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Abstract. Compared with rate-based artificial neural networks, Spik-
ing Neural Networks (SNN) provide a more biological plausible model
for the brain. But how they perform supervised learning remains elusive.
Inspired by recent works of Bengio et al., we propose a supervised learn-
ing algorithm based on Spike-Timing Dependent Plasticity (STDP) for a
hierarchical SNN consisting of Leaky Integrate-and-fire (LIF) neurons. A
time window is designed for the presynaptic neuron and only the spikes
in this window take part in the STDP updating process. The model is
trained on the MNIST dataset. The classification accuracy approach that
of a Multilayer Perceptron (MLP) with similar architecture trained by
the standard back-propagation algorithm.
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1 Introduction

Rate-based deep neural networks (RDNN) with back-propagation (BP) algo-
rithm have got great developments in recent years [10]. Neurons in these net-
works deliver information by floating numbers. But in the brain, signals are
carried on by spikes, a kind of binary signals. This property can be captured by
a spiking neural networks (SNN). But how the SNNs are trained remains largely
unknown.

Several works studying supervised algorithm on SNN have made some
progress recently. Some works [2,3,7,8,12,17] make use of time coding by spikes.
In a very first work [2], each neuron is only allowed to fire a single spike. The
model is then expanded to allowing multiple spikes by later studies [3,7]. Net-
works in these papers usually need to keep multiple channels with independent
weights between two neurons. These channels account for different time delays [2]
or order numbers of spikes in the spike train [17]. These algorithms are designed
to learn spike trains, but classification on large datasets is hard for these models.
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In fact, the algorithms need to convey real numbers to spike trains. Due to the
difficulty of this conversion and recognizing ability of the network, these models
can only work on very simple datasets.

Recently, Bengio et al. proposes an idea to build a two-phased learning algo-
rithm for energy-based models called e-prop [14]. They implement the algorithm
on an energy-based model with input neurons clamped to input data and output
neuron variable under target signals. Neurons are free from target signals in the
first phase, and the state of which is denoted by s0. Dynamics of output neu-
rons are changed slightly by target signals in the second phase, and the state of
neurons is sξ. Let ρ() represent the active function. The weight Wij of synapse
between neuron j and neuron i is updated by

Wij ← Wij + ηΔWij , (1)

where
ΔWij ∝ lim

ξ→0

1
ξ
(ρ(sξ

i )ρ(sξ
j) − ρ(s0i )ρ(s0j )). (2)

And this rule is a symmetric version of another rule

ΔW ∝ ṡiρ(sj), (3)

which is studied in previous work [1]. In the work a link has been made between
(3) and Spike-Timing Dependent Plasticity (STDP) rule.

STDP rule is thought to be an ideal basis of algorithms on SNN. It is first
found in physiological experiment [11], defines that the plasticity of a synapse is
only dependent on the time difference of spikes from the two neurons attached by
this synapse. But computational significance of STDP is not clear. Several works
implement STDP on learning algorithms [6,9,13]. They all take an idea that
utilizing the simple property that the synaptic weight is strengthened when the
postsynaptic spike is after the presynaptic spike, thus a strict order of presynaptic
and postsynaptic spike is needed.

In this work we propose a new STDP-based algorithm on SNN. Also, we
find that simply computing all of the spikes using the STDP rule results in poor
results. We modify the spike pairs that perform STDP rule, and achieve good
results on same benchmark image classification dataset. We stress that we do
not change the original STDP rule on single pair of spikes, but provide a way
that how to use the STDP rule.

2 Method

2.1 The Network

The network is a bidirectionally connected network with asymmetric weights
based on the leaky integrate-and-fire (LIF) neuron model [5]. The state of neuron
i is described by membrane potential Vi. The dynamics of Vi is:

τV
dVi

dt
= −Vi + EL − rm

∑

j∈Γi

ḡs,ijPs,j(Vi − Es,j) + RmIe, (4)
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where Ie is input current, EL is equilibrium potential, Es,j is determined by types
of neurotransmitter, τV is a time constant, and Rm is a resistance constant. Γi

is the set of neurons that have synapses to neuron i. The membrane potential
Vi triggers the neuron to release a spike when it reaches a threshold Vth, and
then is reseted to Vreset after the spike. ḡs,ijPs,j represents synaptic conductance
from neuron j to neuron i, where ḡs,ij represents the maximum strength of the
synapse, and Ps,j represents the probability of opened neurotransmitter gates.
The dynamics of Ps,j is

τP
dPs,j

dt
= −Ps,j +

∑

k

δ(t − T
(k)
j ). (5)

The variable Ps,j increases by a unit amount every time neuron j spikes, and
decreases to zero spontaneously. δ() is a Dirac function, which means δ(x) = 0,
(x �= 0) and

∫ ∞
−∞ δ(x)x = 1. [T (1)

j , T
(2)
j , ...] represents for spike train of

neuron j.
We set all Es,j to 0 V , and the input current Ie to 0 μA. Also, for the sake

of convenience, we write ḡs,ij to Wij , and introduce an input summation for
postsynaptic neuron i

Pi =
∑

j∈Γi

ḡs,ijPs,j , (6)

and rewrite the basic dynamics (4) and (5) as

τV
dVi

dt
= −Vi + EL − rmPi(Vi − Es), (7)

τP
dPi

dt
= −Pi +

∑

j,k

Wijδ(t − T
(k)
j ). (8)

The network consists of an input layer, a hidden layer, and an output layer.
We denote the data for supervised learning by normalized input signal vx and
target signal vy.

For neuron i in the input layer, we simply let it be controlled by input
signal vx,i:

Pi = P0vx,i, (9)

and P0 is a constant to convert the scales. Neurons in the input layer fire in a
fixed pattern under an input proportional to input signal. The neurons in the
hidden layer are not affected by any signals from data directly, and act according
to (7) and (8).

Situation for neurons in the output layer is a bit more complicated. Like
the e-prop method [14], learning is performed in two phases, named inference
phase and learning phase in this paper. The only difference between the two
phases is the dynamics of the output layer neurons. In the inference phase, the
neurons also act according to (7) and (8). The network gives an inference result
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by counting the frequency of spikes of output neurons in this phase. And in the
learning phase, we add an item represents for effect of target signals:

τP
dPi

dt
= −Pi +

∑

j,k

Wijδ(t − T
(k)
j ) + β(P0vy,i − Pi), (10)

where vy,i is the ith target signal and β controls the effectiveness of target signals.

2.2 The Learning Rule

We adopt the original STDP functions. The STDP function represent the rela-
tionship of modification δWij of the synapse Wij from presynaptic neuron j to
postsynaptic neuron i, and the firing time of two spikes fire at tj and ti respec-
tively. The commonly used exponential form [15] of STDP function can be

δWij(ti, tj) = f(ti − tj) =

⎧
⎪⎨

⎪⎩

e− ti−tj
τm

, when ti > tj
0, when ti = tj

−e− tj−ti
τm

, when ti < tj

. (11)

And we can also use a sinusoidal form [16] as

δWij(ti, tj) = f(ti − tj) =
{

sin( ti−tj

τw
π), when Δt ∈ [−τw, τw]

0, otherwise
, (12)

where τw is a time constant. The two functions are plotted in Fig. 1. During the
experiment we found that the sinusoidal form resulted in better consequence, so
all results presented in the paper are based on (12).

The STDP rule is implemented on a time window in the learning phase after
the inference phase. We find that simply summing up all of the spike pairs in a
bidirectional network does not work. When the STDP function is approximately
anti-symmetric which means f(δt) = −f(−δt), we have

ΔWij =
∑

ti,tj

f(ti − tj) = −
∑

ti,tj

f(tj − ti) = −ΔWji. (13)

It means that the synapse modifications in two directions of two neurons are
always opposite. Consider a situation that two neurons’ firing rates are increasing
in a same mode, so that average modification of the two synapse are expected
to be symmetric, which is ΔWij = ΔWji. Along with (13), we have ΔWij =
ΔWji = 0. This makes no sense for learning and implementing this operation
can not learn the model well.

For breaking this symmetry we made a slight modification. We redefined the
rules of multiple spikes in a time window [0, T ]. That is, for synapse Wij , spikes
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(a) (b)

(c)

Fig. 1. (a) The exponential form of STDP function. (b) The sinusoidal form of STDP
function. (c) Illustration of details of implementing STDP. The learning window is
embedded in the learning phase, which is the space between the two vertical lines.
Only spike pairs indicated by dotted lines are taken into consider for updating Wij ,
which is the synaptic weight from presynaptic neuron j to postsynaptic neuron i.

fired by presynaptic neuron j only in time window [0, T ], and spikes fired by
postsynaptic neuron i in time window [−∞,∞] are taken into account:

ΔWij ∝
∫ T

0

dtj

∫ ∞

−∞
dtif(tj − ti)

∑

k,l

δ(ti − T
(k)
i )δ(tj − T

(j)
j ). (14)

Because of the local property of STDP rule, which means only spikes that the
time distance is not larger than τw in (12) actually effect, the scope of spikes
fired by postsynaptic neuron is [−τw, T + τw] in fact.

In fact, when STDP rule is implemented on time window [0, T ], it means the
STDP is somehow “turned on” at the time t = 0 and “turned off” at the time
t = T . And more specifically, STDP can be considered as a consequence of some
kinds of biochemical signals from both presynaptic neuron and postsynaptic
neuron [4]. We propose an idea that STDP is considered to be “turned on” by
activating the production or transmission of the biochemical signal triggered
by presynaptic neuron spikes, and also it is “turned” off by suppressing these
signals, while signals related to postsynaptic spikes are existed all time along.

The learning algorithm is summarized in Algorithm 1.
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Algorithm 1. Training the spiking neural network
1: Simulate an inference phase in the time window of [−t0, 0] and record the spike

train [T
(1)
i , T

(2)
i , ..., T

(mi)
i ].

2: Simulate a learning phase in the time window of [0, T + tw] and record the spike

train [T
(mi+1)
i , T

(mi+2)
i , ..., T

(Mi)
i ].

3: W
(n+1)
ij = W

(n)
ij + α

∫ T

0
dtj
∫∞

−∞ dtif(tj − ti)
∑

k,l δ(ti − T
(k)
i )δ(tj − T

(j)
j ).

3 Results

We implement the model on the MNIST dataset. The dataset contains 60,000
training images and 10,000 test images. And the images are in gray scale and
have size 28 × 28. The size of the network is 784-200-10, which indicates the
numbers of neurons in input layer, hidden layer, and output layer, respectively.

We use the Euler method to approximate the differential function (7) and (8).
Figure 2 is the simulation illustration of input summation and the membrane
potential of 10 output layer neurons with different time step. We set τV = 20 ms,

(a) Input summation (b) Membrane potential

(c) Input summation (d) Membrane potential

Fig. 2. Simulation illustration of input summation and membrane potential of 10 out-
put layer neurons in an inference phase. The synaptic weights have been trained on
MNIST dataset. Only the 8th neuron have a maximal input, and fires in a maximal
pattern, while other neurons are not. The simulation for (7) and (8) is processed using
Euler method. We have tried different time steps, as 0.01 ms for (a)(b) and 1 ms for
(c)(d)
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τP = 10 ms, Es = 0, EL = −70 mV, Vreset = −80 mV, Vth = −54 mV, and a
hard bound [0, 0.3] for Pi. In fact, we find that a simulation time step of 1 ms
is enough to depict the spiking trains, so we use a step of 1 ms in our later
experiment.

(a) (b)

Fig. 3. The error rates against epochs on the MNIST dataset. (a) Simply take all of
the spike pairs into account. (b) Use the proposed method.

We test our model on the MNIST dataset (Fig. 3). Using the STDP rule with
all of the spikes in the time window taken in to account did not work. By using
the proposed method, the error rate on training set is able to decrease to 0.0% in
the experiment, which proves the convergence of algorithm experimentally. For
comparison, we also implement the e-prop and MLP which have similar archi-
tecture to our model (the same number of input, hidden and output neurons).
Several other STDP-based algorithms are also compared. The test accuracies on
the MNIST dataset are summarized in Table 1. The test accuracy of our method
is greater than other STDP-based algorithms, except for the algorithm that use
a convolutional architecture [9].

Table 1. Comparison of different algorithms

Model Neural coding Test accuracy/%

E-prop Rate-based 97.5

MLP Rate-based 98.5

Two layer network [13] Spike-based 93.5

Two layer network [6] Spike-based 95.0

Convolutional SDNN [9] Spike-based 98.4

Proposed model Spike-based 96.8
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4 Discussion

We describe an STDP-based supervised learning algorithm on SNN, and get
good results on the MNIST classification task. The accuracy approaches that
of an MLP with a similar architecture, which indicates the effectiveness of this
algorithm. Compared with existing algorithms for training SNNs, the proposed
algorithm have achieved competing results.

The algorithm suggests that biological neurons may not modify their
synapses under the STDP rule all the time. STDP takes effect only when the
supervisory signals are applied. In addition, the algorithm suggests that not all
spikes of the presynaptic neuron participate in the STDP learning process for
the synapse. Instead, there may exist a time window and only the spikes during
this window should be counted. But biochemical evidence is needed to validate
these predictions.
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4. Clopath, C., Büsing, L., Vasilaki, E., Gerstner, W.: Connectivity reflects coding:
a model of voltage-based STDP with Homeostasis. Nat. Neurosci. 13(3), 344–352
(2010)

5. Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 806. MIT Press, Cambridge
(2001)

6. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

7. Ghosh-Dastidar, S., Adeli, H.: A new supervised learning algorithm for multiple
spiking neural networks with application in epilepsy and seizure detection. Neural
Netw. 22(10), 1419–1431 (2009)

8. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-
based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

9. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based
spiking deep neural networks for object recognition. arXiv preprint (2016).
arXiv:1611.01421

10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

http://arxiv.org/abs/1509.05936
http://arxiv.org/abs/1611.01421


100 Z. Hu et al.
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