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Abstract. Deep Convolutional Neural Networks (DCNNs) are the state-of-the-
art in fields such as visual object recognition, handwriting and speech recog-
nition. The DCNNs include a large number of layers, a huge number of units,
and connections. Therefore, with the huge number of parameters, overfitting can
occur. In order to prevent the network against this problem, regularization
techniques have been applied in different positions. In this paper, we show that
with the right combination of applied regularization techniques such as fully
connected dropout, max pooling dropout, L2 regularization and He initializa-
tion, it is possible to achieve good results in object recognition with small
networks and without data augmentation.
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1 Introduction

Visual object recognition is an extremely hard computational problem in computer
vision research. It has a lot of potential applications that touch a lot of areas of artificial
intelligence including video data mining, object identification for mobile robots, and
image retrieval. It searches to identify and localize categories, places and objects in
order to recognize and classify images.

Visual object recognition has gained the interest of the research community and has
been further applied successfully to a lot of other application areas [1–5]. However, it is
still an open problem and a challenging task. The core problem is due to the high
variability of the objects constituting an image. In fact, the object may have variation in
the view point, the illumination, the scale and the imaging conditions [6, 7].

Recently, deep learning, especially the Convolutional Neural Networks (CNNs),
has attracted huge attention among computer vision research communities thanks to its
high performance in classification tasks [8, 9]. It has produced extremely promising
results for various tasks of pattern recognition issues like handwritten digits, face
recognition, sentiment analysis, object detection and image classification [9–11]. Those
models have some advantages and disadvantages. Indeed, the main advantage of Deep
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CNNs (DCNNs) is their accuracy in image recognition problems. Also, they are very
good at discovering high-dimensional data having intricate structures [8]. On the other
hand, they have some disadvantages such as the high computational cost, so if you do
not have a good GPU, they will quite slow to train the model (for complex tasks) and
they will need a lot of training data.

This paper introduces a DCNN model to obtain a high multi-classification accuracy
on object recognition. The architecture of the CNN model is neatly elaborated to extract
deep hidden features and model small training datasets, which fits well for the used
datasets. The CIFAR-10 and STL-10 datasets are labeled subsets of an 80-million-tiny-
image dataset. These datasets are used to evaluate the performance of the CNN model.
The experiment results prove that the CNN model with the right combination of
regularization techniques has an adaptive accuracy rate on classification.

The main contributions of this study are the following:

– The method uses the CNN to classify images into 10 categories and produce an
accuracy of 97% utilizing the CIFAR-10 and 75.4% using the STL-10.

– The CNN model utilizes three convolution layers, a regularization layer, and a high
efficiency optimizer to be adaptive to the CIFAR and STL datasets.

The remaining of this paper is set as follows: In the second section, we present
some related work. In the third section, we describe the details of applying the CNN
model to object recognition. Our experimental study and results using this system are
provided in the fourth section. In the final section, we present some concluding remarks
and future directions.

2 Related Work

Although the problem of object recognition is still a very active and challenging task,
good results have been recorded thanks to the new learning capabilities offered by deep
neural networks.

In this context, Tobias et al. in [10] presented the implementation of light-weight
CNN schemes on mobile devices for domain-specific objection recognition tasks. In
the same optic, the DCNNs were investigated by Lorandet et al. in [12] for RGB-D
based object recognition. The DCNNs outperformed other classifiers and proved a
significant classification accuracy.

Krizhevsky in [13] suggested a large DCNN to classify 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into 1000 different classes. The model
achieved top-1 and top-5 error rates. The neural network was composed of five con-
volutional layers, some of which were followed by max-pooling layers and three
fully-connected layers with a final 1000-way softmax. In order to accelerate the training
process, non-saturating neurons and a very efficient GPU implementation of the con-
volution operation were used. Nevertheless, to minimize overfitting, some regulariza-
tion techniques like the dropout proved to be very effective.

In handwritten digit recognition, Calderon et al. in [14] and Alwzwazy in [15]
proposed a robust DCNN for classification, which achieved superior results. A com-
bination of the CNNs and the RNNs was presented by Peris in [16] and applied for the
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generation of video and image descriptions. These models demonstrated that they
outperformed the previous state of the art.

Indeed, Haiteng in [11] put forward advanced DCNNs for body constitution to
simulate the function of pulse diagnosis, which is able to classify an individual’s
constitution, based on their pulse. The CNN model employed the latest activation unit
and rectified the linear unit and the stochastic optimization. This model attained a
recognition accuracy of 95% on classifying nine constitutional types.

Peyrard et al. in [17] proposed a blind approach to super-resolution based on the
CNN architecture. The network could deal with different blur levels without any a
priori knowledge of the actual kernel utilized to give LR images. The obtained results
showed the success of the suggested approach for the blind set-up and were comparable
with non-blind approaches.

A deep-neural-network-based estimation metric was investigated by Sholomon
et al. in [18] to solve the jigsaw puzzle problem. The proposed metric indicated an
extremely high precision even without extracting any manual feature.

Two CNN architectures were presented by Garcia et al. in [19] for emotion
recognition in order to classify images into seven emotions. The first architecture
checked the effects of minimizing the number of deep learning layers. However, the
second architecture horizontally divided the given image into two streams based on eye
and mouth positions. This method performed good results compared it other approa-
ches proposed in the literature.

3 Object Recognition Based on DCNN Model

The success of any DCNN comes from the efficient use of GPUs, Rectified Linear
Units (ReLUs), a new regularization technique such as a max pooling dropout, a fully
connected dropout, and techniques for data augmentation to generate more training
examples by deforming the existing ones. In the following section, we describe the
major improvements and overall architecture of the DCNN model.

3.1 Initialization and Stochastic Optimization

Before starting to learn the parameters of the network, we must initialize its parameters.
An initialization establishes the probability distribution function for the initial weights.
The model uses a uniform initialization such as the He weight initialization. This
initialization method effectively resolves the bottleneck of the extremely deep neuronal
network training [11]. Yet, in order to optimize and update various CNN parameters,
the Adam algorithm is used. It is a simple and efficient computational algorithm for
optimization based on the gradients of stochastic objective functions. This algorithm is
well suited for a CNN with a complex structure and large parameter spaces and it
combines the strength of two newly popular optimization methods: the ability of
AdaGrad to cope with sparse gradients and the ability of RMSProp to handle
non-stationary objectives.
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3.2 Leaky Rectified Linear Unit

In general, to learn a neural network, the saturated counterpart, such as a hyperbolic
tangent or a logistic sigmoid, is used. However, in recent years, the most popular
activation function for the deep network is the ReLU. It calculates the following
function:

f xð Þ = max 0; xð Þ: ð1Þ

There are some advantages in using the ReLU. First, the ReLU is faster to calculate
because it does not require any normalization or exponential calculation (like those
required in sigmoid activations or tanh). Second, the use of the ReLU accelerates the
convergence of the stochastic gradient descent. This is argued to be caused by its linear
and non-saturating form. Third, it does not face the problem of gradient degradation as
for the sigmoid and tanh functions. It has been demonstrated that deep networks can be
trained effectively utilizing the ReLU even without pre-training.

3.3 Over-Fitting Prevention and Regularization

Learning the CNNs uses a large number of layers, a huge number of units, and
connections related to its complex structure and numerous filters in each convolutional
layer. These are prone to overfitting, which is a serious problem. To deal with this
problem, dropout learning and regularization methods have been developed to improve
the CNN performance and reduce overfitting.

L2 and ridge regularization
In order to reduce the regression coefficient overfitting, regularization penalties are
appended to CNN parameters. In fact, the L2 regularization and ridge are used in a
fully connected layer. L2 weight regularization penalizes weight values by adding the
sum of their squared values to the error term to drive all weights to smaller values.
Nevertheless, ridge regularization decreases the approximated regression coefficients
towards surmount overfitting, which is caused by high dimensionality [7]. The penalty
parameter is set to 0.01.

Max pooling dropout
In recent years, Wu and Gu in [20] proposed to use a special dropout variant with the
CNN, known as the max pooling dropout. Actually, the traditional CNN is composed
of alternating convolutional and pooling layers, with fully-connected layers on
top. However, the max pooling dropout can be seen as a special variant of stochastic
pooling. It is used within the pooling layers to introduce stochasticity into the learning
process with the difference that activations are utilized with a probability proportional
to their rank, instead of the strength of their activation.

Fully connected dropout
Dropout learning is used in deep learning to avoid overfitting. A small number of data
compared with the size of a network may cause overfitting [21]. Dropout learning
follows two processes. At the training stage, some hidden units are neglected with a
probability p, and this process reduces the network size. If a dropout probability p of
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0.5 is used, roughly half of the activations in each layer will be deleted for every
training sample, thus preventing hidden units from relying on other hidden units being
present. At the testing stage, the neglected inputs and hidden units are combined with
the learned hidden units and multiplied by p to express the final output. As a result, the
weights are rescaled proportional to the dropout probability. For example, for a dropout
probability of 0.5, all weights are divided by two [21]. This regularization can improve
the network performance and significantly reduce the error rate.

3.4 Architecture of Proposed DCNN

The suggested system is presented in Fig. 1. The CNN architecture is composed of six
layers: three convolutional layers with 15, 20 and 25 filters, where each filter has a size
of 5*5 and each convolutional layer is followed by a max pooling layer of a size of
2*2; two fully connected layers with 600 and 300 units performed after the convolu-
tional layers, and the softmax layer, which is the final layer of the CNN model clas-
sifying the output into 10 class labels.

A dropout layer is applied to the output with a probability of 0.5 on the 1st, 2nd and
3rd convolutional layers and to two fully connected layers. With this fixed architecture
we then proceed to test the effects of the different regularization techniques on the set
classification task.

4 Experimentation

We conduct our experimental studies using the proposed DCNN for object recognition.
This architecture and the previously described regularization methods are trained and
tested to classify images from two datasets: CIFAR-10 and STL-10. The next section
introduces the dataset and the overall performance of the DCNN model.

Fig. 1. Overall CNN architecture
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4.1 Database Description

To evaluate the performance of the proposed system, the experiments are conducted on
the benchmark object recognition datasets: CIFAR-10 and STL-10.

The CIFAR-10 dataset [13] consists of 60,000 color images of 32 � 32 pixels in 10
classes: airplanes, automobiles, birds, cats, deers, dogs, frogs, horses, ships, and trucks.
The total dataset is split into 50,000 training images and 10,000 testing ones. The last
10,000 training images are used for validation. Here are the classes in the dataset, as
well as 10 random images from each class (Fig. 2):

We use also the STL-10 dataset that contains 96 � 96 RGB images in 10 cate-
gories. This dataset has 5,000 labeled training images and 8,000 test images. Addi-
tionally, it includes 100,000 unlabeled images for unsupervised learning algorithms,
which are extracted from a similar but broader distribution of images [22].

4.2 Results and Discussion

We perform classification experiments on CIFAR-10 and STL-10. Then, we proceed to
compare the effects of various regularization methods on seven different classifiers. The
following seven settings are tested:

1. No regularization
2. CNN withLReL
3. CNN with LReL, max pooling dropout
4. CNN with LReL, max pooling dropout, fully connected dropout
5. CNN with LReL, max pooling dropout, fully connected dropout, L2
6. CNN with LReL, max pooling dropout, fully connected dropout, L2, ADASYS
7. CNN with LReL, max pooling dropout, fully connected dropout, L2, He

Fig. 2. CIFAR-10 dataset
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The results of each method are illustrated in Fig. 3a and b. Rate recognition is
defined as to the number of correctly recognized samples divided by the total number
of test samples. The objective is to classify the input image into 10 class labels. Using
CIFAR-10, the initial CNN model achieves a higher recognition rate of 75.5% with the
LReL as shown by Fig. 3a. With the LReL and the max pooling dropout, the recog-
nition rate significantly increases by 25.5%. With the addition of the fully connected
dropout, the recognition rate goes up by 3.08%. Applying the L2 regularization slightly
raises the rate to 94.3%. With the ADASYS method, the rate decreases to 90.07%. The
final CNN model with the He initialization gives the highest performance of 97.15%.

The experimental results show the outperformance of the DCNN based on the max
pooling dropout and the fully connected dropout compared to the standard CNN. In
fact, the DCNN model demonstrates its superiority based on a very complex and high
dimensional dataset with limited samples and without any data augmentation. How-
ever, the training and test DCNNs are time-consuming tasks due to the implementation
of the fully connected dropout and the max pooling dropout.

5 Conclusion

In this paper, we have presented a DCNN model for object recognition and examined
the effects of regularization techniques on the training of DCNNs. This regularized
model is able to surmount the shortcomings of traditional recognition methods and
improves the multi-classification recognition rate. The experiments have proven that
the combination of the DCNN with the max pooling dropout and fully connected
dropout can avoid the problem of overfitting. In addition, we have shown that the right
combination of regularization techniques can have a big impact on the performance of
DCNNs and their trained features by giving an adaptive recognition rate on an
extremely complex dataset. As a perspective, these regularization techniques can be
used together with data augmentation and more complex CNNs with more filters or
more layers, to potentially achieve good results and minimize the execution time on
challenging datasets.

Fig. 3. (a) Comparison of results on CIFAR-10 dataset and (b) Comparison of results on STL
dataset
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