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Abstract. Many works have posited the benefit of depth in deep net-
works. However, one of the problems encountered in the training of very
deep networks is feature reuse; that is, features are ‘diluted’ as they
are forward propagated through the model. Hence, later network layers
receive less informative signals about the input data, consequently mak-
ing training less effective. In this work, we address the problem of feature
reuse by taking inspiration from an earlier work which employed resid-
ual learning for alleviating the problem of feature reuse. We propose
a modification of residual learning for training very deep networks to
realize improved generalization performance; for this, we allow stochas-
tic shortcut connections of identity mappings from the input to hidden
layers. We perform extensive experiments using the USPS and MNIST
datasets. On the USPS dataset, we achieve an error rate of 2.69% with-
out employing any form of data augmentation (or manipulation). On
the MNIST dataset, we reach a comparable state-of-the-art error rate
of 0.52%. Particularly, these results are achieved without employing any
explicit regularization technique.

Keywords: Deep neural networks · Residual learning · Dropout ·
Optimization

1 Introduction

Neural networks have been extremely useful for learning complex tasks such as
gesture recognition [1] and banknote recognition [2]. More recently, as against
shallow networks with one layer of feature abstraction, there has been massive
interest in deep networks which compose many layers of features abstractions.
There are many earlier works [3,4] which established that given a sufficiently
large number of hidden units, a shallow network is a universal function approx-
imator. Interestingly, many works addressing the benefit of depth in neural
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networks have also emerged. For example, using the concept of sum-product net-
works, Delalleau and Bengio [5] posited that deep networks can efficiently repre-
sent some family of functions with lesser number of hidden units as compared to
shallow networks. In addition, Mhaskar et al. [6] provided proofs in their work
that deep networks are capable of operating with lower Vapnik-Chervonenkis
(VC) dimensions. Bianchini and Scarselli [7] employing some architectural con-
straints, derived upper and lower bounds for some shallow and deep architec-
tures; they concluded that using the same resources (computation units), deep
networks are capable of representing more complex functions than shallow net-
works. In practice, the success of deep networks have corroborated the position
that deep networks have a better representational capability as compared to
shallow networks; many state-of-the-art results on benchmarking datasets are
currently held by deep networks [8–10].

In recent times, the aforementioned theoretical proofs, practical results and
new works [11,12] now suggest that employing even deeper networks could be
quite promising for learning even more complex or highly varying functions. How-
ever, it has been observed that the training of models beyond some few layers
results in optimization difficulty [13,14]. In this work, for the sake of clear terms,
we refer to models with 2–10 hidden layers as ‘deep networks’, models with more
than 10 hidden layers as ‘very deep networks’ and use the term ‘deep architecture’
to refer interchangeably to a deep network or very deep network. We consider the
effective training of very deep networks; that is, simultaneously overcoming opti-
mization problems associated with model depth increase and more importantly
improving generalization performance. We take inspiration from an earlier work
which employed residual learning for training very deep networks [14]. However,
training very deep models with millions of parameters come with the price of
over-fitting. On one hand, various explicit regularization schemes such as L1-
norm, L2-norm and max-norm can be employed for alleviating this problem. On
the other hand, a more appealing approach is to explore some form of implicit
regularization such as reducing the co-adaptation of model units on one another
for feature learning (or activations) [19] and encouraging stochasticity during
optimization [8]. In this work, we advance in this direction with some modifica-
tions on the form of residual learning that we propose for implicitly improving
model regularization by emphasizing stochasticity during training. Our contri-
bution is that we propose to modify residual learning for training very deep
networks where we allow shortcut connections of identity mappings from the
input to the hidden layers; such shortcut connections are stochastically removed
during training. Particularly, the proposed training scheme is shown to improve
the implicit regularization of very deep networks as compared to the conventional
residual learning. We employ our proposed approach for performing extensive
experiments using the USPS and MNIST datasets; results obtained are quite
promising and competitive with respect to state-of-the-art results.

The rest of this paper is organized as follows. Section 2 discusses related
works.
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Section 3 serves as background and introduction of residual learning. Section 4
gives the description of the proposed model. Section 5 contains experiments,
results and discussion on benchmark datasets. In Sect. 6, we conclude the work
with our key findings.

2 Related Work

The optimization difficulty observed in training very deep networks can be
attributed to the fact that input features get diluted from the input layer through
the many compositional hidden layers to the output layer; this is evident in that
each layer in the model performs some transformation on the input received from
the preceding layer. The several transformations with model depth may make
features not reusable. Here, one can conjecture that the signals (data features)
which reach the output layer for error computation may be significantly less
informative for effective weights update (or correction). Many works have pro-
vided interesting approaches for alleviating the problem of training deep archi-
tectures. In [15,16], carefully guided initializations were considered for specific
activation functions; these initializations were found useful for improving model
optimization and the rates of convergence. In another interesting work [17], batch
normalization was proposed for tackling the problem of internal covariate shift
which arises from non-zero mean hidden activations. Nevertheless, the problem
of training (optimizing) very deep networks commonly arises when the num-
ber of hidden layers exceeds 10; see Fig. 1. For example, Srivastava et al. [13]
employed transform gates for routing data through very deep networks; they
refer to their model as a highway network. The concept is that the transform
gates are either closed or open. When the transform gates are closed, input data
are routed through the hidden layers without transformations; in fact, each hid-
den layer essentially copies the features from the preceding layer. However, when
the transform gates are open, the hidden layers perform the conventional features
transformations using layer weights, biases and activation functions. Inasmuch
as the highway network was shown to allow for the optimization of very deep net-
works and improving classification accuracies on benchmark datasets, it comes
with a price of learning additional model parameters for the transform gates.
Another work, He et al. [14] has addressed the problem of feature reuse by using
residual learning for alleviating the dilution (or attenuation) of features dur-
ing forward propagation through very deep networks; they refer to their model
as a ResNet. The ResNet was also shown to alleviate optimization difficulty in
training very deep networks. In [33], identity shortcut connections were used for
bypassing a subset of layers to facilitate training very deep networks.

3 Background: Very Deep Models and Residual Learning

3.1 Motivation

We emphasize the problem of training very deep networks using the USPS
dataset. Figure 1-left shows the performance of plain deep architectures with
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Fig. 1. Performance of deep architectures with depth. Left: Train error on USPS
dataset. Right: Train error on COIL-20 dataset. It is seen that optimization becomes
more difficult with depth

a different number of hidden layers. Particularly, it will be seen that the perfor-
mance of the models significantly dips from over 10 hidden layers. We further
emphasize this problem by going beyond the typical uniform initialization (i.e.
Unit init in Fig. 1) scheme for neural network models; we employ other initial-
ization and training techniques which have been proposed for more effective
training of deep models; these techniques include Glorot [15] initialization, He
[16] initialization and batch normalization [17] which are shown as Glorot init,
He init and BN in Fig. 1.

In addition, we investigate this problem using the COIL-20 dataset1 which
composes 1,440 samples of different objects of 20 classes. The concepts which
we follow in using the COIL-20 dataset as sanity check are in two folds: (1) it is
a small dataset, hence it is expected that deep architectures would easily overfit
such training data (2) the dataset is of much higher dimensionality. Obviously,
this training scenario can be seen as an extreme one which indeed favours deep
models with enormous parameters for overfitting the training data. This follows
directly from the concept of model complexity and curse of dimensionality with
high dimensional input data as against the number of training data points. How-
ever, our experimental results do not support the overfitting intuition; instead,
the difficulty of model optimization is observed when the number of hidden layers
is increased beyond 10; see Fig. 1-right. It will be seen that for both USPS and
COIL-20 datasets, training with batch normalization improved model optimiza-
tion with depth increase. Nevertheless, model optimization remains a problem
with depth increase. However, residual learning [14] has been employed in recent
times for successfully training very deep networks. The idea is to scheme model
training such that stacks of hidden layers learn residual mapping functions rather
than the conventional transformation functions.

1 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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3.2 Residual Learning: ResNet

In this subsection, we briefly discuss residual learning as a building block for the
model that we propose in this paper. In [14], residual learning was achieved by
employing shortcut connections from preceding hidden layers to the higher ones.
Given an input H(x)l−1 (in block form), from layer l−1 feeding into a stack of
specified number of hidden layers with output H(x)l; in the conventional training
scheme, the stack of hidden layers learns a mapping function of the form

H(x)l = F l(H(x)l−1), (1)

where the residual learning proposed in [14] uses shortcut connections such that
the stack of hidden layers learns a mapping function of the form

H(x)l = F l(H(x)l−1) + H(x)l−1, (2)

where H(x)l−1 is the shortcut connection. The actual transformation function
learned by the stack of hidden layers can be written as follows

F l(H(x)l−1) = H(x)l − H(x)l−1, (3)

where 1 ≤ l ≤ L and H(x)0 is the input data, x ; L is the depth of the network.
This training setup was found very effective in training very deep networks,
achieving state-of-the-art results on some benchmarking datasets [14]. In a fol-
lowing work [18], dropping out the shortcut connections from preceding hidden
layers was experimented with; however, convergence problems and unpromising
results were reported.

4 Proposed Model

For improving the training of very deep models, we take inspiration from residual
learning. Our proposed model incorporates some simple modifications to further
improve on optimization and generalization capability as compared to the con-
ventional ResNet. We refer to the proposed model as stochastic residual network
(S-ResNet). The proposed training scheme is described below:

(i) There are identity shortcut connections of identity mappings from the input
to hidden layers of the model; this is in addition to the shortcut connections
from preceding hidden layers to the higher ones as seen in the conventional
ResNets.

(ii) The identity shortcut connections from the input to the hidden layers are
stochastically removed during training. Here, hidden layer units do not
always have access to the untransformed input data provided via shortcut
connections.

(iii) At test time, all the shortcut connections are present. The shortcut con-
nections are not parameterized and therefore do not require rescaling at
test time as in [8,33].
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Fig. 2. (a) Proposed model with shortcut connections from the input to hidden layers
(b) Closer view of the proposed residual learning with a hypothetical stack of two
hidden layers

The proposed scheme for training very deep models is shown in Fig. 2(a); conven-
tional shortcut connections from preceding hidden layers, with shortcut connec-
tions from the input to the different hidden layers are shown. For the modification
that we propose in this work, the transformed output of a stack of hidden layers
denoted, l, with shortcut connection from the preceding stack of hidden layers,
H(x)l−1, and shortcut connection from the input x can be written as follows

H(x)l = F l(H(x)l−1) + H(x)l−1 + x. (4)

where 1 ≤ l ≤ L | x = 0 for l = 1 ∵ ∃ H(x)0 = x; H(x)l, F l(H(x)l−1),
H(x)l−1 and x are of the same dimension. In this work, every stack of resid-
ual learning block composes two hidden layers. For a clearer conception of our
proposed model, a single residual learning block of two hidden layers is shown
in Fig. 2(b). From Fig. 2(b), assume that the underlying target function to be
learned by a hypothetical residual learning block is F l(H(x)l−1), then using the
aforementioned constraints on l, it learns a residual function of the form

F l(H(x)l−1) = H(x)l − H(x)l−1 − x. (5)

For dropout of shortcut connections from the input layer to the stack of hidden
layers l, we can write

F l(H(x)l−1) = H(x)l − H(x)l−1 − D ∗ x, (6)

where D ∈ {0, 1} and D ∼ Bernoulli(ps) determines that x (shortcut connection
from input) is connected to the stack of hidden layers l with probability ps; that
is, P (D = 1) = ps and P (D = 0) = 1 − ps for 0 ≤ ps ≤ 1; and ∗ defines
an operator that performs the shortcut connection, given the value of D. The
conventional dropout probability for hidden units is denoted ph.
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5 Experiments and Discussion

For demonstrating the effectiveness of our proposed model, we train very deep
networks and observe their optimization characteristics over various training
settings using the USPS and MNIST datasets. The USPS dataset2 composes
handwritten digits 0–9 (10 classes) of 7,291 training and 2,007 testing samples;
while the MNIST dataset3 composes handwritten digits 0–9 of 60,000 training
and 10,000 testing samples. For the USPS dataset, we use 2× 2 convolutional
filters, 2 × 2 max pooling windows and 2 fully connected layers of 300 ReLUs. For
the MNIST dataset, we use 3 × 3 convolutional filters, 2× 2 max pooling windows
and 2 fully connected layers of 500 ReLUs. For both datasets, models have output
layers of 10 softmax units. Our best model, 54-hidden layer S-ResNet, composes
50 convolution layers, 2 max pooling layers and 2 fully connected layers; we
apply batch normalization only in the fully connected layers.

Figure 3-left shows the performance of our proposed model (S-ResNet) on the
USPS dataset with different number of hidden layers at a dropout probability
of ps = 0.8 for the input shortcut connections to the hidden layers; for the
conventional dropout of hidden units, a dropout probability of (ph = 0.6) is used.
It will be seen that with 54-hidden layers, our model achieves a state-of-the-art
performance; that is, an error rate of 2.69%, surpassing the conventional ResNet
(baseline model). In addition, Fig. 3-right shows the performance of the best
proposed model (54 hidden layer S-ResNet) with different dropout probabilities
for input shortcut connections to the hidden layers. Table 1 shows the error rates
obtained on the test data for the USPS dataset along with the state-of-the-arts
results. We observe that the models with asterisk (i.e. ∗) employed some form of
data augmentation (or manipulation). For example, [26,27] extended the training
dataset with 2,400 machine-printed digits; while [28] employed virtual data in
addition to the original training data. However, our proposed model employs no
such data augmentation tricks. The result obtained with our proposed model,
54-hiddden layer S-ResNet, surpasses many works which did not employ any
form of data augmentation.

We repeat similar experiments on the MNIST dataset. Figure 4-left shows the
error rates of the S-ResNets and the conventional ResNets with different num-
ber of hidden layers. It is observed that the S-ResNets are better regularized as
compared to the ResNets for all the different model depths. Particularly, with 54
hidden layers, the S-ResNet achieved a result competitive with the state-of-the-
art results; we reach an error rate of 0.52%. Figure 4-right shows the error rates of
the 54-hidden layer S-ResNet with different dropout probabilities for the input
shortcut connections to the hidden layers. In Table 2, we report the obtained
error rates for our experiments, along with the best results reported in recent
works. Also, for the MNIST dataset, we found that dropping out input short-
cut connections to the hidden layers with a probability of 0.8 yielded the best
result as given in Table 2. For both datasets, the S-ResNets employed no explicit

2 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
3 http://yann.lecun.com/exdb/mnist/.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://yann.lecun.com/exdb/mnist/
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Fig. 3. Performance of deep architectures with depth on the USPS dataset. Left: Test
error rate with depth. Right: Test error rate for different dropout probabilities of input
shortcut connections

Table 1. Error rate (%) on the USPS dataset

Models Test error (%)

Invariant vector supports [20] 3.00

Neural network (LetNet) [21] 4.20

Sparse Large Margin Classifiers (SLMC) [22] 4.90

Incrementally Built Dictionary Learning (IBDL-C) [23] 3.99

Neural network + boosting [21] ∗2.60

Tangent distance [24] ∗2.50

Human performance [24] 2.50

Kernel density + virtual data [25] ∗2.40

Kernel density + virtual data + classifier combination [25] ∗2.20

Nearest neighbour [25] 5.60

Baseline: Residual network (ResNet) - 54 hidden layers 3.34

Proposed model (S-ResNet) - 20 hidden layers 3.04

Proposed model (S-ResNet) - 54 hidden layers 2.69

Fig. 4. Performance of deep architectures with depth on the MNIST dataset. Left:
Test error rate with depth. Right: Test error rate for different dropout probabilities of
input shortcut connections
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Table 2. Error rate (%) on the MNIST dataset

Models Test error (%)

Highway Net-16 [13] 0.57

Highway Net-32 [13] 0.45

Supervised Sparse Coding + linear SVM [26] 0.84

Deep Fried Convet [27] 0.71

PCANet [28] 0.62

Network in Network (NIN) [29] 0.45

Deeply Supervised Network (DSN) [30] 0.39

ConvNet + L-BFGS [31] 0.69

Neural network + adversarial examples [32] 0.78

Neural network ensemble + DropConnect [8] 0.52

Baseline: Residual network (Resnet) - 54 hidden layers 0.76

Proposed model (S-Resnet) - 15 hidden layers 0.64

Proposed model (S-Resnet) - 54 hidden layers 0.52

regularization technique for improving generalization capability; we relied on the
implicit regularization of the models via dropout of input shortcut connections
and hidden units for the S-ResNet, and dropout of hidden units only for ResNet.
It is interesting to note that the proposed model do not suffer from convergence
problem as reported in an earlier work which experimented with a similar train-
ing scheme [18]. In addition, the experimental results given in Tables 1 and 2
suggest that the proposed training scheme improves the implicit regularization
of very deep networks; that is, lower test errors are achieved for the S-ResNets as
compared to the ResNets. We conjecture that the simple modification employed
for the proposed model helps to reduce the reliance of model units in one layer
over others for feature learning. We observe that [8] also reported an error rate of
0.21%, however [8] employed some form of data augmentation using an ensemble
of 5 neural networks; without data augmentation, they obtained a test error rate
of 0.52%. Conversely, we employ no data augmentation and model ensemble.

6 Conclusion

Very deep networks suffer optimization problems even in situations that indeed
favour over-fitting. Furthermore, assuming that we are able to optimize very deep
networks, over-fitting is almost always inevitable due to large model capacity.
We address the aforementioned problems by taking inspiration from residual
learning. Our proposed model, stochastic residual network (S-ResNet), employs
stochastic shortcut connections from the input to the hidden layers for essentially
improving the implicit regularization of very deep models. Experimental results
on benchmark datasets validate that the proposed approach improved implicit
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regularization on very deep networks as compared to the conventional residual
learning.
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