Fi connection to send status info about the plants and have
different algorithms for different plant types to water them. To set a timer is a simple
solution to not forget to water the plants. The size of the system may vary from few
home plants to an industry size system.

Use Case 7
The Bigbelly [28] smart waste and recycling system helps to figure out if a particu-
lar trash needs to be emptied. It is a solar-powered system, so no electricity is neces-
sary for fullness level sensing or communication with the Bigbelly cloud. The
system is designed to provide smart trash cans for a whole city.

Use Case 8
Outdoor lighting is an important part of the strategic asset base for cities, munici-
palities, and large enterprises. Echelon [29] offers a sophisticated, comprehensive,
open standards-based approach to outdoor lighting control that makes it easy and
affordable for lighting owners to increase the efficiency, safety, and versatility of
their municipal and commercial lighting systems.

T. Pflanzner et al.

113

Use Case 9
Open Source Lion Tracking Collars [30] is an open-source wildlife tracking collar
system to help conservationists protect the last 2000 lions living in the wild in
Southern Kenya and safeguard the Maasai herder cattle, restoring Maasai land to a
working ecosystem.

Use Case 10
The smart parking [31] system can detect if the parking spot is reserved with a mag-
netic sensor. The cellular network is an option to send the data to the Save9 cloud
and use it to provide smart parking solutions.

Use Case 11
The optic chemical sensors [32] are silicon devices mainly based on microelec-
trodes and specific sensing layers, such as silicon nitride for pH measurement.
These devices for water monitoring can be integrated into a multi-parametric micro-
system together with conductivity, redox potential, temperature, and other sensors
for water monitoring applications.

Use Case 12
With the Phenonet Project [33], plant breeders can evaluate the performance of dif-
ferent wheat varieties using measurements taken from remote sensors. These sen-
sors monitor things like soil temperature, humidity, and air temperature and are
often used for crop variety trials. This allows farmers to forecast harvest time,
improve plant health, plant irrigation time, and determine frost and heat events.

Use Case 13
AquamatiX [34] help cities to better control the flow of water by embedding sensors
in water pipes throughout the distribution network and connecting them to pump
control systems. These sensors monitor water flow, feeding the data back to facili-
tate optimized water pumping throughout the system. By minimizing the amount of
water in the pipes, cities can reduce the amount lost to leakage and prevent the for-
mation of new leaks. In the process, the system also saves energy by reducing the
need for pumping. Moreover, by distributing water monitoring throughout the net-
work, these technologies can detect abrupt events, like bursts, facilitating faster
response and minimizing water loss.

Use Case 14
The newest Samsung smart refrigerators [35] have a big touchscreen, where the
family calendar can be seen, notes, or photos. Three cameras are built in, and every
time the door closes, fresh photos are sent to the user’s smartphones. This can be
very helpful in the middle of a shopping.

Use Case 15
The latest GE Evolution Series Tier 4 Locomotive [36] is loaded with 250 sensors
to measure staggering 150,000 data points in a minute. This data combined with
other incoming streams of data from informational and operating systems help in
anticipating events and help take driving decisions in real time.

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

114

Use Case 16
Based in Ireland, the CleanGrow’s [37] project helps with monitoring the crop
nutrients making use of a carbon nanotube-based sensor system. This information
helps farmers to alter maturity rate or color of the crop production. As opposed to
analog devices used conventionally, the CleanGrow device uses a nanotube sensor
that detects quantity and presence of specific ion in the production.

Summary
Finally, we categorized the previously seen IoT applications according to four cat-
egories: context, number of devices, sensors, and connection type. In Table 6.2, we
map the IoT use cases introduced in the survey to the categories of the taxonomy.

It can be seen from the table that the number of users is usually small scale and
the number of devices is usually medium scale. This can be explained with the com-
plexity of deploying large-scale systems. The sensor types and the context of the use
cases are really diverse, this comes from the nature of these systems (available
everywhere), and they are generally used to help us in our everyday lives. Usually,
we expect from devices to have low energy consumption, because usually they work
with a battery. Regarding networking capabilities, we can examine the data genera-
tion frequency and data sizes of the transferred messages; they are generally low
and small per device. Concerning the type of the networks, it can be seen that the
wireless networks are dominating, and the bandwidth and error rate of these net-
work are not as good as in wired networks.

Table 6.2 Comparison table of IoT use cases

Use case Context No. of devices Sensors Connection type

1 Body/health Small scale Motion Short range/Bluetooth
2 Body/health Small scale Open/close Short range/Bluetooth
3 Building/home Medium scale Photo Long range/Wi-Fi
4 Building/office Medium scale Electric Long range/TCP/IP
5 Building/home Small scale GPS Short range/Bluetooth
6 Industry Medium scale Photo Long range/Wi-Fi
7 City Medium scale Load Long range/cellular
8 City Large scale Light Long range/Wi-Fi
9 Environment Medium scale GPS Long range/cellular
10 City Large scale Magnetic Long range/cellular
11 City Small scale Chemical Long range/cellular
12 Environment Medium scale Humidity Long range/cellular
13 City Medium scale Flow Long range/cellular
14 Building/home Small scale Photo Long range/Wi-Fi
15 Industry Large scale GPS Long range/cellular
16 Environment Large scale Chemical Long range/cellular

T. Pflanzner et al.

115

6.5 The Mobile IoT Device Simulator

The main purpose of our mobile IoT device simulator, called MobIoTSim, is to help
cloud application developers to learn IoT device handling without buying real sen-
sors and to test and demonstrate IoT applications utilizing multiple devices. The
structure of the application lets users create IoT environment simulations in a fast
and efficient way with the options for custom settings.

6.5.1 Requirements for an IoT Cloud Simulator

We identified the following incremental challenges relating to IoT networks:

• IoT devices are battery powered.
• They communicate using low-power wireless technologies (e.g., IEEE 802.11,

IEEE 802.15.4, Bluetooth).
• There are different resource constraints of devices (e.g., on CPU, memory,

connectivity).
• IoT networks are very dynamic as network conditions can change rapidly.
• They are heterogeneous: there is a large spread on device capabilities (e.g., pow-

erful cameras, low-cost temperature sensors); additionally there are sources (sen-
sors) and sinks of information (actuators).

• They are very dynamic: the networking environment in an IoT environment is
largely unstructured and can vary rapidly.

There are different kinds of IoT environments; hence, their static or dynamic
properties and the number of utilized devices can affect the design of such a simula-
tor. For example, a connected house can be regarded as a static environment, because
its devices are usually in one place, possibly with wired connection, providing reli-
able network stability. The dynamic environment is more complex to simulate, in
such cases we would like to simulate a broader part of the environment considering
Wi-Fi interference, battery lifetime, and locations of the devices.

We are not aiming at simulating whole IoT systems and networks, but we still
want to aid the design, development, and testing processes of these systems. Our
goal is to develop a mobile IoT device simulator that can emulate real devices and
sensors, thus it can be used in the previously mentioned processes instead of real
resources.

The requirements for basic functionalities of such a simulator are to send and
receive messages, generate sensor data (for one or more devices), and react to
received messages. These capabilities are sufficient to use the simulator in IoT sys-
tem analysis. Requirements for advanced functionalities such as simulating network
errors, recording and replaying concrete simulation cases, and connecting real IoT
devices to the simulator can contribute to the analysis of more realistic system.

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

116

In our work, we planned to support the basic functionalities with the following
settings:

• A simulated device should have an ID or tokens for authentication.
• The generated sensor data should be made available in binary, plain text, or

JSON format with metadata like date, time, and device state.
• Finally MQTT or REST communication protocols should be supported.

6.5.2 Architecture and Usage

Our mobile IoT device simulator can simulate one or more IoT devices, and it is
implemented as a mobile application for the Android platform. Sensor data genera-
tion of the simulated devices are random-generated values in the range given by the
user. The data sending frequency can also be specified for every device. The appli-
cation uses MQTT protocol to send the data with the use of the Eclipse Paho open-
source library. The data is represented in a structured JSON object compatible with
the IBM IoT Foundation message format [38].

Screenshots of the simulator can be seen in Fig. 6.1. After starting the MobIoTSim
Android application, the user can navigate to the cloud settings or the device’s
screens. The first one can be used to define the connection parameters of a gateway
residing in a cloud. These parameters are organization ID, URL, port and connec-
tion type for communicating with its MQTT server and optional parameters: appli-
cation ID, auth key, and auth token, e.g., for accessing visualized data. Users can
also select predefined settings from templates, an example parameter setting for the
Bluemix Quickstart demo gateway can be seen in Fig. 6.1a.

The devices screen shows the list of currently simulated devices. Each device can
be started/stopped or edited (see Fig. 6.1b). A new device can be added by clicking
on a button below the list. The creation of a new device and editing the details of an
existing device are managed by the same screen, the device settings screen (see
Fig. 6.1c). Here, the user can specify a device type, an ID of the device, a token (to
authenticate with the MQTT server of the gateway), the data generation frequency,
and the parameters with the range for random numeric value generation. For cloud
application testing, a great feature is to record sensor data and networking events,
and later it can be replayed again many times, with exactly the same scenario.

In order to exemplify the usability of MobIoTSim, we connected it to the
Quickstart application (i.e., demo gateway) of the IBM IoT Foundation with an
MQTT server [39] (with the settings shown in Fig. 6.1a). Once we registered a simu-
lated device to the MQTT server of the IBM IoT Foundation system and started it in
MobIoTSim (like MobIoT_test01 as shown in Fig. 6.1b), the data generated by the
device is continuously sent to the demo gateway. A screenshot of the received and
visualized data in the IBM IoT Foundation demo gateway can be seen in Fig. 6.2.

We also developed an own gateway service in the IBM Bluemix platform that is
able to manage more devices simultaneously and to send a notification to the

T. Pflanzner et al.

117

F
ig

. 6
.1

Sc

re
en

sh
ot

s
of

 th
e

M
ob

Io
T

Si
m

 A
nd

ro
id

 a
pp

lic
at

io
n:

 (
a)

 C
lo

ud
 s

et
tin

gs
, (

b)
 D

ev
ic

es
, (

c)
 D

ev
ic

e
se

tti
ng

s

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

118

F
ig

. 6
.2

D

at
a

vi
su

al
iz

at
io

n
in

 th
e

IB
M

 I
oT

 F
ou

nd
at

io
n

de
m

o
ga

te
w

ay

T. Pflanzner et al.

119

MobIoTSim device simulator by responding to critical sensor values. This gateway
service is basically an extended version of the IoT visualization application [40] of
the IBM Internet of Things Cloud. It has a web-based graphical interface to visual-
ize sensor data coming from MobIoTSim. Messages (defined in JSON format)
received from the simulated devices are managed by an MQTT server. It can also be
used to send responses (or notifications) back to the simulated IoT devices in
MobIoTSim.

Figure 6.3a shows how to connect the simulator to this gateway. Since it has a
predefined template called Bluemix, we only need to specify an organization ID and
the connection type (TCP or secure TLS) (the URL is given in the template) to
enable connection to the MQTT server, while the application ID, the auth key, and
token can be retrieved by registering to the gateway service (these parameters can
be used later to sign in to the data visualization site of the gateway). The simulated
devices also need to be registered to the MQTT server of the gateway service by
specifying their device and type identifiers and sensor data thresholds, which replies
with their token identifiers (to be used for device setting as shown in Fig. 6.1c).

Fig. 6.3 Screenshots for using an own gateway: (a) Cloud settings, (b) Devices screen showing a
warning

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

120

Once these settings are made, simulated devices can be defined and started in the
same way as shown previously for the demo gateway. With this own gateway, we
can create advanced scenarios, such as managing more devices and responding to
critical sensor data coming from the simulated devices. Figure 6.3b shows a situa-
tion in which a warning message is sent to a device (named MobIoT_test01 in
MobIoTSim), when sensor data values are over/under a predefined threshold.
Figure 6.4 shows the GUI of the own Bluemix gateway service by depicting the data
received from a selected simulated device.

We have also created a gateway service in Azure IoT Hub [20] and connected
MobIoTSim to it. In this way we can envision an inter-cloud scenario, in which
simulated devices in MobIoTSim can send data to gateways in Bluemix and Azure
clouds simultaneously. Figure 6.5 shows screenshots of the Azure IoT Hub, includ-
ing the gateway service called SED-IoT-App and a MobIoTSim device called
javadevice. We also included a screenshot on the usage tab, showing 23 received
messages.

6.5.3 Evaluation of the Multiple Device Simulation Scalability

We created a refined android application to focus on the scalability testing of
MobIoTSim. This application is a simplified version of MobIoTSim, containing
only its device handling functionalities, by providing access to low-level configura-
tions, e.g., specifying the number of threads for the simulated devices. It collects
detailed statistical data regarding the simulation by measuring elapsed times for
executing certain functions. It also connects to a Bluemix cloud IoT gateway and
sends MQTT messages to it. When we performed the evaluations, the number of
simulated devices was limited to 20 by the Bluemix platform.

There is a settings part of this application, where the number of devices, the mes-
sage frequency, the number of used threads, and the message content type can be
set. The content type can be a simple JSON object with one random parameter or an
OpenWeatherMap structured JSON structure describing cities and their randomly
generated weather values. Other settings are hardcoded to the application for this
testing, like the address of the Bluemix IoT service MQTT broker. After starting the
test, the statistics can be accessed by pressing the STAT button.

Fig. 6.4 Data visualization in an own gateway service in Bluemix

T. Pflanzner et al.

121

The statistical information has two main parts: the Settings and the actual
Statistics part. In the Settings, we can find the number of used threads, the address
of the MQTT broker, the number of simulated devices, the frequency of the mes-
sages, the generated clientID of one device, the MQTT topic where the messages
were sent, the content type, and an example of JSON message. The Statistics part
contains measured values like the duration of the simulation, the overall messages
sent, and the total number of errors in the initialization, connection, or send process
of the devices. The average times of the MQTT initialization, connection, and mes-
sage send methods and the average overall time cost of a message exchange cycle.
An important measure is regarding the real-time difference between the cycles of a
device. If the message frequency is set to 1 s in the settings, we should know if it
was achieved or not in the testing. It can happen that during the simulation the

Fig. 6.5 Connection with an Azure gateway service

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

122

 simulated device cannot start the message-sending method every second, because
the other devices would not let it to get the required resources, like CPUs. The aver-
age required time of a random-generated message is measured, too.

The tests were made with a Samsung S5 smartphone and a node.js visualization
application in Bluemix. The most informative tests were made with 1 s message
frequency, simulating 10 to 20 devices and using 3 to 12 threads. The message con-
tents were five random-generated values in a JSON object. The duration of each
tests was 1 min.

The test results showed that the random data generalization consumes almost
negligible time, so it does not interference with the simulation. First, we started
using three threads, because the Samsung S5 has four cores, but from the results in
Table 6.3, we can see that the number of threads is an important factor. With ten
simulated devices, the three threads struggled, requiring approximately 1.5 s for the
devices to start a message-sending cycle again, instead of the 1 s from the previous
settings. With four threads the problem was solved. If the number of simulated
devices grows, more threads are needed. For 15 devices, the threads are not enough,
but 6 can manage the tasks. This can be seen in Fig. 6.6, where the blue line is the
number of sent messages and the red line is the time between sending cycles. For 20
devices, the 6 threads look weak, and for the required performance, we needed 8
threads.

We also made additional tests to find out the limits of MobIoTSim using 20
simulated devices. The minimum time required to send a message is around 0.5 s,
because if the frequency is 0.5 or 0.25 s, there is no difference in the measurements
even with 16 threads. As a result, the simulator can send a total of 2300 messages
per minute with 20 registered devices to Bluemix.

Table 6.3 MQTT device simulation

Used threads Number of devices Message count Send time Time between cycles

3 10 441 405 1374
4 10 588 403 1023
6 10 610 431 991
8 10 603 435 993
12 10 610 462 999
3 15 432 406 2078
4 15 593 402 1531
6 15 863 411 1048
8 15 908 425 988
12 15 915 420 997
3 20 433 402 2766
4 20 583 401 2054
6 20 843 407 1402
8 20 1153 404 1030
12 20 1219 433 993

T. Pflanzner et al.

123

6.5.4 Future Extensions

We plan to extend MobIoTSim our research in several directions. First, we believe
that gateway templates could provide useful means for experimenting with the sim-
ulator. Currently, the previously introduced gateway services for the IBM Bluemix
platform and Azure IoT Hub are available, but we plan to support additional, popu-
lar cloud providers, e.g., Amazon and Google. A general, platform independent
gateway would also be useful. It could be realized with a cloud visualization appli-
cation consisting of three main parts: the data collection, the database, and the visu-
alization part. We already started to design such a general solution, where data
collection is managed by an MQTT broker and a REST server. The database could
be excluded, if the data storage is not necessary and the data streaming is possible
directly to the visualization part, but for advanced features like displaying data his-
tory or statistical reports it is useful. The visualization part will be supported by live
charts showing the data coming from the IoT devices in real time, and statistical
data will also be available.

We also plan to support larger, scalable experiments in the future. For this pur-
pose, we will use a scripting language to be able to specify the devices and their
properties and to schedule their activities. The bulk addition of devices future can be
useful for larger tests, this way the user can add more than one instance of a device
with one click. In the background, the application should register these devices to the
gateway automatically, so the required authorization token cannot be a problem.

The network errors are common problems in real IoT systems, therefore we also
plan to investigate this issue in more detail. The current version of MobIoTSim can

Fig. 6.6 Number of sent messages and time between send cycles

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

124

only generate random errors upon request (with a static setting). However, more
complex simulations can also model the IoT network more accurately by consider-
ing wireless interference and propagation models. Those networking conditions are
typically considered by wireless network simulators such as NS-3 [41]. While such
an extension makes the simulations more realistic, it will also significantly increase
setup time and computation time of such simulations.

6.6 Conclusion

In this chapter, we presented our results toward developing a general purpose IoT
device simulator. We overviewed the available IoT cloud providers and the most
common IoT application scenarios. Then, we introduced the requirements and per-
formed design steps of our mobile IoT simulator called MobIoTSim, which is capa-
ble of simulating more IoT devices by generating real-time sensor data. We have
also developed private gateway services in the IBM Bluemix and Microsoft Azure
platforms that can be connected to MobIoTSim to manage the simulated devices
and to send notifications to the simulator by responding to critical sensor values. By
using this tool, researchers and developers can examine the behavior of IoT systems
and develop and evaluate IoT cloud applications more efficiently. Finally, we evalu-
ated the scalability of the device management component of MobIoTSim.

Our future work will address the extension of MobIoTSim with predefined data
generation templates and a basic propagation and loss model to simulate the net-
work transmission. Further gateway developments for different cloud providers are
also planned to ease integration with other clouds and foster inter-cloud
deployments.

Acknowledgments This research was supported by the Hungarian Government and the European
Regional Development Fund under the grant number GINOP-2.3.2-15-2016-00037 (“Internet of
Living Things”) and by the Janos Bolyai Research Scholarship of the Hungarian Academy of
Sciences.

References

 1. Sundmaeker H, Guillemin P, Friess P, Woelffle S (2010) Vision and challenges for realizing the
internet of things. CERP IoT – cluster of European research projects on the internet of things,
CN: KK-31-10-323-EN-C, March 2010

 2. Mahoney J, LeHong H (2011) The internet of things is coming, Gartner report. Online: https://
www.gartner.com/doc/1799626/internet-things-coming, September 2011

 3. Buyya B, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging
it platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur Gener
Comput Syst 25(6):599–616

 4. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, archi-
tectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660

T. Pflanzner et al.

https://www.gartner.com/doc/1799626/internet-things-coming
https://www.gartner.com/doc/1799626/internet-things-coming

125

 5. Celesti A, Fazio M, Giacobbe M, Puliafito A, Villari M (2016) Characterizing cloud federa-
tion in IoT. In: IEEE 30th International conference on advanced information networking and
applications workshops – workshop on cloud computing project and initiatives, 2016

 6. Machado SG, Hausheer D, Stiller B (2009) Considerations on the interoperability of and
between cloud computing standards. In: 27th Open Grid Forum (OGF27), G2CNet workshop:
from grid to cloud networks, Banff, Canada, 2009

 7. Botta A, de Donato W, Persico V, Pescape A (2014) On the integration of cloud computing
and internet of things. The 2nd international conference on future internet of things and cloud
(FiCloud-2014), August 2014

 8. Nastic S, Sehic S., Le D, Truong H, Dustdar S (2014) Provisioning software-defined iot
cloud systems. The 2nd International conference on future internet of things and cloud
(FiCloud-2014), August 2014

 9. Boson NetSim Network Simulator website. Online: http://www.boson.com/netsim-cisco-net-
work-simulator. Accessed Feb 2017

 10. QualNet communications simulation platform website. Online: http://web.scalable-networks.
com/content/qualnet. Accessed Jan 2016

 11. Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In:
Proceedings of the 1st international conference on Simulation tools and techniques for com-
munications, networks and systems & workshops (Simutools ’08). 2008

 12. Han SN, Lee GM, Crespi N, Luong NV, Heo K, Brut M, Gatellier P (2014) DPWSim: a simu-
lation toolkit for IoT applications using devices profile for web services. In: proceedings of
IEEE World Forum on Internet of Things (WF-IoT), pp 544–547, 6–8 March 2014

 13. SimpleSoft SimpleIoTSimulator website. Online: http://www.smplsft.com/SimpleIoT-
Simulator.html. Accessed Jan 2016

 14. Atomiton IoT Simulator website. Online: http://atomiton.com/simulator.html. Accessed Feb
2017

 15. LoRa Technology website. Online: https://www.lora-alliance.org/What-Is-LoRa/Technology.
Accessed Jan 2016.

 16. SIGFOX website. Online: http://www.sigfox.com/en/\#!/connected-world. Accessed Feb 2017
 17. IBM Bluemix Platform website. Online: https://console.ng.bluemix.net/. Accessed Feb 2017
 18. IBM Bluemix IoT Sensor website. Online: https://developer.ibm.com/recipes/tutorials/use-

the-simulated-device-to-experience-the-iot-foundation/. Accessed Feb 2017
 19. Google Cloud Platform website. Online: https://cloud.google.com/solutions/iot/. Accessed

Feb 2017
 20. Azure IoT Hub. Online: https://azure.microsoft.com/en-us/services/iot-hub/. Accessed Feb

2017
 21. Perednia DA, Allen A (1995) Telemedicine technology and clinical applications. JAMA

273(6):483–488
 22. Mimo website. Online: http://mimobaby.com/. Accessed Sept 2016
 23. Vitality GlowPack website. Online: http://www.vitality.net/products.html. Accessed Sept 2016
 24. AmSmart website. Online: http://www.amsmart.biz/. Accessed Feb 2017
 25. Smart Outlets website. Online: http://www.postscapes.com/smart-outlets/. Accessed Sept

2016
 26. Key Finder Tags website. Online: http://postscapes.com/wireless-key-locators. Accessed Sept

2016
 27. Wireless Plant Sensors website. Online: http://postscapes.com/wireless-plant-sensors.

Accessed Sept 2016
 28. Bigbelly website. Online: http://bigbelly.com/solutions/stations/. Accessed Sept 2016
 29. Echelon website. Online: http://www.echelon.com/applications/pl-rf-outdoor-lighting.

Accessed Sept 2016
 30. Open Source Lion Tracking Collars website. Online: http://home.groundlab.cc/lion-collars.

html. Accessed Sept 2016

6 Simulating Sensor Devices for Experimenting with IoT Cloud Systems

http://www.boson.com/netsim-cisco-network-simulator
http://www.boson.com/netsim-cisco-network-simulator
http://web.scalable-networks.com/content/qualnet
http://web.scalable-networks.com/content/qualnet
http://www.smplsft.com/SimpleIoT-Simulator.html
http://www.smplsft.com/SimpleIoT-Simulator.html
http://atomiton.com/simulator.html
https://www.lora-alliance.org/What-Is-LoRa/Technology
http://www.sigfox.com/en//#!/connected-world
https://console.ng.bluemix.net
https://developer.ibm.com/recipes/tutorials/use-the-simulated-device-to-experience-the-iot-foundation
https://developer.ibm.com/recipes/tutorials/use-the-simulated-device-to-experience-the-iot-foundation
https://cloud.google.com/solutions/iot
https://azure.microsoft.com/en-us/services/iot-hub
http://mimobaby.com
http://www.vitality.net/products.html
http://www.amsmart.biz
http://www.postscapes.com/smart-outlets
http://postscapes.com/wireless-key-locators
http://postscapes.com/wireless-plant-sensors
http://bigbelly.com/solutions/stations
http://www.echelon.com/applications/pl-rf-outdoor-lighting
http://home.groundlab.cc/lion-collars.html
http://home.groundlab.cc/lion-collars.html

126

 31. Smart Parking Sensor website. Online: http://www.save9.com/home/products-and-services/
internet-and-wireless-networks/wireless-sensor-networks/. Accessed Sept 2016

 32. Optoi Chemical Sensors website. Online: http://www.optoi.com/en/products/details/chemical-
physical-sensors-mems. Accessed Sept 2016

 33. Phenonet Project website. Online: http://www.csiro.au/en/Research/D61/Areas/Robotics-and-
autonomous-systems/Internet-of-Things/Phenonet. Accessed Sept 2016

 34. AquamatiX website. Online: http://www.aquamatix.net/. Accessed Sept 2016
 35. Samsung refrigerator website. Online: http://www.samsung.com/us/explore/family-hub-

refrigerator/. Accessed Sept 2016
 36. GE Evolution Series Tier 4 Locomotive website. Online: http://www.getransportation.com/

locomotives. Accessed Sept 2016
 37. CleanGrow website. Online: http://www.cleangrow.com/. Accessed Sept 2016
 38. IBM IoT Foundation message format. Online: https://docs.internetofthings.ibmcloud.com/

gateways/mqtt.html#/managed-gateways#managed-gateways. Accessed Feb 2017
 39. IBM IoT Foundation Quickstart application. Online: https://quickstart.internetofthings.ibm-

cloud.com. Accessed Feb 2017
 40. IOT Visualization application. Online: https://github.com/ibm-messaging/iot-visualization/.

Accessed Feb 2017
 41. NS-3 website. Online: https://www.nsnam.org/. Accessed Mar 2016

T. Pflanzner et al.

http://www.save9.com/home/products-and-services/internet-and-wireless-networks/wireless-sensor-networks
http://www.save9.com/home/products-and-services/internet-and-wireless-networks/wireless-sensor-networks
http://www.optoi.com/en/products/details/chemical-physical-sensors-mems
http://www.optoi.com/en/products/details/chemical-physical-sensors-mems
http://www.csiro.au/en/Research/D61/Areas/Robotics-and-autonomous-systems/Internet-of-Things/Phenonet
http://www.csiro.au/en/Research/D61/Areas/Robotics-and-autonomous-systems/Internet-of-Things/Phenonet
http://www.aquamatix.net
http://www.samsung.com/us/explore/family-hub-refrigerator
http://www.samsung.com/us/explore/family-hub-refrigerator
http://www.getransportation.com/locomotives
http://www.getransportation.com/locomotives
http://www.cleangrow.com
https://docs.internetofthings.ibmcloud.com/gateways/mqtt.html#/managed-gateways
https://docs.internetofthings.ibmcloud.com/gateways/mqtt.html#/managed-gateways
https://quickstart.internetofthings.ibmcloud.com
https://quickstart.internetofthings.ibmcloud.com
https://github.com/ibm-messaging/iot-visualization
https://www.nsnam.org

127© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_7

Chapter 7
Managing Heterogeneous Communication
Challenges in the Internet of Things Using
Connector Variability

Muhammed Cagri Kaya, Mahdi Saeedi Nikoo, Selma Suloglu,
Bedir Tekinerdogan, and Ali H. Dogru

Abstract Internet of Things (IoT) comprises smart systems that embrace
 computational and physical elements. In these systems, physical and software com-
ponents are often tightly coupled. They are used widely in today’s technological
systems, such as smart buildings, avionics, self-driving cars, etc. IoT systems are
typically developed using hardware and software components with different interac-
tion types. This chapter introduces an approach to manage hyper-connectivity in the
IoT through connectors that are equipped with variability capability. Computational
and physical elements in IoT-based systems are represented as components.
Different types of communications among these components are abstracted and
managed in the definition of connectors. XCOSEML is a modelling language that
leverages the variability concept for the component-oriented development method-
ology. Variable connectors of XCOSEML are employed to address the hyper-con-
nectivity challenges of the IoT domain. In our approach, systems are designed with
XCOSEML constructs, and IoT domain needs are mapped to connector mecha-
nisms. The heterogeneity in IoT communications is addressed by connector vari-
ability. The proposed approach is illustrated with a case study for proof of concept.

M.C. Kaya • M. Saeedi Nikoo • A.H. Dogru
Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

S. Suloglu
SoSoft Information Technologies, Ankara, Turkey

B. Tekinerdogan (*)
Information Technology Group, Wageningen University, Wageningen, The Netherlands
e-mail: bedir.tekinerdogan@wur.nl

mailto:bedir.tekinerdogan@wur.nl

128

7.1 Introduction

Internet of Things (IoT) offers new capabilities to the distributed software intensive
systems. Many devices are being connected to the Internet offering the availability
of location-agnostic use: an already existing device that has been allocated some-
where in the physical world can be made a part of a new application, or its services
can be utilized by different applications. Also, location-dependent services such as
weather sensors in a specific city can be incorporated in various systems.

This kind of usage with widespread purposes is great; however, it comes with
certain costs. There is no limit to types and capabilities of units that can be con-
nected incorporating their own communication styles. They may be abiding with
existing communication protocols or may have their own ways of sending and
receiving data and commands. Consequently, a system’s developer faces the
problem of noncompatible devices trying to be integrated in a system. The scale
of the diversity of what these units do and how they connect renders the job of the
developer a difficult one. This problem is expressed as the heterogeneity in IoT
and further, the multitude of communication techniques is expressed as
hyper-connectivity.

Communication heterogeneity has been investigated in the literature to quite
some extend. For example, heterogeneity among cooperating wireless sensor net-
works (WSNs) is referred in [1]. Device and protocol heterogeneity among different
nodes of a WSN test bed are discussed in a survey on WSN test beds [2]. Different
communication technologies in a smart home environment are investigated in [3].
Solutions to this problem are generally proposed through gateways handling differ-
ent protocols at different levels of communication (such as application level or
transport level) in some research [3–5]. However, they do not have the modular
design perspective in terms of software components. Patel et al. [6] suggest devel-
opment of IoT applications using software components without taking variability
into consideration. In the work of Pradhan et al. [7], large-scale IoT applications are
handled in a higher level of abstraction (like systems of systems), and the natural
heterogeneity is considered as product line variability. However, they do not have
explicit definition of connectors with the power of configurability.

This research is an effort towards offering a solution to such heterogeneity and
hyper-connectivity. If a system integrated across a computer network such as the
Internet can be visualized as nodes and links where procedural capabilities are mod-
elled by the nodes and their connections modelled as links, naturally the architec-
tural view “components and connectors” is associated. However, the goal in this
chapter is not to use component-based modelling only for rigid definitions of differ-
ent systems. Rather, a more flexible option is desired where a degree of variability
in the “product” can be achieved through more flexible approaches: configuring or
adapting a smaller number of more established constituents, namely, components.
The variability concept has proven itself in the industry. Current trend, however, is
applying variability to components that are mainly providing the functional units of

M.C. Kaya et al.

129

a solution. Variability is also destined for connectors in this research, assuming dif-
ferent adaptation and communication tasks concerning the components.

The rest of the chapter includes a section on topic background that provides
some brief information on IoT and Component-Based Software Engineering
(CBSE). Then, a case study and problem description are explained before the sec-
tion where heterogeneity and hyper-connectivity in IoT are explained. The
XCOSEML language is explained, and hyper-connectivity and heterogeneity mod-
elling in IoT are shown based on the case study. We discuss the applicability of our
approach at the discussion section. After discussion and related work sections, the
chapter ends with a conclusion.

7.2 Background

In this section, we provide the background that is required for the study. IoT and
CBSE are included in the discussion.

7.2.1 Internet of Things

Nowadays, IoT has become a hot topic in the industry, but the concept is not new. It
was in the early 2000s that Kevin Ashton was laying the foundation of the concept
at Massachusetts Institute of Technology (MIT) that we call it as the IoT today. The
idea was simply suggesting that if all objects in daily life were equipped with identi-
fiers and wireless connectivity, they could communicate with each other. At the
time, the vision required major technological advances. Today, many of the obsta-
cles have been settled. The improvements in the communication medium include
Internet Protocol version 6 (IPv6) and its support of billions of devices, improve-
ments in mobile data coverage, advances in battery technology and low-cost elec-
tronic devices and sensors.

The building blocks of the IoT are smart objects that are cyber-physical or
embedded systems that connect to the Internet. The idea of the IoT undoubtedly
presents immense opportunities but it also involves several technical and social
challenges [8, 9]. An IoT system makes computing truly ubiquitous – this is the idea
proposed by Mark Weiser in the early 1990s [10]. Atzori et al. [11] identify the IoT
as the realization of three paradigms: Internet-oriented (middleware), things-
oriented (sensors) and semantic-oriented (knowledge). Although describing the IoT
in this way is because of the interdisciplinary nature of it, the real power of IoT can
be seen in the application domains with these paradigms meeting one another.

IoT basically describes a world in which devices and sensors are connected to the
Internet via wired and wireless communication technologies. These sensors use dif-
ferent local connectivity such as Radio-Frequency Identification (RFID), Wi-Fi,
Bluetooth and ZigBee. Also, they use wide-area connectivity such as General Packet

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

130

Radio Service (GPRS), Global System for Mobile Communications (GSM) and
third-generation (3G) technologies. IoT presents connectivity for both living and
nonliving things including people, places and objects. Sensors are the central part of
IoT. Using the sensors attached to physical entities, new information is gained from
the data produced by the sensors monitoring different conditions of the environment,
such as temperature, light, location, motion, etc. Communication mostly was
employed among people and machines in the past. IoT-enabled objects bring new
aspects to this concept. It is expected in the future that objects will have identities and
connectivity so that you will be able to track, identify or communicate with them.

7.2.2 Component-Based Software Engineering

CBSE emerged as a reuse paradigm in the late 1990s. Component-based systems
are realizations of complex and large-scale software systems based on reusable
building blocks, namely, components. CBSE offers processes and methodologies to
define, model, implement and integrate loosely coupled and independent compo-
nents. Starting from the 1990s, the core idea of Component-Based Software
Development (CBSD) has been to integrate prebuilt software components for devel-
oping software systems rather than building them from scratch. Components have
interfaces that indicate functionalities and behaviour whose implementation details
are hidden. With specified interfaces, components can be integrated and deployed
easily, even with third party components. As the demand for software systems grows
for larger size and more complex requirements, component reusability and its man-
agement throughout the development process become an inevitable fundamental
characteristic.

For handling connections by separating interaction and computation concerns in
CBSD, there have been approaches defining connectors explicitly. In [12], by ana-
lysing existing component interactions, a connector taxonomy and classification are
provided. They define service types and connector types. Some type of connectors
deals with data communication among components (such as procedure call and
events), and some others require additional processes to be done on data (such as
unit conversion) or to coordinate the components in the system (such as arbitrators).
These additional operations can be included into the definition of connectors.

There are very few studies in the IoT world that consider component-based
application development. In [6], authors present an application development frame-
work – a domain model for the IoT that captures the generic concepts and associa-
tions to represent IoT systems. This work does not specify any details about the
paradigms concerning communication among software components. Pradhan et al.
[7] propose UMRELA, which is an abstract feature model and uses product line
concepts to represent commonalities and variation points in heterogeneous distrib-
uted applications. The work also presents Application Management Framework
(AMF) as a system prototype that uses the UMRELA. However, the contribution
does not discuss the communication interoperability.

M.C. Kaya et al.

131

7.3 Case Study and Problem Description

In this section, we describe the problem statement using an IoT case study on a
smart office system that will be used throughout the chapter. We will use the case
study for both explaining the problem and the solution.

7.3.1 Case Study: Smart Office

A smart office application is used as a case study to illustrate the heterogeneous
communication needs and hyper-connectivity in an IoT system. This system is
designed for providing employees a comfortable working place. It can also be
extended with additional capabilities, such as security. Appliances and devices in
this system can communicate with each other through different communication
types and protocols. We describe a relatively small smart office system for the sake
of simplicity. In our case, the smart office system can automatically or on demand
make coffee and keep the temperature of the environment at a desired value. People
can check the temperature, humidity and light level of the office by using their smart
phones. They can request video or photo from the security camera that is connected
to the local network. They can control the air conditioner and the coffee machine
directly using their smart phones from the same office or from another room in the
same building.

The smart office system is described in Fig. 7.1. A software-defined radio (SDR)
connected to a personal computer (PC) is used to ease the communication with

Fig. 7.1 Illustration of the example smart office system

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

132

other devices that use different communication protocols. This assembly is referred
to as “computer” in the remaining part of the chapter. A security camera is con-
nected to the computer via a wired connection and uses User Datagram Protocol
(UDP) protocol to transmit data. A sensor that is capable of measuring the tempera-
ture (in Celsius), humidity and light level is placed in the office. It uses the ZigBee
protocol to communicate with other devices. Another ZigBee-supported device is
the air conditioner that can work autonomously and can be controlled by the user
remotely. There is also a coffee machine in the office that can make coffee automati-
cally if lights are turned on in the office or by receiving commands from users’
smart phones. It can be reached only through Bluetooth communication. Smart
phones can communicate through Wi-Fi and Bluetooth, and they are used by people
to monitor the desired information and to interact with other devices in the office.

7.3.2 Problem Description

In the smart office environment, devices use different communication protocols. In
our case study, users control air conditioner, use sensor to get measurements and use
security camera through their smart phones. However smart phones do not contain
a ZigBee unit. The security camera is only connected to the local network and it can
be reached through wired connection. Also, the air conditioner and the coffee
machine use the sensor in their automatic mode. Coffee machine also does not have
a ZigBee unit, and the air conditioner cannot communicate with the sensor directly.
Coffee machine can only be reached through Bluetooth. Smart phones can use
Bluetooth to control the coffee machine if they are in the same office. However, due
to the short range of Bluetooth, it cannot be used from other offices in the same
building.

Using a generic protocol among all devices or producing devices capable of sup-
porting all possible protocols at once is not realistic and feasible when different
device characteristics, vendors, power and computation constraints of the devices
and their purpose of usage are considered. Moreover, an IoT configuration is not
static but dynamic, that is, new IoT devices may be added and removed from the
configuration at different times.

To address the required various interactions, the components should adapt their
communication channels with interacting parties which in turn bring the duty of
multi interaction management to the component. This increases complexity and
decreases reusability of both components and connectors as the interaction logic is
hidden inside the communicating components. Following the separation of concerns
principle, where components carry out their core functionality and connectors sat-
isfy interaction needs, a highly reusable and dynamic infrastructure is needed.

M.C. Kaya et al.

133

7.4 Heterogeneity and Hyper-Connectivity in IoT

As a structure to enable integration of various applications and devices with diverse
capabilities, IoT provides flexibility through a plug and play approach. Although
IoT seems promising, the heterogeneity and the hyper-connectivity seriously
impede the integration of different components. Its diversity shapes heterogeneous
environments which interconnect different types of applications (software) and
things (physical devices such as sensors and smart devices). In essence, the com-
plexity of interconnectivity lies in the variability of interaction semantics and
functionalities.

IoT is an architecture that comprises a set of components together with their
properties and connections requirements (via connectors) [13]. Software (applica-
tions) and hardware parts (things/devices) are considered as components of IoT. This
architecture also employs a set of design decisions with respect to different views
and viewpoints. Basically, heterogeneity in IoT reflects architectural elements:
components represented via their interfaces, connectors and behaviour. Besides, the
IoT architectures can be analysed in data, function and process dimensions as
detailed in the following paragraphs.

Data dimension comprises the information which resides in the components and
is shared with the other ones. Within this dimension, heterogeneity occurs where
interacting components try to exchange different types, structures or semantics of
data. For instance, a temperature sensor sends its sensory data in Celsius to a
SCADA (Supervisory Control and Data Acquisition) system which processes the
data in Fahrenheit.

Function dimension indicates the tasks that the component achieves.
Heterogeneity in this dimension leads to discrepancy at either the semantic or syn-
tactic levels, while a mobile application requests the status of sensors as a single
response where each sensor sends its status separately.

Process dimension includes the collaborative behaviour of the interacting com-
ponents to achieve a goal which is realized by component composition. Processes
can be analysed via interaction properties:

• Behaviour (Interaction Logic): The flow of the collaborative behaviour
• Connector (Interaction Type, Task and Protocol): The way components use to

connect with others

Heterogeneity is handled in process sub-dimensions of behaviour and connector.
Heterogeneity in behaviour occurs when interacting components follow different
workflows or when application of a set of changes is required with inclusion/exclu-
sion of a component. Heterogeneity at the connector level is a prominent one which
leads to hyper-connectivity – multiple means of communication among IoT
 components. Multiple communication protocols and broad and short-range proto-
cols are widely used introducing heterogeneity: RFID, ZigBee, Bluetooth (1.0, 2.0,
3.0 and 4.0, Bluetooth Low Energy), Wi-Fi, GSM (2G, 3G, 4G, 5G), Z-Wave, etc.
Having these in mind, the needs to address hyper-connectivity in IoT are listed in

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

134

Table 7.1 where architectural elements (with their sub-elements) are listed along
with associated heterogeneity.

Concerning hyper-connectivity, components working with different protocols
shall join/participate in component interaction. Constraints on interacting compo-
nents shall be taken into consideration. Components which use different protocols
such as Wi-Fi and Bluetooth shall seamlessly communicate with each other (com-
patibility) in all dimensions: function, data and process.

7.5 XCOSEML

XCOSEML [14] is a text-based domain-specific language with variability support
for component-oriented development paradigm. It is named after a graphical model-
ling language – Component-Oriented Software Engineering Modelling Language
(COSEML).

COSEML is proposed to be used with the Component-Oriented Software
Engineering (COSE) approach [15]. The COSE approach emerged based on the
idea of exploiting the component concept throughout all stages of development
unlike CBSD. As a text-based version of its predecessor COSEML, XCOSEML is
equipped with variability support. The primary target is to bring the advantages of
component technology and benefits of using variability together. XCOSEML’s vari-
ability approach is inspired from the Orthogonal Variability Model (OVM) [16] and
Covamof [17]. It separates variability specifications from other specifications, to be
associated by using mapping constructs.

There are six types of constructs defined in XCOSEML: package, component,
interface, connector, configuration interface and composition specification. Package
represents the logical organization of a system or a part of a system. It can be used
to show system level entities and can be represented by a component. It can contain
further packages, but there must be components at the leaf level. A component rep-
resents physical code. In component-oriented development, it is assumed that the
code was implemented before. If the desired component cannot be found, it can be

Table 7.1 Analysis of IoT heterogeneity

Architectural
element Sub-elements Realized by

Heterogeneity
dimension

1.Components Functions Component
interfaces

Function

Parameters of the
functions

Data

2. Connectors Type Connectors Function, data,
processTask

Protocol
3. Interaction Behaviour Composition Process

M.C. Kaya et al.

135

implemented from scratch as a final choice. Functionality of a component is shown
through one or more interfaces.

XCOSEML did not have detailed connector definition when it was first defined,
and the provided connector definition did not support variability. In a recent work
[18], the language was enhanced with connector variability, and the definition of
connector has been extended. In [18], the connector definition is enriched by adding
connector’s service type and connector type, as suggested by Oussalah et al. [19]
based on the connector taxonomy of Mehta et al. [12]. Moreover, the interacting
interfaces of components and their caller and responder methods are defined explic-
itly. As some connector types necessitate, connector operations are added to the
connector definition. For example, unit conversion process between two compo-
nents is done by a connector. This process is abstracted with the “operation” key-
word and an identifier in the connector definition.

Connectors invoke the interface of a component for a desired functionality. An
interface shows the methods that the component has with the classification of pro-
vided and required. Provided methods represent the functionality that the compo-
nent performs itself. A component must have at least one provided method in its
interface. The functionality that the component expects from other components is
listed as required methods.

The configuration interface is where the variability specification of the system is
defined. It contains variation points, variants and constraints among different varia-
tion points and variants. It defines high-level “Configuration” variation points that
are able to resolve low-level variation points by mapping relations when they are
bound to a specific variant or a set of variants. “External” variation points are shown
to developers for customization purposes. Configuration variation points also can be
tagged as external. “Internal” variation points are bound by other (generally con-
figuration) variation points to hide the details from the developer. Packages and
components can have configuration interfaces.

Composition specification is the process model of XCOSEML and shows inter-
actions among the system components through connectors. In early versions of the
language, messaging among components was explicitly shown in the composition.
After a detailed connector definition in [18], connectors are employed to represent
the messaging between two components (an atomic interaction) and connectors
appear in the composition specification that is saved as the composition file.
Composition specification also has composite interactions: sequence, parallel and
repeat. As their names suggest, they are used to group atomic interactions to be
executed in a sequence, in parallel and iteratively, respectively. Composition speci-
fications can only be defined for the package level in XCOSEML.

System configuration is conducted through composition specification in
XCOSEML. In other words, first variability is bound in the interaction model, and
then other constructs are chosen according to this interaction selection. Variability
options in the configuration interface are shown with tags in composition
 specification to choose a desired interaction. After desired variants are provided,
corresponding interactions are included in the configured composition specification
by using the variability tags. Then, interacting components and related connectors

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

136

are allocated in the final system based on the chosen interactions. As connectors
refer to the interacting component interfaces and their methods, these interfaces and
methods are also included in the final product. Therefore, XCOSEML has variabil-
ity support for system composition, components, interfaces and connectors.

Before system customization, i.e. configuring the models that contain variability
to obtain a functioning system, model checking can be applied to domain models.
The SNIP model checker [20] is employed for this purpose that is based on the
featured transition system (FTS) [21] approach. This tool uses textual variability
language (TVL) [22] and fPromela, an extended version of the process modelling
language Promela of the SPIN model checker [23] with variability, as the input
models. XCOSEML’s configuration interface (variability model) and composition
specification (process model that contains variability) can be transformed for verifi-
cation to TVL and fPromela, respectively. Therefore, all possible products of the
system family can be checked against errors and deadlocks. A semiautomated tool
for this transformation and model checking process for XCOSEML models is intro-
duced in [24].

After configured system models are obtained, components and connectors in the
model are matched to the existing implemented ones. Our modelling language has
an abstract modelling view and it encourages developers to visualize the system as
decomposed units independent of implementation details. Therefore, it does not
restrict the usage of different implementation languages and component models. If
the desired components, connectors or interfaces cannot be found or they do not
exist, they can be developed by choosing any programming paradigm.

In this chapter, XCOSEML connector definition is extended to meet heteroge-
neous communication challenges and hyper-connectivity in IoT. As we propose a
solution for communication heterogeneity in the network protocol level, we extend
the connector definition by showing the communication protocols of components
explicitly.

7.6 Modelling Hyper-connectivity Using XCOSEML

In this section, we provide an approach to modelling heterogeneity and hyper-
connectivity in the IoT environment using the XCOSEML language. We illustrate
the approach using the case study presented in Sect. 7.3.

The proposed approach suggests variability-intensive component-oriented mod-
elling of IoT systems. Our focus is on separating functioning units from communi-
cation concerns and solving heterogeneity and hyper-connectivity issues of the
systems exploiting connectors.

The first step of the development is system decomposition. Figure 7.2 illustrates
the decomposition for smart office system. The system itself is an abstract entity that
is composed of physical and computational components and represented as a pack-
age. Air conditioner, smart phone, security camera, sensor and coffee machine are
components of the smart office system and they are shown in Fig. 7.2 with “_comp”

M.C. Kaya et al.

137

suffix appended to their names. Functionalities of components are exposed through
interfaces. In this system, we define one interface for each component. It is also pos-
sible to add more than one interface for each component according to the design and
the system requirements. Along with interface symbols as shown in Fig. 7.2, we
used the “_int” suffix appended to their names to indicate interfaces. Provided meth-
ods and required methods are shown in the separate sections of the interfaces. For
example, “setAC-ON” is a provided method in the “AirConditioner_int” interface,
and “getCurrentTemperature” is a method representing the required functionality
for the system operation. Listing 7.1 represents XCOSEML model of the air condi-
tioner component and its interface.

Fig. 7.2 System decomposition of the smart office system

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

138

Communication concerns are handled in connectors in XCOSEML. We place a
single connector between two components for any kind of communication as an
architectural design decision. Different communication needs must be discovered to
identify the “service type” and “connector type” of connectors. After detecting
system’s connector types, existing connectors are searched for reuse. If they cannot
be used directly, necessary modifications are done or new connectors are developed
from scratch. In the case study, the smart phone needs to communicate with all other
components. Moreover, the air conditioner and the coffee machine need to
communicate with the sensor. Connectors are shown with blue lines between
components. Their names contain “_conn” suffix as shown in Fig. 7.2. As can be
seen in Fig. 7.2, the smart phone and the sensor communicate through two
connectors: one of them is of service type “communication” and the other one is
“conversion”.

XCOSEML allows connector variability by directly choosing connectors and by
configuring selected connectors. This capability leads designers to first think of a
connector’s service type and connector type. Also, similar communication concerns
can be defined in the same connector. Then, the connector is customized consider-
ing purpose of usage.

Communication occurs between two components defining the two ends of a
connector. Even if the communication is multicast or broadcast type, connectors
have a source and a destination as we consider destinations individually at the mod-
elling level. Both sides of the interacting components can have different communi-
cation protocols. Based on the heterogeneity of the communication protocols of
IoT devices, XCOSEML connector definition is extended considering this two-
sided structure. Listings 7.2 and 7.3 show the connectors “SP-CM_conn” and
 “SP-S- Conv_conn” of the smart office system. A connector definition starts with
the name of the connector. Then service type and connector types are included.

Listing 7.1 The Air Conditioner Component and Its Interface in
XCOSEML

AirConditioner_comp component
1 Component AirConditioner_comp
2 Interface AirConditioner_int
AirConditioner_int interface
1 Interface Air Conditioner_int
2 Provided Methods
3 setAC-ON
4 Required Methods
5 getCurrentTemperature

M.C. Kaya et al.

139

Listing 7.2 An excerpt from the SP-CM_conn connector in XCOSEML

1 Connector SP-CM_conn
2 ServiceType communication
3 ConnectorType procedurecall
4 ConnectorMessage makeCoffee {
5 RequesterInterface SmartPhone_int
6 MethodOut requestCoffee
7 ResponderInterface CoffeeMachine_int
8 MethodIn prepareCoffee
9 RequesterProtocol Bluetooth
10 ResponderProtocol Bluetooth}
11 …
12 ConnectorMessage makeCoffeeR {
13 RequesterInterface SmartPhone_int
14 MethodOut remoteMakeCoffee
15 ResponderInterface CoffeeMachine_int
16 MethodIn prepareCoffee
17 RequesterProtocol WiFi
18 ResponderProtocol Bluetooth}

Listing 7.3 The SP-S-Conv_conn connector in XCOSEML

1 Connector SP-S-Conv_conn
2 ServiceType conversion
3 ConnectorType adaptor
4 ConnectorMessage askTempF {
5 RequesterInterface SmartPhone_int
6 MethodOut requestTemperatureF
7 ResponderInterface Sensor_int
8 MethodIn measureTemperature
9 RequesterProtocol WiFi
10 ResponderProtocol ZigBee
11 Operation C2F}

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

140

Interacting component interfaces and their methods are inserted in a structure
called “Connector Message”. The communication protocols for the interacting
components are defined as “Requester Protocol” and “Responder Protocol”. The
“source” side of the connector corresponds to the requester and “destination” to the
responder. SP- CM_conn in Listing 7.2, connects the smart phone and the coffee
machine components. Both of the devices can use Bluetooth. Therefore, SP-CM_
conn indicates both requester and responder protocols as Bluetooth in the “make-
Coffee” message in Listing 7.2, lines 9 and 10. This message is used for short-range
communication due to the limitation of Bluetooth. However, employees want to
send commands to the machine from outside of the office in order not to waste time
to wait for preparation. The “makeCoffeeR” message is used for this purpose
(between lines 12 and 18). This time the connector uses the computer (PC + SDR)
in the office as a communication medium. The connector uses Wi-Fi to send the
request from the smart phone to the computer, and then the computer transmits this
request to the coffee machine via Bluetooth.

Listing 7.4 shows the variability model of the system, “SmartOffice_conf”
configuration specification. Here, an external variation point is defined with
three alternative variants. Binding time of this variation point is “development
time” as line 7 indicates. Variability is used in XCOSEML to select desired
interactions in the process model. An example process model, “SmartOffice_
cmps” composition specification, is given in Listing 7.5. Variability is shown
with tags that start and end with a “#” symbol before an interaction. A tag
becomes active only when its condition holds and it affects only one interaction
(atomic or composite). In Listing 7.5, all interactions are atomic, and there are
no dependencies among the variants.

Listing 7.4 Configuration interface of smart office system in XCOSEML

1 Configuration SmartOffice_conf of Package SmartOffice_pckg
2 externalVP officeTypeChoice:
3 alternative
4 variant basic
5 variant standard
6 variant advanced
7 bindingTime devtime

M.C. Kaya et al.

141

L
is

ti
ng

 7
.5

 T
he

 S
m

ar
tO

ffi
ce

_c
m

ps
 c

om
po

si
ti

on

sp
ec

ifi
ca

ti
on

 in
 X

C
O

SE
M

L

1
C
o
m
p
o
s
i
t
i
o
n

 S
m
a
r
t
O
f
fi
c
e
_
c
m
p
s

2

i
m
p
o
r
t

c
o
n
fi
g
u
r
a
t
i
o
n

 S
m
a
r
t
O
f
fi
c
e
_
c
o
n
f

3

h
a
s

c
o
m
p
o
n
e
n
t

 A
i
r
C
o
n
d
i
t
i
o
n
e
r
_
c
o
m
p

S
e
n
s
o
r
_
c
o
m
p

…

4

h
a
s

c
o
n
n
e
c
t
o
r

 S
P
-
S
_
c
o
n
n

S
P
-
S
-
C
o
n
v
_
c
o
n
n

…

5

C
o
n
t
e
x
t

P
a
r
a
m
e
t
e
r
s

6

r
e
m
o
t
e
C
o
n
n
e
c
t
i
o
n

f
a
l
s
e

7

c
o
n
v
e
r
t
e
r

f
a
l
s
e

8

M
e
t
h
o
d

 O
f
fi
c
e
P
r
o
c
e
s
s
:

9

S
m
a
r
t
P
h
o
n
e
_
c
o
m
p

 -
>

 S
e
n
s
o
r
_
c
o
m
p

 {
S
P
-
S
_
c
o
n
n
.
a
s
k
T
e
m
p
C
}

1
0

g
u
a
r
d
(
c
o
n
v
e
r
t
e
r

=
=

t
r
u
e
)

S
m
a
r
t
P
h
o
n
e
_
c
o
m
p

 -
>

 S
e
n
s
o
r
_
c
o
m
p

 {
S
P
-
S
-
C
o
n
v
_
c
o
n
n
.
a
s
k
T
e
m
p
F
}

1
1

#
v
p

 o
f
fi
c
e
T
y
p
e
C
h
o
i
c
e

 i
f
O
n
e
S
e
l
e
c
t
e
d
(
b
a
s
i
c

s
t
a
n
d
a
r
d
)
#

S
m
a
r
t
P
h
o
n
e
_
c
o
m
p

 -
>

 A
i
r
C
o
n
d
i
t
i
o
n
e
r
_
c
o
m
p

 {
S
P
-
A
C
_
c
o
n
n
.
t
u
r
n
O
n
A
C
}

1
2

#
v
p

 o
f
fi
c
e
T
y
p
e
C
h
o
i
c
e

 i
f
S
e
l
e
c
t
e
d
(
a
d
v
a
n
c
e
d
)
#

A
i
r
C
o
n
d
i
t
i
o
n
e
r
_
c
o
m
p

 -
>

 S
e
n
s
o
r
_
c
o
m
p

 {
A
C
-
S
_
c
o
n
n
.
g
e
t
T
e
m
p
}

1
3

g
u
a
r
d
(
r
e
m
o
t
e
C
o
n
n
e
c
t
i
o
n

=
=

t
r
u
e
)

S
m
a
r
t
P
h
o
n
e
_
c
o
m
p

 -
>

 C
o
f
f
e
e
M
a
c
h
i
n
e
_
c
o
m
p

 {
S
P
-
C
M
_
c
o
n
n
.
m
a
k
e
C
o
f
f
e
e
R
}

1
4

#
v
p

 o
f
fi
c
e
T
y
p
e
C
h
o
i
c
e

 i
f
S
e
l
e
c
t
e
d
(
a
d
v
a
n
c
e
d
)
#

C
o
f
f
e
e
M
a
c
h
i
n
e
_
c
o
m
p

 -
>

 S
e
n
s
o
r
_
c
o
m
p

 {
C
M
-
S
_
c
o
n
n
.
g
e
t
L
i
g
h
t
L
e
v
e
l
}

1
5

#
v
p

 o
f
fi
c
e
T
y
p
e
C
h
o
i
c
e

 i
f
S
e
l
e
c
t
e
d
(
s
t
a
n
d
a
r
d
)
#

S
m
a
r
t
P
h
o
n
e
_
c
o
m
p

 -
>

 S
e
c
u
r
i
t
y
C
a
m
_
c
o
m
p

 {
S
P
-
S
C
_
c
o
n
n
.
g
e
t
P
h
o
t
o
}

1
6

#
v
p

 o
f
fi
c
e
T
y
p
e
C
h
o
i
c
e

 i
f
S
e
l
e
c
t
e
d
(
a
d
v
a
n
c
e
d
)
#

S
m
a
r
t
P
h
o
n
e
_
c
o
m
p

 -
>

 S
e
c
u
r
i
t
y
C
a
m
_
c
o
m
p

 {
S
P
-
S
C
_
c
o
n
n
.
g
e
t
V
i
d
e
o
}

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

142

SmartOffice_cmps in Listing 7.5 starts with the name of the composition. The
variability model, in the form of a configuration interface, is imported in line 2.
Components and connectors that take part in the interactions are also imported in
lines 3 and 4. Context parameters, between lines 5 and 7, are global variables that
can be used in any interaction in the file. Their values are tracked with guard
statements such as in line 10. Composition specifications include interactions after
a “Method” keyword and an identifier (line 8). In this process, the first interaction
appears in line 9. Interacting components are shown at the left-hand side and
right-hand side of an arrow operator (−> or <−) that indicates the request direction
of the interaction. The connector and its corresponding message, which are used
for the interaction, are given in curly braces ({}). The dot operator is used to
separate the connector and its message. In this interaction, “SmartPhone_comp”
requests temperature from “Sensor_comp”. All communication details – which
interfaces are used, which methods are invoked for this communication, protocols
of requester and responder components – are embedded in the connector. Here, the
smart phone uses Wi-Fi and the sensor responds with ZigBee. Computer is used
for mediation.

The sensor is able to send the temperature in Celsius. For the users that need the
Fahrenheit degree, the system should provide a solution. This unit conversion is not
the job of either the requester or the responder component considering separation of
concerns. Conversion must be done in the connector. For this purpose, “SP-S-
Conv_conn” connector is defined with service type “conversion” and connector
type “adaptor” (in Listing 7.3). In addition to different communication protocols, a
connector needs to represent the conversion operation. This is modelled with the
“operation” keyword in the connector message in Listing 7.3 line 11. Corresponding
interaction is given in Listing 7.5 at line 10. When the guard condition holds, the
interaction occurs. Context parameters in guards can be set at development time;
they also can be changed at run time. In this case, it is just checked once in the
sequence of execution. If the parameter “converter” is set to “true” at the system
development, the interaction will be executed. XCOSEML has the “parallel” inter-
action type to model the creation of a thread that can keep track of the changes on
the value of a context parameter at run time.

In line 11 of Listing 7.5, turning the air conditioner on by the smart phone is
provided with a variability tag. When “basic” or “standard” variants are selected for
the “officeTypeChoice” variation point, the smart phone sends the “AC-ON” mes-
sage to the air conditioner in the configured composition specification. This com-
munication requires combining two components that use Wi-Fi and ZigBee. If the
“advanced” variant is selected (line 12), the air conditioner requests the temperature
of the environment from the sensor to turn itself on automatically. Both the air con-
ditioner and the sensor use ZigBee communication. Similarly, the coffee machine
requests the light level of the environment to prepare coffee when the employees
come to office and turn on the lights (line 14). This is also included in the “advanced”
version and requires Bluetooth and ZigBee communication.

The language also allows the configuration inside of a connector for a particular
communication. In Listing 7.5 at lines 15 and 16, the smart phone communicates

M.C. Kaya et al.

143

with the security camera through the same connector (SP-SC_conn). However, the
security camera provides only photo of the environment when “standard” variant is
selected via the “getPhoto” message of the connector (line 15) and provides a video
stream when the “advanced” variant is selected via the “getVideo” message (line
16). This communication is conducted through a wired UDP connection between
the security camera and the computer and through Wi-Fi between the computer and
the smart phone.

7.7 Discussion

A modelling perspective has been introduced to component-oriented development,
especially addressing the issues related with the heterogeneity and hyper-
connectivity in IoT-based systems. However, this scope is conforming to a broader
study to allow more automated system development through a variability-centric
approach. Previous work [25] has laid out the foundations for propagation of con-
figuration actions from high-level models towards executability in a top-down man-
ner that includes the processes and components of a software intensive system. For
a future goal that assumes well-matured domain engineering, fundamentally speci-
fications only relating to variability should lead to a well-automated production of
executable systems. The outcome of this research can be utilized as a step towards
such a goal.

For the broader context of the older work related with defining the adaptation
among components and web services, there has been attempts to classify the opera-
tions in the data, function and control dimensions. This research allocates execut-
able code in terms of “operations” inside “messages” in the connector that essentially
are bringing in any kind of computational capability relating to those dimensions.

Traditionally, component-centric approaches have allocated the bulk of the tasks
in the components and left the connectors as less complex items serving the compo-
nent connections. However, this research increased the responsibility of the connec-
tor element, allocating important tasks such as those surfacing with the problems
related to IoT hyper-connectivity. A similar concept, that is “adaptors”, manifesting
themselves previously as a component kind, or a design pattern, is now allocated in
the connectors. It is observed through the experimentation that moving such tasks
out of components to the connectors frees the components from noncohesive accom-
modations. Separation of concerns has been achieved to an extent. The “aspect” of
adaptation is isolated and allocated in a more adept construct. A natural task alloca-
tion shapes up where more functional tasks are with components and communication-
related tasks are within the connectors.

A decision has been made to only allow two-end connectors in adapting different
protocols. A multiport connector involving more than two components was avoided
that would almost function like an enterprise service bus, in a local scale. This deci-
sion offers better modularity to the component models for the solutions. Adaptations
for one pair of components at a time result in a library of connectors that could be

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

144

utilized by ease and at need. There is no limit to the number or type of connectors
that can be employed among any number of components.

Where to deploy a connector will continue to be studied as different IoT applica-
tions will suggest optimized adaptations: software or hardware will be one related
question. Our approach is emphasizing the modelling view and can accommodate
different deployment alternatives at this abstraction level. Also the model-driven
approaches in configuring variability solutions in different platforms have proven
feasible. The distributed nature of component-based systems makes it possible to
deploy a component at different nodes in a networked setting. Even, run-time alloca-
tions are potentially possible. The suggested connectors are similar to components in
this regard – their allocation is just like that of components; connectors are also com-
putational units that are prepared for reuse. After the correct allocation of a connector
between the components in a decomposition model, its deployment can be decided
based on implementation-level optimizations. XCOSEML is fundamentally serving
the decomposition view of software architecture. A connector can be deployed
together with one of the connected components or even at a separate platform that is
along the connection path of the two components. Likewise, the implementation tech-
nology could be software or hardware, as the implementation decisions will suggest.

SDR is a promising solution at the implementation level to cope with communica-
tion heterogeneity in an IoT environment. With a broad frequency range (e.g.
70 MHz–6 GHz), it can handle many wireless communication protocols without a
need for a new device per protocol. SDR and its hosting PC comprise a good medium
to deploy our connector. However, we do not need to have a specific hardware to
implement connectors or components as we have an abstract modelling view. For
example, a PC equipped with Wi-Fi, ZigBee and Bluetooth capabilities and having a
wired connection is enough to implement our case study without including an SDR.

There are limitations to the solutions offered in this research. Although effort has
been exerted to provide a generic approach for addressing the variability and hyper-
connectivity in IoT, solutions in this direction are yet young, and new research is being
conducted by different teams around the world currently. There may be different
requirements arising that could suggest some adaptation to our mechanisms. Also,
there is a lack of industrial-level experience. The proposed approach works well in
example problems and assignments conducted in academic settings. An analogy could
be made to the “orchestration” facilities offered for the Service- Oriented Architecture
(SOA) where the overall organization of multiparty services can be specified. A new
unit with a different connection technology can be integrated through specifying its
protocol for connection with the existing system. Therefore, new developments in the
IoT technologies are expected to be contained within the framework of this approach
by the specification of their adaptation mechanisms in corresponding connectors.

M.C. Kaya et al.

145

7.8 Related Work

In this section, we describe the related work about connector modelling and vari-
ability in connectors. Also hyper-connectivity and heterogeneity in IoT systems are
covered.

A detailed connector definition is provided by Oussalah et al. [19]. Their connec-
tor specification includes nonfunctional properties, service and connector types
based on the connector taxonomy provided in [12]. However, they do not propose a
mechanism for variability support. There are also some approaches that consider
connector as a variable asset, while not defining operations and detailed specification
for connectors. For example, in [26], an approach is proposed to model component
and connector view of software architecture based on OVM using UML annota-
tions. With the same limitations, a hierarchical variability modelling is proposed
that has mapping on connectors in the work of Haber et al. [27]. Guendouz et al.
[28] propose an approach that integrates Software Product Line Engineering (SPLE)
and CBSE whereby annotations are used to describe variability on architectural ele-
ments including connectors. Details on connectors, however, are not explicitly
defined.

In the context of autonomic computing, Cetina et al. [29] introduce Model-Based
Reconfiguration Engine (MoRE) focusing on adaptation to changes in context at
run time. The dynamic reconfiguration of architectural elements is achieved through
activation/deactivation of features following reconfiguration. Reconfiguration of
communication channels is used as a way of incorporating variability in interaction
among components through OSGi (Open Service Gateway Initiative) Wire class
specifications. However, the variability logic of connectors is hidden in the feature
model where the management of variability becomes difficult in large-scale
systems.

In [30], an extension of LISA (Language for Integration Software Architecture)
with variability is proposed where OVM is employed to configure architectural ele-
ments. Variability in connectors is achieved by specifications of variation points and
variants that is linked with port definitions belonging to a specific component.

Desai et al. [5] suggest an IoT interoperability architecture based on services.
Their work utilizes proxies and gateways, as constructs that associate with connec-
tors, thus coming close to the approach offered in this chapter in terms of their
association with the connector concept. However, their work does not leverage on
variability.

In another approach, Issarny and Bennaceur [31] present a survey on state-of-
the-art of interoperability in heterogeneous and distributed systems. They discuss
multiple perspectives to be considered in this regard. They claim that consideration
of only application-level interfaces to achieve interoperability among heteroge-
neous components is not enough, the middleware involved, plus the underlying net-
work environments need to be taken into account as well. They argue that despite
the large amount of research done on the topic, it still remains an open and challeng-
ing problem to be addressed.

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

146

Hallsteinsen et al. [32] consider connector variability through adaptation of mid-
dleware where one or more components and their connections are dynamically
reconfigured with respect to the context. They utilize plans and utility functions by
means of Quality of Service (QoS) properties. De Poorter et al. [33] introduce a
solution to enable connectivity for heterogeneous objects in IoT through their IDRA
architecture that connects units directly. However, this is not through component
connectors or employing variability. Authors in [34] discuss the significance of
communication heterogeneity among sensors which are using different communi-
cation platforms. They discuss the need for powerful devices that use different com-
munication protocols to manage device communication.

Another valuable work was carried out regarding functional and nonfunctional
interoperability of connectors under the Connect project which targets heteroge-
neous network systems [35]. By protocol interoperability, they offer a framework
which figures out both functional and behavioural harmony of a set of components
that are willing to achieve a goal. By fulfilling coordinator and mediator needs, the
connector seamlessly glues components together relying on the sequences of mes-
sages visible at their interfaces.

The extension of the X-MAN component model with feature models, FX-MAN
[36] incorporates features with logical architecture of the system which is modelled
as a tree of interacting components. Product families are constructed by the use of
variation operators and family connectors (F-Select and F-Sequencer) defined in the
logical architecture. However, most of the connector variability logic is hidden in
the logical architecture. The developer cannot configure different variations of a
connector that glues two or more components.

Authors in [37] use two types of cyber connectors. For one-to-one communica-
tion, a call-return connector is used and for one-to-many communication, a publish-
subscribe connector is used. They mention the extension possibilities for these
connector types to support other communication and network specifications.
Moreover, different types of connectors are used for a controller unit of a quadrotor
in [38]. Communication from higher layers to lower layers is handled by the send-
receive connector, whereas the publish-subscribe connector is used for the opposite
direction.

7.9 Conclusion

To address the complexity related with the heterogeneity and hyper-connectivity in
IoT-based systems, variability mechanisms have been allocated in the connector
constituents of the component-based software development approaches. A smart
office example is provided for the demonstration of a possible solution employing
the new connector definition. Experimentations have pointed to an efficient model-
ling outcome that enables the developers to separate their concerns about compo-
nent functionalities and their adaptation or communication needs.

M.C. Kaya et al.

147

This approach, if accepted by the industry, may develop with its specific engi-
neering practices. The early experimentations resulted with some lessons learned.
Our examples suggested the inclusion of only two-end connectors (those connect-
ing not more than two components) where different adaptations and conversions for
serving a variety of messages in two directions are included. Different connectors
should be employed between any connected pairs of components. Different connec-
tors should be deployed for even between the same pair of components for very
different communication needs. Conforming to the existing connector types has
also proven effective in our modelling assessments for different problems.
Connectors to be defined should preferably be the suggested types, based on their
assumed responsibilities.

Future work definitely will benefit from industrial applications. Our vision had
been to offer solutions to the mentioned problem within the fast deployment of
large-scale systems. To cater to this view, this research can be expanded by integra-
tion with variability-centric system development frameworks: building blocks for
enabling the automated propagation of variability decisions and related configura-
tions can be studied. Support for connector selection, configuration or even devel-
opment can be provided through further tools to be developed that can guide
intelligent and automated activities based on well-established domain knowledge.

References

 1. Mainetti L, Patrono L, Vilei A (2011) Evolution of wireless sensor networks towards the inter-
net of things: a survey. In: 19th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), 15 Sept 2011

 2. Horneber J, Hergenröder A (2014) A survey on testbeds and experimentation environments for
wireless sensor networks. IEEE Commun Surv Tutorials 16(4):1820–1838

 3. Chong G, Zhihao L, Yifeng Y (2011) The research and implement of smart home system
based on internet of things. In: International Conference on Electronics, Communications and
Control (ICECC), 9 Sept 2011

 4. Bandyopadhyay S, Bhattacharyya A (2013) Lightweight internet protocols for web enablement
of sensors using constrained gateway devices. In: International Conference on Computing,
Networking and Communications (ICNC), 28 Jan 2013

 5. Desai P, Sheth A, Anantharam P (2015) Semantic gateway as a service architecture for IoT
interoperability. In: International conference on Mobile Services (MS), IEEE, 27 June 2015

 6. Patel P, Pathak A, Teixeira T, Issarny V (2011), Towards Application Development for the
Internet of Things. In: Proceedings of the 8th middleware doctoral symposium. ACM, Lisbon
Portugal, 12 Dec 2011

 7. Pradhan S, Dubey A, Otte WR, Karsai G, Gokhale A (2015) Towards a product line of hetero-
geneous distributed applications. Technical Report, ISIS-15-117, Apr 2015

 8. Mattern F, Floerkemeier C (2010) From the internet of computers to the internet of things.
Springer, Berlin/Heidelberg

 9. Kopetz H (2011) Internet of things, real-time systems, design principles for distributed embed-
ded applications. Springer US, Feb 2011

 10. Weiser M (1999) The computer for the 21st century. ACM SIGMOBILE Mobile Comput
Commun Rev 3:3–11

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

148

 11. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw
54:2787–2805

 12. Mehta NR, Medvidovic N, Phadke S (2000) Towards a taxonomy of software connectors.
In: Proceedings of the 22nd International Conference on Software Engineering, ICSE ‘00,
New York, 04–11 June 2000

 13. Shaw M, Garlan D (1996) Software architecture: perspectives on an emerging discipline.
Prentice Hall, Englewood Cliffs. 1 Apr 1996

 14. Kaya MC, Suloglu S, Dogru AH (2014) Variability modeling in component oriented system
engineering. In: Proceedings of SDPS the 19th international conference on transformative
science and engineering, business and social innovation. Kuching Sarawak, Malaysia, 15–19
June 2014

 15. Dogru AH, Tanik MM (2003) A process model for component-oriented software engineering.
IEEE Softw 20:34–41

 16. Pohl K, Bockle G, van Der Linden FJ (2005) Software product line engineering: foundations,
principles and techniques. Springer Science & Business Media, 19 Sept 2005

 17. Sinnema M, Deelstra S, Nijhuis J, Bosch J (2004) COVAMOF: a framework for modeling
variability in software product families. In: 3rd International Conference on Software Product
Lines (SPLC 2004). Springer, Berlin/Heidelberg, Aug 2004

 18. Cetinkaya A, Kaya MC, Dogru AH (2016) Enhancing XCOSEML with connector variability
for component oriented development. In: Proceedings of SDPS 21st international conference
on emerging trends and technologies in designing healthcare systems. Orlando, FL, USA, 4–6
Dec 2016

 19. Oussalah M, Smeda A, Khammaci T (2004) An explicit definition of connectors for component-
based software architecture. In: Proceedings of 11th IEEE international conference and work-
shop on the engineering of computer based systems. Brno Czech Republic, 27–27 May 2004

 20. Classen A, Cordy M, Heymans P, Legay A, Schobbens PY (2012) Model checking software
product lines with SNIP. Int J Software Tools Technol Transfer (STTT) 14:589–612

 21. Classen A, Cordy M, Schobbens PY, Heymans P, Legay A, Raskin JF (2013) Featured transi-
tion systems: foundations for verifying variability-intensive systems and their application to
LTL model checking. IEEE Trans Softw Eng 39:1069–1089

 22. Classen A, Boucher Q, Heymans P (2011) A text-based approach to feature modelling: syntax
and semantics of TVL. Sci Comput Program 76:1130–1143

 23. Holzmann GJ (2003) The spin model checker: primer and reference manual. Addison-Wesley,
Reading, 4 Sept 2003

 24. Kaya MC, Saeedi Nikoo M, Suloglu S, Dogru AH (2015) Towards verification of component
compositions incorporating variability. In: Proceedings of SDPS the 20th international confer-
ence on transformative science and engineering, business and social innovation. Fort Worth
Texas USA, 1–5 Nov 2015

 25. Suloglu S (2013) Model-driven variability management in choreography specification. Ph.D.
dissertation, Computer Engineering Department, Middle East Technical University, Sept 2013

 26. Razavian M, Khosravi R (2008) Modeling variability in the component and connector view
of architecture using UML. In: IEEE/ACS international conference on computer systems and
applications, Mar 2008

 27. Haber A, Rendel H, Rumpe B, Schaefer I, van der Linden F (2011) Hierarchical variability
modeling for software architectures. In: 15th International Software Product Line Conference
(SPLC), Aug 2011

 28. Guendouz A, Bennouar D, Algeria B (2014) Component-based specification of software
product line architecture. In: International Conference on Advanced Aspects of Software
Engineering (ICAASE), 2–4 Nov 2014

 29. Cetina C, Giner P, Fons J, Pelechano V (2009) Autonomic computing through reuse of vari-
ability models at runtime: the case of smart homes. Computer 42:37–43

M.C. Kaya et al.

149

 30. Groher I, Weinreich R (2013) Supporting variability management in architecture design and
implementation. In: 46th Hawaii International Conference on System Sciences (HICSS),
IEEE, 7–10 Jan 2013

 31. Issarny V, Bennaceur A (2012) Composing distributed systems: overcoming the interoper-
ability challenge. In: International symposium on formal methods for components and objects.
Springer, Berlin/Heidelberg, 24 Sept 2012

 32. Hallsteinsen S, Geihs K, Paspallis N, Eliassen F, Horn G, Lorenzo J, Mamelli A, Papadopoulos
GA (2012) A development framework and methodology for self-adapting applications in ubiq-
uitous computing environments. J Syst Softw 85:2840–2859

 33. De Poorter E, Moerman I, Demeester P (2011) Enabling direct connectivity between het-
erogeneous objects in the internet of things through a network-service-oriented architecture.
EURASIP J Wirel Commun Netw 2011(1):1–14

 34. Vicaire PA, Hoque E, Xie Z, Stankovic JA (2012) Bundle: a group-based programming
abstraction for cyber-physical systems. IEEE Trans Ind Inform 8:379–392

 35. Nostro N, Spalazzese R, Di Giandomenico F, Inverardi P (2016) Achieving functional and non
functional interoperability through synthesized connectors. J Syst Softw 111:185–199

 36. Di Cola S, Lau KK, Tran C, Qian C (2015) Towards defining families of systems in IoT: logical
architectures with variation points, in internet of things, IoT infrastructures: second interna-
tional summit, IoT 360°, Oct 2015

 37. Rajhans A, Cheng SW, Schmerl B, Garlan D, Krogh BH, Agbi C, Bhave A (2009) An archi-
tectural approach to the design and analysis of cyber-physical systems. Electron Commun
EASST 21

 38. Rajhans A, Bhave A, Ruchkin I, Krogh BH, Garlan D, Platzer A, Schmerl B (2014)
Supporting heterogeneity in cyber-physical systems architectures. IEEE Trans Autom Control
59(12):3178–3193

7 Managing Heterogeneous Communication Challenges in the Internet of Things…

151© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_8

Chapter 8
Adopting the Essence Framework to Derive
a Practice Library for the Development
of IoT Systems

Görkem Giray, Bedir Tekinerdogan, and Eray Tüzün

Abstract The Internet of Things (IoT) is a global network of smart devices which
enables these objects to collect and exchange data. Research in the IoT is still pro-
gressing, and it is now being applied in various domains. One of the key observa-
tions is that the development of IoT systems is not trivial and needs to be carefully
managed to meet the required functional and quality concerns. Due to the heteroge-
neous aspects including software, hardware, and communication, developing the
IoT systems implies various challenges that need to be explicitly considered in the
development process and successfully resolved. Unfortunately, less focus has been
provided so far on the development methods for the IoT systems. To address the
particular IoT development concerns, we analyze and discuss the existing approaches
that target the development of IoT systems. For this purpose, we use the Essence
Framework, which has been recently developed as a framework for modeling vari-
ous kinds of software development practices and methods. We propose an initial
practice library, which can be used to develop and/or tailor project-specific IoT
system development methods.

8.1 Introduction

The Internet of Things (IoT) is a global network of smart devices, which enables
these objects to collect and exchange data. An IoT system consists of many different
devices including software, hardware, and communication elements.

G. Giray
Independent Researcher, Izmir, Turkey

B. Tekinerdogan (*)
Information Technology Group, Wageningen University, Wageningen, The Netherlands
e-mail: bedir.tekinerdogan@wur.nl

E. Tüzün
Technology and Academy Directorate, Havelsan, Ankara, Turkey

mailto:bedir.tekinerdogan@wur.nl

152

Research in the IoT is progressing at various levels and from different perspec-
tives [1]. In this context, various reference architectures have been proposed, differ-
ent sensor and actuator technologies are being investigated, and different
communication protocols have been proposed. In addition, IoT is being applied in
different application domains, and the size as well as the complexity of IoT systems
is growing rapidly. Similar to the development of other systems, it is important that
IoT systems are developed in a systematic manner in order to achieve a proper sys-
tem with respect to both the functional and nonfunctional requirements. So far,
several IoT system development methods have been proposed in the literature, but a
broader focus on development methods for IoT is still missing.

In this chapter, we explicitly focus on the development methods dedicated to IoT
systems and environments. The development of IoT systems is not trivial and needs
to be carefully managed to support the communication between the stakeholders, to
support the analysis of the design decisions, and to derive the IoT system that meets
the required functional and quality concerns. Unfortunately, not enough focus has
been provided so far on the development methods for IoT systems. Due to the het-
erogeneous aspects including software, hardware, and communication, developing
IoT systems implies various challenges that need to be explicitly considered in the
development process. To address these concerns, we analyze and discuss the some
of the existing approaches that focus on the development of IoT systems. For this
purpose, we intend to use the Essence Framework, which has been recently devel-
oped as a framework for modeling various kinds of software development practices
and methods. We also propose an initial practice library, which can be used to
develop and/or tailor project-specific IoT system development methods. This prac-
tice library consists of generic practices from software engineering (such as use
case), from project management (such as project initiation), and IoT-specific prac-
tices derived from two IoT system development methods [2, 3].

The remainder of the chapter is organized as follows. In Sect. 8.2, we present the
background including IoT and the Essence Framework. In Sect. 8.3, we summarize
the existing IoT system development methods in the literature. We propose a prac-
tice library for IoT system development based on the Essence Framework in Sect.
8.4. Section 8.5 provides the discussion. Section 8.6 includes the related work, and
finally Sect. 8.7 concludes the chapter.

8.2 Background

In this section, we first provide a conceptual model for IoT systems. Subsequently,
we present the Essence Framework in Sect. 8.2.2.

G. Giray et al.

153

8.2.1 Internet of Things

Figure 8.1 illustrates a conceptual model for IoT systems, which is based on the
AIOTI Domain Model [4]. Referring to this figure, an Entity of Interest (EoI) or
Thing is an object (such as room, book, laptop, a sensing device) including attri-
butes that describe it and its state that is relevant from a user or an application per-
spective. The EoI has an observable state (e.g., temperature) that is observed by a
Sensor (e.g., thermometer or tag reader). An Actuator can make changes to the EoI
through an action. The interaction between a User and EoI is mediated by an IoT
Service which is associated with a Virtual Entity, a digital representation of the EoI.
Different kinds of digital representations of EoIs can be used such as objects, 3D
models, avatars, or even a social network account. Some Virtual Entities can also
interact with other Virtual Entities to fulfill their goal. An important aspect in the
IoT is that changes in the properties of a Thing and its corresponding Virtual Entity
needs to be synchronized. This is usually realized by an IoT Device that is embed-
ding into, attached to, or simply placed in close vicinity of the Thing. The IoT
Device can interact with other devices and includes software components that imple-
ment the IoT Services.

Entity of Interest
(Thing)

IoT Device

Sensor Actuator

affectsobserves

Software
Component

IoT ServiceUser Virtual Entityinvokes associated
with

runs on

interacts with

represents

interacts with

interacts with

Fig. 8.1 A conceptual model for IoT systems

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

154

In the following subsection, we discuss the Essence Framework that was recently
introduced by the SEMAT (Software Engineering Method and Theory) community
[5] and published as a standard by the Object Management Group (OMG) [6].

8.2.2 The Essence Framework

The Essence Framework was introduced by the SEMAT [5] and published by OMG
[6]. Its specification consists of an Essence Language and the Essence Kernel, as
illustrated in Fig. 8.2. The Essence Language is basically a meta-model used to
define practices and methods for system and software engineering. The Essence
Kernel is a set of elements used to form a common ground for describing a software
engineering endeavor and represented in terms of the Essence Language. These two
components provide a common ground for understanding, comparing, and combin-
ing software development practices and methods.

As illustrated in Fig. 8.2, practices and methods can be represented using the
Essence Language. A practice is defined as a systematic and repeatable way of
achieving a predefined objective [7]. Practices can be seen as reusable ways of
doing things in software development endeavors. Concretely, a method is composed
of the Essence Kernel and a set of practices. The Essence Framework aims to set a
ground for building a library of practices from which one can build methods respect-
ing the actual needs of a specific software development project. This way, it can
boost the reusability of best practices. Moreover, the Essence Kernel provides a
base for starting with establishing a specific method. A library of practices has been
launched recently [8].

The core elements of the Essence Language used in this work are shown in
Fig. 8.3. An Alpha (Abstract-Level Progress Health Attribute) is defined as an
important dimension whose state should be progressed and tracked during a project.
Work products are concrete representations of Alphas and describe them by provid-
ing evidence for states of Alphas. Progress in work products is tracked through level

OMG Specification

Essence Language Essence Kernel

Practice

is based on

Method

is represented in

Fig. 8.2 The essence
framework architecture

G. Giray et al.

155

of details. Both state of Alphas and level of details of work products are checked
against checklist items. Activities update level of details of work products and cause
progress in states of Alphas. Activities are organized into activity spaces, which
target changes in Alpha states through the activities they contain. Patterns are used
for defining complex concepts made up of practice or kernel elements. For instance,
a role can be defined by a pattern involving required competencies, responsibility
for work products, and participation in activities.

The Essence Framework is based on Meta-Object Facility (MOF) architecture
[9]. Figure 8.4 illustrates three layers with some sample concepts and neglects the
fourth layer for the sake of simplicity. The Essence Language resides in layer 2 and
provides a meta-model for method engineering. Practices and methods are defined
in layer 1 by instantiating meta-model concepts. In Fig. 8.4, Opportunity, which is
an instance of Alpha, is a part of the Essence Kernel. Business model is an instance

Checklist Item

Level of DetailWork Product

Activity SpaceAlpha

describes

related to

State

Activity

has

has

checked against

checked against
pr

og
re

ss
ed

 b
y

produced by

related to

targets

Fig. 8.3 Partial conceptual model of the essence language

Work ProductAlpha

Basic Element

Language
Element

describes

Business
ModelOpportunity

:Business
Model

instance of instance of

instance of

Le
ve

l 2
Le

ve
l 1

Le
ve

l 0

Fig. 8.4 A partial
illustration of the essence
framework meta-model
architecture

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

156

of work product and can be arbitrarily defined as part of a practice by a method
engineer. The layer 0 includes the actual concepts in a specific software develop-
ment project, for instance, a particular business model document written for a spe-
cific project.

The Essence Kernel, which resides in layer 1 in Fig. 8.4, provides a common
basis for defining software engineering practices by instantiating three concepts of
the Essence Language: Alpha, activity space, and competency. The Essence Kernel
includes 7 Alphas, 15 activity spaces, and 6 competencies [6]. It defines states of all
7 Alphas along with their checklist items; on the other hand, it does not define any
activity or work product.

The Essence specification provides a graphical syntax of its language elements.
Table 8.1 illustrates the language elements used in this chapter along with their
symbols.

The Essence Kernel provides seven Alphas along with their interrelationships (as
illustrated in Fig. 8.5), which can be considered as a general, core domain model of
software engineering. The Alphas are organized into three areas of concern, namely,
customer, solution, and endeavor concerns [6]. Customer concern addresses the
business perspective; solution concern examines the specification and development
of software system; and endeavor concern scrutinizes the team and the way it per-
forms its work.

The Essence Kernel also provides the states of each Alpha along with their initial
checklists. As an example, the states of Opportunity Alpha and the checklist of its
“identified” state are illustrated in the left and right sides of Fig. 8.6, respectively.
The states of the seven Alphas and the items of the initial checklists cannot be
changed, since these are forming the standard common ground. On the other hand,
sub-Alphas can be defined to support seven Alphas. Moreover, the checklists of the
seven Alphas can be extended by adding new checklist items (without changing the
standard ones). In addition, the states of new sub-Alphas and their checklists should
be defined by team according to specific needs of a particular project.

In summary, the Essence Language can be used to model the existing IoT system
development methods or describe new methods. Moreover, the Essence Kernel can
form a base to understand the portions of the methods addressing the development
of software components of IoT systems.

Table 8.1 A partial illustration of the graphical syntax of the essence language

Alpha Work Product Activity space Practice Pattern

Alpha state Level of detail Activity Kernel

G. Giray et al.

157

8.3 IoT System Development Methods

We identified six IoT system development methods in the literature after applying a
thorough domain analysis process. Domain scoping and domain modeling are two
basic activities in the domain analysis process. Defining the scope and selecting
proper knowledge sources constitute domain scoping. In this case, the scope is
made up of IoT system development methods in the literature. In the domain model-
ing activity, we modeled these methods using the Essence Framework as presented
in the following sections.

8.3.1 The Ignite IoT Methodology

The Ignite IoT Methodology [2] (abbreviated as “Ignite” in this chapter) aims to
provide guidelines for developing products (systems in this case) for the IoT. The
methodology consists of best practices and deals with enterprise, product, and
project levels and aimed at various IoT stakeholders including product managers,

StakeholdersOpportunity

Requirements Software System

Way of Working

TeamWork

< provide

< fulfills

< performs and plans

Cu
st
om

er
So

lu
ti
on

En
de

av
or

< f
oc

us
es

< u
se

 a
nd

co

ns
um

e

se
t u

p
to

 a
dd

re
ss

 >

pr
od

uc
es

 >

< s
up

po
rt

< s
co

pe
s

an
d

co
ns

tr
ai

nt
s

Fig. 8.5 Alphas in essence kernel and their interrelationships (Adopted from Ref. [6])

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

158

project managers, and solution architects. Ignite has two major groups of
activities:

• IoT Strategy Execution encompasses defining an IoT strategy and a project port-
folio (consisting of projects related to IoT) supporting this strategy. IoT Strategy
Execution is about business perspective and involves identifying and managing
opportunities, as well as making decisions on how to realize projects addressing
these opportunities (such as internal project, external acquisition, spin-off, etc.).

• IoT Solution Delivery supports IoT system design and IoT project management
along with some artifacts such as project templates, checklists, and solution
architecture blueprints. IoT Solution Delivery is about realizing an IoT system,
which is conceptually defined during IoT Strategy Execution, and has a life cycle
consisting of planning, building, and running. Planning starts with project initia-
tion, in which an initial system design and a project organization chart are deliv-
ered. Moreover, an analysis of stakeholders, environment, requirements, risks,
and resources should be conducted. After the initiation, the tasks are managed
under seven work streams: (1) project management, (2) cross-cutting tasks, (3)
solution infrastructure and operations, (4) backend services, (5) communication
services, (6) on-asset components, and (7) asset preparation.

Fig. 8.6 The states of opportunity alpha and the checklist for the first state (Adopted from Ref. [6])

G. Giray et al.

159

These two groups of activities should be synchronized to keep the project port-
folio in line with the strategy and revise the strategy according to the outcomes of
the project portfolio.

8.3.2 The IoT Methodology

The IoT Methodology [3] (abbreviated as “IoT-Meth” in this chapter) is a generic,
lightweight method built on iterative prototyping and lean start-up approaches. It
consists of best practices, tried and tested tools, protocols, and solutions used in
real-world projects. IoT-Meth comprises the following steps, which should be exe-
cuted iteratively:

 1. The first step named “cocreate” encompasses the identification of problem areas
by communicating with stakeholders, especially end users. The result is some
ideas on opportunities or potential problems to be refined in the next step.

 2. In the second step named “ideate,” some of the ideas identified in the former step
are further elaborated to be communicated with project managers, designers, and
implementers. An artifact named IoT Canvas can be used in brainstorming ses-
sions with stakeholders to identify and validate high-level requirements.

 3. The third step named “Q & A” involves analyzing refined ideas further to close
the gap between idea and implementation. Further analysis of domain and
requirements along with validation of requirements is performed.

 4. The requirements are mapped to an architecture and infrastructure in the step
named “IoT OSI.” An artifact named as IoT-Architecture Reference Model can
be used in this step.

 5. “Prototyping” encompasses building prototypes and iterating toward minimal
viable IoT systems. The forthcoming iteration plans are revised according to the
assessments of prototypes.

 6. The last step named “deploy” closes the feedback loop by deploying the IoT
system. In most cases, feedbacks trigger improvements in the system.

8.3.3 IoT Application Development

This is an approach to IoT application development (abbreviated as “IoT-AD” in
this chapter) that consists of a development methodology and a concrete develop-
ment framework realizing this methodology [10]. IoT-AD treats the concerns of IoT
domain in four areas, namely, domain, functional, deployment, and platform.
IoT-AD proposes to specify the behavior of an IoT system using high-level abstrac-
tions and compile these abstractions to code. To this end, it provides a set of model-
ing languages and some automation techniques.

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

160

8.3.4 ELDAMeth

ELDAMeth (Event-driven Lightweight Distilled state charts-based Agents
Methodology) is an agent-oriented methodology for developing smart objects (SO),
which are considered as fundamental building blocks of IoT systems [11].
ELDAMeth has three main phases, namely, modeling, simulation, and implementa-
tion. In the modeling phase, a detailed design is produced to be translated into
platform- independent code. Simulation phase encompasses the verification of
platform- independent code against requirements through simulation. Platform-
specific code is developed and tested in the implementation phase.

8.3.5 Software Product Line Process to Develop Agents
for the IoT

Ayala et al. [12] applied software product line engineering (SPLE) approach to
development of agents for IoT systems (abbreviated as “SPLP-IoT” in this chapter).
What is borrowed from SPLE is identifying commonalities among software agents
and developing a common reference architecture. To this end, the domain engineer-
ing phase is responsible for establishing a reusable platform and thus defining the
commonality and variability of a multi-agent system. Two key work products, IoT
multi-agent system variability model and IoT multi-agent system architecture, are
produced in this phase. The application engineering part encompasses building
agents, which meet specific application requirements, by exploiting variability
model and leveraging IoT multi-agent system architecture.

8.3.6 A General Software Engineering Methodology for IoT

A general software engineering (SE) methodology for IoT (abbreviated as “GSEM-
IoT” in this chapter) proposes some general guidelines for developing IoT systems
[13]. GSEM-IoT involves three phases, namely, analysis, design, and implementa-
tion. In the analysis phase, actors, requirements, and existing infrastructure are
identified and analyzed. Avatars, groups, and coalitions are designed in the design
phase. The implementation phase is about implementing avatars and coordinators
along with deployment.

G. Giray et al.

161

8.4 Proposed IoT System Development Practice Library
Based on the Essence Framework

Methods play an important role in developing quality systems. Therefore, many
practices and methods have been proposed in system and software engineering,
including six methods for IoT system development. All of these proposed methods
are monolithic [14] and are hard to reuse in every IoT-related project. Moreover,
extracting various practices from these methods and reusing them as a combined
new method is another challenge. On the other hand, it is generally accepted that
each project is unique and needs a tailored method to run it. Therefore, it makes
sense to have a practice library consisting of reusable pieces validated in real-world
projects.

In this chapter, we present the results of our initial analysis and modeling of the
current IoT system development methods based on the Essence Framework. The
process of modeling a practice or method based on the Essence Framework is called
essentialization [15]. We used the approach proposed in [16] for essentialization.
We worked through the practices, which address the Alphas in the customer concern
illustrated in Fig. 8.5. Moreover, we present an initial practice library mainly derived
from Ignite and IoT-Meth methods. The reason we have chosen these methods is
that they are more appropriate to be broken down into reusable practices.

Ignite addresses the customer concern by two practices named IoT Opportunity
Identification and IoT Opportunity Management, illustrated in Figs. 8.7 and 8.8,
respectively. IoT Opportunity Identification practice is about generating and refin-
ing IoT Opportunities. Each opportunity can be progressed and tracked using a
sub-Alpha named IoT Opportunity. The practice contains activities regarding gen-
eration, initial assessment, and refinement of IoT Opportunities. Structured and
open idea generation approaches are two ways of generating IoT Opportunity ideas.
St. Gallen Business Model Navigator and Innovation Project Canvas are work

Fig. 8.7 An Ignite
practice: IoT Opportunity
Identification

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

162

 products, which can be used for refining IoT Opportunity idea. The output of refin-
ing an idea is an IoT Opportunity idea sketch work product.

As illustrated in Fig. 8.8, IoT Opportunity Management practice involves devel-
oping a business model to get funding. This practice can provide progress on IoT
Opportunity sub-Alpha. This progress is achieved by developing a business model.
An input for this business model work product is IoT Opportunity idea sketch,
which is produced within the scope of IoT Opportunity Identification. Another
important activity is assessing impact and risk.

The first two steps of IoT-Meth are directly related to the customer concern.
Cocreate practice (Fig. 8.9) is about identifying problems, which can be solved by
developing IoT systems. Since these problems can be identified through stakeholder
involvement, the practice has activities for eliciting information from stakeholders
using some approaches.

IoT Opportunity Management

develop a business model to get funding

IoT
Opportunity Business

model

develop
business
model

assess impact
and risk

Fig. 8.8 An ignite
practice: IoT opportunity
management

Co-create

identify problems by communicating with stakeholders,
especially end users

identify
knowledge areas

for solution

identify
problems

organize
kickoff

sessions

UI mockup
creation

Conceptual
designer
approach

User centric
problem analysis

Fig. 8.9 An IoT-Meth
practice: cocreate

G. Giray et al.

163

The second step of IoT-Meth involves ideate practice (Fig. 8.10), in which prob-
lems are elaborated further to be communicated with project managers, designers,
and implementers. IoT-Meth proposes to use a work product named IoT Canvas for
brainstorming with various stakeholders. Therefore, IoT Canvas has information
both for customer and solution areas of concern. Moreover, ideate practice has
“identify key actors” activity for the customer concern and the rest of activities for
the solution concern.

IoT-AD starts with modeling the domain in which an IoT system will be devel-
oped. It examines application architecture and logic according to the requirements
along with deployment- and platform-specific concerns. As a result, IoT-AD pro-
poses activities and work products for the solution concern. ELDAMeth expects
requirements and high-level design model to begin developing an agent for an IoT
system. It does not cover any activity regarding the customer concern. SPLP-IoT
method takes domain and application requirements as an input. Therefore, it
addresses the solution concern by proposing some activities and work products.

GSEM-IoT starts with identifying stakeholders in its analysis phase. It proposes
three abstract classes of actors, namely, global managers, local managers, and users
to address the different components of an IoT system. Apart from this, it does not
contain any guideline regarding the customer concern. Therefore, we can conclude
that GSEM-IoT does not contain any practice in the customer area of concern.

The practices of Ignite and IoT-Meth, which are modeled in this chapter, cause
some state changes in stakeholders and Opportunity Alphas, as shown in Fig. 8.11.
From this figure, we can infer that there are practices whose objectives are overlap-
ping. GSEM-IoT mentions about identifying key actors, which partially addresses
recognized state of stakeholders Alpha.

Figure 8.12 illustrates the idea of having a practice library for IoT system devel-
opment projects. This vision is explained in [6, 7] in general terms and exemplified
in [14, 15] for the IoT domain.

Ideate
elaborate on some of the problems identified to be
communicated with project managers, designers, and
implementers

identify key actors identify Things,
sensors, actuators

identify third-
party web services

for integration

define middleware
requirements for

Endpoints

Stakeholders

sketch UI
widgets

define data
models for
Endpoints

IoT Canvas

Fig. 8.10 An IoT-Meth
practice: ideate

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

164

Recognized

Represented

Involved

In Agreement

Satisfied for
Deployment

Satisfied in Use

St
ak
eh

ol
de

rs
Identified

Solution Needed

Value Established

Viable

Addressed

Benefit Accrued

O
pp

or
tu
ni
ty

Ig
ni
te

Ig
ni
te

Io
T-
M
et
h

Io
T-
M
et
h

Fig. 8.11 Coverage of Ignite and IoT-Meth practices modeled in this chapter based on the essence
framework

Use
Case

User
Story

Project
Ini.

Project
Plan.

Co-
create

Ideate

Q&A

IoT
Opp.
Ide.

IoT Sys.
Ana.

IoT
Opp.
Man. IoT

Func.
Des.

IoT
Tech.
Des. IoT

Device
Man.

IoT
Device
Design

Es
se

nc
e

Ke
rn

el
Pr

ac
tic

es

Fig. 8.12 A partial practice library for IoT system development

G. Giray et al.

165

The practices shown in Fig. 8.12 have been obtained from different sources. Use
case and user story practices are well-known in software engineering domain. They
are also defined as practices in [8]. Some practices from project management
domain are essential to every system/software development project. It is suggested
that Ignite should be complemented with project management practices [2], prefer-
ably proposed by PMBOK [17]. Therefore, our practice library involves project
initiation and project planning practices, which are defined in PMBOK (Project
Management Body of Knowledge) as well. IoT Opportunity Identification (IoT
Opp. Ide.), IoT Opportunity Management (IoT Opp. Man.), IoT System Analysis
(IoT Sys. Ana.), IoT Functional Design (IoT Func. Des.), and IoT Technical Design
(IoT Tech. Des.) have been derived from Ignite [2]. Cocreate, ideate, and Q&A
practices have been derived from IoT-Meth [3]. As shown in Fig. 8.11, some of the
practices proposed by Ignite and IoT-Meth are overlapping according to the Essence
Framework. Therefore, some of the practices can be compared before using them as
a building block of a tailored method. Ignite also states that it does not cover any
practice regarding IoT device management. Therefore, we added two illustrative
practices, namely, IoT device design and IoT device manufacturing. When IoT
device manufacturing is needed for an IoT project, appropriate practices can be used
to fulfill these needs.

8.5 Discussion

The use of a practice library is important for documenting, reusing, improving, and
enhancing the body of knowledge in system and software engineering. The descrip-
tions of some methods state the areas they do not cover. For instance, Scrum prac-
tice does not define how to specify requirements. Scrum practice should be
complemented with a practice to specify requirements, such as use case, user story,
or any other practice. As a second example, Ignite complements its content using
PMBOK practices. Moreover, it explicitly states that it does not cover any practice
on IoT device management. As a result, such a practice library, a language to define
practices (the Essence Language), and a common ground (the Essence Kernel) are
beneficial both for practitioners and method engineers. From method engineering
perspective, we can also observe that there are overlapping activities in Ignite and
IoT-Meth. This means that two separate efforts are put on achieving the same or
similar objective. Such a library can direct method engineers’ effort to the areas
where new practices are needed.

In our case, the Essence Kernel constitutes the common ground for the practice
library. On the other hand, the Essence Kernel is originally designed for software
engineering. Therefore, it will not cover all parts of an IoT project, since such projects
include IoT devices, sensors, actuators, etc. (as shown in Fig. 8.1). Having a system
engineering kernel is an enhancement area, which is already identified in [18].

The book that describes Ignite [2] includes a semi-structured description of the
method along with many project-specific details. While essentializing Ignite, we

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

166

had difficulty in separating the description of the method, which is much more gen-
eral, from project-specific details. A practice library makes it possible to define a
method using the Essence Language by capturing the essentials and separating the
details [7]. In addition, IoT-Meth is described only by a short presentation [3],
which is far from guiding a team for an IoT system development project. The
method engineers designing IoT-Meth may benefit from the Essence Language, the
Essence Kernel, and a system engineering kernel (not in place yet) to structure more
knowledge and experience from real-world projects and present these to system and
software engineering body of knowledge in the form of a practice library.

Besides providing a practice library, the Essence Kernel also provides a medium
to assess the status of a project (using Alphas and checklists) and decide on the next
steps. This actionable nature of the Essence Kernel is also useful in complex projects.
One of the challenges of IoT system development projects is the involvement of
many stakeholders with different backgrounds [10]. Key stakeholders can extend the
Essence Kernel at the initiation stage of an IoT system development project by defin-
ing sub-Alphas collaboratively. Such a tracking mechanism can constitute a common
ground among the stakeholders during the project. For this purpose, as an example,
Ignite proposes a work product named IoT Project Dimensions, which can be used to
conduct project assessment and compare different IoT projects [2]. The Alpha con-
cept of the Essence Language is more general, which can be applicable to all system
and software development projects and cover IoT Project Dimensions as well.

8.6 Related Work

The Essence Framework specification includes some demonstrations of essential-
izing of some practices, such as Scrum, user story, Unified Process, and waterfall
life cycle [6]. Essentialized version of Scrum is presented in [19]. In this study, the
authors illustrate how the practices of Scrum, XP, and DevOps can be combined to
establish a method. A partial essentialized version of Nexus is presented in [16].
References [14, 15] involve an introduction to the establishment of a practice library
for IoT system development and the essentialization of Ignite. In this chapter, we
use the same idea of having a practice library and propose an initial library after
partially analyzing two IoT system development methods.

The Software and Systems Process Engineering Meta-model (SPEM) is a pro-
cess engineering meta-model as well as a conceptual framework, which can provide
the necessary concepts for modeling, documenting, presenting, managing, inter-
changing, and enacting development methods and processes [20]. Both the Essence
Framework and the SPEM provide a language to define practices and methods. In
addition to this, the Essence Framework also provides a generic domain model of
software engineering, which is the Essence Kernel. As illustrated in Fig. 8.4, the
Essence Framework provides a language at layer 2 and the Essence Kernel at layer
1, whereas SPEM provides only a meta-model, which resides at layer 2. The Essence
Kernel forms a base to understand, compare, and combine practices and methods.

G. Giray et al.

167

Moreover, the Essence Framework emphasizes the importance of tracking progress
and health of a project using Alphas and sub-Alphas.

8.7 Conclusion

The IoT is a recent paradigm that has a pervasive impact on society. For many dif-
ferent application domains, IoT concepts will become an important innovation.
Developing IoT-based systems however appears to be different from traditional
software-intensive systems. In this chapter, we have discussed the application of the
Essence Framework for building an initial practice library using practices derived
from two different IoT system development methods, as well as more generic prac-
tices from software engineering and project management domains. In principle, it
appears that the Essence Framework is to a large extent expressive to model soft-
ware portion of IoT system development methods. An improvement area can be the
development of a system engineering kernel to cover hardware and communication
aspects of IoT systems. The application of the Essence Framework to the IoT meth-
ods also highlighted some of the shortcomings or incomplete aspects for developing
IoT systems using the current IoT development methods. Hence, we think that our
study is of value for both providing insight in the Essence Framework and IoT
methods. On the one hand, the results of our study can be used to enhance the
Essence Framework; on the other hand, these results could be used to enhance exist-
ing IoT development methods or create even novel IoT methods. Our future work
will indeed include the development of a novel IoT method based on the observa-
tions from this study. Further we will apply the IoT method for developing real IoT
systems.

References

 1. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw
54(15):2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

 2. Slama D, Puhlmann F, Morrish J, Bhatnagar RM (2016) Enterprise IoT strategies & best prac-
tices for connected products & services. O’Reilly Media, Inc

 3. Collins TA. Methodology for building the internet of things. http://www.iotmethodology.com.
Accessed 24 Feb 2017

 4. AIOTI (2016) High level architecture (HLA), Release 2.1. AIOTI WG03 – loT Standardisation.
http://www.aioti.org/wp-content/uploads/2016/10/AIOTI-WG3-IoT-High-Level-
Architecture-Release_2_1.pdf. Accessed 23 Feb 2017

 5. SEMAT web site. http://semat.org. Accessed 22 Feb 2017
 6. Object Management Group (2015) Essence – kernel and language for software engineering

methods, version 1.1. http://www.omg.org/spec/Essence. Accessed 22 Feb 2017
 7. Jacobson I, Ng PW, McMahon PE, Spence I, Lidman S (2013) The essence of software engi-

neering: applying the SEMAT kernel. Addison-Wesley Professional

8 Adopting the Essence Framework to Derive a Practice Library for the Development…

https://doi.org/10.1016/j.comnet.2010.05.010
http://www.iotmethodology.com
http://www.aioti.org/wp-content/uploads/2016/10/AIOTI-WG3-IoT-High-Level-Architecture-Release_2_1.pdf
http://www.aioti.org/wp-content/uploads/2016/10/AIOTI-WG3-IoT-High-Level-Architecture-Release_2_1.pdf
http://semat.org
http://www.omg.org/spec/Essence

168

 8. Ivar Jacobson International. Practice Library. http://practicelibrary.ivarjacobson.com.
Accessed 23 Feb 2017

 9. Object Management Group (2016) Meta object facility, version 2.5.1. http://www.omg.org/
spec/MOF. Accessed 23 Feb 2017

 10. Patel P, Cassou D (2015) Enabling high-level application development for the internet of
things. J Syst Softw 103(C):62–84. https://doi.org/10.1016/j.jss.2015.01.027

 11. Fortino G, Russo W (2012) ELDAMeth: an agent-oriented methodology for simulation-
based prototyping of distributed agent systems. Inf Softw Technol 54(6):608–624. https://doi.
org/10.1016/j.infsof.2011.08.006

 12. Ayala I, Amor M, Fuentes L, Troya JM (2015) A software product line process to develop
agents for the IoT. Sensors 15(7):15640–15660. https://doi.org/10.3390/s150715640

 13. Zambonelli F (2017) Key abstractions for IoT-oriented software engineering. IEEE Softw
34(1):38–45. https://doi.org/10.1109/MS.2017.3

 14. Jacobson I (2016) What you need for IoT: smarter methods. IoT World Congress. https://www.
ivarjacobson.com/videos/what-you-need-iot-smarter-methods. Accessed 23 Feb 2017

 15. Jacobson I, Spence I, Seidewitz E (2016) Industrial scale agile – from Craft to engineering.
acmqueue 14(5). https://doi.org/10.1145/3012426.3012428

 16. Giray G, Tüzün E, Tekinerdogan B, Macit Y (2016) Systematic approach for mapping software
development methods to the essence framework. In Proceedings of the 5th international work-
shop on theory-oriented software engineering (TOSE ‘16). ACM, New York, pp 26–32. doi:
https://doi.org/10.1145/2897134.2897139

 17. Project Management Institute (2013) A guide to the project management body of knowledge
(PMBOK® Guide), 5th Edition. Project Management Institute

 18. Jacobson I, Lawson HB, McMahon PE (2015) Towards a systems engineering essence.
In: Jacobson I, Lawson HB (eds) Software engineering in the systems context. College
Publications

 19. Park JS, McMahon PE, Myburgh B (2016) Scrum powered by essence. SIGSOFT Softw Eng
Notes 41(1):1–8. https://doi.org/10.1145/2853073.2853088

 20. Object Management Group (2008) Software & systems process engineering meta-model spec-
ification, version 2. http://www.omg.org/spec/SPEM/2.0. Accessed 23 Feb 2017

G. Giray et al.

http://practicelibrary.ivarjacobson.com
http://www.omg.org/spec/MOF
http://www.omg.org/spec/MOF
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1016/j.infsof.2011.08.006
https://doi.org/10.1016/j.infsof.2011.08.006
https://doi.org/10.3390/s150715640
https://doi.org/10.1109/MS.2017.3
https://www.ivarjacobson.com/videos/what-you-need-iot-smarter-methods
https://www.ivarjacobson.com/videos/what-you-need-iot-smarter-methods
https://doi.org/10.1145/3012426.3012428
https://doi.org/10.1145/2897134.2897139
https://doi.org/10.1145/2853073.2853088
http://www.omg.org/spec/SPEM/2.0

169© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_9

Chapter 9
Integration of Buildings Information with Live
Data from IoT Devices

Zohreh Pourzolfaghar and Markus Helfert

Abstract Information generated by smart buildings is a valuable asset that can be
utilised by various groups of stakeholders in smart cities. These stakeholders can
benefit from such information in order to provide additional valuable services. The
added value is achievable if there is access to buildings information integrated with
the live data being generated and collected from smart devices and sensors residing
within the Internet of Things (IoT) environment. Notwithstanding the prominence
of this combination, there are some barriers relating to the integration of buildings
information with the live data. With the aim of examining such barriers, this chapter
primarily focuses on information exchanges between various domains in smart cit-
ies. It also provides a vision on specific domains that can benefit from integration of
buildings information with other live data. This can impact and improve the quality
of various e-services. This chapter describes the barriers and suggests solutions to
realise these visions. At the end of this chapter, a summary of the barriers is pro-
vided and discussed followed by proposals for future research topics to provide
solutions to the inherent barriers.

9.1 Introduction

The concept of smart cities has emerged during the last few years to describe how
investments in human and social capital and modern ICT infrastructure and
e- services fuel sustainable growth and quality of life, being enabled by appropriate
management of natural resources and through a participative government [1].
Smart buildings refer to a suite of technologies used to design, construct and oper-
ate the buildings more efficiently [2]. To enable smart buildings, Zhou [3] stated
that a wide range of information needs to be available from varied sources. Baetens
[4] suggested that the smart buildings include different smart features, analytics

Z. Pourzolfaghar (*) • M. Helfert
Lero – The Irish Software Research Centre, School of Computing, Dublin City University,
Dublin, Ireland
e-mail: z_pourzolfaghar@yahoo.com

mailto:z_pourzolfaghar@yahoo.com

170

and sensors used to monitor and control the power supply through renewable
energy, smart metering technologies and smart windows. Zhou [3] also expressed
that most of the smart technologies exploit information about the buildings design
and operation specifications at a later stage as far as smart buildings are concerned.
This can be valuable, for example, to estimate energy consumptions for industrial
or marketing purposes.

Smart buildings information can be utilised by various groups of stakeholders
in smart cities. These diverse groups of stakeholders may take advantage of the
information and add more values to their services. Some examples of these indus-
tries are facility management, utility companies and smart commerce. Maintenance
companies can use buildings information to speed up the maintenance processes,
as well as improving the efficiency of their services. Likewise, utility companies
need to know the buildings specifications to estimate energy consumptions of the
buildings. Moreover, actual over usage of energy consumption can be compared
with estimated buildings energy consumption from the design phase. In this way,
useful information can be provided on energy consumption to promote energy
savings behaviours.

Similarly, related to smart commerce, traditional and online retailers can profit
from accessing the buildings information. The retailers can manage the demands
based on the specifications for the devices and materials used for the buildings in an
urban area. In this way, they have the opportunity to advertise their products for the
right potential customers. Moreover, integration of the buildings information with
the live data (produced by the sensors embedded in installed equipment) can pro-
vide retailers with useful information about the faulty devices and potential future
demands. Likewise, they will have the opportunity to inform the customers on the
new products having advantages like lower energy consumption.

To achieve the above-mentioned goals, there is a need to integrate the buildings
information with the live data from the Internet of Things (IoT) devices on the status
of devices, energy consumption and devices specification in different spaces of
buildings. However, integrating the buildings information with the live data is not
easily accessible for the potential users. The problem is attributable to the difficulty
in accessing the buildings information, as well as the challenge to integrate this
information with the live data from heterogeneous sources.

In this chapter, first we explain how information sharing between various
domains may transform a city to a smart city. Then we will have more concentration
on smart buildings and potential users of the buildings information in the other
smart domains. For this purpose, a number of potential smart industries which may
take advantage of the combination of this valuable information are introduced. The
remainder of this chapter presents and discusses the barriers preventing the integra-
tion of the live data with the buildings information.

Z. Pourzolfaghar and M. Helfert

171

9.2 Information Management in Smart Cities

As Wenge [5] expressed, successfully deploying smart systems alone is not enough
to make an entire city smart. They emphasised that the city is not truly smart if only
a single system can meet the citizens’ needs. In other words, the intelligent city is
different from a smart city, and the validity of any city’s claim to be smart has to be
based on something more than its use of information and communication technolo-
gies [6, 7]. Indeed, integration, information sharing and communication between
many various domains can facilitate making a city smart (see Fig. 9.1). This implies
that contrary to the traditional cities, the smart cities require to innovate and connect
establish infrastructures for the citizens and organisations. Indeed, the ultimate goal
of the smart cities is to improve the quality of life and sustainable economic growth.
To achieve these goals, various drivers like efficient services, appropriate interactions
with community and city infrastructure, monitoring and planning play pivotal roles.

On the other hand, a variety of IoT devices are producing a huge amount of infor-
mation in each smart city domain. To realise the efficiency of the intended services,
information systems infrastructures across different domains need to be able to
interact with each other.

Bischof [8] discussed at length the challenges and issues arising from the nature
of different smart city data sources, their various formats and often changing data
quality. They lay emphasis on providing semantic interoperability as well as data
integration. Anthopoulos [9] showed through examination of various use cases that
the cities around the world encounter common challenges in areas such as informa-
tion sharing and exchange. As a consequence, the effective information flow
between the smart city stakeholders and also the provision of good quality informa-
tion are the two critical issues of this era. In a smart city, the information is created
and stored in different systems and services. However, there is a gap in their abilities

Fig. 9.1 Communication and integration of smart systems in smart cities

9 Integration of Buildings Information with Live Data from IoT Devices

172

to transfer this information to the other smart domains and utilise it for the other
areas in an efficient and effective way. Some researchers, e.g. Anthopoulos [9], have
considered the information exchange as an upcoming challenge in the smart cities.
It is also noteworthy that it is costly and non-secure for standalone services to
exchange information. This is why most societies fail to exploit the potentials of this
valuable property. In the next section, the merits associated with the information
exchange are elucidated for some potential users in the smart city context.

9.2.1 Smart Buildings

With the advent of IoT technologies, cities inevitably move towards environments
recognised by full integration and semantics. As Pan [10] pinpointed, diverse appli-
cation areas of such technologies are often summarised with terms such as ‘smart
city’, ‘smart home’, ‘smart buildings’ and lately smart commerce. As such, smart
environments include smart objects, such as houses, buildings, sustainable urban
infrastructure, cars, sensor technology and a lot more. Within these environments,
through the application of semantic web technologies and intelligent applications,
we are able to offer personalised, responsive and intuitive systems. According to
Baetens [4], smart buildings are prominent examples of smart environments and
include different smart features, analytics and sensors used to monitor and control
the power supply through renewable energy, smart metering technologies, etc.

According to some researchers, smart buildings describe ‘a suite of technologies
used to make the design, construction, and operation of the buildings more effi-
cient’. To realise the exact meaning of smartness in the smart buildings and gain full
benefit from the IoT devices and technologies, it is inevitable to integrate the build-
ings information with the live data obtained from the IoT devices (see Fig. 9.2).

Smart buildings are embedded with large amounts of latent data from different
sources, e.g. the IoT devices, sensors and the like. Integration of this data with the
buildings information can highly impact the efficiency of services provided by vari-
ous industries such as facility management companies, utility companies, smart
commerce and so forth. Nonetheless, the potential users of this information, e.g.
facility management companies, are still unable to fully derive benefit from the
buildings information. This problem is attributable to some challenges in sharing
the buildings information with the potential users from the other smart industries. In
the following section, we introduce some potential users.

9.2.2 Users of Buildings Information

Smart buildings information is a valuable asset which can be utilised by various
groups of stakeholders, e.g. city councils for urban and infrastructure planning, and
maintenance/facility management companies to speed up their services and utility

Z. Pourzolfaghar and M. Helfert

173

companies to estimate energy consumption. In the following subsections, a number
of potential users of the buildings information are discussed. Then, we describe
their current approaches to provide their services. At the end of each subsection, we
illustrate how they can provide more added values to their services by utilising the
buildings information and the live captured data.

9.2.2.1 Buildings Maintenance

Facility management is a profession that encompasses multiple disciplines to ensure
functionality of the built environment by integrating the people, the place, the pro-
cess and the technology. Likewise, facility management organisations are respon-
sible for providing and delivering timely, quality, professional facility management
analysis and consulting support services for the customers [11]. According to Lavy
and Jawadekar [12], facility management activities depend on the accuracy and
accessibility of the information created in the design and the construction phases.
This information is maintained throughout the operations and the maintenance
phase. Referring to the General Service Administration (GSA) [13], lack of this
information can result in cost overruns, inefficient buildings operations and untimely
resolution of client requests. In order to provide efficient services, facility manage-
ment departments should ensure that all the equipment installed in building spaces
are in active status and work properly. Moreover, they are responsible for providing
repair/replacement services at the earliest possible time.

Fig. 9.2 Realisation of smart buildings by integration of buildings information with live data

9 Integration of Buildings Information with Live Data from IoT Devices

174

The errors and failures are normally reported by the users of the building spaces.
However, some common areas are used for special purposes such as meetings, sem-
inars, lectures and all that. To ensure that all the devices in these common areas are
working properly, it is indispensable to inspect these spaces on a timely basis.
Normally, these types of inspections take a considerable time from the facility man-
agement staffs for the areas which even need no further action to be taken. This
happens in the digital era when most of the buildings are equipped with the IoT
devices and sensors. These devices provide huge amounts of valuable data which
can be used in combination with the buildings information and add more values to
the facility management services. For instance, movement sensors in a space can
report whether a room is occupied or not. At the same time, light sensors in this
space should switch off the light in case of inoccupation for a given time. The ‘on’
status signal from the light sensor besides an unoccupied report can raise a failure
report on the light sensor.

Obviously, combination of the live data from the IoT devices and the embedded
sensors can add more values by early replacement of the faulty device. For this
purpose, there is a need to have a list of the installed devices integrated with the
buildings spaces information. Moreover, the live part of this integrated information
needs to be structured with the ability to be updated over time. To illustrate the use-
fulness of this combination, a list of faulty devices for buildings spaces and their
costs can be prepared and reported to the senior managers. An immense number of
similar cases can be exemplified and implemented, in case of having access to the
buildings spaces information along with the live data from the IoT devices and sen-
sors. Notwithstanding the importance of this combination, there are still some bar-
riers to integrate the buildings information with the live captured data.

9.2.2.2 Smart Energy

A smart energy system is a cost-effective, sustainable and secure energy system in
which renewable energy production, infrastructures and consumption are integrated
and coordinated through energy services, active users and enabling technologies.
Regarding the increased efforts for energy saving and energy cost reduction, utility
companies attempt to find new ways to promote more effective ways of energy
usage. Towards this, they need to evaluate energy consumption and estimate energy
consumption costs.

For the purpose of estimating energy consumption for buildings, many researches
have been conducted. In this regard, Capozzoli [14] proclaimed that it is exceed-
ingly paramount to have the capability to quickly and reliably estimate the build-
ings’ energy consumption, especially for the public authorities and institutions that
own and manage large building stocks. For the purpose of predicting and estimating
the energy consumption, some innovative techniques including machine learning,
data mining, discovery in database [15] and regression models [16] have been
developed and applied. Other researches, e.g. Asadi [17] emphasised that predicting

Z. Pourzolfaghar and M. Helfert

175

building energy consumption depends on multiple variables such as buildings char-
acteristics, energy systems characteristics, etc.

Likewise, Chai [18] expressed that the smart grid is regarded as the next-
generation power system to fulfil the energy consumption challenges. Smart grids
have been defined as the power grid systems that incorporate a smart metering infra-
structure capable of sensing and measuring power consumption from consumers
with the integration of advanced information and communication techniques [19].
In this relation, demand response management (DRM) has been introduced as one
of the main features in smart grids. Mohsenian-Rad [20] and Zugno [2] explained
that DRM refers to the routines implemented to control the energy consumption at
the customer side and aims to improve the energy efficiency and reduce the costs.
As such, Karnouskos [21] predicted that in the future, the heterogeneous devices
will be able to measure and share their energy consumption and actively participate
in house-wide or buildings-wide energy management systems.

Despite the plethora of research on using the mathematical methods to predict
the energy consumption, still researchers believe that having access to the buildings
information can highly impact the reliability of consumption prediction and estima-
tion for the buildings. As the precedent researches have predicted, nowadays, many
buildings are equipped with IoT and smart devices with sensing and measuring
capabilities. Although this information is produced for building spaces, they are not
accessible for the potential users in the domain of smart energy. In other words, still
this valuable asset has not been thoroughly involved in energy management sys-
tems. Indeed, to estimate or predict the buildings energy consumption, there is an
essential need to have sufficient technical information about building spaces,
installed equipment as well as live data from IoT and smart devices.

9.2.2.3 Smart Commerce

Pan [10] introduced the smart commerce by means of using the information about
consumption to improve the marketing affairs. Many small businesses can take
advantage of this information and technical knowledge. Yan [22] elucidated that
both kinds of traditional and online retailers can always gain profit from having
information about customers’ needs. As such, they concurred that the market infor-
mation is vital for a firm’s decision-making processes. In addition, Yan [22] laid
emphasis on the forecast information accuracy effect on the profit of the traditional
and online retailers. In this context, he expounded that major retailers such as Marks
& Spencer, A&P grocery stores and Von’s Supermarket have made substantial
investment in the development of tracking information systems, while being
engaged in ongoing marketing research to improve the information accuracy [23].
In the light of the studied literature on retailers’ efforts, it is indispensable for these
small business owners to inspect their customers’ needs.

Many businesses and manufacturers providing services and products for build-
ings can similarly gain benefit from the consumers’ information. This information
can be related to the building components, e.g. windows, air conditions, pipes,

9 Integration of Buildings Information with Live Data from IoT Devices

176

bulbs, etc., or diverse types of IoT devices and sensor, e.g. light sensors, cameras,
fire alarms, etc. Some recent researches have been conducted to specify the avail-
ability of building components in the market. For instance, Baetens [4] performed a
survey on the types of smart windows which are currently available on the market.
However, these types of researches have a concentration on the market side, and still
there is a need to make the information from the customer side available to the busi-
nesses. For instance, in case of having access to the buildings information integrated
with the live data, plenty of faulty reports for some devices can disclose perfor-
mance issues and consequently fewer future demands for some products. As such,
manufacturers can use this information to improve quality of their products.

9.3 Challenges and Barriers

With the advancement of technologies related to ‘Internet of Things’, we inevitably
move towards environments characterised by full integration and semantics.
Nonetheless, there are some barriers on the way of benefiting from this integration.
Some of the barriers stem from various phases of the buildings life cycle, including
the design, construction and operation. The design phase of the buildings is an
imperative stage through which fundamental information is created. This informa-
tion is preserved in various forms of plans, report, tables and so forth. In the next
phase, i.e. the construction phase, due to variety of changes as a result of different
reasons, some updates are produced. These updates are essential for the further steps
of the buildings life cycle. In the operation phase, the IoT devices and sensors are
responsible for providing information on the current status of the building spaces.

The main barrier originated from the buildings life cycle is that the buildings
information is not available in a digital format. For the majority of the existing and
even under-construction buildings, architectural, mechanical and all other plans are
only available in nondigital formats. Likewise, despite using new emerging tech-
nologies, i.e. BIM, to transform the building plans and specifications into the digital
format, still the digital buildings information is not available for the other industries.
In other words, the users need to have professional skills to use the software associ-
ated with the BIM models to be able to access the buildings information.

Another aspect of the integration problem is related to the smart technologies
and the IoT devices. These devices have been developed for the environmental mon-
itoring applications [24] or for combinational usage of different context data from
different sources [25]. The provided information by these technologies and devices
scatters across the separated data storages and in heterogeneous formats. Integration
of the data from variety of IoT devices with the digital buildings information is a
daunting challenge by itself. All these barriers are the reasons to frustration as for
fully benefiting from the buildings information integrated with the live data.

In the following subsections, more detail is provided about all the recognised
barriers associated with the above-mentioned issues.

Z. Pourzolfaghar and M. Helfert

177

9.3.1 Barriers Associated with the Design Phase

Creation of the buildings information begins from the early design phase. The
design process of a buildings is a tacit-dominated phase [26, 27], in which multi-
disciplinary professionals are sharing and exchanging their knowledge. As Ibrahim
and Nissen [28] illuminated, the tacitness of the knowledge can augment the prob-
ability of the knowledge loss. As such, Pourzolfaghar [29] pinpointed that the
knowledge created by the design professionals tends to reside in their minds as tacit
knowledge when not explicitly documented during the design phase of the building
projects. This knowledge is invaluable for later use which is why it should be perse-
vered. Therefore, a fraction of the valuable building information is not available due
to knowledge loss phenome. To overcome this challenge, Pourzolfaghar [30] devel-
oped a theoretical knowledge-based framework to explicate and preserve this
knowledge. However, more research work was needed to put this framework into
the practice.

Despite losing a fraction of the valuable knowledge, the rest of the buildings
information is handed over to the further phases to develop the operational plans.
The building plans are normally developed using professional software, e.g.
AutoCad, Revitt and so on. All the details for the plans are available in these envi-
ronments. However, accessing the details of the plans is only possible for the users
who have the skills to use these professional environments. As well, for the con-
struction phase, normally the paper version of the plans is used. Apparently, the
digital version of the buildings information is not utilisable for the users who are not
familiar with the software associated with building plans. In the best condition, the
plans are stored in a portable document format (commonly referred to as PDF). As
a result, the stored information in this format cannot be combined with digital infor-
mation from the other sources.

The other issue is related to the overall information about buildings energy con-
sumption and infrastructural estimations. This information is presented in the form
of reports as the outcome of the conceptual design phase. The detailed design of the
mechanical and electrical plans is based on the estimations reported in the early
design phase. This information can play a pivotal role in providing overall energy
consumption estimation for a building. Availability of this information for all the
buildings in an urban area can be utilised for infrastructure planning in the cities.
However, this information is not stored in a digital format along with the other
buildings information.

9.3.2 Barriers Associated with the Construction Phase

The construction phase of the building projects is a vibrant phase in which many
changes arise. The changes can be the results of various aspects, e.g. design modifi-
cations, differing site conditions and so on. These types of changes are norms in the

9 Integration of Buildings Information with Live Data from IoT Devices

178

construction phase. As Pettee [31] stressed, there is a need to document these
changes as the updates on the buildings information and specifications. The updated
version of the building plans is called ‘as-built’ plans used to show the final version
of the implemented works. Updating the building plan is a tedious task for contrac-
tors; and providing the as-built plans is often overlooked until the end of the project.
Obviously, the delay in the documentation activities can impact the accuracy of the
updated information.

The process of updating the plans requires that any changes modifying the origi-
nal design be incorporated into the plans. Nonetheless, the contractors are not inter-
ested in it because of various reasons, e.g. lack of staff, time, budget, commitment,
etc. Outdated plans can cause many problems in the construction and operation
phases. In principle, the main consequence of this problem leads to an informational
gap between the two consequential phases of the construction and operation. Later,
in the operation phase, the updated information is required for many different pur-
poses, e.g. for refurbishment of the buildings, repairing or replacing the installed
devices. Another consequence of the outdated plans can be attributed to the build-
ings information modelling technologies. By developing the models based on as-
design plans, the accuracy of the models is not ensured. In Sect. 9.3.4, more details
are provided on the challenges for buildings information models.

9.3.3 Barriers Associated with the Operations Phase

The technologies developed over the last years for smart environments are currently
summarised as the ‘Internet of Things’. These technologies produce invaluable
information for security management, control management and many other mana-
gerial aspects during the buildings operation phase. Schaffers [32] stated that the
application of the IoT paradigm to an urban context is of particular interest as it
responds to the strong push of the governments to adopt ICT solutions in the man-
agement of public affairs to realise the smart city concept. The IoT devices are
designed to support the smart city vision, which aims at exploiting the ICTs to
provide added-value services for the administration of the city and for the citizens
([33]. As they stressed, by enabling an easy access and interaction with a wide vari-
ety of devices, the IoT will foster the development of a number of applications to
provide new services to citizens, companies and public administrations.

As [34] emphasised, the IoT paradigm finds application in many different
domains, such as home automation, industrial automation, medical aids, energy
management and smart grids, facility management and many others. However, a
significant challenge remains to design and maintain the connectivity of smart sys-
tems by an integrated information system being able to support business processes
and interoperability between the systems. As an example, Pan [35] conducted a
research to build a unique IoT experimental test-bed for energy efficiency and build-
ing intelligence. In their research, they encountered a challenge to organise and
integrate heterogeneous IoT devices to work together as a coherent system.

Z. Pourzolfaghar and M. Helfert

179

Likewise, Al-Fuqaha [36] underscored that the heterogeneity of the IoT elements
needs a thorough solution to make ubiquitous IoT services a reality. To overcome
the existing challenges, many researchers have been conducted, e.g. on communica-
tion enabling the use of wireless sensor network (WSNs) [37], enabling technolo-
gies and application services using a centralised cloud vision [38], enabling
technologies with emphasis on the RFID and its potential applications [39], etc.
Simultaneously, some other researchers, e.g. Gluhak [40], presented the IoT chal-
lenges to bridge the gap between the research and practical aspects.

In summary, most research work has been conducted to overcome the heteroge-
neity challenges for the IoT devices and sensors. Consequently, many of these
researches have proposed solutions to attenuate the recognised challenges.
Nevertheless, we believe that there are more potential benefits to the smart cities as
long as the live data is integrated with the buildings information. In other words,
building environments are still unable to fully benefit from the integration of build-
ings information with the live data captured from the IoT devices and sensors.
Moreover, it is fundamental to bridge the gaps between the research and practice.
For instance, it would be worthy to explore and recognise the information required
for any specific industry and concentrate on defining meaningful linkages between
the buildings information and the live data. In the following section, some research
topics are suggested for future studies in this field.

9.3.4 Barriers Associated with Buildings Information Models

Over the last decade, buildings information modelling (BIM) technologies have
been developed to manage the buildings information [41]. The BIM models contain
valuable information about the building spaces and the installed devices in the
buildings. However, the buildings information in BIM models are only available
through the developed BIM models for the buildings. Moreover, still a large number
of challenges are faced by BIM models, e.g. a pertinent semantic format for the
maintenance stage [42], computerised facility management system integration [43]
and updated data for as-built BIM models [41].

As further explanation for the latter challenge, the BIM models are mostly devel-
oped based on the existing plans for the buildings and are not incorporated with the
IoT devices and sensors specifications which have been installed later for manage-
ment purposes (e.g. for security management, energy consumption, etc.). In this
condition, there is no possibility to update the buildings information regarding the
new installed devices. Therefore, there is a high risk when there is a lack of updated
information on the new devices for BIM models. Moreover, Mikučionienė [44]
reported that the data required for the maintenance stage and the usable format are
not necessarily stored in BIM. Maintenance companies need a specific type of infor-
mation for the processes. For instance, they need to receive some information like
the warranty of the device, technical information and building space as soon as a
fault occurs. This can happen in case of the existence of a linkage between BIM

9 Integration of Buildings Information with Live Data from IoT Devices

180

models and all the installed IoT devices ad sensors. Similarly, Construction
Operations Building Information Exchange (COBie) has been criticised for its
inability to ensure comprehensive semantic data for the maintenance stage [14].

Similarly, several researchers have reported challenges for the maintenance
stage. As Winch [45] and Shen [42] stated, some identified challenges relate to
interoperability, interfaces with other systems as well as integration of wired and
wireless sensor networks to enhance the live data collection during the construction
phase and controlling the access to the project information. In line with this, Motawa
and Almarshad [46] proclaimed that the building maintenance requires a compre-
hensive information system that captures/retrieves the information on the building
maintenance components and all its related building components. Although they
proposed an integrated information/knowledge system, this system was limited to
capturing and retrieving data during the maintenance phase. Obviously, many
researches have proposed methods and models to integrate the buildings informa-
tion with the captured data to facilitate the building maintenance. However, inade-
quate data integration is a current challenge faced by building information models
which stems from differences in the data syntax, schema or semantics [44]. Cohen
[47] defined data integration as ‘the combination of data from different sources with
unified access to the data for its users’. Regarding the above-mentioned points, inte-
gration of data from diverse sources has been introduced as a challenge which pre-
vents the potential users from taking advantage of the values of the integrated data.

9.3.5 Summary of the Challenges

Based on the reviewed literature, some barriers have been recognised as hampering
the benefits gained from the valuable buildings information integrated with the live
captured data in the building environments. What follows is a summary of these
obstacles. First, no digital buildings information is accessible for the potential users
in the smart cities, e.g. for facility management, utility companies, etc. The other
barrier is related to the data captured form the IoT devices and sensors. This infor-
mation scatters across the separated data storages and in heterogeneous formats.
Consequently, integration of the buildings information with the live captured data
has been recognised as the third barrier.

Although, during the last decades, BIM technologies have emerged for digitalis-
ing buildings information, this digital information needs to be available to other
domains. Difficulty of extracting the buildings information from BIM models and
making it accessible to the potential users is another barrier. A summary of the rec-
ognised barriers and their associated origins is provided in Table 9.1.

By reviewing the information provided in Table 9.1, it is evident that the recog-
nised barriers are associated with three various aspects. The first group of the barri-
ers arises from the design phase of the building projects. More details in the second
column of Table 9.1 are to describe the origins of the barriers. The barriers for the
design phase are mostly related to lack of explication on the fraction of the buildings

Z. Pourzolfaghar and M. Helfert

181

information which can be useful for the construction industry, as well as the other
industries in the smart cities.

The second group of barriers are mostly associated with the IoT devices and their
challenges for interoperability and integrity issues. Many researches have been con-
ducted to propose solutions to provide communications between various IoT sys-
tems. Nonetheless, there is a need to investigate the applicability of these
communications between the IoT devices applications and systems in the construc-
tion industry. Then, the next step would be to deal with the integration of the out-
comes of these applications and systems with the digital buildings information.

The last group of barriers is related to the sematic and the format of the digital-
ised version of the buildings information through BIM technologies. Although huge
efforts have been exerted in favour of developing these technologies, still there is
long journey ahead to make the digital buildings information available for other
smart domains. For this purpose, it is vital to recognise and extract the required
information for various industries.

Table 9.1 Summary of the challenges to integrate the buildings information and the live data

Challenges
associated with Recognised challenges

Design phase Tacitness of knowledge during the design phase of the buildings leads to
loss of some parts of valuable buildings information
The buildings information is stored in the form of architectural,
mechanical plans or other plans (e.g. DWG format or reports) and is not
accessible for the users of the other industries
The general information about energy consumption is not available in the
digital format (e.g. for authorities or utility companies)
The information about the installed devices is not available for
commercial purposes (e.g. for demand management purpose)

Construction phase High risk of missing the updated buildings information
High risk of handing over not updated plans to the operation phase
Due to delays on documenting the changes, accuracy of the updates is
not ensured

Operation phase To organise and integrate heterogeneous IoT devices to work together
Various applications and software store the live data in various formats
Aggregation of the live data captured by various devices is a challenge
Integration of the data from the IoT devices and sensors with the
buildings information

BIM models In BIM models, the buildings information is not available in digital
format for the other industries
Extraction of the buildings information from BIM models
High risk of not updated information on the new devices for BIM models
Accessing the buildings information is possible by using the BIM
environment and needs professional skills
The data required for potential users and the usable format are not
necessarily stored in BIM

9 Integration of Buildings Information with Live Data from IoT Devices

182

9.4 Conclusion

Various industries in smart cities can benefit from information from other domains
to provide more effective services for the citizens. The buildings information is one
of the essential sources of information in smart cities which can be utilised by many
industries, e.g. facility management, smart grid, smart commerce, etc. Buildings
information is created during various phases of a building life cycle. Live data is a
dynamic part of the building information which is produced by IoT devices during
the operation phase. Integration of the building information with the live data can
assist many industries in providing more efficient services to the smart cities’ citi-
zens. However, there are barriers which disallow the potential users to take advan-
tage from aggregation of the building information and the live data. In this chapter,
we introduced some potential users of the building information. Simultaneously, we
discussed the ways they may improve their services utilising the buildings
information.

Then, the origins of the barriers were explored and explained thoroughly. Based
on the studied literature, two main areas associated with these challenges were rec-
ognised, including (1) the barriers stemming from different phases of the building
life cycle including the design, construction and operations and (2) the barriers
associated with BIM models for the buildings. By bearing these studies and findings
in mind, this chapter culminates by suggesting some areas for future research to
remove the recognised barriers. The suggested areas are stated as follows:

• Development of a method to digitalise the buildings information created during
the design phase

• Development of a method to use the data captured from the IoT devices to update
the building plans during the construction phase

• Development of a method to integrate the buildings information with the live
captured data from IoT devices during the operation phase

• Development of a method to extract the required buildings information from
BIM models

• Development of a framework to recognise the required buildings information for
the targeted smart industries

• Establishment of an open storage to preserve the integrated information in an
appropriate format consistent with the construction industry standards with the
ability of being shared with the other industries for improving their services

The proposed areas of the research can be put together to help integrate the build-
ings information with the live data available to the industries in the smart cities.

Acknowledgement This work was supported, in part, by Science Foundation Ireland grant 13/
RC/2094 and co-funded under the European Regional Development Fund through the Southern
and Eastern Regional Operational Programme to Lero – the Irish Software Research Centre (www.
lero.ie).

Z. Pourzolfaghar and M. Helfert

http://www.lero.ie
http://www.lero.ie

183

References

 1. Schaffers H, Ratti C, Komninos N (2012) Special issue on smart applications for smart cities-
new approaches to innovation: guest editors’ introduction. J Theor Appl Electron Commerce
Res 7(3):ii–iv

 2. Zugno M, Morales JM, Pinson P, Madsen H (2013) A bilevel model for electricity retailers’
participation in a demand response market environment. Energy Econ 36:182–197

 3. Zhou Z, Zhao F, Wang J (2011) Agent-based electricity market simulation with demand
response from commercial buildings. IEEE Trans SMART Grid 2(4):580–588

 4. Baetens R, PetterJelle B, Gustavsen A (2010) Properties, requirements and possibilities of
smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art
review. Solar Energy Mater Solar Cells 94:87–105

 5. Wenge R, Zhang X, Dave C, Chao L, Hao S (2014) Smart city architecture: a technology guide
for implementation and design challenges. China Commun 11(3):56–69

 6. Hollands RG (2008) Will the real smart city please stand up? Intelligent, progressive or entre-
preneurial? City 12(3):303–320

 7. Komninos N (2008) Intelligent cities and globalisation of innovation networks. Routledge,
London

 8. Bischof S, Karapantelakis A, Nechifor CS, Sheth A P, Mileo A, Barnaghi P (2014) Semantic
modelling of smart city data

 9. Anthopoulos L, Fitsilis P (2010) From digital to ubiquitous cities: defining a common architec-
ture for urban development. In: Intelligent environments (IE), 2010 sixth international confer-
ence on IEEE, 301–306

 10. Pan G, Qi G, Zhang W, Li S, Wu Z, Yang LT (2013) Trace analysis and mining for smart cities:
issues, methods, and applications. IEEE Commun Mag 51(6):120–126

 11. Rondeau EP, Brown RK, Lapides PD (2012) Facility management. Wiley, Hoboken
 12. Lavy S, Jawadekar S (2014) A case study of using BIM and COBie for facility management.

Int J Facility Manag 5(2)
 13. General Services Administration (GSA) (2011) GSA building information modeling guide

series: 08 – GSA BIM guide for facility management, version 1 – December 2011, U.S. General
Services Administration, Public Buildings Service, Office of Design and Construction

 14. Capozzoli A, Grassi D, Causone F (2015) Estimation models of heating energy consumption
in schools for local authorities planning. Energy Build 105:302–313

 15. Yu Z, Haghighat F, Fung BCM, Yoshino H (2010) A decision tree method for building energy
demand modeling. Energy Build 42:1637–1646

 16. Korolija I, Zhang Y, Marjanovic-Halburd L, Hanby VI (2013) Regression models for predict-
ing UK office building energy consumption from heating and cooling demands. Energy Build
59:214–227

 17. Asadi S, Shams Amiri S, Mottahed M (2014) On the development of multi-linear regression
analysis to assess energy consumption in the early stages of building design. Energy Build
85:246–255

 18. Chai B, Chen J, Yang Z, Zhang Y (2014) Demand response management with multiple utility
companies: a two-level game approach. IEEE Trans Smart Grid 5(2):722–731

 19. Farhangi H (2010) The path of the smart grid. IEEE Power Energy Mag 8(1):18–28
 20. Mohsenian-Rad AH, Leon-Garcia A (2010) Optimal residential load control with price predic-

tion in real-time electricity pricing environments. IEEE Trans Smart Grid 1(2):120–133
 21. Karnouskos S (2010) The cooperative internet of things enabled smart grid. In: Proceedings of

the 14th IEEE International Symposium on Consumer Electronics (ISCE 2010)
 22. Yan R, Ghose S (2010) Forecast information and traditional retailer performance in a dual-

channel competitive market. J Bus Res 63:77–83
 23. He C, Marklund J, Vossen T (2008) Vertical information sharing in a volatile market. Mark Sci

27(3):513–530

9 Integration of Buildings Information with Live Data from IoT Devices

184

 24. Szewczyk R, Mainwaring A, Polastre J, Anderson J, Culler D (2004) An analysis of a large
scale habitat monitoring application. In: Proceedings of the 2nd international conference on
embedded networked sensor systems, pp 214–226

 25. D’Elia A, Roffia L, Zamagni G, Vergari F, Bellavista P, Toninelli A, Mattarozzi S (2010) Smart
applications for the maintenance of large buildings: how to achieve ontology-based interoper-
ability at the information level. In: Computers and communications (ISCC), 2010 IEEE sym-
posium, pp 1077–1082

 26. Ibrahim R, Fay R (2006) Enhancing cognition by understanding knowledge flow characteris-
tics during design collaboration. ALAM CIPTA Int J Sustain Trop Des Res Pract 1(1):9–16

 27. Ibrahim R, Paulson B (2008) Discontinuity in organisations: identifying business environ-
ments affecting efficiency of knowledge flows in product lifecycle management. Int J Prod
Lifecycle Manag 3(1):21–36

 28. Ibrahim R, Nissen M (2007) Discontinuity in organizations: developing a knowledge-based
organizational performance model for discontinuous membership. Int J Knowl Manag
3(1):18–36

 29. Pourzolfaghar Z (2012) Improving tacit knowledge capture during conceptual design phase of
building projects, UK, UMI Thesis Publications, ProQuest LLC

 30. Pourzolfaghar Z, Ibrahim R, Abdullah R, Adam NM, Abang Ali AA (2013) Improving
dynamic knowledge movements with a knowledge-based framework during conceptual design
of a green building project. Int J Knowl Manag 9(2):62–79

 31. Pettee S (2005) As-builts-problems & proposed solutions. CM eJournal
 32. Schaffers H, Komninos N, Pallot M, Trousse B, Nilsson M, Oliveira A (2011) Smart cities and

the future internet: towards cooperation frameworks for open innovation, the future internet.
Lect Notes Comput Sci 6656:431–446

 33. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities.
IEEE Internet Things J 1(1):22–32

 34. Bellavista P, Cardone G, Corradi A, Foschini L (2013) Convergence of MANET and WSN in
IoT urban scenarios. IEEE Sens J 13(10):3558–3567

 35. Pan J, Jain R, Paul S, Vu T, Saifullah A, Sha M (2015) An internet of things framework
for smart energy in buildings: designs, prototype, and experiments. IEEE Internet Things
J 2(6):527–537

 36. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things:
a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor
17(4):2347–2376

 37. Atzori L, Iera A, Morabito G (2010) The internet of things: A survey. Comput Netw
54(15):2787–2805

 38. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, archi-
tectural elements, and future directions. Future Generation Comput Syst 29(7):1645–1660

 39. Yang DL, Liu F, Liang YD (2010) A survey of the internet of things. In: Proceedings of the 1st
international conference on E-Business Intelligence (ICEBI2010), Atlantis Press

 40. Gluhak A, Krco S, Nati M, Pfisterer D, Mitton N, Razafindralambo T (2011) A survey on
facilities for experimental internet of things research. IEEE Commun Mag 49(11):58–67

 41. Gu N, Singh V, London K, Brankovic L, Taylor C (2008) Adopting building information mod-
eling (BIM) as collaboration platform in the design industry. In: CAADRIA 2008: Beyond
computer-aided design, proceedings of the 13th conference on Computer Aided Architectural
Design Research in Asia, The Association for Computer Aided Architectural Design Research
in Asia (CAADRIA)

 42. Shen W, Hao Q, Mak H, Neelamkavil J, Xie H, Dickinson J, Xue H (2010) Systems integra-
tion and collaboration in architecture, engineering, construction, and facilities management: a
review. Adv Eng Inform 24(2):196–207

 43. Becerik-Gerber B, Jazizadeh F, Li N, Calis G (2011) Application areas and data requirements
for BIM-enabled facilities management. J Constr Eng Manag 138(3):431–442

Z. Pourzolfaghar and M. Helfert

185

 44. Mikučionienė R, Martinaitis V, Keras E (2014) Evaluation of energy efficiency measures sus-
tainability by decision tree method. Energy Build 76:64–71

 45. Winch GM (2010) Managing construction projects. Wiley, Chichester
 46. Motawa I, Almarshad A (2013) A knowledge-based BIM system for building maintenance.

Autom Constr 29:173–182
 47. Cohen B (2012) What exactly is a smart city? www.fastcoexist.com/1680538/what-exactly-is-

a-smart-cityIntelligence. Collective intelligence handbook

9 Integration of Buildings Information with Live Data from IoT Devices

http://www.fastcoexist.com/1680538/what-exactly-is-a-smart-cityIntelligence
http://www.fastcoexist.com/1680538/what-exactly-is-a-smart-cityIntelligence

Part III
Advances and Latest Research

189© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_10

Chapter 10
Interoperability in the Internet of Things
with Asymmetric Schema Matching

José Carlos Martins Delgado

Abstract Interoperability is one of the main challenges of the Internet of Things
environments, given the huge number of interconnected devices and the wide range
of manufacturers and models. The classical solution, symmetric interoperability, in
which both interacting devices share the same data schema, usually leads to a
coupling problem, since a device cannot change its schema without changing it as
well in the devices with which it interacts. This chapter proposes asymmetric
interoperability mechanism, in which the schema used to produce a message does
not need to be identical to the schema of the messages expected by the receiver. This
leads to a lower coupling level and allows a device to interact with others, which
send or receive messages with different schemas, and to replace another one with a
new schema without impairing existing interactions. This asymmetry in
interoperability is based on the concept of structural compliance and conformance,
which state that schemas need only be compatible in the message components that
are actually used and not in the full message schema. A simple interoperability
framework and a model of coupling, adaptability and changeability are presented to
illustrate the impact of these concepts. A few implementation examples are also
provided.

10.1 Introduction

The Internet of Things (IoT) paradigm is currently experiencing an explosive
growth. Gartner [1] estimated that, by the end of 2016, around 6.4 billion IoT
devices were in use, with a forecast of 20.8 billion for 2020. Other analysts predict
much higher numbers [2]. Independently of the numbers, the fact is that there will
be a huge number of devices, from a large number of manufacturers with a wide
variety of models, all needing to interact. Interoperability is thus one of the main
challenges of the IoT environments [3]. The obvious solution is to define standard

J.C.M. Delgado (*)
Instituto Superior Técnico, Universidade de Lisboa, Porto Salvo, Portugal
e-mail: jose.delgado@tecnico.ulisboa.pt

mailto:jose.delgado@tecnico.ulisboa.pt

190

APIs that all devices should implement, thereby making interaction between devices
an achievable goal. In practice, however, several issues conspire to make this a hard
problem to overcome:

• De jure standards require time for technology to settle down, something unlikely
to readily occur in such a young and vigorous field as IoT.

• De facto standards can only be imposed by a giant provider, such as Amazon or
Microsoft. Again, this is not easy to achieve, given the enormous variability of
manufacturers, devices and applications.

• Even if a standard is successful, its main usefulness rests with the consumers, by
reducing the vendor lock-in. For providers, it can be a straitjacket that hampers
differentiation from competition and added value from additional, vendor-
specific features (which leads to vendor lock-in). This expresses the conflicting
nature of standards.

Without standard application programming interfaces (APIs), interoperability is
possible if interacting devices agree on data and/or service schemas, typically based
on data description languages such as Extensible Markup Language (XML) [4] and
JavaScript Object Notation (JSON) [5] and on service models such as Service-
Oriented Architecture (SOA) [6] and Representational State Transfer (REST) [7].
These technologies were not conceived for small devices requiring weak computing
power, such as those typically found in the IoT, but their main disadvantage is that
they are symmetric, in the sense that both the sender and receiver of a message must
use the same schema. This means that:

• Sharing a schema description, such as an XML Schema file or a Web Services
Description Language (WSDL) file

• Agreeing, prior to interaction, on a fixed schema (typical of JSON-based data)

This entails more coupling than actually needed, because the interacting devices
need to support all the data values valid for the schema, even if they use only a
fraction of these values. Worse, they do not even allow variations on the schema,
which means that a sender can only interact with the specific receiver for which it
was designed. To solve this problem, we propose to use asymmetric interoperability,
based on the concepts of compliance and conformance, as follows:

• The schema of the sender must comply with that of the receiver. This means that
the schema of the sender needs to include all the mandatory features of the
schema of the receiver but may or may not include the optional features (if not
specified, the receiver may use default values) and may include any additional
feature, not present in the schema of the receiver, which will ignore it.

• The schema of the receiver needs to conform to the schema that the sender
requires. This means that the receiver needs to implement at least all the features
that the sender expects that the receiver supports but can also implement others
that the sender does not know about.

Compliance allows a sender to meaningfully transmit a message to many receiv-
ers, not just to one that implements the same schema as the sender. Conformance

J.C.M. Delgado

191

allows a receiver to meaningfully receive messages from many senders, not just
from those that implement the same schema. Both are ways to reduce coupling
between the interacting devices and to increase the interoperability range. Taking a
basic API (standard or not) as a starting point, variations to that API are allowed at
both the sender and the receiver, as long as compliance and conformance hold.
There is no longer the need to stick to a fixed API. It should be noted that interacting
devices can reverse the roles of sender and receiver during a message-based transac-
tion (request and response) or by changing the device that takes the initiative to start
a transaction.

This chapter is structured as follows. Section 10.2 describes some of the existing
technologies relevant to the context of this chapter. Section 10.3 describes what
device interaction involves, whereas Sects. 10.4, 10.5 and 10.6 detail some of the
interoperability, coupling and adaptability and changeability aspects, respectively.
Section 10.7 discusses the importance of the architectural style used for device
interaction. Section 10.8 lays out the main proposal of this chapter, asymmetric
interoperability, and Sects. 10.9 and 10.10 discuss the underlying data model and
asymmetric interoperability concepts (compliance and conformance), respectively.
Finally, Sect. 10.11 provides some illustrative examples.

10.2 Background

The Internet of Things (IoT) has definitely become mainstream [8] and is now the
subject of active research [9, 10]. The Internet World Stats (http://www.
internetworldstats.com/stats.htm) estimates the number of Internet human users to
be around 3.7 billion in 2017, almost half the worldwide population of roughly
7.5 billion people. By 2050, the worldwide population is expected to grow to around
9.5 billion.

This contrasts with the conservative Gartner predictions [1]; according to which,
in 2017, the number of IoT devices will be comparable to the worldwide human
population, whereas in 2020 that number will have roughly tripled, and it is almost
impossible to predict what that number will be by 2050!

The number of Internet-enabled devices is thus clearly growing much faster than
the number of Internet human users, which means that the Internet is no longer
dominated by humans but rather by smart devices that are small computers and
require technologies suitable to them, instead of those conventionally used in
Internet browsers. The sheer number and diversity of IoT devices entail an enormous
problem in interconnecting the applications running on the devices. The Internet is
global, distributed and huge, while still requiring that any device, subject to specific
interoperability requirements, be able to interact with any other device.

Distributed interoperability is not specific of the IoT context. It has been studied
in domains such as enterprise cooperation [11], e-government services [12], cloud
computing [13] and healthcare applications [14]. Most of these domains involve
applications running on full-fledged servers, not on the much simpler IoT devices,

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

192

such as those involved in sensor networks [15] and vehicular [16] networks. The
two main technological solutions for distributed interoperability, Web Services [17]
and RESTful APIs [18], are based on data description languages such as XML and
JSON.

SOA [19] is the architectural style underlying Web Services and models real-
world entities by the behaviour (services) they can offer. REST [7] is the architectural
style underlying RESTful APIs and models real-world entities by the structural state
(resources) they can exhibit. A continuing debate has been going on over the past
years about which architectural style – SOA or REST – is more adequate to specific
classes of applications. The literature comparing these styles is vast [20, 21], usually
with arguments more on technological issues than on conceptual and modelling
arguments. [22] have made proposals to integrate SOA and RESTful services.

Although, these architectural styles and technologies have been able to connect
distributed, independent and heterogeneous applications, they entail a significant
level of coupling, in the sense that interacting applications need to share the same
data description schema. A change in one application will most likely imply a
change in the other.

Many metrics have been proposed to assess the maintainability of distributed
systems, based essentially on structural features. Babu and Darsi [23] present an
extensive set of metrics for service coupling, cohesion and complexity. Other
authors focus on dynamic, rather than static, coupling. The authors of [24] present
a survey of metrics for assessing coupling during program execution. Although
centred on object-oriented programming, many of these metrics can also apply to
distributed systems. There are also approaches trying to combine structural coupling
with other levels of coupling, such as semantics [25].

We are also interested in compliance [26] and conformance [27] as the founda-
tional mechanisms to ensure partial interoperability and thus minimize coupling.
These mechanisms have also been studied in specific contexts, such as choreogra-
phy [28], modelling [29], programming [30] and standards [31].

Searching for an interoperable device can be done in the conventional way, by
schema matching with similarity algorithms [32] and ontology matching and
mapping [33]. However, this does not ensure that interoperability and manual
adaptations are usually unavoidable. Requiring that names of corresponding
components be the same, when matching schemas, is limitative. An ontology
matching and mapping [33] can be performed, but it is not easy to map different
things. Compliance and conformance can come to the rescue, if ontology concepts
are defined structurally in terms of more basic concepts that define an upper ontology
[34]. Then, ontology mapping is just a question of checking compliance and
conformance between concepts in two different ontologies.

J.C.M. Delgado

193

10.3 Interaction Between Devices

As in most distributed systems, IoT devices interact by sending each other mes-
sages. When a given device needs to make some request or notification to another
device, the former plays the role of consumer of the functionality provided by the
latter, which plays the role of provider. A typical interaction is initiated by the con-
sumer, which sends a request message to the provider, through some interconnect-
ing network, which may cause the provider, upon executing the request, to answer
with a response message, as illustrated by Fig. 10.1.

This interaction makes sense only if the provider is able to understand what the
consumer is requesting and reacts and responds accordingly to what the consumer
expects. If the consumer and the provider were modules within the same application,
this would be a simple task. The network would simply be a reliable pointer, and the
module compatibility would be checked by a type system that relies on shared type
names and inheritance hierarchies.

In a distributed environment, however, type sharing is not guaranteed, since
devices and their applications evolve independently, and messages cannot be
assumed to be correct. The goal of achieving such a simple interaction can be
decomposed into the following objectives:

 1. The request message reaches the provider, through a network.
 2. The provider is willing to accept and to process the request.
 3. The provider validates the request, according to its requirements for requests.
 4. The provider understands what the consumer is requesting.
 5. The reaction of the provider and the corresponding effects, as a consequence of

executing the request message, fulfil the expectations of the consumer regarding
that reaction.

 6. The response message reaches the consumer.
 7. The consumer is willing to accept and to process the response.
 8. The consumer validates the response, according to its requirements for the

response.
 9. The consumer understands what the provider is responding.
 10. The consumer reacts appropriately to the response, fulfilling the purpose of the

provider in sending that response.

Fig. 10.1 Details of a message-based interaction between two IoT devices

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

194

What this means is that it is not enough for a device to send a request to another
one and hope that everything goes well. Both request and response need to be
validated and understood by the device that receives it. In general, meaningfully
sending a message (the response reverses the roles of the consumer and the producer
as sender and receiver, with regard to the request) entails the following aspects:

• Willingness (objectives 2 and 7). Both sender and receiver are devices that need
to interact and, by definition, are willing to accept requests and responses, by
running applications that expose services. However, non-functional aspects such
as response times or security requirements can impose constraints.

• Intent (objectives 4 and 9). Sending a message must have a given intent, inherent
to the interaction to which it belongs. This is related to the motivation to interact
and the goals to achieve with that interaction.

• Content (objectives 3 and 8). This concerns the generation and interpretation of
the content of a message by the sender, expressed by some representation, in
such a way that the receiver is also able to interpret it.

• Transfer (objectives 1 and 6). The message content needs to be successfully
transferred from the context of the sender to the context of the receiver.

• Reaction (objectives 5 and 10). This concerns the reaction of the receiver upon
reception of a message, which should produce effects according to the
expectations of the sender.

Device interaction is a complex issue with many factors, such as:

• Interoperability – Guaranteeing that one device understands the requests of
another and reacts according to what is expected.

• Coupling – Mutual dependencies between devices, with the goal of reducing
them as much as possible, to avoid unnecessary constraints to the evolution and
variability of devices.

• Adaptability – Maintaining interoperability, even when interacting devices
change some of their characteristics.

• Architectural style – Choosing how devices are modelled has a relevant impact
on how devices interact.

• Reliability – Maintaining interoperability, even in the presence of unanticipated
failures.

• Security – Ensuring interoperability is allowed only intentionally and with autho-
rized and certified devices.

• Performance – Ensuring that interactions complete faster than agreed response
times.

• Scalability – Ensuring that performance levels do not decrease substantially
when the number of interacting devices increases.

To limit its breadth and scope, this chapter concentrates on the first three of the
above, which deal with the basic aspects of device interaction. These are detailed in
the following sections.

J.C.M. Delgado

195

10.4 Interoperability

There is no universally accepted definition of interoperability, since its meaning can
vary accordingly to the perspective, context and domain under consideration.
Although limited to information, the 24765 standard [35] provides the probably most
cited definition of interoperability as “the ability of two or more systems or compo-
nents to exchange information and to use the information that has been exchanged”.

Inspired by Fig. 10.1 in the context of IoT, we interpret this definition as “the
ability of two or more devices to exchange messages and to react to them according
to some pattern or contract that fulfils the constraints and expectations of all devices
involved”. What this really means cannot be taken as a whole but rather needs to be
detailed, as the previous section has already hinted with the various aspects involved
in an interaction, namely, intent, content, reaction and transfer.

Interoperability involves several abstraction layers, from low-level networking
issues to high-level aspects reflecting the purpose of the interaction. Layering is an
abstraction mechanism useful to deal with complexity. One early example is the
Open Systems Interconnection (OSI) reference model [36], with seven layers,
although it concentrates on the networking issues. This chapter proposes a different
layering mechanism, detailing higher-level issues, as described in Table 10.1.

Using the Category column as the top organizing feature, Table 10.1 can be
briefly described in the following way:

• Symbiotic. This category expresses the interaction nature of two interacting
devices in a mutually beneficial agreement. This can be a tight coordination
under a common governance, if the devices are controlled by the same entity, a
joint-venture agreement, if there are two substantially aligned clusters of devices
or a mere collaboration involving a partnership agreement and if some goals are
shared.

• Pragmatic. The interaction between a consumer and a provider is done in the
context of a contract, which is implemented by a choreography that coordinates
processes, which in turn implement workflow behaviour by orchestrating service
invocations.

• Semantic. Interacting devices must be able to understand the meaning of the
content of the messages exchanged, both requests and responses. This implies
compatibility in rules, knowledge and ontologies, so that meaning is not lost
when transferring a message from the context of the sender to that of the receiver.

• Syntactic. This category deals mainly with form, rather than content. Each mes-
sage has a structure, composed by data (primitive objects) according to some
structural definition (its schema). The data in messages need to be serialized to
be sent over the channel, using formats such as XML or JSON.

• Connective. The main objective in this category is to transfer a message from one
device to another, regardless of its content. This usually involves enclosing that
content in another message with control information and implementing a
message protocol over a communications network protocol and possibly involv-
ing routing gateways.

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

196

This is a maximalist model, in the sense that all layers are involved in every
interaction. Even the simplest interaction has a purpose, is part of a choreography,
involves meaning, has a structure and needs a network to send the messages.
However, in practice most of these layers are dealt with tacitly (based on unverified
assumptions that are supported by documentation at best) or empirically (based on
verified assumptions but hidden by already existing specifications or tools).

The most relevant layers are typically the structure (schema), those below it, and
interface (service). The ontology layer (concept) has gained relevance in the last few
years [37], given the high variability of devices in the IoT context and the need to
resort to semantics to clarify the meaning of the schemas and of the services’
interface.

10.5 Coupling

All these interoperability layers, as mentioned above, constitute an expression of
device coupling, leading to two conflicting aspects:

Table 10.1 Layers of interoperability between IoT devices

Category Layer Main concern Description

Symbiotic (purpose
and intent)

Coordination Governance Motivations to have the
interaction, with varying
levels of mutual knowledge
of governance, strategy and
goals

Alignment Joint venture
Collaboration Partnership

Pragmatic (reaction
and effects)

Contract Choreography Management of the effects
of the interaction at the
levels of choreography,
process and service

Workflow Process
Interface Service

Semantic (meaning of
content)

Inference Rule base Interpretation of a message
in context, at the levels of
rule, known application
components and relations
and definition of concepts

Knowledge Knowledge base
Ontology Concept

Syntactic (notation of
representation)

Structure Schema Representation of
application components, in
terms of composition,
primitive components and
their serialization format in
messages

Predefined type Primitive object
Serialization Message format

Connective (transfer
protocol)

Messaging Message protocol Lower-level formats and
network protocols involved
in transferring a message
from the context of the
sender to that of the receiver

Routing Gateway
Communication Network protocol
Physics Media protocol

J.C.M. Delgado

197

• Coupling – Decoupled devices (with no interactions or dependencies between
them) can evolve freely and independently, which favours adaptability, change-
ability and even reliability (if one fails, there is no impact on the other). Therefore,
coupling should be avoided as much as possible.

• Interoperability – Devices need to interact to cooperate towards common or
complementary objectives, which implies that some degree of previously agreed
mutual knowledge is indispensable.

The more feature devices make known to others, the easier it is to provide
interoperability but the greater coupling it can get. Therefore, the fundamental
problem of device interaction is to provide the maximum decoupling possible
(exposing the minimum possible number of features) while ensuring the minimum
interoperability requirements. In other words, the main goal is to ensure that each
device knows just enough about others to be able to interoperate with them but no
more than that, to avoid unnecessary dependencies and constraints. This is an
instance of the principle of least knowledge [38].

The usefulness of Table 10.1 lies in providing a framework that allows coupling
details to be better understood, namely, at which interoperability layers they occur
and what is involved in each layer, instead of having just a blurry notion of
dependency. In this respect, it constitutes a tool to analyse and to compare different
coupling models and technologies. Reducing the coupling increases the following:

• The probability of finding suitable alternatives or replacements for a given device
• The set of devices with which some device is compatible, as a consumer or as a

provider

Figure 10.2 depicts the scenario of a device immersed in its environment, in
which it acts as a provider for a set of devices (its consumers), from which it receives
requests or event notifications and, as a consumer of another set of devices (its
providers), to which it sends requests or event notifications. Coupling between this
device and others expresses not only how much it depends on its providers but also
how much its consumers depend on it.

Fig. 10.2 Coupling between a device and its consumers and providers

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

198

Dependency on a device can be assessed by the fraction of its features that
impose constraints on other devices. Two coupling metrics can be defined from the
point of view of a given device (Fig. 10.2):

• CF (forward coupling), which expresses how much a device is dependent on its
providers, is defined as:

C

Up

Tp N

PF

i P

i

i i=
⋅∑∈

(10.1)

where:

P is the set of providers that this device uses.
|P| denotes the cardinality of P.
Upi is the number of features that this device uses in provider i.
Tpi is the total number of features that provider i exposes.
Ni is the number of providers with which this device is compatible as a consumer, in

all uses of features of provider i by this device.

• CB (backward coupling), which expresses how much impact a device has on its
consumers, is defined as:

C

Uc

Tc M
CB

i C

i

= ⋅∑∈

(10.2)

where:

C is the set of consumers that use this device as provider.
|C| denotes the cardinality of C.
Uci is the number of features of this device that consumer i uses.
Tc is the total number of features that this device exposes.
M is the number of known devices that are compatible with this application and can

replace it, as a provider.

The conclusion from metric 10.1 is that the existence of alternative providers to
a device reduces its forward coupling CF, since more devices (with which this device
is compatible, as a consumer) dilute the dependency. Similarly, the conclusion from
metric 10.2 is that the existence of alternatives to a device as a provider reduces the
system dependency on it, thereby reducing the impact that device may have on its
potential consumers and therefore its backward coupling CB.

In either case, increasing the number of compatible alternatives implies reducing
the number of features required for compatibility. Less constraints generally mean
more compatible devices. Lower coupling is the basic tenet underlying this chapter.
Section 10.10 shows how this can be done.

J.C.M. Delgado

199

10.6 Adaptability and Changeability

An adaptation of a device is a set of changes made to that device due to a new speci-
fication. This implicitly assumes that the device already exists and that the changes
made correspond to a solution to bridge the differences between the previous and
the new specification. We assume that devices can be atomic (not composed of oth-
ers) or structured (composed of other devices, recursively until atomic devices are
reached). There must be a finite set of atomic resource types, upon which a device
ontology can be built. We consider only the structural aspects and assume that adap-
tations and changes to atomic devices are also atomic.

The similarity between a device after adaptation and its previous specification is
defined recursively in terms of the similarities of its components as:

S

changed atomic device

unchanged atomic device
S

T
struci T i

= ∑

0
1

ttured device

(10.3)

where:

T is the set of components of this device.
Si is the similarity of component i (recursively) of the device.

A similarity of 1 means that nothing has changed, whereas a similarity of 0
means that all components of a device have changed.

The adaptability of a device expresses how easily it can suffer a given adapta-
tion. As a metric, a value of 0 in adaptability means that the device cannot be adapted
and is unable to support the new intended specification, due to some limitation, and
a value of 1 means that the cost or effort of adaptation is zero. It depends essentially
on two factors:

• The forward decoupling DF, the decoupling between the device and its provider.
We use decoupling instead of coupling to reflect what we want to achieve.

 D CF F= −1 (10.4)

• The similarity S between the specification of the device before and after the
adaptation.

Adaptability A is directly proportional to these two factors:

 A D SF= ⋅ (10.5)

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

200

Adaptability does not depend on which devices use the device being adapted and
reflects only the ability (can it be adapted?) and the cost/effort to adapt it. Many
changes (low S) or a high dependency on other devices (low DF) reduces adaptability.
The complementary adaptation question (may it be adapted?) is included in its
changeability property Ch [39], defined here as:

 Ch D D SB F= ⋅ ⋅ (10.6)

or

 Ch D AB= ⋅ (10.7)

in which

 D CB B= −1 (10.8)

DB is the backward decoupling between the device being adapted and its con-
sumers, expressing the impact of the adaptation of the device. If many consumer
devices are affected (low DB), changeability becomes lower than desirable. All the
factors in Eq. 10.6 vary between 0 and 1. Any low value becomes dominant and
imposes a low value on the changeability, which translates to a poor device
architecture or implementation.

The conclusion from this equation is that a device is more changeable (impacts
less its consumers and its use of providers) for a given similarity (which expresses
the degree of changes made) if it has a higher forward and backward decoupling
(lower coupling). This is in line with the conclusion of the previous section.

10.7 Architectural Style

An architectural style can be defined as a collection of design patterns, guidelines
and best practices to design the architecture of a system [40]. SOA [6] and REST [7]
are the main architectural styles in use today for distributed system interoperability.

In SOA, each problem-domain entity should be modelled as closely as possible,
in a one-to-one mapping. A small change in the problem should yield a small change
in the SOA model. Each entity has its own interface, which means that a consumer
using the functionality of a provider needs to know the operations and semantics of
the interface of the latter. The REST proponents contend that this is an unacceptable
coupling, hampering scalability and changeability. A consumer should only know
the provider’s link (Uniform Resource Identifier – URI – in Web terms), obtain a
representation of it (an universal operation) and from then onwards follow the links
contained in that representation by using only a fixed set of universal operations,
supported by all the devices [41].

J.C.M. Delgado

201

Fielding, the creator of REST, designated this as “hypermedia as the engine of
application state” (HATEOAS) [42]. The basic idea is that the client (consumer)
needs to know very little about the server (provider), since it only follows the links
that the server provides, and that the server needs to know nothing about the client,
which has the responsibility to decide which link to follow. The intended goal is to
minimize coupling (both in terms of interface and of choreography) and to maximize
scalability. However, this is an elusive goal.

Apparently, if the server changes the links it sends in the responses, the client
will follow this change automatically by using the new links. The problem, however,
is that this is not as general as it may seem, since the client must be able to understand
the structure of the responses. It is not merely a question of blindly following all the
links in a response. To achieve this, REST imposes the constraint that the schema of
returned representations is shared with the client. Moreover, just stating the data
syntax (using languages such as XML or JSON) is not enough. The semantics and
the actual set of names used (the schema, in fact) must be known by both client and
server [43].

This is no different from what happens with SOA, in which the schema of the
service interface must be shared between consumer and provider. SOA is guided by
services (behaviour), whereas REST is guided by resources (state). REST uses
schemas of resources instead of services, but the coupling is still there.

What REST indeed does is to trade interface variability for structure variability,
something that SOA lacks. REST cleanly separates the mechanism of traversing the
graph of possible interaction states from the processing of individual graph nodes
(interaction states) [44]. Therefore, varying the structure allows changing the overall
behaviour without affecting the traversal mechanism. However, this requires that all
nodes are treated alike, which means that all nodes must have the same interface.
This implies decomposing the SOA-style objects into their most elementary
components and treats them all as first-class resources, which in turn leads to a state
diagram (instead of a class diagram) programming style.

The main problem with this is that the model is no longer guided by the static
entities of the problem, in an object-oriented fashion, but rather by state, as an
automaton. Most people will find it harder to model state transitions than static
entities (classes). This is not a problem for simpler applications that can be organized
in a CRUD (Create, Read, Update and Delete) approach, a natural method when
structured state is the guiding concept. However, for more complex applications in
which behaviour and information hiding (including state) are fundamental factors,
it becomes a relevant issue.

It turns out that many applications are simple and the technologies typically used
to implement REST are simpler, lighter and in many cases cheaper than those used
to implement SOA (viz. SOAP-based Web Services), which justifies the growing
popularity of RESTful applications and their APIs. The level of resource coupling
in REST, however, is not lower than that of service coupling in SOA, since both
require that the schemas used are known by both interacting devices.

It should also be noted that SOA lacks support for structured resources. Services
(the set of operations supported by a resource) have just one level, offering operations

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

202

but hiding any internal structured state. Structure is a natural occurrence in most
problem domains, and, in this respect, REST is a better match.

10.8 Asymmetric Interoperability

Independently of whether IoT devices are modelled as services or as resources, their
interaction is message based. Messages are serialized data structures described by
schemas, and the typical interoperability solution used in distributed systems is to
share the message’s schema between the sender and the receiver of that message, as
illustrated by Fig. 10.3.

This is designated symmetric interoperability, since both sender and receiver
need to have the same knowledge about the message. The sender can produce any
structured value allowed by the message schema, and therefore the receiver needs to
be able to read any of these values as well. Both sender and receiver work on the
same message, with the same schema.

This is reminiscent of the document-based interoperability, using data descrip-
tion languages such as XML or JSON, in which a writer produces a document
according to some schema and the reader uses the same schema to validate and to
read the contents of the document. The document is now replaced by the message,
but the principle is the same. This has the following main drawbacks:

• The receiver needs to deal with the message using the schema of the sender,
which produced the message. This usually implies endowing the receiver with a
stub (interface code) that knows the schema and how to access the message
components (data binding).

• The receiver needs to deal with the message using the ontology (viz. message
component names) of the sender, which produced the message. An ontology
mapping, between the message and the receiver, is required for the receiver to be
able to interpret the message’s semantics.

send

Schema

Message
sent

read

refer to

read

Message
received

Sender

Data
structure

Receiver

Data
structurechannel

refer to

receive,
validate &

read

Fig. 10.3 Symmetric message-based interaction

J.C.M. Delgado

203

• The sender and the receiver are coupled for the entire range of values supported
by the schema, even if only a fraction of that range is actually used in the
interactions. When this happens, coupling is higher than the interacting devices
actually require.

The first step towards solving these problems is to recognize that device interac-
tion is inherently asymmetric:

• The roles of sender and receiver (or consumer and provider) are different. One
requests, and the other provides.

• The ontologies of the two are most likely different, particularly when we con-
sider the enormous variability of devices and respective manufacturers.

• The set of message values that the sender can generate does not have to match the
set of message values that the receiver can accept.

Nevertheless, in most cases, interaction is made symmetric artificially by design,
i.e. sender and receiver are designed together, to work together, under some common
specification. However, this hampers decoupling and changeability, which
constitutes one of the main criticisms to the SOA architectural style.

This chapter contends that device interaction should assume its inherent asym-
metry, replacing Fig. 10.3 by Fig. 10.4.

Figure 10.4 can be described in the following way:

• The message sent by the sender includes a self-description but only about the
message’s concrete value (which may be structured), designated here value
schema, since it is valid only for this value, not a range of values.

• The receiver specifies and exposes a type schema, in line with what schema
description languages support (schemas that are satisfied by a range of values).
This schema specifies the range of message values that the receiver is willing to
accept.

• When the message arrives at the receiver, the message’s value schema is com-
pared with the type schema of the receiver, in the compliance checker. If the
former complies with the latter, the message is accepted, which in practice means
that the value of the message is one of those that satisfy the receiver’s type
schema.

send

Sender

Data
structure

channelMessage
sent

Value
schema

Receiver

Message
received

receive

Compliance
checker

Data
template

Type
schema

Value
schema

Structural
assignment

discover

Fig. 10.4 Asymmetric message-based interaction, with compliance

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

204

• Prior to sending messages, the sender can use the type schemas exposed by
potential receivers to check compliance and thus discover suitable receivers.

• If compliance of a received message holds, the message’s value is structurally
assigned to the data template, which is a data structure that satisfies the type
schema and is partly filled in with default values for the components in the type
schema that are optional, i.e. their minimum cardinality (number of occurrences)
is zero.

• Structural assignment involves mapping the value schema of the message to the
type schema, by assigning the message to the data template, component by
component (not as a whole value), according to the following basic rules:

 – Components in the message that do not comply with any component in the
data template are ignored (not assigned).

 – Optional components in the data template with no counterpart in the message
keep their default value.

 – Components in the data template that have counterparts in the message have
their values set to the corresponding message’s component values.

 – Structured components are assigned by recursive application of these rules.

• After this, the components of the data template are completely populated and
ready to be accessed by the receiver. Each message received populates a new
instance of the data template.

The main advantages of asymmetric interoperability are the following:

• The receiver deals only with a schema it already knows, the one for which it was
designed. There is no need for a stub to deal with the schema shared with the
sender.

• The mapping between the message and the data template is done in a universal
manner, by the message-based platform, and does not depend on the receiver’s
schema.

• The structural assignment rules mean that coupling is reduced by comparison
with symmetric interoperability, since:

 – Only the actually involved components are used in the structural assignment.
 – Only one message value, instead of all satisfying a schema, is involved in the

compliance check between the message and the schema of the receiver.
 – Additional and less stringent component matching rules are possible besides

having a common name, such as by position and by type.

To detail these issues, we need a data model that specifies the primitive data
types and the data structuring mechanisms.

J.C.M. Delgado

205

10.9 A Foundational Data Model

A common baseline, universally agreed and known by all interacting devices, is
needed to act as a foundation for interoperability, much in the same way as XML
and XML Schema support XML-based interactions. Basically, what is needed is as
follows:

• A set of built-in data types and the respective values, considered atomic (not
composed of other values)

• A set of structuring mechanisms that enable the construction of arbitrarily com-
plex structured (non-atomic) types and the respective values

The actual choice of these sets is not important in the context of this chapter. The
conclusions will be the same whichever these sets are, since we reason at a generic
level. For illustration purposes, Table 10.2 provides possible sets of built-in types
and structuring mechanisms, loosely based on those of XML.

The Union types are simply sets of types, each of which may be any of those in
Table 10.2. Values belong to (satisfy) a Union type if they belong to at least one of
its member types. It is important to note that, contrary to many type systems, a value
does not actually belong to just one type but to all that it satisfies. What satisfaction
means is explained in Sect. 10.10.

The Record and List structured types consist of a set of components (not neces-
sarily belonging to the same type), each of which has the attributes described in
Table 10.3. Attribute letters are used in Sect. 10.10.

In Fig. 10.4, we notice that:

• A value schema is a data type in which the type attribute of each component has
been reduced to a single value and its cardinality has been fixed (the minimum
and maximum cardinalities are identical). Therefore, it corresponds to the data
structure of the message with self-description.

• A type schema corresponds to what Tables 10.2 and 10.3 describe.
• A data template is a type schema that additionally specifies, for each component

with a minimum cardinality of zero (therefore optional in a message that satisfies
the type schema), a default minimum cardinality and the corresponding values.

Table 10.2 Possible sets of built-in and structured data types

Data type category Data type Description

Built-in types Integer Integer numbers
Float Real numbers
Boolean True or false
String Strings

Structured types Record An unordered set of components
List An ordered set of components

Choice type Union A set of data types, any of which can be
chosen

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

206

If the message includes a matching component, it is assigned to the correspond-
ing component of the data template; if the message does not include such a com-
ponent, the default information is used. In any case, the data template becomes
fully populated after the structural assignment, even if the message lacks some
components. This does not work for mandatory components (those with a mini-
mum cardinality greater than zero).

10.10 Compliance and Conformance

Asymmetric interoperability (Fig. 10.4) assumes that, unlike symmetric interoper-
ability (Fig. 10.3), the schema of a message does not have to be the same as the
schema the receiver is expecting. This decreases coupling, since the message’s
value schema just needs to comply with the minimum requirements (mandatory
components) of the receiver’s type schema.

In other words, the two schemas (of the message and of the receiver) have only
to match partially. This enables the receiver to receive messages from different
senders, as long as they match the relevant part of the receiver’s schema. In the same
vein, we can consider the case of replacing the receiver with another one, with a
different schema, as an alternative to the first one. This can occur due to evolution
of the receiver (replaced by a new version) or by resorting to a new receiver
altogether.

Allowing a receiver to be able to interpret messages from different senders, and
a sender to be able to send messages to different receivers, is just what is needed to
decrease coupling, as Eqs. 10.1 and 10.2 show. Note that a sender/receiver pair deals
with one message, whereas a consumer/provider pair may require two sender/
receiver pairs, for the request and response messages, but the considerations are
valid for each of these messages.

These use and replace relationships lead to two important schema relations,
which are central to asymmetric interoperability:

Table 10.3 Attributes specified for each component of the structured types

Attribute Letter Description

Name N Name of the component, possibly qualified by some ontology (just on
Records)

Position P Ordering number of the component (on Records, position is the order
by which components appear in the specification)

Type T Type of the component (any of the types of Table 10.2)
Minimum
cardinality

m Minimum number of occurrences of components with this name

Maximum
cardinality

M Maximum number of occurrences of components with this name

J.C.M. Delgado

207

• Compliance [26]. The sender must satisfy (comply with) the minimum set of
requirements established by the receiver to accept requests sent to it.

• Conformance [27]. The alternative receiver must satisfy the maximum set of
requirements established by the original receiver to accept requests sent to it.
Therefore, the alternative receiver is able to take the form of (conform to) the
original receiver and to continue to support any existing sender.

These relations are not symmetric (e.g. if X complies with Y, Y does not neces-
sarily comply with X) but are transitive (e.g. if X complies with Y and Y complies
with Z, then X complies with Z).

Figure 10.5 illustrates these relations between several IoT devices, from the point
of view of a request message.

In semantic terms:

• Compliance means that the set of possible message values sent by a sender is a
subset of the set of values that satisfy the type schema of the receiver.

• Conformance means that the set of values that satisfy the type schema of an
alternative receiver is a superset of the set of values that satisfy the type schema
of the original receiver.

This means that, as long as compliance and conformance hold, the receiver can
accept messages from different senders and that a sender can start using an
alternative receiver without noticing the difference with respect to the original
receiver. The compliance and conformance relations obey the following rules
(denoting compliance and conformance between types X and Y by X◄Y and X►Y,
respectively):

Fig. 10.5 Illustration of the compliance and conformance relations

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

208

• Each built-in type complies with and conforms to just itself, with the exception
that Integer complies with Float (subset) and Float conforms to Integer
(superset).

• A Union type U complies with a built-in type B only if each member type of U
complies with type B.

• A Union type V conforms to a built-in type C only if at least one member type of
V conforms to type C.

• Tables 10.4 and 10.5, respectively, describe compliance and conformance
between the more complex types, structured and choice.

Note that, in a type W conformant to a type Z, any additional components (not in
Z) need to be optional, so that values that complied with Z still comply with W. This
means that a receiver with data template (Fig. 10.4) of type Z can be replaced by a
receiver with data template of type W, without impairing interoperability.

Table 10.4 Rules for compliance of a type X with another type Y

◄ Type Y

Type X Record List Union
Record If, for each Yi, there is a Xj such

that XjN = YiN, XjT◄YiT, Xjm ≥ Yim
and XjM ≤ YiM

If, for each Yi, there is a Xj such
that XjP = YiP, XjT◄YiT, Xjm ≥ Yim
and XjM ≤ YiM

If X complies with
at least one Yi

List If, for each Yi, there is a Xj such
that XjP = YiP, XjT◄YiT, Xjm ≥ Yim
and XjM ≤ YiM

If, for each Yi, there is a Xj such
that XjP = YiP, XjT◄YiT, Xjm ≥ Yim
and XjM ≤ YiM

If X complies with
at least one Yi

Union If all Xj comply with Yi If all Xi comply with Yi If each Xj complies
with at least one Yi

The subscripts i and j designate component/member type, and the letters designate component
attributes (Table 10.3)

Table 10.5 Rules for conformance of a type W to another type Z

► Type Z

Type
W

Record List Union

Record If, for each Zi, there is a Wj
such that WjN = ZiN, WjT►ZiT,
Wjm ≤ Zim and WjM ≥ ZiM, and
for all remaining Wj, Wjm = 0

If, for each Zi, there is a Wj such
that WjP = ZiP, WjT►ZiT,
Wjm ≤ Zim and WjM ≥ ZiM, and
for all remaining Wj, Wjm = 0

If W conforms to
all Zi

List If, for each Zi, there is a Wj
such that WjP = ZiP, WjT►ZiT,
Wjm ≤ Zim and WjM ≥ ZiM, and
for all remaining Wj, Wjm = 0

If, for each Zi, there is a Wj such
that WjP = ZiP, WjT►ZiT,
Wjm ≤ Zim and WjM ≥ ZiM, and
for all remaining Wj, Wjm = 0

If W conforms to
all Zi

Union If at least one of Wj conforms
to Z

If at least one Wj conforms to Z If, for each Zi, there
is at least one Wj
that conforms to it

The subscripts i and j designate component/member type, and the letters designate component
attributes (Table 10.3)

J.C.M. Delgado

209

Mapping Records to Lists and Lists to Records allow structural assignment by
position instead by name, considering the position of each named component in
Records as the position it occupies in its definition or declaration.

There is still another possibility, mapping by component type. In this case, com-
ponents are assigned to those that comply with (or conform to) the other type. The
advantage of this is to avoid needing to have exactly the same name in correspond-
ing components. This cannot always be used, since different components can have
the same type but different semantics. These rules can lead to ambiguities, i.e.
matching solutions that are not unique, in particular when unions are involved. In
this case, the solution adopted can depend on the implementation. Types should be
chosen to avoid ambiguities, or a compiler can check for them and generate an error
if it is the case.

Extending the compliance and conformance concepts to services, at the interface
layer (Table 10.1), is straightforward. Consider a service C (the consumer) and a
service P (the provider). C can invoke some of the operations of P. For each invoked
operation, we consider:

• Crq – The type of the request message, sent by the consumer
• Prq – The type of the request message, expected by the provider
• Prp – The type of the response message, sent by the provider
• Crp – The type of the response message, expected by the consumer

A consumer C is compliant with (can use) a provider P (C◄P) if, for all opera-
tions i of P that C invokes, Crqi◄Prqi and Prpi◄Crpi. Structural assignment is used
to assign a message received (either request or response) to the data template of the
receiver (Fig. 10.4).

In a similar way, a provider S is conformant to (can replace) a provider P (S►P)
if, for all operations i of P, Srqi►Prqi and Prpi►Srpi.

10.11 Examples

Compliance and conformance, as described in this chapter, apply to data types and
can be used directly in RESTful APIs, by a client that receives a resource
representation from a server. Compliance means that the schema of that representation
just needs to comply with the schema that the client expects, not actually be the
latter. Conformance means that the client can be replaced by another one that
conforms to the original one but can include different features. This lowers coupling
with respect to the current RESTful platforms.

To illustrate these concepts, suppose that we have an IoT device that implements
a weather sensor with a RESTful API. Upon reception of a GET request, it returns
a representation of itself according to the JSON data shown in Listing 10.1.

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

210

{
 "temperature": 20,
 "temperature_unit": "Celsius",
 "average_temperature": 16.3,
 "humidity": 72.5
}

Listing 10.1 A representation of a weather sensor, in JSON.

The actual JSON Schema used to produce these data is irrelevant for asymmetric
interoperability. It could be one of many. The receiver should assume that the
message’s schema has just one value (no variability) and is precisely what the mes-
sage states, with its components, names, types and values.

Now, suppose that we have a simple client, which just reads the temperature and
expects data with the schema shown in Listing 10.2.

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "required": ["temperature", "temperature_unit"],
 "properties": {
 "temperature": { "type": "number" },
 "temperature_unit": { "enum": ["Celsius", "Fahrenheit"] },
 }
}

Listing 10.2 A JSON Schema describing data expected by a simple client

The weather sensor’s schema complies with the client’s schema. The temperature
property accepts any number, which includes the 20 stated by the weather sensor’s
representation. The weather sensor uses just the Celsius scale in temperature_unit,
which is also a subset of the scales supported by the client. The client ignores the
average_temperature and humidity properties of the weather sensor’s representation.

Compliance means that the representation of the weather sensor can be structur-
ally assigned to the client’s data template (see Fig. 10.4). The client’s code will only
have access to the properties it has declared in its own schema and will never know
that the representation returned by the weather sensor had additional properties.

This is mapping by component names and requires the same ontology (same
component names on both schemas). This can be avoided by mapping by position,
as shown in Listing 10.3, in which component names are different, but the relative
positions are the same, and the component types match. In this case, the temperature
component is assigned to the temp component, and the temperature_unit component
is assigned to the unit component.

J.C.M. Delgado

211

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "required": ["temp", "unit"],
 "properties": {
 "temp": { "type": "number" },
 "unit": { "enum": ["Celsius", "Fahrenheit"] },
 }
}

Listing 10.3 A JSON Schema describing the data expected by a client with a com-
patible but different ontology

Finally, mapping can still be done by type (without component names), which
can even support components in different positions, as long as the mapping of
component types is unambiguous, as shown in Listing 10.4. In this case, components
have to be specified in a JSON array, since they have no name, but the rules of
Table 10.4 support this. Note that the order of the components is not the same as in
the previous listings, to show that the order is not relevant in mapping by type.
However, the first component to match a type is used, and the data returned by the
weather sensor has three components that match the type number, which means that
mapping by type should be used with care and only when there is no ambiguity.

{
 "$schema": "http://json-schema.org/schema#",
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 { "enum": ["Celsius", "Fahrenheit"] },
 { "type": "number" }
]
}

Listing 10.4 A JSON Schema describing the data expected by a client, without
component names

Current technologies support only mapping by name, which means that Listings
10.3 and 10.4 are illustrative only.

Now, suppose that we replace the client of Listing 10.2 with a new version that
is now able to make use of the average_temperature and humidity properties of the
weather sensor’s representation. Its schema is represented in Listing 10.5.

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

212

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "required": ["temperature", "temperature_unit"],
 "properties": {
 "temperature": { "type": "number" },
 "temperature_unit": { "enum": ["Celsius", "Fahrenheit"] },
 "average_temperature": { "type": "number" },
 "humidity": { "type": "number" }
 }
}

Listing 10.5 A JSON Schema describing a new client, conformant to the previous
one

This new client conforms to the old one, since it includes the properties of the
latter and the additional properties are optional (not required). The reason for this is
that, for a transparent client replacement, the new client must also accept all the
weather sensor representations that the old client could accept, which means that
properties ignored by the old client cannot be mandatory in the new client. Similar
examples could be provided using XML Schema, but these would be more verbose.

Compliance and conformance can also be defined for services, in particular for
Web Services, using XML, with the rules described in the previous section. Due to
space limitations, service compliance and conformance are not illustrated here, and
the reader is referred to [45] for an example.

Using symmetric interoperability, the communications interface with general-
purpose programming languages, at either side of the interacting devices, is usually
done with stubs, with code generated automatically from the shared schema,
typically resorting to annotations. If the schema changes, the stubs have to be
generated again, on both sides of the interaction. With asymmetric interoperability,
the schemas of the sender and of the receiver become independent. They just need
to comply, and as long as compliance is not impaired, one can be changed without
impact on the other.

As an example, consider that the weather sensor is implemented by a C# applica-
tion, which includes a class to describe the representation returned by the weather
sensor in a RESTful API, such as the one shown in Listing 10.6. This C# class is
simply composed of the data components in Listing 10.1, using auto- implemented
properties as a concise way to define private data fields with public get and set
accessors.

J.C.M. Delgado

213

public class WeatherSensorRepresentation
{
 public int temperature { get; set; }
 public string temperature_unit { get; set; }
 public double average_temperature { get; set; }
 public double humidity { get; set; }
}

Listing 10.6 C# class used to generate the representation of the weather sensor

The weather sensor application either includes a JSON generator method in this
class or has a general method that produces JSON from data fields, by reflection.
There is no JSON Schema involved, only straight serialization to JSON. Assuming
that the client application is written in Java (just to have another programming
language), it needs to specify a data template (Fig. 10.4), against which the
compliance of the weather sensor representation will be checked.

A Java class needs to be programmed for this, but, unlike the C# class, which
represents just one structured value, it needs to include the variability allowed by the
client’s schema. This can be done by using Java annotations, as illustrated by Listing
10.7, which implements the data template of the client with the schema described
by Listing 10.5, more complete than the one of Listing 10.2.

@Record
public class ClientDataTemplate
{
 private temperature double;

 @Union("Celsius")
 @Union("Fahrenheit")
 private temperature_unit String;

 @Optional
 private average_temperature double = 0;

 @Optional
 private humidity double = 0;

 . . . /* getters and setters */
}

Listing 10.7 Simplified implementation of the client’s data template

The @Record annotation indicates that this data template is a record (Table 10.2).
All data members will be exposed for compliance matching. Those annotated with
@Optional may be missing from the received message. The @Union annotation
(which can be repeated) indicates the allowed values for the data member they apply

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

214

to. Listing 10.8 illustrates the declaration of repeated annotations in Java. We need
to define not only the Union annotation itself but also a containing annotation
UnionSet, which will enable to collect the various alternatives for the union into an
array.

@Repeatable(UnionSet.class)
@interface Union { String name() }

@Retention(RetentionPolicy.RUNTIME)
@interface UnionSet { Union[] value() }

Listing 10.8 Simplified example of declaration of the @Union annotation

When a message is received, at runtime, the platform’s endpoint creates an
instance of the ClientDataTemplate class, gets its annotations, parses the message
and, by reflection, tries to match (using the compliance rules described in the
previous section) and structurally assign each component of the message to a
component in the data template. The annotations indicate the structural type of the
template (record, in this example) and its variability (optional components and
unions). Extra components in the message are ignored, missing components that are
optional in the data template (otherwise there is no compliance) use default values,
and the values of matching components are assigned to the corresponding values of
the data template. After this, the complete data template can be processed by the
receiver’s application.

The most relevant aspect of this mechanism is that the receiving application does
not deal with the message, only with the data template and the components for
which it has been designed. The assignment of relevant parts of the message to the
data template is done in a universal way, independently of the types of the actual
message or data template. These types have become decoupled, except for the
components that are really needed for the interaction (minimum coupling possible).

In addition, it should be noted that the serialization format (text such as XML
and JSON or binary such as Concise Binary Object Representation – CBOR [46] –
and Efficient XML Interchange, EXI [47]) is not relevant in the context of this
chapter. As long as they can be parsed and the semantic information (viz. component
names) is present, this mechanism can be implemented. Naturally, both sender and
receiver need to use the same serialization format.

10.12 Conclusion

The fundamental problem of device interaction is to provide the maximum decou-
pling possible (exposing the minimum possible number of features) while ensuring
the minimum interoperability requirements, without which interaction is not

J.C.M. Delgado

215

possible. This ensures that each device knows just enough about others to be able to
interoperate with them but no more than that, to avoid unnecessary dependencies
and constraints.

Symmetric interoperability, in which both interacting devices share the same
data schema, usually leads to a coupling problem, since a device cannot change its
schema without changing it in the other(s) device(s) as well. Interacting devices are
locked into each other, coupled for all the message values allowed by the schema,
even if not all are actually used. Asymmetric interoperability, on the other hand,
assumes that the schema used to produce a message does not have to be identical to
the schema of the messages expected by the receiver.

This chapter has shown that the above discussion:

• Leads to a lower coupling level
• Allows a device:

 – To send messages to different devices (each expecting a different message
schema)

 – To receive messages from different devices (each with its own message
schema)

 – To replace another one, now with a changed schema, as long as the new
schema can support all the characteristics of the old one

In this context, asymmetry entails the following ideas:

• Compliance – At the receiver, instead of validating an incoming message against
a schema shared with the sender, check whether the message fulfils the minimum
requirements of the receiver’s schema.

• Conformance – A receiver device can be changed or replaced by another one,
without impact on those sending messages to it, if the schema of the new receiver
includes all the features of the old one and does not mandatorily require new
ones. In this way, a device can send messages to the new receiver without noticing
that it has been changed.

• Universal reception mechanism – The receiver does not see the message’s
schema. Compliance checking and the assignment of the compliant parts of the
message to the receiver’s data template (the receiver’s view of the message) are
done in a universal manner by the message-based platform, independently of the
actual schemas used.

These interoperability features contribute to reduce coupling and to increase the
range of devices that can interact with a given device. This is especially relevant in
the Internet of Things, in which devices interact in huge numbers and with a wide
range of characteristics, and therefore reducing the interoperability problems is of
paramount importance.

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

216

References

 1. van der Meulen R (2015) Gartner says 6.4 billion connected “Things” will be in use in 2016,
Up 30 percent from 2015. https://www.gartner.com/newsroom/id/3165317. Accessed 28 Feb
2017

 2. Nordrum A (2016) Popular internet of things forecast of 50 billion devices by 2020 is out-
dated. http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-
of-50-billion-devices-by-2020-is-outdated. Accessed 28 Feb 2017

 3. Fortino G, Ganzha M, Palau C, Paprzycki M (2016) Interoperability in the internet of things.
Comput now (special issue December) https://www.computer.org/web/computingnow/
archive/interoperability-in-the-internet-of-things-december-2016-introduction. Accessed 28
Feb 2017

 4. Fawcett J, Ayers D, Quin L (2012) Beginning XML. Wiley, Hoboken
 5. Bassett L (2015) Introduction to JavaScript Object Notation: a to-the-point guide to

JSON. O’Reilly media, Inc, Sebastopol
 6. Erl T, Gee C, Chelliah P, Kress J, Normann H, Maier B, Wik P (2014) Next generation SOA:

a concise introduction to service technology & service-orientation. Pearson Education, Upper
Saddle River

 7. Pautasso C, Wilde E, Alarcon R (eds) (2014) REST: advanced research topics and practical
applications. Springer, New York

 8. Feki M, Kawsar F, Boussard M, Trappeniers L (2013) The internet of things: the next techno-
logical revolution. IEEE Comp 46(2):24–25

 9. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things:
a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor
17(4):2347–2376

 10. Whitmore A, Agarwal A, Da Xu L (2015) The Internet of things – a survey of topics and
trends. Inf Sys Front 17(2):261–274

 11. Popplewell K (2014) Enterprise interoperability science base structure. In: Mertins K,
Bénaben F, Poler R, Bourrières J (eds) Enterprise interoperability VI: interoperability for agil-
ity, resilience and plasticity of collaborations. Springer International Publishing, Switzerland,
pp 417–427

 12. Sharma R, Panigrahi P (2015) Developing a roadmap for planning and implementation
of interoperability capability in e-government. Transform Gov: People, Process Policy
9(4):426–447

 13. Zhang Z, Wu C, Cheung D (2013) A survey on cloud interoperability: taxonomies, standards,
and practice. ACM SIGMETRICS Perform Evaluation Rev 40(4):13–22

 14. Robkin M, Weininger S, Preciado B, Goldman J (2015) Levels of conceptual interoperability
model for healthcare framework for safe medical device interoperability. In: Proceedings of the
symposium on product compliance engineering. IEEE Computer Society Press, Piscataway,
pp 1–8

 15. Potdar V, Sharif A, Chang E (2009) Wireless sensor networks: a survey. In: Proceedings of the
international conference on advanced information networking and applications workshops,
pp 636–641

 16. Hartenstein H, Laberteaux K (eds) (2010) VANET: vehicular applications and inter-network-
ing technologies. Wiley, Chichester

 17. Zimmermann O, Tomlinson M, Peuser S (2012) Perspectives on web services: applying SOAP,
WSDL and UDDI to real-world projects. Springer Science & Business Media, New York

 18. Pautasso C (2014) RESTful web services: principles, patterns, emerging technologies. In:
Bouguettaya A, Sheng Q, Daniel F (eds) Web services foundations. Springer, New York,
pp 31–51

 19. Erl T (2016) Service-oriented architecture: concepts, technology, and design, 2nd edn. Prentice
Hall, Upper Saddle River

J.C.M. Delgado

https://www.gartner.com/newsroom/id/3165317
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
http://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://www.computer.org/web/computingnow/archive/interoperability-in-the-internet-of-things-december-2016-introduction
https://www.computer.org/web/computingnow/archive/interoperability-in-the-internet-of-things-december-2016-introduction

217

 20. Bora A, Bezboruah T (2015) A comparative investigation on implementation of RESTful ver-
sus SOAP based web services. Int J Database Theory Appl 8(3):297–312

 21. Kumari S, Rath S (2015) Performance comparison of SOAP and REST based web services for
enterprise application integration. In: Proceedings of the international conference on advances
in computing, communications and informatics. IEEE Computer Society Press, Piscataway,
pp 1656–1660

 22. Sungkur R, Daiboo S (2015) SOREST, a novel framework combining SOAP and REST for
implementing web services. In: Proceedings of the second international conference on data
mining, internet computing, and big data. The Society of Digital Information and Wireless
Communications, Wilmington, pp 22–34

 23. Babu D, Darsi M (2013) A survey on service oriented architecture and metrics to measure
coupling. Int J Comp Scie Eng 5(8):726–733

 24. Geetika R, Singh P (2014) Dynamic coupling metrics for object oriented software systems: a
survey. ACM SIGSOFT Softw Eng Notes 39(2):1–8

 25. Alenezi M, Magel K (2014) Empirical evaluation of a new coupling metric: combining struc-
tural and semantic coupling. Int J Comp Appl 36(1):34–44

 26. Tran H, Zdun U, Oberortner E, Mulo E, Dustdar S (2012) Compliance in service-oriented
architectures: a model-driven and view-based approach. Inf Softw Technol 54(6):531–552.
https://doi.org/10.1016/j.infsof.2012.01.001

 27. Khalfallah M, Figay N, Barhamgi M, Ghodous P (2014) Model driven conformance testing
for standardized services. In: Proceedings of the IEEE international conference on services
computing. IEEE Computer Society Press, Piscataway, pp 400–407

 28. Capel M, Mendoza L (2014) Choreography modeling compliance for timed business models.
In: Proceedings of the workshop on enterprise and organizational modeling and simulation.
Springer, Berlin, pp 202–218

 29. Brandt C, Hermann F (2013) Conformance analysis of organizational models: a new enter-
prise modeling framework using algebraic graph transformation. Int J Info Sys Model Des
4(1):42–78

 30. Preidel C, Borrmann A (2016) Towards code compliance checking on the basis of a visual
programming language. J Inf Technol Constr 21(25):402–421

 31. Graydon P, Habli I, Hawkins R, Kelly T, Knight J (2012) Arguing conformance. IEEE Softw
29(3):50–57

 32. Rachad T, Boutahar J (2014) A new efficient method for calculating similarity between web
services. Int J Adv Comp Sci Appl 5(8):60–67

 33. Otero-Cerdeira L, Rodríguez-Martínez F, Gómez-Rodríguez A (2015) Ontology matching: a
literature review. Expert Sys Appl 42(2):949–971

 34. Ma M, Wang P, Chu C (2014) Ontology-based semantic modeling and evaluation for internet
of things applications. In: Proceedings of the IEEE international conference on internet of
things. IEEE Computer Society Press, Piscataway, pp 24–30

 35. ISO/IEC/IEEE (2010) Systems and software engineering – vocabulary. International standard
ISO/IEC/IEEE 24765:2010(E), 1st edn. International Standards Office, Geneva, p 186

 36. ISO/IEC (1994) ISO/IEC 7498–1, information technology – open systems interconnection –
basic reference model: the basic model, 2nd edn. International Standards Office, Geneva.
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html. Accessed 28 Feb 2017

 37. Wang W, De S, Toenjes R, Reetz E, Moessner K (2012) A comprehensive ontology for knowl-
edge representation in the internet of things. In: Proceedings of the IEEE 11th international
conference on trust, security and privacy in computing and communications. IEEE Computer
Society Press, Piscataway, pp 1793–1798

 38. Palm J, Anderson K, Lieberherr K (2003) Investigating the relationship between violations of
the law of demeter and software maintainability. In: proceedings of workshop on software-
engineering properties of languages for aspect technologies. http://www.daimi.au.dk/~eernst/
splat03/papers/Jeffrey_Palm.pdf. Accessed 28 Feb 2017

10 Interoperability in the Internet of Things with Asymmetric Schema Matching

https://doi.org/10.1016/j.infsof.2012.01.001
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.daimi.au.dk/~eernst/splat03/papers/Jeffrey_Palm.pdf
http://www.daimi.au.dk/~eernst/splat03/papers/Jeffrey_Palm.pdf

218

 39. Ross A, Rhodes D, Hastings D (2008) Defining changeability: reconciling flexibility, adapt-
ability, scalability, modifiability, and robustness for maintaining system lifecycle value. Syst
Engineer 11(3):246–262. https://doi.org/10.1002/sys.20098

 40. Dillon T, Wu C, Chang E (2007) Reference architectural styles for service-oriented computing.
In: Li K et al (eds) Proceedings of the IFIP international conference on network and parallel
computing. Springer, Berlin, pp 543–555

 41. Bloomberg J, Schmelzer R (2013) Deep interoperability: getting REST right (finally!). In: The
agile architecture revolution: how cloud computing, rest-based SOA, and mobile computing
are changing enterprise it. Wiley, Hoboken

 42. Fielding R (2000) Architectural styles and the design of network-based software architectures.
Doctoral dissertation, University of California at Irvine. http://www.ics.uci.edu/~fielding/
pubs/dissertation/fielding_dissertation_2up.pdf. Accessed 28 Feb 2017

 43. Palavalli A, Karri D, Pasupuleti S (2016) Semantic internet of things. In: Proceedings of the
IEEE tenth international conference on semantic computing. IEEE Computer Society Press,
Piscataway, pp 91–95

 44. Meyer B (2000) Object-oriented software construction. Prentice Hall, Upper Saddle River
 45. Delgado J (2015) Decreasing service coupling to increase enterprise agility. In: Achieving

enterprise agility through innovative software development. IGI Global, Hershey, pp 225–261
 46. Bormann C, Hoffman P (2013) Concise Binary Object Representation (CBOR). https://tools.

ietf.org/html/rfc7049. Accessed 28 Feb 2017
 47. Schneider J, Kamiya T, Peintner D, Kyusakov R (ed) (2014) Efficient XML interchange (EXI)

format 1.0 (second edition). W3C. http://www.w3.org/TR/exi/. Accessed 28 Feb 2017

J.C.M. Delgado

https://doi.org/10.1002/sys.20098
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
http://www.w3.org/TR/exi/

219© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_11

Chapter 11
Automatic Big Data Provenance Capture
at Middleware Level in Advanced Big Data
Frameworks

Anu Mary Chacko, Alfredo Cuzzocrea, and S.D. Madhu Kumar

Abstract Huge amounts of data are being generated by Internet of Things (IoT)
devices. Termed as Big Data, this data needs to be reliably stored, extracted, and
analyzed. Capturing provenance of such data provides a mechanism to explain the
result of data analytics and provides greater trustworthiness to the insights gathered
from data analytics. Capturing the provenance of the data stored in NoSQL data-
bases can help to understand how the data reached its current state. A holistic expla-
nation of the results of data analytics can be achieved through the combination of
provenance information of the data with results of analytics. This chapter explores
the challenges of automatic provenance capture at the middleware level in three dif-
ferent contexts: in an analytics framework like MapReduce, in NoSQL data stores
with MapReduce analytic framework, and in NoSQL stores with SQL front ends.
The chapter also portrays how the provenance captured in the MapReduce frame-
work is useful for improving the future executions of job reruns and anomaly detec-
tion, apart from its use in debugging.

11.1 Introduction

With the rise in usage of the Internet and social media websites, digital data is now
treated as an asset and is used to derive insights or meaningful information. With the
advent of the Internet of Things (IoT), the amount of data has increased exponen-
tially. Most of the data generated are unstructured and are of different file types. As
data are generated in large volumes, they are termed as “Big Data.” Big Data can
contain information generated by sensors, chatter in the social media like Twitter or

A.M. Chacko (*) • S.D. Madhu Kumar
National Institute of Technology Calicut, Kozhikode, Kerala, India
e-mail: anu.chacko@nitc.ac.in

A. Cuzzocrea
University of Trieste and ICAR-CNR, Trieste, Italy

mailto:anu.chacko@nitc.ac.in

220

Facebook, or loads of information collected for user profiling. This data can act as
powerful trend predictors if they can be reliably analyzed and mined. The reliability
of the analytic results depends on how “good” the data used for analysis is, which
in turn depends on the source of the data and transformations that the data under-
went. Data provenance is the metadata that captures the history of data from its
creation to how it reached its current state. In our day-to-day activities, different
levels/types of provenance are collected by audit trails, logs, and change tracking
software. All such data gives information that contributes to the history of data or
provenance. Provenance metadata focuses on isolating all relevant details of history
in one metadata in a systematic way, such that the advantages of verifiability and
querying are obtained.

With the increase in complexity of data management, data provenance research
is gaining a lot of attention. Every aspect of provenance handling, starting from
capture and storage to representation, security, and querying, needs efficient
schemes so that provenance can be seamlessly used. In the literature, there are
schemes for applications to disclose provenance explicitly and schemes to capture
provenance automatically at operating system and middleware level. Making all
applications provenance aware is not a feasible solution, and so automatic capture
of provenance is needed. Automatic capture can be done at operating system or at
middleware layer. At the operating system level, the system is not able to understand
the context in which data is used, and so if provenance is collected at this level, it is
very fine grained, making it difficult to query and use the provenance collected.
Automatically capturing provenance at middleware level gives the application
designers the flexibility to focus on logic of application without worrying about
provenance disclosure. Especially, in the context of Big Data, where a large number
of Big Data applications are being deployed every day, automatic provenance cap-
ture at middleware layer is a feasible option for provenance capture.

This chapter focuses on processing of IoT data on the Big Data analytic frame-
works. The next section provides a background to the work done in provenance
research, and the rest of the chapter discusses approaches to capture provenance of
analytics done on MapReduce framework and data stored and analyzed in NoSQL
data stores.

11.2 Background

In eScience, many tools like Chimera, myGrid, and CMCS [1] were developed for
provenance capture of scientific workflows. The primary focus for collecting prov-
enance in workflows was to ensure reproducibility of experiments and providing
provisions for debugging. Provenance was very interesting to the database commu-
nity as it provided explanation for the results obtained. Tools like DBNotes [2], Trio
[3], and PERM [4] focused on database provenance. Automatic provenance capture
was explored in the construction of PASS [5], a modified Linux kernel that captured
provenance of all operations happening in the kernel by observing the read/write

A.M. Chacko et al.

221

system calls. Similar approach was used in SPADE [6] where provenance capture
scheme was instrumented into the application to capture intra-provenance at com-
pile time. Most of the works except PASS and SPADE described in the literature
followed a disclosed provenance approach where specific applications were made
provenance aware for domain-specific requirements.

Provenance is of interest in the area of Big Data, as provenance provides a mech-
anism to explain the results and provide proofs for the validity of data. The main
focus areas of Big Data provenance is in storage, analytics, and data stores.
Munniswamy et al. [7] developed PASS to work for cloud storage. They provided
different versions that store provenance along with data in SimpleDB or Amazon
S3. Another work in this area is by Sletzer et.al. [8] who proposed techniques to
instrument Xen hypervisor to capture provenance of operations on the virtual hyper-
visors. In Big Data analytics, a major work was done to develop the analytic frame-
work MapReduce provenance aware. RAMP (Reduce and Map Provenance) [9]
captures provenance of MapReduce workflows while the job executes. The prove-
nance is generated at the end of job execution resulting in a performance overhead
of 20–70% as reported by the authors. HadoopProv [10] attempts to improve the
performance of job execution of MapReduce jobs while capturing provenance by
deferring the generation of provenance to the time when it is needed. Lipstick [11]
tool enables database style workflow provenance to be captured for jobs written in
Pig script. Titian [12] is a library that has been created for provenance support for
jobs running in Apache Spark, and the authors claim that observed overhead for job
execution is below 30%.

The early works in data provenance were mainly domain specific and consisted of
making particular applications provenance aware. Through this approach, rich prov-
enance information is obtained, as the semantics of the applications is an integral
part of the provenance capture system. But in Big Data scenario, retrofitting all
applications to make them provenance aware is not practical. On the other hand,
capturing provenance at the operating system level, e.g., PASS [5], x being captured.
The main issue here is the large size of provenance and false dependencies. Hence
there is a need for schemes to capture provenance automatically at middleware layer.

Typically, the applications or software that acts as glue between operating system
and applications are categorized as middleware [12]. Semantically, the middleware
layer is placed between the operating system and application layers. Middleware
caters to multiple applications at a time. Creating middleware to make a set of appli-
cations provenance aware provides the developer with the option of capturing prov-
enance of multiple applications/data in applications in one go. In the Big Data
landscape, where the number of applications for processing data is as well big, ret-
rofitting provenance into all applications is not a practical solution.

In the literature, there are scientific experiments that followed this approach,
where the workflow middleware was adapted to capture provenance of all work-
flows running on top of it e.g., MyGrid [13]. By making the workflow queue prov-
enance aware, all the jobs running on it become automatically provenance aware. In
the big data scenario, provenance capture contexts can be broadly divided into two:
in the context of analytic tools and in case of Big Data stores. The following sec-

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

222

tions explain the techniques proposed for capturing provenance using middleware
approach, in analytic tool like MapReduce and NoSQL store like MongoDB.

11.3 Provenance in MapReduce Workflows

In the context of Big Data applications, the collected data is useful only if it is ame-
nable to analytics. The result of the analytics can be confidently used if and only if it
is verifiable. So capturing provenance for analytic frameworks is a must. The major
challenge with provenance capture is the high performance overhead caused to the
job during provenance capture. The provenance collected is usually used for debug-
ging results. This section explores a different approach for capturing provenance of
MapReduce workflows and explores the use of provenance collected for improving
the execution of MapReduce jobs during incremental runs and anomaly detection.

11.3.1 Provenance Capture

In the context of MapReduce, three types of provenance can be collected – job prov-
enance (coarsely grained), data provenance (finely grained), and transformation
provenance (process provenance):

• Job provenance is an example of coarsely grained provenance and captures the
signature of job.

• Data provenance captures relation between the output data and the input data of
a MapReduce job.

• Transformation provenance goes beyond the job execution and tries to capture
details of job execution.

A lazy approach of generating provenance after the completion of job execution
is adopted in our approach so that results of job are available for the user for review,
while provenance is being generated. In this approach, provenance is captured by
writing a wrapper code to the classes like Mapper and Reducer so as to capture
details important for provenance into temporary files. At the completion of the job,
a background MapReduce job is executed to consolidate the temporary files and
generate provenance. Provenance thus generated constitutes the fine-grained data
provenance. This provenance is useful for debugging the result or to understand
flow of data from input to output.

Job provenance is the coarsely grained provenance captured by modified
MapReduce framework so as to create signature of a particular run of a job. The
details captured as part of job provenance are details of input-output, file names,
input-output key types and input-output file formats, Mapper, Reducer and Combiner
class names, MD5 hash of jar files, and offsets to which data is read in the current
job run.

A.M. Chacko et al.

223

Modified MapReduce (Lazy IncMapReduce) was tested on a cluster of nine
DataNodes and a NameNode for Hadoop. The HBase cluster consisted of nine
region servers and a master server. Each system was configured with 4GB RAM and
500 GB hard drive. The results of experiment by running the above jobs are dis-
cussed next.

Provenance collection showed a performance and storage improvement for word
count problem as shown in Figs. 11.1 and 11.2, respectively. For the word count
problem, proposed method showed an average 50% improvement in the job com-
pletion time and an average 70% storage optimization over RAMP. This storage
optimization is obtained as provenance collected is preprocessed and stored in
HBase.

Another experiment was conducted to filter random Apache WebLog [14] data. A
sample of 1 lakh weblogs was used to filter good weblogs out of ill-typed weblogs.
Around 1 lakh logs were analyzed in Lazy IncMapReduce, and performance analy-
sis is shown in Figs. 11.3 and 11.4. HBase storage required 186% more memory
than RAMP as shown in Fig. 11.4.

In case of WebLog filtering, for each output record, a corresponding provenance
record is written. As the number of output records increases, the number of write
operations increases, and hence the storage requirement becomes larger, and job
execution time degrades. These experiments indicate that significant storage and
performance improvements are obtained in Lazy IncMapReduce for jobs where the
number of output keys is less than the number of input keys.

Fig. 11.1 Comparison of
performance (job
completion time) in word
count problem

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

224

Fig. 11.2 Comparison of
storage requirement – word
count problem

Fig. 11.3 Comparison of
performance (job
completion time) in
WebLog filtering
problem – MapReduce
without provenance vs
RAMP vs Lazy
IncMapReduce

A.M. Chacko et al.

225

Transformation provenance consists of details of job execution. This can be
extracted from the various logs created as part of the job execution. Once the job
execution is over, the logs from the different nodes are consolidated, and transfor-
mation provenance can be mined from the logs using a rule-based execution frame-
work. This is done by identifying patterns in the logs and defining rules to extract
the information from log to deduce provenance. This provenance captures informa-
tion on MapReduce execution, like details of task and job execution, split creation,
dataset access, etc. Here, there is no change made to the MapReduce framework, but
provenance is deduced from the preexisting logs.

Hadoop generates detailed log for all the services running in the cluster like
NameNode, DataNode, JobTracker, and TaskTracker. The details of job extracted
from the logs are used to generate a transformation provenance profile for the job.
Provenance profile is captured as XML file so as to enable easy querying. The prov-
enance profile contains complete information about the execution of the job run,
cluster configuration information, as well as ERROR and WARNING messages
generated.

The three provenances together provide the holistic picture about the MapReduce
job execution and its results. In the literature the use of provenance collected has
been demonstrated mainly for debugging of results. In the rest of this section, two
novel uses of provenance collected are discussed: (1) the use of data and job prov-
enance to improve the workflow execution of subsequent runs of MapReduce jobs
and (2) the use of transformation provenance for anomaly detection.

Fig. 11.4 Comparison of
storage requirement:
WebLog filtering
problem – RAMP vs Lazy
IncMapReduce

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

226

11.3.2 Incremental MapReduce Using Provenance

In the literature, there are schemes like Incoop [15] and Itchy [16] that implement
incremental MapReduce. Incoop [15] uses the concept of memoization and needs
modified HDFS to implement incremental MapReduce. Itchy [15] uses the term
provenance, but the provenance used is not conventional but a mapping between
intermediate map result and input. Proposed approach, Lazy IncMapReduce, aims
to reuse the provenance generated as part of workflow execution to improve the
execution of job reruns.

In many MapReduce applications, the input data is of append only variety. For
such MapReduce jobs, the old results can be reused, and computation can be
restricted to the new appended input values alone. This will result in significant
reduction in execution time. The following cases were evaluated as part of this
work. Input file is considered to be append only:

• Case 1: Input file is appended with data or when input files are added.
• Case 2: Input file is processed as a sliding window of data.

The following section describes how Lazy IncMapReduce works for the two dif-
ferent cases described above.

Case 1: Jobs Rerun with Additional Data Appended to Input File or with
Additional Files
When a MapReduce job is submitted by the user, its coarse-grained provenance is
captured, and provenance store is queried to see if it is the first run of the job or
rerun. It is considered as an incremental run if the provenance store returns a job
with the following conditions satisfied:

• Jar file with same MD5 hash as current job
• Same Mapper, Reducer and Combiner classes as current job
• Same input files as current job
• Same type of output key and values as current job
• Same input format as current job

After verification, the current job submitted is classified as:

• New run: if no matching job is found in the provenance store, in this case, the job
is run as a single MapReduce job with provenance capture.

• Incremental run: if a previous run of the same job is found, the input file is
checked to see whether it is a case of new data appended to existing input files or
new input files added. In both cases, MapReduce program runs only on the new
data that was not processed in earlier run. Output of this job is combined with the
output of old job by executing MapReduce job with Identity Mapper. This is the
default Mapper class provided by Hadoop that writes all input key value pairs
into output. This is diagrammatically illustrated in Fig. 11.5.

A.M. Chacko et al.

227

Case 2: Job Rerun on Sliding Window of Input Data
Frequently there are cases where MapReduce jobs are run for a window of data
(e.g., last 30 days data). Every consecutive day, the window slides, deleting a day’s
information and adding a new day’s information. LazyIncMapReduce is designed to
handle incremental runs for such MapReduce jobs that process window of input
data using tuple level fine-grained provenance. The first run of the job processes the
window selected with provenance capture. In the next run of the job, the window
has some new data appended and some old data removed. The data can be consid-
ered as having three sections as shown in Fig. 11.6:

• Old data: Data which is part of the old window but not included in the current
job’s window

• Common data: Data which is common to both old job and current job
• New data: Data which is newly added in the file and not part of old job.

The strategy for job reruns is as follows:

• Perform MapReduce on the new data.
• Refresh the previous job output file to reflect the removal of old data from input

file. This is achieved by doing selective refresh of the output file of the previous
run. The fine-grained provenance captured in the previous job run is used here to
trace back the input for each output element. Depending on which part of the
input file the input records lie, the following strategies are opted to prepare the
refreshed output file:

 – Scenario 1: If inputs fall completely in common data, no refresh is done, and
output file is used as such.

Fig. 11.5 Incremental MapReduce when new data is appended to input file

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

228

 – Scenario 2: If dependent inputs fall in both common data and old data, then a
selective refresh needs to be done for those input offsets using a MapReduce
job.

 – Scenario 3: If the dependent inputs are completely in old data, then the records
in the old file can be discarded.

• Combine all the results by running a MapReduce job with Identity Mapper.

11.3.2.1 Experimental Results

For the evaluation of incremental MapReduce, two jobs whose number of output
keys is less than number of input keys were considered: word count job and grep
job. In these two cases, input file was appended with data, and sliding window of
data approach was tested. Performance for the incremental run was analyzed.

Case 1: Input File Appended with 500 MB Data for Incremental Run
Performance analysis was done for incremental run when an input file (4.4GB) is
appended with additional 500 MB data for both word count job and grep job. In the
first run, a small run time overhead of 5 s was observed. But in the incremental run,
our prototype outperforms the traditional MapReduce with 50% of run time
improvement. Figure 11.7 shows a reduction of 50% in execution time of incremen-
tal run of word count job, and Fig. 11.8 shows a 98% reduction in execution time of
incremental run of grep job.

Thus, there is a significant performance improvement for job reruns in Lazy
IncMapReduce when jobs are rerun with additional data appended in the file, as the

Fig. 11.6 Rerun of job in incremental MapReduce for the sliding window case

A.M. Chacko et al.

229

data in the previous run is not processed but output of the previous run is merged
with MapReduce output of new data.

Case 2: Processing Input File with a Sliding Window of 500 MB Data for
Incremental Run
To evaluate the performance of Lazy IncMapReduce in such cases, incremental
MapReduce job was executed by moving the processing window by
500 MB. Performance analysis of incremental MapReduce was done for both word
count Job and grep Job. The results obtained for the word count problem is shown
in Fig. 11.9 and for grep problem, in Fig. 11.10.

In the case of experimental run of sliding window word count problem, a perfor-
mance overhead of 400% was found. On analysis, it was found that this overhead
was because of the bottleneck caused by NameNode during selective refresh. The
inherent design of MapReduce gives NameNode the task of preparation of splits

Fig. 11.7 Job execution
time (word count problem)
when 500 MB data is
appended

Fig. 11.8 Job execution
time (grep problem) when
500 MB data is appended

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

230

during selective refresh. When there are lots of output records that need refreshing,
many splits have to be generated for facilitating selective refresh. Out of 1352 s of
the incremental run, 1155 s were taken for selective refresh. The preparation of files
for selective refresh was the main cause of the overhead. In the case of grep job,
provenance query provided very few records for selective refresh, and so the time
for preparing splits was greatly reduced. Thus, in the case of grep, incremental run
in Lazy IncMapReduce gives a better performance over traditional MapReduce.

Fig. 11.9 Job execution
time (word count problem)
when window of
processing is “slided” by
500 MB

Fig. 11.10 Job execution
time (Grep problem) when
window of processing is
“slided” by 500 MB

A.M. Chacko et al.

231

11.3.3 Anomaly Detection Using Transformation Provenance

Execution of MapReduce is handled transparently by Hadoop. Hadoop is an open
source project designed to optimize handling massive amount of data through paral-
lelism using inexpensive commodity hardware. The earlier versions of Hadoop con-
centrated on task distribution, and very little attention was given to security. In later
versions, various techniques like mutual authentication, enforcement of HDFS file
permission, using tokens for authorization, etc. were provided to enhance security.
But Hadoop has a serious lack in detection of anomalous behavior. Hadoop does the
data processing and scheduling in a way which is transparent to the user. There is a
possibility that a compromised user or compromised node could do some malicious
activity to gain additional resource usage and obstruct services to the other nodes
for its purposes. An attacker could perform some attacks to slow down the data
processing and create a denial of service situation in the cluster. Currently, any such
anomalous activity would go unnoticed despite having security features enabled in
Hadoop. Transformation provenance captured can throw light on many such mali-
cious activities happening during MapReduce workflow.

After job execution, a provenance file is generated, and this provenance profile is
used to detect anomalous behavior. The tool developed performs the set of checks
as listed below:

• Check if input to all the tasks are valid.
• Check if output is stored in proper location.
• Total number of tasks performed.
• Status of nodes in cluster.
• Analyze task execution times.

Checking input and output file locations from the configuration files and actual
execution log can throw light if any malicious user has made changes for leaking
confidential data. The check on total number of tasks performed helps to identify
any skipped computations. Logs provide information on the status of cluster. As job
allocation is handled transparently by the framework, the user does not know
whether the resources are properly utilized. The task execution times on different
nodes can further throw light on the efficiency of nodes. This was verified by simu-
lating a SYN flood attack on a slave machine in the cluster of three machines to
make the slave system less responsive. The run times of all the map tasks were col-
lected with and without attack. The mean and standard deviation for both the set of
values were calculated. When there is an attack, the deviation is high (approx 50%)
from the mean indicating that the run times of map tasks vary. Figure 11.11 describes
a sample output of anomaly detection using provenance profile.

This section described the capture of data, job, and transformation provenance
for jobs executing in MapReduce framework and the uses of provenance captured.
The provenance collected is not only useful for error debugging but also for improv-
ing incremental runs of jobs. Transformation provenance captured is useful in

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

232

detecting anomalous behavior in the cluster. The next section describes a novel
approach to capture provenance of data stored in NoSQL data stores.

11.4 Provenance for Big Data Stores

The massive data generated from the different IoT sources are usually stored in
highly scalable databases like NoSQL data stores. In order to have an end-to-end
provenance captured, there needs to be provenance captured in NoSQL stores and
also in analytic frameworks. This section explains the type of provenance required
for NoSQL stores and approaches to capture provenance in two different contexts:

• Data stored in NoSQL store, analyzed using MapReduce Framework
• Data stored in NoSQL store, analyzed using SQL interface

11.4.1 Data Provenance Requirement in NoSQL Stores

To vouch for the credibility of data in the NoSQL stores, there is a need for three
levels of provenance capture: tuple and schema provenances for data stored and data
provenance for output of analytics done.

In NoSQL stores, the data on operations that cause the tuple to reach its current
state can be categorized as how provenance. The how provenance answers the query
on how the tuple attained its current value. Complex operations like join and aggre-
gate are not present in NoSQL queries. So in the context of data stored in NoSQL
store, why provenance is not relevant. However when analytics are done to produce

Fig. 11.11 Example of anomaly detection by analyzing run times in provenance profile

A.M. Chacko et al.

233

meaningful insights, the why provenance becomes critical to explain the result.
When analytics are done on the data stores, the provenance of output constitutes the
details of the input tuples that contributed to selection of the output and history of
how each of the input tuples reached its current state.

NoSQL databases are designed with fault-resistant logs to enable replication of
changes to ensure transparent scalability. The logs are fixed size tables (capped col-
lection) that capture changes happening in the data store. The information from logs
can be augmented and reused to deduce how provenance of data stored. Why prov-
enance is captured for analytics done on the data in the NoSQL data stores. Two
strategies of analytics are explored here.

 1. Using inbuilt MapReduce
 2. Using SQL interface

In the next section, MongoDB is used as an example to demonstrate the practical
approach for capture of “how provenance” and “why provenance.”

11.4.2 Capture of “How Provenance”

MongoDB supports basic CRUD (create, read, update, and delete) operations only.
It provides an inbuilt MapReduce option to run complex analytic queries. The how
provenance was tracked by setting up a tailable cursor in Python on the operation
log (oplog) of MongoDB. Oplog is a special capped collection that keeps a rolling
record of all operations that modify the data in the database. As provenance capture
incurs storage overhead, the logger provides provision to select the tuples/docu-
ments that need to be tracked for provenance by using resource expression. Logger
monitors the Oplog for any changes happening to the tuples for which provenance
tracking is requested for. Whenever a log entry is made about tuple/collection that
is being tracked, the cursor reads the data and deduces provenance details and
records the provenance in an “append only” provenance collection. The information
thus deduced from the log constitutes the how provenance and gives information on
how a data item stored in the data store reached its current state. The following
example demonstrates the use of provenance captured.

In the MongoDB database called “hospital,” there exists a collection called
“patients.” To track the provenance for a particular patient, say “P123,” resource
expression is specified as <hospital/patients/P123>. The current state of the patient
record is shown in Fig. 11.12. “How provenance” captured is shown in Fig. 11.13.

Both data and schema provenance are available on querying and are demon-
strated by an example. Data provenance shows how the data reached its current
state, i.e., the details of document creation and details of when each field value was
added/updated. Schema provenance shows the addition and deletion of new fields in
the document. For example, in the “hospital” database sample, a new field called
“Allergy” has been added by user “Dr Jacob” on 29 April 2015 which was not there
initially.

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

234

11.4.3 Capture of “Why Provenance”

“Why Provenance” is significant to explain results of analysis done on data stored
in NoSQL stores. This section explores the capture of why provenance in two sce-
narios of analytics:

 1. When MapReduce is used to conduct analytics on data stored in the NoSQL
stores

 2. When SQL interface is used to analyze the data in the NoSQL stores.

Fig. 11.13 “How provenance” for P123

Fig. 11.12 Current state
of patient record P123

A.M. Chacko et al.

235

11.4.3.1 “Why Provenance” for Analytics Using MapReduce

Why provenance was captured for the MapReduce shipped with MongoDB. A
wrapper-based approach similar to the approach used in the previous section was
used to make MapReduce provenance aware. The provenance collected character-
izes as why provenance as it gives reason/witness for why an output was obtained.

MongoDB MapReduce runs on one input collection at a time. The mapper reads
the output of the document reader and emits them as key value pairs (ki,vi). Along
with the input for the reducer, the mapper writes the provenance-related information
(pi,ki) to a temporary file, file1, where pi is a provenance id that uniquely identifies
the document which consists of key ki and value vi. The reducer applies the reducer
logic and processes (ki,[v1,v2…vn]) and generates the output key value pair (ki,V).
The document writer writes the key value pair (ki,V) generated by the reducer to the
output collection and temporary file,file2.Once the MapReduce task is complete, the
provenance logger reads file1 and file2 and extracts the ids {p1,p2,…pn} of the
 documents with key ki from file1 and appends the set {p1,p2,…pn} to the pair (ki,V)
in the output collection specified with MapReduce. Thus the set {p1,p2,…pn} is the
provenance of the pair (ki,V). From this, one can identify and trace back the docu-
ments inside the collection that contributed to that particular output value.

To illustrate why provenance, a simple example is considered. The collection of
patient’s medication bills at different times in hospital database is illustrated in
Fig. 11.14.

The total bill for each patient can be calculated by running a MapReduce job.
The output of the job is shown in Fig. 11.15.

Fig. 11.14 Snapshot of patient’s medical bill collection

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

236

The output does not give any detail regarding the source documents that contrib-
uted to the result. Now if the same query was run with provenance collection, the
why provenance and how provenance can be together viewed to have a holistic
explanation of the result as shown in Fig. 11.16.

11.4.3.2 Provenance of NoSQL Stores Queried through SQL Interface

The SQL/MED, or Management of External Data, extension to the SQL standard
defined by ISO/IEC 9075–9:2008 (originally defined for SQL:2003) [17] provides
extensions to SQL to define foreign data wrappers (FDW) and data link types to
allow SQL to manage external data. Popular commercial relational databases like

Fig. 11.15 Snapshot of
output MapReduce to
consolidate total bill

Fig. 11.16 Holistic explanation of a query by combining “why provenance” and “how
provenance”

A.M. Chacko et al.

237

PostgreSQL and IBM DB2 adopted these standards so as to work with data stored
in external data stores by providing provisions to define FDWs.

FDW defines external data views called “foreign tables” to access external data
through foreign data wrappers. Thus, in this approach data always resides in the
remote data store, and query manipulations are done on the “view” defined by the
foreign table. Provenance of query results run through FDW is important for debug-
ging result, in case of unexpected results.

A novel idea for provenance representation is used in provenance model called
PERM (Provenance Extension of the Relational Model) [4], developed by IIT
(Illinois Institute of Technology) database group. The provenance model defined by
PERM [4] attaches provenance information to query results by extending the origi-
nal query result with the details of tuples that contributed toward the query result.
PERM displays provenance by means of query rewrite mechanism which trans-
forms a normal query Q into provenance query Q+ that computes provenance of Q.
PERM module rewrites the query so as to include provenance specific details. This
rewritten query is a relational query and hence gets the advantage of all inbuilt
optimizations.

When analytics are done in NoSQL stores using SQL interface, the results are
usually presented as views. So PERM model was extended to capture provenance of
data accessed through foreign data wrappers. The idea is demonstrated by building
a proof of concept to analyze data in MongoDB by building a MongoDB FDW and
accessed through modified PERM interface. An extension of PERM model was
built in stable PostgreSQL version 9.3 and tested by writing a FDW for MongoDB
to capture “why provenance” of SQL query run on MongoDB through PERM. The
result of simple query versus provenance query on a SQL Select statement is shown
in Fig. 11.17.

Fig. 11.17 Normal select query result vs provenance query result

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

238

11.5 Summary and Conclusion

The power of Big Data generated through IoT can be leveraged only if the data
captured can be analyzed and reliable results can be obtained. In this chapter, vari-
ous schemes for capturing provenance of Big Data analytic tools like MapReduce
and NoSQL data stores are discussed. It was demonstrated that provenance captured
in MapReduce framework was not only useful for debugging but also for improving
certain classes of job reruns and detecting anomalies in the framework. Improving
performance of workflows using provenance collected as part of the workflows is a
significant use of provenance, as it can save computational power and time for exe-
cution. Extending the work to efficiently perform selective refresh on MapReduce
workflow is an interesting problem. The proposed approach of capturing transfor-
mational provenance using logs and the use of transformational provenance in iden-
tifying anomalies in job execution are promising and can be further improved by
extending the collection of logs used in analysis. The “how provenance” and “why
provenance” captured help in providing explanation for data stored and analytics
done on the data stored in NoSQL stores, respectively. “How provenance” and
“Why provenance” together provide a holistic picture to explain the results of deci-
sions based on analytics on data stored in NoSQL stores.

This chapter restricted the focus to analysis of Big Data. In the context of IoT, the
challenges in capturing provenance of data produced by sensors are very critical,
and the area opens up many research problems which need serious research atten-
tion. Refer to [18–22].

References

 1. Simmhan YL, Pale B, Gannon D (2005) A survey of data provenance in e-science. SIGMOD
Rec 34(3):31–36. https://doi.org/10.1145/1084805.1084812

 2. Tan W (2004) Research problems in data provenance. IEEE Data Eng Bull 27(4):45–52
 3. Agrawal P, Benjelloun O, Sarma A D, Hayworth C, Nabar S, Sugihara T, Widom J (2006) Trio:

a system for data, uncertainty, and lineage. In: Proceedings of the 32nd international confer-
ence on very large data bases (VLDB ’06), VLDB Endowment, pp 1151–1154

 4. Glavic B, Alonso G (2009) The PERM provenance management system in action. In: Proceedings
of the 2009 ACM SIGMOD International conference on management of data (SIGMOD ’09),
ACM, New York, USA, pp 1055–1058. https://doi.org/10.1145/1559845.1559980

 5. Muniswamy-Reddy K, Holland D, Braun U, Seltzer M (2006) Provenance-aware storage sys-
tems. In: ATEC ’06 Proceedings of the annual conference on USENIX ’06 annual technical
conference, Boston, 2006, pp 4–4

 6. Tariq D, Ali M, Gehani A (2012) Towards automated collection of application-level data prov-
enance. In: Proceedings of the 4th USENIX conference on theory and practice of provenance
(2012), USENIX Association, Berkeley, CA, USA, June 14–5, 2012, pp 16–16

 7. Muniswamy-Reddy K K, Macko P, Seltzer M (2010) Provenance for the cloud, FAST, 15–14
 8. Sletzer MI, Macko P, Chiarini MA (2011) Collecting provenance via the Xen hypervisor, TaPP
 9. Ikeda R, Park H, Widom J (2011) Provenance for generalized map and reduce workflows,

CIDR, 273–283

A.M. Chacko et al.

https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1145/1559845.1559980

239

 10. Akoush S, Sohan R, Hopper A (2013) HadoopProv: towards provenance as a first class citizen
in MapReduce. In: Proceeding TaPP ’13 Proceedings of the 5th USENIX workshop on the
theory and practice of provenance, 2013, Article No. 11

 11. Amsterdamer Y, Davidson SB, Deutch D, Milo T, Stoyanovich J, Tannen V (2011) Putting
lipstick on pig: enabling database-style workflow provenance. In: Proceedings VLDB Endow.
5, 4 (December 2011), 346–357. http://dx.doi.org/10.14778/2095686.2095693

 12. Middleware, Wikipedia – the free Encyclopedia. https://en.wikipedia.org/wiki/Middleware.
Accessed 6 Mar 2017

 13. Belhajjme K, Missier P, Goble C, Cannataro M (2009) Data provenance in scientific work-
flows, medical information science reference, 2009

 14. Apache, Apache Weblog. https://httpd.apache.org/docs/1.3/logs.html. Accessed Nov 2016
 15. Bhatotia P, Wieder A et al (2011) Incoop: MapReduce for incremental computation. In:

Proceedings of the 2nd ACM symposium on cloud computing (SOCC ‘11). ACM, New York,
NY, USA, Article 7, p 14. https://doi.org/10.1145/2038916.2038923

 16. Schad J, Quianeé-Ruiz JA, Dittrich J (2013) Elephant, do not forget everything! Efficient pro-
cessing of growing datasets. IEEE Sixth international conference on cloud computing, Santa
Clara, CA, 2013, pp 252–259. doi:https://doi.org/10.1109/CLOUD.2013.67

 17. SQL/MED, Wikipedia – the free encyclopedia. https://en.wikipedia.org/wiki/SQL/MED.
Accessed 6 Mar 2017

 18. Cuzzocrea A (2014) Privacy and security of big data: current challenges and future research
perspectives. In: Proceedings of ACM PSBD 2014, pp 45–47

 19. Cuzzocrea A, Bertino E (2011) Privacy preserving OLAP over distributed XML data:
a theoretically- sound secure-multiparty-computation approach. J Comput Syst Sci
77(6):965–987

 20. Cuzzocrea A, Russo V (2009) Privacy preserving OLAP and OLAP security. Encyclopedia of
data warehousing and mining, pp 1575–1581

 21. Cuzzocrea A (2015) Provenance research issues and challenges in the big data era. In:
Proceedings of IEEE COMPSAC workshops 2015, pp 684–686

 22. Cuzzocrea A, Fortino G, Rana OA (2013) Managing data and processes in cloud-enabled
large-scale sensor networks: state-of-the-art and future research directions. In: Proceedings of
IEEE CCGRID 2013, pp 583–588

11 Automatic Big Data Provenance Capture at Middleware Level in Advanced Big…

http://dx.doi.org/10.14778/2095686.2095693
https://en.wikipedia.org/wiki/Middleware
https://doi.org/10.1145/2038916.2038923
https://doi.org/10.1109/CLOUD.2013.67
https://en.wikipedia.org/wiki/SQL/MED

241© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_12

Chapter 12
Networking Topologies and Communication
Technologies for the IoT Era

P. Beaulah Soundarabai and Pethuru Raj Chelliah

Abstract A kind of deeper and decisive connectivity is the most indispensable
requirement for the projected and promised IoT era. To start with, every common
and casual thing in our midst gets systematically digitized. There are several pecu-
liar advantages being accrued out of the digitization process as well as any digitized
entities/smart objects/sentient materials. The digitization technologies, if appropri-
ately leveraged, can make ordinary objects in our daily environments into extraor-
dinary articles. Digitized elements are self-, surroundings-, and situation-aware
individually as well as collectively. Not only the physical assets but also all kinds of
mechanical, electrical, electronics, and IT devices in our places are accordingly
instrumented and interconnected. They are interconnected to purposefully and pre-
cisely communicate, collaborate, corroborate, and correlate to be innately cognitive
in their operations, offerings, and outputs. Further on, everyday electronics, instru-
ments, machines, equipment, wares, utensils, robots, and other fixed, portable,
wearable, hearable, implantable, mobile, and nomadic devices in our personal, pro-
fessional, and social environments are seamlessly integrated. This integration is
made feasible with the help of cloud-hosted (traditional IT servers and private, pub-
lic, and hybrid clouds) cyber applications, services, and data sources in order to be
empowered adequately to join in the mainstream computing. Even fog or edge com-
puting is beginning to blossom so that localized and user-centric devices are capable
of forming ad hoc clouds of devices. The main objective of fog computing is to set
a stimulating foundation for producing next-generation, real-time, insights-filled,
context-aware, event-driven, and people-centric applications. Thus, clearly we are
heading toward the tightly interconnected world. This chapter is specially crafted
for conveying all about the emerging network topologies and communication tech-
nologies; key limitations of these technologies have also been discussed. In addi-
tion, the chapter provides details on how the inherent issues can be tackled so that

P. Beaulah Soundarabai
Department of Computer Science, Christ University, Bangalore, India
e-mail: beaulah.s@christuniversity.in

P.R. Chelliah (*)
Reliance Jio Cloud, Bangalore, India
e-mail: peterindia@gmail.com

mailto:beaulah.s@christuniversity.in
mailto:peterindia@gmail.com

242

the expressed liabilities, vulnerabilities, threats, drawbacks, and loopholes can be
surmounted toward secure, safe, and smart IoT era.

12.1 Introduction

The technologically inspired capability of instrumenting and interconnecting com-
putationally powerful as well as resource-constrained devices (physical, mechanical,
electrical, and electronics) with one another in the vicinity as well as with cloud-
hosted software applications and data sources over any network is to enable the
devices to exhibit a kind of shrewdness and sagacity in their operations and outputs.
Not only everyday instruments, machines, appliances, wares, utensils, equipment,
etc. but also common and casual articles such as cots, chairs, cups, tables, pipes,
doors, sofas, windows, etc. in our personal, professional, and social environments
are being technically tuned and turned to exhibit hitherto unforeseen smart behavior
and to join in the mainstream computing. Further on, the environments wherein
those embedded yet empowered devices are being deployed in large numbers ulti-
mately become smart in their contributions for the occupants and owners of the envi-
ronment. These transitions are being enabled through the systematic leverage of
hugely powerful edge technologies such as disposable and diminutive sensors, actu-
ators, chips, controllers, codes, stickers, pads, tags, labels, specks, smart dust, etc.
That is, the aura and era of the Internet of things (IoT) have started to beckon and
dawn upon us powerfully with the overwhelming use of promising, proven, and
potential technologies. Our living, working, social, edutainment, and entertainment
places are being systematically decked and demonstrated to be lively and lovely. The
methodical adoption and adaptation of scores of digitization and distribution tech-
nologies are to bring a series of disruptions and transformations in our lives. The
much-anticipated digital living, economy, and the world are bound to see the light at
the end of the long tunnel. The capabilities such as connectivity, networking, com-
munication, integration, and orchestration of digital elements, devices, and IT sys-
tems are imperative to seamlessly share their unique capabilities and capacities.

In this chapter, we are extensively covering the connectivity technologies, topol-
ogies and tools, and their contributions for setting up and sustaining smarter envi-
ronments (smarter homes, hospitals, hotels, etc.) and ultimately the smarter planet.

12.1.1 Describing the Context

A growing array of open standards is being formulated, framed, and polished by
domain experts, industry consortiums, and standard bodies to make the IoT idea
more visible, viable, and valuable. National governments across the globe are set-
ting up special expert groups in order to come out with pragmatic policies and

P. Beaulah Soundarabai and P.R. Chelliah

243

procedures to take forward the solemn and sublime ideals of IoT and to realize the
strategic significance of the IoT paradigm in conceiving, concretizing, and provid-
ing a bevy of context-aware and citizen-centric services to ensure and enhance peo-
ples’ living. Research students, scholars, and scientists are working collaboratively
toward identifying the implementation challenges and overcoming them via differ-
ent means and ways especially standards-sticking technological solutions. This
chapter is specially crafted to throw light on the emerging integration tools and
techniques in order to integrate and orchestrate digitized and connected entities and
elements, some typical integration scenarios being as follows:

• Sensor and actuator networks
• Device-to-device (D2D) integration
• Cloud-to-cloud (C2C) integration
• Device and sensor-to-cloud (D2C) integration [1]

Figure 12.1 gives a glimpse of how disparate devices are getting connected with one
another indirectly.

Fig. 12.1 Connected sensors and actuators

12 Networking Topologies and Communication Technologies for the IoT Era

244

12.1.2 IoT Communication Protocol Requirements

One definition of IoT refers to connecting devices to the Internet that were not pre-
viously connected. A factory owner may connect high-powered lights. A triathlete
may connect a battery-powered heart-rate monitor. A home or building automation
provider may connect a wireless sensor with no line power source. But the impor-
tant thing here is that in all the above cases, the “thing” must communicate through
the Internet to be considered an “IoT” node. Since it must use the Internet, it must
also adhere to the Internet Engineering Task Force’s (IETF) Internet protocol suite.
However, the Internet has historically connected resource-rich devices with lots of
power, memory, and connection options. As such, its protocols have been consid-
ered too heavy to apply wholesale for applications in the emerging IoT.

There are other aspects of the IoT which also drive modifications to IETF’s work.
In particular, networks of IoT end nodes will be lossy, and the devices attached to
them will be very low power, saddled with constrained resources, and expected to
live for years. The requirements for both the network and its end devices might look
like the Table 12.1. This new model needs new, lightweight protocols that do not
require a lot of resources. Considering these unique needs, gaining a deeper knowl-
edge of IoT connectivity and data transmission protocols is paramount. This chapter
is specifically crafted for that.

12.1.3 The Growing Importance of the IoT Paradigm

The ensuing era of IoT is to play a very stellar role in shaping up our everyday envi-
ronments. The IoT concept is an engrossing and essential disruption for everyone in
this extremely connected world. In this section, we discuss the prime and paramount
shifts sweeping the entire human society. It is an important point to note that there
are a number of noteworthy technology-induced transitions happening in the IT
field.

Table 12.1 Comparison of wireless technologies and their usefulness in IoT

Technologies/factors Bluetooth low 802.15.4 Wifi

Cost Excellent Very good Fairly good
Security Fairly good Fairly good Excellent
Power consumption Excellent Excellent Very poor
Ecosystem Excellent Very poor Excellent
Reliability Excellent Fairly good Fairly good
Ease of Use Excellent Fairly good Excellent
Range Fairly good Good Excellent

P. Beaulah Soundarabai and P.R. Chelliah

https://en.wikipedia.org/wiki/Internet_protocol_suite

245

12.1.4 The Meteoric Rise of Device Ecosystem

With innumerable devices, sensors, controllers, and actuators getting fervently
deployed in distributed and decentralized fashion in important locations such as
offices, manufacturing floors, retail stores, food joints, shopping plazas, nuclear
installations, forest and border areas, critical junctions, malls, entertainment cen-
ters, etc., the amount of data getting generated and collected goes up tremendously.
The machine-generated data is far larger than man-generated data.

The device ecosystem is embracing a bevy of miniaturization technologies to be
slim and sleek yet smart in their operations, outlooks, and outputs. That is, multifac-
eted devices are hitting the market in plenty. For example, highly miniaturized yet
mesmerizing smartphones are being produced in millions these days. Smartphones
are not only connecting people with people but also turning out to be capable of
operating machines locally as well as remotely [2].

Digitization and distribution are gaining a lot of ground in the present days;
thereby all kinds of tangible items in our home and social and office environments
are getting transfigured to be computational, communicative, sensitive, perceptive,
capable of knowledge discovery and dissemination, decision enabling, and accom-
plishing. That is, ordinary articles become extraordinary. Casually found objects in
our working, walking, and wandering places become digitized. Thus, IT-enabled
things are cognitive enough to seamlessly and spontaneously join in the mainstream
computing process. In short, every tangible thing gets emboldened to be smart,
every electronics becomes smarter, and every human being is set to become the
smartest in his or her actions, reactions, and decision making with the pervasive,
unceasing, and unobtrusive assistance of service-oriented and smartness-ingrained
devices, game consoles, media players, consumer electronics, and business as well
as IT services and communication networks.

Extreme and deeper connectivity is another well-known phenomenon in order to
establish and sustain ad hoc connectivity among dissimilar and distributed devices
to share their unique capabilities. Further on, it is all about the purposeful integra-
tion with remote off-premise, on-demand, and online applications. These days,
devices are accordingly instrumented in the factory itself to collect or generate data
from their environments and users to be transmitted to centralized control systems.
That is, lately, devices are empowered by embedding a number of newer modules
internally. In addition, devices are enabled to connect with outside world.

12.1.5 The Emergence of Sensor and Actuator Networks

Sensing is tending to be ubiquitous. Sensors are being touted as the eyes and ears of
next-generation software applications. A number of technologies especially minia-
turization, networking, communication, etc. are contributing immensely to the
unprecedented success of the sensing paradigm. Sensors are becoming exceptionally

12 Networking Topologies and Communication Technologies for the IoT Era

246

tiny to be easily disposable, disappearing, and yet elegantly deft. Therefore, sensors,
which are typically low-cost, power, and memory systems, are gradually and gra-
ciously penetrative, pervasive, and persuasive. Sensors are becoming smart in the
sense that they are able to conserve and preserve their battery energy in order to
prolong their lives. Smart sensors are capable of buffering and transmitting the data
captured or generated. Sensors are increasingly complying with the mesh topology
toward increased maneuverability and reliability. Sensors are mainly for environ-
mental and asset monitoring. All kinds of physical, mechanical, electrical, electron-
ics, and IT systems are being fitted with a variety of sensors for monitoring,
measuring, and managing various aspects, conditions, and situations of the systems.
For example, all kinds of vehicles and their body parts are being fitted with smart
sensors in order to proactively and preemptively attend their needs in time so that any
kind of collapse and failure can be prevented. Smartphones are being embedded with
numerous sensors. Even large-scale IT data centers and server farms are being sen-
sor-enabled in order to capture their operational values [3].

Thus, sensors are very vital for our everyday environments especially rough and
tough ones. Sensors are being networked toward taking data from sensors to remote
control systems. There are data fusion algorithms in plenty in order to dynamically cap-
ture and aggregate various sensor values to come out with composite indicators. Further
on, there are ways and mechanisms being prescribed in order to eliminate all kinds of
sensor data impurities, deviations, deficiencies, and disturbances so that the primary
needs of data trustworthiness and timeliness are being fulfilled. Increasingly sensor data
are subjected to a litany of investigations in order to squeeze out valuable intelligence for
taking informed decisions in time. There is a growing array of sensor-centric data trans-
mission protocols. Further on, sensor data modeling is an interesting phenomenon.

There are industry-strength data formats for unique and unambiguous represen-
tation, exchange, and persistence and interpretation. The list of sensor-centric soft-
ware services is steadily growing. Sensor gateways, middleware, brokers, adaptors,
connectors, drivers, and controllers are being leveraged in order to collect and trans-
mit sensor data. There are frameworks and platforms to speed up the process of
sensor-cloud integration so that sensor data can be accumulated in one centralized
place to enable cloud-based data analytics. Sensor data and the insights extracted
out of it are tactically and strategically sound for various service providers. Thought-
provoking industry and personal and social use cases are being published with the
continued growth and adoption of the sensor technology. Actuation is generally
based on sensing, and hence actuators and sensors go hand in hand. Actuators are
the ones that accomplish the execution based on the sensor findings.

Sensors and actuators are therefore the essential ingredients for any environment
to be smart. Actuators are designed in such a way to receive sensor values and act
strictly based on that. Thus, networking of sensors and actuators turns out to be an
important affair for setting and sustaining smarter environments [4]. Clouds are the
most sought-after IT infrastructures for hosting sensor-specific platforms and appli-
cations. With sensor data analytics being crucial for formulating sophisticated and
people-centric applications, sensor data analytics platforms are increasingly
deployed in clouds.

P. Beaulah Soundarabai and P.R. Chelliah

247

The pragmatic use cases out of sensor networks are emerging and evolving. A
wireless sensor network (WSN) is a network formed by a large number of sensor
nodes where each node is equipped with a sensor to detect different physical phe-
nomena such as light, heat, pressure, presence, gas, etc. WSNs are regarded as a
revolutionary information gathering method to build next-generation people-centric
IoT applications. There are several research papers depicting the growing and glow-
ing sensor applications in the peer-reviewed sensor journals, e.g., [5, 6].

Body sensor networks (BSNs) are also very popular challenges related to IoT.
BSNs are to improve the quality of life and for providing ambient assisted living
(AAL) facility. BSNs ensure improved healthcare of disabled, debilitated, and dis-
eased people. Also, they improve our daily routines such as playing sports. The
distributed and changeable character of BSNs introduces new concerns and chal-
lenges to solve. As per experts, the research in the area of BSNs must cover low-
level hardware design to higher-level communication and data fusion algorithms, up
to top-level applications.

12.1.6 Sensor-to-Cloud Integration

Sensor and actuator data need to be taken to nearby or faraway clouds for storage
and analytics. There are multiple cloud options ranging from off-premise and on-
premise to edge clouds. Public clouds are typically for historical, comprehensive,
and batch processing, whereas interactive, stream, and real-time processing in a
secure fashion are better accomplished by edge/fog clouds wherein proximate or
local processing gets done comfortably. Edge or fog clouds are being formed
dynamically by clubbing and clustering together several resource-intensive devices
in the particular environment. Connected devices are bound to produce futuristic
fog clouds as there is a lot of interest in real-time analytics for gathering tactical and
timely insights. Increasingly IoT application enablement platforms (AEPs) situated
at cloud environments in association with IoT data analytics platforms are able to
receive ground-level data and work on it to carve out pragmatic intelligence.

There are several unique advantages being associated with clouds these days.
Clouds are being positioned and prescribed as the best-in-class IT infrastructure for
sensor data storage and analytics. Cloud infrastructures inherently support IT
resource elasticity, application/workload scalability, etc. through IT consolidation,
centralization, federation, sharing, automation, and virtualization techniques and
tools. Geographically established clouds are getting integrated through standards
and brokers; thereby distributed resource and service orchestration get facilitated
with just a single click. Data virtualization and information visualization platforms
are seamlessly integrated with data analytics platforms to speed up the transition
from data to actionable insights that gets disseminated to machines as well as men
in time to proceed with the accurate actuation and execution with clarity and
confidence.

12 Networking Topologies and Communication Technologies for the IoT Era

248

In summary, everyday objects are being equipped with embedding sensors to
gain the communication capability. This will create a range of potentially powerful
and promising services in many different domains. Fire, flame, and fall detection
procedures are automated through the employment of several sorts of sensors.
Similarly, there are multiple scenarios being identified and articulated well for sen-
sor and actuator networking. Thus the fact that sensors are talking to local as well as
remote sensors, actuators, and applications collectively as well as individually, is
going to be a real game-changer for the forthcoming IoT world.

12.2 Deciphering the IoT Connectivity Methods

In the last few years, the Internet of things (IoT) idea has been drawing a huge atten-
tion from academic professors and industry practitioners. The worldwide enterprises
and organizations are striving hard and stretching further to use this strategic idea
efficiently and elegantly so that they can derive the required strength to keep up their
brand value and the position in the coming decades. Figure 12.2 vividly illustrates how
ground-level physical assets get networked with one another as well as integrated with
off-premise/on-premise/edge infrastructures in order to deposit data to be crunched
instantaneously to squeeze out usable and reusable intelligence. There are three promi-
nent layers in any IoT system/environment setup. The first layer is all about collecting
the environmental as well as digitized assets’ state information. Once the timely and
trustworthy data gets collected, they need to be transmitted to data processing, storage,
mining, and analysis systems toward knowledge discovery and dissemination.

Fig. 12.2 Layers of IoT

P. Beaulah Soundarabai and P.R. Chelliah

249

According to Machina Research, the low-power wide area (LPWA) network will
outperform 2G, 3G, and 4G by providing a higher rate of IoT connectivity. It also
predicts that there would be around 50 billion connected things by the year 2020.
LPWA networks also support M2M applications which are usually deployed in
remote areas and require longer battery life as they might be kept unattended for a
longer duration. So, these characteristics of LPWA technology provide an apt solu-
tion for many IoT applications [7].

The backbone of IoT is the connectivity of devices. It networks with people,
things, and software applications and transfers data between them through the
Internet communication infrastructure, which is public and open. And through that,
a variety of everyday activities are monitored, controlled remotely, and studied for
further intelligence. If there is no interconnection, there will not be any communica-
tion between smart objects and devices. Therefore it is very important to understand
the IoT network topology.

12.3 Network Topologies

There are plenty of purpose-specific and agnostic devices which are of different
varieties. Thus many factors will affect the working and performance of IoT if the
right topology for optimal networking is not chosen. A network topology is a
method through which the objects of the IoT are arranged in the network. The
majorly used IoT network protocols are point-to-point (P2P), star, and mesh. These
are briefly discussed in the following sections.

12.3.1 Point-to-Point (P2P)

P2P topology devices communicate with each other directly without the interven-
tion of cloud services. These P2P networks have a great potential for scalability,
distributed system for data sharing, and robustness as peers are connected to other
devices independently. In alternative P2P protocols [5] [6], there are hash functions
used to choose the devices to be connected with them randomly. Adaptive P2P pro-
tocols [8] are also available to have a self-organized topology which allows the peer
to directly choose and connect with them so as to get the desired data from them.
This model is resistant to the attacks and active peers get the connection, and mali-
cious nodes are avoided through the choice-based selection of peers. Peers in the
network are warned with the identity of malicious nodes so that the malicious nodes
are completely avoided for communication. Each node can choose a limit x as the
number of peers with which it wants to connect; this is useful to save the
bandwidth.

12 Networking Topologies and Communication Technologies for the IoT Era

250

12.3.2 Star Topology

In this type of topology, each object is connected to the data center through its dedi-
cated cloud services. Most of the internet services work in this type of topology. The
centralized approach makes it easier to control and manage as data is received,
processed, and analyzed in a single data center. The entire devices in the network
can be hacked by hacking a single server. It is not much scalable; as the number of
devices increases, the collection and processing of data also increase which makes
it difficult to maintain the cloud service architecture due to the centralized approach.
There is also a high latency as the devices communicate with each other through the
same network.

12.3.3 Mesh

In this model, each device is connected to all other devices in the network, and each
can send and receive data among them. This is the mostly used topology for IoT, as
all the devices are connected to all other devices in the network and through this
data transfer among the devices are enabled completely without much delay. Each
module works independently as a centralized module. Its major limitation is that it
is tough to implement as each object should know the address of the other devices;
adding a new device into an existing topology would complicate the hardware
implementation. If wireless communication is used such as nrf24L01RF, the imple-
mentation would be easier than the wired communication. These radio frequency
models are widely used in healthcare wearable devices as they do not require line of
sight for data transfer.

Figure 12.3 illustrates the relevance of application protocols such as REST,
CoAP, etc. in establishing IoT systems. There are data communication protocols
such as ZigBee, WiFi, Bluetooth, etc. for establishing connectivity between devices
as shown in the figure. Figure 12.4 extends the personal and local area networks to
the remote software applications via the public Internet. The various technologies
contributing for such kinds of people-centric applications are described pictorially.
Table 12.1 clearly delineates the various factors of IoT protocols.

IoT is the driving force for a wide variety of manufacturing firms, and it scales
from a single confined device up to enormous devices with embedded techniques;
using cloud infrastructure, they get connected in the real time.

P. Beaulah Soundarabai and P.R. Chelliah

251

12.4 Wireless Technologies

12.4.1 Low-Power Wide Area Network (LPWAN)

Low-power wide area network is the latest wireless technology that uses low bit rate
(bandwidth) long distant communication by consuming low battery power. So it is
also known as low-power network (LPN). Its main aims are to achieve the following
features so as to address the economy and the power concerns than the mobile net-
work standards:

• Long communication range (10 KM to 50 KM)
• Low bandwidth
• Low cost

Network technologies could not provide a long range with low cost and bandwidth
wherein LPWAN is meant for most of the IoT and M2M business solutions which
majorly use sensor applications. Traditional network technologies are of a wired
network. Due to the introduction of 802.11 standards,the huge impact has been
made on the market because of wireless communication.

Fig. 12.3 Application protocols of IoT

12 Networking Topologies and Communication Technologies for the IoT Era

252

Table 12.2 shows the comparison of various wireless technologies for the very
important factors of range and the bandwidth ranging from low to high. It is very
clear that LPWAN is the one and only wireless technology which offers a long range
of data transfer with low bandwidth. It uses very few base stations and gateways to
cover a long range of up to 50 km. It also has very good network coverage in rural
regions where there is more open space. It is expected that the most of the 50 billion
connected objects in the year 2020 will use LPWAN for the transmission of data.
Applications that use smoke detectors, parking management, healthcare bands, GPS
services, etc. use LPWAN to connect their sensors which are cost effective at the
same time they are also rapid.

The protocols of IoT are categorized into many levels such as infrastructure,
communication, network, security, etc. We will see infrastructure protocols and
communication data protocols in detail.

Fig. 12.4 IoT networking

P. Beaulah Soundarabai and P.R. Chelliah

253

12.5 Infrastructure Protocols

12.5.1 Context Centric Networking

This protocol is from the project CCNX that developed an architecture for the data
sharing by avoiding the limitations of scalability and security. This protocol can be
deployed on an existing network with the help of middleware software; this has tre-
mendous power on content networking. CCN is an open protocol and so it can be
altered as required. Its only goal is to make a dynamic and secured and massively
scalable network to a varied set of devices to communicate and share data with them.

This protocol is exclusively for such environments with high-speed data com-
munication where the source and destination are heterogeneous in nature. The tra-
ditional source-destination TCP/IP model does not provide the best solution. In
CCN [9], the content publishers create named payload packets with content object
messages. Signatures are used with the packets to secure the content with the com-
bination of name, publisher’s id, and the payload. The consumers or clients issue an
interesting message as a request with the name of the desired content. This request
traverses all over the network and kept in a table called Pending Interest Table (PIT)
[10]. When a content object matches with the interest, then the content object is sent
to the client on a reverse path by following the information on the PIT. Along the
way, this content object can be cached, and the matched one with the interest mes-
sage may be then used. This content is self-identifiable as the security binding is of
interest [11], publisher key and the payload it can be decrypted at any point in time.
This provides a complete security of data in the network.

Table 12.2 Comparison of
wireless technologies for the
range and bandwidth

Range Bandwidth Wireless technologies

Short range Low Bluetooth 802.15.3
RFID NFC
WBAN 802.15.3

Medium 802.11a
802.11b
802.11 g

High 802.11c
802.11 ad
802.11 g

Medium range Low WPAN 802.15.3
Medium ZigBee 802.15.4

2G, 3G
High 4G, 5G

Long range Low LPWAN
Medium VSAT
High –

12 Networking Topologies and Communication Technologies for the IoT Era

254

12.5.2 LoRaWAN

Long-range (LoRa) WAN is an exclusive LPWAN design, which is meant for the
wireless objects that work with battery power right from a small region to global level
networks. It addresses the key design issues of IoT such as mobility, unidirectional
and bidirectional connectivity, and communication along with localization services.
It provides a high level of independence to the developers and to the business.
LoRaWAN has the star of star topology in its network architecture that has a transpar-
ent bridge called gateways, between the network servers and the smart objects. All
these objects are enabled with broadcast, multicast, and unicast communication, and
the required one can be chosen dynamically according to the mass distribution of data
to efficiently handle the communication time and the bandwidth.

Different data rates and frequency channels are used for the communication
between the gateways and smart objects. Based on the communication range and the
duration of the message, the data rate is selected. It is because of these different data
rates and the wide-spectrum technology; the communications do not interfere with
one another by creating the virtual channels and thus increase the gateway’s capac-
ity. The adaptive data rate is used for managing each end device’s data rate and
frequency output. The security of the data communication of Internet of things is
essential as it is the universal problem that involves lots and lots of confidential
personal data of the individual and the society. This is achieved by encryption layers
such as:

• Unique network key (EUI64) for the security on the network level
• Unique application key (EUI64) for the security on end to end in the application

level
• Device-specific key (EUI128)

Longer range, high robustness, multipath resistance, Doppler resistance, and less
power consumption are the key characteristics of LoRa. LoRa transceivers can
operate between 137 MHz to 1020 MHz, and so they are used in licensed bands.
They are also often deployed in ISM bands (Europe, 868 MHz and 433 MHz; the
United States, 915 MHz and 433 MHz). The LoRa physical layer is enabled to be
used with any MAC layer, but LoRaWAN is the MAC which is majorly used as it
operates in the star topology.

Apart from the size of the payload, the communication parameters such as
spreading factor (SF), bandwidth, carrier frequency (CF), and coding rate(CR) have
a significant impact on the airtime of LoRa transmission. A packet of 20 bytes can
have the airtime ranging from 9 milliseconds to 2.2 s based on the choice of these
parameters [12]. We shall also discuss the emerging low-power technologies.

P. Beaulah Soundarabai and P.R. Chelliah

255

12.5.3 Narrowband IoT

Narrowband is the initiative from 3rd Generation Partnership Project (3GPP) that
writes standards for the cellular network for the devices which require very low data
rate in the mobile communication and are powered by batteries. It is an LPWAN
standard designed for mobile IoT. NB-IoT technology will connect the smart things
such as simple wearable in the coverage area as they require very low battery power
and low data rate. It majorly focuses on low-cost, low battery power, and a large
number of things connected in an indoor coverage area. It can be deployed to inband
spectrum which is allocated to long-term evolution (LTE) or stand-alone spectrum.

12.5.4 NB-IoT Vs LoRa

NB-IoT and LoRa technologies are unique in comparison with each other as they
serve different commercial and technical requirements and are exclusively for dif-
ferent applications such as the technologies like WiFi and Bluetooth. LoRa works
with unlicensed spectrum below 1 GHz which procures no cost for the applications
using it, whereas NB-IoT uses licensed bands which are less than 1 GHz. The bands
from 500 MHz to 1 GHz are optimum for the long-range communications. LoRa
and LoRaWAN are asynchronous protocol and used for simple implementation and
cost effectiveness but cannot offer a better quality of service (QoS). NB-IoT is a
time-slotted protocol which is very much optimal for the quality of service but can-
not provide a durable battery lifetime comparing LoRa. The higher-level applica-
tions which really require the assurance of QoS opt for NB-IoT, and the lower-end
business solutions prefer LoRa. NB-IoT is the best option for applications that
require very frequent communications, low latency rate, and a large volume of data
transfers. The applications which look for durable battery life and lower cost and do
not need frequent communication opt for LoRa.

12.6 Technologies for Applications

At any point in time, there will not be only one technology that will rule the world
of IoT. The deployment strategies, application nature, and requirements, technical
differences, device specifications etc. will decide the technology as its best fit. As
the number of devices getting connected to IoT grows day by day, the underlying
networking technologies are also expected to scale up to the growing needs where
the expected number of smart things is not in millions but in tens of billions. For
instance, if we consider the electric meters, these devices require high data flow and
low latency with frequent communication. As they are connected to the electric
power source, they do not require low battery power with a long life of the battery.

12 Networking Topologies and Communication Technologies for the IoT Era

256

The power grids of electric meters have to be monitored continuously to take deci-
sions on interruptions, power consumptions, load, etc. NB-IoT would be better for
this application as it is static, has frequent communication, and has high data rates
and it is easy to give a better coverage through NB-IoT rather. LoRaWAN might not
be a solution for this as this is mainly for low latency which is not required for elec-
tric meters at all.

Consider smart building application, which focuses on monitoring the tempera-
ture, moisture, humidity, water flow, electric leakages, security, etc. and in turn
alerts the administrator of the building with alarms or messages immediately to
safeguard the building. Such applications will have many numbers of sensors which
are of low cost and with high battery life. These sensors do not require frequent
communication, and so LoRa might be a better solution for this kind of
applications.

12.6.1 Random Phase Multiple Access (RPMA)

Random phase multiple access technologies are a combination of technologies that
uses low-power wide area channel access method exclusively designed for wireless
machine-to-machine communication. It has been designed by ingénue [12]. It uses
2.4 GHz spectrum which is free of cost and can cover up to 300 square miles which
takes nearly 30 cellular towers to cover the same area. In the static position, its
speed is 642 kbps for uplink and 156 kbps for downlink which is 10 times speedier
than the dial-up connection. On the move, its speed drops down to 2 kbps, and this
speed is more than enough for almost all the IoT mobile objects.

The special feature of RPMA is that it has backward compatibility with network
longevity for decades. RPMA provides reliable network coverage and reliable mes-
sage transmission. In the open space like desserts and large swathes of lands, it has
the coverage of 450 square miles, and in the land, with tall buildings and trees, its
coverage drops to 300 square miles as the radio waves require more access points.
It has optimization in all layers of the protocol for low-power consumption; long
battery life is assured by adaptive data rates. In the case of a cellular network, the
battery power drains out quickly due to the overheads of the protocols used, but
RPMA has the minimized protocol overhead which leads to durable battery life. All
these abovesaid advantages would be useless if there is no unprecedented coverage.
It can penetrate through concrete inside buildings and underground to reach the
devices by giving a broad range of coverage.

P. Beaulah Soundarabai and P.R. Chelliah

257

12.6.2 Time Synchronized Mesh Protocol (TSMP)

This is a protocol developed by Dust Networks as a communication protocol for self-
organizing wireless networks of independent devices. These devices synchronize
with each other from time to time, and they communicate with each other in their
time slot as in the case of round robin or time division multiplexing [13]. They trans-
mit and receive signals over a common path by synchronized switching, and each
signal is available in the common signal path for a fraction of the time period. So this
protocol requires high-speed transmission. This protocol is designed for a reliable
data delivery even in a noisy environment. Channel hopping is used to avoid the
packet interference by sending the TSMP packets with different radio channels.

DigiMesh is another protocol of the same type developed by Digi International.
They adopt routing protocols such as Dynamic Source Routing (DSR) and Adhoc
On-Demand Distant Vector Routing (AODV). TSMA tries to achieve the
following:

• Reliability – with low battery power with a higher rate of packet delivery for all
its sensor nodes. [14]

• Scalability – this protocol is scalable to thousands of nodes in the mesh topology
in the same radio frequency (RF).

• Security – TSMP authenticates all the packets so as to provide integrity and secu-
rity for all its data packets.

• Environment and climate – TSMP nodes can operate between the temperature of
−40 degree Celsius to 85 degree Celsius and also with varied radio frequency
noise levels with a layer 4 of quality of service (QoS).

12.6.3 Nano-Internet Protocol (NanoIP)

Nano-Internet protocol creates a miniature of the internet-like network for its
embedded devices majorly sensor devices [15]. It avoids the overhead of TCP/IP by
keeping the local addressing for its wireless network. This protocol is used for the
subcategory of IoT, known as Internet of Nano-things which is the interconnection
of nano-things with the existing internet communication. But it requires different
network architecture. Exclusive architectures are proposed for intra-body networks
for healthcare monitoring-related applications and for interconnected office where
each and every internal component of objects in the office is provided with trans-
ceivers that allow them to be connected all the time in the network. The user can
track of his entire office not only his employees but all his office gadgets from any-
where easily. The components such as nano-routers, nano-nodes, and nano-
microinterface devices and gateways are required for this nanoIP protocol.

Different channel-accessing models are required for nano-networks depending
on the data and how they are encoded. Carrier sensing-based MAC protocols [16]
will not work with this pulse-based communication as there is no carrier signal

12 Networking Topologies and Communication Technologies for the IoT Era

258

available for sensing. Very complex protocols cannot be used for the simple nanode-
vices. Synchronization of these nanodevices is also a very open research issue. The
short pulses transmitted by the nanodevices might face collisions among the other
nodes as they all try to access the same communication channel.

These protocols use help to connect the host name to IP address within the net-
work and also help to see the list of URLs that are being broadcast by the peers in
the network using bluetooth low-energy beacon (BLEB). There are protocols such
as Universal Plug and Play that uses open connectivity. These protocols permit the
peer devices to view each other device’s presence on the network and establish the
network services for data sharing.

12.6.4 Multicast Domain Name System (mDNS)

The small networks which do not have a local name server use this multicast DNS
that resolves hostname with IP address. In this protocol, when a client wants to
resolve a host name, it sends a probe query message looking for the host having the
same name. The particular host machine will now multicast a message with its IP
address, and all the nodes in the same subnet can use this message to update their
cache memories. Table 12.3 describes the various fields of query message present in
the template of mDNS.

Table 12.3 Query message format of mDNS

Field Meaning

Length of
the field (in
bits)

QNAME Name of the node to which the query is addressed to String size
of the name

QTYPE The type of the query, i.e. the type of resource record which
should be returned in responses. All the records of the answer,
name servers, additional records are together called is resource
records

16

UNICAST-
RESPONSE

Boolean flag indicating whether a unicast response is desired.
This is majorly used to avoid the broadcast in the network. If
this field is set, then the reply should go as a direct unicast
message to the node which has sent the query through which
unnecessary broadcast to the whole network is avoided

1 or 0

QCLASS Class code. The code of the resource record being requested by
the client

15

P. Beaulah Soundarabai and P.R. Chelliah

259

12.7 Communication Data Protocols

12.7.1 Message Queuing Telemetry Transport (MQTT)

This message queuing telemetry transport protocol is exclusively designed for
machine-to-machine connection so as to have a lightweight data transfer between
the devices. It uses low bandwidth but has high latency, and it is an unreliable net-
work. It was developed by IBM in 1999. This protocol is suitable for mobile devices
where the battery power and bandwidth utilization are very crucial. It uses TCP/IP
port 1883 and TCP/IP port 8883 for using it over Secured Socket Layers (SSL).
MQTT does not provide security as it is a lightweight protocol, but the security can
be achieved by adding a layer of an application that encrypts the data in that level.
MQTT-SN is another variation of MQTT which exclusively used the machine-to-
machine and mobile applications that involve sensors. [17].

12.7.2 Constrained Application Protocol (CoAP)

This is a special web-based data transfer protocol for the usage among the con-
strained nodes such as very low battery power, bandwidth, and lossy networks.
These nodes generally have a simple microcontroller with a low RAM and
ROM. IPV6 on low-power personal area network usually has a high level of packet
loss and error rates with a very less throughput. This CoAP is for such nodes and
networks so as to utilize the battery power smartly and achieving automation. It sup-
ports multicasting and has very low overhead, and so it is very simple for con-
strained applications and environments such as M2M applications and IoT
applications.

The key characteristics of CoAP are as follows:

• Web-based protocol for M2M and constrained applications
• Supports unicast and multicast at the same time
• Uses asynchronous message passing and achieves simplicity
• Supports URIs
• Uses simple caching techniques
• Minimizes the complexity of HTTP by using RESTful protocol
• Low overhead for the header and has low parsing complexity
• Supports content type and discovery of resources (CoAP services)

12 Networking Topologies and Communication Technologies for the IoT Era

260

12.7.3 Extensible Messaging and Presence Protocol (XMPP)

XMPP is for open technologies that support instant messaging, presence, multiuser
chat, video calls, voice calls, routing of XML data and lightly weighted middleware
with the content association. This protocol is a discovery against the closed instant
messaging [14]. Key Characteristics of XMPP are:

• Simple: XMPP protocols are very simple, open, and free which are easily imple-
mentable and understandable. There are multiple implementations freely avail-
able for clients, servers, libraries, server, and client components.

• Standard: It follows Internet Engineering Task Force standard (IETF) to make
the XML streaming protocols. Its specifications are available as RFC 3920, RFC
3921, RFC 6120, RFC 6162, and RFC 7622.

• Popular: there are more than 10,000 XMPP servers and millions of users for the
XMPP’s instant messaging across the world. Google Talk is one among the
instant messaging application. It enables the users to build and deploy real-time
applications using its varied services.

• Secured: End-to-end encryption is used to secure all its communication, and the
server can be removed from the public network at any point of time.

• Distributed architecture: The decentralized architecture of XMPP can be adapted
by any user to run their own XMPP server making the organizations and indi-
viduals to experience the fun in communication.

• Flexible: XMPP also provides network management, content organization, gam-
ing, chatting, audio and video sharing, web services, remote system collabora-
tion, and monitoring with cloud computing.

• Scalable: Through the power of XML, any application and functionality can be
built on top of XMPP protocols making it scalable vertically.

XMPP-IoT is another version of XMPP where it is dedicated to people-to-
people, people-to-machine, machine-to-people, and M2M communications effec-
tively. Software implementation for the toolkits, client, server, and client and server
components is available in major programming languages.

12.7.4 Data-Distribution Service for Real-Time Systems (DDS)

It is a middleware protocol which revolves around the data connectivity and distri-
bution. By integrating the system components, it provides data connectivity with
low latency and high scalable and reliable architecture for Internet of things.

It abstracts the application from the core operating system. This protocol acts as
the middleware between the application software and operating system and makes
the system components to interact with each other without concentrating on how to
pass a message between the system and application. It allows various programming
languages to write the application program and to share data across the operating

P. Beaulah Soundarabai and P.R. Chelliah

261

system and processor architectures. The connectivity, data discovery, scalability,
QoS, and security are taken care by the middleware. Features of DDS include:

• Data centric – DDS provides quality of service-based data sharing by enabling
the applications to publish and subscribe to topics that are identified with their
topic names. Subscription specifies the content filters and time and filters only
the sublevel data which are published on the particular topic but not the complete
content of topic thus reduces the data size being transferred in the communica-
tion network. It also forces all the messages to include the metadata such as
contextual information that the DDS need to understand when it receives the
data. Thus DDS knows the type of text and controls the order of sharing the data.

• Data space transparency – DDS keeps the data storage transparently by keep-
ing the local and global data in the application with the single directory view. So
every data looks like it is stored in the local storage, and requesting for this data
is also in the same way as of accessing the local data. If the data is in the remote
nodes, then DDS takes care of sending the request to appropriate node.

• The quality of service (QoS) – Data reliability and security for the real-time
data are provided by what each node needs. DDS efficiently decides what part of
the whole topic data is required by the node and sends only that part of data. It
also tracks whether the data reaches the destination, and if it does not reach, the
middleware implements the reliability algorithm and retransmits the data to the
destination till it receives it. When the systems change their locations, DDS
makes the changes in the system registers, and the sending and receiving to such
location-changed systems is taken care of effectively. It sends the update mes-
sages as a multicast to many remote nodes in a single instance. As data undergoes
lots of changes from time to time, DDS updates the different version numbers
and automatically translates the data as and when updated. It also encrypts the
data on the fly.

• Dynamic discovery – As the nodes keep changing their location, DDS takes care
of tracking them, and the client and server do not need to know their physical IP
addresses. The dynamic discovery of DDS helps to achieve this, and it also dis-
covers the publishing data and also works with the different machine architec-
tures. The addition of any communication participant on any type of operating
system platform or hardware platform is achievable by the tremendous power of
DDS.

• Scalable architecture – DDS architecture is capable of adding from a small
device to an enormous architecture of cloud systems. It also scales to thousands
and millions of nodes and delivers data in a very high-speed network and also
manages the data objects reliably. It has a high availability and security to all its
data in a single communication channel.

12 Networking Topologies and Communication Technologies for the IoT Era

262

12.8 Communication Protocols

Various communication protocols are listed below:

• Ethernet – Ethernet is used in local area networks, metropolitan area networks,
and wide area networks. It follows the IEEE 802.3 standard and supports higher
bit rates and longer distance communication. It was the first one to replace the
wired LAN-like token ring and ARCNET. It has a good backward
compatibility.

• IEEE 802.15.4 is a standard that defines the operations for low-rate wireless
personal area network (LR-WPAN) in its physical layer and media access layer.
By keeping these protocols as the basis, ZigBee, ISA100.11a, WirelessHART,
and MiWi have been proposed as the extended standard. The upper layers have
been developed in these new standards. IEEE 802.15.4 can be used with
6LoWPAN and Internet protocols for building wireless embedded Internet.

• NFC – IoT networks which require a very close communication can use this
Near-Field Communication (NFC). When we use our identity card over a card
reader for entry into offices, it uses NFC for such applications. It is based on ISO/
IEC 18092:2004 standard and uses a center frequency of 13.56 MHz with the
data rate of up to 420 kbps. The range can vary from few meters which are shorter
range compared to the wireless sensor networks. When two NFC-enabled devices
are brought nearer to each other, they can establish a network communication
automatically without any prior configuration or setup. The devices can exchange
data such as small text messages, audio, and small image files. Some features of
NFC include ease of implementation and use, automatic and instant connectivity,
no requirement for prior configuration, and smart key access for security.

• ANT& ANT+ − ANT and ANT+ are wireless sensor network technology that
has a protocol stack for wireless communications with a semiconductor radios
operating in the 2.4 GHz to communicate using the standard protocols for coex-
istence, data representation, security, and reliability by including error
detection.

• Bluetooth – Bluetooth works in 2.4 GHz ISM band personal area network with
frequency hopping. It can range up to 100 m with the data exchange rate maxi-
mum of 3 Mbps. Wireless headphones and speakers use Bluetooth, and simple
audio, video, and text messages can be exchanged through Bluetooth.

• Bluetooth Low Energy (BLE) – BLE is derived from Bluetooth, which is used
for low battery power devices and with less data usage. Whenever there is no data
exchange requires, BLE continues to be in sleep mode. BLE is majorly used in
wearable healthcare tracking and monitoring devices and for fitness-related
applications.

• ZigBee – The ZigBee protocol uses the 802.15.4 standard, and it is a mesh LAN
protocol with 2.4 GHz frequency range with 250 kbps. It is exclusively designed
for building and home automation applications such as switching on and off of
lights and thermostats. It can connect up to 1024 nodes in the network within
200-m range. [18]

P. Beaulah Soundarabai and P.R. Chelliah

https://en.wikipedia.org/wiki/Ethernet
http://www.bluetooth.com/Pages/Bluetooth-Home.aspx
http://www.zigbee.org/

263

• EnOcean – EnOcean is an energy-harvesting wireless technology which works
at a low frequency. Its transmit range is up to 30 m indoors and 300 m outdoors.
It is for applications with extremely low-power requirement such as smart build-
ings, wireless control of lights and fans, etc. These energy-harvesting technolo-
gies use power generation elements to convert energy from various sources to
electric energy from natural sources like solar cells, electro-thermal elements,
light, wind, vibration, and hydro-energy. There is a lot of research happening in
the energy harvest technology which can easily solve the quick power loss factor
in the wireless sensor nodes which are used in IoT ecosystem.

• WiFi and WiMAX – These protocols are based on the standard IEEE 802.16
and are intended for wireless metropolitan area network (MAN). Its transmission
range can go up to 50 km for fixed stations, and for mobile devices it is between
5 km and 15 km. WiMax works with the frequency between 2.5 GHz to 5.8 GHz,
and its data transfer rate is up to 40 Mbps.

• Narrowband IoT (NB-IoT) – Narrowband IoT is designed for low-power
devices and can be used for M2M for low-power devices. It follows LPWAN
radio technology standard and used to connect a wide range of devices that use
cellular telecommunication bands. It is based on a DSSS modulation. It focuses
on low-cost, low battery power aims at connecting a large number of devices
with the indoor applications.

12.8.1 5G Technology

The 2G technology was designed for voice and 5G for voice and data; 4G is for
broadband internetwork applications; 5G is aimed at fusing the capabilities of com-
puting techniques with the data everywhere, and so trillions and zillions of things in
the connected world such as wearable devices to home automation nanodevices
exchange data without worrying about the computing power and speed as the 5G
network can do all these processes as and when required. 5G will not only be faster
but also smarter; all the devices with sensors which are location aware, and context-
aware objects will sense the data and work together with each other automatically
without the intervention of human being. The 5 g technology uses network func-
tions virtualization and software-defined network to achieve all its goals. The fea-
tures of 5G that support IoT are as follows:

• The massive number of heterogeneous devices to be connected which are more
than 200% of the number of devices in the existing networks

• Enables high data transfer (100 times more than the traditional networks)
• Low latency between the sender and receiver devices
• Consistent quality of services (QoS) and quality of experiences (QoE)
• Achieving the abovesaid goals with the reduction of cost

12 Networking Topologies and Communication Technologies for the IoT Era

http://www.enocean.com/en/home/
https://www.wi-fi.org/
https://en.wikipedia.org/wiki/WiMAX

264

12.8.2 Software-Defined Networking (SDN)

The spread of IoT has created new paradigms among the networking and network-
ing protocols in the current and future networks as IoT welcomes heterogeneous
devices and heterogeneous networking approaches and protocols. The entire IoT
environment has a broad networking of several networks, devices and objects, and
nano-objects with heterogeneity. The integration of IoT with software-defined net-
working is to coordinate with the different types of payload that emerge from IoT
elements. The structure and the modular level of IoT controller are determined
through the SDN controller, and it has to interact with the higher-level controllers
and to respond to the IoT activities.

SDN is the protocol through which the network control is modularized from and
separated from the lower-level networking devices and is embedded in a software
tool known as SDN controller. The networking services thus get abstracted from the
lower-level components, and the higher network is independent of these modules.
Application layer takes care of the user applications, and the components of SDN
stay in the control layer and interaction with the infrastructure layer which contains
all the networking components and with the application layer components.

The core of the SDN is its SDN controller which controls the whole network.
The SDN controller looks to be a logical switch for the network components. This
brings the complete independence to the networking devices to concentrate on their
own application functionality alone without the intervention of networking over-
heads. The network administrators can change the network settings at any time with
the help of SDN software. SDN uses OpenFlow protocol for all such activities. The
core advantages of SDN are briefly presented below:

• Centralized control of heterogeneous network devices: The network that uses
SDN protocol for communication can get the centralized control with the help of
SDN controller irrespective of the type and or manufacture of the device.

• Complete automation: SDN framework enables the complete automation of
networking functionalities and thus eliminates the dependencies and operational
cost and error rates.

• High-level security: Configuring each network device is not at all required
in SDN framework, and this feature eliminates all the possible security threats
and other reliable issues that might be faced during the implementation
otherwise.

• Flexibility: SDN protocol provides flexibility to user applications and runtime
changes to the configuration and thus flexibility and improves the user
experiences.

P. Beaulah Soundarabai and P.R. Chelliah

265

12.8.3 Network Functions Virtualization (NFV)

NFV is a virtualization technology that provides network services without the need
customization of hardware appliances for each of them. It designs the communica-
tion network, its various functionalities, and the procedure of operational principles.
SDN used NFV for the virtualization and the management skills of SDN together
with NFC give the advantage of both the paradigms.

As NFC is an evolving approach, lots of research issues such as addressing of
migration of a virtual machine and their services, higher availability and reliable
services of NFC have to be designed effectively.

12.8.4 Specialized IoT Networks

We have seen mobile networks. There are unique networks getting formed and
firmed for wearable, implantable, portables, nomadic, and wireless devices. There
are body area networks, car area networks, personal area networks, etc. with the
addition of special-purpose devices, sensors, actuators, controllers, stickers, codes,
etc. Drones, robots, home, building, industry automation systems, etc. mandate for
highly advanced protocols, as articulated below:

• Wearable devices (shoes, watch, glasses, belt, etc.) can be used to detect biomet-
ric information. Figure 12.5 depicts the majorly used wearable devices used for
biometric data communication.

• Smart devices collect the information and communicate with the control center
and/or medical server using the Internet. The diagram below clearly depicts the
devices, how they communicate with one another, how the data gets collected
and transferred to data storage and processing systems in order to crunch the
aggregated data to squeeze out actionable insights.

12.9 Sample IoT Networking Architecture

Figure 12.6 clearly accentuates and articulates how different and distributed devices
can find, bind, and leverage each other’s unique device-centric services in order to
fulfill the goals of producing people-centric, real-time, adaptive, and context-aware
applications. The various protocols come handy in linking various devices, data
sources, and software systems in order to fulfill the varying requirements of indi-
viduals, innovators, and institutions.

12 Networking Topologies and Communication Technologies for the IoT Era

266

12.10 Conclusion

The emerging and evolving network topologies and communication technologies
are foretelling the speedy arrival of the anticipated IoT era. As there is a widespread
recognition that the IoT technologies and tools are bound to bring in the desired
digital transformation, there are a variety of concerted and collaborative research
activities in order to identify the brewing limitations and surmount them through
path-breaking technologically sound solutions. Connectivity is one such issue, and

Fig. 12.5 Wearable IoT networks

Fig. 12.6 Data communication protocols for the diverse things of the Internet

P. Beaulah Soundarabai and P.R. Chelliah

267

there are several enabling connectivity protocols being formulated and firmed. As
connectivity is the core requirement for the projected IoT era, we are to dig deeper
and dwell at length about various data transmission protocols.

In this chapter, we have incorporated the relevant details about the connectivity
mechanisms and communication protocols. There are several initiatives in the com-
munication space to simplify, streamline, and speed up the process of setting IoT
applications, services, and environments. This chapter has supplied the pros and
cons of each of those protocols in order to empower our readers to take the correct
decisions. As most of the IoT devices are embedded and resource-constrained, we
have given the preference for lightweight and energy-efficient protocols in our
chapter. There are specific protocols coming up fast in order to target specific indus-
try verticals and applications.

References

 1. Chaouchi H (2013) The internet of things: connecting objects. Wiley, Hoboken
 2. Zhu L, Zhang Z, Xu C (2017) Secure and privacy-preserving data communication in internet

of things. Springer, Singapore
 3. Holler J, Tsiatsis V, Mulligan C, Avesand S, Karnouskos S, Boyle D (2014) From machine-to-

machine to the internet of things: introduction to a new age of intelligence. Academic, Oxford
 4. Zhao B, Kubiatowicz J, Joseph A, Tapestry AD (2001) An infrastructure for fault-tolerant

wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer Science
Division, U. C. Berkeley, April 2001

 5. Liang W, Cheng L, Tang M (2016) Identity recognition using biological electroencephalogram
sensors. http://www.hindawi.com/journals/js/. Hindawi Limited, Accessed 12 Feb 2017

 6. Lin L, Yue X (2017) Sensors, http://www.mdpi.com/journal/sensors. Accessed 20 Feb 2017
 7. Condie TE, Kamvar SD, Garcia-Molina H (2004) Adaptive peer-to-peer topologies, Stanford

University, Stanford, CA 94306, 2004
 8. Stoica I, Morris R, Karger D, Kaashoek MF, Chord HB, (2001) A scalable peer-to-peer lookup

service for Internet applications. Technical Report TR-819, MIT, March 2001
 9. Perino D, Varvello M (2011) A reality check for content-centric networking, bell labs, alcatel-

lucent, Villarceaux, France, Bell Labs, Alcatel-Lucent, Holmdel, USA, 2011
 10. Carofiglio G, Gallo M, Muscariello L, Perino D (2011) Modeling data transfer in content-

centric networking, Bell Labs, Alcatel-Lucent, France, Orange Labs, France Telecom, France,
2011

 11. Named data networking (2016) http://www.named-data.net/. Accessed 20 Dec 2016
 12. RPMA Technology. (2017) www.ingenu.com. Accessed 5 Jan 2017
 13. Kristofer S. Pister J, Doherty L (2008) TSMP: Time Synchronized Mesh Protocol, Proceedings

of the IASTED International Symposium on Distributed Sensor Networks (DSN08), Orlando,
Florida, USA, 2008

 14. Bor M, Roedig U, Voigt T, Alonso JM, (2016) Do LoRa Low-power wide-area networks
scale?, MSWiM ‘16, ACM, 13–17 November 2016

 15. Akyildiz IF, Jornet JM (2010) The internet of nano-things georgia institute of technology,
IEEE wireless communications, December 2010

 16. XMPP Internet of Things (2016) http://www.xmpp-iot.org/. Accessed 7 Dec 2016

12 Networking Topologies and Communication Technologies for the IoT Era

http://www.hindawi.com/journals/js/
http://www.mdpi.com/journal/sensors
http://www.named-data.net/
http://www.ingenu.com
http://www.xmpp-iot.org/

268

 17. Singh M, Rajan MA, Shivraj VL, Balamuralidhar P (2015) Secure MQTT for Internet of
Things (IoT), Fifth international conference on communication systems and network tech-
nologies, Gwalior, 2015, pp 746–751

 18. Kuzlu M, Pipattanasomporn M, Rahman S (2015) Review of communication technologies
for smart homes/building applications, IEEE innovative smart grid technologies – Asia (ISGT
ASIA), 2015

P. Beaulah Soundarabai and P.R. Chelliah

269© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8_13

Chapter 13
Data Distribution Service-Based Architecture
Design for the Internet of Things Systems

Bedir Tekinerdogan, Ömer Köksal, and Turgay Çelik

Abstract The Internet of Things (IoT) is the internetworking of people and physi-
cal devices often called “things” that enable the collection and exchange of data.
The number of connections between people and things, as well as the volume of
data that is generated by the “things,” is dramatically increasing. In this context,
various kinds of data are generated by multiple heterogeneous devices, which oper-
ate in different ways and used by different applications with different aims. To real-
ize the distributed execution of IoT systems over multiple resources, different
requirements and quality factors must be satisfied. Traditionally, to reduce the effort
for developing distributed systems, middleware architectures have been introduced
that provide common services such as name and directory services, discovery, data
exchange, synchronization, and transaction services, etc. To address the needs and
integration of IoT systems, the adoption of middleware seems to be a feasible solu-
tion. The Data Distribution Service (DDS) is a middleware that is directly related to
data-intensive systems and explicitly considers the quality of service. It is a standard
data-centric publish-subscribe programming model and specification for distributed
systems that has been applied for the development of high-performance distributed
systems such as in the defense, finance, automotive, and simulation domains. In this
chapter, we explore and propose the adoption of DDS as a middleware platform for
IoT systems. For this, we first describe the requirements for IoT systems and present
the IoT reference architecture. Subsequently, we provide a DDS-based architecture
for IoT systems based on the Views and Beyond Approach.

B. Tekinerdogan (*) • Ö. Köksal
Information Technology Group, Wageningen University, Wageningen, The Netherlands
e-mail: bedir.tekinerdogan@wur.nl

T. Çelik
OPSGENIE, Ankara, Turkey

mailto:bedir.tekinerdogan@wur.nl

270

13.1 Introduction

The Internet of Things (IoT) is the internetworking of people and physical devices
that enable the collection and exchange of data [25]. The number of connections
between people and things as well as the volume of data that is generated is dramati-
cally increasing. In this situation, various kinds of data are generated by multiple
kinds of devices, which operate and are processed in different ways, and used by
different applications. To realize the distributed execution of IoT systems over mul-
tiple resources, different specific requirements and quality factors must be
satisfied.

Traditionally, to reduce the effort for developing distributed systems, middleware
architectures have been introduced that provide common services such as name and
directory services, discovery, data exchange, synchronization, transaction services,
etc. To address the needs and integration of IoT systems, the adoption of middle-
ware seems to be a feasible solution. A middleware that is directly related to data-
intensive systems in which quality of service is important is the Data Distribution
Service (DDS) [1]. The DDS is a standard data-centric publish-subscribe program-
ming model and specification for distributed systems that has been applied for the
development of high-performance distributed systems such as in the defense,
finance, automotive, and simulation domains.

In this chapter, we explore and propose the adoption of DDS as a middleware
platform for IoT systems. For this, we first describe the requirements for IoT sys-
tems and present the IoT reference architecture. Subsequently, we provide a DDS-
based architecture for IoT systems based on the Views and Beyond Approach. We
illustrate our approach for the architecture design of IoT-based smart city
engineering.

The remainder of the chapter is organized as follows. In Sect. 13.2, we provide
the background on software architecture modeling which is necessary for under-
standing the architecture views in subsequent sections. In Sect. 13.3, we describe
the IoT architecture using selected viewpoints. Section 13.4 presents the architec-
ture models specific for DDS. Based on the architecture models from Sects. 13.3
and 13.4, we present the DDS-based IoT architecture in Sect. 13.5. Section 13.6
concludes the chapter.

13.2 Software Architecture Modeling

Architectural drivers define the concerns of the stakeholders which shape the archi-
tecture [2]. A stakeholder is defined as an individual, team, or organization with
interests in or concerns about a system. Each of the stakeholders’ concerns impacts
the early design decisions that the architect makes. A common practice is to model
and document different architectural views for describing the architecture according
to the stakeholders’ concerns. An architectural view is a representation of a set of
system elements and relations associated with them to support a particular concern.
Having multiple views helps to separate the concerns and as such support the

B. Tekinerdogan et al.

271

modeling, understanding, communication, and analysis of the software architecture
for different stakeholders. Architectural views conform to viewpoints that represent
the conventions for constructing and using a view. Obviously, the notion of view-
point now plays an important role in modeling and documenting architectures [3].
So far, most architectural viewpoints seem to have been primarily used either to
support the communication among stakeholders or at best to provide a blueprint for
the detailed design.

In this chapter, we use the Views and Beyond framework in which predefined
viewpoints are organized into three categories including module styles, component-
and- connector styles, and allocation styles [1]. Module styles are used to show how
the system is structured as a set of implementation units. Component and connector
styles are used to show how the system is structured as a set of runtime elements.
Allocation styles are used to show how the software elements are mapped to non-
software elements in its environment. We adopt two viewpoints for our purposes
including layered viewpoint and deployment viewpoint.

The layered viewpoint reflects the division of software modules called layers. In
a layered architecture, the system is depicted as a set of layers which are stacked on
top of each other. Hereby, a layer can only access the next lower layer, and callbacks
from lower layers to higher layers are not allowed. In the following sections, we
note that both IoT and DDS systems include a layered architecture. In addition to
the layered viewpoint, we also apply the deployment viewpoint, which is used to
show how the software elements are allocated to hardware of a computing platform.
It is useful for analyzing and tuning certain quality attributes of the system such as
performance, reliability, and security.

13.3 The Internet of Things Architecture

Architectural modeling techniques help to divide and conquer complex applications
such as IoT systems to enable successful realization. In this section, we provide a generic
conceptual model comprising a feature model and the layered view for IoT systems.

13.3.1 Conceptual Model

Figure 13.1. provides a conceptual model including the relations among the basic
IoT concepts. The model has been adopted from the AIOTI (Alliance of IoT
Innovation) Domain Model (AIOTI WG03 2015) [4]. The domain model represents
the basic concepts and relationships in the domain at the highest level. In the model,
User interacts with a physical entity of the physical world, a thing. The User can be
a human person or a software agent that has a goal, for the completion of which the
interaction with the physical environment must be performed through the mediation

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

272

of the IoT. A thing is a discrete, identifiable part of the physical environment that
can be of interest to the User for the completion of his goal. Things can be any
physical entity such as humans, cars, animals, or computers.

The interaction between a User and the Thing is mediated by an IoT Service
which is associated with a Virtual Entity, a digital representation of the physical
entity. A Thing can be represented in the digital world by a Virtual Entity. Different
kinds of digital representations of Things can be used such as objects, 3D models,
avatars, objects, or even a social network account. Some Virtual Entities can also
interact with other Virtual Entities to fulfill their goal.

An important aspect of the IoT is that changes in the properties of a Thing and its
corresponding Virtual Entity need to be synchronized. This is usually realized by an
IoT device that is embedding into, attached to, or simply placed in close vicinity of
the Thing. In principle, we can identify three devices including sensors, tags, and
actuators. Sensors are used to measure the state of things they monitor. Essentially,
sensors take a mechanical, optical, magnetic, or thermal signal and convert this into
voltage and current. This provided data can then be processed and used to define the
required action. Tags are devices to support the identification process typically
using specialized sensors called readers. The identification process can be different

(Physical)
Thing

IoT Device

Sensor Actuator

senses

acts on

Virtual Entity

*

IoT Service
associated

with

interacts
with

interacts
with

represents

Tag
senses

User
invokes

interacts
with

Fig. 13.1 Conceptual model for IoT

B. Tekinerdogan et al.

273

including optical as in the case of bar codes and QR code, or RF-based. Actuators
are employed to change or affect the things.

13.3.2 Feature Model

In this section, we provide a feature-driven overview of IoT and its session layer
protocols [21–24, 26]. A feature diagram is a tree with the root and descendent
nodes. The root represents a concept, and nodes are the features. Feature diagrams
might show mandatory features as well as variant features which can be represented
as optional or alternative features. A feature configuration is a set of features which
describes a member of the represented concept. A feature constraint restricts the
possible selections of features to define configurations. The legend (abstract syntax)
used for the feature diagrams is given in Fig. 13.2.

Figure 13.3 shows a feature diagram representing the layers of the IoT architec-
ture. This diagram is similar to the layer diagram of the IoT given in the next
section.

Feature

Optional feature

[i-j]
Feature group with
cardinality i– j

Mandatory feature

Fig. 13.2 Legend for the
feature diagrams to be used
in modeling IoT

Layer

Datalink
Protocol

Network
Protocol

Session
Protocol

Application
Protocol

Security
Protocol

Management
Protocol

Fig. 13.3 Top level feature diagram of IoT

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

274

The session layer is responsible for setting up and taking down of the association
between the IoT connection points. The session layer provides services-related
issues of the session such as initiation, maintenance, and disconnection. As such,
frequency and duration of various types of sessions are related to the session layer.
Selection of the session layer protocol depends on many factors such as data size,
the number of devices to be connected, latency, etc. Depending on the application
requirements, different session layer protocols might be used in session layer of the
IoT application. Focusing on the session protocols, we have derived the feature
diagram given in Fig. 13.4.

The mandatory features in the feature diagram are protocol type, source target,
transport type, and architecture. Although, transport type belongs to the network
layer, it is shown as a mandatory feature in Fig. 13.5 since it is closely related to the
protocol characteristics. Some widely used session layer protocol types are given
below:

• Message Queuing Telemetry Transport (MQTT): One of the most popular proto-
cols to collect device data and communicate with servers [5].

• Extensible Messaging and Presence Protocol (XMPP): A protocol based on
exchanges of XML messages in real time that is defined to connect devices to
servers [6].

• Advanced Message Queuing Protocol(AMQP): A queuing system designed to
connect servers to each other [7].

• Data Distribution Service (DDS): A fast data bus for integrating devices and
systems [8].

• The Constrained Application Protocol (CoAP): A specialized web-based proto-
col to be used in constrained nodes and constrained networks [9].

There are three types of source-target relations available in session layer proto-
cols: Device-to-Device (D2D), Device-to-Server (D2S), and Server-to-Server (S2S)
as shown in Fig. 13.4. In some literature sources, these features are named as

IoT Session Layer
Communication Protocol

Protocol Type

XMPP
AMQP

Source-Target

Decice-
to-Device

Device-
to-Server

Server-to-
Server

Transport Type

TCP UDP

Architecture

Publish-
Suscribe

Request-
Reply

MQTT
DDS

CoAP

Fig. 13.4 Feature diagram for the session layer protocols of IoT

B. Tekinerdogan et al.

275

machine-to-machine (M2M), machine-to-cloud (M2C), and cloud-to-cloud (C2C),
respectively. DDS and CoAP are used for M2M communication, whereas MQTT
and XMPP are used for M2C, and AMQP is used for S2S communication. Session
layer protocols are closely related to the transport type. Session layer protocols use
either UDP or TCP for the transport. DDS and CoAP support both UDP and TCP.

The focus of this chapter is the application of the DDS protocol.

13.3.3 Layered View

Various reference architectures have been suggested by many researchers for the
IoT which is usually represented as a layered architecture with a various set of lay-
ers. Hereby, a layer simply represents a grouping of modules that offers a cohesive
set of services. Based on the literature review, we provide the reference architecture
as shown in Fig. 13.5.

The reference architecture consists of four layers including device/datalink layer,
network layer, session layer, and application layer. The device layer includes the
capabilities for the things in the network. The network layer provides functionality
for networking connectivity and transport capabilities. The IoT layer consists of
functionality for generic support capabilities (such as data processing or data stor-
age) and specific support capabilities for the particular applications. The application
layer contains the IoT application.

The security layer is a sidecar layer relating to the other four layers and provides
the security functionality. Finally, the management layer supports capabilities such
as device management, local network topology management, and traffic and con-
gestion management.

Device Layer

Network Layer

Session Layer

Security
Layer

Management
Layer

Application Layer

Fig. 13.5 Layered view of IoT architecture

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

276

13.3.4 Deployment View

Figure 13.6 shows the deployment view of IoT-based systems. In essence, we can
identify two distinct nodes: the IoT node and the Product Cloud node. The IoT node
includes modules for sensors, actuators, smart UI, and applications. Within the IoT
network, multiple IoT nodes can exist which is shown with the asterisk symbol (*).
The cloud node includes functionality for data storage, application platform, the
analytics engine, and the cloud applications. Again, we could have more than one
cloud node.

13.4 Data Distribution Service

Data Distribution Service (DDS) for real-time system [1] is standardized by Object
Management Group (OMG) [10] in 2004, and the latest release is submitted in 2015
[11]. DDS is a data-centric middleware for high-performance machine-to-machine
communications. In this section, we describe the basic background information for
Data Distribution Service (DDS). Detailed information about DDS can be found in
different studies in the literature (e.g., [1, 12–16]).

Product Cloud

*

*

Data Storage

Analytics Engine

Applications

Application
Platform

IoT Device

Smart UI

Sensors Actuators

Applications

Fig. 13.6 Deployment view of IoT architecture

B. Tekinerdogan et al.

277

13.4.1 Conceptual Model

Figure 13.7 presents the conceptual model for DDS middleware. In this figure, the
concept domain is a logical concept which represents the set of applications that can
communicate with each other. Several domains can be defined within the same DDS
system to indicate a different set of applications communications with each other.
One or more domain participants might exist in each domain. Domain participants
represent the local membership of the application to the assigned domain. Publishers
are responsible for data production and updates. Publishers include one or more
data writers that publish the different types of data. Similarly, subscribers are
responsible for receiving published data and making it available to the participant.
A subscriber includes one or more data readers to access published data in a type-
safe manner. Domain participants might include one publisher and one subscriber at
most. The communication between data readers and data writers is established via
topics. A topic defines a unique name, data type, and a set of quality services to the
published/subscribed data. Publishers write the data to the topics, and subscribers
read the data in topics.

Communication between applications can only be realized only if the topic
names and the defined quality of service (QoS) parameters match. DDS provides
the ability to attach QoS parameters to all these entities to specify the behavior of a
service such as rate of publication, rate of subscription, how long the data is valid,
etc. QoS are also useful for several quality factors such as reliability, durability, and
scalability which simplifies complex network programming.

Entity

Domain Entity Domain
Participant

QoS Policy

TopicPublisher Subscriber

Data
Writer

Data
Reader

*.. 1 * .. *

* .. 1

* .. 11 .. *

* qos

Fig. 13.7 Reference architecture for DDS-based systems

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

278

13.4.2 Feature Model

Based on a thorough domain analysis of DDS middleware systems, we have derived
a feature model that is shown in Fig. 13.8. The figure represents the feature model
for publish-subscribe systems. The DDS concepts are shown in bold. In general,
publish-subscribe middleware systems can be distinguished based on the type and
the service model. Regarding the type, we can identify data-centric, message-
centric, or object-centric approaches. In the message-centric approach, the middle-
ware is not aware of the content of the data; it is just responsible for transmitting the
messages among participants. In data-centric approach, the middleware is aware of
the content and can impose quality of service parameter values on the data. In
object-centric approaches, the middleware is responsible for transmitting objects
among participants. As shown in the figure, DDS is a data-centric approach.

The service model of publish-subscribe middleware can be characterized based
on (1) communications model and (2) architecture model. Communication model
defines communication approach that is applied by the participants. The communi-
cation approach on its turn can be based on data distribution, shared data, queuing,
and remote procedure call. The architecture model of a middleware can be either
centralized or decentralized denoting whether the data flows through a central unit
or not. Further, the architecture model can include a broker that manages the data
flow. The architecture can be unbrokered, i.e., there is no broker defined or multi-
brokered, whereby multiple brokers manage the data flow. As shown in the figure,
the architecture model for DDS is decentralized and unbrokered.

Publish/Subscribe

Type

Data
Centric

Message
Centric

Object
Centric

Service Model

Communications
Model

Architecture
Model

Data
Distribution

Shared
Data RPC Queue

DecentralizedCentralized

DataFlow Broker Type

Brokered Multi
Brokered Unbrokered

Fig. 13.8 Feature model of publish-subscribe systems (DDS components highlighted)

B. Tekinerdogan et al.

279

13.4.3 Layered View

The DDS can be modeled as a three-layer structure as shown in Fig. 13.9, and as
mentioned below:

• The Data-Centric Publish Subscribe (DCPS) layer provides efficient delivery of
the shared information to the related recipients. DCPS layer is in the specifica-
tion and it is mandatory for the DDS implementations.

• The optional Data Local Reconstruction Layer (DLRL) enables simple integra-
tion of the services defined in DCPS layer into the application layer. The aim of
this is to provide a seamless integration with object-oriented language
constructs.

• Finally, an additional specification DDS Interoperability Wire Protocol is pro-
vided, which is needed for supporting the interoperability among different DDS
implementations.

The last layer shown in Fig. 13.9 is related to the transport. DDS might use both
UDP and TCP in the transport layer. But DDS also supports UDP and multicast
UDP. In fact, one of the powerful features of the DDS is supporting multicast UDP
that enables high-performance machine-to-machine communication. On the other
hand, since multicast and UDP transports are not supported by many wide area
networks (WANs), some additional concepts like interconnection services or rout-
ers shall be used in DDS systems to assure end-to-end QoS in WANs [17]. For fur-
ther details about these specifications, we refer to OMG DDS Specifications [1].

13.4.4 Deployment View

A typical DDS-based system is deployed on a number of application nodes. As
stated before, publish-subscribe interaction pattern has been applied in several
applications and infrastructures, which share similar structure and concepts.
Figure 13.10 shows the result of a domain analysis to publish-subscribe systems and

Application
Data Local Reconstruction Layer (DLRL)

Data Centric Publish/Subscribe

DDS Interoperability Wire Protocol (DDSI)

UDP / IP

Fig. 13.9 Layered
architecture of the DDS
with the DDS
specifications (Adapted
from [11])

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

280

represents the deployment view of DDS-based systems. Refer to Sect. 13.4.1 on
DDS conceptual model, for detailed information about DDS concepts (such as pub-
lishers, subscribers, topics, etc.).

Defining the deployment view of a DDS-based system is a crucial step in design.
The deployment model defined determines the allocation of domain participant
instances throughout the available physical resources such as available memory and
computing power. Although many different deployment alternatives can be defined
readily, designing the deployment extremely effects the performance of the overall
system.

Sometimes, it is possible to deploy all domain participants (publishers and sub-
scribers) to the same node. But such a deployment design cancels the benefits of
distributed computing causing single point of failure. On the other extreme, deploy-
ing domain participants has many side effects such as increasing communication
overhead and inefficient use of resources. So, it is always advised to analyze the
domain participants’ communication structure through topics and designing the
deployment model accordingly.

Domain

Application Node

1..*

Domain Participant

Subscriber

Domain Participant

Subscriber

Publisher

DataReader

DataWriter

TopicTopic

writes

reads

<0..1>

<0..1>

Fig. 13.10 Deployment view for DDS-based systems

B. Tekinerdogan et al.

281

13.5 DDS-Based IoT Architecture

In this section, we present the architecture for DDS-based IoT systems. For this, in
Sect. 13.5.1, we first present the conceptual model that shows the integration of the
earlier conceptual models for DDS and IoT. Subsequently, we present the layered
view in Sect. 13.5.2 and deployment view in Sect. 13.5.3.

13.5.1 Conceptual Model

Figure 13.11 shows the conceptual model for the DDS-based IoT architecture.
Similar to the IoT conceptual model as shown in Fig. 13.1, the concept IoT device
can be a sensor, tag, or actuator which observe, identify, or act on an IoT Thing. A
thing has a virtual representation. The DDS concepts Publisher, Subscriber,
DataWriter, and DataReader are in the Virtual Entity. Services, that is, topics in
DDS are thus associated with these elements. Domain participants can include a
number of Virtual Entities. Similar to DDS, a DDS entity can specify QoS
parameters.

Thing

Sensor

Actuator

*

*

represents

Service
(Topic)

Virtual Entity

Publisher Subscriber

Data Writer Data Reader

* *

*

Entity

Domain
Participant

QoS Policy

Tag
*

interacts
with

IoT Device
*

interacts
with

associated
with

Fig. 13.11 Conceptual model for publish-subscribe-based IoT Systems

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

282

13.5.2 Layered View

Figure 13.13 shows the layered view that combines the layered view of DDS with
that of IoT. The dominant decomposition is taken from the IoT reference architec-
ture as defined earlier in Fig. 13.5. Hence the layers are similar to the IoT layers.
What is specific is the session layer which now includes the concepts of DDS
including DLRL, Data-Centric Publish Subscribe, and DDSI [12] (Fig. 13.12).

13.5.3 Deployment View

Figure 13.13 presents the layered view for the DDS-IoT system. In essence, it
defines two different nodes, that is, the IoT node and the Product Cloud node. The
IoT node now communicates using the DDS. Hence it includes an application mod-
ule that realizes the DDS concepts. That is, it includes the domain participants and
herewith the subscribers and publishers. The Product Cloud nodes are similar to the
IoT deployment model.

Session Layer

Device Layer

UDP/IP
(Network Layer)

Data Centric Publish/Subscribe Security
Layer

Management
Layer

Application Layer

DDS Interoperability
Wire Protocol (DDSI)

Data Local Reconstruction Layer (DLRL)

Fig. 13.12 Layered view for DDS-IOT systems

B. Tekinerdogan et al.

283

13.5.4 DDS-Based IoT Architecture in Action

We provided different perspectives for architectural modeling of DDS-based IoT
systems. In this section, we discuss some use cases of these models and views.

In the conceptual model Sect. 13.5.1, we provided a metamodel for DDS-based
IoT systems. This metamodel can be used to develop a modeling environment, e.g.,
by using Eclipse Modeling Project [18]. Such a modeling environment can be used
to analyze and design complex IoT systems before realization.

The model that we provided in the layered model Sect. (13.5.2) shows high-level
decomposition of an IoT system. This model can be used for deciding the high-level
system components, separation of development teams, and different expertise areas
that an IoT team has to have. This layered view also provides a foundation for IoT
frameworks that will speed up the development of large-scale systems.

The model that we provided in the deployment model (Sect. 13.5.3) can be used
for developing a modeling environment that enables modeling allocation of system
components to available resources. In addition to manual component distribution,

Product Cloud

*

*

Data Storage

Analytics Engine Application Platform

Applications

IoT Node

Smart UI

Sensors

Actuators

Application Node

Domain Participant

Subscriber

Publisher

DataReader

DataWriter

Topic

writes

reads

<0..1>

<0..1>

Fig. 13.13 Layered view for DDS-IoT systems

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

284

the deployment model architecture can be used as a foundation for a tool that will
enable generation of feasible deployment models for DDS-based IoT systems. We
developed a tool similar to the reference architecture presented in [19] for distrib-
uted simulation systems.

13.6 Conclusion

The IoT has now become an important paradigm that is invasive in different applica-
tion domains. One of the important issues for the IoT is the management of com-
munication and distribution aspects. To support the communication among the
different DDS nodes, it is important to adopt a feasible middleware. In this context,
the DDS is considered as a potential middleware for IoT because of its focus on
event-driven communication in which quality of service is also explicitly defined.
Research on both paradigms, that is, IoT and DDS, have so far been carried almost
independently. In recent years, we now observe a growing interest in the application
of DDS for IoT. The results of our study can be considered from this perspective.
Our main focus in this chapter was on the architecture design of a DDS-based IoT
system. So far no systematic approach has been provided yet to model the architec-
ture for DDS-based IoT. We have performed a systematic approach in which we
adopted architecture viewpoints for modeling DDS, IoT, and finally DDS-based IoT
systems. Since both the DDS and IoT are often represented as layered structures, we
have applied the layered viewpoint to represent the DDS-based IoT. Further, we
have also defined the deployment view for DDS-IoT. We can state that we suc-
ceeded to integrate and represent the architecture models that can be used to model
DDS-based IoT systems for various application domains. In our future work, we
intend to enhance our study for adopting other architecture viewpoints. Also, we
aim to adopt the viewpoints for real-world industrial IoT projects in which DDS is
applied.

References

 1. Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Merson P, Nord R, Stafford
J (2011) Documenting software architectures: views and beyond, 2nd edn. Addison-Wesley,
Reading

 2. Tekinerdogan B (2014) Software architecture, chapter. In: Gonzalez T, Díaz-Herrera JL (eds)
Computer science handbook, 2nd edn. Volume I: Computer science and software engineering,
Taylor and Francis

 3. Tekinerdogan B, Sözer H (2011) Defining architectural viewpoints for quality concerns. In:
Proceedings of the 5th European conference on software architecture, pp 26–34

 4. AIOTI (2016) Role of AIOTI WG03 in IoT Standardisation. Available: http://www.aioti.
org/2016/11/03/role-of-aioti-wg03-on-iot-standardisation

 5. OASIS (2017) Message Queuing Telemetry Transport (MQTT). Available: http://mqtt.org
 6. IETF (2017) Extensible Messaging and Presence Protocol (XMPP). Available: http://xmpp.org

B. Tekinerdogan et al.

http://www.aioti.org/2016/11/03/role-of-aioti-wg03-on-iot-standardisation
http://www.aioti.org/2016/11/03/role-of-aioti-wg03-on-iot-standardisation
http://mqtt.org
http://xmpp.org

285

 7. OASIS (2017) Advanced Message Queuing Protocol (AMQP). Available: http://www.amqp.
org

 8. OMG DDS (2015) Data Distribution Service for Real Time Systems (DDS), v1.4. Available:
http://www.omg.org/spec/DDS/1.4

 9. IETF (2017) Constrained Application Protocol (CoAP) Specification. March 2017 [Online].
Available: http://coap.technology

 10. Pardo-Castellote G, Farabaugh B, Warren R An introduction to DDS and Data-Centric
Communications. [Online]. Available: http://bpmn.omg.org/news/whitepapers/

 11. OMG (2015) Data Distribution Service for real time systems (DDS), v1.4. http://www.omg.
org/spec/DDS/1.4

 12. OMG (2014) The real-time publish-subscribe wire protocol DDS interoperability wire proto-
col specification (DDSI), V2.2. http://www.omg.org/spec/DDSI-RTPS/2.2/

 13. MilSOFT (2014) MilSOFT DDS. http://dds.milsoft.com.tr/en/dds/dds-home.php.
 14. OCI (2014) OpenDDS. www.opendds.org
 15. Prismtech (2014) Vortex OpenSplice. http://www.prismtech.com/vortex/vortex-opensplice
 16. Real Time Innovations (2014) RTI Connext. http://www.rti.com
 17. Köksal O, Tekinerdogan B (2017) Obstacles in data distribution middleware. Future Gener

Comput Syst J 68:191–200
 18. Eclipse Modeling Project (2017) Available: https://eclipse.org/modeling/
 19. Celik T, Tekinerdogan B (2013) S-IDE: a tool framework for optimizing deployment architec-

ture of high level architecture based simulation systems. J Syst Softw 86(10):2520–2541
 20. Twinoaks Computing – CoreDX (2014) http://www.twinoakscomputing.com/coredx
 21. Palattella MR, Accettura N, Vilajosana X, Watteyne T, Grieco LA, Boggia G, Dohler M (2013)

Standardized protocol stack for the internet of (important) things. IEEE Commun Surv Tutor
15(3):1389–1406

 22. Sheng Z, Yang S, Yu Y, Vasilakos AAV, Mccann JA, Leung KK (2013) A survey on the IETF
Protocol Suite for the IoT. IEEE Wirel Commun 20:91–98

 23. Gazis V et al (2015) A survey of technologies for the IoT. Wirel Commun Mob Comput
Conference (IWCMC). doi:https://doi.org/10.1109/IWCMC.2015.7289234

 24. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) IoT: a survey on
enabling technologies, protocols and applications. IEEE Commun Surv Tutor 2347–2376

 25. McEwen A, Cassimally H (2014) Designing the internet of things. Wiley, Chichester
 26. Karagiannis V, Chatzimisio P, Vazques-Gallego F, Alonso-Zarate J (2015) A survey on the

application layer protocols for the IoT. Transaction on IoT and Cloud Computing, V.1

13 Data Distribution Service-Based Architecture Design for the Internet of Things…

http://www.amqp.org
http://www.amqp.org
http://www.omg.org/spec/DDS/1.4
http://coap.technology
http://bpmn.omg.org/news/whitepapers/
http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2/
http://dds.milsoft.com.tr/en/dds/dds-home.php
http://www.opendds.org
http://www.prismtech.com/vortex/vortex-opensplice
http://www.rti.com
https://eclipse.org/modeling/
http://www.twinoakscomputing.com/coredx
https://doi.org/10.1109/IWCMC.2015.7289234

287

A
Access, 14
Acquisition, 53
Actuators, 91, 94, 95, 97, 98, 153
Adaptability, 194, 199, 200
Adhoc on Demand Distant Vector Routing, 257
Advanced Encryption Standard, 29, 31
Advanced Message Queuing Protocol

(AMQP), 274
Amazon, 106, 109, 110, 123
Ambient assisted living (AAL), 247
AMQP, see Advanced Message Queuing

Protocol (AMQP)
Android, 110, 116, 117
Anomaly detection using transformation

provenance, 231–232
ANT, 262
Applications, 4, 8, 10, 11, 13, 14, 107–111,

115–117, 119, 120, 122–124
Architectural style, 192, 194, 200–202
Architecture, 269–278, 281–284
Attribute based encryption, 32
Authentication, 4, 11, 13, 14
Availability, 65, 69, 75
Azure, 109, 110, 120, 121, 123, 124

B
Bluemix, 106, 108–110, 116, 119, 120, 122–124
Bluetooth, 111, 112, 115
Bluetooth low energy, 29, 258, 262
Bring Your Own Device (BYOD), 21
Broker, 278
Building design, 170

Buildings information, 170, 172–182
Buildings information modelling (BIM), 176,

179, 181, 182
Business, 5, 11, 15, 16

C
Caching techniques, 259
Changeability, 199, 200
Clear-text, 22
Cloud, 9, 11, 106–110, 112, 113, 115, 116,

120, 123, 124
computing, 64, 72, 74, 75, 78
layer, 24

Cloud of Things (CloudIoT), 64, 72
Cloud-to-cloud, 275
Cloud-to-cloud (C2C) integration, 243
CoAP, see Constrained Application Protocol

(CoAP)
Communication technologies, 241–267
Compliance, 190, 192, 203, 206–210, 215

by name, 210
by position, 210
by type, 211

Component-Based Software Engineering
(CBSE), 129, 130

Component model, 136, 143, 146
Conformance, 190, 192, 206–209, 212, 215
Connectivity methods, 248–249
Constrained Application Protocol (CoAP),

250, 259, 274
Construction Operations Building Information

Exchange (COBie), 180
Construction phase, 176, 177, 180, 182

Index

© Springer International Publishing AG 2017
Z. Mahmood (ed.), Connected Environments for the Internet of Things,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-70102-8

https://doi.org/10.1007/978-3-319-70102-8

288

Consumer, 193
Context Centric Networking, 253
Coupling, 192, 194, 196–198

backward, 198
forward, 198

C-RAN, 35, 36
CryptoCop, 29

D
Data, 4–10, 12–16

challenges, 51–53
discovery, 59
fusion, 58
provenance, 222
provenance requirement in NoSQL store,

232–233
readers, 277

Data centric publish subscribe (DCPS),
279, 282

Data Distribution Service (DDS), 269–284
Datagram Transport Layer Security, 31
Data Local Reconstruction Layer (DLRL), 279
DCPS, see Data centric publish subscribe

(DCPS)
DDS, see Data Distribution Service (DDS)
DDS-based architecture, 270
Decomposition, 136, 137, 144
Decoupling

backward, 200
forward, 199

Device, 106–110, 112, 114–116, 119–124
and sensor-to-cloud (D2C) integration, 243
device based certificates, 33–34
ecosystem, 245
layer, 24, 25
specific key, 254
trust, 21, 23

Device-to-device, 274
Device-to-device (D2D) integration, 243
Device-to-Server, 274
Digital living, 242
Distributed system, 270
DLRL, see Data Local Reconstruction Layer

(DLRL)
Dynamic discovery, 261
Dynamic Source Routing, 257

E
Eavesdropping, 22, 29
Efficiency, 65, 68, 75
Elliptic curve cryptography, 30, 31

Embedded systems, 20
Energy consumption, 170, 173–175, 177,

179, 181
Energy efficiency, 175, 178
Enterprise, 3–16
Enterprise architectures, 11
Entity of Interest, 153
Essence framework, 151–167

activity space, 155
Alpha, 154–156, 158, 163
checklist item, 155
customer concern, 156
endeavor concern, 156
pattern, 155
solution concern, 156
work product, 156

Essence Kernel, 154–157, 164–166
Essence Language, 154–156, 165, 166
Extensible Markup Language (XML), 260
Extensible Messaging and Presence Protocol

(XMPP), 260, 274
Extraction, 53

F
Facility management, 170, 172, 173,

178–180, 182
Fair Information Practice Principles (FIPPs),

23, 33
Federal Trade Commission, 33
Firmware, 24, 26, 27, 37
Food and Drug Administration, 34
Foreign data wrappers, 236
Forget-me-not, 20
FP7 project, 86
Framework, 130, 144, 146, 147

G
Gateway, 22, 24, 31, 106, 107, 116, 118–121,

123, 124
Google, 106, 108–110, 123
5G technology, 263

H
Healthcare, 6, 7, 9
Health Insurance Portability and

Accountability Act (HIPAA), 23
Heterogeneity, 53
Horizon 2020, 86
How provenance, 232
Hummingbird, 28

Index

289

I
ICT, 169, 178
IEEE 802.15.4, 262
IERC, 88
Incremental MapReduce using Provenance,

226–230
Infrastructure as a Service (IaaS), 65, 72
Integration, 58–59
Internet, 3–5, 8, 10, 11, 15, 16, 105, 119, 124
Internet of nano things, 257
Internet of things (IoT), 3–16, 63–68,

71, 72, 74, 75, 105–124, 241–267,
269–284

devices, 153, 165, 170–172, 174, 176,
178–182

interoperability, 84–87, 89, 91, 93, 95–98
methodology, 157–159
network topology, 249
ontology, 84, 86, 94, 95
service, 153
standard, 89, 90, 98

Interoperability, 23, 25, 34–36, 56, 65, 74,
130, 145, 146, 171, 178, 180, 181,
194–197

asymmetric, 190, 202–204, 215
issues, 84, 87–89, 93, 98
symmetric, 202, 215

IoT system development method, 157–160
ELDAMeth, 160

J
Job provenance, 222

L
Latency, 274
Light weight authentication, 21
Linked Data, 86, 89, 92
Loopholes, 22, 26
Low bandwidth, 251
Low power personal area network, 259
Low power wide area (LPWA) network, 249

M
Machine-to-cloud, 275
Machine-to-machine (M2M), 249, 251, 259,

260, 263, 275
Maintenance, 170, 179
Manufacturing, 7, 11, 15
Marketing, 9
Mesh Protocol, 257

Message queuing telemetry transport (MQTT),
107–110, 116, 119–123, 259, 274

Middleware, 129, 145, 270, 276–278, 284
MobIoTSim, 106, 115–117, 119, 120,

122–124
Model, 270–275, 277, 278, 281, 282
Model checking, 136
MQTT, see Message queuing telemetry

transport (MQTT)

N
Nano Internet Protocol, 257, 258
Narrowband IoT, 263
Near-field communication (NFC), 262, 265
Networking topologies, 241–267
Networks, 4, 5, 10–12, 14, 105, 107, 111,

113–115, 123, 124, 128, 131, 132, 136,
144–146, 272, 274–277

O
OASIS, 90
Ontology, 192, 196, 211
Ontology Development 101, 93
Operation phase, 176, 178, 181
OWL, see Web Ontology Language (OWL)
Ownership, 23

P
PASS, 220, 221
Performance, 270, 271, 276, 279, 280
Personally identifiable information, 22
Physical, 3, 5, 8, 9, 15
Platform as a service (PaaS), 65, 72, 74
Point-to-point (P2P) protocols, 249
Policies, 21, 23, 25, 34
Privacy, 4, 6, 15, 19–37
Process Challenges, 53–54
Product and data management layer, 24, 27
Protocols, 10, 14, 16, 85, 90
Provenance capture, 222–225
Provenance Extension of Relational Model

(PERM), 237
Provenance for Big Data Analytic tool

MapReduce, 222–232
Provenance for Big Data Stores, 232–238
Provenance of NoSQL stores queried through

SQL interface, 236–238
Provider, 193
Publishers, 277
Publish-subscribe, 146, 278, 281

Index

290

Q
QoS, see Quality of service (QoS)
QR, 273
Quality attributes, 271
Quality of service (QoS), 255, 277

R
Radio frequency (RF), 273
Radio-frequency identification (RFID), 29, 31
Random phase multiple access, 256
Reliability, 65, 67, 74, 257, 271, 277
Remote attestation, 27, 28
Renewable energy, 170, 172
Requirements, 6, 15
Reuse, 130, 138, 144
Root of trust, 26

S
Scalability, 57, 65, 74, 78, 257
Scalable encryption algorithm, 29
Schema, 190, 203, 210
Security, 3–16, 21–36, 65, 71, 77, 79, 257,

271, 275
Semantic, 171, 172, 179, 180
Semantic descriptions, 89, 92
Semantic sensor networks (SSN),

86, 90–93, 98
Sensor and actuator networks, 243, 245–247
Sensors, 86, 88, 90–93, 95, 97, 98, 105, 108,

110–116, 119, 124, 153, 170, 172, 174,
176, 179–181

Server-to-Server, 274
Service lifecycle, 86
Service-level interoperability, 84, 89, 93, 98
Service-oriented architecture (SOA),

86, 91, 144
Services, 3–6, 8, 9, 11, 12, 15, 209, 212
Similarity, 199
Simulation, 107, 115, 120–122
Simulator, 106–108, 110, 115, 116, 119,

122–124
Smart, 4–9, 11–14

buildings, 169, 170, 172
cities, 169–171, 180–182
commerce, 172, 175, 176
environments, 172, 178
industries, 170, 172, 180–182
metering, 170, 172, 175
technologies, 170, 176

Software, 270–271

Software architecture, 144, 145
Software as a service (SaaS), 65, 72, 74
Software defined networking (SDN), 264, 265
Software-defined radio (SDR), 131, 140, 144
SPADE, 221
SPIN, 136
SPINS, 29
SQL/MED, 236
Standards, 21, 23–25, 31, 34–37
Star topology, 250
Storage, 65, 70, 75
Structural assignment, 204
Subscribers, 277, 280, 282
Survey, 110, 114
Systems, 3–16

T
Tacit knowledge, 177
Third party auditor, 32
Transformation provenance, 222, 225, 231
Transmission Control Protocol (TCP),

275, 279
Transport layer, 24, 28–31
Trusted platform modules, 27
Trustworthiness, 59

U
Unique application key, 254
Unique network key, 254
Unstructured Data, 54–55
User Datagram Protocol (UDP), 275, 279
Utility companies, 170, 172–175, 180, 181

V
Validity, 70, 77
Value, 70, 77
Variability, 70, 77
Variability model, 134–136, 140, 142, 145
Variant, 135, 140, 142, 143, 145
Variation point, 130, 135, 140, 142, 145
Variety, 70, 76
Velocity, 70, 76
Veracity, 70, 77
Verification, 136
Virtual, 272, 281
Virtual Entity, 153
Visualization, 55, 70, 77
Volatile, 70, 77
Volume, 70, 76

Index

291

W
W3C, 86, 90, 92, 93, 98
Web-based protocol, 259
Web Ontology Language (OWL), 93
Web services, 84, 87–89, 91, 92, 97, 98
Why provenance, 233

Wide area networks (WAN), 279
Wireless sensor networks (WSN), 128

Z
ZigBee protocol, 262

Index

	Dedication
	Preface
	Overview
	 Objectives
	 Organization
	 Target Audiences

	Acknowledgements
	Other Springer Books by Zaigham Mahmood
	Contents
	Contributors
	About the Editor
	Part I: Challenges and Solutions
	Chapter 1: Security Challenges in the IoT Paradigm for Enterprise Information Systems
	1.1 Introduction
	1.2 The Internet of Things: An Overview
	1.2.1 Concept and Technical Background
	1.2.2 IoT Infrastructure for Enterprises
	1.2.3 IoT Application Areas

	1.3 Security Challenges in the IoT
	1.4 Solving the Security Challenges of Enterprise Architectures
	1.5 Conclusion
	References

	Chapter 2: Security and Privacy Across Connected Environments
	2.1 Introduction
	2.2 Connected Environments’ Security and Privacy
	2.2.1 Risks and Challenges
	2.2.1.1 Device Hardware and Firmware Security
	2.2.1.2 Transport Layer Security
	2.2.1.3 Weak Security of Data Stored on Cloud Servers
	2.2.1.4 Nonexistent Laws Regarding Data Ownership and Policy Compliance
	2.2.1.5 Lack of Device Interoperability

	2.2.2 Data Security Requirements in the IoT

	2.3 Recommendations for IoT Data Security
	2.3.1 Securing Device Firmware and Hardware
	2.3.2 Securing the Transport Layer
	2.3.3 Cloud Layer Security and Data De-identification
	2.3.4 Policies and Legislation
	2.3.5 IoT Standards and Device Interoperability

	2.4 Conclusion
	2.5 Future Direction
	References

	Chapter 3: Big Data Challenges for the Internet of Things (IoT) Paradigm
	3.1 Introduction
	3.2 Internet of Things
	3.2.1 Definitions of the Internet of Things (IoT)
	3.2.2 Cyber-Physical Systems
	3.2.3 IoT Architecture
	3.2.3.1 Three-Layered Architecture
	3.2.3.2 Five-Layered Architecture

	3.3 Big Data
	3.3.1 Definitions and Characteristics of Big Data
	3.3.1.1 Volume
	3.3.1.2 Variety
	3.3.1.3 Velocity
	3.3.1.4 Value
	3.3.1.5 Veracity

	3.3.2 Big Data Analytics
	3.3.2.1 Descriptive Analytics
	3.3.2.2 Diagnostic Analytics
	3.3.2.3 Predictive Analytics
	3.3.2.4 Prescriptive Analytics

	3.4 Management Challenges of Internet of Things Big Data
	3.4.1 Data Challenges
	3.4.1.1 Massive Amount of Data Collected
	3.4.1.2 Various Forms of Data Collected
	3.4.1.3 Data Transmission Speed
	3.4.1.4 Time Series for Data Analysis
	3.4.1.5 Security and Privacy

	3.4.2 Process Challenges
	3.4.2.1 Selective Data Acquisition
	3.4.2.2 Data Extraction
	3.4.2.3 Data Heterogeneity
	3.4.2.4 Nature of Big Data

	3.5 Analytics Challenges of the IoT Big Data
	3.5.1 Analytics Challenges over Unstructured Data
	3.5.2 Visualization Challenges

	3.6 Semantics Challenges of the IoT Big Data
	3.6.1 Data Interoperability Challenges
	3.6.2 Data Semantics Challenges
	3.6.3 Data Scalability Challenges
	3.6.4 Data Fusion Challenges
	3.6.5 Data Integration Challenges
	3.6.6 Data Quality and Trustworthiness Challenges
	3.6.7 Data Discovery Challenges

	3.7 Conclusion
	References

	Chapter 4: Using Cloud Computing to Address Challenges Raised by the Internet of Things
	4.1 Introduction
	4.2 Problems and Challenges of the Internet of Things: The Big 7 of IoT
	4.2.1 Scalability in IoT
	4.2.2 Interoperability in IoT
	4.2.3 Reliability in IoT
	4.2.4 Efficiency in IoT
	4.2.5 Availability in IoT
	4.2.6 Storage in IoT
	4.2.7 Security in IoT

	4.3 Combining Cloud Computing and the IoT to Address the Inherent Challenges of IoT
	4.3.1 Scalability Through Cloud Computing
	4.3.2 Interoperability Through Cloud Computing
	4.3.3 Reliability Through Cloud Computing
	4.3.4 Efficiency Through Cloud Computing
	4.3.5 Availability Through Cloud Computing
	4.3.6 Storage Through Cloud Computing
	4.3.7 Security Through Cloud Computing

	4.4 Conclusions
	References

	Chapter 5: Overcoming Service-Level Interoperability Challenges of the IoT
	5.1 Introduction
	5.2 Interoperability
	5.2.1 IoT Interoperability
	5.2.2 Research Projects on IoT Interoperability

	5.3 Interoperability Issues and Challenges
	5.4 Interoperability Solutions
	5.4.1 IoT Standards Initiatives
	5.4.2 Semantic Web Services
	5.4.3 Existing Works on Service-Level IoT Interoperability

	5.5 Use Case
	5.5.1 Development of the Thing-as-a-Service Ontology
	5.5.2 Achieving Service-Level IoT Interoperability

	5.6 Conclusion
	References

	Part II: Methods and Frameworks
	Chapter 6: Simulating Sensor Devices for Experimenting with IoT Cloud Systems
	6.1 Introduction
	6.2 Related Works
	6.3 Providers Enabling IoT Clouds
	6.4 A Survey of Common IoT Cloud Applications
	6.5 The Mobile IoT Device Simulator
	6.5.1 Requirements for an IoT Cloud Simulator
	6.5.2 Architecture and Usage
	6.5.3 Evaluation of the Multiple Device Simulation Scalability
	6.5.4 Future Extensions

	6.6 Conclusion
	References

	Chapter 7: Managing Heterogeneous Communication Challenges in the Internet of Things Using Connector Variability
	7.1 Introduction
	7.2 Background
	7.2.1 Internet of Things
	7.2.2 Component-Based Software Engineering

	7.3 Case Study and Problem Description
	7.3.1 Case Study: Smart Office
	7.3.2 Problem Description

	7.4 Heterogeneity and Hyper-Connectivity in IoT
	7.5 XCOSEML
	7.6 Modelling Hyper-connectivity Using XCOSEML
	7.7 Discussion
	7.8 Related Work
	7.9 Conclusion
	References

	Chapter 8: Adopting the Essence Framework to Derive a Practice Library for the Development of IoT Systems
	8.1 Introduction
	8.2 Background
	8.2.1 Internet of Things
	8.2.2 The Essence Framework

	8.3 IoT System Development Methods
	8.3.1 The Ignite IoT Methodology
	8.3.2 The IoT Methodology
	8.3.3 IoT Application Development
	8.3.4 ELDAMeth
	8.3.5 Software Product Line Process to Develop Agents for the IoT
	8.3.6 A General Software Engineering Methodology for IoT

	8.4 Proposed IoT System Development Practice Library Based on the Essence Framework
	8.5 Discussion
	8.6 Related Work
	8.7 Conclusion
	References

	Chapter 9: Integration of Buildings Information with Live Data from IoT Devices
	9.1 Introduction
	9.2 Information Management in Smart Cities
	9.2.1 Smart Buildings
	9.2.2 Users of Buildings Information
	9.2.2.1 Buildings Maintenance
	9.2.2.2 Smart Energy
	9.2.2.3 Smart Commerce

	9.3 Challenges and Barriers
	9.3.1 Barriers Associated with the Design Phase
	9.3.2 Barriers Associated with the Construction Phase
	9.3.3 Barriers Associated with the Operations Phase
	9.3.4 Barriers Associated with Buildings Information Models
	9.3.5 Summary of the Challenges

	9.4 Conclusion
	References

	Part III: Advances and Latest Research
	Chapter 10: Interoperability in the Internet of Things with Asymmetric Schema Matching
	10.1 Introduction
	10.2 Background
	10.3 Interaction Between Devices
	10.4 Interoperability
	10.5 Coupling
	10.6 Adaptability and Changeability
	10.7 Architectural Style
	10.8 Asymmetric Interoperability
	10.9 A Foundational Data Model
	10.10 Compliance and Conformance
	10.11 Examples
	10.12 Conclusion
	References

	Chapter 11: Automatic Big Data Provenance Capture at Middleware Level in Advanced Big Data Frameworks
	11.1 Introduction
	11.2 Background
	11.3 Provenance in MapReduce Workflows
	11.3.1 Provenance Capture
	11.3.2 Incremental MapReduce Using Provenance
	11.3.2.1 Experimental Results

	11.3.3 Anomaly Detection Using Transformation Provenance

	11.4 Provenance for Big Data Stores
	11.4.1 Data Provenance Requirement in NoSQL Stores
	11.4.2 Capture of “How Provenance”
	11.4.3 Capture of “Why Provenance”
	11.4.3.1 “Why Provenance” for Analytics Using MapReduce
	11.4.3.2 Provenance of NoSQL Stores Queried through SQL Interface

	11.5 Summary and Conclusion
	References

	Chapter 12: Networking Topologies and Communication Technologies for the IoT Era
	12.1 Introduction
	12.1.1 Describing the Context
	12.1.2 IoT Communication Protocol Requirements
	12.1.3 The Growing Importance of the IoT Paradigm
	12.1.4 The Meteoric Rise of Device Ecosystem
	12.1.5 The Emergence of Sensor and Actuator Networks
	12.1.6 Sensor-to-Cloud Integration

	12.2 Deciphering the IoT Connectivity Methods
	12.3 Network Topologies
	12.3.1 Point-to-Point (P2P)
	12.3.2 Star Topology
	12.3.3 Mesh

	12.4 Wireless Technologies
	12.4.1 Low-Power Wide Area Network (LPWAN)

	12.5 Infrastructure Protocols
	12.5.1 Context Centric Networking
	12.5.2 LoRaWAN
	12.5.3 Narrowband IoT
	12.5.4 NB-IoT Vs LoRa

	12.6 Technologies for Applications
	12.6.1 Random Phase Multiple Access (RPMA)
	12.6.2 Time Synchronized Mesh Protocol (TSMP)
	12.6.3 Nano-Internet Protocol (NanoIP)
	12.6.4 Multicast Domain Name System (mDNS)

	12.7 Communication Data Protocols
	12.7.1 Message Queuing Telemetry Transport (MQTT)
	12.7.2 Constrained Application Protocol (CoAP)
	12.7.3 Extensible Messaging and Presence Protocol (XMPP)
	12.7.4 Data-Distribution Service for Real-Time Systems (DDS)

	12.8 Communication Protocols
	12.8.1 5G Technology
	12.8.2 Software-Defined Networking (SDN)
	12.8.3 Network Functions Virtualization (NFV)
	12.8.4 Specialized IoT Networks

	12.9 Sample IoT Networking Architecture
	12.10 Conclusion
	References

	Chapter 13: Data Distribution Service-Based Architecture Design for the Internet of Things Systems
	13.1 Introduction
	13.2 Software Architecture Modeling
	13.3 The Internet of Things Architecture
	13.3.1 Conceptual Model
	13.3.2 Feature Model
	13.3.3 Layered View
	13.3.4 Deployment View

	13.4 Data Distribution Service
	13.4.1 Conceptual Model
	13.4.2 Feature Model
	13.4.3 Layered View
	13.4.4 Deployment View

	13.5 DDS-Based IoT Architecture
	13.5.1 Conceptual Model
	13.5.2 Layered View
	13.5.3 Deployment View
	13.5.4 DDS-Based IoT Architecture in Action

	13.6 Conclusion
	References

	Index

