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Preface

ICONIP 2017 – the 24th International Conference on Neural Information Processing –

was held in Guangzhou, China, continuing the ICONIP conference series, which
started in 1994 in Seoul, South Korea. Over the past 24 years, ICONIP has been held in
Australia, China, India, Japan, Korea, Malaysia, New Zealand, Qatar, Singapore,
Thailand, and Turkey. ICONIP has now become a well-established, popular and
high-quality conference series on neural information processing in the region and
around the world. With the growing popularity of neural networks in recent years, we
have witnessed an increase in the number of submissions and in the quality of papers.
Guangzhou, Romanized as Canton in the past, is the capital and largest city of southern
China’s Guangdong Province. It is also one of the five National Central Cities at the
core of the Pearl River Delta. It is a key national transportation hub and trading port.
November is the best month in the year to visit Guangzhou with comfortable weather.
All participants of ICONIP 2017 had a technically rewarding experience as well as a
memorable stay in this great city.

A neural network is an information processing structure inspired by biological
nervous systems, such as the brain. It consists of a large number of highly intercon-
nected processing elements, called neurons. It has the capability of learning from
example. The field of neural networks has evolved rapidly in recent years. It has
become a fusion of a number of research areas in engineering, computer science,
mathematics, artificial intelligence, operations research, systems theory, biology, and
neuroscience. Neural networks have been widely applied for control, optimization,
pattern recognition, image processing, signal processing, etc.

ICONIP 2017 aimed to provide a high-level international forum for scientists,
researchers, educators, industrial professionals, and students worldwide to present
state-of-the-art research results, address new challenges, and discuss trends in neural
information processing and applications. ICONIP 2017 invited scholars in all areas of
neural network theory and applications, computational neuroscience, machine learning,
and others.

The conference received 856 submissions from 3,255 authors in 56 countries and
regions across all six continents. Based on rigorous reviews by the Program Committee
members and reviewers, 563 high-quality papers were selected for publication in the
conference proceedings. We would like to express our sincere gratitude to all the
reviewers for the time and effort they generously gave to the conference. We are very
grateful to the Institute of Automation of the Chinese Academy of Sciences, Guang-
dong University of Technology, South China University of Technology, Springer’s
Lecture Notes in Computer Science (LNCS), IEEE/CAA Journal of Automatica Sinica
(JAS), and the Asia Pacific Neural Network Society (APNNS) for their financial
support. We would also like to thank the publisher, Springer, for their cooperation in



publishing the proceedings in the prestigious LNCS series and for sponsoring the best
paper awards at ICONIP 2017.

September 2017 Derong Liu
Shengli Xie
Yuanqing Li

Dongbin Zhao
El-Sayed M. El-Alfy
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Abstract. The most difficult and heavy work of Automated Theorem
Proving (ATP) is that people should search in millions of intermediate
steps to finish proof. In this paper, we present a novel neural network,
which can effectively help people to finish this work. Specifically, we
design a tree-structure CNN, involving bidirectional LSTM. We com-
pare our model with other neural network models and make experiments
on HOLStep dataset, which is a machine learning dataset for Higher-
order logic theorem proving. Being compared to previous approaches,
our model improves accuracy significantly, reaching 90% accuracy on
the test set.

1 Introduction

Automated theorem proving (ATP) is a subfield of automated reasoning and
mathematical logic. The goal of the ATP is proving that conjecture is a logical
consequence of axioms and hypotheses. The traditional way of ATP is using
first order language such as Isabelle [13], HOL [18] to build axioms and make
reasoning. For example, [15] gives a form that made by premises-conclusion
pairs. [17] introduces a way that could give procedures and intermediate steps.
Nevertheless, in ATP, the whole process is strongly depended on researcher’s
experience because people need to predicting whether a statement is useful in
the proof of a given conjecture (we call this process: premise selection). And
there are dozens of thousands of statement. All the thing that computer can do
is helping people to complete the logical inference. Meanwhile, although formal
proof requires couples of person-years, which is highly time-consuming, the result
is not well: the formal proof still cannot prove complex system [10].

In recent years, machine learning becomes a popular technology to solve ATP
problems [2,4]. Such as [11], provides a method that using machine learning to
build a ATP system. In [5], the author provides us a dataset named: HolStep.
This dataset is a machine learning dataset for ATP. At the same time [5] demon-
strate state-of-the-art performance on HolStep, reaching 85% accuracy. But there
is no generalizability of the results. Because this model ignores the most basic
feature of ATP: recursion.

So in this paper, we are going to join recursion with Convolutional neural net-
work, helping people deciding intermediate steps. We introduce the elementary
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 3–12, 2017.
https://doi.org/10.1007/978-3-319-70096-0_1



4 K. Peng and D. Ma

character—subgoal, main goal and recursion—into CNN and propose a novel
neural network called Tree-structure CNN. The experimental results show that
recursion is a effective way to tackle the formal proof, especially for the premise
selection. Specifically, we change the traditional linear structure of CNN into
Tree-structure in order to cope with recursion. In our evaluation, we run experi-
ments in HolStep and compare our approach with four other models. The exper-
imental results demonstrate that our model yields significant accuracy improve-
ments compare to [5], reaching 90% accuracy on the HolStep.

The rest of this paper is organized as follows. In the Sect. 2, we will review
related work. In the Sect. 3 we introduce ATP and the basic feature–recursive.
This feature is the most important motivation of our paper. Our model and
motivation is in Sect. 4. Experimental and results are shown in Sects. 5 and 6.
At last, Discussion is in Sect. 7.

Fig. 1. Top traditional linear CNN structure. Bottom a tree-structure CNN with five
leaf notes

2 Related Work

The combining machine learning and ATP is focused on two aspects: premise
selection and strategy selection. The basic theorem proving task is premise selec-
tion. Given a number of proven facts and a conjecture to be proved, the problem
that selecting the most possible facts to finish a successful proof is called premise
selection [2], The task is crucial for the efficiency of the state-of-the-art auto-
matic techniques [3]. In [9], The authors implement the SInE classifier to solve
the large scale theory reasoning.

The subsequent theorem proving task is strategic selection. Strategy selection
means that people use the premise to finish the proof according to a precise order.
In modern ATP, for instance Vampire [11] or E [16], it includes language that
can description the strategy and allow a user to specify the ordering.
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At last, the machine learning method provides an effective way to help people
for choosing the inference steps. In paper [1], the author raises a learning-based
premise selection method that in a 50% improvement on the benchmark over
the SInE, a state-of-the-art system. In paper [6] the author successfully applies
it into higher-order logic proving.

3 Task Description

In a computer or mathematics system. There are some properties we think they
are right. We call them axioms. For example, rev[ ] = [ ]. rev represents reverse
operator for a list. [ ] is an empty list. rev[ ] = [ ] means that reversing an
empty list equal to list itself. For properties that we do not know or want to
verify, such as rev(rev xs) = xs (xs is a nonempty list), we call it conjecture.
rev(rev xs) = xs means that if we reverse a list twice, we get the original list. If
we could use axioms to prove a conjecture, we call conjecture: premises. Our job
is choosing a premise from a set of the premises. Because human have to specify
intermediate steps in dozens of thousands of theorems, this is time-consuming
work that could take a couple of years [10]. So in this paper, we give attention
to the task that whether a premise is helpful to the final result. Apparently, the
model of our paper is a binary conditioned classification model: If the premise
is helpful for the final conclusion, it is belonging to the positive class. Otherwise
belong to the negative class.

At first, we will give an example to explain what is the main goal and subgoal,
the basic and important feature of formal proof. For instance, there is a list xs.
We wish to prove that reverse the list twice is equal to the list itself. If we
represent it formally, we could get the following equation:

rev(rec xs) = xs (1)

rev is the action of reverse. xs is the list. This is our main goal. We seek to
prove it. Firstly we are needed to prove a basic situation: an empty list. This is
one of the subgoals. We can formally write it like this:

rev(rev[ ]) = [ ]. (2)

Second, we need to prove another subgoal

rev(reclist) = list => rev(rev(a#list)) = a#list. (3)

a#list means that take the first element from the list, for another word, take
the head of the list. To prove the first subgoal, we need an axiom:

rev[ ] = [ ]. (4)

To prove the second subgoal, we need a premise:

rev(xs&ys) = (rev ys)&(rev xs). (5)
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The symbol & means an operator, for example: #. This premise is helpful
to our result, so it belong to the positive class. From this example, we can
see that every time we choose a premise and make inference, we will get some
new subgoals. To proof those new subgoals, we need more premises. This is
a recursively process. Also, because recursion feature, the sequence of proof is
important. For example, if we try to prove the second subgoal rev(rev(a#list)) =
a#list. The proof would not have succeeded.

From this example, we can conclude that if we want CNN to deal with this
task, CNN must has ability to deal with recursively process. Only in this way
can we get a good result. Meanwhile, we know that tree-structure is a good way
to deal with recursive, so we are going to design a tree-structure CNN.

4 Network Structure and Motivation

4.1 Motivation

The basic characteristic of ATP is that the proof process is a recursive process
as Fig. 1 show (The bottom one). Bottom one of Fig. 1 is a tree. Every node in
this tree is a goal that needs to be proofed in ATP. Specially, the root of the
tree is the main goal. The leaf node of the tree is the subgoal. Proof process is
searching the tree in deep first search sequence. According to this feature, we
have two motivations: Firstly, we change the linear CNN structure into tree-
structure. Secondly, we combine the CNN with LSTM (not show in Fig. 1).
For the first motivation, we think traditional linear structure of CNN, as Fig. 1
show, could not be able to deal with the recursion very well. We therefore design
a tree-structure CNN as same as the proof process. We use two CNN layers
to handle the two input part, conjecture block and dependency (axiom) block,
separately. Then we join those two layer’s output together, as the joint note in
Fig. 1. To proof the subgoal, we still need the dependency (axiom) block. So we
put the dependency (axiom) block into CNN layer again. The conjecture block
and dependency (axiom) block will be specifically narrated in Sect. 6.

For the second motivation, we combine LSTM with tree-structure CNN
because the order is very important to ATP. There is an order relationship
between the main goal and subgoals. If it is disordered, the proof process of
ATP will fail. That is, the final goal cannot be proved. Due to the ability for
processing order sequence, LSTM is a natural choice for our model.

The key of our model is a Tree-structure CNN, as showed in Fig. 1. Based
on this hierarchical model. We can track the obvious feature of formal proof:
Subgoal. Subgoal is a very common and important feature of formal proof, which
we present in Sect. 4. The core idea of our model is the recursion. We try to use
tree-structure to represent recursive process of ATP. In our model, recursion
equal to tree-structure.

4.2 Network Structure

We are inspired by [2,5] and our model are based on the deep convolutional
neural network too. Our model has two input: dependency (axiom) block and
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conjecture block. Our model includes one output: 0 imply that the dependency
(axiom) block has no or negative relationship with the conjecture block. 1 imply
that the dependency (axiom) block has a positive relationship with the conjec-
ture block. We describe the format of input in Sect. 6 specifically.

The first layer should be word embedding layer. Word embedding layer
will convert the dependency (axiom) block and conjecture block into an 256-
dimensional vector. This layer has been implemented by an open source frame-
work keras and we can use it’s API directly. The specific principles are men-
tioned in [12]. This step is not a vital step in our model because we do not have
to understand the process of word embedding. We only need the result of word
embedding. Then we deal with vectors by CNN layer and maxpooling layer. The
difference between our model and [2] is: We think the output of every CNN
layer is the subgoal of ATP, so we try to merge the output of every CNN into
a whole. After that, we use bidirectional LSTM to deal with the conjecture and
LSTM deal with the dependency (axiom). At last, we choose the binary cross
entropy function as loss function. We also utilize L2 regularization to prevent
the overfitting. The whole structure is indicated exactly in Fig. 3.

Our key idea of this work is to enable the neural network to learn the recursive
feature of ATP. In order to complete this goal, we use the tree-structure CNN.
The tree-structure CNN is different from all previous works in an important
aspect: previous approaches do not explicitly incorporate this recursive feature
of ATP into model. So those models will generalize poorly, whereas our model
incorporates recursion and will achieve perfect generalization.

5 Experiments

This dataset is made by google [2,5], which is well-suited for machine learn-
ing that are highly relevant for ATP. There are 2013046 training examples and
196030 testing examples in total. The dataset together with the description of
the used format is available from: http://cl-informatik.uibk.ac.at/cek/holstep/.

The input of this data set and labeled of data is as follow: Each input file
consists of a conjecture block, a number of dependency (axiom) blocks, and a
number of training/testing example blocks. The conjecture block starts with an
‘N’ and consists of 3 lines:
N 〈name of conjecture〉
C 〈text representation of the conjecture〉
T 〈tokenization of the conjecture〉

Each dependency (axiom) block starts with a ‘D’ and consists of 3 lines:
D 〈name of dependency (axiom)〉
A 〈text representation of the dependency (axiom)〉
T 〈tokenization of the conjecture〉

Each training/testing example starts with the symbol + or −. where + means
useful in the final proof and − not useful and consists of 2 lines:
+ 〈text representation of the intermediate step〉
T 〈tokenization of the intermediate step〉

http://cl-informatik.uibk.ac.at/cek/holstep/
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Our model is implemented in tensorflow and keras. Each model was trained
on a Nvidia 1070GTX. The complete evaluation on HolStep dataset is given in
Tables 1 and 2, we run experiments on all five models in HolStep and compare
our result with four other results:

1D CNN+LSTM and 1D CNN. This model is purposed by [2,5]. It is a
simple but available model.

2-layer CNN+LSTM [8]. The difference between 1D CNN+LSTM and 2-
layer CNN+LSTM is that there is only one input to 1D CNN+LSTM. In 2-layer
CNN+LSTM, there are two input:statements and conjecture. The structure of
this model is show as Fig. 2.

VGG-16. VGG-16 was purposed by Oxford Visual Geometry Group. It won the
champion of ImageNet 2014. In this paper, we try to find whether this model
could be used to deal with the natural language problem [14].

ResNet. ResNet is a residual learning framework to ease the training of networks
that are substantially deeper than those used previously. It explicitly reformulate
the layers as learning.

Residual functions with reference to the layer inputs, instead of learning
unreferenced functions [7]. Tree-structure CNN+BILSTM. Our model tree-
structure CNN and we change LSTM to bidirectional LSTM as Fig. 3 shown.

The first model only has one input: dependency (axiom) blocks. The second
model includes two input: dependency (axiom) blocks and conjecture blocks.
The structure of the first model is show as Fig. 2.

6 Results

At first, we compare the traditional classify approach with our model. Tradi-
tional classify approaches include: SVM, KNN, Logistic Regression. Experimen-
tal results are presented in Tables 1 and 2 (the model with * is ours). Our model
yields 90% accuracy in training dataset. This shows that tree-structure CNN
could deal with the recursive process well. Additionally, our model yields 85%
accuracy in test dataset, 5% lower that train dataset. This difference is due
to (1) lacking of training data and overfitting. (2) The dependent relationship
between conjecture block and dependency (axiom) blocks is too complex. Mean-
while, SVM, KNN, Logistic Regression also do not have a good result. That is
because traditional way could not deal with the recursive information. They just
can measure the similarity of geometric space, such as Euclid Space.

Second, we compare other CNN models with our model. The result is showed
in the Tables 3 and 4. From the Tables 3 and 4, we can conclude that the CNN
models are better that traditional approach. However, the VGG-16 and ResNet
(50 layers), which perform very well in ImageNet contest, do not get a satisfac-
tory result in this dataset. This result means that there may not be generality
between CV models and NLP models because the basic feature of the picture
and ATP are different. So we still need to choose a suitable way for a specific
task.
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Fig. 2. Left shows the construction of our neural network. We try to involve all the
output of every CNN layers into a whole. And we apply bidirection LSTM to deal with
the last result. Right show the show the construction of [2]

Fig. 3. Left shows the relationship between epoch and the accuracy. Right shows the
relationship between the epoch and lost
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Table 1. Train dataset.

Model Accuracy

KNN 70.1%

SVM 72.5%

Logistic regression 63.2%

Tree-CNN+BILSTM* 90%

Table 2. Test dataset.

Model Accuracy

KNN 68.8%

SVM 69.1%

Logistic regression 60.7%

Tree-CNN+BILSTM* 85%

Table 3. Train dataset.

Model Accuracy

VGG-16 56.3%

ResNet(50 layers) 67.4%

CNN 81.6%

1D CNN+LSTM 82.4%

2-layer CNN+LSTM 85%

Tree-CNN+BILSTM* 90%

Table 4. Test dataset.

Model Accuracy

VGG-16 54.7%

ResNet(50 layers) 61.2%

CNN 80.5%

1D CNN+LSTM 79.6%

2-layer CNN+LSTM 82.1%

Tree-CNN+BILSTM* 85%

For the 1D CNN+LSTM model and 2-layer CNN+LSTM model, the accu-
racy of the train set and test set are analogous. It shows that for those models, the
dataset are enough. Nonetheless, for Tree-structure CNN+BILSTM, the dataset
is not sufficient. Tree-structure CNN+BILSTM are more complicated than 1D
CNN+LSTM and 2-layer CNN+LSTM. So our model could learn the feature
more well. We need, however, more data to train.

7 Discussion

In this paper, we propose a deep learning model that can predict the usefulness
of a statement to the final result. Our work could improve ATP techniques
and save time for a formal proof. Our model has a significant generalization
ability because our model can capture the basic characteristic: recursion. Also,
the process of ATP is an orderly sequence. So we use the bidirectional LSTM and
the experimental results show our model reaching 90% accuracy, 5% higher than
[5]. But there are still some problems. The first one is we need more datasets to
prove our model’s generalization ability. Unfortunately, there are few datasets
in this area. So one of our future works is making more datasets of ATP. The
second problem is that although tree-structure CNN can improve the accuracy, it
is a simple model that only cocaine several nodes. But the ATP always includes
a huge number of subgoals. So when the ATP is too complicated, our model
may not work well. At the same time, if we add more nodes into our model,
the train will become highly time consuming. Also, more node may not improve
the accuracy significantly. The third problem is that even if we improve the
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accuracy in 5%, there is still a big space left. So in the future, we are about
revise the structure of LSTM. Changing the linear structure into tree-structure
in the future. We hope this revision could improve the accuracy.

At last, we note that there is an interesting example in our experiment. The
example is shown in the Fig. 4.

Fig. 4. Shows the proof relationship between main goal and subgoal. A → B means
we need A to proof B. The suspension points means that more axioms are needed to
proof D and E

The Fig. 4 clearly shows the proof relationship between subgoal and main
goal. A is the main goal of our proof. If we want to proof A, we need A1, A2,
and A3. So A1, A2, A3 have a positive relationship with the main goal. It is easy
to know that all the leaf node in this tree are all have a positive relationship
with the main goal. However, we find that in our experimental result. Our model
classifies a leaf node in seven layer of this tree into a negative relationship (The
seven layer is not shown in Fig. 4). Oppositely, SVM gives our the correct answer.
From this example, we could get a conclusions: ATP is very complex. It contain
many axioms and the relationship between them is also complex. So, we need
to combine the traditional way with CNN. Only CNN or SVM may not be
successful.
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11. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 1

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

15. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337 (2009)

16. Voronkov, A.: Logic for Programming, Artificial Intelligence, and Reasoning.
Springer, Heidelberg (2010)

17. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof
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Abstract. Recently, both supervised and unsupervised deep learning
techniques have accomplished notable results in various fields. However
neural networks with back-propagation are liable to trapping at local
minima. Genetic algorithms have been popular as a class of optimization
techniques which are good at exploring a large and complex space in an
intelligent way to find values close to the global optimum.

In this paper, a variable length chromosome genetic algorithm
assisted deep autoencoder is proposed. Firstly, the training of autoen-
coder is done with the help of variable length chromosome genetic algo-
rithm. Secondly, a classifier is used for the classification of encoded data
and compare the classification accuracy with other state-of-the-art meth-
ods. The experimental results show that the proposed method achieves
competitive results and produce sparser networks.

Keywords: Neural networks · Genetic algorithm · Variable length chro-
mosome · Deep autoencoder

1 Introduction

Neural network researchers had wanted for eras to train deep multi-layer neural
networks [1,2], which is inspired by the architectural depth of the human brain
but before 2006 no successful attempts were reported. Positive experimental
results were reported by researchers with usually one or two hidden layers
but training deeper networks repeatedly returned poorer results. Hinton et al.
introduced Deep Belief Networks [3], with an unsupervised learning algorithm
Restricted Boltzmann Machine (RBM) [4] that greedily trains one layer at a
time. Later, autoencoders based algorithms were proposed [5,6], actually taking
advantage of the same principle using of unsupervised learning to train of mid-
dle layer at each level [7]. More recently, other algorithms for deep learning were
proposed using neither autoencoder nor RBMs but using the same principle [8,9].

Since 2006, deep learning have been applied on various tasks such as dimen-
sionality reduction [10], classification [5,11,12], modeling textures [13], collabo-
rative filtering [14], regression [15], object segmentation [16], natural language
processing [8,17] and information retrieval [18,19].
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 13–22, 2017.
https://doi.org/10.1007/978-3-319-70096-0_2
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In this paper we describe a variable length chromosome genetic algorithm
(VLC-GA) for training deep autoencoder. We use VLC-GA for training deep
autoencoder that not only succeeds in its task but outperforms backpropaga-
tion (the standard training algorithm) and another approach in [20] on MNIST
handwritten digits dataset [21].

The rest of paper is organized as follow: In Sect. 2, related work is briefly
reviewed. In Sect. 3, the proposed method is explained. In Sect. 4, experiments
are presented. The contributions of this paper are concluded in Sect. 5.

2 Related Work

Neural networks (NNs) and genetic algorithms both have the ability to solve
complex problem. The idea of combination of neural networks and genetic algo-
rithms came up first in the late 80s, which is inspired from the nature. In real
life, a successful person not only depends on his knowledge and expertise, which
he gained through experience (the neural network training), but also depends
on his inborn inheritance (set by the genetic algorithm) [22].

Since 1980, genetic algorithms have been effectively used for training neural
networks. Genetic algorithms have been used as a replacement for the back-
propagation algorithm, or in combination with backpropagation to increase the
entire performance of the neural network [23]. A large number of problems have
been examined by using various Genetic Algorithm Neural Networks (GANN)
techniques, such as classification [24], face recognition [25], color recipe predic-
tion [26], animates [27], etc.

In 2014, Omid E. David and Iddo Greental used a GA-assisted approach
for training deep autoencoder which improved the performance of deep autoen-
coder and produced a sparser neural network [20]. In [28], Montana, David J.,
and Lawrence Davis used a different genetic algorithm for training feed for-
ward networks which is not only prospers in its job but surpassed the standard
training algorithm backpropagation on different datasets. In regards of genetic
algorithm they showed a real world application of genetic algorithm to a big and
difficult problem. They also show that adding domain specific information to
genetic algorithm improves its performance. Philipp and Koehn [26] in their the-
sis, survey how genetic algorithms can be used to enhance the network topology,
learning rate and initial weight of neural networks. They also inspect how vari-
ous encoding strategies influence the combination of GANN. Besides this, many
researchers used variable length genetic algorithm instead of constant length
genetic algorithm for different problems [20,29–32].

3 Methodology

3.1 Deep Autoencoder

An autoencoder, also called auto-associator or diabolo, network is an artificial
neural network. Autoencoder were first introduced in 1980s by Hinton and Par-
allel Distributing Processing (PDP) group by using input data as a teacher to
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solve the problem of backpropagation without mentor [33]. Autoencoder is used
for unsupervised learning that sets the target values to be equal to its inputs, i.e.
the number of neurons at the input and output layers is equal, and the optimiza-
tion goal for output neuron i is set to xi = x̂i. Between input and output layers
one or more hidden layers are used. Generally the number of neurons in hidden
layer is less compared to input or output layers, thus making a bottleneck.

Fig. 1. Basic structure of autoencoder.

Architecturally, feedforward is the simplest form of an autoencoder. An
autoencoder comprises of two parts encoder and decoder. As shown in Fig. 1,
encoder consists of layer L1 and L2 while decoder consists of layer L2 and L3.
The layer L1 is input layer, L2 is a hidden layer consisting of two neurons and
each neuron represents by a function:

a(x) = f(Wx + b) (1)

where W , b are weight matrix and bias vector respectively and f(·) is an activa-
tion function that can be sigmoid, hyperbolic, sine, gaussian function etc. And
L3 is the output layer that represents by a function h(x) ≈ x:

h(a) = f ′(W ′a + b′) (2)

where f ′(·), W ′ and b′ of decoder may differ from encoder depending upon the
design of autoencoder. Training of autoencoder is accomplished by reducing the
reconstruction error (such as squared error):

E(x, x̂) = ‖x − x̂‖2 = ‖x − f ′(W ′f(Wx + b) + b′)‖2 (3)

A deep autoencoder consists of several layers of autoencoders such that the
outputs of each layer are bound to the inputs of the next layer [19]. A greedy
layer-wise procedure is used for obtaining good parameters for deep autoencoder.
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3.2 Backpropagation Learning

Backpropagation is a technique of training artificial neural networks used in
combination with an optimization method such as gradient descent. The algo-
rithm has two main phases, propagation and weight update. The input data
is transmitted forward layer by layer from the input layer to the output layer.
Using a cost function, the desired output is compared to the output of network.
At the output layer, for every neuron an error value is calculated. Starting from
the output, the error values are then transmitted towards back and every single
neuron takes its associated error value which shows its part in the original out-
put. Later backpropagation uses these error values to compute the gradient of
the cost function with respect to the weights in the network.

3.3 The Proposed Method

In this paper we propose a VLC-GA assisted approach which improves the per-
formance of an autoencoder, and produce a sparser network. The autoencoder is
trained with tied weights. We store various sets of weights W for a layer. That is,
in our GA population each chromosome is one set of weights for an autoencoder.
In this paper, the term of weights and chromosomes are used interchangeably.
For creation of variable length chromosome, the chromosome size is multiplied
with a variable v. This variable shows the maximum percent variation of the
chromosome. For example if v is 20% and chromosome size is 392000, then the
maximum variation in chromosome can be 78400 by choosing a number randomly
between 0 and 78400. The same method is applied for the whole population of
chromosome. The generation of variable length chromosome is also shown in
Algorithm 1. While training the data, for each chromosome (which represents
the weights of an autoencoder) the root mean squared error (RMSE) is cal-
culated of training dataset m. The fitness of each chromosome is defined by a
fitness function [20] as:

fitness(i) = 1/√∑m
i=1(xi−x̂i)

2

m

(4)

After calculating the fitness of all chromosomes, the least fit chromosomes are
removed from the population and update the remaining chromosomes using
backpropagation. After removing the least fit chromosomes, we used Roulette
selection method for the selection of parent chromosomes from the rest popula-
tion and then use uniform crossover method to create offspring. The offspring is
mutated from the best chromosomes using specified mutation probability. The
mutation process is described in Algorithm 2. The whole process (Algorithm 3)
is run for a specific number of iterations and returns the best chromosomes. The
same process applied on all layers and stacked all the layers to make a deep
autoencoder.

To classify the compressed dimensional feature vector, softmax regression
is used. As we are concerned in multi-class classification so it takes k different
values instead of two (as in binary classification) and the equation becomes:
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Algorithm 1. Creation of Variable Length Chromosome
1: chromosomeSize ← input * hiddenNodes
2: variation ← ν * chromosomeSize
3: for i = 1 to populationSize do
4: r1 = randi([1 variation])
5: for j = 1 to r1 do
6: r2 = randi([1 chromosomeSize])
7: chromosomei(j, r2) = 0
8: end for
9: end for

hθ(x)i =
1

∑k
j=1 eθT

j x(i)

⎡

⎢
⎢
⎢
⎢
⎣

eθT
1 x(i)

eθT
2 x(i)

...

eθT
k x(i)

⎤

⎥
⎥
⎥
⎥
⎦

(5)

Here θ1, θ2, · · · , θk are the parameters of model and
∑k

j=1 eTj x(i) normalizes
the distribution, so that it sums to one. After training all the layers of deep
autoencoder, the encoded data and labels pass to sofmax layer to train it with
supervised fashion.

As backpropagation method are accountable for trapping at local minima.
Our proposed method supports backpropagation in this regards, by decreasing
the possibility of trapping at local minima. Moreover making the chromosomes
(weights) variable produce sparser network (few active weights).

Algorithm 2. Mutation of Offspring
1: mutationRate = mutationProb ∗ chromosomeSize
2: for i = 1 to mutationRate do
3: r = randi([1 chromosomeSize])
4: offspring(i r) = bestChromosome([i r])
5: end for

4 Experiments

4.1 Data

In order to access the performance of the proposed approach, MNIST handwrit-
ten digits dataset [21] is used in all experiments of all methods. Each sample in
the dataset is a 28 ∗ 28 image having a grey scale value between 0–255. More-
over each sample holds a target classification label between 0–9, which is used
in supervised classification. The training dataset contains 60,000 samples and
testing dataset contains 10,000 samples.
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Algorithm 3. Training of Layer li
1: initialize population of real values chromosomes.
2: convert chromosomes to variable length.
3: epoch = 1
4: while (epoch >= MaxEpoch) do
5: calculation of fitness of chromosomes.
6: removing of least fit chromosomes.
7: using backpropagation to update the best chromosomes.
8: selection of parents chromosomes to produce an offspring.
9: mutation of offspring.

10: epoch = epoch + 1
11: end while
12: return best chromosome (weights).

4.2 Setup

MATLAB R2015a is used for the realization of code. In all experiments we used
a deep neural network (autoencoder) of five layers. Initially the biases bli are set
to zero and weights W l

ij are set to random numbers generated uniformly from

the interval {−
√

6
(nin+nhu+1) ,

√
6

(nin+nhu+1)}, where nin is the number of inputs

to the layer and nhu is the number of neurons (units) in the layer. The first layer
is the input layer consists of 784 units (neurons), followed by four hidden layers
consisting of 500, 250, 100 and 50 units. Each layer is trained independently.
First we train 784 − 500 layer and used the output of that layer as input for
the next 500 − 250 layer. Secondly we train 500 − 250 layer and used its output
for the next layer input. Using the same manner we train the remaining layers
(250−100 and 100−50). We used sigmoid function (6) for activation of neuron.

f(z) =
1

1 + e−1
(6)

For VLC-GA implementation we used a population of 8 chromosomes. In each
generation the 3 least fit chromosomes are substituted by the remaining 5 chro-
mosomes offspring. We used a uniform crossover method and mutation probabil-
ity of 0.01. For classification of the data we attach softmax regression classifier
at the end of last layer and trained it for 100 generations. The parameters setup
for all methods are summarized in the Table 1.

4.3 Results

To compare the performance of the proposed method with other methods we did
the following experiments. In all experiments we set learning rate α and weight
decay parameter λ to 0.5 and 0.003 respectively. Each result is the average of 10
experiments.
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Table 1. Comparison of parameters used in all methods

Parameters Proposed method Method in [20] AE using BP

Deep layers 5 5 5

Learning rate 0.5 0.5 0.5

Weight decay 0.003 0.003 0.003

Population size 8 10 -

Chromosome type Variable Constant -

Selection method Roulette wheel Uniformly -

Least fit chromosomes 3 5 -

Mutation From best chromosome Randomly -

Crossover Uniform Uniform -

Experiment-1. In this experiment we change the percentage of v to 10%, 20%,
30% and 40% in the process of generation of variable length chromosomes and
then check its effect on classification accuracy. We used training dataset and
testing dataset of 1, 000 and 10, 000 samples respectively. And train each layer
for 1, 000 generations. The result of this experiment is shown in the Fig. 2-left. We
got best accuracy at v = 20% so we used the same value of v in all experiments.
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Fig. 2. Left-Classification accuracy of proposed method on different population size.
Right-Classification accuracy of proposed method on different population size.

Experiment-2. In this experiment we used a population of 8, 12, 16 and 20
chromosomes in training of our method and check its effect on classification
accuracy. This experiment is performed on 1,000 generations using subset of
MNIST dataset. The subset created randomly by choosing 1,000 samples from
training data. The result is shown in Fig. 2-right. As the number of chromosome
increases the processing time also increases but there is no bigger change in
classification accuracy that’s why we used a population having less number of
chromosomes (i.e. 8 chromosomes) in our experiments.
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Fig. 3. Left-Comparison of classification accuracy of testing data using small training
dataset. Middle-Comparison of classification accuracy of training data using small
training dataset. Right-Comparison of classification accuracy of testing data using
big training dataset.

Experiment-3. In this experiment we used small subset of MNIST dataset by
randomly selecting 1,000 samples from training dataset. We train each method
for 100, 300, 500, 700 and 1000 generations and then apply the classifier on
the encoded data. The comparison of the classification accuracy of the testing
dataset is shown in Fig. 3-left and the comparison of the classification accuracy of
the training dataset is shown in Fig. 3-middle. On testing dataset our proposed
method performs well on 300, 500, 700 and 1,000 generations but on 100 gener-
ations method in [20] perform better. On training dataset our method performs
well on all generations expect 1,000 on which autoencoder using backpropagation
method perform better.

Experiment-4. In this experiment we used the complete MNIST dataset (i.e.
training dataset of 60,000 samples and the testing dataset of 10,000 samples).
Firstly we train each method for 500 generations and compare the classification
accuracy. Secondly we train each method for 1,000 generations and compare the
classification accuracy. As shown in Fig. 3-right, on testing dataset our proposed
method performs better than the other methods on both generations.

5 Conclusion

In this paper we presented a variable length chromosome genetic algorithm
assisted deep autoencoder. We used roulette wheel selection method for the
selection of parent chromosomes from the population. And the offspring are
mutated from best parent chromosome. We used fewer chromosomes as compare
to method in [20], this increase the processing speed of our method. According to
results, our method improves the performance and produce sparser networks as
compare to other methods. Though our implementation used an autoencoder,
the same technique is applied to other forms of deep learning such as RBM,
Convolutional Neural Networks (CNNs) etc. In future we will compare our work
with more methods.
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Abstract. Many works have posited the benefit of depth in deep net-
works. However, one of the problems encountered in the training of very
deep networks is feature reuse; that is, features are ‘diluted’ as they
are forward propagated through the model. Hence, later network layers
receive less informative signals about the input data, consequently mak-
ing training less effective. In this work, we address the problem of feature
reuse by taking inspiration from an earlier work which employed resid-
ual learning for alleviating the problem of feature reuse. We propose
a modification of residual learning for training very deep networks to
realize improved generalization performance; for this, we allow stochas-
tic shortcut connections of identity mappings from the input to hidden
layers. We perform extensive experiments using the USPS and MNIST
datasets. On the USPS dataset, we achieve an error rate of 2.69% with-
out employing any form of data augmentation (or manipulation). On
the MNIST dataset, we reach a comparable state-of-the-art error rate
of 0.52%. Particularly, these results are achieved without employing any
explicit regularization technique.

Keywords: Deep neural networks · Residual learning · Dropout ·
Optimization

1 Introduction

Neural networks have been extremely useful for learning complex tasks such as
gesture recognition [1] and banknote recognition [2]. More recently, as against
shallow networks with one layer of feature abstraction, there has been massive
interest in deep networks which compose many layers of features abstractions.
There are many earlier works [3,4] which established that given a sufficiently
large number of hidden units, a shallow network is a universal function approx-
imator. Interestingly, many works addressing the benefit of depth in neural
c© Springer International Publishing AG 2017
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networks have also emerged. For example, using the concept of sum-product net-
works, Delalleau and Bengio [5] posited that deep networks can efficiently repre-
sent some family of functions with lesser number of hidden units as compared to
shallow networks. In addition, Mhaskar et al. [6] provided proofs in their work
that deep networks are capable of operating with lower Vapnik-Chervonenkis
(VC) dimensions. Bianchini and Scarselli [7] employing some architectural con-
straints, derived upper and lower bounds for some shallow and deep architec-
tures; they concluded that using the same resources (computation units), deep
networks are capable of representing more complex functions than shallow net-
works. In practice, the success of deep networks have corroborated the position
that deep networks have a better representational capability as compared to
shallow networks; many state-of-the-art results on benchmarking datasets are
currently held by deep networks [8–10].

In recent times, the aforementioned theoretical proofs, practical results and
new works [11,12] now suggest that employing even deeper networks could be
quite promising for learning even more complex or highly varying functions. How-
ever, it has been observed that the training of models beyond some few layers
results in optimization difficulty [13,14]. In this work, for the sake of clear terms,
we refer to models with 2–10 hidden layers as ‘deep networks’, models with more
than 10 hidden layers as ‘very deep networks’ and use the term ‘deep architecture’
to refer interchangeably to a deep network or very deep network. We consider the
effective training of very deep networks; that is, simultaneously overcoming opti-
mization problems associated with model depth increase and more importantly
improving generalization performance. We take inspiration from an earlier work
which employed residual learning for training very deep networks [14]. However,
training very deep models with millions of parameters come with the price of
over-fitting. On one hand, various explicit regularization schemes such as L1-
norm, L2-norm and max-norm can be employed for alleviating this problem. On
the other hand, a more appealing approach is to explore some form of implicit
regularization such as reducing the co-adaptation of model units on one another
for feature learning (or activations) [19] and encouraging stochasticity during
optimization [8]. In this work, we advance in this direction with some modifica-
tions on the form of residual learning that we propose for implicitly improving
model regularization by emphasizing stochasticity during training. Our contri-
bution is that we propose to modify residual learning for training very deep
networks where we allow shortcut connections of identity mappings from the
input to the hidden layers; such shortcut connections are stochastically removed
during training. Particularly, the proposed training scheme is shown to improve
the implicit regularization of very deep networks as compared to the conventional
residual learning. We employ our proposed approach for performing extensive
experiments using the USPS and MNIST datasets; results obtained are quite
promising and competitive with respect to state-of-the-art results.

The rest of this paper is organized as follows. Section 2 discusses related
works.
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Section 3 serves as background and introduction of residual learning. Section 4
gives the description of the proposed model. Section 5 contains experiments,
results and discussion on benchmark datasets. In Sect. 6, we conclude the work
with our key findings.

2 Related Work

The optimization difficulty observed in training very deep networks can be
attributed to the fact that input features get diluted from the input layer through
the many compositional hidden layers to the output layer; this is evident in that
each layer in the model performs some transformation on the input received from
the preceding layer. The several transformations with model depth may make
features not reusable. Here, one can conjecture that the signals (data features)
which reach the output layer for error computation may be significantly less
informative for effective weights update (or correction). Many works have pro-
vided interesting approaches for alleviating the problem of training deep archi-
tectures. In [15,16], carefully guided initializations were considered for specific
activation functions; these initializations were found useful for improving model
optimization and the rates of convergence. In another interesting work [17], batch
normalization was proposed for tackling the problem of internal covariate shift
which arises from non-zero mean hidden activations. Nevertheless, the problem
of training (optimizing) very deep networks commonly arises when the num-
ber of hidden layers exceeds 10; see Fig. 1. For example, Srivastava et al. [13]
employed transform gates for routing data through very deep networks; they
refer to their model as a highway network. The concept is that the transform
gates are either closed or open. When the transform gates are closed, input data
are routed through the hidden layers without transformations; in fact, each hid-
den layer essentially copies the features from the preceding layer. However, when
the transform gates are open, the hidden layers perform the conventional features
transformations using layer weights, biases and activation functions. Inasmuch
as the highway network was shown to allow for the optimization of very deep net-
works and improving classification accuracies on benchmark datasets, it comes
with a price of learning additional model parameters for the transform gates.
Another work, He et al. [14] has addressed the problem of feature reuse by using
residual learning for alleviating the dilution (or attenuation) of features dur-
ing forward propagation through very deep networks; they refer to their model
as a ResNet. The ResNet was also shown to alleviate optimization difficulty in
training very deep networks. In [33], identity shortcut connections were used for
bypassing a subset of layers to facilitate training very deep networks.

3 Background: Very Deep Models and Residual Learning

3.1 Motivation

We emphasize the problem of training very deep networks using the USPS
dataset. Figure 1-left shows the performance of plain deep architectures with
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Fig. 1. Performance of deep architectures with depth. Left: Train error on USPS
dataset. Right: Train error on COIL-20 dataset. It is seen that optimization becomes
more difficult with depth

a different number of hidden layers. Particularly, it will be seen that the perfor-
mance of the models significantly dips from over 10 hidden layers. We further
emphasize this problem by going beyond the typical uniform initialization (i.e.
Unit init in Fig. 1) scheme for neural network models; we employ other initial-
ization and training techniques which have been proposed for more effective
training of deep models; these techniques include Glorot [15] initialization, He
[16] initialization and batch normalization [17] which are shown as Glorot init,
He init and BN in Fig. 1.

In addition, we investigate this problem using the COIL-20 dataset1 which
composes 1,440 samples of different objects of 20 classes. The concepts which
we follow in using the COIL-20 dataset as sanity check are in two folds: (1) it is
a small dataset, hence it is expected that deep architectures would easily overfit
such training data (2) the dataset is of much higher dimensionality. Obviously,
this training scenario can be seen as an extreme one which indeed favours deep
models with enormous parameters for overfitting the training data. This follows
directly from the concept of model complexity and curse of dimensionality with
high dimensional input data as against the number of training data points. How-
ever, our experimental results do not support the overfitting intuition; instead,
the difficulty of model optimization is observed when the number of hidden layers
is increased beyond 10; see Fig. 1-right. It will be seen that for both USPS and
COIL-20 datasets, training with batch normalization improved model optimiza-
tion with depth increase. Nevertheless, model optimization remains a problem
with depth increase. However, residual learning [14] has been employed in recent
times for successfully training very deep networks. The idea is to scheme model
training such that stacks of hidden layers learn residual mapping functions rather
than the conventional transformation functions.

1 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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3.2 Residual Learning: ResNet

In this subsection, we briefly discuss residual learning as a building block for the
model that we propose in this paper. In [14], residual learning was achieved by
employing shortcut connections from preceding hidden layers to the higher ones.
Given an input H(x)l−1 (in block form), from layer l−1 feeding into a stack of
specified number of hidden layers with output H(x)l; in the conventional training
scheme, the stack of hidden layers learns a mapping function of the form

H(x)l = F l(H(x)l−1), (1)

where the residual learning proposed in [14] uses shortcut connections such that
the stack of hidden layers learns a mapping function of the form

H(x)l = F l(H(x)l−1) + H(x)l−1, (2)

where H(x)l−1 is the shortcut connection. The actual transformation function
learned by the stack of hidden layers can be written as follows

F l(H(x)l−1) = H(x)l − H(x)l−1, (3)

where 1 ≤ l ≤ L and H(x)0 is the input data, x ; L is the depth of the network.
This training setup was found very effective in training very deep networks,
achieving state-of-the-art results on some benchmarking datasets [14]. In a fol-
lowing work [18], dropping out the shortcut connections from preceding hidden
layers was experimented with; however, convergence problems and unpromising
results were reported.

4 Proposed Model

For improving the training of very deep models, we take inspiration from residual
learning. Our proposed model incorporates some simple modifications to further
improve on optimization and generalization capability as compared to the con-
ventional ResNet. We refer to the proposed model as stochastic residual network
(S-ResNet). The proposed training scheme is described below:

(i) There are identity shortcut connections of identity mappings from the input
to hidden layers of the model; this is in addition to the shortcut connections
from preceding hidden layers to the higher ones as seen in the conventional
ResNets.

(ii) The identity shortcut connections from the input to the hidden layers are
stochastically removed during training. Here, hidden layer units do not
always have access to the untransformed input data provided via shortcut
connections.

(iii) At test time, all the shortcut connections are present. The shortcut con-
nections are not parameterized and therefore do not require rescaling at
test time as in [8,33].
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Fig. 2. (a) Proposed model with shortcut connections from the input to hidden layers
(b) Closer view of the proposed residual learning with a hypothetical stack of two
hidden layers

The proposed scheme for training very deep models is shown in Fig. 2(a); conven-
tional shortcut connections from preceding hidden layers, with shortcut connec-
tions from the input to the different hidden layers are shown. For the modification
that we propose in this work, the transformed output of a stack of hidden layers
denoted, l, with shortcut connection from the preceding stack of hidden layers,
H(x)l−1, and shortcut connection from the input x can be written as follows

H(x)l = F l(H(x)l−1) + H(x)l−1 + x. (4)

where 1 ≤ l ≤ L | x = 0 for l = 1 ∵ ∃ H(x)0 = x; H(x)l, F l(H(x)l−1),
H(x)l−1 and x are of the same dimension. In this work, every stack of resid-
ual learning block composes two hidden layers. For a clearer conception of our
proposed model, a single residual learning block of two hidden layers is shown
in Fig. 2(b). From Fig. 2(b), assume that the underlying target function to be
learned by a hypothetical residual learning block is F l(H(x)l−1), then using the
aforementioned constraints on l, it learns a residual function of the form

F l(H(x)l−1) = H(x)l − H(x)l−1 − x. (5)

For dropout of shortcut connections from the input layer to the stack of hidden
layers l, we can write

F l(H(x)l−1) = H(x)l − H(x)l−1 − D ∗ x, (6)

where D ∈ {0, 1} and D ∼ Bernoulli(ps) determines that x (shortcut connection
from input) is connected to the stack of hidden layers l with probability ps; that
is, P (D = 1) = ps and P (D = 0) = 1 − ps for 0 ≤ ps ≤ 1; and ∗ defines
an operator that performs the shortcut connection, given the value of D. The
conventional dropout probability for hidden units is denoted ph.
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5 Experiments and Discussion

For demonstrating the effectiveness of our proposed model, we train very deep
networks and observe their optimization characteristics over various training
settings using the USPS and MNIST datasets. The USPS dataset2 composes
handwritten digits 0–9 (10 classes) of 7,291 training and 2,007 testing samples;
while the MNIST dataset3 composes handwritten digits 0–9 of 60,000 training
and 10,000 testing samples. For the USPS dataset, we use 2× 2 convolutional
filters, 2 × 2 max pooling windows and 2 fully connected layers of 300 ReLUs. For
the MNIST dataset, we use 3 × 3 convolutional filters, 2× 2 max pooling windows
and 2 fully connected layers of 500 ReLUs. For both datasets, models have output
layers of 10 softmax units. Our best model, 54-hidden layer S-ResNet, composes
50 convolution layers, 2 max pooling layers and 2 fully connected layers; we
apply batch normalization only in the fully connected layers.

Figure 3-left shows the performance of our proposed model (S-ResNet) on the
USPS dataset with different number of hidden layers at a dropout probability
of ps = 0.8 for the input shortcut connections to the hidden layers; for the
conventional dropout of hidden units, a dropout probability of (ph = 0.6) is used.
It will be seen that with 54-hidden layers, our model achieves a state-of-the-art
performance; that is, an error rate of 2.69%, surpassing the conventional ResNet
(baseline model). In addition, Fig. 3-right shows the performance of the best
proposed model (54 hidden layer S-ResNet) with different dropout probabilities
for input shortcut connections to the hidden layers. Table 1 shows the error rates
obtained on the test data for the USPS dataset along with the state-of-the-arts
results. We observe that the models with asterisk (i.e. ∗) employed some form of
data augmentation (or manipulation). For example, [26,27] extended the training
dataset with 2,400 machine-printed digits; while [28] employed virtual data in
addition to the original training data. However, our proposed model employs no
such data augmentation tricks. The result obtained with our proposed model,
54-hiddden layer S-ResNet, surpasses many works which did not employ any
form of data augmentation.

We repeat similar experiments on the MNIST dataset. Figure 4-left shows the
error rates of the S-ResNets and the conventional ResNets with different num-
ber of hidden layers. It is observed that the S-ResNets are better regularized as
compared to the ResNets for all the different model depths. Particularly, with 54
hidden layers, the S-ResNet achieved a result competitive with the state-of-the-
art results; we reach an error rate of 0.52%. Figure 4-right shows the error rates of
the 54-hidden layer S-ResNet with different dropout probabilities for the input
shortcut connections to the hidden layers. In Table 2, we report the obtained
error rates for our experiments, along with the best results reported in recent
works. Also, for the MNIST dataset, we found that dropping out input short-
cut connections to the hidden layers with a probability of 0.8 yielded the best
result as given in Table 2. For both datasets, the S-ResNets employed no explicit

2 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
3 http://yann.lecun.com/exdb/mnist/.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://yann.lecun.com/exdb/mnist/
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Fig. 3. Performance of deep architectures with depth on the USPS dataset. Left: Test
error rate with depth. Right: Test error rate for different dropout probabilities of input
shortcut connections

Table 1. Error rate (%) on the USPS dataset

Models Test error (%)

Invariant vector supports [20] 3.00

Neural network (LetNet) [21] 4.20

Sparse Large Margin Classifiers (SLMC) [22] 4.90

Incrementally Built Dictionary Learning (IBDL-C) [23] 3.99

Neural network + boosting [21] ∗2.60

Tangent distance [24] ∗2.50

Human performance [24] 2.50

Kernel density + virtual data [25] ∗2.40

Kernel density + virtual data + classifier combination [25] ∗2.20

Nearest neighbour [25] 5.60

Baseline: Residual network (ResNet) - 54 hidden layers 3.34

Proposed model (S-ResNet) - 20 hidden layers 3.04

Proposed model (S-ResNet) - 54 hidden layers 2.69

Fig. 4. Performance of deep architectures with depth on the MNIST dataset. Left:
Test error rate with depth. Right: Test error rate for different dropout probabilities of
input shortcut connections
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Table 2. Error rate (%) on the MNIST dataset

Models Test error (%)

Highway Net-16 [13] 0.57

Highway Net-32 [13] 0.45

Supervised Sparse Coding + linear SVM [26] 0.84

Deep Fried Convet [27] 0.71

PCANet [28] 0.62

Network in Network (NIN) [29] 0.45

Deeply Supervised Network (DSN) [30] 0.39

ConvNet + L-BFGS [31] 0.69

Neural network + adversarial examples [32] 0.78

Neural network ensemble + DropConnect [8] 0.52

Baseline: Residual network (Resnet) - 54 hidden layers 0.76

Proposed model (S-Resnet) - 15 hidden layers 0.64

Proposed model (S-Resnet) - 54 hidden layers 0.52

regularization technique for improving generalization capability; we relied on the
implicit regularization of the models via dropout of input shortcut connections
and hidden units for the S-ResNet, and dropout of hidden units only for ResNet.
It is interesting to note that the proposed model do not suffer from convergence
problem as reported in an earlier work which experimented with a similar train-
ing scheme [18]. In addition, the experimental results given in Tables 1 and 2
suggest that the proposed training scheme improves the implicit regularization
of very deep networks; that is, lower test errors are achieved for the S-ResNets as
compared to the ResNets. We conjecture that the simple modification employed
for the proposed model helps to reduce the reliance of model units in one layer
over others for feature learning. We observe that [8] also reported an error rate of
0.21%, however [8] employed some form of data augmentation using an ensemble
of 5 neural networks; without data augmentation, they obtained a test error rate
of 0.52%. Conversely, we employ no data augmentation and model ensemble.

6 Conclusion

Very deep networks suffer optimization problems even in situations that indeed
favour over-fitting. Furthermore, assuming that we are able to optimize very deep
networks, over-fitting is almost always inevitable due to large model capacity.
We address the aforementioned problems by taking inspiration from residual
learning. Our proposed model, stochastic residual network (S-ResNet), employs
stochastic shortcut connections from the input to the hidden layers for essentially
improving the implicit regularization of very deep models. Experimental results
on benchmark datasets validate that the proposed approach improved implicit
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regularization on very deep networks as compared to the conventional residual
learning.
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Abstract. Recurrent neural networks (RNN) have shown great suc-
cess in answer selection task in recent years. Although the attention
mechanism has been widely used to enhance the information interaction
between questions and answers, knowledge is still the gap between their
representations. In this paper, we propose a knowledge memory based
RNN model, which incorporates the knowledge learned from the data
sets into the question representations. Experiments on two benchmark
data sets show the great advantages of our proposed model over that
without the knowledge memory. Furthermore, our model outperforms
most of the recent progress in question answering.

Keywords: Knowledge memory · Answer selection · Deep learning

1 Introduction

Answer selection is a key subtask of open domain question answering. Given
a question and a set of candidate answers, the goal is to find the most rel-
evant answer sentence. Most traditional methods are based on information
retrieval models or classification according to the lexical features such as word
co-occurrence and syntactic tree edit distance [1–3]. In recent years, the recurrent
neural networks (RNN) have attracted more attention, which represent the ques-
tion and answer sentence in a continuous semantic space. Then, the similarity
between the question and answer is calculated according to the representations.

To capture the salient information for question answering, various attention
mechanisms have been proposed to obtain the attentive representations of ques-
tions and/or answers. Though the attention based RNN models have been proved
to be effective for question answering [4,5], they mainly focus on the information
of the current sentence and can not well capture additional knowledge that is use-
ful for answer selections. For example, for the question: where did the mayflower
land?, if we focus on the attentive word mayflower, we may pay more attention
to the information that mayflower is a ship which transported the English Pil-
grims in the answer sentence. However, it is still difficult to answer this question.
c© Springer International Publishing AG 2017
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But once we have the knowledge that “English Pilgrims were transported to New
Land”, it is easier to find the correct answer that contain the place New Land.
Therefore, it is necessary to incorporate more knowledge for question answering.

Noting the knowledge gap between question and answer representations, a
memory network architecture was proposed, which stored a specific knowledge
base or the passage information in a memory for question representation [6]
and answer inference [7]. However, in the answer selection task, it is difficult to
find a suitable knowledge base due to the various types of questions issued by
users. Moreover, the large-scale text corpus can not be directly stored due to the
limited memory size in practice.

In this paper, we propose a knowledge memory based Bidirectional Long-
Short-Term-Memory (KM-BiLSTM) model to enhance the question represen-
tations within the RNN framework. First, motivated by the findings that the
word embeddings trained on the data set contain a certain amount of knowledge
[8], we initialize the knowledge memory with the embeddings of the keywords
selected from the data sets (i.e., knowledge embeddings), and update them auto-
matically during the training process. Then, the knowledge weights specific to
a question are calculated by measuring the similarity between the preliminary
question representation obtained by BiLSTM and the knowledge embeddings
stored in the memory. After that, we integrate the weighted summation of the
knowledge embeddings with the question to obtain the knowledge-aware ques-
tion representations. Finally, the similarities between the question and answer
representations are measured for answer selections. We conduct experiments on
two public benchmark datasets, namely TREC-QA and WikiQA. The results
show that our proposed KM-BiLSTM model outperforms most of the recent
answer selection models.

The main contributions of our work are as follows: (1) we propose a knowledge
memory based BiLSTM model, which incorporates a knowledge memory into
the RNN framework to obtain the knowledge-aware question representations;
(2) we explore the effectiveness of the data set based knowledge to enhance
the performance of answer selections, which does not rely on the external data
source; (3) the experimental results have verified the effectiveness of our proposed
model, and also provide a promising avenue to make full use of the data set based
knowledge for other tasks.

The rest of this paper is organized as follows. Section 2 introduces the related
work in question answering. Our proposed approach is demonstrated in Sect. 3,
followed by the experimental setup and results analysis in Sect. 4. Finally, we
conclude our work and present some ideas for future research in Sect. 5.

2 Related Work

Answer Selection task is defined as follows: Given a question and a set of can-
didate answers, the goal is to find the most relevant answer sentence. Previous
work usually focused on employing feature engineering, linguistic tools, or exter-
nal resources. For example, [1] used the WordNet to obtain the semantic features.
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[3] utilized the syntactical trees to measure the similarity between questions and
answers. [2] tried to fulfill the matching using minimal edit sequences between
their dependency parse trees. [9] automated the extraction of discriminative
tree-edit features over parsing trees.

Recently, the deep neural networks have attracted more attention due to
the good performance in answer selections. To model the sentence with vari-
able length, the Recurrent Neural Networks (RNN) have been widely used. [10]
proposed the long short-term memory (LSTM) based RNN model, which helped
alleviate the vanish of the gradient during the long distance transmission. Specif-
ically, given an input sequence x = {x1,x2, ...,xn}, the LSTM cell updates
the hidden vector h(t) at each time step. LSTM controls the information flow
through the cell with these gate operations. In general, the output of the last
hidden unit can be regarded as the representation of the whole sentence.

In order to capture the salient information in a sentence, various attention
mechanisms have been proposed [4,5]. However, these methods only focus on the
information in the current sentences, which neglect the knowledge in the whole
data sets. Noting the importance of the knowledge for reading comprehensions,
[7] proposed a key-value memory network to store the information of the knowl-
edge base or the passage itselft. However, it is usually difficult to find a suitable
knowledge base for the answer selection task due to the various questions issued
by users. Moreover, the large-scale text corpus can not be stored due to the limit
of the memory size in practice. In this paper, we propose a knowledge memory
based LSTM model for answer selections, where the knowledge is learned from
the internal data set and utilized for knowledge-aware question representations.

3 Approach

3.1 Architecture of KM-BiLSTM

Figure 1 shows the architecture of our proposed KM-BiLSTM model. Specifically,
we adopt the BiLSTM model to obtain the preliminary representations of the
question and answer (donated as q and Ra respectively), which has shown good
performance for answer selections [4,11]. To bridge the knowledge gap between
questions and answers, we present a knowledge memory to obtain the knowledge-
aware question representations. In particular, we first initialize the knowledge
memory with the knowledge embeddings. Then, the similarities between the
preliminary question representation (q) and the knowledge embeddings are cal-
culated as the knowledge weights specific to a question. After that, the weighted
sum of the knowledge embeddings are integrated with q to obtain the new ques-
tion representation (Rq). Finally, the similarity between questions and answers
are calculated by the Manhattan distance with L1 norm as shown in Eq. 1, which
performs slightly better than the other alternatives such as cosine similarity as
indicated in [12].

sim(Rq,Ra) = exp(−||Rq − Ra||1) (1)
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Fig. 1. Architecture of KM-BiLSTM

3.2 Knowledge Embedding

The word embeddings [8] have been widely used in many NLP and IR tasks
[13,14] for their effectiveness. In general, the semantically related words usually
have similar representations in the hidden space. For example, “English Pilgrims
were transported to New Land”, “Pilgrims” and “New Land” are very close
in the hidden space, because they have the relation “were transported to”. To
some extent, the word embeddings imply much valuable knowledge, which can
be utilized to enhance question representations by our assumption. Therefore,
we adopt the word embeddings as the knowledge and present a memory for
knowledge storage within the RNN framework.

Since not all words are equally important, we only select the informative
keywords from the data set and use their embeddings as the knowledge, which
makes a good balance between the performance and cost for our introduced
knowledge memory. Various methods can be applied for keyword selection. In
this paper, we treat each question or answer as a document, and adopt the widely
used IDF metric for keyword selections. Specifically, the weight for each word is
calculated by the following formula:

Wwi
= log

|D|
|{j : wi ∈ dj}| (2)

where D is the question and answer document set, |D| is the number of docu-
ments, wi is a word in the data set, and |{j : wi ∈ dj}| denotes the number of
documents contain the word wi. We first initialize the knowledge memory with
the embeddings of the top K informative keywords according to their IDF values.
In order to obtain more accurate knowledge from the data set, the knowledge
memory will be updated during the training process within the RNN framework.
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3.3 Knowledge-Aware Question Representation

To obtain the knowledge specific to a question, we first calculate the weight of
each knowledge embedding associated with a question as follows:

αj =
exp(e(kj ,q))

∑l
k=1 exp(e(kk,q))

(3)

where kj is the jth knowledge embedding in the knowledge memory, q is the
preliminary question representation obtained by BiLSTM, l donates the knowl-
edge memory size, and e(·) is a score function which measures the importance
of each knowledge embedding for a given question.

More formally, the score function is defined as:

e(kj ,q) = vT tanh(WHkj + WQq + b) (4)

where WH and WQ are matrices, b is a bias vector, tanh is the hyperbolic
tangent function, v is a global vector and vT denotes its transpose. WH , WQ,
b and v are all parameters.

With the calculated knowledge weights, the knowledge specific to a question
can be obtained by the weighted sum of all the knowledge embeddings:

s =
l∑

j=1

αjkj . (5)

Finally, we integrate the preliminary question representation with the specific
knowledge to obtain the knowledge-aware question representation:

Rq = q + s (6)

4 Experiment

4.1 Experimental Setup

Datasets and Evaluation Metrics. We adopt two public answer selection
data sets for evaluation: WikiQA and TREC-QA. WikiQA [15] is an open
domain question-answering data set in which all answers are collected from
the Wikipedia. TREC-QA was created by Wang et al. [3] based on the Text
REtrieval Conference (TREC) QA track (8-13) data. Each dataset is split into 3
parts, i.e., train, dev and test, and the statistics are presented in Table 1. To eval-
uate the model performance, we adopt the mean average precision (MAP) and
mean reciprocal rank (MRR), which are the primary metrics used in QA [4,11].

Parameter Settings. The pre-trained word embeddings released from the
GloVe project1 are utilized in our model. The parameters in BiLSTM are shared
between questions and answers, which has been shown to be effective to improve
the performance [11]. The hidden states size is turned to 50 and the knowledge
memory size is set to 1000. We train our model using a batch size of 512. And in
experiments we choose the top K (K = 1000) informative words for the knowledge
memory initialization.
1 http://nlp.stanford.edu/projects/glove/.

http://nlp.stanford.edu/projects/glove/
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Table 1. Statistics of the datasets. We remove all the questions with no right or wrong
answers. “Avg QL” and “Avg AL” denote the average length of questions and answers.

Dataset # of questions
(train/dev/test)

Avg QL
(train/dev/test)

Avg AL
(train/dev/test)

TREC-QA 1162/65/68 7.57/8.00/8.63 23.21/24.9/25.61

WikiQA 873/126/243 7.16/7.23/7.26 25.29/24.59/24.59

4.2 Effect of the Knowledge Memory

Table 2 shows the performance of the classical BiLSTM model and our pro-
posed KM-BiLSTM model in TREC-QA and WikiQA. The last line denotes
the improved rate of our model over BiLSTM. We observe that our proposed
knowledge memory based model consistently outperforms that without knowl-
edge memory. In particular, we achieve a maximum improvement of 6.63% in
terms of MRR. This indicates that our proposed model is more effective for
answer selections, by incorporating the specific knowledge into question repre-
sentations. Moreover, we find that the improvements of MRR are higher than
that of MAP, which shows the superiority of our proposed model in finding the
first correct answer with the obtained knowledge-ware question representations.

Table 2. Performance of BiLSTM and KM-BiLSTM

Model TREC-QA WikiQA

MAP MRR MAP MRR

BiLSTM 0.7032 0.7908 0.6904 0.7015

KM-BiLSTM 0.7344 0.8432 0.7129 0.7269

Improvement (+4.43%) (+6.63%) (+3.26%) (+3.62%)

4.3 Performance Comparisons

To further investigate the effectiveness of our proposed KM-BiLSTM model, we
make a comparison with the recent work in answer selections. The results are
shown in Tables 3 and 4. For TREC-QA, we use the models which are considered
as the strong baselines in recent studies for comparisons: (1) A combination of
the stack BiLSTM and BM25 model [11]; (2) RNN models with inner atten-
tion [4]; (3) A convolutional neural network (CNN) based architecture which
used both the hidden features and the statistical features for ranking [16] and
(4) A learning-to-rank method which leveraged the word alignment features as
well as some lexical features for ranking [17]. As to WikiQA, in addition to the
method [4] as mentioned above, we make a comparison with other three strong
baselines: (1) A bigram CNN model with average pooling [15]; (2) A CNN model
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Table 3. Performance on TREC-QA.

System MAP MRR

Wang and Nyberg 2015 [11] 0.7134 0.7913

Severyn and Moschitti 2015 [16] 0.7459 0.8078

Wang and Ittycheriah 2015 [17] 0.7460 0.8200

Wang et al. 2016 [4] 0.7369 0.8208

KM-BiLSTM 0.7344 0.8432

Table 4. Performance on Wiki-QA.

System MAP MRR

Yang et al. 2015 [15] 0.6520 0.6652

Yin et al. 2015 [5] 0.6921 0.7108

Alexander et al. 2016 [7] 0.7069 0.7265

Wang et al. 2016 [4] 0.7341 0.7418

KM-BiLSTM 0.7129 0.7269

which used an interactive attention matrix for the attentive representations of
questions and answers [5] and (3) A key-value memory network which stored the
knowledge base and passage information for question representations [7].

From Tables 3 and 4, we observe that our proposed model outperforms most
of the recent work in answer selections. In particular, we achieve the best per-
formance on TREC-QA and the second best on WikiQA in terms of the MRR
metric. Regarding to MAP, our model is also comparable to if not better than
most of the strong baselines. All these findings indicate the effectiveness of our
knowledge memory, which helps bridge the gap between question and answer
representations via the data set based knowledge. It is also worth noting that
our model does not rely on additional features or interactions between questions
and answers, which makes our model more efficiency.

4.4 Case Study

In order to better understand our proposed model, we provide an example to
show why our dataset based knowledge memory is more effective for the answer
selection task.

As shown in Table 5, for the question “where did the persian war take place”,
it is required to find a place, and we observe that top 2 attentive words asso-
ciate with the question are location names, such as ecuador and ayburn. In
particular, these two words contain the information that associate with the key
word “Eurymedon” in the right answer, which provides more useful information
(knowledge) for answering the question. Therefore, we integrate the informa-
tion of the knowledge embeddings into our model, which enhances the question
representations to find more relevant answers.

Table 5. Effectiveness of Knowledge Memory

Question Attentive word(top 5) Answer

Where did the persian
war take place

ecuador, ayburn,
valentine, inmates,
mustard

At the Battle of the Eurymedon
in 466 BC, the League won a
double victory that finally
secured freedom for the cities of
Ionia.
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5 Conclusion

In this paper, we propose a knowledge memory based LSTM model for answer
selections. With our knowledge memory, the knowledge specific to a question can
be automatically learned from the data sets, which provides valuable information
to answer questions. Experiments on TREC-QA and WikiQA have shown the
effectiveness of our proposed model, especially in terms of the MRR metric
which measures the performance in finding the first right answer. Furthermore,
our model is comparable to if not better than the state-of-the-art approaches in
answer selections. In the future, we will continue investigating the effectiveness
of our data set based knowledge memory for other tasks such as information
retrieval.
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and the Natural Science Foundation of Shanghai (No. 172R1444900).
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Abstract. Breast cancer is the most common cancer among women worldwide.
An early detection of malignant of breast cancer, followed by proper treatment,
can great improve the survival rate of patients. Recently, the deep learning based
malignancy prediction models for breast cancer have been proposed. However,
these models are usually trained with single type of clinical text, which are still
not effective enough to predict breast cancer malignancy. In this paper, we
follow the deep incremental learning framework and propose a prediction model
of breast cancer malignancy by incremental combination of multiple recurrent
neural networks. Specially, the model first uses multiple recurrent neural net-
works (RNNs) for generating features from the multi-types of clinical text
including B-ultrasound, X-rays, Computed Tomography (CT), and Nuclear
Magnetic Resonance Imaging (MRI), and then combines the generated features
in an incremental way. Finally, we add one more recurrent neural network layer
for classifying benign and malignant of breast cancer based on combined gen-
erated features.

Keywords: Breast cancer � Text classification � Deep learning � Recurrent
neural networks

1 Introduction

Breast cancer has become one of the susceptible diseases in women, seriously affected
to the normal life of women. There is no doubt that breast cancer has developed into a
worldwide problem. Breast cancer contains four types of examinations, which is
B-ultrasound, X-ray, Computed Tomography (CT) and Nuclear Magnetic Resonance
Imaging (MRI).

The prediction of benign and malignant of breast cancer is a text classification
problem because each description of clinical report is text. There are many models can
be successfully used in the text classification, such as support vector machines (SVMs)
[1], decision trees, Bayes classifiers and so on. But it may have a poor performance on
skewed data and sparse data. Deep learning has a huge development in recent years,
such as recurrent neural network (RNN). But using a single RNN is usually trained
with one clinical report, and it is not effective enough to predict breast cancer malig-
nancy. Therefore, precise breast cancer prediction still remains a challenging problem.

© Springer International Publishing AG 2017
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To address this problem, we propose a categorization model for breast cancer
prediction, called incremental recurrent neural network (IRNN). IRNN has multiple
attribute RNNs which is used for feature construction [2] and one classification RNN.
Each clinical report can be used as an input for attribute RNN. The features of the
extraction increase as the inspection report increases. Therefore, the model includes
B-ultrasound-RNN, X-ray-RNN, CT-RNN, and MRI-RNN. The description text can be
converted into real-value vectors through word embedding. It is effective to concate-
nate the description word sequence for ambiguity. Each attribute RNN can generate
some features based on word sequence and it will combine together as the input to
classification RNN. The last layer of this model is an output layer. A cost function is
defined for updating the weight of the model, the errors can be propagated through the
classification RNN to the attribute RNNs.

2 Related Work

There are many ways to predict malignant of breast cancer, such as Artificial Neural
Networks (ANNs) [3] and machine learning methods. Marcano [4] proposed a model
which is consists of an input layer with nine neurons, four hidden neurons with sigmoid
function as the activation function and an output layer. A multilayer perceptron which
uses retro propagation of error algorithm is proposed by Guo and Nandi [5] for breast
cancer classification, and it is used on WDBC dataset. Murat [6], constructs a network,
it contains nine input neurons, one hidden layer with eleven hidden neurons and the last
layer is an output layer which has a linear function. Zribi and Boujelbene [7], uses the
neural networks with an incremental learning algorithm in breast cancer diagnosis. It is
beginning with one neuron on its hidden layer. In the process of learning, compared
with the previous step, the improvement of the error is not as good as the given
threshold, then a new neuron will be added to the hidden layer. Only the weights of the
last neuron will be fixed when the learning process is started again. The learning
process will stop when the network error reaches the given threshold or the new neuron
does not reduce the error compared with the previous process. In addition to artificial
neural networks, there are some research use traditional machine learning algorithms.
Xiu-feng Yang, uses Principal Component Analysis (PCA) [8] and SVMs based on
multiple kernels for breast cancer diagnosis. First, PCA is used to transform high
dimensional data into lower dimensional, and then, the SVM with multiple kernels is
used to classify the lower dimensional data.

3 Clinical Data in Breast Cancer Diagnosis

3.1 Four Types of Diagnostic Data

There are mainly four different types of clinical examinations including B-ultrasound,
X-rays, CT or MRI. In general, each examination outputs a textual report describing the
status of the breast cancer in detail. Such as Bilateral gland echo increased, enhanced,
less uniform distribution, gland surface is still light the whole, which is described by
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B-ultrasound report. Obviously, such textual description of each examination is an
important type of data source for determining the malignant grade of breast cancer.

3.2 Metadata Definition

A patient can be used as a metadata. Each metadata contains four attributes,
B-ultrasound description, X-rays description, CT description and MRI description. And
the label of each metadata is benign or malignant breast cancer abstracted from
pathology report. Formally, a patient consists of its label y and an attribute vector
x represented with a collection of four attributes:

P ¼ fx; yg ¼ fx 1ð Þ; x 2ð Þ; x 3ð Þ; x 4ð Þ; yg ð1Þ

Table 1 gives a detailed description of the metadata. The i-th metadata attribute of a
patient is defined as the sequence of textual words as follows:

xðiÞ ¼ fxðiÞ1 xðiÞ2 . . .xðiÞn g ð2Þ

4 Our Proposed Model

4.1 Deep Incremental Prediction Networks

Incremental recurrent neural network (IRNN) is an end-to-end deep learning model for
classifying of benign and malignant of breast cancer. IRNN consists of multiple RNNs.
Four RNNs are used for feature extraction, and the other is used to classify the
extracted features. Text description data are converted into real-valued vectors and then
as the input of attribute RNNs.

Firstly, we transfer the text data into real-value vectors by word embedding. The
generated features can represent the different semantics of the word sequence.
Each RNN receives an attribute as an input, and thus IRNN contains m RNNs when
metadata consists of m attributes. Each RNN output one vector and then will be
combined with precious one, which is as the input to classification RNN. The output
layer can tell whether the patient is benign or malignant (Fig. 1).

IRNN can be the same as the traditional neural network with the formula to define.

Let A
mh

ðnÞ
t and ChðnÞt denote the n-th layer at time t of the m-th RNN which is used to

Table 1. Description of metadata attributes.

Var Attribute Value

x(1) B-ultrasound Text
x(2) X-rays Text
x(3) CT Text
x(4) MRI Text
y Label Nominal
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extract features and the n-th layer at time t of the RNN which is used to classify the
generated features. A and C mean attribute and classification. As previously described,
A
mW

kn and CWkn denote the weight matrix between the k-th and the n-th layers of the

m-th RNN and the classification RNN. Amh
ðnÞ
t is defined as a function and its parameters

is related with the hidden layer vector at t–1, Amh
ðnÞ
t�1, and the hidden layer vector of (n–

1)-th layer at time t, A
mh

ðn�1Þ
t :

A
mh

ðnÞ
t ¼ A

mf
ðnÞðAmW ðn�1ÞnA

mh
ðn�1Þ
t þ A

mW
nnA

mh
n
t�1 þ A

mb
ðnÞÞ ð3Þ

A
mh

ð1Þ
t ¼ A

mf
ð1ÞðAmWx1xþ A

mW
11A

mh
ð1Þ
t�1 þ A

mb
ð1ÞÞ ð4Þ

where Rf ðnÞ and RbðnÞ denote the activation function which is nonlinear and the bias

vector of the RhðnÞt . The length of x and the length of vocabulary are equal. Each RNN
which is used to generate features output one vector and then will be concatenated one
vector d, which is as the input to classification RNN.

d ¼ R
1h

ðnÞ
l1 � � � � � R

mh
ðnÞ
lm ð5Þ

where li denotes the length of the word sequence of the i-th attribute. The classification
RNN is defined as follows:

ChðnÞt ¼ Cf ðnÞðCW ðn�1ÞnChðn�1Þ
t þ CWnnChnt�1 þ CbðnÞÞ ð6Þ

Ch1t ¼ Cf ð1ÞðCWx1xþ CW11Ch1t�1 þ Cbð1ÞÞ ð7Þ

Fig. 1. The figure shows the structure of IRNN, it is consist of multiple RNNs, including input
layer, feature extraction layer, classification layer and output layer.

46 D. Chen et al.



The activation function of each RNN we used is hyperbolic tangent function. It has
a better performance than sigmoid function or others [9]. And we use a sigmoid
function as the activation function in the output layer, it can output 0 or 1 which is
corresponding to benign or malignant.

4.2 Learning Process

We define a binary-crossentropy function as our objective function, and it will be
minimized by the training process. Figure 2 shows the learning flow of IRNN.

Formally, the objection function is defined as follows:

E ¼
Xm

i¼1

�yi logðhhðxÞÞ � ð1� yiÞ logð1� hhðxÞÞ ð8Þ

where yi can only take two values, 0 or 1. The errors can propagate from the output
layer into classification RNN and attribute-RNNs, the weights of the hidden layers are
updated as follows:

wi ¼ wi � g
@E
@wi

ð9Þ

di ¼
ðyðnÞi � ŷðnÞi Þð1� tanh2ðnetiÞÞ; if i 2 o

ð
X

j2J djwijÞð1� tanh2ðnetiÞÞ; if i 2 h

8
<

: ð10Þ

Fig. 2. The figure shows the learning flow of IRNN, solid and dashed lines denote the flows of
data and errors during the learning process.
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where yðnÞi and ŷðnÞi denote the actual value and estimated value, o and h denote the node
of an output and an inner hidden layer. The learning rate is g and the value of i-th node
is neti. The error of back propagation is propagated to each attribute-RNN, all the
weights are updated by backpropagation through time (BPTT) [10] (Fig. 3).

5 Experimental Results

5.1 Data and Parameters Setup

We evaluated the IRNN model on a data set which contains 3960 patients. Each patient
have one or more diagnostic descriptions of B-ultrasound, CT, MRI and X-rays. The
data are divided into training sets, validation sets and test sets, and their proportions are

Algorithm 1: Learning of IRNN
Nit: The number of iteration
Dtr/Dte: Training dataset/test dataset
M: The number of attribute RNNs
V: The vector after the combination
Vm: The vector generated by the m-th attribute RNN
E: The error of classification
A

mE : The error of m-th attribute RNN
S: The number of separated minibatch datasets
A i

mθ / C iθ : The parameters of m-th attribute RNN and the classification RNN at i-

th iteration

( 0
1

Aθ ,…, 0A
Mθ , 0Cθ ) ( )M

for 1i = to Nit

for  j=1 to S
Dtr

for 1m = to  M
Vm Dtr, 1A i

mθ − );V , Vm

endfor
E V, 1C iθ −

( C iθ , AE ) E, 1C iθ −

for 1m = to  M
A

mE =Separate( AE ,m)
A i

mθ =ATTRIBUTE_RNN_BACKWARD( A
mE , 1A i

mθ − )

endfor
endfor

Dte, 0
1

Aθ ,…, 0A
Mθ , 0Cθ

Fig. 3. The figure shows the algorithm of learning IRNN, including the variable definitions and
the implementation process.
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7/10, 1/10, and 2/10. In the preprocessing, we ignore some unrelated symbols,
including period, parenthesis and quotation.

5.2 Performance Evaluation

We use accuracy and F1 score to evaluate the model in our study. The value of F1 score
is calculated from the precision and recall rate. It is defined as follows:

F1 ¼ 2 � P � R
PþR

ð11Þ

where P and R denote the precision and the recall rate, respectively.
We compare our method to one RNN-based method and one SVM approach. The

first is a model uses one RNN to classify according to one diagnostic description in
B-ultrasound, CT, MRI and X-rays. In this setting, there is only one diagnostic text as
the input of the model, and then the RNN will classify it. We have experimented with
the four diagnostic data separately. The second is a traditional machine learning
method, SVM. SVM also takes the word vector as input. In addition, a patient may
check many times on B-ultrasound, CT, MRI or X-rays. Therefore, we also considered
the impact of the number of times on the experimental results. The number of check
times of most patients is twice, so we only consider twice.

5.3 Classification Performance

Table 2 shows the accuracy and the F1 score of IRNN compared to the single RNN and
the traditional machine learning method, SVM. For Twice- IRNN, we have eight
attribute RNNs for feature extraction, the first four attribute RNNs are used to extract
the feature of the first four diagnostic descriptions and the remaining four are used for
the second four diagnostic descriptions. According to the experimental results, more
check times can significantly improve the accuracy and F1 score. Long short-term
memories (LSTMs) [11] is a special type of RNN, it is suitable for handling and
predicting very important events in the time series of intervals and delays. Therefore,
LSTM has a better performance in our experiment according to the experimental
results. We can also find that single RNN is better than SVM and combine with four
kind of inspection data can improve the performance of classification.

Figure 4 shows the learning cures of our methods, including Once-IRNN,
Once-ILSTM, Twice- IRNN and Twice-ILSTM. With the increase of the number of
iterations, both the accuracy and the F1 score are increasing.

We investigate the effect of different parameters on model results, including the
accuracy, F1 score and training time. In our study, we mainly focus on the effect of
word-embedding vector size and the number of hidden layers.

Figure 5 shows the effects of different word-embedding vector size on experimental
performance. We can find that larger word-embedding vector size provides better
performance. Smaller word-embedding vector size can result in lower accuracy and F1
value because it is difficult to distinguish categories.
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Table 2. Performance comparison of different methods.

Method Accuracy F1

B-ultrasound(SVM) 0.6573 0.6429
CT(SVM) 0.7257 0.4408
MRI(SVM) 0.4483 0.3217
X-rays(SVM) 0.4744 0.2195
B-ultrasound(Single-RNN) 0.7853 0.6242
CT(Single-RNN) 0.7373 0.4524
MRI(Single-RNN) 0.6363 0.3201
X-rays(Single-RNN) 0.6868 0.3160
B-ultrasound(Single-LSTM) 0.8017 0.6232
CT(Single-LSTM) 0.7563 0.4994
MRI(Single-LSTM) 0.7512 0.4901
X-rays(Single-LSTM) 0.7323 0.4373
Once-IRNN 0.8358 0.7239
Once-ILSTM 0.8522 0.7751
Twice- IRNN 0.8611 0.7873
Twice- ILSTM 0.8712 0.8153

(a) Accuracy of learning curve  (b) F1 score of learning curve

Fig. 4. The figures show the learning curve of different models, including accuracy and F1.

(a) The accuracy of different vector size (b) The F1 score different vector size

Fig. 5. The figures show the accuracy and F1 score of Once-IRNN of different word vector size.
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Figure 6 shows the effects of different hidden layer numbers on the accuracy and F1
score. As shown we can find that more number of hidden layers provides better
performance.

As shown in Fig. 7, the more of hidden layers, the longer training time will spend.

6 Conclusion

Breast cancer prediction is an important and challenging issue in medical field. We
proposed an incremental recurrent neural network (IRNN) to classify benign and
malignant of breast cancer. The proposed model consists of multiple attribute RNNs
and a classification RNN. The classification errors are propagated back through the
classification RNN to the attributes RNNs to update the weights. Each RNN receives an
attribute as an input, and thus IRNN contains m RNNs when metadata consists of m
attributes. This method can avoid the unclear semantics by combining attributes text,
and it can keep the accuracy from being too low which is caused by too long word
sequence length. Each RNN output one vector and then will be concatenated one
vector, which is as the input to classification RNN. The output layer can tell whether
the patient is benign or malignant. According to the experimental results, more check

(a) The accuracy of different hidden layer     (b) The F1 score different hidden layer

Fig. 6. The figures show the accuracy and F1 score of Once-IRNN of different hidden layer.

(a)  Training time of hidden_layer=1 (b) Training time of hidden_layer=2

Fig. 7. The figures show the training time of different layers of different models, including
hidden_layer = 1 and hidden_layer = 2.
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times and use LSTM provide better performance. Moreover, we will make the pro-
posed model useful for other disease prediction.
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Abstract. As an inherent attribute of human, head pose plays an
important role in many tasks. In this paper, we formulate head pose
estimation in different directions as a multi-task regression problem, and
propose a fast, compact and robust head pose estimation model, named
TinyPoseNet. Specifically, we combine the tasks of head pose estima-
tion in different directions into one joint learning task and design the
whole model based on the principle of “being deeper” and “being thin-
ner” to obtain a tiny model with specially designed types and particular
small numbers of filters. We perform thorough experiments on 3 types
of test sets and compare our method with others from several different
aspects, including the accuracy, the speed, the compactness and so on.
In addition, we introduce large angle data in Multi-PIE to verify the
ability of dealing with large-scale pose in practice. All the experiments
demonstrate the advantages of the proposed model.

Keywords: Head pose estimation · Deep learning · Data augmentation

1 Introduction

The research of face recognition has made great progress in the past few years
[1,2]. However, about 75% of the face images in practice are not in frontal view
[3], but with various head poses, which makes it much challenge for robust
face recognition. As a basic attribute of the human head, head pose also plays
an important role for many other tasks, such as expression recognition, driver
fatigue detection, face anti-spoofing, human action analysis and so on. However,
due to the difficulties caused by geometrical deformation, backlight illumina-
tion, foreground occlusion and many other factors in practice, the head pose
estimation in multiple directions has been always a difficult problem.
c© Springer International Publishing AG 2017
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As illustrated in Fig. 1, the head pose can usually be represented in the
following manner. Considering the nose as the origin, the horizontal direction as
the x axis, the vertical direction as the y axis, and the direction perpendicular
to x and y axes as z axis, the angles rotated clockwise around x, y, and z
axes are defined as the offset angle of the head in the Pitch, Yaw, Roll directions
respectively. With the aid of machine learning technologies, head pose estimation
has achieved great progress recently [4,5], mainly due to the emergence of big
data in the related area and the powerful ability of deep neural networks to learn
from big data. In this paper, we propose a new fast, compact and robust head
pose estimation model based on the popular deep neural networks. Moreover,
we have achieved several appealing results in many different aspects, including
the speed, the model complexity, the robustness to large angles and so on.

Fig. 1. Head pose representation.

2 Related Work

Head pose estimation has always been a popular topic and received more and
more attention in recent years. According to the input information, we divide
these methods into three classes: geometric methods, 2D image feature based
methods, and RGB-D image based methods.

Firstly, Geometric pose estimation methods take the positions of facial key
points as a priori to estimate the turned angles of head. For example, [6] proposed
to learn the head pose representation based on labelled graphs and determine
the head pose by geometric shape change; [7] proposed to use both subspace
analysis and topography method for head pose estimation, and had a remarkably
good performance. However, the facial key points are not always fully visible in
practice, especially in the case of large turned angles of head, which makes this
kind of methods not robust enough in practical applications.
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Secondly, many approaches based on 2D images have obtained successful
results for head pose estimation. They divide the range of head pose into a num-
ber of different intervals and perform head pose estimation as a regression or
classification task. With the development of deep learning techniques in recent
years, several end-to-end head pose estimation methods [8,9] have achieved excel-
lent performance based on the pixels directly, but most of them suffer from a
heavy computational complexity, which makes them cost too much when used
in practice.

Thirdly, the methods based on RGB-D image introduce depth information to
perform head pose estimation. Recently, a multimodal CNN [10] was proposed
to estimate gaze direction by a regression approach for the RGB-D images. In
summary, the Depth information is robust to light and occlusions, but always
requires specific input devices.

In this paper, we propose a new fast, compact and robust deep model to
perform head pose estimation in an end-to-end manner. The main contributions
are summarized as follows.

(1) We propose a new fast and compact deep network model, named Tiny-
PoseNet, to estimate the head pose in several different angles with a high accu-
racy. The TinyPoseNet is designed with particular small numbers and specially
designed types of filters, such as particular number of 1 × 1 convolution filters,
which produces a model with only 5 convolutional layers in the end. Then we
introduce 3 fully-connected layers and put the output nodes through a sigmoid
function to learn the actual pose data distribution.

(2) To further improve the ability of our model for large angles in practice,
we perform a special 3D data augmentation to the training data, which is proved
to be robust for several different angles.

(3) Besides the above special design for head pose estimation in model archi-
tecture, we have also obtained several appealing results: (a) The model is able
to process one image of size 80×80 within only 2.1 ms in 3.5G Hz CPU; (b) The
mean absolute error in three dimensions is only 1.89◦ in the UmdFaces dataset;
(c) The final model is as small as 1.88 M. All these results are much encouraging
and exciting for actual applications.

3 Method

In this section, we will present the details of the proposed TinyPoseNet. Head
pose estimation often acts as a necessary pre-processing step or an important
auxiliary module in face related tasks. This special characteristic makes the task
of head pose estimation always require both high speed and small calculation
with high accuracy. In order to achieve this goal, we compress the network struc-
ture to “be thinner” and to “be deeper” as much as possible by designing special
types with 1 × 1 convolution operations and particular small numbers of filters
with proper head pose loss functions. We also take the tasks of head pose esti-
mation in different directions as a multi-label regression task to combine them
into a joint learning task. Specifically, we add two 1 × 1 convolutional layers to
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learn the discriminative semantic features to compensate the performance loss
resulted by compressing the network structure.

3.1 Architectures of TinyPoseNet

A good representation is crucial for good performance of head pose estimation.
Inspired by VIPLFaceNet [11] which has obtained successful results in both
computational efficiency and effectiveness for face recognition, we design a new
fast, compact, and robust model for head pose estimation. We show the model
architectures of our TinyPoseNet in Table 1, together with the architectures of
AlexNet [12] and VIPLFaceNet. We keep each convolution filter to a proper
size, and stack an appropriate small number of convolutional layers to reduce its
computation and forward time without performance reduction. Meanwhile, we
adjust the fully-connection layers to further improve its speed and minimize the
model by initializing the parameters and drop out unnecessary nodes.

Fig. 2. Our TinyPoseNet.

As shown in Fig. 2, to simplify the calculation of head pose estimation for
practice, we propose our tiny pose estimation model with only 8 layers. Different
from pruning, trained quantization and Huffman coding in [13], we reduce the
storage requirement of neural networks by designing a light weight network for
the head pose estimation task. To be specific, we focus on two points including
the model compactness and its speed to design our model.

Firstly, to make the model as fast as possible, we follow the idea of [14] and
[15] by adding two 1 × 1 convolutional layers to increase the depth and so keep
the rich distributed representations but with small calculation complexity. And
then we remove the dropout [16] layer from the original VIPLFaceNet network
to prevent overfitting caused by carrying quite sparse parameters.

Secondly, to improve the robustness of our model to large angles, we intro-
duce a sigmoid non-linear function for the final output to ease the long tailed
phenomenon in practice where most of the head poses are concentrated within
±45◦ and there are only few poses in other angles. In addition, we formulate
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head pose estimation in different directions as a multi-task regression problem
to get a satisfying result in all the three directions.

Thirdly, to reduce the model size and make it efficient for practical use, we
reduce the parameters substantially stored in fully-connected layers, which leads
the model size reduced from 216 MB to 1.88 MB and without explicit loss of
accuracy. In addition, we remove the unnecessary output nodes for the much
easier task, the head pose estimation, which also guarantees the generalization
ability toward situations in the wild.

Table 1. The model architectures of AlexNet, VIPLFaceNet and TinyPoseNet.

AlexNet VIPLFaceNet TinyPoseNet

Conv1: 96x11x11, S:4, Pad: 0 Conv1: 48x9x9, S:4, Pad:0 Conv1: 16x5x5, S:2, Pad:2

LRN - -

Pool1: 3x3, S:2 Pool1: 3x3,S:2 Pool1: 3x3,S:2

Conv2: 256x5x5, G:2, S:1, Pad:2 Conv2: 128x3x3,S:1, Pad:1 Conv2: 32x1x1,S:1, Pad:0

LRN - -

- Conv3: 128x3x3,S:1, Pad:1 Conv3: 32x3x3,S:1, Pad:1

Pool2: 3x3,S:2 Pool2: 3x3,S:2 Pool2: 3x3,S:2

Conv3: 384x3x3, S:1, Pad:1 Conv4: 256x3x3,S:1, Pad:1 Conv4: 64x1x1,S:1, Pad:0

Conv4: 384x3x3, G:2, S:1, Pad:1 Conv5: 192x3x3,S:1, Pad:1 Conv5: 64x3x3,S:1, Pad:1

- Conv6: 192x3x3,S:1, Pad:1 -

Conv5: 256x3x3, G:2, S:1, Pad:1 Conv7: 128x3x3,S:1, Pad:1 -

Pool3: 3x3,S:2 Pool3: 3x3,S:2 Pool3: 3x3,S:2

FC1: 4096 FC1: 4096 FC1: 256

Dropout1: dropout ratio:0.5 Dropout1: dropout ratio:0.5 -

FC2: 4096 FC2: 2048 FC2: 128

Dropout2: dropout ratio:0.5 Dropout2: dropout ratio:0.5 -

FC3: 10575 FC3: 10575 FC3: 3

- - Sigmoid

3.2 Loss Function

To further ensure the performance for the head estimation task, we formulate
the pose angle estimation as a multi-task regression problem. Specifically, we add
a sigmoid function in Eq. (1) after the final output layer before the loss function
and normalize the angle x to [0, 1] on each dimensional output layer. Another
reason is that the sigmoid function just ease the long tailed phenomenon that
most of the head poses are concentrated within 45◦ and few large poses.

S(x) = 1 / (1 + e−x) (1)
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During the training process of the network, small angles within [−15◦, 15◦]
are converted to values near 0.5 by the numerical transformation; the closer of
the angle values to 90◦, the closer of the transformed values to 1. After this
process, small angles could reach a larger slope and large angles could be gently
distributed, which makes the output of the network covering a large range and
so keep in line with the true distribution of real head pose data.

After the normalization process, we design a multi-task loss to jointly esti-
mate the angles in Pitch, Yaw, and Roll directions. To be specific, we compute
the loss in each directions and combine them together by aggregation as follows:

E(W ) =
1

2N

N∑

n=1

‖ŷn − yn‖22 , (2)

where we define ŷ as the output of the network, N as the number of samples
in one batch, and yn ∈ [0, 1] as the ground truth of the normalized pose label.
In the implementation process, the output yn ∈ [0, 1] will be transformed into
angles between [−90◦, 90◦] by the following linear function:

F (y) = ŷn × 180 − 90 (3)

4 Experiments and Analysis

4.1 Data Set

The proposed TinyPoseNet is evaluated on the public datasets Multi-PIE [17],
CAS-PEAL [18] and UMDFaces [19] for the head pose estimation. In the Multi-
PIE face database, subjects were imaged under 15 view points and 19 illumina-
tion conditions while displaying a range of facial expressions. In the CAS-PEAL
face database, each subject is captured by 9 cameras spaced equally in a hor-
izontal semicircular shelf, asked to look up and down. In view of UMDFaces,
the pose angle changes in a row. It includes 367,920 face photos, 8,501 different
characters including national stars, people in different age, different races and so
on. Considering the continuity of the head pose, the richness of the sample, and
the authenticity of the images, we select UMDFaces dataset as the main train
set. Subject to the discontinuity of the data distribution, these jobs such as [20]
and [21] learned on Multi-PIE dataset are not well applied to the actual scene.

4.2 Data Augmentation

In the UMDFaces dataset, the ratio of large-angle images is less than 5% and
there is almost no photo in the direction of Yaw with angles more than 65◦. In
the meanwhile, the maximum angle in the Pitch direction can only reach ±30◦. It
shows a serious data distribution imbalance and long tailed phenomenon, which
is adverse for the model to be used in practice.



A Fast and Compact Deep Network for Robust Head Pose Estimation 59

Therefore, to tackle the actual large head pose in practice, we augment the
data based on 3D transformations. As shown in Fig. 3, we perform the augmen-
tation as follows: (1) Select the large angle image (±30◦, ±45◦, ±60◦, ±75◦,
±90◦) in the Yaw direction in the Multi-PIE dataset, which results 3700 pho-
tos at random in each direction. (2) We select the character of the UMDFaces
dataset with 0◦ in the Pitch direction, together with the 68 feature points of the
face to model the 3D image [22], and generate the images in the Pitch direction
at ±30◦, ±35◦, ±40◦, and ±45◦ respectively to augment the data set. After this
process, we increase about 3000 face images in each direction. Eventually we
obtain a challenging dataset with several different large angles and rename it
Mix-UMDFaces.

Fig. 3. The schematic diagram of 3D data augmentation.

4.3 Experiments and Analysis

The data used in our experiments are UMDFaces dataset Mix-UMDFaces dataset
and the large angle data in UMDFaces test dataset. The large angle data in
UMDFaces means the data whose absolute angle value is larger than 35◦ in the
Yaw direction or is larger than 15◦ in the Pitch direction. We shuffled the data
and selected the first 10 percent images for testing and the rest for training. For
implementation, we use SGD with a mini-batch size of 128. The learning rate
starts from 0.02, and the models are trained for up to 200 K iterations. We use
a weight decay of 0.0002 and a momentum of 0.9.

We evaluate our method on 3 types of test sets, including UMDFaces dataset,
Mix-UMDFaces dataset, and the large angle data in UMDFaces. We perform
comparison from several different aspects, including the comparison of model
architecture with both simple networks and complex networks, the comparison
of speed and compactness, the comparison of performance for large angle head
pose data and so on. All the experimental results demonstrate the advantages
of our model on both speed and accuracy for head pose estimation.

Comparison of the Accuracy for Large Angle Data. As shown in Table 2,
we compare the performance of the models with and without fine-tuning, and
evaluate the TinyPoseNet models on large angle images. The head pose estima-
tion results are represented by the mean absolute error value in each dimension.
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Firstly, we train our model on UMDFaces and Mix-UMDFaces respectively
and get satisfactory results in the previous lists of the experiments shown on
sub-table(a) of Table 2. This results show clearly that the TinyPoseNet is much
robust for the head pose estimation.

Table 2. The performance of TinyPoseNet models.

(a) The comparison between the TinyPoseNet mod-
els, trained on UMDFaces and Mix-UMDFaces, with-
out fine-tuning and fine-tuned by pre-trained model
on three directions.

UMDFaces Mix-UMDFaces
Initial Fine-tuned Initial Fine-tuned

Yaw 2.296◦ 2.275◦ 2.225◦ 2.210◦

Pitch 2.118◦ 2.100◦ 2.137◦ 2.110◦

Roll 1.256◦ 1.260◦ 1.258◦ 1.269◦

(b) Contrast of the performance on
the large angle manges dataset be-
tween the models trained by Umd-
Faces and Mix-UmdFaces.

Large Angle Images
UmdFaces Mix-UmdFaces

Yaw 4.250◦ 2.667◦

Pitch 2.856◦ 2.070◦

Roll 2.036◦ 1.280◦

Then, we fine-tune our TinyPoseNet by the model which is pre-trained
for face recognition on the WebFaces [23] database. By comparing the results
between the initial model and the model with fine-tuning, we found that no
obvious improvement results by fine-tuning which indicate the model is trained
enough for the task of the head pose estimation.

Thirdly, we compare the performances on handling large angle data of the
model pre-trained only on the UMDFaces dataset and Mix-UMDFaces dataset
respectively. As shown in Table 2, the loss in the Yaw direction is reduced by
50% after the data augmentation and the mean loss is reduced to 72% of the
original in the Pitch direction. Especially in the direction of Roll, the effect has
been significantly improved.

Comparison of the Model Size with Other Models. We compare with
models including both simple networks, like LeNet [24], and complex networks,
like ResNet [25] on the UMDFaces database in Table 3. The results are repre-
sented by the mean absolute error value in each dimension, including the size of
model. We can find that the TinyPoseNet model is significantly better than the
same size of the LeNet model, and also better than both AlexNet and ResNet18
models whose size are much bigger than the TinyPoseNet model. Compare with
the VIPLFaceNet model, the size of TinyPoseNet model is just one of its fifty-
eight without reducing performance significantly.

Comparison of the Speed with Other Models. The time consumed of each
Image by each network is shown in Table 3. Among the networks performing
below 2◦ in the Mean value, TinyPoseNet is the only network running <10ms.



A Fast and Compact Deep Network for Robust Head Pose Estimation 61

Table 3. The comparisons of effectiveness, speed and compactness with other methods.

Yaw Pitch Roll Mean Time Size

ResNet 2.370◦ 2.120◦ 1.469◦ 1.986◦ 89.16ms 42.70M

LeNet 4.581◦ 4.067◦ 2.485◦ 3.711◦ 0.48ms 1.63M

AlexNet 2.311◦ 2.116◦ 1.312◦ 1.913◦ 28.75ms 216.98M

VIPLFaceNet 2.075◦ 1.919◦ 1.117◦ 1.704◦ 15.85ms 109.85M

TinyPoseNet 2.296◦ 2.118◦ 1.256◦ 1.890◦ 2.142ms 1.88M

It is worth mentioning that, the time consumed of TinyPoseNet is 7 times lower
than that of VIPLFaceNet. Meanwhile the maximum error is only 0.24◦ between
VIPLFaceNet and TinyPoseNet in the directions of Yaw Pitch and Roll.

5 Conclusion

Head pose is a basic attribute of human head and also a key point for human
action analysis and attention analysis. In this paper, we focus on the design of
our model with low computation and high robustness for the head pose estima-
tion. The main work of this paper can be summarized as follows: (1) Aiming at
the problem of head pose estimation, we propose a pose estimation model with
a much small computation and so a good performance simultaneously. (2) Com-
pared with the traditional models, experimental results show the advantages of
our model on both speed and accuracy for head pose estimation. As shown in
the experiments, the model is more robust for large angle head pose data and
so is much more suitable in practice. The method proposed in this paper can
be used for fast head attitude estimation in several application scenarios, and is
also able to defence face recognition system against video attack. In the future,
we will try to further improve the performance of the model for head pose esti-
mation and try to employ GAN to obtain a more smooth distribution of virtual
samples.

References

1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

2. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

3. Kuchinsky, A., Pering, C., Creech, M.L., Freeze, D., Serra, B., Gwizdka, J.: Fotofile:
a consumer multimedia organization and retrieval system. In: Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pp. 496–503. ACM
(1999)

4. Drouard, V., Ba, S., Evangelidis, G., Deleforge, A., Horaud, R.: Head pose estima-
tion via probabilistic high-dimensional regression. In: IEEE International Confer-
ence on Image Processing (ICIP) 2015, pp. 4624–4628. IEEE (2015)

http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1007/978-3-319-10590-1_53


62 S. Li et al.

5. Wang, C., Song, X.: Robust head pose estimation via supervised manifold learning.
Neural Networks 53, 15–25 (2014)
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Abstract. Temporal information prevails in multimodal sequence data,
such as video data and speech signals. In this paper, we propose a
two-stage learning to model the temporal information in multimodal
sequences. At the first learning stage, static representative features are
extracted from each modality at every time step. Then joint represen-
tations across various modalities are effectively learned within a joint
fusion layer. The second one is to transfer the static features into corre-
sponding dynamical features by jointly learning the temporal information
and dependencies between different time steps with a Long Short-Term
Memory (LSTM). Compared with previous multimodal methods, the
proposed model is efficient in learning temporal joint representations.
Evaluated on Big Bang Theory speaker recognition dataset and AVLet-
ters speech recognition dataset, our model proves to outperform other
methods.

Keywords: Temporal multimodal learning · Speaker recognition ·
Speech recognition

1 Introduction

In most cases, both visual and audio information plays a vital role in under-
standing a given circumstance by computers. For example, by employing facial
information can we deal with speaker recognition to some extent. However, it
would fail if real-world data had illumination variations or blurring informa-
tion. Also, audio information alone is not sufficient for speech recognition either,
because speech signals often contain noises. Thus, researchers tend to take both
visual and audio information into account to reduce recognition errors, which
has been verified by previous research [8,10,12].

In recent years, a number of approaches have been proposed to fuse audio
and visual in-formation for better recognition. Recurrent Temporal Multimodal
RBM (RTMRBM) [6] added joint layers on the top of Multimodal RBMs
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 64–72, 2017.
https://doi.org/10.1007/978-3-319-70096-0_7
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Modality 1 Modality 2

Joint featuresMRBM

DBNDBN

J

Fig. 1. Structure of Multimodal Deep Belief Network (MDBN)

(MRBMs) [13], which connects the sequence of MRBMs to learn temporal joint
representation. RTMRBM attempted to model the overall joint distribution of
the entire multimodal time series directly. Since its learning at each time step
relies on the joint distribution of the whole time frames, it will significantly
increase the training cost of the model. Most recently, Jimmy Ren [11] built
the Multimodal Long Short-term Memory (Multimodal LSTM), and tried to
explicitly model the long-term dependencies in a single modal both within the
same modality and across modalities. To this end, multimodal LSTM duplicated
the internal nodes but kept the parameters shared for each modality. However,
different modalities will, more often than not, provide various information, and
it is hard to extract all important information from various modalities with just
one same set of weights.

In this paper, we propose a two-stage learning to model the temporal infor-
mation in multimodal sequences. At the first learning stage, static representative
features are extracted from each modality at each time step by a Deep Belief Net-
work (DBN) [3]. Then joint representations across various modalities are effec-
tively learned within a Multimodal Restricted Boltzmann Machine (MRBM).
The second stage is to transfer static features into corresponding dynamical fea-
tures by jointly learning the temporal information by a LSTM. Since there is
no need of distribution estimation of the whole temporal data, our method will
noticeably decrease the training cost at Stage I. Furthermore, our experimental
results show that it is more efficient to learn temporal information and dependen-
cies in high-level abstract features than in low-level ones. Our model achieves
a better performance on Big Bang Theory dataset (speaker recognition), and
AVLetters dataset (speech recognition) than other methods.

2 Background

2.1 Multimodal Deep Belief Network

Multimodal Deep Belief Network (MDBN) [13] is a generative model, which
employs a Multimodal Restricted Boltzmann Machine (MRBM) [13] to extract
joint multimodal features from the top layer of Deep Belief Network (DBN) [3].
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For each modality, MDBN establishes a DBN to extract specific abstract fea-
tures, and learn joint representations from specific features with a MRBM, as
illustrated in Fig. 1.

2.2 Long Short-Term Memory

Long Short Term Memory (LSTM) [4] is a recurrent neural network (RNN)
and is well-suited to learn sequence data. LSTM units are often implemented
in “block” with several “gates” to control the flow of information into or out of
their memory.

3 The Proposed Model

The schema of two-stage temporal multimodal learning (TS-TML) is illustrated
in Fig. 2. Instead of directly modeling the overall joint distribution of the whole
time frames, we only extract and fuse static features by a MDBN without taking
into account temporal dependencies at Stage I. Following Stage I, we will obtain
the high-level common abstract concept features of multiple modalities. At Stage
II, we transfer static features into corresponding dynamical features by jointly
learning the temporal in-formation with a LSTM.

Compared with previous multimodal methods, our two-stage learning yields
two main benefits: One is that it will dramatically decrease the training cost at
Stage I because there is no need of distribution estimation of the whole temporal
sequences, which stands as a striking contrast to RTMRBM. The other one is
that it is more efficient to learn temporal information and dependencies in high-
level abstract features than in low-level ones from scratch.

Fig. 2. Two-Stage Temporal Multimodal Learning (TS-TML)
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3.1 Stage I

At Stage I, we employ a MDBN to extract static features from each modality and
fuse them into common features J on the top of the MDBN, where J ∈ R

Njoint ,
Njoint is the dimension of the common feature layer. Given a MDBN in Fig. 1,
it joins two branches corresponding to two modalities (modal 1 and modal 2).
Every two adjacent layers of the MDBN can be viewed as an RBM. The training
of RBM depends on this inference and learning process. Firstly, we defined the
joint distribution of adjacent layers. Let v ∈ R

n0 be the inputs of one modality,
h1 ∈ R

n1 denote the 1st hidden layer states and h2 ∈ R
n2 denote the 2nd

hidden layer states, and then we can formulate their joint distributions of RBM
as follows:

PΘ(ν, h1) =
1

Z(θ)
exp(

∑n0

i=1

∑n1

j=1
ωijνih

1
j +

∑n0

i=1
νiαi +

∑n1

j=1
h1

jβj) (1)

PΘ(h1, h2) =
exp(

∑n1
i=1

∑n2
j=1 ωijh

2
jh

1
i +

∑n1
i=1 h1

i βi +
∑n2

j=1 h2
jγj)

Z(θ)
(2)

Similarly, the joint distribution between two modalities hidden states (h2
1, h

2
2)

and the joint hidden states J can be defined as:

PΘ(h2
1, h

2
2, J) =

exp((h2
1)

T W1J + (h2
2)

T W2J + (h2
1)

T γ1 + (h2
2)

T γ2 + JT σ)
Z(θ)

(3)

where h2
1 denotes 2nd hidden layer states of modal 1 and h2

2 denotes 2nd hidden
layer states of modal 2, J denotes joint hidden units states on the top of two
2nd hidden layers, α, β, γ, σ are the bias of the input, the 1st hidden layer,
the 2nd hidden layer, and the joint hidden units, respectively. W1 and W2 are
the weights between the 2nd hidden layers corresponding to two modals and the
joint hidden layer. Z(Θ) is the partition function.

Having obtained the formulation of joint distributions, we can train DBN
layer by layer with Contrastive Divergence algorithm (CD-k) [3]:

Step1: Given visible layer’s input v ∈ R
nv , sample hidden layer’s value h ∈

R
nh from the conditional distribution:

P (hi = 1|v) =
e−E(v,h)

∑
v e−E(v,h)

= σ(
∑nv

j=0
ωijvj + ci) (4)

Step 2: Reconstruct visible layer’s value v′ with the sampled hidden layer
state h:

P (v
′
j = 1|h) =

e−E(v
′
,h)

∑
h e−E(v′ ,h)

= σ(
∑nh

i=0
ωijhi + bi) (5)

Repeating Step 1 and Step 2 for k times, we will obtain the last visible
layer’s value vk. Then we use the data distribution and the model distribution
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to compute the gradients of parameters, such as the gradients of weights be
formulated by

∂L(θ)
∂ωij

=
∑

v
P (hj = 1|v)vi −

∑
i=1

P (hj = 1|vk
i )vk

i (6)

3.2 Stage II

After the MDBN being pre-trained at stage I, we can feed joint features J into
the top LSTM at each time step. At this stage, we aim to employ the temporal
modeling capacity of LSTM to adjust the learned joint features J and build a
temporal dependencies in its joint feature spaces. At each time step, we output
a predicted label for the current frame. And the entire sequence classification
performance will be averaged over all time steps. The training loss is formulated
by

E =
1
N

N∑

n

K∑

k

ynk log(Onk) (7)

where n denotes the n-th frame (n = 1, 2, . . . , N), y ∈ R
k is one-hot vector

and denotes groundtruth label. Onk is the output at k-th unit at the time n.
According to this average category loss, we adopt the back propagation through
time (BPTT) algorithm to train the whole system, which includes the fine-tuning
of the MDBN. In summary, we present our learning processes in Algorithm 1.

Algorithm 1. Two-Stage Temporal Multimodal Learning.
Require:

Number of modal, M ;
Depth of DBN, L (L = 3 in Fig. 1);
Length of multimodal sequences, N ;
Label sequences, y;

1: for modal m :1→ M do
2: for i : 1→ L − 1 do: do
3: Train the weights between hi and hi+1 as a RBM with CD-k;

4: end for;

5: end for.
6: Fix all pre-trained weights for each modal.
7: Obtain the L-th hidden states in each modal and learn a joint layer in a MRBM

as the top of MDBN, which has the same training process as RBM.
8: Obtain N -length static joint representations for given multimodal sequences.
9: Input joint representation sequences and train LSTM, which includes fine-tuning

the MDBN at each time.
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Fig. 3. Speaker recognition on BBT data. From first line to second line, they are two
speakers identified by our method: Shelton and Lenord, respectively.

Table 1. The speaker recognition accuracy (%) on Big Bang Theory dataset.

Models Size of sliding windows

0.5 1.0 1.5 2.0 2.5 3.0

MLR (2013) [2] - - - - 77.8 -

MRF (2012) [14] - - - - 80.8 -

Multimodal CNN (2015) [7] 74.93 77.24 79.35 82.12 82.8 83.42

Multimodal LSTM (2016) [11] 86.59 89.00 90.45 90.84 91.1 91.38

Ours TS-TML 98.01 98.22 98.45 98.56 99.20 99.30

4 Experiments

4.1 Speaker Recognition

This task is to identify a person who is currently talking in a continuous multi-
character conversation scene video and identify the person’s identity through
the person’s facial features and vocal characteristics. We choose the Big Bang
Theory (BBT) dataset as our experimental data. Due to illumination variations
and blurring information of human face images, speaker recognition from BBT
is a very challenging task.

We first use the face detection algorithm to locate faces in each video frame.
These frames are manually annotated by five classes: Shelton, Lenord, Howard,
Raj and Penny. Consequently, we have 310,000 consecutive hand-labeled frames
of these five characters. For the audio data, we extract each character’s speech
in the video, and combine them into one audio file, and label them according to
corresponding characters in image sequences. We use the first 6 episodes from
the second season for training, and the first 6 episodes from the first season for
testing.

We first pre-train a Caffenet with BBT dataset, and extract image fea-
tures with this Caffenet. As for the audio data, we use the 20-millisecond-
sliding-window-10-millisecond-step MFCCs [9] feature to preprocess them. Each
sequence length is 49.
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We set up 6 different sliding windows with 0.5 s, 1.0 s, 1.5 s, 2.0 s, 2.5 s, and
3.0 s, respectively. The results compared with the other models are shown in
Table 1.

From Table 1, we can see that our model achieves a far better perfor-
mance than other multimodal methods. In various sliding windows, our method
improves 7.74%–11.42% accuracies. It proves that learning temporal information
in high-level abstract features is more efficient than leaning it in low-level ones.
In addition, with the increasing size of a time window, the accuracy of multi-
modal methods improves as well, indicating that more information will help to
improve the performance of multimodal learning.

To present our results visually, we demonstrate a few frames obtained by our
method in Fig. 3. Our method can identify the two main characters in BBT with
audiovisual features in various scenarios.

Finally, we compare our method with our baseline models and LSTM which
only employ visual or audio data. The results are listed in Table 2. It is note-
worthy that, our temporal multimodal method outperforms the single modality
one, which is also consistent with previous multimodal methods’ results [6,13].

Table 2. Accuracy (%) of single modality and multimodal methods.

Models Visual Audio Audio-visual

LSTM 88.27 46.4 -

Ours (single modality) 90.1 51 -

Ours TS-TML - - 98.01

Table 3. The average accuracy (%) of speech recognition on AVLetters.

Models Acc.

MDAE (2015) [5] 62.90

CRBM (2014) [1] 64.8

RTMRBM (2016) [6] 66.04

Ours TS-TML 66.51

4.2 Speech Recognition

This task is to recognize what a certain person is speaking, given the lip motion
and dubbing in a video clip.

We choose the AVLetters dataset with 780 short video clips. In each video
there is a person reading letters from A to Z. There are 10 individuals, and each
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one reads the 26 letters for three times. The size of lip images in all frames is
60 × 80. The dataset also provides MFCC features of the audio data. We take
the first two as a training set, and the last one as a testing set. Our experiment
is speaker-dependent. To match the visual and audio frames’ length, we input
one image frame with four audio frames simultaneously into our model.

Our method is compared with the Multimodal Deep Auto Encoder (MDAE)
[5], Conditional Restricted Boltzmann Machine (CRBM) [1], RTMRBM [6] on
AVLet-ters dataset, and the results are shown in Table 3.

From Table 3, we can see that our method outperforms other multimodal
models on this speech recognition task. Compared with non-temporal model
MDAE and single temporal modality model CRBM, our method has a much
better performance. Furthermore, instead of directly modeling the overall joint
distribution of the whole video and audio frames as RTMRBM did, we only
extract and fuse static features of each video and audio frame without consid-
ering temporal dependencies at Stage I and learn the temporal information at
Stage II. The results show that our two-stage learning strategy has a better per-
formance than RTMRBM. It demonstrates that learning temporal information
and dependencies in high-level abstract features is more efficient than learning
them in low-level ones from scratch.

4.3 Discussions of Computational Complexity

All our experiments are conducted on machine with an Intel Core i5-6500, 3.20-
GHz CPU 32-GB RAM and a GeForce GTX 980-Ti 6G. Take AVLetters for
example, there are 20800 multimodal data in total (dim of video frame: 4096, dim
of audio: 104). We spent about 32s/epoch to pretrain the MDBN, 10s/epoch to
train the LSTM and fine-tune our whole system. From these observations, we find
that learning static joint features costs most of runtime, which depends on the
complexity of MDBN. Compared with the strategy of learning joint distribution
over the whole multimodal sequences, our learning method adopts the idea of
transferring from static features to dynamic ones in two stages, which largely
reduces the training cost of estimation the joint distribution.

5 Conclusion

We have proposed a two-stage learning to model the temporal information in
multi-modal sequences. Instead of directly modeling the overall joint distribution
of the whole time frames, our method merely extracts and fuses static features
of each frame without considering temporal dependencies at Stage I, while it
learns the temporal information at Stage II. These two stages make it easier to
train the model and decrease the training cost. Our experimental results show
that the proposed method performs better than single modality methods, non-
temporal multimodal networks, as well as other temporal multimodal methods
in the tasks of speaker and speech recognition.
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Abstract. This paper studies the problem of learning representations
for network. Existing approaches embed vertices into a low dimen-
sional continuous space which encodes local or global network structures.
While these methods show improvements over traditional representa-
tions on node classification tasks, they ignore label information until the
learnt embeddings are used for training classifier. That is, the process
of representation learning is separated from the labels and lacks such
information.

In this paper, we propose a novel method which learns the embeddings
for vertices under the supervision of labels. Motivated by the idea of label
propagation, our approach extends the traditional label propagation to
the deep neural network field. The embedding of a node could contain the
structural and label information by broadcasting the label information
during the training process. We conduct extensive experiments on two
real network datasets. Results demonstrate that our approach outper-
forms both the state-of-the-art graph embedding and label propagation
approaches by a large margin.

Keywords: Representation learning · Node classification · Label
propagation · Deep neural network

1 Introduction

Information networks, such as social networks, publication networks, are becom-
ing pervasive nowadays. Node classification tasks like recommendation or tar-
geted advertising are very common in real network. Since many nodes are not
so active and lack of information, researches may mainly depend on the link
information to classify the nodes. What’s more, the sparsity of network makes
it difficult to get a good semantic relationship between nodes. Thus it has long
been a fundamental task to embed the sparse network into a low-dimensional
dense space with graph representation learning techniques.

It is hard for traditional methods like locally linear embedding (LLE) [14]
or Laplacian EigenMap [4] to scale to real social networks since they rely
on the solving of leading eigenvectors which are computationally expensive.
Recently, a number of distributed network representations have been proposed.
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 73–81, 2017.
https://doi.org/10.1007/978-3-319-70096-0_8
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Typically methods include DeepWalk [13] which combines skip-gram with ran-
dom walk, LINE [15] which exploits the first-order and second-order proximity to
preserve the local and global structures better, and Node2Vec [8] which optimizes
DeepWalk with a flexible sampling strategy by carefully combining the breadth-
first search and depth-first search. These network representation methods show
improvements over a number of traditional approaches like Graph Factorization
[1], Spectral Clustering [18], Modularity [16], EdgeCluster [17], IsoMap [3], and
weighted-vote Relational Neighbor [10]. While the above three network repre-
sentation methods show improvements over traditional techniques, they are all
designed for a general purpose rather than the node classification, thus not make
full use of the label information.

Another branch is based on graph convolutional theory. Methods like SGCNN
[6], GCN [9] are proposed. They could be effective at node classification task,
but need other original features(e.g. bag of words) for each node. However, we
want to focus on the labeled graph without other information because features
like text may be missing sometimes. Also, we have tried use the embeddings
generated by deepwalk to replace the features, but the result is not that good.
So we give up using these methods as baselines.

Label propagation [19,21,22] has been shown an effective technique to
enhance the classification performance by utilizing the correlation between labels
of linked objects. A more recent work OMNI-Prop [20] propagates labels on the
graph by assigning each node with the prior belief and updating it using the
evidence from its neighbor. OMNI-Prop could tackle arbitrary label correlations
and get better performance than classic label propagation approaches. However,
OMNI-Prop only takes the neighbor information as a bridge to introduce prop-
agation and neglects the network structure information.

In this paper, we investigate the problem of learning representation for node
classification. Our goal is to leverage the label information for enhancing the
performance of classification. To this end, we train the node representation and
classifier alternately to combine the label information. By incorporating graph
embedding into the framework, we can better model the complex network struc-
ture than traditional label propagation. Our method also outperforms graph
embedding approaches due to the integration of label information. In addition,
our approach benefits from the connection between direct neighbors, thus avoid-
ing the time-consuming sampling techniques used in graph embedding methods
like Node2Vec [8]. Extensive experiments demonstrate that our proposed method
achieves improvements over the graph embedding and label propagation base-
lines.

2 The Proposed SLICE Model

This section we introduce our SLICE (Structural and Label Information Com-
bined Embedding) model.
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2.1 Label as Constraint

In a traditional label propagation model, label information is transferred to
one’s neighbors through the adjacent matrix. However, label propagation only
saves each node’s label probability during the training, which is different from
our embedding target. To solve this problem, we add label information as con-
straints as follows. Given a graph G(V,E,L), for each undirected edge (u, v), we
assume the unlabeled node v should have the same label as node u. To meet this
assumption, we apply the cross entropy loss to measure the difference between
the label of v and that of u.

Jla(u,v) = − 1
Du

∑

j∈lu

yu log hθj
(xv) + (1 − yu) log(1 − hθj

(xv)), (1)

where Du is the degree of node u, yu is u’s true label, xv is the embedding
for node v, θj denotes the parameters for class j, and h is the sigmoid function
defined as:

hθj
(x) = σ(θj ∗ x) (2)

σ(x) =
1

1 + e−x
(3)

From Eq. 1, we can see that xv conveys the neighbor u’s label information, which
can be calculated as:

xv ← xv − α

Du
(hθj

(xv) − yu)θj (4)

Note that we use 1/Du as the multiplication weight for the following two reasons.
First, different nodes contribute differently to their neighbors. Second, the large
degree nodes may bring noises into the network and have neighbors with diverse
labels, and hence it is intuitive to decay their effect on other nodes.

2.2 Incorporating Classifier Objective into Training

We use logistic regression to classify the nodes as baseline methods do after the
embedding process. For each node u, the objective function can be defined as
follows.

Jlr(u) = −
∑

j∈lu

yu log hθj
(xu) + (1 − yu) log(1 − hθj

(xu)) (5)

However, since training classifier in our model is a part of our embedding
process, we can jointly update the parameters of classifier and node embedding
at the same time. This is different from the separate classifiers in baselines which
get features as input and update its parameters to reduce the prediction error.
Our goal is to combine the classifier into the embedding process and bring the
label information into the training process. Hence we update the parameters
using the stochastic gradient descent (SGD) [5] as:

θj ← θj − α(hθj
(xu) − yu)xu (6)

xu ← xu − α(hθj
(xu) − yu)θj (7)
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2.3 SLICE Model

We now present our SLICE model based on the above defined objective func-
tion. We use skip-gram [11] with negative sampling [12] to capture the basic
structural information. In the original skip-gram, a window is sliding from the
beginning to the end of the sentence to access the context of each word (node in
graph). That signifies the center word which is related to multi-hop words. To
be in consistent with the OMNI-Prop [20] baseline which only uses undirected
edge (u, v), our structural context of each node will only contain its neighbors.
In this way, we can avoid the time-consuming sampling procedure used in graph
embedding methods. The structural objective function will be defined as follows.

Jst(u,v) = −(log σ(x̃u, xv) +
∑

u′
(log(1 − σ(x̃u′ , xv)))) (8)

u′ means the negative samples and x̃u′ is the parameter vector of negative sam-
plings. Finally, for a graph G = (V,E,L), we combine the three parts together
and add the L2 regularization as follows.

Jall = Jemb + Jclassifier

=
∑

cen∈V,ctx∈N(cen)

(Jst(cen,ctx) + Jla(cen,ctx) + Jreg) +
∑

cen∈V

(Jlr(cen) + Jlrreg),

(9)
where N(cen) denotes the cen’s neighbors. We jointly optimize the objective
function Jemb and Jclassifier and keep the classifier parameters invariant while
optimizing the Jemb. When the training process finish, we use the learnt classifier
to predict the label probability of rest nodes.

The essential of our SLICE model is that we replace the propagation process
between unlabeled nodes with structural information. Let us illustrate this using
a typical label propagation. We first get an adjacent matrix A as an affinity
matrix W and initialize labels Ŷ (0) ← (y1, · · · , y|L|, 0, 0, · · · , 0). Then we do
iteration over:

1.Ŷ (t+1) ← D−1WŶ (t)

2.Ŷ (t+1) ← Yl

until convergence. The difference between our model and propagation methods
lies in that our approach would not transfer label information between unlabeled
nodes directly. In contrast, label propagation methods make use of the unlabeled
nodes and broadcast the labels to their neighbors. This to some extent may get
good results due to the homophily property of graph. But, it is more possible for
such a method to accumulate the propagation error at the same time. Thus we
choose not to use such propagation between unlabeled nodes directly, but only
model their structural similarity. The label information will be imported during
the embedding process indirectly. Figure 1 presents an illustrative example.

In Fig. 1, circle nodes represent the unlabeled nodes. triangle and rectan-
gle nodes represent nodes of different classes. For a typical label propagation
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Fig. 1. A toy example of information network

method, nodes v1, v2, v4 will be classified to rectangle class with about 0.7 con-
fidence. That can be caused by the propagation along the path of v1 → v4,
v4 → v2, v4 → v3, in which label information between unlabeled nodes takes
effect. Our approach is different. According to the structural information, v5 is
similar to v7, v8, v9 because they all belong to the neighbors of v6. With label
information, v6 would learn to be more close to rectangle class. Then v4 would
be more neutral due to its relation between v1(triangle class) and v6 (more likely
to be rectangle class). Since label information will not propagate between unla-
beled nodes (v4, v5), (v4, v2), (v4, v3) directly, the label probability of v2, v3 will
be around 0.5. In this way, we can avoid making a partial judgement if we meet
such condition: v1 is a noisy node and v2, v3 belongs to rectangle class. This also
implies that our approach prefer adapting to the context when there does not
have enough label information, rather than judging nodes with high confidence
by label propagation.

3 Experimental Evaluation

In this section, we first provide an overview of the datasets in our experiment.
We then introduce the baselines and experimental settings. Finally we report
and analyze the experimental results.

3.1 Experimental Setup

Datasets. We conduct experiments on two well known and publicly available
datasets. One is DBLP [2] dataset including approximately 16000 scientific pub-
lications chosen from the DBLP database including three categories: “Data-
base”, “Machine Learning”, and “Theory”. The nodes are papers and links are
co-authorship information between documents. The other is BlogCatalog [17]
which is a network of social relations among the authors of the bloggers. There
are 39 classes (labels) representing the topic categories provided by the authors.
It’s a multi-label multi-class dataset on which DeepWalk [13] and Node2Vec [8]
conduct experiments.
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Baselines. We conduct extensive experiments to compare our methods with
four state-of-the-art baselines. Three of them are graph embedding approaches:
DeepWalk [13], LINE [15], and Node2Vec [8]. The remaining one is a latest label
propagation OMNI-Prop [20] method.

Settings. We train a one vs. rest logistic regression classifier implemented by
Liblinear [7] for each class as Node2Vec [8] did and select the class with maxi-
mum scores as the label. We take representations of vertices as features to train
classifiers, and evaluate classification performance using 10-fold cross-validation
with different training ratios. Since the samples in our dataset may have mul-
tiple labels, we deal with the stratified cross-validation problem like this: if one
sample is chosen as a test data point in one class, then it will not appear in
training data as the negative samples for other classes.

For a fair comparison with the relevant baselines, we treat the graphs as
undirected graph and use the typical settings in DeepWalk [13] and Node2Vec [8].
Specifically, we set the dimension d = 128 and the number of walks nw = 10, walk
length wl = 80, window size ws = 10, the number of negative samples ns = 5
and learning rate α = 0.025 on all datasets. Since the embedding methods are
similar, we would set updated node pairs to be approximately same magnitude
for fair comparison. For DeepWalk and Node2Vec, the updated node pairs would
be about |V | ∗ ws ∗ 2 ∗ wl ∗ nw (with subsampling ss = 10−3 to remove part
of node pairs), thus we set samples = 10 million for LINE [15] using 1st+2nd
proximity and iterate our methods for 100 times. For OMNI-Prop [20], we set λ
= 1.0 as the default value.

3.2 Results

We report the average micro-F1 and macro-F1 as the evaluation metrics. The
scores in bold represent the highest performance among all methods.

Comparison Results on DBLP. We first report classification results on
DBLP dataset in Tabel 1. It is clear that the performance of SLICE trained
with only 10% of the training data has already outperforms the embedding
baselines (DeepWalk, Node2Vec, LINE) when they are provided with 90% of
the training samples. This strongly demonstrates that our approach benefits
a lot from label information even if there are only a small fraction of labeled
nodes. Also, it is clear that OMNI-Prop performs well on this dataset and our
approach really takes advantage of the idea of label propagation. The perfor-
mance of SLICE becomes much more attractive with more training data and
show great improvements over OMNI-Prop. We can attribute this to the com-
bination of structural information learning from embedding methods and label
information drawing from label propagation constraint. In other words, the label
constraint could modify the network embedding and bias it to be more suitable
for node classification tasks.
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Table 1. Average macro-F1 and micro-F1 score on DBLP

macroF1(%) 10 20 30 40 50 60 70 80 90

SLICE 81.73 83.92 85.23 85.93 86.33 87.28 87.61 88.03 88.50

DeepWalk 79.39 80.47 80.74 80.67 80.60 80.51 80.77 80.84 80.94

LINE 73.44 74.27 74.39 74.44 74.73 74.98 74.96 74.94 75.07

Node2Vec 79.93 80.34 80.58 80.82 80.85 81.09 80.92 80.86 80.89

OMNI-Prop 82.11 83.40 84.15 84.74 85.05 85.28 85.49 85.55 85.81

microF1(%) 10 20 30 40 50 60 70 80 90

SLICE 82.29 84.36 85.63 86.33 86.73 87.65 87.97 88.38 88.82

DeepWalk 80.17 81.10 81.36 81.32 81.26 81.16 81.39 81.48 81.56

LINE 74.60 75.36 75.46 75.50 75.74 75.91 75.93 75.90 76.03

Node2Vec 80.61 80.94 81.21 81.41 81.48 81.71 81.53 81.49 81.54

OMNI-Prop 82.33 83.64 84.42 85.01 85.33 85.55 85.76 85.82 86.08

Table 2. Average macro-F1 and micro-F1 score on BlogCatalog

macroF1(%) 10 20 30 40 50 60 70 80 90

SLICE 23.08 24.91 26.00 26.64 27.22 27.34 27.70 27.63 27.78

DeepWalk 18.64 20.28 21.07 21.64 22.08 22.17 22.46 22.72 23.25

LINE 15.67 17.35 18.67 18.89 19.51 19.94 20.46 20.53 21.02

Node2Vec 19.70 21.69 23.00 23.21 23.83 24.06 24.47 25.30 25.57

OMNI-Prop 4.46 5.59 6.78 7.89 8.52 9.12 9.42 10.00 10.49

microF1(%) 10 20 30 40 50 60 70 80 90

SLICE 36.58 38.00 38.89 39.24 39.94 40.46 40.73 40.75 40.92

DeepWalk 34.56 35.58 36.25 36.54 37.00 37.22 37.40 37.56 37.67

LINE 32.38 33.59 34.47 34.83 35.14 35.35 35.74 35.81 36.09

Node2Vec 35.06 36.15 37.13 37.37 37.78 38.10 38.50 38.78 38.88

OMNI-Prop 19.51 21.39 23.21 24.86 25.55 26.31 26.80 27.49 28.14

Comparison Results on BlogCatalog. We now list classification results on
BlogCatalog in Table 2.

We can see that SLICE consistently outperforms all other baselines. On this
dataset, it is obvious that OMNI-Prop does not perform well. The reason could
be that BlogCatalog is a multi-label multi-class dataset and has more categories
than DBLP. Label propagation based method could not deal well with such
situation and structural information plays an important role. However, even
if label information is not propagated well among neighbors, with structural
information and classifiers’ help, our approach could still perform well instead of
falling sharply. That is to say, the combination of the three parts in the objective
is effective and complementary to some extent.
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(a) d : dimension (b) r : iterations

Fig. 2. Parameter sensitivity study on BlogCatalog

3.3 Sensitivity

Since our SLICE model does not use complex sampling techniques, we investigate
the common parameters including the embedding dimension d, iterations r. For
the learning rate η, we just set it to the default value 0.025, as the baselines
do. We conduct the experiment on the BlogCatalog dataset using a 50–50 split
between training and test data as Node2Vec [8] does. Except for the parameter
being tested, we use the default values for all other parameters. We report the
macro-F1 score as a function of d, r, in Fig. 2.

We observe from Fig. 2(a) that the curve of performance rises with the
increase of dimension and becomes stable later. Figure 2(b) shows that our app-
roach converges at about 40 iteration and drops a little when the iteration is
large. That is reasonable since the noises in the label propagation process will
increase. This finding is consistent with that for OMNI-Prop approach on Blog-
Catalog.

4 Conclusion

We have introduced the SLICE approach which incorporates the label informa-
tion into the embedding process. In particular, we jointly train the classifier and
use its parameters to help propagate the label information without using spe-
cialized sampling techniques. We conduct extensive experiments on real world
datasets and results demonstrate that our approach takes advantages of both
the embedding methods and label propagation based methods. In the future, we
plan to investigate how the improved embeddings can be used to other tasks like
link prediction.
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Abstract. The ultrasonic image of thyroid papillary carcinoma is characterized
by two dimensional gray scale, low resolution, and complicated internal tissue
structure. The characteristics of thyroid papillary carcinoma are not obvious and
it is difficult to be distinguished. In this paper, the convolution neural network
(CNN) theory is introduced for the automatic identification of the ultrasonic
image of thyroid papillary carcinoma. Based on the improvement of the
Faster RCNN, a detection method for the identification of ultrasonic image
features of papillary thyroid carcinoma is proposed, that is, by connecting the
fourth and fifth layers of the shared convolution layer in the Faster RCNN, and
then normalizing. Secondly, multi-scale ultrasonic images are used in the input.
Finally, thyroid papillary carcinoma is classified according to several major
characteristics of its ultrasound image.so that the detailed ultrasound image
diagnostic report can be received. The experimental results show that the
recognition accuracy of the Faster RCNN is higher, the training time is shorter
and the efficiency is higher compared with that of the original Faster RCNN.

Keywords: Convolution neural network � Thyroid papillary carcinoma �
Ultrasound images

1 Introduction

Thyroid cancer is the most common malignancy in endocrine system, and it takes the
first place in the incidence of head and neck cancer. Thyroid papillary carcinoma is the
most common, accounting for about 85% of all thyroid cancers [1]. Therefore, the
diagnosis of thyroid papillary carcinoma is very important.
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CNN [2] is the fastest growing area in the last five years. It is one kind of artificial
neural network, which has become a hotspot in the field of speech analysis and image
recognition. The convolution neural network is a machine learning model of deep
learning. Its weight sharing network structure reduces the complexity of the network
model, reduces the number of weights, and avoids the complex feature extraction and
data reconstruction in the traditional recognition algorithm process. CNN has many
advantages, but it is rare in the application of ultrasonic image recognition, mainly due
to the small samples of ultrasound images, low resolution, and most of them are
monochrome images and complex organizational structure, etc., which are the key
factors resulting in the rare application of CNN in this area.

In this paper, an improved Faster RCNN was designed by means of CNN-based
Faster RCNN network object detection method. By using the layer connection,
multi-scale input, multi-classification and fine tuning. A large number of existing cases
of ultrasound images was used to extract the characteristics of thyroid papillary car-
cinoma, a stable, effective, accurate and specific and reliable thyroid papillary carci-
noma ultrasound image analysis and diagnosis system was established. This would help
to assist clinicians in diagnosing and practicing the training of these types of cancer
features. In addition, it can also help non-professionals to understand their condition
preliminarily.

2 Related Works

The automatic classification of medical ultrasound images is essentially the similarity
problem of the image, or the problem of pattern recognition. In histopathological
aspects, Toki and Tanaka [3] used the SIFT method to extract the image to identify
prostate cancer. For the incomplete gland features, the accuracy was improved to
6.3%–13.3% comparing to the previous methods. For the color and texture features of
biopsy specimens, Niwas and Palanisamy [4] used least squares support vector
machine (LS-SVM) for the diagnosis of breast cancer. In many deep learning methods,
CNN is the most suitable one for the image feature extraction. Litjens and Sánchez [5]
used CNN to idiomatically identify the features of Sentinel and breast cancer metastasis
in MR image. This method can reduce the workload of the pathologist and increase the
objectivity of the diagnosis. In order to obtain a more accurate model, CNN often needs
to train a large number of pictures [5, 6]. In the medicine field, it is impossible to get so
many pictures, because the characteristics of histopathological images are more com-
plex than those in nature, and pathological features tend to be very similar or not
obvious compared to the surrounding tissue. This leads to the fact that CNN is not
widely used in medical imaging. With the CNN’s image recognition [7–9] aspects of
the development at an alarming rate, Girshick et al. [10] has turned the detection
problem into a classification problem, and proposed the RCNN structure. Later,
according to the problems of redundant computation and multiple steps requiring in
model training in R-CNN, Girshick [11] further proposed the Fast RCNN framework
structure, which integrated the whole detection process. It only needs one feature
extraction for each image, greatly reducing the redundant computation and improving
the detection speed and performance. Fast R-CNN [11] is slow to extract the candidate
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area and it is the bottleneck of the entire detection network. Ren et al. [12] also
proposed the Faster RCNN frame structure, to get the candidate area with CNN. The
candidate region extraction network and the target detection network share the feature
extraction layer. So the Faster RCNN achieved better detection performance.

In this paper, according to the identification of ultrasound image features of pap-
illary thyroid carcinoma, Faster RCNN made the following improvements:

(1) As the low resolution features of the ultrasonic image, Faster RCNN is not very
good for the low-resolution image recognition. By connecting the fourth and fifth
layers of the Faster RCNN, the results show that this method increased the number
of mAPs (mean Average Precision) of ultrasonic image recognition of thyroid
papillary carcinoma by 7.8%, and the accuracy rate increased by 1.7%.

(2) By multi-scale ultrasonic image input, the problem of inaccurate local feature
extraction was solved, and the efficiency of ultrasonic image recognition of thy-
roid papillary carcinoma was further improved. The results show that mAP
increased by 3.4% and the accuracy rate increased by 9.2%.

(3) By the multi-classification way, a multi-classification of cancer image was
marked, and the system can automatically generate a simple diagnostic report of
ultrasonic image.

3 A New Model of the Faster RCNN Network of Ultrasonic
Image Features of Thyroid Papillary Carcinoma

Currently, Faster RCNN has achieved the remarkable results in target detection. But
our experiments show that it is not very good to directly use for the ultrasound image
recognition of thyroid papillary carcinoma. The mAP is only 0.62. The main reason is
that the internal structure of ultrasound image is complex, the tissues overlap each
other, the boundary is unclear, and the characteristics of malignant cancer ultrasound
images and some tissues are very similar. Secondly, the medical ultrasound image is a
monochrome image generated from the light spot with different brightness, and it has
low resolution.

Because the depth learning model can learn the hidden high-level features from the
image, so it can achieve better results in the ultrasound image recognition compared to
other shallow learning algorithm with low-level features. In this paper, the
Faster RCNN network model was improved, and the features were extracted by
combining with deep and shallow learning and multi-scale input, effectively improve
the recognition rate of ultrasound images was effectively improved. The improved
Faster RCNN network model is shown in Fig. 1.

3.1 Layer Connection

The feature extraction is performed by connecting the deep and shallow layers of the
shared convolution layer, then the normalized network model is constructed. Experi-
ments show that the fourth and fifth layers of the shared convolution are better, and this
method improves the accuracy of cancer feature recognition.
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3.2 L2 Normalization

As shown in Fig. 1, when connection the fourth and fifth layer of sharing convolution,
in order to be able to expand the depth characteristics of definition object in multiple
convolution layer, two characteristics tensor for ROI pooling needs to be combined to
reduce the dimension. A causal connection between deep and shallow layers can lead to
poor performance, because the difference in size has too much effect on the weight
below. Therefore, a straightforward solution for this problem is to normalize each ROI
pooling tensor before concatenation.

Similar to the original work, L2 normalization to each tensor was applied. The
normalization is done within each pixel in the pooled feature map tensor. After the
normalization, scaling is applied on each tensor independently as:

x̂¼ x
xk k2

ð1Þ

xk k2 ¼
Xd

i¼1
xij j

� �1
2 ð2Þ

Where x and x̂ stand for the original pixel vector and the normalized pixel vector
respectively. d stands for the number of channels in each ROI pooling tensor.

The scaling factor ci is then applied to each channel for every ROI pooling tensor:

yi ¼ cix̂i ð3Þ

During training, the update for the scaling factor c and input x is calculated by
back-propagation and chain rule:

@l
@x̂

¼ @l
@y

� c ð4Þ

@l
@x

¼ @l
@x̂

I
xk k2

� xxT

xk k32

 !
ð5Þ

Fig. 1. Faster RCNN frame
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Where y = y1;½ y2; � � � ; yd�T .

3.3 Multi-scale

Faster R-CNN also uses fixed-size images for training. Through our experiments, we
can learn the characteristics of different size ranges, increase the robustness and reduce
the influence of the subsampling on the feature representation through the multi-size
picture input, improve the extraction efficiency of the original features of the picture,
and improve the accuracy of cancer feature recognition.

3.4 Multi-classification

Faster RCNN outputs a rectangle and a category name and a score. For medical
diagnosis, the output of more information can provide more diagnostic reference for the
doctor. It can be concluded that the main characteristics of ultrasonic image of cancer
are: unclear boundary, nonuniform echo, irregular shape, and strong echo intensity
(calcification). For the sake of analysis, these characteristics are represented by b, h, x,
and q. At the same time, in order to output these cancer characteristics, each cancer area
will be marked several times. Each region marks at least one “c”, representing a region
with cancer characteristics. If any characteristics in the above b h x q is met, the
corresponding label would be labeled. In this way, according to the label name and
score, a simple diagnostic report will be automatically generated when it is tested. As
shown in Fig. 2.

4 Experiments

4.1 The Build of the Image Data Set

Ultrasound images of 307 people from the Sun Yat-sen University Cancer Center from
2010 to 2014 were collected, including 54 men and 253 women. Each person had 5 to
30 ultrasound images. There were 4,738 ultrasound images totally. In these patients,
256 were diagnosed with thyroid papillary carcinoma and had surgery; 51 were
diagnosed with normal thyroid gland. There were 1153 images among 51 people with
the normal thyroid gland. Ultrasound images of 200 people who were diagnosed were

Fig. 2. Thyroid papillary carcinoma report
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taken as training sample, and there were 1,367 samples for training sample. The
ultrasound images of remaining 107 people were used for testing. In addition, it can be
obtained from the diagnostic report that each ultrasound image of the identified person
includes 1 to 3 cancer features.

4.2 The Labeling and Classification of Images

We used the annotated software to mark all the diagnostic training images. The
ultrasound images used for training meet the XML format files required by the
Faster RCNN training, and the annotation of the ultrasonic images for testing was
marked as Ground True. Rectangular boxes were used for image tagging. Each cancer
area was marked as “c” for each cancer category. If boundary was not clear, the region
continued to be marked as “b”. If the shape was irregular, the region continued to be
marked as “x”. If echo is nonuniform, the region continued to be marked as “h”. If
there was a calcified area or flare, the region continued to be marked as “q”. Finally,
when the images were tested, the regional characteristics for cancer were determined as
long as a regional output is one or more tags from {c b h x q}. In the end, our training
cancer images were marked with 3,347 cancer features, and the cancer images used for
the test were labeled with 805 cancer features. An XML file for the location coordinates
and classification of a region was generated.

4.3 Sample Training

The Faster RCNN network framework for the deep learning python was used; it can be
accelerated using GPU. We use the VOC2007 database for pre-training. First, draw the
target box and use the opencv dynamic library that others have wrapped up. Then do
the XML file, and overwrite the folder corresponding to the VOC2007 database. By
modifying the source code of the Faster RCNN, the fourth and fifth layers of the ZF
(Shared convolution layer) were connected and normalized.

4.4 Training and Results

Stochastic gradient descent was used to train our network parameters, the learning rate
was set to 0.001, and the number of iterations are 40000, 20000, 40000, and 20000.

Model 1: using the original Faster RCNN network;
Model 2: using layer connection (layer 4 and layer 5);
Model 3: using multi-scale input;
Model 4: using multi-scale input and layer connections;
The mAP for each model training is shown in Table 1:
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5 Analysis of Experimental Results

To study the effects of our improved data of Faster RCNN on the use of medical
imaging, let’s examine the methods we use through the cross-testing. The models 1, 2,
3 and 4 correspond to: ID1, ID2, ID3, ID4.

After each method, the results of the test and the relevant data were obtained as
shown in Table 2.

In this paper, the automatic identification of ultrasonic image of thyroid papillary
carcinoma is studied, and it is closely related to medical science. We use the subject
line, that is, the ROC curve. The curve is a comprehensive indicator of the sensitivity
and specificity of a continuous variable; it shows a way of revealing the relationship
between sensitivity and specificity. A number of different thresholds were set through
continuous variables, and a series of sensitivity and specificity was calculated. A curve
was draw by using sensitivity as y-coordinate and (1 - specificity) as x-coordinate. The
larger area under the curve is, the higher accuracy of the diagnosis is. The ROC curves
for all methods are shown in Fig. 3:

Table 1. Performance of models

Model 1 Model 2 Model 3 Model 4

mAP 0.618 0.696 0.652 0.738

Table 2. Performance of strategies

TP TPR FP FPR TN TNR FN FNR

Ground truth 805 196
ID1 604 0.750 57 0.291 139 0.709 201 0.250
ID2 618 0.767 48 0.245 148 0.755 187 0.233
ID3 678 0.842 40 0.204 156 0.796 127 0.158
ID4 715 0.888 31 0.158 165 0.842 90 0.112
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Fig. 3. ROC curve graph
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As it can be seen from Fig. 3, the ROC is getting better and better as the methods
have been improved. ID4 uses all our methods, and it works best. When TPR <0.5 or
FPR >0.5, it doesn’t make sense medically. Table 2 was compared with ID1-ID4.

(1) The ID1 VS ID2 (layer connection) is shown in Fig. 3, Because of the connection
layer, ID2 is significantly better than ID1 and its ROC curve is closer to the upper
left. It can be seen from Table 3 that connecting the fourth and fifth layers
increases TP, TN, and reduces FP, FN. In addition, the layer connection makes the
model have better recognition effect on the cancer features of irregular shape, the
lower resolution, and have less recognition effect on the cancer feature of unclear
boundary, as shown in Fig. 4.

(2) ID3 VS ID1 (multi-scale input) is illustrated in Fig. 3, ID3 uses multi-scale input
(This article keeps the original width ratio and uses 800px, 600px and 400px
input), its effect is significantly better than ID1 and its ROC curve is closer to the
upper left, its AUX value is greater. It can be seen from Table 3 that multidi-
mensional input increases TP, TN, and reduces FP, FN. As shown in Fig. 5,
multi-scale inputs are significantly better at identifying cancer features of unclear
boundary than the models that do not use this strategy. In addition, for the cancer
characterized by calcification or strong light spot, ID3 has strong recognition
ability, and is better for the nonuniform echo of ID1.

Table 3. Improved faster RCNN compared to handcraft performance

TP TPR FP FPR TN TNR FN FNR

Ground truth 805 196
Handcrafted 638 0.793 39 0.199 157 0.801 167 0.207
Faster RCNN 715 0.888 31 0.158 165 0.842 90 0.112

Fig. 4. ID1 vs. ID2
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The experiment result shows that ID4 (improved Faster RCNN) works best for
using all the methods, and it is compared with the artificial recognition performance, as
shown in Table 3:

As it can be seen from Table 3, for false positives, Faster RCNN and artificial one
were very similar; they can reach 19.9% and 15.8%, respectively. The reason is that the
characteristics of the pathological image are quite complex. It is hard to distinguish for
both Faster RCNN and artificial one. However, the true number and ratio of
Faster RCNN are higher than artificial, similar to the true negative. The false negative
ratio is one of the most important concerns in the medical field. False negative numbers
and ratios are too high to cause very serious miscarriage of justice. Regarding to this,
the effect of Faster RCNN is significantly better than the artificial. FNR of
Faster RCNN is 11.2% and the artificial one reach 20.7%. Obviously, the effect of
Faster RCNN is better than that of artificial one.

6 Conclusion

By improving the Faster RCNN, after a large number of experiments, the detection
model which can identify complex structural cancer characteristics was identified and
the recognition effect was better. The results of our experiments show that the proposed
network model has a true positive recognition rate of 88.8%, and it is possible to
accurately determine whether the ultrasound image of thyroid papillary carcinoma is
characterized by cancer. In the future, how to increase the number of samples by
combining every medical image training features to improve the true positive rate of
cancer needs to be strengthened.
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Abstract. Compared with rate-based artificial neural networks, Spik-
ing Neural Networks (SNN) provide a more biological plausible model
for the brain. But how they perform supervised learning remains elusive.
Inspired by recent works of Bengio et al., we propose a supervised learn-
ing algorithm based on Spike-Timing Dependent Plasticity (STDP) for a
hierarchical SNN consisting of Leaky Integrate-and-fire (LIF) neurons. A
time window is designed for the presynaptic neuron and only the spikes
in this window take part in the STDP updating process. The model is
trained on the MNIST dataset. The classification accuracy approach that
of a Multilayer Perceptron (MLP) with similar architecture trained by
the standard back-propagation algorithm.

Keywords: STDP · SNN · Supervised learning

1 Introduction

Rate-based deep neural networks (RDNN) with back-propagation (BP) algo-
rithm have got great developments in recent years [10]. Neurons in these net-
works deliver information by floating numbers. But in the brain, signals are
carried on by spikes, a kind of binary signals. This property can be captured by
a spiking neural networks (SNN). But how the SNNs are trained remains largely
unknown.

Several works studying supervised algorithm on SNN have made some
progress recently. Some works [2,3,7,8,12,17] make use of time coding by spikes.
In a very first work [2], each neuron is only allowed to fire a single spike. The
model is then expanded to allowing multiple spikes by later studies [3,7]. Net-
works in these papers usually need to keep multiple channels with independent
weights between two neurons. These channels account for different time delays [2]
or order numbers of spikes in the spike train [17]. These algorithms are designed
to learn spike trains, but classification on large datasets is hard for these models.
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In fact, the algorithms need to convey real numbers to spike trains. Due to the
difficulty of this conversion and recognizing ability of the network, these models
can only work on very simple datasets.

Recently, Bengio et al. proposes an idea to build a two-phased learning algo-
rithm for energy-based models called e-prop [14]. They implement the algorithm
on an energy-based model with input neurons clamped to input data and output
neuron variable under target signals. Neurons are free from target signals in the
first phase, and the state of which is denoted by s0. Dynamics of output neu-
rons are changed slightly by target signals in the second phase, and the state of
neurons is sξ. Let ρ() represent the active function. The weight Wij of synapse
between neuron j and neuron i is updated by

Wij ← Wij + ηΔWij , (1)

where
ΔWij ∝ lim

ξ→0

1
ξ
(ρ(sξ

i )ρ(sξ
j) − ρ(s0i )ρ(s0j )). (2)

And this rule is a symmetric version of another rule

ΔW ∝ ṡiρ(sj), (3)

which is studied in previous work [1]. In the work a link has been made between
(3) and Spike-Timing Dependent Plasticity (STDP) rule.

STDP rule is thought to be an ideal basis of algorithms on SNN. It is first
found in physiological experiment [11], defines that the plasticity of a synapse is
only dependent on the time difference of spikes from the two neurons attached by
this synapse. But computational significance of STDP is not clear. Several works
implement STDP on learning algorithms [6,9,13]. They all take an idea that
utilizing the simple property that the synaptic weight is strengthened when the
postsynaptic spike is after the presynaptic spike, thus a strict order of presynaptic
and postsynaptic spike is needed.

In this work we propose a new STDP-based algorithm on SNN. Also, we
find that simply computing all of the spikes using the STDP rule results in poor
results. We modify the spike pairs that perform STDP rule, and achieve good
results on same benchmark image classification dataset. We stress that we do
not change the original STDP rule on single pair of spikes, but provide a way
that how to use the STDP rule.

2 Method

2.1 The Network

The network is a bidirectionally connected network with asymmetric weights
based on the leaky integrate-and-fire (LIF) neuron model [5]. The state of neuron
i is described by membrane potential Vi. The dynamics of Vi is:

τV
dVi

dt
= −Vi + EL − rm

∑

j∈Γi

ḡs,ijPs,j(Vi − Es,j) + RmIe, (4)
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where Ie is input current, EL is equilibrium potential, Es,j is determined by types
of neurotransmitter, τV is a time constant, and Rm is a resistance constant. Γi

is the set of neurons that have synapses to neuron i. The membrane potential
Vi triggers the neuron to release a spike when it reaches a threshold Vth, and
then is reseted to Vreset after the spike. ḡs,ijPs,j represents synaptic conductance
from neuron j to neuron i, where ḡs,ij represents the maximum strength of the
synapse, and Ps,j represents the probability of opened neurotransmitter gates.
The dynamics of Ps,j is

τP
dPs,j

dt
= −Ps,j +

∑

k

δ(t − T
(k)
j ). (5)

The variable Ps,j increases by a unit amount every time neuron j spikes, and
decreases to zero spontaneously. δ() is a Dirac function, which means δ(x) = 0,
(x �= 0) and

∫ ∞
−∞ δ(x)x = 1. [T (1)

j , T
(2)
j , ...] represents for spike train of

neuron j.
We set all Es,j to 0 V , and the input current Ie to 0 μA. Also, for the sake

of convenience, we write ḡs,ij to Wij , and introduce an input summation for
postsynaptic neuron i

Pi =
∑

j∈Γi

ḡs,ijPs,j , (6)

and rewrite the basic dynamics (4) and (5) as

τV
dVi

dt
= −Vi + EL − rmPi(Vi − Es), (7)

τP
dPi

dt
= −Pi +

∑

j,k

Wijδ(t − T
(k)
j ). (8)

The network consists of an input layer, a hidden layer, and an output layer.
We denote the data for supervised learning by normalized input signal vx and
target signal vy.

For neuron i in the input layer, we simply let it be controlled by input
signal vx,i:

Pi = P0vx,i, (9)

and P0 is a constant to convert the scales. Neurons in the input layer fire in a
fixed pattern under an input proportional to input signal. The neurons in the
hidden layer are not affected by any signals from data directly, and act according
to (7) and (8).

Situation for neurons in the output layer is a bit more complicated. Like
the e-prop method [14], learning is performed in two phases, named inference
phase and learning phase in this paper. The only difference between the two
phases is the dynamics of the output layer neurons. In the inference phase, the
neurons also act according to (7) and (8). The network gives an inference result
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by counting the frequency of spikes of output neurons in this phase. And in the
learning phase, we add an item represents for effect of target signals:

τP
dPi

dt
= −Pi +

∑

j,k

Wijδ(t − T
(k)
j ) + β(P0vy,i − Pi), (10)

where vy,i is the ith target signal and β controls the effectiveness of target signals.

2.2 The Learning Rule

We adopt the original STDP functions. The STDP function represent the rela-
tionship of modification δWij of the synapse Wij from presynaptic neuron j to
postsynaptic neuron i, and the firing time of two spikes fire at tj and ti respec-
tively. The commonly used exponential form [15] of STDP function can be

δWij(ti, tj) = f(ti − tj) =

⎧
⎪⎨

⎪⎩

e− ti−tj
τm

, when ti > tj
0, when ti = tj

−e− tj−ti
τm

, when ti < tj

. (11)

And we can also use a sinusoidal form [16] as

δWij(ti, tj) = f(ti − tj) =
{

sin( ti−tj

τw
π), when Δt ∈ [−τw, τw]

0, otherwise
, (12)

where τw is a time constant. The two functions are plotted in Fig. 1. During the
experiment we found that the sinusoidal form resulted in better consequence, so
all results presented in the paper are based on (12).

The STDP rule is implemented on a time window in the learning phase after
the inference phase. We find that simply summing up all of the spike pairs in a
bidirectional network does not work. When the STDP function is approximately
anti-symmetric which means f(δt) = −f(−δt), we have

ΔWij =
∑

ti,tj

f(ti − tj) = −
∑

ti,tj

f(tj − ti) = −ΔWji. (13)

It means that the synapse modifications in two directions of two neurons are
always opposite. Consider a situation that two neurons’ firing rates are increasing
in a same mode, so that average modification of the two synapse are expected
to be symmetric, which is ΔWij = ΔWji. Along with (13), we have ΔWij =
ΔWji = 0. This makes no sense for learning and implementing this operation
can not learn the model well.

For breaking this symmetry we made a slight modification. We redefined the
rules of multiple spikes in a time window [0, T ]. That is, for synapse Wij , spikes
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(a) (b)

(c)

Fig. 1. (a) The exponential form of STDP function. (b) The sinusoidal form of STDP
function. (c) Illustration of details of implementing STDP. The learning window is
embedded in the learning phase, which is the space between the two vertical lines.
Only spike pairs indicated by dotted lines are taken into consider for updating Wij ,
which is the synaptic weight from presynaptic neuron j to postsynaptic neuron i.

fired by presynaptic neuron j only in time window [0, T ], and spikes fired by
postsynaptic neuron i in time window [−∞,∞] are taken into account:

ΔWij ∝
∫ T

0

dtj

∫ ∞

−∞
dtif(tj − ti)

∑

k,l

δ(ti − T
(k)
i )δ(tj − T

(j)
j ). (14)

Because of the local property of STDP rule, which means only spikes that the
time distance is not larger than τw in (12) actually effect, the scope of spikes
fired by postsynaptic neuron is [−τw, T + τw] in fact.

In fact, when STDP rule is implemented on time window [0, T ], it means the
STDP is somehow “turned on” at the time t = 0 and “turned off” at the time
t = T . And more specifically, STDP can be considered as a consequence of some
kinds of biochemical signals from both presynaptic neuron and postsynaptic
neuron [4]. We propose an idea that STDP is considered to be “turned on” by
activating the production or transmission of the biochemical signal triggered
by presynaptic neuron spikes, and also it is “turned” off by suppressing these
signals, while signals related to postsynaptic spikes are existed all time along.

The learning algorithm is summarized in Algorithm 1.
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Algorithm 1. Training the spiking neural network
1: Simulate an inference phase in the time window of [−t0, 0] and record the spike

train [T
(1)
i , T

(2)
i , ..., T

(mi)
i ].

2: Simulate a learning phase in the time window of [0, T + tw] and record the spike

train [T
(mi+1)
i , T

(mi+2)
i , ..., T

(Mi)
i ].

3: W
(n+1)
ij = W

(n)
ij + α

∫ T

0
dtj
∫∞

−∞ dtif(tj − ti)
∑

k,l δ(ti − T
(k)
i )δ(tj − T

(j)
j ).

3 Results

We implement the model on the MNIST dataset. The dataset contains 60,000
training images and 10,000 test images. And the images are in gray scale and
have size 28 × 28. The size of the network is 784-200-10, which indicates the
numbers of neurons in input layer, hidden layer, and output layer, respectively.

We use the Euler method to approximate the differential function (7) and (8).
Figure 2 is the simulation illustration of input summation and the membrane
potential of 10 output layer neurons with different time step. We set τV = 20 ms,

(a) Input summation (b) Membrane potential

(c) Input summation (d) Membrane potential

Fig. 2. Simulation illustration of input summation and membrane potential of 10 out-
put layer neurons in an inference phase. The synaptic weights have been trained on
MNIST dataset. Only the 8th neuron have a maximal input, and fires in a maximal
pattern, while other neurons are not. The simulation for (7) and (8) is processed using
Euler method. We have tried different time steps, as 0.01 ms for (a)(b) and 1 ms for
(c)(d)
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τP = 10 ms, Es = 0, EL = −70 mV, Vreset = −80 mV, Vth = −54 mV, and a
hard bound [0, 0.3] for Pi. In fact, we find that a simulation time step of 1 ms
is enough to depict the spiking trains, so we use a step of 1 ms in our later
experiment.

(a) (b)

Fig. 3. The error rates against epochs on the MNIST dataset. (a) Simply take all of
the spike pairs into account. (b) Use the proposed method.

We test our model on the MNIST dataset (Fig. 3). Using the STDP rule with
all of the spikes in the time window taken in to account did not work. By using
the proposed method, the error rate on training set is able to decrease to 0.0% in
the experiment, which proves the convergence of algorithm experimentally. For
comparison, we also implement the e-prop and MLP which have similar archi-
tecture to our model (the same number of input, hidden and output neurons).
Several other STDP-based algorithms are also compared. The test accuracies on
the MNIST dataset are summarized in Table 1. The test accuracy of our method
is greater than other STDP-based algorithms, except for the algorithm that use
a convolutional architecture [9].

Table 1. Comparison of different algorithms

Model Neural coding Test accuracy/%

E-prop Rate-based 97.5

MLP Rate-based 98.5

Two layer network [13] Spike-based 93.5

Two layer network [6] Spike-based 95.0

Convolutional SDNN [9] Spike-based 98.4

Proposed model Spike-based 96.8
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4 Discussion

We describe an STDP-based supervised learning algorithm on SNN, and get
good results on the MNIST classification task. The accuracy approaches that
of an MLP with a similar architecture, which indicates the effectiveness of this
algorithm. Compared with existing algorithms for training SNNs, the proposed
algorithm have achieved competing results.

The algorithm suggests that biological neurons may not modify their
synapses under the STDP rule all the time. STDP takes effect only when the
supervisory signals are applied. In addition, the algorithm suggests that not all
spikes of the presynaptic neuron participate in the STDP learning process for
the synapse. Instead, there may exist a time window and only the spikes during
this window should be counted. But biochemical evidence is needed to validate
these predictions.
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Abstract. Traditional methods for bearing fault diagnosis mostly utilized a
shallow model like support vector machine (SVM) that required professional
machinery skills and much of knowledge. Deep models like deep belief network
(DBN) had shown its advantage in fault feature extraction without prior
knowledge. In this paper, an end-to-end approach based on deep convolution
neural network (DCNN) is presented. The approach embodying the idea of end
to end diagnosis has only one simple and elegant convolution neural network
and don’t need any exquisite hierarchical structure that was used in the tradi-
tional methods. The samples of time-domain signals are inputted into the pro-
posed model without any frequency transformation, and the approach can
diagnosis bearing fault types and fault sizes simultaneously as output. Experi-
mental researches had shown that the approach has the advantages such as a
simple structure, less iteration and real-time, while its accuracy on the diagnosis
of fault types and fault sizes can still be guaranteed.

Keywords: Fault diagnosis � Deep convolution neural network � Bearing � End
to end approach

1 Introduction

It’s important to research on the fault diagnosis methods for gears which are curial parts
in the rotating machinery. Traditional methods for mechanical fault diagnosis mostly
used signal processing technologies such as wavelet analysis and support vector
machines [1–4]. In the traditional way, a multiscale slope feature extraction approach
was usually proposed [5–8]. However, this hierarchy may not necessary if the diag-
nosis is considered with a deep learning model. Deep neural network (DNN) could be
established to extract the useful features from input data and approximate complex
non-linear functions [9]. Deep belief network (DBN) is applied to classify the faults of
compressor valves by constructing a hierarchical structure [10]. A novel hierarchical
diagnosis network (HDN) is proposed by collecting DBNs by layer for the hierarchical
identification, which is highly reliable for precise diagnosis [11]. The authors had
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D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 101–109, 2017.
https://doi.org/10.1007/978-3-319-70096-0_11



proposed a two-layer model named adaptive deep convolution neural network
(ADCNN) in a previous study to diagnosis bearing faults effectively [12]. The ADCNN
model like other hierarchical methods [7, 8, 13, 14] were constructed exquisitely but
with some inherent weakness such as complex structure, sensitive and fragile for the
different samples and most important lack of real-time.

Inspired by the end to end methodology used in the Google Neural Machine
Translation System [17], we propose an end-to-end approach based on deep convo-
lution neural network (e2e-DCNN for short) for bearing fault diagnosis. The approach
embodying the idea of end to end used a simple and elegant DCNN structure, and don’t
need any exquisite hierarchical structure that was used in the traditional methods. The
samples of time-domain signals are input into the proposed model without any fre-
quency transformation, and the approach can diagnose bearing fault types and fault
sizes simultaneously.

2 Convolution Operations and Its Optimization

2.1 A Typical CNN

CNN (convolution neural network) is composed of a convolution layer and a pooling
layer. The convolution layer is responsible for converting a former feature map into
another identical dimensional feature map to yield more intrinsic structure information.
In order to decrease the complexity of feature maps in the neural network,
high-dimensional feature maps are inputted into pooling layers for dimension reduction
to obtain more sensitive low-dimensional features maps. Figure 1 shows the basic pro-
cessing of a convolution layer. A refers to a convolution kernel, and B is a pooling kernel.

2.2 The Activation Function and Cost Function

The nonlinear activation function is important to extract effective features from the
former map. Non-linear factors are inputted to the adopted model by solving certain
complex feature problems, which not only extracts effective characteristics and obtains

 

PoolingConvolution

A
B

 

Fig. 1. This is the basic processing of convolution layer.

102 L. Chen et al.



a better classification results, but also improves the accuracy of fault recognition. The
normal form of an activation function is showed below:

xnj ¼ f ð
X

i2Mj

xn�1
i � wn

ij þ bnj Þ ð1Þ

Where xn�1
i is the i th feature map of the n� 1 th layer, and wn

ij denotes the weights
of the convolution kernel connecting the i th feature map with j th feature map, bnj is
given to the bias of each output map and xnj refers to the j th feature map of the n th
layer. Three activation functions are applied in different operations, i.e. ReLU function,
Tanh function and Softmax function. Improper attributes of activation functions may
result in updating the weights and biases slowly. The cross-entropy function is cal-
culated by Formula 2. y0 is the ideal output of network and y is the actual output. When
the ideal output is close to the actual output, the cost value of cross-entropy function
approximates to zero (C ¼ 0þ ). The target of this study is to minimize the cost of
cross-entropy function enormously.

C ¼
X

x

½y0 ln yþð1� y0Þ lnð1� yÞ� ð2Þ

3 The Proposed e2e-DCNN Method

3.1 The Construction of e2e-DCNN

In this study, a novel recognition strategy is established for bearing fault diagnosis,
which is named as end-to-end DCNN (e2e-DCNN). The e2e-DCNN means that it can
recognize the types and sizes of bearing faults simultaneously, and therefore the tra-
ditional hierarchical structure is not needed any more.

The e2e-DCNN has performances in extracting superior fault features from a large
amount of raw bearing signals and recognizing the type-unknown fault features. The
brief framework of e2e-DCNN is presented in Fig. 2. The raw samples are divided into
two groups including training datasets and testing datasets. All the datasets are divided
into some small sets of samples, and these samples are inputted to the e2e-DCNN
repeatedly. The procedure is more concise compared with other hierarchical structures.

3.2 Setting the Parameters

The explicit architecture structure of e2e-DCNN is presented by Fig. 3. There are three
convolution layers and two full-connection layers in this architecture. Activation
functions are designed for improving the performances of the e2e-DCNN, which include
three parts as follows: Firstly, the activation functions of convolution layers are ReLU
function. The top two full-connection layers are applied to prepare for recognition,
whose activation functions are Tanh functions. The last layer is logistic-regression layer
with Softmax activation function, the output of which is a predictive class labels.
As shown in Fig. 3, A 1024 vector is reshaped into a 32*32 matrix, which is calculated
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regularly by convolution algorithms. There are three convolution operations including 8,
15 and 10 feature maps (blue planes) separately. Finally, the label of a samples is signed
by a series of operations.

There are several parameters playing a crucial role in the training process, such as
the size of kernels in max-pooling layers, batch-size and the number of iterations. In
this study, the size of kernels in max-pooling layers is a 2*2 matrix. Through these
max-pooling kernels, the feature maps are reduced by half. The batch-size is 10, which
decides the size of samples in each iteration and affects the training rate. The number of
epochs is 1500 in this model, which is smaller than other fault diagnosis methods.

4 The Results and Comparisons

4.1 The Performances of e2e-DCNN

The e2e-DCNN, which is a competitive model for multi-classification to identify fault
types and fault sizes. The e2e-DCNN model reduces the total iterations and running
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Fig. 2. The framework of e2e-DCNN.
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Fig. 3. The structure of e2e-DCNN.
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time for classification dramatically. The codes of this model are programmed by python
on the GPU, so the e2e-DCNN has a strong competitive advantage in iterations and
saving times.

Figure 4 shows the accuracy rate of testing datasets during 1500 iterations, and the
best result of this model is 97.2%. In addition, it takes only 5 min for training process
based on these conditions. The hierarchical ADCNN spends 10 min to finish the same
task, which takes more time than the e2e-DCNN. The inputted samples of e2e-DCNN
include ten different fault labels, each with the special fault type and fault size. Figure 5
shows the results of classification in the five hundred training samples, the accuracy
rate of which reaches 100% approximately. Figure 6 shows that thirteen samples are
misjudged in the testing samples apparently, however, the propose method achieves a
significant results comparing with other methods.

The e2e-DCNN has a great ability in bearing fault diagnosis, according to Table 1
shows more accurate evaluation results of ten different bearing fault types. 50 samples
of each bearing fault types are dedicated to train the e2e-DCNN and another 50
samples test the performances of e2e-DCNN for bearing fault diagnosis. From this
table, training accuracy mostly reaches 100%. Correspondingly, the mean testing
accuracy of ten fault types is 97.2%.

4.2 The Explicit Comparisons

Existing fault diagnosis methods are complex if they were carried out in hierarchical
frameworks [7, 8, 13, 14]. For instance, the hierarchical ADCNN as shown in Fig. 7
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Fig. 4. X-axis represents iterations in training process and Y-axis refers to testing accuracy after
each iteration. The accuracy of classification rises quickly during first 300 iterations. After 300
iterations, it grows slowly and the final accuracy rate is 97.2%.
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has a huge and complex structure including four ADCNN models. The first ADCNN
model divides datasets into three bearing fault types (Inner race fault, Ball fault and
Outer race fault). Next, the bearing fault sizes are identified by three ADCNN models
separately. These complicated and repeated operations are run by python step by step.

According to Table 2, identical samples are used in the two different operation
modes. First, the ADCNN reaches a 96.9% recognition rate on the available equipment in

0 50 100 150 200 250 300 350 400 450 500
normal

IR007

IR014

IR021

B007

B014

B021

OR007

OR014

OR021

La
be

l

Testing samples

 

 

Predicted fault size
Acutal fault size

Fig. 6. It shows the testing results of the proposed model. Thirteen samples are misjudged in
500 testing samples, as showed in the figure.
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Fig. 5. Predicted ten fault types for training samples are presented in detail. There are four error
classification samples in the training samples. The X-axis refers to the number of training
samples and the Y-axis refers to ten fault types.
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the laboratory, which is lower than the e2e-DCNN slightly. Second, as four ADCNN
models need to be trained in the hierarchical structure, it is typically very time-consuming
to recognize bearing fault both in types and size. Furthermore, the e2e-DCNN model
shorten time due to the decrease of iterations, nearly 22.56 min are saved.

Table 1. The diagnosis results for e2e-DCNN

Label Training/testing
samples

The number of misclassified
samples

Training accuracy/testing
accuracy

Normal 50/50 0/0 100/100
IR007 50/50 0/0 100/100
IR014 50/50 0/0 100/100
IR021 50/50 0/0 100/100
B007 50/50 0/1 100/98
B014 50/50 0/7 100/86
B021 50/50 0/1 100/98
OR007 50/50 0/0 100/100
OR014 50/50 2/2 98/98
OR021 50/50 2/2 98/98
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Fig. 7. The hierarchical framework of ADCNN.

Table 2. Comparisons between e2e-DCNN and ADCNN

Methods Total samples Recognition rate Running time Iterations

The e2e-DCNN 1000 97.2% 4.36 min 1500
The ADCNN 1000 96.9% 6.73 min * 4 8000
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5 Conclusions

An end-to-end approach is designed to diagnose bearing fault types and sizes syn-
chronously. The method called e2e-DCNN covers convolution layers, full-connection
layers and a logistic-regression layer. This approach is optimized by a number of
training samples and tested by test datasets. The proposed method with a high
recognition rate has advantages comparing with the ADCNN, which saves considerable
times due to less iterations. Therefore, it is suitable and recommended for diagnosing
bearing fault due to its excellent advantages.
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Abstract. Deep neural networks, an emergent type of feed forward networks,
have gained a lot of interest especially for computer vision problems such as
analyzing and understanding digital images. In this paper, a new deep learning
architecture is proposed for image analysis and recognition. Two key ingredients
are involved in our architecture. First, we used the convolutional neural network,
as it is well adapted for image processing since it is the most used form of stored
documents. Second, a morphological feature extraction is integrated mainly
thanks to its positive impact on enhancing image quality. We have validated our
Morph-CNN on multi digits recognition. A study of the impact of morpho-
logical operators on the performance measure was conducted.

Keywords: Deep learning � Convolutional neural network � Morphological
operators � Morphological convolutional neural network � Image classification

1 Introduction

Several methods have been used for solving pattern recognition problems [22–24].
Deep Learning is a new area of machine learning research that has been introduced in
order to move machine learning closer to one of its original goals which is artificial
Intelligence [1]. It is based on a set of algorithms that try to model high-level
abstractions in data such as images, sound, and text. It helps to solve many big data
problems such as computer vision, documents recognition, and natural language pro-
cessing. One of the goals of deep learning is to replace handcrafted features [16] with
efficient algorithms for semi supervised and unsupervised feature learning [2].

Document recognition involves in many fields, therefore several works are pro-
posed reporting new findings and results such in [16–21]. Documents are usually saved
as images, convolutional neural networks, a variant of deep neural networks (DNNs)
architectures, have shown good results for image analysis and recognition [3]. Con-
volutional neural network (CNN) is a feed-forward neural network where the neurons
connection is inspired by the animal visual cortex organization. The last contains a
complex arrangement of cells. A convolution operation is a mathematic approximation
of the neuron response to stimuli within its receptive field. The last is a restricted region
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of space where cells respond to stimuli. The receptive fields of different neurons are
tiled to cover the entire visual field.

Morphological operations are used to enhance image quality [4]. Therefore, we
suggest to use morphological filters for the convolution operation due to the known
effect of these filters on images. In Mathematical morphology, basic operators like
dilation and erosion consist of computing min/max filters in local neighborhoods
defined by structuring elements. By the concatenation of these operators we obtain
opening and closing which are operations with scale-space properties and feature
selection skills according to the structuring element w.

The main motivation of this paper is that even the filters used in convolutional
neural networks are demonstrably powerful, an important information such as the way
to choose these filters and the way they work is missed. In addition, to present there is
no guarantee a priori that filters will generalize, i.e. they will work on new problems.

To this end, we proposed a new architecture of convolutional neural network based
on morphological filters.

2 Background

2.1 Convolutional Neural Network

Convolutional Neural Network is a feed forward deep neural network that is made by
three main types of layers which are convolutional layer, pooling layer and fully
connected layer [3].

The convolutional Layer is the core building block of a Convolutional Network. Its
parameters consist of a set of learnable filters. During the forward pass, each filter is
convolved with the image i.e. slide over the image spatially and calculate a dot products
between the input and the filter which will produce a feature map with two dimensions.
Thus, learnable filters are activated once some type of visual feature is seen.

CNN is a sequence of convolutional layers intercepted with RELU as an activation
function. For high-dimensional inputs such as images, it is impractical to connect
neurons to all neurons in the previous volume, each neuron is connected to only a small
region of the input volume. Rather the connections are local in space, but always full
along the entire depth of the input volume. Three parameters control the size of the
output volume which are depth, stride and zero-padding.

The pooling Layer is inserted between successive convolutional layers. It
down-samples the input and reduces the number of parameters in the network by reducing
the spatial size of the representation. Besides it controls the problem of over fitting [5].

In the fully connected layer neurons are fully connected to all activations in the
previous layer, it is a standard layer of a multi-layer network.

2.2 Morphological Operators

A wide range of image processing operators are included in the field of mathematical
morphology [4] which is based on a simple mathematical concept from set theory.
The operators are used for noise removal, edge detection, image segmentation and
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image enhancement. Morphological techniques explore an image with a structuring
element which is a small shape positioned at all possible locations in the image and
compared with the corresponding neighborhood of pixels.

The basic morphological operators are dilation, erosion, opening and closing. The
dilation is used to enlarge the boundaries of regions of foreground pixels on image. It
sets a pixel to the maximum over all pixels in its neighborhood. Dilation increases
objects in the image; bright regions are enlarged and dark regions are shrinked.

The erosion is used to erode away the boundaries of regions of foreground pixels on
image. It sets a pixel to the minimum over all pixels in its neighborhood. It reduces
objects in the image. Thus, small details are eliminated and the holes and gaps between
different regions become larger.

Opening is defined by an erosion followed by a dilation. It removes noise from the
image, it connects also small dark cracks. Opening is similar to erosion, it removes
some of the foreground pixels from the edges of foreground regions pixels. But, it is
less destructive than erosion in general.

Closing is defined by a dilation followed by an erosion. It is used to merge or fill
structures in an image. It can remove small dark spots and connect small bright cracks.
The basic effect of closing is like dilation. It tends to enlarge the boundaries of foreground
regions in an image and shrink background color holes of the original boundary shape.

Figure 1 presents an example of these different operations.

3 Morph-CNN: Morphological Convolutional Neural
Network

The morphological convolutional layer [6] is based on Counter-Harmonic Mean
(CHM) [7] filter formulation for image restoration, which was used to construct robust
morphological-like operators [8].

Fig. 1. Example of morphological operation on images: (1) a dilation operation, (2) erosion
operation, (3) opening operation, (4) closing operation
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The counter harmonic mean has been considered as an appropriate filter to deal
with salt and pepper noise in the state-of-the-art of image processing. More precisely,
let f(x) be a 2D real-valued image, i.e., f : X � Z2 ! R, where x 2 X denotes the
coordinates of the pixel in the image domain.

The CHM filter is obtained as

Kp
wf xð Þ ¼ ðf pþ 1 � wÞðxÞ

ðf p � wÞðxÞ ¼
R
y2wðxÞ f

pþ 1 yð Þwðx� yÞdy
R
y2wðxÞ f

p yð Þwðx� yÞdy ð1Þ

where fp is an image, where every pixel value in this image is raised to power P, /
indicates pixel-wise division, * indicates the convolution operation and w(y) is the filter
window, centered at point (y), i.e., the structuring element in the case of morphological
operators. Thus, morphological dilation and erosion are the limit cases of the CHM
filter, i.e.

limp!þ1Kp
wf xð Þ ¼ supy2w xð Þf yð Þ ¼ dwðfÞðxÞ ð2Þ

limp!�1Kp
wf xð Þ ¼ infy2w xð Þf yð Þ ¼2w fð Þ xð Þ ð3Þ

The morphological convolutional layer based on CHM filter formulation referred to
as Morph-Conv layer performs the following operation for a single channel image f(x)
and a single filter w(x)

MConv f ;w; pð Þ xð Þ ¼ ðf pþ 1 � wÞðxÞ
ðf p � wÞðxÞ ¼ ðf � pwÞðxÞ ð4Þ

where p is a scalar which controls the type of operation (P > 0 pseudo-dilation, P < 0
pseudo-erosion and P = 0 standard linear convolution).

Figure 2 illustrates the basic architecture of morphological convolutional neural
network. This structure varies in term of the number of performed morphological
convolutional layer “Morph-Conv”. In the case of a single Morph-Conv layer, erosion
or dilation is computed with a negative P and a positive P, respectively. When using

Fig. 2. Basic architecture of Morph-CNN
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two Morph-Conv layers, the operators are opening: erosion followed by a dilation
(P1 < 0, P2 > 0) and closing: dilation followed by erosion (P1 > 0, P2 < 0).

In this work, we propose to use a morphological convolutional layer instead of a
classical random convolutional layer due to the known effect of morphological filters in
image processing. The objective is to study the effect of morphological convolutional
layer on the classification rate.

4 Experiments

The performances of the different morphological convolutional neural network
topologies are elaborated. The approaches are tested on Street View House Numbers
(SVHN) and MNIST. In this section, we present our experimental results by giving a
description of the datasets and analyzing the performance of our system.

4.1 SVHN

SVHN [9] is obtained from house numbers in Google Street View images. It is a
real-world dataset for developing machine learning and object recognition. It is a
dataset containing 600 k street numbers with bounding boxes for individual digits.

The images have different dimensions. They are cropped using the bounding boxes
location such that all images are of the size 32 � 32 pixels. They are also converted
from 3 channels, color images, to 1 channel, greyscale images. It is important to note
that there were originally 73257 digits for training, 26032 digits for testing, and 531131
extra digits.

We used the first format of the dataset which consist of recognizing all the digits
presented in the image not the digit in the middle (format 2) which is the widely used
format.

Our architecture consists of eight morphological convolutional layers, and two fully
connected layer. All morphological convolutional use a filter of size 3*3 the depth of
the number of filters in each layer is equal to {16, 32, 64, 64, 128, 128, 512, and 512}.
Max-pooling layers are used after each convolution. A dropout of 0.5 is applied to all
hidden layers. The zero padding is used to preserve dimensions.

The obtained recognition rate is equal to 97.13% which is greater than the state of
the art [10] 96%.

4.2 MNIST

MNIST dataset (Mixed National Institute of Standards and Technology dataset) is a
large data base of handwritten digits. It contains 60,000 training images and 10,000
testing images [11]. This dataset is widely used for training and testing in the field of
machine learning.

Our used architecture is composed from four morphological convolutional layers
and five MLP-conv [12] layers as illustrated in Table 1. A dropout of 0.5 is used after
each pooling.
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The obtained result is compared with previous works that adopted convolutional
neural network is presented in Table 2.

We achieve comparable (0.34%) but not better performance results.
Throughout the different results of the different architectures, the effectiveness of

using morphological filters in CNN was proved.
The results obtained by Morph-CNN are superior to that obtained by a simple

CNN. Also, our results are better than results in [10] using the same number of layers
and that prove our contribution by designing a morphological convolutional neural
network. The obtained results on MNIST are also comparable to the state of the art.

5 Conclusion

In conclusion, we proposed a morphological convolutional neural network architecture
which combines convolutional neural network and morphological filters.

The proposed architecture was validated on SVHN and MNIST datasets. Our
results show that our architecture achieves good results and higher average recognition
rate than a traditional convolutional neural network. And comparing with other
architectures, we found good results.

Table 1. Our used architecture for recognizing MNIST

Layer Description

Input layer 28*28*1
Morph-conv layer 5*5*192
MLP-conv layer 160
MLP-conv layer 96
Pooling layer 3*3
Morph-conv layer 5*5*192
MLP-conv layer 192
MLP-conv layer 192
Pooling layer 3*3
Morph-conv layer 3*3*192
Morph-conv layer 3*3*192
MLP-conv layer 192
MLP-conv layer 10
Global vote 8*8

Table 2. Results on MNIST

Method Test error

2-Layer CNN + 2-Layer NN [13] 0.53%
Stochastic pooling [13] 0.47%
NIN + Dropout [12] 0.47%
Conv. maxout + Dropout [14] 0.45%
Morph-CNN 0.34%
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Abstract. Deep classification networks have shown great accuracy in
classifying inputs. However, they fall prey to adversarial inputs, random
inputs chosen to yield a classification with a high confidence. But percep-
tion is a two-way process, involving the interplay between feedforward
sensory input and feedback expectations. In this paper, we construct a
predictive estimator (PE) network, incorporating generative (predictive)
feedback, and show that the PE network is less susceptible to adversarial
inputs. We also demonstrate some other properties of the PE network.

Keywords: Neural network · Predictive estimator · Autoencoder ·
Adversarial

1 Introduction

Adversarial input is input chosen specifically to yield a classification with high
confidence, and yet not resemble any typical members of that class. For example,
a search process found random images (as well as generic patterns) that, when
fed into AlexNet [1], were classified with greater than 99.99% confidence [2].
Recent work has looked into overcoming the issue of adversarial input [3,4].

Our hypothesis is that a network with built-in generative capabilities might
be able to overcome such adversarial input. Most perceptual networks are feed-
forward, taking in sensory input and generating a classification as its output [1].
But some networks are also generative; Hinton et al. used RBMs to model the
two-way process of recognizing and generating images of hand-written digits,
trained on the MNIST dataset [5].

Perception is a two-way process, where sensory inputs interact with expec-
tations, attempting to find a network state that is consistent with both. For
example, when you are looking at a raisin, and you are told it looks like a per-
son’s face, it shifts your perception; your expectations impinge on the process
and your network shifts into a state in which the sensory input of the raisin is
meshed with your expectation of a face. You try to see the raisin as a face.

The anatomy of the sensory cortices supports the notion that feedback plays
an important role in perception, since most connections between cortical regions
are reciprocal (two-way) [6].
c© Springer International Publishing AG 2017
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A predictive estimator (PE) is an architecture that has built-in feedback [7].
The higher layers in the perceptual hierarchy send down predictions of what
the lower layer should be experiencing, and the lower layers send up the error
between that predication and their actual state. However, previous work on PEs
have used copied connection weights, where the feedforward connection weights
are also used as the feedback connection weights.

In this paper, we aim to generate a predictive estimator network (without
weight copying) and see whether the back-and-forth operation of the PE network
could be used to combat adversarial inputs. After all, the feedback projections
in a PE network contain predictions. These predictions might increase the clas-
sification specificity.

2 Methods

Our approach to creating a deep predictive estimator (PE) network is to train
a bidirectional network and then use its connections in our PE network.

2.1 Training a Bidirectional Network

Consider the bidirectional network shown in Fig. 1. The network has feedforward
connection weights, W and P, and corresponding biases, a and b, as well as
feedback connection weights, R and M, and biases, c and d.

Fig. 1. Simple bidirectional network

If we set the feedback connections to zero (i.e. M, R, c and d are all zeros),
then the network simply behaves as a feedforward network. We can train that
network using a dataset of (x,y) samples, so that

y = σ (Phff + b) , where (1)
hff = σ (Wx + a) , (2)

where σ is the logistic activation function. Likewise, if all of the feedforward
connections are zero (i.e. W, P, a and b are all zero), then the network behaves
in a purely feedback manner. Such a network can be trained so that

x = σ (Mhfb + d) , where (3)
hfb = σ (Ry + c) . (4)
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However, notice that hff is not necessarily the same as hfb. The intermediate
(hidden) representation for the two directions does not have to be the same,
especially if the feedforward and feedback connections are learned independently
of each other.

Let us suppose that the feedforward and feedback networks were trained
using backpropagation so that

h = σ(Wx + a) (5)
y = σ(Ph + b) (6)
h = σ(Ry + c) (7)
x = σ(Mh + d). (8)

It is not sufficient to train W and P using simple backpropagation, followed
by training M and R using backpropagation in the opposite direction. The
problem is that the activity in the intermediate layers need to be approximately
the same for the feedforward and feedback modes of operation.

Instead of training one direction at a time, we trained one layer at a time
as an autoencoder [8]. This is now a fairly common practice. According to the
simple network depicted in Fig. 1, we first learn the connection weights (W,a)
and (M,d) by minimizing the reconstruction error,

C
(
x, σ

(
Mσ(Wx + a) + d

))
,

where C is a cost function such as sum-of-squares, or cross entropy. That is, we
project the input x up to the hidden layer, and then project the activity in the
hidden layer back down to the input layer. The difference between the input and
the reconstruction is used to update the up and down connections between those
two layers.

After the first layer is trained as an autoencoder, we train the next layer. If
the next layer reaches the output layer of the network, then we train it as an
associative memory. This method for learning bidirectional connection weights
and biases is similar to the method outlined in [9].

2.2 Predictive Estimator Network

We want to use the learned bidirectional network to generate a continuous-time
predictive-estimator network, like the one shown in Fig. 2. The figure shows three
PE units. Each PE unit contains a state node, denoted x, h and y in the figure,
and an error node, denoted δ, ε and γ in the figure. Within each PE unit (shown
as a shaded box), the state node and the error node are reciprocally connected.

The parameter β can be used to adjust the relative weight of sensory input
(coming from the lower levels of the hierarchy on the left) and expectation input
(coming from the higher levels on the right). When β is 0, the input to the state
nodes comes solely from the feedforward projection. When β is 1, the opposite
is true, and the state nodes only receive input from the error node. Hence, when
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Fig. 2. Diagram of part of a network

β = 1, the PE network operates in a feedback mode where the state nodes only
receive input from higher levels in the hierarchy.

The equations that govern the dynamics of the central PE unit in Fig. 2 are,

τ
dz

dt
= Wδ − (ρ + β)z (9)

τ
dh

dt
= (1 − β)

(
σ(z + a) − h

)
− βε (10)

τ
dε

dt
= h − σ(Ry + c) − ε (11)

where τ represents a time constant. The variable z represents the input current
coming from the error node below, and ρ is its default decay coefficient. Roughly
speaking, (9) integrates the unit’s input current z, (10) converts the input current
to an activation h, and (11) tracks the unit’s error ε, which is the difference
between the unit’s state, h, and the predication being sent down from above.

Note that if β is large (close to 1), then the network is operating in a primarily
feedback mode, and the last term in (9) causes z to decay quickly and have little
influence on h. On the other hand, if β is small (close to 0), then the network
is operating in a primarily feedforward mode, and (9) behaves more like an
integrator that accumulates the errors being sent from below.

Perhaps the best way to understand the functioning of the PE unit is to
study the equilibrium solutions of Eqs. (9)-(11). Consider the equilibrium state
of the feedforward system (i.e. set all three derivatives on the left to zero, and
let β = 0). Then Eq. (10) can be written

h = σ(z + b) .

This would match (5) if we could show that z must be Wx. Suppose, for now,
that ρ = 0, and consider what happens if we let z = Wx + Δz. A perturbation
analysis (not shown here) seems to suggest that the feedback loop through δ (see
Fig. 2) would result in dz

dt ∝ −Δz. Thus, z would be pushed back towards Wx.1

Equation (11) implies that ε → 0 since we know that h = σ(Ry+c) from (7).
Finally, δ would also have to be zero.

If β is equal to 1 instead, we can follow a similar argument to show that
ε = 0 (from Eq. (10)), and h = σ(Ry + c), and z = Wδ

β+ρ . But δ must be zero for
the same reason ε is zero. Hence, z = 0.
1 The default decay rate of ρ would eventually drive z → 0, but our analysis is relevant

as long as ρ is small.
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This equilibrium is the goal state of the PE network, in which the error nodes
are zero, and the state nodes encode the data to translate between the input and
the output (bottom and top) layers.

3 Experiments

3.1 PE Network Behaviour

To get a feel for how the PE network behaves, we ran some experiments using the
MNIST dataset. A bidirectional network with five layers (three hidden layers)
was trained using the method outlined in Sect. 2.1. The input layer had 784
nodes (the number of pixels in a 28 × 28 image), and the hidden layers had 100,
80, and 80 nodes. The output layer had 10 nodes. We trained for 30 epochs using
stochastic gradient descent with a batch size of 10. Our learning rate was 0.05.
We used cross entropy as our cost, and we regularized the connection weights
using a decay of 0.001. The parameter τ was set to 0.05 s, and ρ was set to 0.1.
After the training, the feedforward part of the network achieved a test accuracy
of 76%. We know that other neural networks can do better after more training,
but this accuracy was sufficient to serve our purposes.

After training the bidirectional network, we used the connection weights and
biases to create our PE network, as outlined in Sect. 2.2. Then we fed a chosen
digit as input and simulated the PE network. Note that the PE network receives
input at both the bottom layer and the top layer. However, if β = 0, the network
operates in feedforward mode and the top-layer input is ignored. Likewise, if
β = 1, the network operates in feedback mode and the bottom-layer input is
ignored.

In these experiments, we ran our network for 1 simulation second, after which
we cut off the inputs and simulated some more. The inputs were removed by
setting β = 1 for the bottom layer, and setting β = 0 for the top layer (each
layer can have a different β). The purpose of this sequence is to first allow
the input to set the network state, but then remove the inputs and let the PE
network “deliberate”. After this process, we looked at the top-layer state to see
how it compared to the ideal in the test set.

Our PE network yielded a 71% accuracy with β = 0, using a deliberation
time of 0.

Figure 3 shows one example. The true digit (on the left) is a “4”. The bidirec-
tional network incorrectly classified this input as a “6” with 41.6% confidence.
However, the PE network correctly classified it as a “4” with 23.9% confidence.

Figure 4 shows another example. The bidirectional network classified it as
a “3” with 43.8% confidence. In feedforward mode (β = 0), the PE network
classified it as either a “2” or “3” with confidence around 25%. However, we
can allow expectation to influence the perception. If β is set to 0.2, then it
weights the feedforward/feedback with 80/20. Then the PE network favours the
classification of “2” with confidence 28.8%. The corresponding generative images
are shown in Fig. 4.



Combating Adversarial Inputs Using a Predictive-Estimator Network 123

Fig. 3. MNIST example. The image on the left is the original MNIST sample. The
middle image was generated using the bidirectional network, (setting the top layer to
class 4). The image on the right is the one generated by the PE network.

Fig. 4. MNIST example. The image on the left is the original MNIST sample. The
middle image was generated using the bidirectional network (setting the top layer to
class 2). The image on the right is the one generated by the PE network with β = 0.2.

3.2 Susceptibility to Adversarial Input

One of our hypotheses is that the generative, feedback nature of the PE net-
works will prevent it from being fooled by many adversarial inputs. To test this
hypothesis, we ran an experiment on a small dataset, in which binary strings of
length 8 are classified into 5 categories.

[1, 0, 1, 0, 0, 1, 1, 0] ↔ [1, 0, 0, 0, 0]
[0, 1, 0, 1, 0, 1, 0, 1] ↔ [0, 1, 0, 0, 0]
[0, 1, 1, 0, 1, 0, 0, 1] ↔ [0, 0, 1, 0, 0]
[1, 0, 0, 0, 1, 0, 1, 1] ↔ [0, 0, 0, 1, 0]
[1, 0, 0, 1, 0, 1, 0, 1] ↔ [0, 0, 0, 0, 1]

We trained a bidirectional network on that data, and then built the corre-
sponding PE network. The bidirectional network was trained on 300,000 samples,
using stochastic gradient descent with a batch size of 10. We used cross entropy
as our cost function, and the learning rate was 0.01.

Adversarial input was generated by simply choosing random inputs of 8 val-
ues, where each value was chosen randomly from a uniform distribution between
0 and 1. Each sample was fed into the bidirectional network and the PE network.
The output of each network was assessed to see if either one yielded a “confident”
classification (ie. if the soft-max output gave a value greater than 0.95).

For this experiment, the PE network was run for 1 simulation second with
β = 0 (feedforward mode).
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In the adversarial input experiment, the feedforward network yielded a 95%
confidence on the random inputs 5% of the time (50 times out of 1000 trials).
The PE network did not show a confidence level of 95% on any of the 1000
random strings. However, both the feedforward network and the PE network
exhibited 100% accuracy in classifying the true binary strings.

4 Conclusions

The predictive encoder network we created from the connection weights of the
bidirectional network exhibited some interesting properties. The feedback inher-
ent in the PE network allowed, in some cases, the network to deliberate and
change its mind on an incorrect classification. Moreover, in some cases, allowing
an expectation (by setting β to a non-zero value) helped the network to converge
to the correct class.

As hypothesized, the predictive estimator network was far less susceptible to
adversarial (random) inputs. While the feedforward part of the bidirectional net-
work confidently (mis)classified random inputs 5% of the time, we never observed
the PE network confidently misclassify any random inputs. This is despite the
fact that both networks exhibited 100% accuracy on the binary dataset.

More study is needed to try to get the accuracy of the bidirectional and PE
networks up to contemporary levels on the MNIST dataset (i.e. greater than 98%
accuracy). However, we note that the MNIST dataset is not invertible; knowing
a digit class is not enough to generate the input image. We plan to investigate
stochastic extensions to our method to allow us to generate a variety of inputs,
similar to RBMs.
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Abstract. Auto-encoders constitute one popular deep learning architecture for
feature extraction. Since an auto-encoder has at least one bottle neck layer for
feature representation and at least five layers for fitting nonlinear transforma-
tions, back-propagation learning (BPL) algorithms with saturated activation
functions sometimes face the vanishing gradient problem, which slows con-
vergence. Thus, several modified methods have been proposed to mitigate this
problem. In this work, we propose the calculation of forward-propagated errors
in parallel with back-propagated errors in the network, without modification of
the activation functions or the network structure. Although this scheme for
auto-encoder learning has a larger computational cost than that of BPL, pro-
cessing time until convergence could be reduced by implementing parallel
computing. In order to confirm the feasibility of this scheme, two simple
problems were examined by training auto-encoders to acquire (1) identity
mappings of two-dimensional points along the arc of a half-circle to extract the
central angle and (2) hand-writing images to extract labeled digits. Both results
indicate that the proposed scheme requires only about half of the iterations to
reduce the cost value enough, compared to BPL.

Keywords: Auto-encoder � Vanishing gradient � Credit assignment �
Biological plausibility � Feature extraction � Parallel error propagation

1 Introduction

Deep learning is now widely used to develop various applications, such as object
detection and classification from image data, automatic translation between different
natural languages, speech recognition, and automatic generation of captions from
photographs [1]. The back-propagation learning (BPL) algorithm has been widely used
for training multi-layered neural models, but a huge number of iterations for updating
synaptic weights are required to achieve good performance. The vanishing gradient
problem is the primary reason for slow convergence [2], in that back-propagated errors
are gradually eliminated because the activation functions in each layer become satu-
rated, which leads to a gradient value too small to propagate errors. To avoid this
problem, significant successes were obtained by modified network architectures [3–5],
activation functions with mitigated saturation [6, 7], and automatic adjustment of
learning rate and momentum [8, 9].
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On the other hand, although neural networks mimic biological information pro-
cessing, poor biological plausibility of BPL has long been discussed as a drawback
[10, 11]. Alternative approaches without back-propagated errors have also been pro-
posed. Perturbation of neural synaptic weights or neural output could behave like
reinforcement learning without back-propagated errors [12], but a huge number of
iterations are also required. Credit assignment for minimizing the target cost in each
layer could be approximated by forward-propagated errors, called forward-propagated
learning (FPL) or target-propagation learning (TPL), if multi-layered neural models
acquire identity mappings in a neural inverse model [13] or auto-encoder [14].
Recently, it was reported that random synaptic weights for an exclusive error propa-
gation path-way, called feedback-alignment (FA), provide faster convergence than BPL
[15, 16]. Some studies have concluded that the rapid convergence of FPL could be
regarded as a Newton-like method [13] and that FA could be regarded as a
Gauss-Newton method [15]. Since both methods are based on a class of Newton
methods, synaptic weights of the neural model should be initialized near the desired
weights to realize suitable computation convergence. Thus, biologically plausible
approaches might reduce iterations for updating weights but would need to initialize the
weights more carefully than for BPL.

Fundamentally, biological plausibility is an important issue but it might be useful to
try to use BPL to accelerate learning in artificial intelligence technology. The main
purpose of this work is to explore the feasibility of applying such useful features in
terms of biological plausibility. Notably, both the forward-propagated errors and the
random synaptic feedback errors, named the biologically plausible errors, could indi-
vidually calculate against the back-propagated errors to implement parallel processing
computation. If the biologically plausible errors have significantly good effects for
learning in a multi-layered neural model, updating the synaptic weights with the
back-propagated errors in parallel to the biologically plausible errors might accelerate
learning. Although this idea increases the computational cost, this could be offset using
parallel computing.

In this work, we focus on feature extraction using an auto-encoder with a con-
ventional deep learning architecture to discuss the feasibility of the learning procedure
using parallel propagated errors. The auto-encoder has at least one bottle neck layer that
works as a dimension reduction from activation in the input layer, but the propagated
errors for learning are extremely reduced in the bottle neck layer, which causes the
vanishing gradient problem. Here, the forward-propagated errors would only be applied
as the biologically plausible errors, since it was reported that the random synaptic
feedback errors are not effective for training the auto-encoder [15]. In contrast to the
back-propagated errors, the forward-propagated errors are gradually eliminated from
input layer to output layer. Thus, the vanishing gradient problem might be mitigated by
propagating both errors in parallel.

First, two schemes are proposed for introducing parallel error propagation for
training the auto-encoder. Next, we will train the auto-encoder to extract a
one-dimensional central angle from two-dimensional points along the arc of a half-circle
and compare the learning curves and extracted features of each scheme and conventional
BPL. After that, the same schemes will be used to extract labeled digits from
hand-writing images from the MNIST dataset [17]. Suitability of the labeled features is
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evaluated by applying conventional classifiers. Finally, the results are discussed and
conclusions are given.

2 The Credit Assignment Problem for Auto-Encoders

In order to train a multi-layered model, such as a feed-forward neural network (FNN), a
pre-defined cost function that represents the quantified quality of the model must be
assigned as errors propagate in each layer during the training period. This problem is
known as the credit assignment problem. Let xn 2 R

m be a column vector as a sample
dataset for an auto-encoder, let X ¼ x1; x2; � � � ; xNf g represents the dataset, and let
H X; h; Lð Þ ¼ hL hL�1ð Þ � hL�1 hL�2ð Þ � � � � � h2 h1ð Þ � h1 be an auto-encoder where “�”
describes a linear operator and hl denotes synaptic weights between the l-th and lþ 1-th
layers. Since the auto-encoder will acquire an identity mapping, X is not only the input
data but also the desired output data. Conventional mean squared error between the
desired output and actual output is used as the cost function to measure the quality of
the learning model. In general, the identity mapping learning in the multi-layered
model could be described as a minimization problem;

bh ¼ argmin
h

J; ð1Þ

J ¼ 1
2N

X
n

xn �H X ¼ xn; h; Lð Þk k22; ð2Þ

where �k k2 denotes the Euclidian norm. Applying the gradient descent method to
optimize Eq. (2) iteratively, the iterative equation in the l-th layer could be described

using the chain rule for the gradient from the appropriate initial parameter bhl;0 to the
i-th iteration;

bhl;iþ 1 ¼ bhl;i þ erbh l;i
J; ð3Þ

rbh l;i
J ¼

X
n
rhl;i hlþ 1;i;nDh

BPL
lþ 1;i;n; ð4Þ

DhBPLl;i;n ¼ xn �H X ¼ xn; h ¼ bhl;i; L� �
l ¼ Lð Þ

rhl;i;nhlþ 1;i;nDhBPLlþ 1;i;n otherwise

(
; ð5Þ

where r denotes the partial gradient and e denotes small positive learning rate. In
particular, Eq. (4) is often called the back-propagation learning rule, since the output
error would back-propagate through the model from the L-th to l-th layers. In terms of
the credit assignment problem, BPL indirectly provides minimization problems in each
layer as follows;
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bhl;i ¼ argmin
hl;i

1
2N

X
n

DhBPLlþ 1;i;n

��� ���2
2
: ð6Þ

If the cost function based on the mean squared error is small enough, the
multi-layered model could be approximately regarded as an identity mapping;

H X; h; Lð Þ� I: ð7Þ

The FPL method tries to find the zero point in each layer using a Newton method;

bhl;iþ 1;n ¼ bhl;i;n � rhl;i;nrxnhl;i;nDh
FPL
l;i;n

h i�1
rxhl;i;nDh

FPL
l;i;n ; ð8Þ

DhFPLl;i;n ¼ xn �H X ¼ xn; h ¼ bhl;i; L� �
l ¼ 1ð Þ

rhl�1;i;nhl;i;nDh
FPL
l;i;n otherwise

(
: ð9Þ

By differentiating Eqs. (7) and (8) could be approximately described as follows;

bhl;iþ 1;n � bhl;i;n þ grxnhl;i;nDh
FPL
l;i;n ; ð10Þ

where g denotes a small positive learning rate due to the approximation in Eq. (7).
Such an approximated Newton method is known as a Newton-like method or the
damped Newton method. Thus, FPL directly provides minimization problems in each
layer as follows;

bhl;i ¼ argmin
hl;i

1
2N

X
n

DhFPLlþ 1;i;n

��� ���2
2
: ð11Þ

3 Parallel Propagated Errors for Training Auto-Encoder
Using a Feedforward Neural Network

Using FNN as the learning model, the hypothesis in each layer could be described as;

hl;n ¼ rl sl�1;n
� �

; ð12Þ

sl;n ¼ Wl;i hlð Þhl;n þ bl;i hlð Þ; ð13Þ

where rl is the activation function, sl;n is the net input in the l-th layer, and Wl;i is a
matrix of synaptic weights from the l-th to the lþ 1-th layers at the i-th iteration. Then,
Eqs. (5) and (9) could be respectively re-described as follows;
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DhBPLl;i;n ¼ xn �H X ¼ xn; h ¼ bhl;i; L� �
l ¼ Lð Þ

WT
l;irslþ 1;nrlþ 1DhBPLlþ 1;i;n otherwise

(
; ð14Þ

DhFPLl;i;n ¼ xn �H X ¼ xn; h ¼ bhl;i; L� �
l ¼ 1ð Þ

Wl;irsl;nrlDh
FPL
l;i;n otherwise

(
: ð15Þ

The difference between BPL and FPL in terms of error transportation configura-
tions for the credit assignments are illustrated in Fig. 1. Figure 1(a) shows that the
back-propagated error in Eq. (14) provides the credit assignment in Eq. (6), while
Fig. 1(b) shows that the forward-propagated error in Eq. (15) provides the credit
assignment in Eq. (11). Since DhFPLl;i;n and hl;n can be calculated in parallel, and DhBPLl;i;n

and DhFPLl;i;n can be calculated independently, providing DhBPLL;i;n as DhFPL1;i;n, FPL method

might not need to wait for the end of execution H to update bh. Two examples of the
parallel process in case of two 5-layer FNNs, parallel BPL-FPL (PBFPL) and divided
BPL-FPL (DBFPL) are illustrated in Fig. 2.

Figure 2(a) (PBFPL) shows that all synaptic weights are updated by both FPL and
BPL, but three computational processes must be completed in time for learning by BPL
only, as shown in Fig. 3(a). This scheme, which requires three parallel processes at
most, would reduce the required time for the parallel computing implementation in
exchange for increasing the computational cost to compute both DhBPLl;i;n and DhFPLl;i;n . If
the cost function in Eq. (2) could be calculated faster in parallel than BPL and FPL, this
scheme would be useful. On the other hand, as shown in Fig. 2(b) (DBFPL), we
expected that the vanishing gradient in the first half of synaptic weights might be eased
using FPL against BPL, the first half of the synaptic weights are updated by FPL and
the other half are updated by BPL. Although this scheme could be implemented using
two processes, as shown in Fig. 3(b), implementation using one process might be also

(a) BPL                                                    (b) FPL

Fig. 1. Overview of the difference between BPL and FPL in terms of error transportation
configurations for credit assignment.
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useful, if the required iterations for updating the synaptic weights could be reduced by
this scheme compared to using only BPL.

4 Numerical Experiments

4.1 Computational Conditions

In this work, numerical experiments were implemented with Python 3.6 code in Linux
Ubuntu 14.04 using the Tensor Flow 1.0 library and were computed by an Intel
Xeon CPU (2.6 GHz, Broadwell) with 8 GB of memory and NVIDIA Quadro GPU
(Maxwell). Although the library might implicitly execute in parallel, parallel

(a) Parallel BPL-FPL (PBFPL) (b) Divided BPL-FPL (DBFPL)

Fig. 2. Overview of two examples of BPL and FPL execute in parallel in terms of error
transportation configurations for credit assignment.

(a) PBFPL

(b) DBFPL
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Fig. 3. Timing charts for parallel processing for PBFPL and DBFPL examples in Fig. 2.

A Parallel Forward-Backward Propagation Learning Scheme 131



computing code was not explicitly described, because the purpose of this work is
confirming the feasibility of the learning procedure using parallel propagated errors.

4.2 Extracting Features of a Two-Dimensional Non-Linear Function

To investigate whether PBFPL and DBFPL extract useful features in the hidden bottle -
neck layer, several different conditioned FNNs were trained on a two-dimensional
non-linear function that was produced by a one-dimensional parameter. The conven-
tional sigmoid function 1þ exp �sð Þf g�1 and rectified linear unit (ReLU) function
max 0; sð Þ [6] were used as the non-linear activation functions. The number of layers
was set at 5 or 9. Thus, four FNNs—5 layer - sigmoid, 5 layer - ReLU, 9 layer -
sigmoid, and 9 layer - ReLU—were examined in this experiment. The hidden layers
(except the bottle-neck layer) had 32 neurons activated by non-linear functions. The
two-dimensional input and output layers and the one-dimensional bottle-neck layer
used linear activation functions. All synaptic weights were randomly initialized by the
uniform distribution within �1; 1½ �. The two-dimensional non-linear function was
described as

x ¼ cosu
y ¼ sinu

�
0�u� pð Þ; ð16Þ

where x and y represent the arc of a half-circle and u is the central angle of the arc.
A training dataset sampled 100 points at equal intervals from the range of u.
The ADAM algorithm [9] updated the synaptic weights to minimize the cost function
in each layer such as Eq. (6) or Eq. (11).

Learning curves that were defined in Eq. (2) as a cost function are illustrated in
Fig. 4. When the cost values fell below 10�3, we visually confirmed by scatter plots
that the dataset and the output layer’s signals overlapped completely. Figure 4 indicates
that PBFPL required about only half of the iterations for updating synaptic weights to
reduce the cost value below 10�3, compared to other schemes. On the other hand, the
5-layer FNNs could not minimize the cost values enough using DBFPL. Elapsed times
of BPL, PBFPL, and DBFPL were 2:5� 0:6 msec/iteration, 5:0� 0:9 msec/iteration,
and 2:7� 0:7 msec/iteration, respectively. The total times required by BPL and
DBFPL were similar, but the elapsed time by PBFPL was twice as large as that by
BPL; explicit coding in parallel for PBFPL could reduce the total time.

(a) 5 layer - sigmoid  (b) 5 layer - ReLU (c) 9 layer - sigmoid (d) 9 layer - ReLU

Fig. 4. Learning curves for acquiring the central angle of a half-circle using different FNNs.
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To confirm the suitability of the extraction feature, the activation signals in the
bottle-neck layer after 100,000 iterations are illustrated in Fig. 5 for each FNN. This
result indicated that BPL and PBFPL could acquire monotone decrease or increase
functions as the central angle of the arc in Eq. (16) for each FNN. The results of the
learning curve were evidenced by the fact that the activation signals in the bottle-neck
layer using DBFPL could not be regarded as the central angle. Furthermore, the
acquired feature of the 9-layer FNNs using DBFPL was outshone by BPL and PBFPL.

4.3 Extracting Two-Dimensional Features of Hand-Written Digit Images

The PBFPL and DBFPL schemes were evaluated using a widely used dataset, MNIST
hand written digit images [17]. The dataset consists of 60,000 training binary images
and 10,000 test binary images. Since the resolution of the images is 28 	 28 pixels,
784-dimensional binary sequences were prepared. To conduct the mini-batch learning,
the training sequences were divided into 100 batches. A 9-layer FNN with a bottle-neck
layer, a 784-900-500-250-2-250-500-900-784 network, was prepared using Hinton’s
pre-training [3]. The input, output, and bottle-neck layers were activated by linear
functions, while the other layers were activated by the conventional sigmoid function.

The learning curves for the test sequences using BPL, PBFPL, and DBFPL are
shown in Fig. 6(a). When cost values were lower than 5	 10�4, quality of recon-
structed images and features were visually good enough. Figure 6(a) shows that
PBFPL required only about half of the epochs required by BPL or DBFPL, since the
PBFPL cost value was lower than 5	 10�4 at 8 epochs, but the others were lower at 16
epochs. Elapsed times of BPL, PBFPL, and DBFPL were 11:83� 0:09 sec/epoch,
16:47� 0:17 sec/epoch, and 12:24� 0:07 sec/epoch, respectively. This was a little
different from the first experiment (Sect. 4.2), since the elapsed time by PBFPL was
less than twice that by BPL. This might be due to library optimization. Figure 6(b)
shows averaged images of test data, and Fig. 6(c) shows averaged reconstructed images
after pre-training which indicates that pre-training could not learn enough identity
mapping. Figures 6(d–f) show averaged reconstructed images after 30 epochs by BPL,
PBFPL, and DBFPL, respectively. Since these are similar to each other and the test
images, we conclude that all of the schemes could acquire suitable identity mapping.

Scatter plots in Fig. 7 show the activations in the bottle-neck layer using the three
schemes after 30 epochs. Clusters in all three scatter plots have similar distributions.
To compare how useful features were extracted, three conventional classifiers, the
Naïve-Bayes, the linear support vector machine (SVM), and the SVM with Gaussian

(a) 5 layer - sigmoid  (b) 5 layer - ReLU (c) 9 layer - sigmoid (d) 9 layer - ReLU

Fig. 5. Acquired features as central angle using different FNNs after 100,000 iterations.
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kernel, were fitted by the training sequence and used to predict digit labels from the
two-dimensional extracted features of the test sequence. Classifier performance is
summarized in Table 1. Comparing the accuracies between the raw data column and
other columns in Table 1, the two-dimensional extracted features were useful for the
Naïve-Bayes classifier but not for the others. Since the gap of accuracies using the
SVM, a strong learner, was smaller than that of the linear SVM, essential information
might be implicitly preserved in spite of the dimension reduction. Moreover, the
accuracy using the extracted features by PBFPL was less than that by BPL and DBFPL.
Thus, PBFPL outperformed other methods for all classifiers. The DBFPL performance
was similar to that of BPL. In other words, a part of the auto-encoder for dimension
reduction could be trained without any back-propagated errors.

(a) Learning curves
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(b) Averaged images of test binary images

(c) Reconstructed images before learning

(d) Reconstructed images by BPL 

(f) Reconstructed images by DBFPL 

(e) Reconstructed images by PBFPL 

Fig. 6. Results of learning for MNIST hand written digit images dataset.

(a) BPL (b) PBFPL (c) DBFPL

Fig. 7. Acquired features as clusters for dividing digits after 30 epochs.

Table 1. Accuracies for classifying test binary images by conventional classifier using the
two-dimensional extracted features of the test sequence.

Classifier Raw data BPL PBFPL DBFPL

Naïve Bayes 0.547 0.683 0.733 0.684
Linear SVM 0.917 0.474 0.548 0.494
SVM 0.944 0.858 0.879 0.855
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5 Discussion

The experimental results indicate that the PBFPL method reduces the number of
iterations required for updating synaptic weights to train the auto-encoders, as com-
pared to BPL. Although the computational cost of PBFPL is larger than that of BPL,
implementing PBFPL using parallel computing might reduce computational time for
acquiring reasonable representations, such as dimension reduction. Parallel computing
has been usually used to update synaptic weights in each layer for BPL in general, but
the credit assignment problem must be sequentially solved by the back-propagated
error from output layer to input layer. In contrast, PBFPL and DBFPL methods directly
solve the credit assignment problem in parallel. Indeed, the proposed schemes indicate
that parallel computing could not only apply to updating the weights but also to
estimating supervised signals in each layer.

The DBFPL method sometimes demonstrated the same performance as other
schemes in the numerical experiments, but it could not perform better than the other
methods. This result would not be useful in engineering, but might contribute in a
biological context. Biologically plausible deep learning algorithms have been investi-
gated recently. The TPL method [14], which is quite similar to FPL for training
auto-encoder, tries to explain Spike-Timing-Dependent Plasticity in the brain. On the
other hand, FA [15] and direct feedback-alignment (DFA) methods [16] transport the
output error into hidden layers through random synaptic weights, which are path-way
exclusive from feedforward synaptic weights. But it is also reported that FA leads to
poor performance for the auto-encoder, and the DFA study discussed only a local
update rule, which assumed the feedback errors will not propagate over synapses. Since
the forward-propagated errors are effective for learning identity mapping even if the
derivative of activation function is not known [13], the experimental results indicate
that the deeper layers might be able to be trained by the forward-propagated errors.
Although combined BPL and FPL reduced computational time using parallel com-
puting in this work, combining FA and FPL might also be an effective approach. If
replacing BPL with FA, the learning phase and execution phase would not be separate,
which might lead to effective computational implementation in engineering and bio-
logical suitability aspects.

6 Conclusion

In this work, we apply the useful features of biological plausibility to train an
auto-encoder, using two schemes that combine BPL with FPL in parallel. The PBFPL
method outperformed BPL for the two basic numerical experiments, while DBFPL
could train a part of the auto-encoder for dimension reduction without any
back-propagated errors. Implementing parallel computing and measuring parallel
computational time is planned for a future study.
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Abstract. Relation classification is a key natural language processing
task that receives much attentions these years. The goal is to assign pre-
defined relation labels to the nominal pairs marked in given sentences.
It is obvious that different words in a sentence are differentially infor-
mative. Moreover, the importance of words is highly relation-dependent,
i.e., the same word may be differentially important for different relations.
To include sensitivity to this fact, we present a novel model, referred to
as TCA-CNN, which takes the attention mechanism at the word level
to pay different attention to individual words according to the semantic
relation concentrated when constructing the representation of a sentence.
Experimental results show that TCA-CNN achieves a comparable perfor-
mance compared with the state-of-the-art models on the SemEval 2010
relation classification task.

Keywords: Relation classification · Convolutional Neural Networks ·
Attention mechanism

1 Introduction

Relation classification is one of the fundamental tasks in natural language
processing (NLP). It plays an important role in various scenarios, e.g., infor-
mation extraction [1], question answering [2], knowledge base construction [3,4],
etc. The goal of relation classification is to assign pre-defined relation labels
to the nominal pairs marked in given sentences. For instance, given the sen-
tence “Givers gain moral strength and [happiness]e1 from [giving]e2 .” with the
annotated nominal pair, namely e1 and e2, the goal would be to automatically
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recognize that this sentence expresses Cause-Effect relation between e1 and e2,
denoted as Cause-Effect(e1, e2).

Traditional relation classification methods mainly fall into feature- and
kernel-based categories. Feature-based methods use a large number of lexical,
syntactic or semantic features and feed them into a chosen classifier such as
support vector machines (SVM) to classify relations. Conversely, kernel-based
do not need much effort on feature engineering, but well-designed kernel func-
tions, which are usually based on syntactic or dependency structures. All these
methods have been shown to be effective and yield relatively high performance.
However, they strongly depend on extracted features or designed kernels derived
from the output of pre-existing NLP tools, which unavoidably lead to the prop-
agation of the errors and hurt the performances of these models. Recently, the
methods based on deep neural networks with highly automatic feature learning
have made remarkable progress. A large number of works on relation classifi-
cation use convolutional neural networks (CNN) [5], recursive neural networks
(RecursiveNN) [6] and recurrent neural networks (RNN) [7] to reduce the exten-
sive manual feature engineering or other external resources, and have already
achieved impressive results.

Although these existing deep neural networks based models have been quite
effective, they treat all words equally when composing the representation of
the sentence meaning. Obviously, different words in a sentence are differentially
informative. For this reason, the attention mechanism was adopted by [8] and
the state-of-the-art performance was achieved on the benchmark SemEval 2010
Task 8. However, a word may express kinds of semantic relations with different
probabilities. To illustrate, we take the aforementioned sentence as an example.
It is intuitive that the importance of word “from” is higher when the seman-
tic relation Cause-Effect is concentrated than Message-Topic to construct the
sentence representation. Therefore, the importance of a word is related to the
concentrated semantic relation when constructing the sentence representation,
but the existing models have not noticed this yet.

In this paper, we present a novel model, Target-Concentrated Attention Con-
volutional Neural Networks (TCA-CNN), which takes the attention mechanism
at the word level to pay more or less attention to individual words when different
semantic relations are concentrated to compose the representation of a sentence.
We evaluate our model for relation classification on standard benchmark dataset
of SemEval 2010 Task 8. Experimental results show that our proposed method
achieves an excellent result compared with existing baselines. The main contri-
butions of our work can be summarized as follows:

– We propose an end-to-end learning model, named TCA-CNN, without exten-
sive feature engineering and external knowledge, and it could capture the key
parts of a sentence when different relations are concentrated to compose the
sentence representation.

– We present a new pairwise margin-based loss function which is superior to
the typical cross-entropy loss functions.
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– Experiments conducted on the benchmark dataset of SemEval 2010 Task 8
demonstrate that TCA-CNN achieves a comparable performance with the
state-of-the-art models.

2 Related Work

We briefly review the existing studies on relation classification. Traditional meth-
ods strongly depend on the extracted features which are often derived from the
output of pre-existing NLP tools. So it is unavoidable to the propagation of the
errors in the existing tools and the performance of these methods are limited.
Recently, deep neural networks have shown promising results and they learn
underlying features automatically. Socher et al. [6] proposed MVRNN by using
a recursive neural network to tackle relation classification. They managed to cap-
ture the compositional aspects of the sentence semantics by exploiting syntactic
trees. Zeng et al. [11] exploited DNN to classify relations with lexical, sentence
level features and word position features, and they took all of the words as input
without complicated pre-precessing. Nevertheless, these methods still depend
on additional features from lexical resources and NLP tools. Based on CNNs,
Santos et al. [15] proposed the CR-CNN model with special treatment for the
Other label. Xu et al. [7] leveraged CNNs to learn representation from shortest
dependency paths, and address the relation directionality by special treatment
on sampling. Additionally, some other deep learning models have been proposed
such as [7,16,18]. Since different words in a sentence are differentially informa-
tive, Wang et al. [8] introduced the attention mechanism into relation classifica-
tion task and proposed a novel convolutional neural network architecture relying
on two levels of attention in order to better discern patterns in heterogeneous
contexts. In this paper, we also adopt attention mechanism to attend to the key
parts of a sentence when constructing the representation of then sentence and
experimental results show that our model achieves a comparable performance
with the state-of-the-art models.

3 Our Proposed Model

In this section, we describe the proposed model for relation classification with
target-concentrated attention mechanism. An overview of our architecture is
illustrated in Fig. 1. The reason for choosing a CNN rather than other deep
neural networks like RNN with long short-term memory unit (LSTM) [9] or
gated recurrent unit (GRU) [10], etc., is we argue that CNN is more suitable to
detect the key part of sentence relevant to the concentrated relation. The only
input for the network is the tokenized text string of the sentence and a seman-
tic relation. First, the input sentence is encoded with the concatenation of word
vector and position vectors, where word order is captured by exploiting the posi-
tional encoding. Next, the attention mechanism is used to capture the relevance
of words with respect to the concentrated relation. After that, a convolutional
layer followed by max-pooling is applied to construct a representation of the
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Fig. 1. The architecture of TCA-CNN.

sentence. Finally, by using a scoring function to measure the proximity between
the sentence representation and the given relation. In this paper, we use capi-
talized letter with boldface to denote matrix, and the corresponding lowercase
letter with boldface to represent column vector.

3.1 Input Representation

Given a sentence S with words wi for i = 1, 2, . . . , n, where n is the sentence
length, and two marked nominals e1 and e2, we first convert each word into
a real-valued vector. Let Ew ∈ R

dw×|V | denote the word embeddings matrix,
where V is the input vocabulary and dw is the word vector dimension. The i-th
word in S is transformed into the vector ew

i by looking up the word embeddings
matrix.

It is obvious that contexts surrounding the nominal pair are critical to deter-
mine the semantic relation between marked nominals. Therefore, we also incorpo-
rate the word position embedding (position features) proposed by [11] to reflect
the relative distances of the current word to the marked nominals e1 and e2. Take
the sentence shown in Fig. 1 as an example, the relative distances of “from” to
“happiness” and “giving” are -1 and 1, respectively. Then, the relative distance
is mapped to a vector with size dp, and dp is a hyper-parameter to be chosen
by the user. Let ep

i,1, e
p
i,2 ∈ R

dp denote the position vectors corresponding to
the i-th word in a sentence. The overall word embedding wi for the i-th word
can be obtained by concatenating the word embedding with these two position
vectors, namely wi = [ew

i ; ep
i,1; e

p
i,2] ([x1;x2] denotes the vertical concatenation

of x1 and x2). Based on these wi, the input representation for the sentence S
can be represented as a matrix S = [w1,w2, . . . ,wn].

3.2 Input Attention

Since not all words contribute equally to the representation of the sentence mean-
ing. Moreover, the importance of words are highly relation-dependent, i.e., the
same word may be differentially important for different relations. In this paper,
we introduce attention mechanism to automatically capture the relevance of
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words with respect to the concentrated relation when constructing the sentence
representation.

On the basis of input representation, we can measure the importance of
words in a sentence concentrated on the given semantic relation r ∈ R, where
R is the relation set. In this paper, we choose a bilinear function to characterize
the importance ξi of the i-th word in a sentence with the semantic relation r,
given by:

ξi = w�
i Mr + b, (1)

thereof, M is a weighting matrix to be learned during the training process,
r ∈ R

dr is the embedding of relation r, and b ∈ R is the bias term. Then, the
normalized importance weight αi can be obtained through a softmax function,
namely:

αi =
exp(ξi)∑n

k=1 exp(ξk)
. (2)

After that, the diagonal attention matrix A can be obtained, as follows:

A = diag(α1, α2, . . . , αn). (3)

Finally, the input for the convolutional layer can be get by multiplying S with
A, in the form:

Q = SA. (4)

3.3 Sentence Representation

The next phrase of our proposed model is to construct the distributed represen-
tation oS for the input sentence S. The convolutional layer first captures local
contextual information with a sliding window of size k over the sentence and
the k will be chosen by the user. Afterwards, it combines all local contextual
information via a map-pooling operation to obtain a fixed-sized vector for the
input sentence. Let zi ∈ R

d refer to the concatenation of the k successive words
embeddings centered around the i-th word:

zi = [qi−(k−1)/2; . . . ;qi+(k−1)/2], (5)

where d = k × (dw + 2 × dp). Since the window may be outside of the sentence
boundaries when it slides near the boundary, an extra padding token is repeated
multiple times at the beginning and the end of the input. The convolution oper-
ation is defined as the dot product of a weight matrix Wc ∈ R

d×l with the
matrix Z ∈ R

d×(n−k+1) and then adding a bias vector bc ∈ R
l, where l is the

number of filters. We apply a non-linear activation function at the output of the
convolutional operation, such as the hyperbolic tangent. For the i-th filter, the
convolutional operation can be expressed by:

cij = tanh(< wc
i , zj > +bc

i ), (6)
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where bc
i is the bias term. Afterwards, the representation vector oS for the input

sentence can be obtained through the max-pooling operation on each ci = {cij}
for j = 1, 2, . . . , (n − k + 1), so that:

oS = [max(c1),max(c2), . . . ,max(cl)]�. (7)

3.4 Scoring

In this work, we propose a new scoring function ζθ(S, r) to measure the proximity
between the sentence representation oS and the given relation r, as follows:

ζ(S, r) = (oS)�Ur, (8)

where U is a weighting matrix to be learned during training.

3.5 Model Training

The model could be trained in and end-to-end way with standard back propa-
gation. We define a margin-based pairwise loss function L based on Eq. (8), in
the form:

L = φ(ζ(S, r−) + γ − ζ(S, r+)) + β‖θ‖2, (9)

where φ = log(exp(x)+1), γ is the margin separating the positive pair from the
negative one, ζ(S, r+) is the matching score between the sentence representation
oS and the ground-truth relation r+, ζ(S, r−) denote the matching score between
oS and the incorrect relation r−, β is the L2-regularization term and θ is the
parameter set consisting of M,U,Wc,bc.

Table 1. Hyper-parameters used in our experiments.

Parameter Parameter Name Value

dw word embedding size 100

dp word position embedding size 80

dr relation embedding size 80

k filter size 4

l filter number 1000

γ margin 1.0

λ initial learning rate 0.002

In our experiments, we use the publicly available word2vec1 skip-gram archi-
tecture [12] to learn the initial word embeddings on Wikipedia2. The embed-
dings of out-of-vocabulary words and all relations are randomly initialized with
1 https://code.google.com/p/word2vec/.
2 https://dumps.wikimedia.org/enwiki/.

https://code.google.com/p/word2vec/
https://dumps.wikimedia.org/enwiki/
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uniform samples from U(-1.0,1.0). All hyper-parameters are jointly learned via
minimizing the loss function of Eq. (9). Additionally, AdaGrad [13] is used as
our optimization method during the training process. Table 1 reports all the
hyper-parameters used in the following experiments.

4 Experiments

4.1 Dataset and Evaluation Metrics

To evaluate the performance of TCA-CNN, we conduct experiments on SemEval-
2010 Task 8 dataset [14] which is a widely used benchmark for relation classifi-
cation and freely available3 on the internet. The dataset contains 10,717 exam-
ples, including 8,000 training instances and 2,717 test instances, annotated with
9 directed relation labels and 1 undirected Other label. Taking the direction-
ality of the relation labels into account, e.g., Cause-Effect(e1, e2) and Cause-
Effect(e2, e1) are different relation labels, we treat each directed relation labels
as two in our model. We evaluate the model performance by using the SemEval-
2010 Task 8 official scorer in terms of the macro-average F1-scores for the 9
directed relations (excluding Other).

Table 2. Comparison with other published results of Neural Network models.

Classifier F1

MVRNN [6] 82.4

CNN+Softmax [11] 82.7

CR-CNN [15] 84.1

DepNN [16] 83.6

depLCNN [17] 83.7

depLCNN+NS [17] 85.6

SDP-LSTM [7] 83.7

DRNNs [18] 85.8

Att-Input-CNN [8] 87.5

TCA-CNN 87.3

4.2 Results and Analysis

The experimental results on the test set are reported in Table 2. MVRNN and
DepNN are based on RecursiveNN, whereas DepNN achieves an F1-score of
83.6% exceeding MVRNN with a relative improvement of 1.7% by capturing
the features of shortest dependency paths via CNN. Both CNN-based model
depLCNN and RNN-based SDP-LSTM leverage the shortest dependency paths
3 http://docs.google.com/View?id=dfvxd49s 36c28v9pmw.

http://docs.google.com/View?id=dfvxd49s_36c28v9pmw
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between the marked nominal pair and obtain the identical results. By consid-
ering the relation directionality with a negative sampling strategy, depLCNN
further improves the result to 85.6%. From the results, we can see that our novel
target-concentrated attention based architecture achieves the F1-score of 87.3%,
outperforming the well known CR-CNN model by 3.2% and DRNNs by 1.5%,
but the accuracy is a slightly lower than the state-of-the-art model Att-Input-
CNN. The results indicate that TCA-CNN effectively captures the key part of
sentence for constructing the representation of a sentence.

4.3 Visualization of Attention

In order to validate that our model is able to select informative words in a
sentence with the semantic relation concentrated, we can obtain the attention
weight α in Eq. (2) and visualize the word level attention weights in Fig. 2 for
the sentence mentioned in Introduction.

givers gain moral strength and happiness from giving .

Message-Topic

Cause-Effect

Instrument-Agency

Component-Whole

Member-Collection

Entity-Destination

Product-Producer

Content-Container

Entity-Origin

Fig. 2. Visualization of Attention.

Each line in Fig. 2 shows the representation of how attention focuses on words
with the interaction of the concentrated semantic relation. The color depth indi-
cates the degree of importance, namely the darker the more important. From
the Fig. 2, we can observe that when concentrating on: (1) the ground-truth rela-
tion of Cause-Effect, the word “from” was assigned the highest attention weight,
and the words such as “happiness” and “giving” also are important. However,
it is surprised to find that the non-entity tokens “moral” and “strength” are
assigned the same level importance as “happiness”. After detailed analyzing the
sentence, we can know that the “moral strength” also is a result caused by giv-
ing; (2) other relations, we first take the relation Message-Topic as an example,
the key word “from” is assigned a lower attention value, which means “from” is
irrelevant with respect to the semantic relation Message-Topic. As a result, the
output sentence representation would have low matching score with Message-
Topic. Besides, the similar phenomena can be found when the rest of the other
relations are concentrated to compose the sentence representations.
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5 Conclusion

In this work we propose an end-to-end learning model, referred to as TCA-
CNN, with target-concentrated attention mechanism for relation classification.
Our motivation is that different words in a sentence are differentially informative
and the importance of words are highly relation-dependent. The experimental
results based on the SemEval-2010 Task 8 dataset show that TCA-CNN achieves
a comparable performance compared with the state-of-the-art models. In the
future, it might be interesting to jointly model the entity pair and relation with
attention mechanism, since it is intuitive that the relation interact closely with
the entity pair in a sentence.
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base construction using deepdive. Proc. VLDB Endowment 8, 1310–1321 (2015)

4. Jia, Y., Wang, Y., Lin, H., Jin, X., Cheng, X.: Locally adaptive translation for
knowledge graph embedding. In: 30th AAAI Conference on Artificial Intelligence,
pp. 992–998. AAAI Press, Menlo Park (2016)

5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

6. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality
through recursive matrix-vector spaces. In: 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, pp. 1201–1211. ACL Press, Stroudsburg (2012)

7. Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long
short term memory networks along shortest dependency paths. In: 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1785–1794. ACL Press,
Stroudsburg (2015)

8. Wang, L., Cao, Z., de Melo, G., Liu, Z.: Relation classification via multi-level
attention cnns. In: 54th Annual Meeting of the Association for Computational
Linguistics, pp. 1398–1307. ACL Press, Stroudsburg (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)
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Abstract. This paper provides an extended comparison of two temporal
models for gesture recognition, namely Hybrid Neural Network-Hidden
Markov Models (NN-HMM) and Recurrent Neural Networks (RNN)
which have lately claimed the state-the-art performances. Experiments
were conducted on both models in the same body of work, with similar
representation learning capacity and comparable computational costs.
For both solutions, we have integrated recent contributions to the model
architectures and training techniques. We show that, for this task, Hybrid
NN-HMM models remain competitive with Recurrent Neural Networks
in a standard setting. For both models, we analyze the influence of the
training objective function on the final evaluation metric. We further
tested the influence of temporal convolution to improve context model-
ing, a technique which was recently reported to improve the accuracy of
gesture recognition.

Keywords: Hybrid NN-HMM · RNN · Gesture recognition ·
End-to-End learning · Representation learning

1 Introduction

Gestures are composed of movements or poses of the body by which the sub-
ject is actively trying to convey a message. The objective of continuous gesture
recognition is to detect and recognize the sequence of gestures within a stream
of sensory inputs. The latter are generally recorded from cameras, wearable sen-
sors or more recently depth map cameras which further allow reliable body pose
detection.

Over the last decade, Deep Neural Networks have been used with spectacular
results in many fields ranging from natural image classification to handwriting
and speech recognition. Gesture recognition naturally relates to these last two
fields and, as expected, has benefited from these models as well. It notably takes
advantage from convolutional architectures of neuron connections, which drasti-
cally improves learning of local image patterns. As a result, recent contributions
now tend to use trainable representation extractors as the first stage in a recog-
nition pipeline.

c© Springer International Publishing AG 2017
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For two of the state-of-the-art models for gesture recognition, this representa-
tion extractor is followed by an explicit temporal model: the Hybrid Neural Net-
work/Hidden Markov Model, first introduced for speech recognition [1], has been
transposed to gesture and sign language recognition [9,16]; Recurrent Neural
Networks also provide a flexible model for sequential data. While plagued by
weak training signal propagation and short-lived memory in vanilla form, [7] has
shown that carefully crafted connections between neurons can eliminate those
issues with excellent results obtained on speech [5], handwriting [6] and also
gesture recognition [12].

To validate the respective advantages of these two temporal models, we pro-
pose a comparative study of the two under similar settings. The validation has
been carried out on the Montalbano v2 [3] dataset which contains a series of
Italian gestures from 20 different classes captured with a Kinect device. For this
paper, we restrict our data to the body pose modality which encodes the position
of articulations and other important skeleton points in space.

Our contributions lie in the following aspects: we propose modifications to
the training loss functions to alleviate data imbalance issues; we demonstrate
that Hybrid-HMM and RNN perform similarly under similar settings; finally,
we report an experiment showing that RNNs are less reliant on contextual infor-
mation than Hybrid NN-HMM models are.

2 Related Work

Traditionaly, gesture recognition has involved two steps, feature extraction and
then temporal classification. The former usually relies on engineered features
such as handcrafted body pose features or HoG features extracted around the
body or the hands from the video frames. For the latter, a lot of effort has
been invested into optimizing models to characterize the temporal structure
on the gestures, with Probabilistic Graphical Models offering a large range of
possibilities: HMM, CRF... [17,18].

Our methodology builds on recent contributions which have focused on learn-
ing representations as part of the overall training process. [9] reuses a pre-trained
representation extraction stage from a natural image classifier [14]. [16] pre-trains
a Deep belief network on body pose features. Both integrate the representation
extractor into a Hybrid Neural Network/Hidden Markov Model (NN-HMM).

Instead of considering a temporal model of gestures, [11] concatenates suc-
cessive input observations at multiple scales, and feed them directly into a deep
neural network.

More recently, [12] obtained state-of-the-art performances by using a Con-
volutional Neural Network (CNN) combined with a Recurrent Neural Network
(RNN) to process the video inputs. This model also introduces temporal convo-
lution layers to capture contextual information in the representation extraction
stage.
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3 Temporal Models for Gesture Recognition

3.1 Representation Learning

To produce task-specific (i.e. gesture) representations, we opted for a multi-
layer neural network trained from scratch in a supervised way. In comparison,
[16] uses a deep belief network trained in an unsupervised fashion and later
fine-tuned for the classification task. To prevent the overfitting and slowness of
supervised learning, we have equipped all layers with Batch Normalization [8]
and Dropout [13]. Furthermore, activation non-linearities have been set to leaky
Rectified Linear Units (ReLU) [10] in order to propagate the training signal more
efficiently through the layers.

The information contained in previous and future observations is commonly
exploited in speech recognition. For gestures, [11] actually build a model without
an explicit temporal model but instead concatenate local observations to provide
the local context as input to a classifier. Following the work of [12], we opt for
temporal convolution to produce a learned representation which also embeds the
local context. Let ht

i be the activation of the i-th neuron of the previous layer
at time-step t. The temporal convolution at t by a filter w of width 2k + 1 is
given by:

at =
∑

i

k∑

u=−k

ht+u
i wi,k−u (1)

where the result of the temporal convolution at becomes the activation of the
neuron associated with this filter.

3.2 Hybrid NN-HMM

A Hybrid NN-HMM uses pseudo observations likelihoods instead of true likeli-
hood distributions in its original formulation as given by Eq. 2:

P (x1:T , s1:T ) = P (s1)P (x1|s1)
T∏

t=2

P (st|st−1)P (xt|st) (2)

P (xt|st) =
P (st|xt)P (xt)

P (st)
∝ P (st|xt)

P (st)
(3)

where P (s1) is a prior on the initial states, P (st|st−1) models the transition
dynamics between states and P (xt|st) the state conditioned observation likeli-
hood. Using (3) instead of an actual likelihood allows to choose predictive models
of the input such as a neural network classifier, the output of which is interpreted
as the state posterior probability p(st|xt). For our experiments, the multi-layer
representation network from the previous section is plugged into a dense layer
with a softmax non-linearity so as to form the trainable predictor P (st|xt).

This posterior model needs to be trained in a supervised fashion, using the
alignment of HMM states over the observations for labeling. The overall training
process therefore contains two alternating steps: fitting the posterior model on
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the optimal state alignment given previous HMM iteration, and then fitting the
transition probabilities alone.

In our model, gestures are represented by 5 states interconnected by left-to-
right transitions, one state skips, and a reverse transition from the fourth to the
second as shown on Fig. 1. The first and last states usually absorb transitional
movements from non-gesture class segments to an actual gesture segment. Skips
let the model ignore unobserved states whereas reverse connections are expected
to capture periodicity. A garbage state captures all the non-gesture observations
and provides a transition between gestures, leading to a total of 20 ∗ 5+1 = 101
states to be predicted by the posterior model P (st|xt).

Fig. 1. state transition dynamics for
the Hybrid NN-HMM gesture recogni-
tion model (self-transitions omitted)

Fig. 2. RNN model for gesture recognition

3.3 Recurrent Neural Network

The purely neuronal solution is chosen to resemble the hybrid model with a
recurrent neural network as a drop-in replacement for the HMM. More precisely,
the previous multilayer neural network (for image representation learning) is
truncated before the softmax layer and connected into two RNNs reading their
input sequences in forward and reverse time order respectively. This configu-
ration known as bidirectional RNN [4] helps to generate predictions without
delay as one of the RNNs has access to ‘future’ observations. The outputs of
both networks at each time step are then concatenated and fed into a fully con-
nected layer. A final softmax function issues the predictions over the 21 labels
(20 gestures + 1 non-gesture class). Figure 2 sums up the whole architecture.

Due to memory limitations, the sequences are split into chunks of 128 time
steps. Temporal convolution and RNN are both subject to edge effects due to
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the use of zero padding and the absence of sufficient context at the edges of the
sequences. We therefore drop some warm-up frames at the beginning and the
end of the chunks. Experiments have shown that using the size of the padding
(half of the temporal kernel size) leaves no noticeable edge effect in terms of
frame-wise error rate within the chunks.

4 Experimental Setup

4.1 Dataset and Data Augmentation

The dataset is composed of 340 training, 230 validation and 240 testing record-
ings. The training set contains approximately 340 instances for each of the 20
gestures. The validation set is solely used for cross-validation because the tem-
poral and class annotations were originally not disclosed during the Chalearn
2014 competition.

In this work, we only use the upper body pose joint locations (hands, elbows,
shoulder, heads, hips). Sequences with more than 25 missing observations have
been eliminated, while other missing positions have been linearly interpolated.
Then, the sequences have been filtered by a Gaussian kernel of unit variance
to reduce noise. The dataset was augmented two times with random horizontal
flipping and affine space distortions.

4.2 Pre-processing

As in [11] or [16], the positions are transformed, using basic transformations,
into the following features:

– raw positions centered around the center point between shoulders, and nor-
malized by the distance between shoulders to eliminate subject size

– first and second order derivatives of the positions
– pairwise position differences (spatial vector connecting any two points)
– pairwise Euclidean distances (spatial distance between any two points)
– cosinus, sinus and orthonormal vector of the angles between successive limbs

which produces a feature vector of 248 components which have been normalized
to 0 mean and unit variance.

4.3 Architectural Details

The exact architecture for our experiments begins with a shared multilayer
neural network for representation learning:

– Dense layer: 1024 neurons, batch normalization, ReLU, dropout (0.3)
– Dense layer: 1024 neurons, batch normalization, ReLU, dropout (0.3)
– Temporal convolution: 256 filters of width 17, batch normalization, ReLU,

dropout (0.3)



152 N. Granger and M.A. el Yacoubi

For the Hybrid NN-HMM model, an additional dense layer with 101 neurons
and a softmax non-linearity complete the state posterior predictor P (st|xt). In
the RNN model, the recurrent layers take their inputs directly from the features
computed by the temporal convolution layer.

Each of the two RNNs uses 172 Gated Recurrent Units (GRU) [2], a simplified
version of the LSTM cells [7]. LSTM cells (and GRU as a consequence) turn
vanilla neurons into a structure of gates and bridges, which greatly enhances
the propagation of the feed-forward signals and of the back-propagated gradient
descent updates.

5 Experiments and Results

5.1 Evaluation Metric and Training Loss Functions

We assess our two models using the Jaccard Index (JI) metric which evaluates
both the correctness of the detected labels and the precision of the temporal
alignment:

Jr,i =
Gr,i ∩ Pr,i

Gr,i ∪ Pr,i
or 0 if Gr,i ∪ Pr,i = 0 (4)

Jr =
1
lr

L∑

i=1

Jr,i JI =
1
N

N∑

r=1

Jr (5)

where Gr,i (resp. Pr,i) is the binary vector of the ground-truth (resp. prediction)
for class i in recording r, lr is the number of classes observed in r, L the number
of classes and N the number of sequences.

Since this objective is not easily differentiable, the models are usually trained
against the categorical cross entropy between the targets classes t and the pre-
dictions p seen as class posterior probabilities:

Lcrossentropy(t,p) = −
∑

j

δj=tlog(pj) (6)

However, the final classification which assigns labels for each time step simply
takes the most probable class regardless of how confident the model is. For that
reason, we have tried to use the categorical hinge loss function instead, which
only seeks to ensure a safety margin Δ between the activity of the neuron for
the correct label class and the other neurons:

Lhinge(t,p) = max
j �=t

(0,Δ + pj − pt) (7)

This function focuses training on the most difficult pairwise decisions. It
remains questionable whether a specific but more difficult task is more suitable
for training a neural network, especially for the early stage of training. In prac-
tice, the hinge loss takes more iterations to trigger early stopping indeed, but
leads to better classification scores and smoother (less confident) predictions
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for the RNN model. On the Hybrid NN-HMM the difference is not significant
and cross entropy performs slightly better when it come to training HMM state
posteriors.

Because the Jaccard index penalizes spurious predictions of gestures, elim-
inating very short sequences was found to consistently improve the final score,
and more particularly so on the RNN which tends to have more noisy outputs.

The loss functions have been further modified to alleviate the large imbalance
of example labels. Indeed, the non-gesture class is 30 times more frequent than
the other classes. In the posterior model of the NN-HMM model, observations
are further distributed among the 5 states of each gesture, thus amplifying the
imbalance problem. This situation is commonly handled by resampling the train-
ing observations to eliminate these priors [15], but this approach is not practical
with temporal data containing different gesture classes within a single sequence.
As an alternative, we have corrected the loss function by the inverse frequency
of the classes to predict:

L′(t, p) = L(t, p) × f−α
t α ∈ [0, 1] (8)

where L(t, p) is the original loss function and f denotes the label frequency.
Setting the smoothing factor α = 0 returns the vanilla cost whereas α = 1
should completely counterbalance the effect of priors. In practice, we have found
that the non-gesture class was more difficult to learn and that α = 0.7 actually
leads to more balanced predictions. For the hybrid HMM model, we assume that
the modified cost function leads to learn P (s|x)

P (s) instead of P (s|x) and we have
therefore removed the division by the priors to compute the pseudo-likelihoods
in (3).

Using this configuration, the Hybrid NN-HMM and the RNN obtain very
similar performances as shown in Table 1.

Table 1. Performance of our models and other reported experiments on the body pose
data (Jaccard Index). hinge and CE indicate whether the hinge or the cross entropy
loss functions were used to train the neural network.

Val Test

[16] 0.783 0.779

RNN (CE) 0.802 0.796

Hybrid HMM (hinge) 0.803 0.797

Hybrid HMM (CE) 0.804 0.803

[11] 0.808

RNN (hinge) 0.813 0.809
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5.2 Influence of Temporal Context

In our models, local context information is brought in by the temporal convolu-
tion layer. To assess the influence of context on temporal models, we have tested
varying context window sizes. Because the number of parameters varies with
the size of the filters, experiments have also been conducted with dilated kernels
[19]: the input is subsampled before filtering so that a given kernel can cover
multiples of the original temporal window. Results are summarized in Table 2.
We observe that increasing the size of the window improves the recognition met-
ric. The Hybrid NN-HMM model is more dependent on contextual information
than the RNN model, probably because the latter is able to capture the context
through the recurrent layers. Nevertheless, both models perform very similarly
when sufficient contextual information is provided.

Table 2. Validation scores of our models under varying context sizes (Jaccard Index)

kernel * dilation RNN Hybrid HMM

9 * 1 0.804 0.785

13 * 1 0.809 0.785

9 * 2 0.816 0.796

17 * 1 0.813 0.803

13 * 2 0.811 0.811

25 * 1 0.813 0.811

6 Discussions and Conclusion

We have presented two competing solutions for gesture recognition based on
body pose descriptors. Recurrent Neural Networks have recently reached state-
of-the-art performances for sequence recognition thanks to several contributions
to the architecture and the training methods. However, we demonstrate that
the Hybrid NN-HMM also benefits from the improvement of neural network
techniques, and compares favorably to its pure neuronal counterpart for gesture
recognition. Training the Hybrid model remains more cumbersome than training
an end-to-end neural network because of the alternating training steps, but the
state-based representation provides more insight about the internals of the model
when it comes to interpreting the error or adjusting the meta-parameters. We
have also shown that, for our dataset, the hinge loss is more suitable for training a
Neural Networks classifier. Future extensions of this work will compare the ability
of both models to handle multi-modal inputs by adding the video recordings.
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Abstract. Words in some natural languages can have a composite struc-
ture. Elements of this structure include the root (that could also be com-
posite), prefixes and suffixes with which various nuances and relations
to other words can be expressed. Thus, in order to build a proper word
representation one must take into account its internal structure. From a
corpus of texts we extract a set of frequent subwords and from the latter
set we select patterns, i.e. subwords which encapsulate information on
character n-gram regularities. The selection is made using the pattern-
based Conditional Random Field model [19,23] with l1 regularization.
Further, for every word we construct a new sequence over an alphabet of
patterns. The new alphabet’s symbols confine a local statistical context
stronger than the characters, therefore they allow better representations
in R

n and are better building blocks for word representation. In the task
of subword-aware language modeling, pattern-based models outperform
character-based analogues by 2–20 perplexity points. Also, a recurrent
neural network in which a word is represented as a sum of embeddings of
its patterns is on par with a competitive and significantly more sophis-
ticated character-based convolutional architecture.

Keywords: Subword-aware language modeling · Pattern-based condi-
tional random field · Word representation · Deep learning

1 Introduction

The goal of natural language modeling is, given a corpus of texts from a cer-
tain language, to build a probabilistic distribution over all possible sequences of
words/sentences. Historically, first approaches to the problem [4,16] were highly
interpretable, involving syntax and morphology, i.e. the internal structure of
such models was of interest even to linguists. Nowadays the best performance is
achieved by the so called recurrent neural network language models (RNNLM),
which unfortunately lack the desired properties of interpretability.

For rich-resource languages the amount of training data, i.e. a corpus of
texts, is bounded only by the computational power of the language modeling
method. Due to this, most of RNNLM methods treat text as a sequence of
token identifiers, where a token corresponds to either a word, or punctuation
mark. Indeed, if any word appears in a text in various different contexts, a
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 157–166, 2017.
https://doi.org/10.1007/978-3-319-70096-0_17
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method can learn high quality word representation without taking into account
its morphology. This logics fails when a corpus of texts is not large enough, and
the problem is aggravated for morphology-rich languages, such as, e.g., turkic
or finno-ugric languages. Thus, the problem of word representation that would
take into account an internal structure of a word becomes very actual — recent
advances in language modeling are connected with treating words as sequences
of characters or other subword units.

Much research has been done on character-level neural language model-
ing [6,9–11,15,20]. However, not much work exploits character n-grams that
occur in a word. In [17] a word is represented using a character n-gram count
vector, followed by a single nonlinear transformation to yield a low-dimensional
embedding; the word embeddings are then fed into neural machine translation
models. In [22] a very similar technique is used and an evaluation on three other
tasks (word similarity, sentence similarity, and part-of-speech tagging) is per-
formed; they demonstrate that their method outperforms more complex archi-
tectures based on character-level recurrent and convolutional neural networks.
Probably closest to ours is an approach from [2] where a word representation is
a sum of terms, each term corresponding to a certain n-gram that occurs in that
word. One weekness of the mentioned approaches is that all possible n-grams
that occur in a corpus of texts are present there in an a priori equal way, and
a difference in their value for word representation is calculated in the process of
learning. Whereas we in advance select a subset of n-grams that could poten-
tially enrich word vectors by subword information. For this purpose we use the
pattern-based Conditional Random Field with l1 regularization.

Our approach also differs in the following aspects: we (i) replace each charac-
ter by a new symbol which in some way concentrates an information on previous
characters, (ii) experiment with several ways of combining subword embeddings
to produce word embeddings, and (iii) evaluate our methods on a ubiquitous
language modeling task.

2 A New Alphabet for Words

Throughout the paper, we will use the following notation: if X is an alphabet,
then X ∗ denotes a set of words over X ; for α, β ∈ X ∗, αβ denotes the concate-
nation of α and β; by ∗ we denote an arbitrary word.

The key trick that we use in this paper is replacing a word a1a2 · · · ak (that
occurs in some context) over the initial alphabet A with a word s1s2 · · · sk over
a new alphabet of states S. Let us describe this substitution. We first define
a finite state machine (A,S, δ, s0), where s0 is an initial state and δ : S ×
A → S is a state-transition function. If we are given a sentence α = b1b2 · · · bK

such that every bi is a character symbol from A (it could be a punctuation
mark, i.e. a symbol that marks a boundary between words) our state machine
reads this sentence and produces a sequence of states: s0s1 · · · sK . In the latter
sequence, every si corresponds to a state of our machine after reading a symbol
bi. Thus, every subsequence bibi+1 · · · bj of the initial sentence α corresponds
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Fig. 1. Finite-state machine.

to a subsequence sisi+1 · · · sj where 1 ≤ i ≤ j ≤ K. Therefore, if bibi+1 · · · bj

corresponds to a word in a sentence α, then we will substitute it with sisi+1 · · · sj .
Thus, given such a finite state machine, every word of a sentence can be

rewritten over another alphabet S. Let us describe now our finite state machine.
Suppose that after an analysis of a training set, i.e. of a corpus of texts from

our language L, we extract a certain finite set of sequences Π0 ⊆ A∗ that we
assume not only to be frequent, but in some way statistically characterising our
language. A specific way of choosing Π0 will be given in the following subsection.
Any element π ∈ Π0 we call a pattern. Any such set defines a set of states
S = {β| ∃

π∈Π0

π = β∗}, which is, in fact, a set of all prefixes of patterns. We

assume that an empty word ε is also in S and define s0 = ε.
Now we have to define a state-transition function δ. Our idea is to construct

it in such a way that after reading the first l symbols of the sentence b1b2 · · · bl

the machine should be in a state sl ∈ S where sl is the longest word from S
for which b1b2 · · · bl = ∗sl (Fig. 1). The latter decription induces the following
definition: for any α ∈ S and a ∈ A, δ(α, a) is the longest word β ∈ S for which
αa = ∗β.

Patterns

In this subsection we will describe how we extract a set of patterns Π0 from
a corpus of texts (Fig. 2). By a corpus of texts we understand a training set
T = {α1, · · · , αL} ⊆ A∗ where αi is a sentence from our language L.

First we extract from our training set T a set of patterns Π ′ based on the fol-
lowing simple procedure: we fix in advance a threshold f and put to T only those

Fig. 2. Pattern mining.
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words α ∈ A∗ that occur in T in more than f places. Then we apply a reduction
procedure, i.e. if (a) α is a subword of β, (b) α and β always occur together in
T , then we delete α from Π ′. A pattern-based conditional random field model
for our language is the following probability distribution over A∗ [19,23]:

Pr(b1 · · · bK) = A · e−E(b1···bK),

where E(b1 · · · bK) =
∑

α∈Π′
∑

i<j:bi···bj=α cα, and cα, α ∈ Π ′, are parameters
to be learned from T .

The learning is done by the minimization of the negative log-likelihood with
L1-regularization:

− ∑L
i=1 log Pr(αi) + C

∑
α∈Π′ |cα|. (1)

The latter function is convex, an efficient computation of its value and gradient
is described in [19]. For the optimization we used the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal. Via the
parameter C one can manage the number of patterns α ∈ Π ′ for which cα �= 0.
Finally, we define Π0 = {α ∈ Π ′|cα �= 0}.

3 Subword-Aware Neural Language Model

In what follows, both regular characters and patterns are referred to as subwords.
The overall architecture of the subword-aware neural language model is displayed
in Fig. 3.

It consists of three main parts: (i) subword-based word embedding model,
(ii) word-level recurrent neural network language model (RNNLM), and (iii) soft-
max layer. Below we describe each part in more detail.

Subword-based word embeddings: A word w ∈ W (in a sentence) is defined
by the sequence of its subwords s1 . . . snw

∈ X ∗ (X = A in the case of character-
based representation, and X = S in our pattern-based approach), and each state
is embedded into dX -dimensional space via an embedding matrix Ein

X ∈ R
|X|×dX

to obtain a sequence of state vectors:

s1, . . . , snw . (2)

Then we try three different methods to get an embedding of the word w:

– Concat: A simple concatenation of state vectors (2) into a single word vector:

w = [s1; s2; . . . ; snw ;0;0; . . . ;0
︸ ︷︷ ︸

n−nw

].

We either truncate (if w consists of more than n symbols) or zero-pad w so
that all word vectors have the same length n · dX to allow batch processing.
This approach is motivated by a desire to keep all the information regarding
subwords, including the order in which they appear in the word.



Patterns Versus Characters 161

Fig. 3. Subword-aware language model.

– Sum: A summation of subword vectors:

w =
∑nw

t=1 st. (3)

This approach was used by [3] to combine a word and its morpheme embed-
dings into a single word vector.

– CNN: A convolutional model of [9]:

w = CNN(s1, . . . , snw).

This method has already demonstrated excellent performance for character-
level inputs, therefore we decided to apply it to patterns as well.

To model interactions between subwords, we feed the resulting word embed-
ding w into a stack of two highway layers [18] with dimensionality dHW per layer.
In cases when dimensionality of w does not match dHW, we project it into R

dHW .
Word-level RNNLM: Once we have embeddings w1:k for a sequence of words
w1:k, we can use a word-level RNN language model to produce a sequence of
states h1:k ∈ R

dLM according to

ht = RNNCell(wt,ht−1), h0 = 0.

There is a big variety of RNN cells to choose from. The most advanced recurrent
neural architectures, at the time of this writing, are RHN [25] and NAS [26].
However, to make our results directly comparable to the previous work of [9] on
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character-level language modeling we select a more conventional architecture –
a stack of two LSTM cells [8].
Softmax: The last state hk from (4) is further used to predict the next word
wk+1 according to the probability distribution

Pr(wk+1|w1:k) = softmax(hkW + b), (4)

where W ∈ R
dLM×|W|, b ∈ R

|W|, and dLM is a hidden layer size of the RNN.

4 Experimental Setup

Data sets: All models are trained and evaluated on the English PTB data
set [12] utilizing the standard training (0–20), validation (21–22), and test
(23–24) splits along with pre-processing by [14]. Since the PTB is criticized
for being small nowadays, we also provide an evaluation on the WikiText-2 data
set [13], which is approximately two times larger than PTB in size and three
times larger in vocabulary. We do not append any additional symbols at the
end of each line in WikiText-2, but remove spaces between equality signs in the
sequences “= =” and “= = =”, which occur in section titles.
Hyperparameters: The regularization parameter C from (1) is set to 1600,
which results in 883 unique patterns (|Π0| = 883, |S| = 890) for the PTB data
set (cf. 48 plain characters) and 1440 unique patterns (|Π0| = 1440, |S| = 1471)
for the WikiText-2 data set (cf. 281 plain characters). We set the threshold
value f to 300 on the PTB and to 700 on the WikiText-2. We experiment with
two configurations for the state size dLM of the word-level RNNLM: 300 (small
models) and 650 (medium-sized models). Specification of other hyperparameters
is given below.
Concat: dA = 15 (for characters), and dS = 30 (for patterns). We give higher
dimensionality to patterns as their amount significantly exceeds the amount of
characters. n is set to the 95th percentile of word lengths, i.e. 95% of all words
have not more than n characters1. We do not set n = maxw∈W nw, as this would
result in excessive zero-padding. dHW = dLM.
Sum: dX = dHW = dLM ∈ {300, 650} for both characters and patterns. We give
higher dimensionality to subword vectors here (compared to other models) since
the resulting word vector will have the same size as subword vectors (see (3)).
CNN: In character-based models we choose the same values for hyperparameters
as in the work of [9]. For pattern-based models we choose: dS = 50 and dS = 100
for small and medium-sized models; filter widths are [1, 2, 3, 4, 5, 6] and [1, 2, 3,
4, 5, 6, 7] for small and medium-sized models; the corresponding depths (number
of features per width) are [100, 50, 75, 100, 100, 100] and [100, 100, 150, 200,
200, 200, 200]. dHW =

∑
depths ∈ {525, 1150}.

1 Word length in characters and in patterns is the same.
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Optimization is done similarly to [5,9,24]. Training the models involves
minimizing the negative log-likelihood over the corpus w1:K :

−∑K
k=1 log Pr(wk|w1:k−1) −→ min,

which is typically done by truncated BPTT [6,21]. We backpropagate for 35 time
steps using stochastic gradient descent where the learning rate is initially set to
0.7 and halved if the perplexity does not decrease on the validation set after
an epoch. We use a batch size of 20. We train for 65 epochs, picking the best
performing model on the validation set. Parameters of the models are randomly
initialized uniformly in [−0.05, 0.05], except the forget bias of the word-level
LSTM, which is initialized to 1, and the transform bias of the highway, which
is initialized to values near −2. For regularization we use variational dropout [5]
with dropout rates for small/medium Concat, Sum/medium CNN models as
follows: 0.1/0.15/0.2 for the embedding layer, 0.2/0.3/0.35 for the input to the
gates, 0.1/0.15/0.2 for the hidden units, and 0.2/0.3/0.35 for the output activa-
tions. We clip the norm of the gradients (normalized by minibatch size) at 5.

5 Results

The results of evaluation on PTB and WikiText-2 are reported in Tables 1 and
2 correspondingly. As one can see, models which process patterns consistently
outperform those which use characters under small parameter budgets. However,
the difference in performance is less pronounced when we allow more parameters.

Also, it is clearly seen that patterns are more beneficial for simple models,
such as Concat and Sum, but have less effect on the CNN model, which shrinks
the gap between characters and patterns. This is quite natural as patterns carry

Table 1. Results on the PTB for small (left) and medium-sized models.

Model Characters Patterns
Size PPL Size PPL

Concat 5M 119.2 5M 99.6
Sum 5M 108.2 5M 87.4
CNN 6M 87.3 6M 84.8

Model Characters Patterns
Size PPL Size PPL

Concat 15M 91.5 15.8M 83.6
Sum 15M 91.5 15.5M 82.1
CNN 20M 79.6 20.5M 77.2

Table 2. Results on WikiText-2 for small (left) and medium-sized models.

Model Characters Patterns
Size PPL Size PPL

Concat 11.9M 138.2 12.1M 114.2
Sum 11.9M 124.0 12.3M 101.9
CNN 12.9M 105.2 13.0M 102.8

Model Characters Patterns
Size PPL Size PPL

Concat 30.2M 115.9 30.8M 99.0
Sum 30.3M 106.7 31.1M 94.9
CNN 34.5M 97.38 35.7M 94.2
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some information on character n-grams and, hence, can be considered as “dis-
crete convolutions”, which makes CNN over patterns not as efficient as CNN over
regular characters. However, we notice that in all cases a simple sum of pattern
embeddings (Pat-Sum) is on par with a more sophisticated convolution over
character embeddings (Char-CNN). Faster2 training of the Pat-Sum compared
to the Char-CNN makes the patterns even more advantageous.

Why does Pat-Sum perform equally well as Char-CNN? As was
described in Sect. 3 word embeddings are processed by the two highway layers
before they are fed into the RNNLM. Highway is a weighted average between
nonlinear and identity transformations of the incoming word embedding:

w 	→ t 
 σ(wA + b) + (1 − t) 
 w,

where t, A and b are trainable parameters, σ(·) is a non-linear activation, 1 is
a vector whose all components are 1 and 
 is an operation of component-wise
multiplication. The ideal input for the highway is the one that does not need
to undergo a nonlinear transformation, i.e. the highway will then be close to an
identity operator, and hence in the ideal case we shall have t = 0. But if w
is rather “raw”, then the highway should prepare it for the RNN (resulting in
t �= 0). Such extra nonlinearity can measured by the closeness of t to 1. We
hypothesize that the reason why Pat-Sum performs well is that the sum of pat-
tern embeddings is already a good word representation. Hence the highway in
Pat-Sum does less nonlinear work than in Char-CNN: In Pat-Sum it is almost
an identical transformation, and such a simple highway is well-trained according
to [7]. To validate our hypothesis we compare the distributions of the transform
gate t values from both highway layers of Pat-Sum and Char-CNN. The den-
sity plots in Fig. 4 support our hypothesis: Pat-Sum does not utilize much of
nonlinearity in the highway layers, while Char-CNN heavily relies on it.

Fig. 4. Kernel density estimations of the transform gate values of the first (left) and
second highway layers in Char-CNN and Pat-Sum.

2 Around 1.2x speedup on NVIDIA Titan X (Pascal).
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Source code: All models were implemented in TensorFlow [1] and the source
code for Pat-Sum is available at https://github.com/zh3nis/pat-sum.

6 Conclusion

Regular characters are rather uninformative when their embeddings are concate-
nated or summed to produce word vectors, but patterns, on the contrary, carry
enough information to make these methods work significantly better. Convolu-
tions over subword embeddings do capture n-gram regularities and, therefore,
make the difference between characters and patterns less noticeable. It is note-
worthy, that a simple and fast sum of pattern embeddings is on par with more
sophisticated and slower convolutions over characters embeddings.

Acknowledgments. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X Pascal GPU used for this research.
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Abstract. Recently, neural network based methods have made remark-
able progresses on various Natural Language Processing (NLP) tasks.
However, it is still a challenge to model both short and long texts, e.g.
sentences and documents. In this paper, we propose a Hierarchical Atten-
tion Bidirectional LSTM (HA-BLSTM) to model both sentences and doc-
uments. HA-BLSTM effectively obtains a hierarchy of representations
from words to phrases through the hierarchical structure. We design two
attention mechanisms: local and global attention mechanisms. The local
attention mechanism learns which components of a text are more impor-
tant for modeling the whole text, while the global attention mechanism
learns which representations of the same text are crucial. Thus, HA-
BLSTM can model long documents along with short sentences. Experi-
ments on four benchmark datasets show that our model yields a superior
classification performance over a number of strong baselines.

Keywords: BLSTM · Attention · Text modeling

1 Introduction

The goal of text modeling is to represent the meaning of a text. With the dis-
tributed representations of the continuous words, such as phrases, sentences,
documents achieved great success, it is common practice to present the variable-
length sentence or document as a fixed-length vector. The simplest method in
this direction probably is continuous Bag-of-words (cBoW), where the represen-
tation of a text is achieved by averaging the embeddings of words in the text.
However, cBoW does not consider the order of words in the text, causing the
difficulty in capturing the structure of sentences or documents. Recently, neural
network based text modeling approaches, in which the order of words is taken
into consideration, have shown excellent abilities in modeling sequences, such
as Recursive Neural Network (RecNN) [1–3], Recurrent Neural Network (RNN)
[4–6], and Convolutional Neural Network (CNN) [7,8]. These models apply non-
linear transformations to model the interactions between words, furthermore,
the structure of sentences can also be learned by RecNN. However, during the
nonlinear transfer process, they can obtain a fixed-length vector that does not
retain intermediate representations (multi-level abstractions of the text), which
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 167–177, 2017.
https://doi.org/10.1007/978-3-319-70096-0_18



168 X. Niu and Y. Hou

may be extremely important to the task in processing. Besides, all components of
a text are considered equally important to describe the meaning of the text in the
above networks. Intuitively, the importance of each intermediate representation
and each component of the text is varying with the task at hand.

In this paper, we propose a Hierarchical Attention BLSTM (HA-BLSTM).
It is observed that different words and phrases in a text are differentially infor-
mative, thus HA-BLSTM adopts local-level attention mechanism to study which
words or phrases are informative in a certain text. Unlike cBoW, CNN, RNN
and RecNN, which output a fixed-length vector, the hierarchical structure of
HA-BLSTM forms intermediate representations as multi-level abstractions for
the text. Obviously, the importance of intermediate representation of each layer
in HA-BLSTM is not equal and depends on the text and the task. Therefore,
HA-BLSTM uses global-level attention mechanism to study which intermediate
representations of the text should be paid more attention.

Our contributions can be summarized into three parts: First, for both sen-
tence and document modeling, we propose a hierarchical architecture with two
attention mechanisms, which obtains a hierarchical multi-scale representation of
the text rather than a fixed-length vector. Furthermore, the number of the lay-
ers in the hierarchical architecture can be changed according to the task, which
makes the model more general. Second, we verify that our local and global atten-
tion mechanisms are effective for the improvement of the performance. Third,
we conduct experiments on four benchmark datasets to show the superiority of
our model over previous methods.

2 Hierarchical Attention BLSTM Model

The overall architecture of HA-BLSTM is shown in Fig. 1. The number of the
layers in the model can be variable. We take three-layer structure as an example
to discuss. It consists of three parts: BLSTM-based sequence encoder, a local-
level attention layer and a global-level attention layer.

Fig. 1. The overall diagram of HA-BLSTM.
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2.1 BLSTM-Based Sequence Encoder

LSTM was presented [9] to specially address the problem about learning long-
term dependencies. At each time step t, we define the LSTM units to be a
collection of vectors in Rm: an input gate it, a forget gate ft, an output gate ot,
a memory cell ct and a hidden state ht. m is the number of the LSTM units. The
entries of the gating vectors it, ft and ot are in [0, 1]. The transition equations
of LSTM are the following:

it = σ (Wixt + Uiht−1 + bi) , (1)
ft = σ (Wfxt + Ufht−1 + bf ) , (2)
ot = σ (Woxt + Uoht−1 + bo) , (3)
zt = tanh (Wzxt + Uzht−1 + bz) , (4)
ct = it � zt + ft � ct−1, (5)
ht = ot � tanh (ct) , (6)

where xt is the input at the current time step, σ denotes the logistic sigmoid
function and � denotes elementwise multiplication. In this paper, we adopt
BLSTM to take advantage of additional backward information and thus enhance
the memory capability. We encode the hidden state of a unit as following:

h̃l
j =

[−→
hl
j ⊕

←−
hl
j

]
, (7)

where
−→
hl
j and

←−
hl
j are the same as ht in formula (6), the ⊕ indicates concatenation

operation, and˜stands for the output of BLSTM.

2.2 Attention Mechanism

Local Attention. Not all words and phrases contribute equally to the represen-
tation of the text meaning. Therefore, we introduce local attention mechanism
(see Fig. 2(a)) to learn which words or phrases are important to the meaning
of the sentence or document and aggregate the representations of those infor-
mative words or phrases to form a fixed-length continuous vector, which is a
summarization of the sentence or document with the appropriate scale.

(a) (b)

Fig. 2. (a) and (b) are the local and global attention mechanisms in HA-BLSTM.
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At each layer l, rl is a representation of the sequence, which is computed as:

rl =
D∑

j=1

zj � h̃l
j , (8)

where l ∈ [1, 3], zj ∈ Rd (j ∈ [1,D], D = T/2l−1, T is the length of the given
sequence),

z =

⎡
⎢⎢⎢⎣

z1
z2
...

zD

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1/Z
1/Z

...
1/Z

⎤
⎥⎥⎥⎦ � exp(

⎡
⎢⎢⎢⎣

ul
1

ul
2
...

ul
D

⎤
⎥⎥⎥⎦), (9)

where Z ∈ Rd is the vector of the normalization coefficients,

Zk =
D∑

j=1

[exp(

⎡
⎢⎢⎢⎣

ul
1

ul
2
...

ul
D

⎤
⎥⎥⎥⎦)]D×(j−1)+k, (10)

where 1 ≤ k ≤ d,

ul
j = tanh(Wuh̃l

j + bu), (11)

where Wu ∈ Rd×d, bu ∈ Rd are the parameters.
We first feed a word or phrase annotation h̃l

j through a one-layer MLP to
get ul

j as a hidden representation of h̃l
j , then through a softmax function we

obtain the weight vector zj for the word or phrase annotation h̃l
j . After that, we

compute the representation of the sentence or document rl as a weighted sum
of the word or phrase annotations based on the weight vectors. From another
point of view, zj can be viewed as the update gates in the gate mechanism, the
representation of each layer rl can be regarded as a choice among the word or
phrase annotations h̃l

j .

Global Attention. After the local-level attention layer, we obtain a multi-
scale hierarchical representation (R in Fig. 1.) for the given text. Depending on
the text and the task, the weights of different levels are not identical. Inspired
by [10], we introduce the global attention mechanism (see Fig. 2(b)) to reward
representations that are informative to classify the category correctly.

Specifically,

pl = P(· | xj ; θ) = softmax(Wprl + bp), (12)
ol = tanh(Wgpl + bg), (13)

αl =
exp(o�

l og)∑
l exp(o�

l og)
, (14)

P =
∑
l

αlpl, (15)
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where Wp ∈ Rc×d, Wg ∈ Rc×c, bp ∈ Rc, bg ∈ Rc, og ∈ Rc are the parameters, c is
the number of categories. We first compute the class distribution pl = P(· | xj ; θ)
of each representation. Then we compute a hidden representation of pl like local
attention mechanism, and we measure the reliability of the representations at
each level as the similarity of ol with a vector og and get a normalized reliability
weight αl through a softmax function. Finally, we compute the coincident class
distribution P .

2.3 Architecture

HA-BLSTM is a hierarchical structure, which is effective to model the combina-
tions of features by mixing the information continuously in a bottom-up manner.
When the children nodes are combined into their parent node, the fused infor-
mation of two children nodes is also merged and preserved by their parent node.
The number of the layer in HA-BLSTM is l ∈ [1, 3], at each layer l, the activation
of the j-th (j ∈ [

1, T/2l−1
]
) hidden node hl

j ∈ Rd is computed as:

hl
j =

[
h̃l−1
2j ⊕ h̃l−1

2j+1

]
, (16)

h̃l−1
2j = BLSTM(hl−1

2j ), (17)

h̃l−1
2j+1 = BLSTM(hl−1

2j+1), (18)

where h̃l−1
2j , h̃l−1

2j+1 ∈ R2m are the outputs of BLSTM units. In the case of text
classification, for an input sequence of length T and the corresponding class y(i),
we first represent each word xj (j ∈ [1, T ]) into its corresponding vector h1

j ∈ Rd,
where d is the dimensionality of word embeddings. That is, the embeddings are
the input of the first layer, whose outputs are recursively applied to upper layers
until it arrives at the third layer. Vividly, h̃l

j can be viewed as the annotation
for the word or phrase. Through the BLSTM-based sequence encoder, the infor-
mation in the hidden nodes of the first layer can represent single words, the
combined information in the hidden nodes of the second and third layer can
represent bi-grams and four-grams.

Table 1. Statistics of the four datasets used in this paper.

Dataset Type Train size Dev. size Test size Class Average
length

Vocabulary
size

SST-1 Sentence 8544 1101 2210 5 19 18K

SST-2 Sentence 6920 872 1821 2 18 15K

TREC Sentence 5452 - 500 6 10 9.4 K

IMDB Document 25000 - 25000 2 294 392K



172 X. Niu and Y. Hou

3 Experiments

3.1 Datasets

We test our model on four benchmarks. Summary statistics of the datasets are
in Table 1.

• SST-1. Stanford Sentiment Treebank is a movie reviews dataset with one
sentence per review [3]. The objective is to classify a review as fine-grained
labels (very negative, negative, neutral, positive, very positive).1

• SST-2. Same as SST-1 but with neutral reviews removed and binary labels.
• TREC. Question classification dataset [12]. The task involves classifying a

question into 6 question types (abbreviation, description, entity, human, loca-
tion, and numeric value).2

• IMDB. The IMDB dataset consists of 100,000 movie reviews with binary
classes [13]. Each movie review has several sentences.3

3.2 Hyperparameters and Training

In all of the experiments, we adopt the publicly available word2vec vectors, which
are pre-trained on 100 billion words from Google News. The vectors have dimen-
sionality of 300 and were trained using the continuous bag-of-words architecture
[14]. Words that do not present in the set of pre-trained words are initialized
randomly. And the word embeddings are fine-tuned during training to improve
the performance. In order to ensure the input vector of each layer has the same
dimension, we use 75 as the dimensionality of hidden units. And dropout rate is
0.5, mini-batch size is 64. We choose these hyper-parameters which achieve the
best performance on the development set for the final evaluation.

We apply dropout in fully connected layers, which are before softmax layers.
The objective of our model is to minimize the cross-entropy error of the predicted
and true distributions. The object is to minimize the objective function:

J(θ) = − 1
n

n∑
i=1

log P
(i)

y(i) , (19)

where y(i) is the corresponding category, n is the number of train sequence and
θ denotes all the trainable parameters of our model.

1 http://nlp.stanford.edu/sentiment/ Data is actually provided at the phrase-level and
both phrases and sentences are used to train the model, but only sentences are scored
at test time [3,7,11]. Thus the training set is an order of magnitude larger than listed
in Table 1.

2 http://cogcomp.cs.illinois.edu/Data/QA/QC/.
3 http://ai.stanford.edu/∼amaas/data/sentiment/.

http://nlp.stanford.edu/sentiment/
http://cogcomp.cs.illinois.edu/Data/QA/QC/
http://ai.stanford.edu/~amaas/data/sentiment/
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3.3 Results

Overall Performance. As showed in Table 2, the HA-BLSTM model achieves
excellent performance on three out of four tasks compared with other models.
In the task of both topic classification (e.g. TREC) and sentiment classification
(e.g. SST-1, SST-2 and IMDB), the end-to-end HA-BLSTM shows a promising
performance to model sentences and documents without any extra knowledge
which is adopted in some tree-based neural network, e.g. Tree-LSTM [4], or
multi-task optimization, e.g. Multi-Task [5].

Our model does not get the best accuracy in IMDB dataset, which has longer
texts than the other three. The main reason may be the sensitivity of length in

Table 2. Experiment results of HA-BLSTM compared with other models. Performance
is measured in accuracy(%). Models are categorized into five classes. The first block
is Neural Bag-of-Words (NBOW) model. The second is Paragraph Vector (PV). The
third category is RecNN models. CNN models are the fourth block, and the last cate-
gory is RNN models and their variations. NBOW: The NBOW sums the word vectors
and applies a non-linearity followed by a softmax classification layer. PV: Distributed
representations of sentences and documents [11]. RAE: Recursive Autoencoders with
pre-trained word vectors from Wikipedia [1]. MV-RNN: Matrix-Vector RecNN with
parse trees [2]. RNTN: Recursive Neural Tensor Network with tensor-based feature
function and parse trees [3]. DCNN: Dynamic CNN with k-max pooling [7]. CNN-
non-static: CNN with fine-tuned pretrained word-embeddings [8]. CNN-MC: CNN
with static pretrained and fine-tuned pretrained word-embeddings [8]. LSTM: Stan-
dard Long Short-Term Memory Network [4]. BLSTM: Bidirectional LSTM [4]. Tree-
LSTM: Tree-Structured LSTM [4]. Multi-Task: RNN for Text Classification with
Multi-Task Learning [5]. LSTMN: Long Short-Term Memory Network for machine
reading [6].

Model SST-1 SST-2 TREC IMDB

NBOW 42.4 80.5 88.2 -

PV [11] 48.7 87.8 - 92.6

RAE [1] 43.2 82.4 - -

MV-RNN [2] 44.4 82.9 - -

RNTN [3] 45.7 85.4 - -

DCNN [7] 48.5 86.8 93.0 -

CNN-non-static [8] 48.0 87.2 93.6 -

CNN-MC [8] 47.4 88.1 92.2 -

LSTM [4] 45.8 86.7 - -

BLSTM [4] 49.1 86.8 - -

Tree-LSTM [4] 51.0 88.0 - -

Multi-Task [5] 49.6 87.9 - 91.3

LSTMN [6] 49.3 87.3 - -

HA-BLSTM 51.5 88.9 93.8 91.5
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RNN (LSTM), which is not effective to model a long text due to the excessively
long chain of information transmission even with several gating mechanisms.
Furthermore, the long text will lead to a low-variance attention distribution by
the softmax operation over all the words. In an extreme condition, the attention
distribution over a large number of words will tend to be uniform, which will
lose its discriminatory effectiveness.

Visualization of Attention. We visualize the local and global attention mech-
anisms to validate their ability to select informative words or phrases and to dis-
tinguish the suitable levels of representations for higher classification accuracy.

Fig. 3. The darker the color, the greater the weight.

Figure 3 shows that our model can capture discriminatory words for topic
classification in the TREC dataset. For example, our model accurately finds out
the key words location and Sea in the first sentence with label ‘Location’. For
the second sentence with label ‘Human’, our model localizes the word person.
Meanwhile, the local attention mechanism also works well for sentiment classi-
fication in the SST-1 dataset. Note that our model can find out the sentiment
words like love and ! in the third sentence. However the words goodness and
good, which also carrying strong sentiment, are paid little attention. That is, our
model can handle complex context to pay more attention to the word not in the
fourth sentence, which has a label of ‘Very Negative’.

To demonstrate the effectiveness of the global attention mechanism, we pro-
pose a Hierarchical Local-Attention BLSTM (HLA-BLSTM) without global-
attention to compare with HA-BLSTM. Figure 4(a) shows the classification
accuracy of HA-BLSTM and HLA-BLSTM. Obviously, HA-BLSTM works bet-
ter than HLA-BLSTM, especially on SST-1 and TREC datasets. It indicates
that our global attention mechanism can accurately find out the representation
in which level is informative.

Generally, representations in different hierarchical levels have different
degrees of abstraction. The lower-level representations only contain semantics
of a single word or phrase, while the higher-level representations would be about
the compositional semantics or topic-level information. As showed in Fig. 4(b),
we get the average weight of different levels over the four datasets. In different
datasets, there is a little difference in the attention distributions over different
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Fig. 4. (a) Classification accuracy of HA-BLSTM and HLA-BLSTM. (b) The average
weight of different levels over the four datasets.

layers. The first layer undertakes the highest average weight over all datasets,
which contributes the most information to the classification task. The higher the
layer is, the higher the level of abstraction is, and the less its contributions to
the final classification. The reason for the less effectiveness in the higher-level
layer may be caused by the low nonlinearity of the textual data and the richness
of semantics of a single word. In Computer Vision (CV) which usually adopts a
large number of layers for higher abstraction [15], the value of a single pixel can
mean nothing, and a block of pixels with compositional semantics may give us
a little information and the whole image does mean entire semantics [16]. How-
ever, a single word can contain rich semantic information, and a large number
of layers in neural network seem to be unnecessary in NLP.

Effect of the Number of Layers. Figure 5 shows the effect of the number of
layers among the four datasets. We can see that three-layer BLSTM architecture
achieves the best performance compared with deeper or shallower hierarchical
structures. Specially, one-layer BLSTM does not get a promising accuracy due
to the missing of global attention. In our opinion, the increasing layers of net-
works indeed learn the semantic representation with high-level abstraction, thus
leading to a better performance. However, it tends to be worse when a much
deeper hierarchical structure (with more than three layers) is adopted, which is
unnecessary for text modeling and introduces redundant noises.

Fig. 5. The classification accuracy of models with different layers from one to five.
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4 Conclusion

In this paper, we propose HA-BLSTM, Hierarchical Attention BLSTM for mod-
eling sentences and documents. HA-BLSTM adopts a hierarchical structure to
represent a text by a multi-scale summarization instead of a fixed-length vec-
tor. The application of BLSTM promotes features mixed better. The local and
global attention mechanisms can select the highly informative components and
representations of a sequence respectively. The experimental results demonstrate
that our model performs better than previous methods.
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Abstract. Bi-directional LSTM (BLSTM) often utilizes Attention
Mechanism (AM) to improve the ability of modeling sentences. But addi-
tional parameters within AM may lead to difficulties of model selection
and BLSTM training. To solve the problem, this paper redefines AM from
a novel perspective of the quantum cognition and proposes a parameter-
free Quantum AM (QAM). Furthermore, we make a quantum interpreta-
tion for BLSTM with Two-State Vector Formalism (TSVF) and find the
similarity between sentence understanding and quantum Weak Measure-
ment (WM) under TSVF. Weak value derived from WM is employed
to represent the attention for words in a sentence. Experiments show
that QAM based BLSTM outperforms common AM (CAM) [1] based
BLSTM on most classification tasks discussed in this paper.

Keywords: Attention mechanism · Two-state vector formalism · Weak
measurement · Quantum theory

1 Introduction

Recently, neural network based sentence modeling approaches have shown excel-
lent abilities in modeling sentences, such as Recursive Neural Networks (RecNN)
[2], Recurrent Neural Networks (RNN) [3] and Convolutional Neural Networks
(CNN) [4]. Among these models, LSTM (a kind of RNN) has shown its excel-
lent ability to model the word order and long-term dependencies in sentences.
Bi-directional LSTM (BLSTM) was proposed to model the context dependency
from past and future. To achieve sentence vectors, BLSTM averages the hid-
den states of all nodes.1 However, not all of those hidden nodes have equal
importance for sentence representation. Attention Mechanism (AM) was thus
introduced to weight the importance of hidden nodes in BLSTM [1]. Although
AM can improve the ability of BLSTM for modeling sentences, the additional
parameters are also introduced and may cause difficulties of model selection and
BLSTM training.

Therefore, this paper attempts to design an economical and effective AM
from the perspective of quantum cognition. The new AM will reduce the para-
meters and the complexity of model selection on the premise of ensuring the
1 http://deeplearning.net/tutorial/lstm.html.
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competitiveness of the model. We regard sentence modeling as the process of
human understanding of sentences, which is a cognitive activity. Quantum The-
ory (QT) is widely used to explain cognitive activities in psychology and cogni-
tion science. Wang et al. clarified the potential of using QT to build models of
cognition from three aspects: Why apply quantum concepts to human cognition?
How is quantum cognitive modeling different from traditional cognitive model-
ing? What cognitive processes have been modeled using a quantum account? The
applications of using QT to explain or model cognitive activities have been pro-
posed [5]. Bruza et al. used quantum probability theories to address cognitive
phenomena that have been proven recalcitrant to model by means of classical
probability theory [6]. Therefore, it is feasible and necessary to model AM from
the perspective of quantum cognition.

Before modeling a Quantum Attention Mechanism (QAM), we find the sim-
ilarity between BLSTM and Two-State Vector Formalism (TSVF). TSVF is a
recently concerned formalism for QT. It considers a more complete description
for a quantum state [7–9]. The standard QT assumes that a system at a given
time t is described completely by a quantum state |Ψ〉 [10]. Aharonov, Bergmann,
Lebowitz (ABL) proposed the TSVF of quantum mechanics, which describes a
system at a given time t by a two-state vector 〈Φ||Ψ〉 [11]. In TSVF, the quantum
state |Ψ〉 and 〈Φ| describe the information from history and future respectively.
That is, TSVF models the effect on current system state from both the history
information and the future information. It is a natural analogy with the exist
of forward propagation information and backward propagation information in
BLSTM. Therefore, we try to use TSVF to model the effect on current attention
from both history and future information.

Human’s comprehension of the sentence will gradually change with reading
the words one by one. The above change of human’s cognition is called cognitive
shift [12]. To understand the sentence, people would subconsciously judge the
importance of the key words when reading the sentence. The judgement can be
seen as a Quantum Measurement (QM). There are two kinds of QM: Standard
Quantum Measurement (SQM) and Weak Measurement (WM), and the latter
is the generalization of the former [13]. After the measurement, SQM will make
the measured system collapse, while WM only makes the system state biased
slightly. Therefore, WM can be used to model the measurement process which
exerts little effect on the quantum system to be measured. Because the process of
human understanding of sentences is gentle, and human’s comprehension of the
sentence would not be changed a lot after reading a word in most cases. Hence,
we assume that the process of the above cognitive shift is often gradual, with a
small amount of mutation. It turns out that the general WM framework is more
appropriate to model this cognitive shift. In WM, weak value is the statistical
average value of the measurement results. Consequently, we propose a Quantum
Attention Mechanism (QAM) which employs WM rather than SQM to model
the process of human understanding of sentences, and weak value under TSVF
to represent the degree of importance of words for human understanding of the
sentence.
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Our contributions can be summarized as follows: First, we propose a Quan-
tum Attention Mechanism (QAM) which models the different importance of
words from a cognitive perspective and does not introduce additional parame-
ters. Second, we qualitatively and quantitatively analyse that QAM is more
effective and efficient than CAM for the improvement of the performance. Third,
we conduct a large number of experimental studies on five benchmark datasets
to show that our mechanism is quite competitive compared with the previous
mechanism.

2 Bi-Directional LSTM

LSTM was presented [14] to specially address the problem about learning long-
term dependencies. As shown in Fig. 1, the LSTM unit retains a separate memory
cell inside that updates and exposes its content only when considered necessary.
At each time step t, we define the LSTM units to be a collection of vectors in
Rl: an input gate it, a forget gate ft, an output gate ot, a memory cell ct and a
hidden state ht. The entries of the gating vectors it, ft and ot are in [0, 1]. The
transition equations of LSTM are the following:

it = σ (Wixt + Uiht−1 + bi) , (1)
ft = σ (Wfxt + Ufht−1 + bf ) , (2)
ot = σ (Woxt + Uoht−1 + bo) , (3)
zt = tanh (Wzxt + Uzht−1 + bz) , (4)
ct = it � zt + ft � ct−1, (5)
ht = ot � tanh (ct) , (6)

where xt is the input at the current time step, σ denotes the logistic sigmoid
function and � denotes elementwise multiplication. Wi, Wf , Wo, Wz ∈ Rl×d,

Fig. 1. Schematic of LSTM unit.
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Ui, Uf , Uo, Uz ∈ Rl×l and bi, bf , bo, bz ∈ Rl are trainable parameters. Here, l
and d are the dimensionality of hidden states and input respectively. As we can
see, the forget gate controls the amount of which each unit of the memory cell
is erased, the input gate determines how much each unit is updated, and the
exposure of the internal memory state is determined by the output gate.

Fig. 2. TSVF in BLSTM.

In this paper, we adopt BLSTM to take advantage of additional backward
information and thus enhance the memory capability. We encode the hidden
state of a BLSTM unit as following:

hi =
[−→
hi ⊕ ←−

hi

]
, (7)

where
−→
hi and

←−
hi are the same as ht in formula (6), the ⊕ indicates concatenation

operation. For a node in BLSTM, it acquires the information from both history
and future. The above feature of BLSTM is similar to the TSVF (see Fig. 2),
which has the pre-state |Ψ〉 and the post state 〈Φ|.2 Thus, we attempt to
model the effect on the current attention from both history information and
future information through the TSVF.

3 Model

3.1 The Architecture of Our Model

The overall architecture of our model is shown in Fig. 3. In the case of text
classification, for an input sequence of length T and the corresponding class y(j)

(j ∈ [1,m], m is the number of training sentences), we first represent each word
xi ∈ RKy into its corresponding vector Exxi ∈ Rd, where Ex ∈ Rd×Ky , Ky is the
vocabulary size of the dataset, and d is the dimensionality of word embeddings.
That is, the embeddings are the inputs of BLSTM, whose outputs are the hidden
states hi ∈ R2l. Then, through the common Attention Mechanism (CAM) or the
Quantum Attention Mechanism (QAM), the hidden states hi are integrated into
a sentence vector h ∈ R2l. Finally, we calculate the probability of obtaining the
corresponding class y(j) through logistic regression.
2 In QT, the quantum probability space is encapsulated in an Hilbert space H

n, which
is an abstract vector space processing the structure of the inner product. A finite
dimensional space is sufficient for the work reported in this paper. Thus, we limit
our researches to a finite real space R

n. With the Dirac’s notation, a quantum state
can be written as a column vector |Ψ〉, whose conjugate transpose is a row vector〈Ψ |.
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Fig. 3. The overall diagram of the model.

Fig. 4. Quantum Attention Mechanism.

3.2 Quantum Attention Mechanism

Analogy to the Weak Measurement (WM) [13] in physics, in QAM (See Fig. 4),
we regard human’s understanding to the meaning of the sentence as the system,
the word embeddings as the observable variables, and the importance of the
words to the sentence comprehension as the measurement result. The pre-
state is the forward memory cell cini = −→ci ∈ Rl which contains the information of
all words in the past, the post-state is the backward memory cell cfini = ←−ci ∈ Rl

which contains the information of all words in the future. Thus, the weak value
under the Two-State Vector Formalism (TSVF) is

Wi =
〈cfini |Exxi|cini 〉

〈cfini |cini 〉 (8)

which can be regarded as the degree of importance of the words to understand
the meaning of the sentence at the statistical level.
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As a result of several huge weak values produced by the above formula, we
apply a non-linear transformation to the weak value:

wi = tanh (Wi) (9)

Finally, QAM computes the sentence vector h as follows:

h =
∑
i

wihi (10)

4 Experiments

4.1 Datasets

We test our model on five benchmarks. Summary statistics of the datasets are
in Table 1.

Table 1. Statistics of the five datasets used in this paper. CV means there was no
standard train/test split and thus 10-fold CV is used.

Dataset Train size Dev. size Test size Class Average length Vocabulary size

MR 10662 - CV 2 21 20K

SST-1 8544 1101 2210 5 19 18K

SST-2 6920 872 1821 2 18 15K

Subj 10000 - CV 2 21 21K

TREC 5452 - 500 6 10 9.4 K

MR Movie reviews dataset with one sentence per review. The task is to
detect positive/negative reviews [15].3

SST-1 Stanford Sentiment Treebank is an extension of MR, re-labeled by
[2]. The objective is to classify a review as fine-grained labels (very negative,
negative, neutral, positive, very positive).4

SST-2 Same as SST-1 but with neutral reviews removed and binary labels.
Subj Subjectivity dataset where the task is to classify a sentence as being

subjective or objective [17].
TREC Question classification dataset [18]. The task involves classifying a

question into 6 question types (abbreviation, description, entity, human, loca-
tion, and numeric value).5

3 https://www.cs.cornell.edu/people/pabo/movie-review-data/.
4 http://nlp.stanford.edu/sentiment/ Data is actually provided at the phrase level.

Hence both phrases and sentences are used to train the model, but only sentences
are scored at test time [2,4,16]. Thus the training set is an order of magnitude larger
than listed in Table 1.

5 http://cogcomp.cs.illinois.edu/Data/QA/QC/.

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/
http://cogcomp.cs.illinois.edu/Data/QA/QC/
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4.2 Hyperparameters and Training

In all of the experiments, we adopt the publicly available word2vec vectors, which
are pre-trained on 100 billion words from Google News. The vectors have dimen-
sionality of 300 and are trained using the continuous bag-of-words architecture
[19]. Words that do not present in the set of pre-trained words are initialized
randomly. And the word embeddings are fine-tuned during training to improve
the performance. We use 300 as the dimensionality of hidden units. And dropout
rate is 0.5, mini-batch size is 64. We choose these hyper-parameters which achieve
the best performance on the development set for the final evaluation.

Early stopping strategy on dev sets is employed to prevent overfitting. We
apply dropout in the fully connected layer of logistic regression, which is before
the softmax layer of logistic regression. The objective of our model is to minimize
the cross-entropy error of the predicted and true distributions. The object is to
minimize the objective function:

J (θ) = − 1
m

m∑
j=1

log P
(j)

y(j) (11)

where y(j) is the corresponding category, θ denotes all the trainable parameters
of our model. Examples are padded to the longest sequence in each batch and
masks are generated to help identify the padded region. For datasets without a
standard dev set, we randomly select 10% of the training data as the dev set.
Training is done through stochastic gradient descent over shuffled mini-batches
with the Adadelta update rule.

4.3 Results

Overall Performance. As showed in Table 2, Quantum Attention Mechanism
based BLSTM (QAM-BLSTM) achieves excellent performance on four out of five
tasks compared with the common Attention Mechanism based BLSTM (CAM-
BLSTM) and other methods. In the tasks of both topic classification (e.g. TREC)
and sentiment classification (e.g. SST-1, STT-2, and Subj), QAM-BLSTM shows
a better performance than CAM-BLSTM. There are two reasons to obtain the
above experimental results: First, QAM has no extra parameters introduced by
CAM and reduces the complexity of model selection. Second, QAM can capture
the forward and backward information in the forward and backward memory
cell −→ci and ←−ci , while CAM does not utilize any contextual information.

QAM-BLSTM gets a lower accuracy than CAM-BLSTM in the task of MR,
whose training set is bigger than the other four, as showed in Table 2. The main
reason maybe is that the bigger training set makes the additional parameters
of CAM learn more information. While the other four datasets do not have so
much data to train the additional parameters of CAM.
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Table 2. Experiment results of QAM-BLSTM compared with CAM-BLSTM and other
methods. The AM in CAM-BLSTM is the same as the AM in [1]. Performance is mea-
sured in accuracy(%). RAE: Recursive Autoencoders with pre-trained word vectors
from Wikipedia [20]. MV-RNN: Matrix-Vector RecNN with parse trees [21]. RNTN:
Recursive Neural Tensor Network with tensor-based feature function and parse trees
[2]. DCNN: Dynamic CNN with k-max pooling [4]. NBOW: The NBOW sums the
word vectors and applies a non-linearity followed by a softmax classiffcation layer.
Sent-Parser: Sentiment analysis-specific parser [22]. Tree-CRF: Dependency tree
with Conditional Random Fields [23].

Model MR SST-1 SST-2 Subj TREC

CAM-BLSTM [1] 80.0 48.7 86.2 92.0 92.0

QAM-BLSTM 79.8 49.8 87.0 92.3 93.6

RAE [20] 77.7 43.2 82.4 - -

MV-RNN [21] 79.0 44.4 82.9 - -

RNTN [2] - 45.7 85.4 - -

DCNN [4] - 48.5 86.8 - 93.0

NBOW - 42.4 80.5 - 88.2

Sent-Parser [22] 79.5 - 84.7 - -

Tree-CRF [23] 77.3 - - - -

Fig. 5. Visualization of Attention. The darker the color, the greater the weight. The
actual category is given by the dataset, the prediction category is predicted by the
model and the prediction probability is the probability of achieving the prediction
category.

Visualization of Attention. We visualize CAM and QAM to compare their
ability to select informative words for higher classification accuracy, as shown in
Fig. 5. We select three typical sentences from SST-2 dataset to clarify that QAM
does better on capturing informative words than CAM.
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Fig. 6. Training time ratio of CAM-BLSTM and QAM-BLSTM. We assume the train-
ing time ratio of CAM-BLSTM is 100%, and the training time ratio of QAM-BLSTM
is the proportion of the training time of QAM-BLSTM in the training time of CAM-
BLSTM.

For the first sentence, CAM and QAM could accurately find out the senti-
ment words “silliest” and “incoherent”, and the two models both give the right
predictions. For the second sentence, QAM-BLSTM gives the right prediction
while CAM-BLSTM gives the wrong prediction. CAM and QAM can both find
the sentiment words “Frenetic” and “funny”, and QAM gives lower weight to
the above words than CAM. The reason is that QAM finds and gives more
weight to the transitional word “but” and the negative word “not”, which are
not detected by CAM. That is, QAM can handle more complex contexts than
CAM. The above conjecture could also be verified by the third sentence. The
two models give the right predictions while the prediction probability given by
QAM-BLSTM is lower than CAM-BLSTM, which seems to indicate that CAM-
BLSTM does better than QAM-BLSTM on the classification task. However, the
sentiment of the first part of the sentence is negative, which is detected by QAM
through the high weight given to the word “not”. Finally, QAM-BLSTM still
gives the right prediction, despite with the lower prediction probability than
CAM-BLSTM.

Training Time. Figure 6 shows the training time ratio of the two models.
Taken as a whole, the training time of QAM-BLSTM is shorter than CAM-
BLSTM as a result of the former without the additional parameters which are
introduced by the latter. On average, the training time of QAM-BLSTM is 90%
of the training time of CAM-BLSTM, which indicates that the former is more
efficient than the latter.

5 Conclusion

In this paper, we propose a parameter-free Attention Mechanism (AM): QAM,
Quantum Attention Mechanism for modeling sentences more effectively and
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efficiently. We first employ Weak Measurement (WM) to model the process
of human understanding of sentences from a quantum cognitive perspective.
The weak value under the Two-State Vector Formalism (TSVF) represents the
importance of words in the sentence. Experimental results demonstrate that
QAM based BLSTM (QAM-BLSTM) performs better than common AM based
BLSTM (CAM-BLSTM) for modeling sentences in most classification tasks.
Qualitative and quantitative results show that QAM is more effective and effi-
cient than CAM in handling complex contexts and training time.
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Abstract. Convolutional neural networks (CNNs) have been widely
applied in the field of computer vision. Nowadays, the architecture of
CNNs is becoming more and more complex, involving more layers and
more neurons per layer. The augmented depth and width of CNNs
will lead to greatly increased computational and memory costs, which
may limit CNNs practical utility. However, as demonstrated in previ-
ous research, CNNs of complex architecture may contain considerable
redundancy in terms of hidden neurons. In this work, we propose a mag-
nitude based binary neuron pruning method which can selectively prune
neurons to shrink the network size while keeping the performance of the
original model without pruning. Compared to some existing neuron prun-
ing methods, the proposed method can achieve higher compression rate
while automatically determining the number of neurons to be pruned per
hidden layer in an efficient way.

Keywords: Deep learning · Convolutional neural network · Condensa-
tion · Pruning

1 Introduction

Nowadays, convolutional neural networks (CNNs) have achieved great success
on image recognition [1], object detection [2] problems. However, the state-of-
the-art CNNs always have large quantities of parameters which need hundreds of
megabytes for storage. In addition, such large number of parameters can make
the testing process very time-consuming, energy-consuming and may demand
large amount of RAM. All these problems make the CNNs hard to be deployed
on mobile devices or chips whose ROM, RAM and computing ability are limited.

It has been shown there exists much redundancy [3] in CNNs, which is mainly
caused by the large amount of parameters in the networks. Many prior researches
[4–16] have tried to compress the CNNs while keeping comparative performance
as the original model. These studies can be categorized as three directions,

– Network mimicking. The methods in this direction normally train a “student”
network with much smaller size (e.g., shallower [4] or FitNets [15]) to mimic
a pre-trained large-scale “teacher” model’s behavior.

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 189–197, 2017.
https://doi.org/10.1007/978-3-319-70096-0_20
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– Weight decomposition. These techniques use low-rank approximation [11,12]
to factorize an n-by-n weight matrix to one n-by-1 and one 1-by-n matrix so
that both the number of parameters and FLOP decrease. This idea is also
borrowed to build the Inception-V3 network [17].

– Neuron pruning. These methods [8,10,13,14,16,18] directly remove the
insignificant parameters or neurons in a network to shrink the size. They
often apply a retraining process after pruning in order to compensate the
performance loss.

Methods in these three categories can cooperate with each other so that
better compressing performance can be achieved.

Compared to other two categories, neuron pruning also helps for designing
network architecture. When building a CNN, it’s easy to set excessive neurons
than it actually needs. These redundant neurons can make the network more
vulnerable to over-fitting. With neuron pruning, we expect to prune those less
important neurons and make the network more robust.

There are two important steps in neuron pruning methods, determining which
neurons to prune and deciding the number of neurons to be pruned per layer.
In this work, we apply an input and output weight magnitude based method
to decide which neurons should be pruned. Compared to other neuron pruning
methods, ours can achieve highest compression rate when keeping same or better
model performance. Also, we propose an efficient binary search based pruning
method to automatically decide the number of neurons per layer to be pruned
while others need to manually set the number or prune neurons in an inefficient
iterative way.

The structure of this paper is as follows, Sect. 2 introduces the related works.
In Sect. 3, we present the details of proposed neuron pruning method. Section 4
shows our experimental results on Lenet-5 and VGG-16 model. Section 5 gives
our conclusions.

2 Related Works

Neuron pruning is a straight-forward way to compress the network’s size. Given
a large-scale neural network, it tries to remove some unimportant neurons which
cause least harm to the performance.

The first step of neuron pruning is to decide which neurons should be pruned
[10,13,14,16]. The idea in [16] is to wire neuron pairs that have similar input
weights in the same layer. [14] preserves those neurons whose weights are the
most diverse from others and recover the performance by a re-weighting process.
However, both [14] and [16] can only be applied on fully connected layer. [13]
prunes the filters of CNN based on the absolute sum of their weights. [10] removes
the neurons who generate the least activation on the training data. Neverthe-
less, [10] just takes the activation of neurons into account while neglecting their
output connection weights. If the output connection weights of a neuron are
significant, it’s important even its activation is insignificant than others.
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The second step of neuron pruning is to decide how many neurons should be
pruned in one layer. [16] manually sets the number of pruning neurons. [13,14]
prune several fixed percentages of neurons to observe the loss brought by pruning.
[10] iteratively prunes a small portion of neurons before the loss exceed tolerance.
The first three are hard to find the optimal number of neurons to be pruned and
the last one can take too long to reach the optimal.

3 Neuron Pruning Method

The term neuron in the following part refers to either filter in convolutional layers
or unit in fully connected layers. As shown in Fig. 1, when pruning a neuron,
we will both prune its input and output connections. In a convolutional layer, it
corresponds to prune the filter of a feature map and the kernels connected to it
in the next layer’s filters.

Fig. 1. Before and after pruning

3.1 Determining Which Neurons to Prune

In [13], it defines the importance of a neuron j in layer i by the absolute input
weight sum

∑ |Wi,j |. A lower value of
∑ |Wi,j | means the neuron is less impor-

tant since it gives an expectation of the magnitude of the output. Neurons with
smaller of that value tend to produce weaker activations compared to other
neurons. However, even if a neuron’s activation is weak, a large enough out-
put connection weight can make it feed a significant input to next layer than
other neurons with small output connection. Thus, when considering a neuron’s
influence on the network, we should take both its input and output connection
into account. In this work, we define the importance of neuron j as Eq. 1 where
IOM represents input and output magnitude. A neuron with small IOM tends
to have less influence on the network than other neurons within the same layer
and in a higher priority of being pruned.

IOMj =
∑

|Wj,input| +
∑

|Wj,output| (1)
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Algorithm 1. Binary search based pruning
Input: network model M , original accuracy a, number of neurons n in current layer,

minimal percentage of neuron counts t%.
1: Set p = 0, l = n
2: calculate the IOM of each neuron
3: while l > max(t%∗n, 1) do
4: prune (p + 1

2
l) neurons of current layer with smallest IOM value in M to form

new model M ′

5: retrain M ′

6: Evaluate the accuracy a′ of M ′

7: if a′ < a then
8: break
9: else

10: Set p = p + 1
2
l, l = 1

2
l

11: end if
12: end while
Output: p

3.2 Binary Search Based Pruning Method

Previous works normally decide the number of neurons to be pruned empirically
[16,18] or iteratively [10] before the performance decrease too much. [13] mea-
sures the sensitivity of layers by sequentially removing 10% neurons of one layer
and record the trend of accuracy drop. Then it needs to manually decide what
percentage of neurons should be pruned according to how drastically the accu-
racy drops. This process is a trial and error work, which can be time-consuming
when pruning a large-scale network. For the iterative way in [10], it needs to set a
parameter for deciding pruning intensity. This parameter needs to be fine-tuned
since a lower intensity will lead to slow pruning process while higher intensity
will decrease the performance dramatically. In this section, we propose a binary
search based pruning (BSBP) method which can automatically decide how many
neurons per layer should be pruned in a more efficient way.

The process is illustrated in Algorithm 1 where p and l represents pruned
and remaining number of neurons. This idea is inspired by Binary Search which
is an efficient searching method on an ordered array. At first, we sort neurons
of the current layer by IOM value. Then in each pruning iteration, we try to
prune p plus half of the left neurons, which is 1

2 l, and retrain. At the end of each
iteration, the p and l will be updated. The algorithm will terminate when l is
not higher than 1.

To find an optimal pruning numbers, the time complexity of our method is
O(log(n)) while the empirical and iterative ways are O(n). However, in practice,
it can still take a lot of retraining times if every neuron counts when pruning
a layer with excessive neurons. To balance the efficiency and accuracy, we can
set a minimal percentage of neuron counted as t% of the number of neurons n
in the layer. We can also set different t% for layers if the numbers of neurons
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diverse a lot in different layers. In this case, the stopping criteria turns to be
l ≤ max(t% ∗ n, 1).

4 Experiment

4.1 Experimental Setting

We will evaluate our method BSBP-IOM on two networks: LeNet-like net [19]
on MNIST dataset and an Imagenet pretrained VGG-16 [20] model fine-tuned
by Caltech256 dataset [21]. The baseline methods we compare with are Net-
work Trimming (NT ) [10] and Pruning Filters for Efficient ConvNets (PFEC )
[13], which are also neuron pruning based methods and can prune the convolu-
tional layers. Furthermore, we apply BSBP to decide the pruning number for
PFEC (BSBP-PFEC ) and compare it with PFEC and BSBP-IOM to show the
efficiency of BSBP and the effectiveness of IOM.

When evaluating the performance of different pruning methods, there are two
conflicting criteria which are accuracy after pruning Ap and compression rate Rc.
Often, Ap decreases as Rc increases. In order to make the results comparable,
we require the least accuracy after pruning should be no less than the original
accuracy Ao, and the one who achieves higher Rc is better. Note this restriction
is set to make different methods comparable and the Rc is possible not as high
as previous works showed while they allow Ap to be lower than Ao.

To compare the efficiency of different methods, it’s not straightforward since
some algorithms may terminate quite early with a small number of neurons
pruned so they will surely cost less retraining times. Here, we investigate the
pruned number at the time step where there is one algorithm first stops. A
larger pruned number at this step represents higher efficiency.

Our experiment is run on MXNet [22] and a desktop equipped with a
GTX1080 GPU and an i7-7700k CPU.

4.2 Experiment on LeNet

The LeNet-like network we adopt has a structure of (20-50-500-10) where the
first two are convolutional layers, the third is a fully-connected layer and the
last is an output layer. This network is trained on the full training set of MNIST
and achieves an accuracy of 99.169% on the testing set.

In terms of pruning parameter settings, we set the balance parameter t% as
2% for all layers in our method. For [13], when pruning single layer, it imple-
ments the prune-retrain process for nine times to prune 10% to 90% neurons to
determine a layer’s sensitivity. In this experiment, we follow the same process but
stops when Ap is lower than Ao. For [10], we follow their prune-retrain process
until Ap is lower than Ao. For retraining, we set epoch as 10 and learning rate
as 1 ∗ 10−3.

The layer-wise pruning result is shown in Fig. 2 and Table 1. In Fig. 2, we
may find BSBP-PFEC is faster than PFEC, which proves the BSBP method
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Fig. 2. Layer-wise pruning result

Table 1. Neurons Left (NL) and Compression Rate (CR) for LeNet condensation

Method conv1 conv2 fc1

NL CR NL CR NL CR

BSBP-IOM 4 80.00% 17 66.00% 62 87.60%

BSBP-PFEC 4 80.00% 19 62.00% 101 79.80%

PFEC 4 80.00% 20 60.00% 100 80.00%

NT 11 55.00% 29 42.00% 272 45.60%

is more efficient than the sequential way of PFEC. Also, Table 1 illustrates that
our method BSBP-IOM can achieve higher or at least the same compression
rate than any other baselines which shows the effectiveness of IOM. Although
NT takes less retraining times, it decreases the model’s performance drastically
and terminates the iteration with a low compression rate.

4.3 Experiment on VGG-16

The VGG-16 model is fine-tuned on Caltech256 dataset1 and achieves 77.47%
top-1 accuracy on testing set. For retraining, we set a constant learning rate as
1 ∗ 10−4 and train 5 epochs in each retraining process. Since layer conv5 3 and
fc 6 account for 72.5% parameters, we first implement the pruning methods on
these two layers. Furthermore, we take two intermediate layers, say conv2 2 and
conv3 3, into account.The other settings are the same as Sect. 4.2.

The result is shown in Fig. 3 and Table 2. From this result, we can observe
that BSBP-IOM can always obtain higher compression rate than other base-
lines which further proves the effectiveness of IOM pruning criteria. It’s also
noticeable that BSBP-PFEC is not as efficient as PFEC on layer conv2 2 and
conv5 3. This is reasonable since there is only a few percentage of neurons can
be pruned on these two layers and the sequential way will find the point faster
than binary way. Once the layers are more robust to pruning like layer conv3 3
and fc 6, the binary way can always be more efficient than the sequential way.

1 The fine-tuning process is the same as https://github.com/dmlc/mxnet-notebooks/
blob/master/python/how to/finetune.ipynb.

https://github.com/dmlc/mxnet-notebooks/blob/master/python/how_to/finetune.ipynb
https://github.com/dmlc/mxnet-notebooks/blob/master/python/how_to/finetune.ipynb
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Fig. 3. Layer-wise pruning result

Table 2. Neurons Left (NL) and Compression Rate (CR) for VGG-16 condensation

Method conv2 2 conv3 3 conv5 3 fc 6

NL CR NL CR NL CR NL CR

BSBP-IOM 86 32.81% 144 43.75% 352 31.25% 1152 71.88%

BSBP-PFEC 98 23.44% 144 43.75% 408 20.31% 1600 60.94%

PFEC 103 19.53% 180 29.69% 410 19.92% 1639 59.99%

NT 95 25.78% 205 19.92% 397 22.46% 1504 63.28%

5 Conclusion and Discussion

In this work, we propose an input and output weight magnitude based prun-
ing criteria. The experiments show that the output connection weights are also
important when deciding whether a neuron should be pruned. Also, we develop a
binary search based neuron pruning method which can automatically determine
how many neurons per hidden layer should be pruned. The experimental results
on LeNet-5 and VGG-16 show our method can achieve higher compression rate
and is more efficient than baseline methods while keeping same or better perfor-
mance than the original model.
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Abstract. In this paper, the convolutional neural network and long
short-term memory (CNN-LSTM) neural network model is proposed to
analyse the quantitative strategy in stock markets. Methodically, the
CNN-LSTM neural network is used to make the quantitative stock selec-
tion strategy for judging stock trends by using the CNN, and then make
the quantitative timing strategy for improving the profits by using the
LSTM. It is demonstrated by the experiments that the CNN-LSTM
neural network model can be successfully applied to making quantita-
tive strategy, and achieving better returns than the basic Momentum
strategy and the Benchmark index.

Keywords: Neural network · CNN · LSTM · Quantitative strategy ·
Stock markets

1 Introduction

The complexity of the internal structure in stock price system and the diver-
sity of the external factors (the national policy, the bank rate, price index, the
performance of quoted companies and the psychological factors of the investors)
determine the complexity of the stock market, uncertainty and difficulty of stock
price forecasting task [1]. The stock market has the characteristics of high return
and high risk, which has always been concerned on the analysis and forecast in
the stock prices [2,3]. One of the main ideas of the quantitative strategy is to
predict and judge the future price of the stock by using the trend of the stock
market, and draw up the corresponding investment strategy [4].

A convolutional neural network (CNN) is a mapping from input to output in
essence, which can study the mapping relationship without precise mathemati-
cal expression between any input and output. As long as convolutional network
training using the known pattern with a pooling layer to extract the most repre-
sentative global features, network has the mapping ability between the input and
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output [5]. Thus we can use CNN for stock ranker to achieve the quantitative
stock selection strategy.

To achieve better returns, we adopt the recurrent neural networks (RNN)
which have proved one of the most powerful models for processing sequential
data. Long Short-Term Memory (LSTM) is one of the most successful RNNs
architectures to fix the vanishing gradient problem in neural network [6]. LSTM
introduces the memory cell, a unit of computation that replaces traditional arti-
ficial neurons in the hidden layer of the network. With these memory cells,
networks are able to effectively associate memories and input remote in time,
hence suit to grasp the structure of stock data dynamically over time with high
prediction capacity [7]. Hence we can use LSTM to achieve the quantitative
timing strategy.

The experimental results show that this CNN-LSTM neural network model
can find potential rules from historical datasets, and the corresponding quanti-
tative selection and timing strategy is valid and profitable. The rest of this paper
is organized as follows. In Sect. 2, we give a brief review of the CNN and LSTM,
then describe the CNN-LSTM framework. Section 3 presents the CNN-LSTM
flow chart, and the experimental results of as well as the comparisons of the
basic Momentum strategy and Benchmark index. Finally, we conclude the paper
and present future work in Sect. 4.

2 CNN-LSTM Neural Network

2.1 CNN

For supervised classification, CNN is among the most successful models and gets
the state-of-the-art result in many benchmarks [8]. Actually, it involves many
more connected weights. A form of regularization is realized in the architec-
ture, and some degree of translation invariance is provided automatically. This
particular kind of neural network assumes that we wish to learn filters, in a
data-driven fashion, as a means to extract features describing the inputs. The
full CNN framework and formula derivation can be seen in the literatures [9].

CNNs are hierarchical models whose convolutional layers alternate with sub-
sampling layers, reminiscent of simple and complex cells in the primary visual
cortex [10]. At a convolution layer, the previous layer’s feature maps are con-
volved with learnable kernels, which form the output feature map through the
activation function. Multiple input maps can be combined as the output with
convolutions. For convenience we just introduce the convolution layer:

xl
j = f

( ∑
i∈Mj

xl−1
i ∗ kl

ij + blj

)
, (1)

where Mj represents a selection of input maps.



200 S. Liu et al.

2.2 LSTM

Recurrent neural networks have the capability to dynamically incorporate past
experience due to internal recurrence [11]. RNNs can project the dynamic prop-
erties of the system automatically, so they are computationally more powerful
than feed-forward networks, and the valuable approximation results are obtained
for chaotic time series prediction [12,13]. One of RNN models is long-short-term
memory which works when there is a long delay, and the signals with a mixture
of low and high frequency components can be able to handled. The learning
process of RNN models however requires a relatively long time because there is
a recurrent network architecture [14].

A schematic of the vanilla LSTM block [15] can be seen in Fig. 1. It features
three gates (input, forget and output), block input, a single cell (the Constant
Error Carousel), an output activation function, and peephole connections. The
output of the block is recurrently connected back to the block input and all of
the gates. The vector formulas for LSTM layer forward pass are given in [15]. In
order to facilitate your understanding, just listed below:

Fig. 1. Detailed Long Short-Term Memory block as used in the hidden layers of a
recurrent neural network.

zt = g(Wzx
t + Rzy

t−1 + bz) block input (2)

it = σ(Wix
t + Riy

t−1 + pi � ct−1 + bi) input gate (3)

f t = σ(Wfxt + Rfyt−1 + pf � ct−1 + bf ) forget gate (4)

ct = it � zt + f t � ct−1 cell state (5)

ot = σ(Wox
t + Roy

t−1 + po � ct + bo) output gate (6)

yt = ot � h(ct) block output (7)

where xt is the input vector at time t, the W are input weight matrices, the
R are square recurrent weight matrices, the p are peephole weight vectors and
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b are bias vectors. Functions σ, g and h are point-wise non-linear activation
functions: logistic sigmoid

(
1

1+e−x

)
is used for as activation function of the

gates and hyperbolic tangent is used as the block input and output activation
function. The point-wise multiplication of two vectors is denoted as �. The
corresponding Back-Propagation Through Time(BPTT) formulas can be found
in [15]’s supplementary material.

2.3 CNN-LSTM Framework

The details of the CNN-LSTM framework are as follows:

Algorithm 1. The CNN-LSTM framework
1: Initialization of parameters and data.
2: repeat
3: repeat
4: CNN-quantitative selection step:

input: 32*1 dimensional matrix, i.e. the monthly rates of return from the first
13 month to the first 2 month and the daily rates of return from the first 20
day to the first 1 day.

5: until Either the component remains the same in the previous iteration, or the
iterations reach certain threshold.

6: Output the predicted current monthly rate of return.
7: until All shares are traversed in the A stock market.
8: Select the top one percent stock in the CNN step output.
9: repeat

10: repeat
11: LSTM-quantitative timing step:

input: 30*6 dimensional matrix, i.e. before 30 days’ features: [‘open’, ‘close’,
‘high’, ‘low’, ‘amount’, ‘volume’].

12: until Either the component remains the same in the previous iteration, or the
iterations reach certain threshold.

13: Output the predicted next 5 days’ rate of return: 1 if positive rate, otherwise -1.
14: until All selected shares are traversed.
15: Output the current monthly total return.

3 Experiment Results

We implement CNN-LSTM neural network model for quantitative selection and
quantitative timing strategy on the training dataset, and verify its performance
on the test dataset. We are exploring a parallel implementation of the learning
algorithm that could be run on GPUs. Our experiments are implemented in
the Linux system (Ubuntu 16.04.2 LTS) with GPU (device 0: GeForce), and
16.00GB RAM with running Python 2.7 source codes.
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This approach should lead to a substantial decrease in training time as the
algorithm can take advantage of parallelization at the data-level (since it uses
mini-batches) as well as at the network layer level. Alternatively, a more straight-
forward approach would be to retrain the classifier each month, but update the
LSTM more frequently in order to improve profits which are infinitely close to
local optimization.

The details of CNN-LSTM flow chart and parameters are described in the
Fig. 2 and in the Table 1 as follows:

Fig. 2. CNN-LSTM flow chart.

We obtain data on individual Chinesse stocks from the SINA FINANCE
web. The training set covers the period from 2007-1-1 to 2013-12-31, and
the test set covers the period from 2014-1-1 to 2017-3-31. Data setting and
preprocessing of CNN-LSTM neural network are described in the framework.
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Table 1. The parameters for CNN-LSTM.

Parameters CNN LSTM

Input layer 1 1

Conv/LSTM hidden layer 2 1

FCN hidden Layer 2 1

Output layer 1 1

Epoch 500 100

Activation ReLU, Tanh Tanh

Weight Normal(0,1) Normal(0,1)

Optimizer Adam Adam

Learning rate 0.001 0.001

Objective function Cross-entropy Cross-entropy

We did z-score standardization of data when necessary [16]. For every month
t, we use the 12 monthly rates of return for month t − 13 through t − 2 and
the 20 daily rates of return as the input of CNN quantitative selection step,
and before 30 days features: [‘open’, ‘close’, ‘high’, ‘low’, ‘amount’, ‘volume’] as
input of LSTM quantitative timing step. Only the features which are to be fed
to the neural network are chosen and trained for prediction assigning random
biases and weights. In our CNN-LSTM model, the LSTM part is composed of a
sequential layers followed by 1 LSTM layer and dense layer with Tanh activation.

Over fitting of neural networks is one of the most difficult things to avoid
in training neural networks. Over fitting means that the model performs well in
training data, but for the other data the predictor effect is poor. The reason is
that “rote” data and noises usually lead to complicated model. To avoid over-
fitting of the model, the dropout mechanism is added to the CNN-LSTM model
and the regularization term is applied to the weights. Dropout refers to drop
some features randomly to improve the robustness of the model. Regularization
refers to add an L2 norm in the calculation of the loss function, so that some
of the weight values close to 0 avoid forced adaptation for each feature. Then it
improves the robustness, also gets the effect of feature choice.

When the LSTM predictive value is equal to 1, we buy and hold 5 days, and
if previous positions, update the number of held days as 5 and continue held.
When the LSTM predictive value is equal −1, it continues if short positions, and
if already held shares, the number of held days will be decreased by one, and
if the number of held days is equal to 0, we will sell the share. Figure 3 shows
the position ratios of CNN-LSTM model in the test dataset. The gap between
two consecutive months means that we make the quantitative stock selection
strategy for each month by using the CNN, thus sells all of shares if possible.
Meanwhile, the phenomenon that position ratio is less than 1 before the end
of the month demonstrates that the LSTM mechanism makes the quantitative
timing strategy effectively.
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Fig. 3. The position ratios of CNN-LSTM model in the test dataset.

Fig. 4. The net value curves of Benchmark, CNN-LSTM and Momentum.

Table 2. The comparison of the results

Benchmark CNN-LSTM Momentum

Annualized rate of return 0.136 0.309 −0.118

Maximum retracement 0.443 0.241 0.689
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We compare the annualized rate of return, the maximum retracement and
the net value of our CNN-LSTM model with the basic Momentum strategy
and Benchmark index respectively in the Table 2 and Fig. 4. Basic momentum
strategy is the empirical finding that stocks with high past returns over 3-to-12
months (winners) continue to perform well over the next few months relative
to stocks with low past returns (losers). The net value curves demonstrate a
significant increase in the performances qualitatively. During the stock market
crash, the maximum retracement of CNN-LSTM is tolerable. The annualized
rate of return using our CNN-LSTM neural network model is more than 2 times
as large as the annualized rate of return using Benchmark index. Meanwhile,
the maximum retracement of CNN-LSTM neural network model is respectively
34%, 54% of the maximum retracement of the basic Momentum strategy and
Benchmark index. The experiments fully illustrate our model is efficient and the
investment return is impressive, and verify the robustness and practicability of
the algorithm as well.

4 Conclusion and Future Work

We have applied the deep learning to stock trading and made two main con-
tributions to the applied machine learning literature. First, we show that CNN
can extract useful features even from low signal-to-noise time series data such
as financial asset prices if the inputs are appropriately preprocessed. And we
make the quantitative stock selection strategy for judging stock trends by using
the CNN. Second, we use LSTM neural network to predict a high accuracy in
future stock prices and the predicting outcomes are used as timing signals, which
significantly improves the retracement of the CNN stock selection model in the
backtesting stage. Our model easily accommodates returns of different frequen-
cies as well as nonreturn data and produces investment results that exceed the
basic Momentum strategy and Benchmark index in the vast finance literature.
We have successfully applied the CNN-LSTM neural network to modeling and
making the quantitative stock selection and timing strategy which is feasible,
robust and highly profitable.

The issue for future work is reducing computational complexity and increas-
ing computation speed, so that this method can be applied to hours or minutes
data instead of the days data. Furthermore, if we apply the model to actual
investment decisions, we need to improve on these aspects, such as feature selec-
tion, model construction and parameter optimization.

Acknowledgement. This work was supported by the Natural Science Foundation of
China for Grant 61171138.



206 S. Liu et al.

References

1. Fu, C., Fu, M., Que, J.: Prediction of stock price base on radial basic function
neural networks. Technol. Dev. Enterp. 4, 005 (2004)

2. Sun, W., Guo, J., Xia, B.: Discussion about stock prediction theory based on RBF
neural network. Heilongjiang Sci. Technol. Inf. 22, 130 (2010)

3. Liu, S., Ma, J.: Stock price prediction through the mixture of gaussian processes
via the precise Hard-cut EM algorithm. In: Huang, D.-S., Han, K., Hussain, A.
(eds.) ICIC 2016. LNCS, vol. 9773, pp. 282–293. Springer, Cham (2016). doi:10.
1007/978-3-319-42297-8 27

4. Chavarnakul, T., Enke, D.: Intelligent technical analysis based equivolume chart-
ing for stock trading using neural networks. Expert Syst. Appl. 34(2), 1004–1017
(2008)

5. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock predic-
tion. In: International Conference on Artificial Intelligence, pp. 2327–2333. AAAI
Press (2015)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

7. Murtaza, R., Harshal, P., Shraddha, V.: Predicting stock prices using LSTM. Int.
J. Sci. Res. (IJSR) 6(4), 1754–1756 (2017)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

9. Bouvrie, J.: Notes on Convolutional Neural Networks. Neural Nets (2006)
10. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey

striate cortex. J. Physiol. 195(1), 215–243 (1968)
11. Murtagh, F., Starck, J., Renaud, O.: On neuro-wavelet modeling. Decis. Support

Syst. 37(4), 475–484 (2004)
12. Terzija, N.: Robust digital image watermarking algorithms for copyright protection

(2006)
13. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural net-

work architectures for large scale acoustic modeling. In: Fifteenth Annual Confer-
ence of the International Speech Communication Association (2014)

14. Fryzlewicz, P., Bellegem, S., Sachs, R.: Forecasting non-stationary time series by
wavelet process modelling. Ann. Inst. Stat. Math. 55(4), 737–764 (2003)

15. Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. pp(99),
1–11 (2016)

16. Takeuchi, L., Lee, Y.: Applying deep learning to enhance momentum trading
strategies in stocks. Working paper, Stanford University (2013)

http://dx.doi.org/10.1007/978-3-319-42297-8_27
http://dx.doi.org/10.1007/978-3-319-42297-8_27


Learning Inverse Mapping by AutoEncoder
Based Generative Adversarial Nets

Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv(B)

Machine Intelligence Laboratory, College of Computer Science, Sichuan University,
Chengdu 610065, People’s Republic of China

lvjiancheng@scu.edu.cn

Abstract. The inverse mapping of GANs’ (Generative Adversarial
Nets) generator has a great potential value. Hence, some works have
been developed to construct the inverse function of generator by directly
learning or adversarial learning. While the results are encouraging, the
problem is highly challenging and the existing ways of training inverse
models of GANs have many disadvantages, such as hard to train or poor
performance. Due to these reasons, we propose a new approach based on
using inverse generator (IG) model as encoder and pre-trained generator
(G) as decoder of an AutoEncoder network to train the IG model. In the
proposed model, the difference between the input and output, which are
both the generated image of pre-trained GAN’s generator, of AutoEn-
coder is directly minimized. The optimizing method can overcome the
difficulty in training and inverse model of an non one-to-one function. We
also applied the inverse model of GANs’ generators to image searching
and translation. The experimental results prove that the proposed app-
roach works better than the traditional approaches in image searching.

Keywords: Inverse model · GAN · AutoEncoder network

1 Introduction

Generative adversarial nets (GANs) [1], based on the minimax two-player game
theory, show a great power in generating high quality artificial data. And the
method of Deep convolutional generative adversarial nets [2] shows the great
potential on the mapping between image space X and latent space Z. Lots of
papers [2–4] have shown the huge power of inverse model of a generator on
semi-supervised learning and adjusting the outputs images of the generators. In
addition, finding the inverse mapping of generator can also provide us useful
insights to the generator and we may use this to improve the performance of
generator. Building on ideas from these many previous works, many works [4–7]
have been developed to learn the the inverse mapping of the generator. But, the
mapping from latent space Z to image space X is an uniderection mapping and
non-linear inverse problem. This brings a great challenge for finding the inverse
mapping of generator.

c© Springer International Publishing AG 2017
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Dumoulin and Donahue [6,7] proposed a way of learning encoder network E
alongside the generator G and discriminator D. The approach successfully avoids
the problem of uniderection mapping brought by directly training the inverse
model. However, the reconstruction results are not satisfying enough. Creswell’s
idea [5] can get a good correlation between samples and reconstructions. The
approach takes the desired output z as optimization goal. It’ very simple but
slow, because we have to calculate the z by using multiple gradient descents
every step. In other words, the approach is trying to search the z instead of
calculating the z. Perarnau proposed a invertible conditional GANs(ICGAN) [4].
In the approach, the inverse model is trained through directly minimizing the
difference between (Ez, Ey) and (z, y), where y is the label information of x and
z is a noise vector. While the strategy mitigates the effect of the problem that
the function of generator is not a one-to-one function, the freedom of latent space
Z is restricted by the label information. Due to the approach requires abundant
label information, the requirement for data sets is very strict.

In this paper, we propose a new approach to learn the inverse mapping by
AutoEncoder based on GANs (AEGAN) as a complement of former works. We
use the AutoEncoder to train a inverse model. The pre-trained generator is
regarded as the decoder part of an AutoEncoder and the inverse generator is
regarded as the corresponding encoder part. This model does not directly mini-
mize the difference between the original noise vector and the reconstructed noise
vector, but try to minimize the difference between the generated samples of noise
vectors. This strategy not only avoids problems of directly training the inverse
model, but also avoids the poor correlation of adversarial training. In addition,
we also explore the application value of inverse model in image processing. The
corresponding vectors of images contain rich semantic information. Our experi-
ments prove that such semantic information is very helpful in image searching.
And by combing the generator model, the inverse model can also be used in
image-to-image translation.

2 Primary and Motivation

The existing ways of learning the inverse model of the GANs have made great
success, however there still remains many problems waiting for solving. The
idea of Dumoulin and Donahue [6,7] is to train encoder network E alongside the
generator G and discriminator D. The training objective is defined as a minimax
objective:

min
G,E

max
D

V (D,E,G) = Ex∼pdata(x)[log D(x,E(x))]+Ez∼p(z)[log(1−D(G(z), z))]

(1)
Where D,E,G are Discriminator, Encoder, Generator respectively. x is an input
sample and z is a noise vector. During the training, the G,E try to minimize the
value function and D tries to maximize the value function. This approach suc-
cessfully avoids the problem of directly training the inverse model. However, this
approach also results the poor correlation between samples and reconstructions,
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because the discriminator only focus on the difference between data sets instead
of the difference between two images. So the encoder part can’t catch the unique
features of one signal image. In addition, the approach needs to train a third
network with the generative net, which means that inversion cannot be learned
from a pre-trained generative network.

Creswell [5] proposes a different idea that can get a good correlation between
samples and reconstructions. The main idea is to directly minimize the difference
between generated image G(z) and sample image x through optimizing the value
of z, where G is a pre-trained generator. The z is updated by:

z = z − α∇z[−x ∗ log(G(z)) − (1 − x) ∗ log(1 − G(z))] (2)

Where α stands for the learning rate. This approach takes the desired output
z as optimization goal. It’s easy to implement but poor in effectiveness because
it doesn’t provide a real inverse function and we have to use gradient descents
every time.

The invertible conditional GAN(ICGAN) [4], proposed by Perarnau, tries
to solve the problem through conditional GAN. In this model, ICGAN tries to
minimize the difference between (Ez, Ey) and (z, y), y is the label information
including the gender, age and so on. Ez is the noise vector Encoder and Ey is
the label information Encoder. The two training objectives are:

Lez = Ez∼pz,y
′∼py

∥
∥
∥z − Ez(G(z, y

′
))

∥
∥
∥

2

2

Ley = Ex,y∼pdata
‖y − Ey(x)‖22

(3)

The label information limits the freedom of latent space Z. This strategy miti-
gates the effect of the uniderection mapping problem. But this approach requires
abundant label information, which results that it can not be used in unsupervised
approach.

3 AutoEncoder Based Generative Adversarial Nets

The details of training and network structure can be found int he Appendix.

3.1 Basic Structure

Our idea of AEGAN is inspired from AutoEncoder. Here we take the gener-
ator G(z; θg) as the decoder part of the AutoEncoder and the desired inverse
generator IG(x; θig) as the encoder part. Figure 1 shows the training process
of AEGAN, we try to minimize the difference between generated image x and
reconstructed image x′. IG compresses a generated image x into a latent space
vector z′ and G reconstructs the z′ into a new image x′. z′ is used as the extracted
feature of input sample x and our experiments prove that z′ is a very good image
feature in image translation and searching. Many previous methods regard the
generator as an encoder part instead of a decoder part in training and it’s against
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the nature of AutoEncoder. And the mapping from z to x also brings difficulty
to the learning of the encoder part. So in AEGAN, we change our goal into
minimizing |x − x′|.

The innovation of AEGAN is that we focus on the reconstructed images
instead of the reconstructed noise vectors. This model does not directly minimize
the difference between z and z′, but try to minimize the difference between the
x and x′. This strategy not only avoids problems in directly training the inverse
model, but also avoids the poor correlation of adversarial training.

Fig. 1. The training process of AEGAN

3.2 Training Steps

Training the Generator. First we train the GAN’s generator G using the
approach and the network structure of DCGAN [2]. G is a deconvolutional net-
work with one fully connected layer and four deconvolutional layers with strides
(1, 2, 2, 1). The activation function is relu for first four layers and sigmoid for the
last layer. The sigmoid layer is aimed at normalizing the generated images. And
prior z ∈ R ∼ U(−1, 1).

The optimization goal of generator is:

min
G

max
D

V (θd, θg) = Ex∼pdata(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z)))] (4)

Training the Inverse Generator. Then we start to train the inverse gen-
erator IG by using the information from a pre-trained generator G. In details,
the structures of G and IG are symmetric. The deconvolutional layers of G are
replaced with the corresponding convolutional layers. The activation function of
output layer is tanh for limiting the range of reconstructed z′. The convolution
type in IG is strided convolution [2]. To avoid the difficulty of directly train-
ing the encoder we require the value function of IG to minimize the difference
between the fake image x generated by G and the reconstructed output x′. We
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choose the cross-entropy function to define the difference between x and x′. The
optimization objective can be defined as:

min
IG

Ex∼pgenerated(x){V (x; θig)}
V (x; θig) = −x ∗ log x′ − (1 − x) ∗ log(1 − x′)

= −x ∗ log G(IG(x; θig)) − (1 − x) ∗ log(1 − G(IG(x; θig)))

(5)

Where θg, θd are the parameters of the generator G and discriminator D.
Algorithm 1 shows the detail of training IG.

Algorithm 1. Training the Inverse Generator
for number of training iterations do

1. Sample minibatch of m noise samples (z(1), ..., z(m)) from noise prior z∼pg(z)
and use them to generate the training images (x(1), ..., x(m;.;.))∼pgenerated(x)
through the pre-trained generator G.
2. Put the generated image x(x = G(z)) into the AutoEncoder part to get the
reconstructed image x′.

z′ = IG(x) = IG(G(x))

x′ = G(z′)
(6)

3. Compute the reconstruction loss V (x) according to Eq. (4).

V (x) = −x ∗ log G(IG(x)) − (1 − x) ∗ log(1 − G(IG(x))) (7)

4. Perform a backpropagation to compute the gradients and only upgrade the
parameters of IG.

θig = θig − α

m

m∑

i=1

∂V (xi; θig)

θig
(8)

Where α is the learning rate.
end for

4 Experiment Results

We evaluate the ability of this inverse model on CelebFaces Attributes Dataset
(CelebA) [8]. CelebA is a large-scale face attributes dataset.

4.1 Reconstructing Samples

We take the outputs of generator as the samples and use the inverse mapping
from these samples to Z space to generate the reconstructed samples. Here, we
compare AEGAN with a directly trained inverse model based on ICGAN [4]
and the adversarial inverse model based on BiGAN [6]. The original BiGAN and
ICGAN both contain an additional image label information vector. In here we
remove the label vectors because of the unsupervised condition. Figure 2 shows
the reconstructed results of AEGAN, inverse model and BiGAN. For BiGAN



212 J. Luo et al.

we uses the different original samples because BiGAN can’t use a pre-trained
generator as base. This is because that in BiGAN the generator and inverse
generator are trained in the same time as Eq. (1) shows. So we compare BiGAN
with the generated samples from its own generator for fairness. In addition, we
use the dHash [9] as standard to evaluate the similarity of generated images.
dHash will give every image a special hash code and the difference between hash
codes can be used to describe the similarity between images. We take the average
similarity as final result. As we can see in Table 1, the result of AEGAN is also
the best in this experiment.

Fig. 2. The reconstructed results

Table 1. Similarity compared with original samples

AEGAN Directly training BiGAN

0.8266 0.7944 0.6594

4.2 Searching the Similar Images Using AEGAN

To illustrate the power of AEGAN, we will show its ability in searching the simi-
lar images. We only compare with the general image searching algorithm, because
our approach is based on unsupervised learning. We compare AEGAN with three
general image searching algorithms: dHash, pHash [9] and color histogram [10].
In details, the similarity between two images are based on the Euclidean Dis-
tance between the reconstructed z′ vectors of them, the smaller the distance,
the higher the similarity. We take an image from the original data set celebA
and add some other factors such as color transform, adding a sunglasses to the
person, to form the 3 test images. Then we implement 4 different algorithms to
find the closest images in the first 20,000 images of celebA. The Fig. 3 proves
that AEGAN is very suitable for this task. To evaluate the comprehensive per-
formance, the second experiment is aiming at finding the similar images. We
compare our algorithm with dHash. We take the first 20,000 images of celebA as
the test set and take other 64 images from the celebA as base images. As we can
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Fig. 3. The searching results.

Fig. 4. The searched results for dHash and AEGAN. The first block contains the base
images. And the second one is the searching result of AEGAN. The last one is the
result of dHash.

Table 2. Label similarity compared with base samples

AEGAN dHash

0.7918 0.7483

see from Fig. 4, AEGAN approach is much better than dHash. AEGAN catches
the important features of face images such as the face angle, face similarity, hair
style and facial expression. In addition, we use the label similarity to evaluate
the searching results. There are 40 labels for each image including gender, hair
color and so on. The result can be seen from Table 2. Although AEGAN is not a
patch on specialized face recognition algorithms in this task, we have to empha-
size that this approach is unsupervised and universal. In other words, this idea
can easily be implemented in other fields.

4.3 Super-Resolution Using the AEGAN

To prove our approach does learn the major features of face images, we propose
the third experiment. In this experiment we take the Gaussian Blur images as
inputs of inverse generator IG and then use the output of inverse generator to
reconstruct the original images. We choose the generated data as the original
examples. As Fig. 5 shows, we can see AEGAN also performs well in super-
resolution and we didn’t train the AEGAN specially for this task. AEGAN can
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automatically ignore the abnormal parts of input sample and add the missing
features to the reconstructed output. It is worth mentioning that the approach
is unsupervised. As we known, the labeled data are extremely rare in most of
application. Given the data limitations, the proposed method work surprisingly
well for Super-Resolution without label information.

Fig. 5. The results of super-resolution by AEGAN. The first block contains the base
image. And the second block contains the images after adding the Gaussian Blur. The
last one is the reconstructed result.

5 Conclusion and Further Works

AEGAN uses the idea of Auotoencoder to overcome the difficulty in training a
inverse model of generator. And the experiments show that the inverse mapping
of generator has a very similar function compared with Word Embedding [11].
Because the inverse out put of an image can be regarded as a vector presentation
of the image and this vector presentation can catches the important features of
images as Experiment 2 shows. This ability can be very helpful in fields of image
and video processing. It’s possible to get a universal vector representation of
image if we train the AEGAN at large image data sets. In addition, we can use
AEGAN to reform the Image-to-Image Translation approach based on GAN [12].
With AEGAN, the training of generator part can be done in unsupervised con-
dition and we only need to train the encoder part in conditional situation. In
other words, it’s possible to train a Image-to-Image GAN net in semi-supervised
condition if we use the structure of AEGAN.

Acknowledgments. This work was supported by the National Science Foundation
of China (Grant No. 61375065 and 61625204), partially supported by the State Key
Program of National Science Foundation of China (Grant No. 61432012 and 61432014).

Appendix: Network Structures and Training Details

The Adam optimizer is used for all the experiments and the parameters are the
same. The learning rate is 0.0002 and beta1 is 0.5. The experiment is trained on
complete CelebA dataset. Batch size is 64 (Tables 3, 4, 5 and 6).
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Table 3. Generator

Input shape operation 100

Kernel Stride Filter BN Activation

Dense 4*4*64*8 N

Reshape 4,4,64*8 Y Relu

Deconv 5*5 2*2 64*4 Y Relu

Deconv 5*5 2*2 64*2 Y Relu

Deconv 5*5 2*2 64*1 Y Relu

Deconv 5*5 2*2 3 N Sigmoid

Table 4. Discriminator

Input shape operation 64*64*3

Kernel Stride Filter BN Activation

Conv 5*5 2*2 64*1 Y Lrelu

Conv 5*5 2*2 64*2 Y Lrelu

Conv 5*5 2*2 64*4 Y Lrelu

Conv 5*5 2*2 64*8 Y Lrelu

Reshape 4*4*64*8 N

Dense 1 N Sigmoid

Table 5. Inverse generator

Input shape operation 64*64*3

Kernel Stride Filter BN Activation

Conv 5*5 2*2 64*1 Y Relu

Conv 5*5 2*2 64*2 Y Relu

Conv 5*5 2*2 64*4 Y Relu

Conv 5*5 2*2 64*8 Y Relu

Reshape 4*4*64*8 N

Dense 100 N Tanh
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Table 6. Discriminator (BiGAN)

Input shape operation 64*64*3, 100

Kernel Stride Filter BN Activation

Conv 5*5 2*2 64*1 Y Lrelu

Conv 5*5 2*2 64*2 Y Lrelu

Conv 5*5 2*2 64*4 Y Lrelu

Conv cond concat 64*4+100 N

Conv 5*5 2*2 64*8 Y Lrelu

Conv 5*5 2*2 64*8 Y Lrelu

Conv 5*5 2*2 64*8 Y Lrelu

Reshape 1*1*64*8 N

Dense 1 N Sigmoid
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Abstract. We propose a highly efficient and faster Single Image Super-
Resolution (SISR) model with Deep Convolutional neural networks (Deep
CNN). Deep CNN have recently shown that they have a significant recon-
struction performance on single-image super-resolution. The current trend is
using deeper CNN layers to improve performance. However, deep models
demand larger computation resources and are not suitable for network edge
devices like mobile, tablet and IoT devices. Our model achieves state-of-the-art
reconstruction performance with at least 10 times lower calculation cost by
Deep CNN with Residual Net, Skip Connection and Network in Network
(DCSCN). A combination of Deep CNNs and Skip connection layers are used
as a feature extractor for image features on both local and global areas. Paral-
lelized 1 � 1 CNNs, like the one called Network in Network, are also used for
image reconstruction. That structure reduces the dimensions of the previous
layer’s output for faster computation with less information loss, and make it
possible to process original images directly. Also we optimize the number of
layers and filters of each CNN to significantly reduce the calculation cost. Thus,
the proposed algorithm not only achieves state-of-the-art performance but also
achieves faster and more efficient computation. Code is available at https://
github.com/jiny2001/dcscn-super-resolution.

Keywords: Deep learning � Image super resolution � Deep CNN � Residual
net � Skip connection � Network in network

1 Introduction

Single Image Super-Resolution (SISR) was mainly used for specific fields like security
video surveillance and medical imaging. But now SISR is widely needed in TV, video
playing, and websites as display resolutions are getting higher and higher while source
contents remain between twice and eight times lower resolution when compared to
recent displays. In other cases, network bandwidth is generally limited while the dis-
play’s resolution is rather high. Recent Deep-Learning based methods (especially with
deeply and fully convolutional networks) have achieved high performance in the
problem of SISR from low resolution (LR) images to high resolution (HR) images.
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We believe this is because deep learning can progressively grasp both local and global
structures on the image at same time by cascading CNNs and nonlinear layers. However,
with regards to power consumption and real-time processing, deeply and fully convo-
lutional networks require large computation and a lengthy processing time. In this paper,
we propose a lighter network by optimizing the network structure with recent
deep-learning techniques, as shown in Fig. 1. For example, recent state-of-the-art deep-
learning based SISR models which we will introduce at Sect. 2 have 20 to 30 CNN
layers, while our proposed model (DCSCN) needs only 11 layers and the total com-
putations of CNN filters are 10 to 100 times smaller than the others.

Feature Extraction. In the previous Deep Learning-based methods, an up-sampled
image was often used as their input. In these models, the SISR networks can be
pixel-wise and its implementation becomes easier. However, they have 20–30 CNN
layers in total and heavy computation is required for each up-sampled pixel. Further-
more, extracting features of up-sampled pixel is redundant, especially in the case of a
scale factor of 3 or more. We use an original image as an input of our model so that the
network can grasp the features efficiently. We also optimize the number of filters of
each CNN layer and send those features directly to the image reconstruction network
via skip connections.

Image Detail Reconstruction. In the case of data up-sampling, the transposed con-
volutional layer (also known as a deconvolution layer) proposed by Matthew D. Zeiler
[1] is typically used. The transposed convolutional layer can learn up-sampling kernels,
however, the process is similar to the usual convolutional layer and the reconstruction
ability is limited. To obtain a better reconstruction performance, the transposed convo-
lutional layers need to be stacked deeply, which means the process needs heavy com-
putation. So we propose a parallelized CNN structure like the Network in Network [2],
which usually consists of one (or more) 1 � 1 CNN(s). Remarkably, the 1 � 1 CNN

Fig. 1. Our model (DCSCN) structure. The last CNN (dark blue) outputs the channels of the
square of scale factor. Then it will be reshaped to a HR image. (Color figure online)
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layer not only reduces the dimensions of the previous layer for faster computation with
less information loss, but also adds more nonlinearity to enhance the potential repre-
sentation of the network. With this structure, we can significantly reduce the number of
CNN or transposed CNN filters. 1 � 1 CNN has 9 times less computation than 3 � 3
CNN, so our reconstruction network is much lighter than other deep-learning based
methods.

2 Related Work

Deep Learning-based methods are currently active and showing significant perfor-
mances on SISR tasks. Super-Resolution Convolutional Neural Network (SRCNN) [3]
is the method proposed at this very early stage. C. Dong et al. use 2 to 4 CNN layers to
prove that the learned CNN layers model performs well on SISR tasks. The authors
concluded that using a larger CNN filter size is better than using deeper CNN layers.
SRCNN is followed by Deeply-Recursive Convolutional Network for Image
Super-Resolution (DRCN) [4]. DRCN uses deep (a total of 20) CNN layers, which
means the model has huge parameters. However, they share each CNN’s weight to
reduce the number of parameters to train, meaning they succeed in training the deep
CNN network and achieving significant performances.

The other Deep Learning-based method, VDSR [5], is proposed by the same
authors of DRCN. VDSR uses Deep Residual Learning [6], which was developed by
researchers from Microsoft Research and is famous for receiving first place in ILSVRC
2015 (a large image classification competition). By using residual-learning and gradient
clipping, VDSR proposed a way of significantly speeding up the training step. Very
deep Residual Encoder-Decoder Networks (RED) [7] are also based on
residual-learning. RED contains symmetric convolutional (encoder) and deconvolu-
tional (decoder) layers. It also has skip connections and connects instead to every two
or three layers. Using this symmetric structure, they can train very deep (30 of) layers
and achieve state-of-the-art performance. These studies therefore reflect the trend of
“the Deeper the Better”.

On the other hand, Yaniv Romano et al. proposed Rapid and Accurate Image Super
Resolution (RAISR) [8], which is a shallow and faster learning-based method. It
classifies input image patches according to the patch’s angle, strength and coherence
and then learn maps from LR image to HR image among the clustered patches.
C. Dong et al. also proposed FSRCNN [9] as a faster version of their SRCNN [3].
FSRCNN uses transposed CNN to process the input image directly. RAISR and
FRSCNN’s processing speeds are 10 to 100 times faster than other state-of-the-art
Deep Learning-based methods. However, their performance is not as high as other
deeply convolutional methods, like DRCN, VDSR or RED.
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3 Proposed Method

We started building our model from scratch. Started from only 1 CNN layer with small
dataset and then grow the number of layers, filters and the data. When it stopped
improving performance, we tried to change the model structure and tried lots of deep
learning technics like mini-batch, dropout, batch normalization, regularizations, ini-
tializations, optimizers and activators to learn the meanings of using each structures and
technics. Finally, we carefully chose structures and hyper parameters which will suit for
SISR task and build our final model.

3.1 Model Overview

Our model (DCSCN) is a fully convolutional neural network. As shown in Fig. 1,
DCSCN consists of a feature extraction network and a reconstruction network. We
cascade a set of CNN weights, biases and non-linear layers to the input. Then, to extract
both the local and the global image features, all outputs of the hidden layers are
connected to the reconstruction network as Skip Connection. After concatenating all of
the features, parallelized CNNs (Network in Network [2]) are used to reconstruct the
image details. The last CNN layer outputs the 4ch (or the channels of square of scale
factor) image and finally the up-sampled original image is estimated by adding these
outputs to the up-sampled image constructed by bicubic interpolation. Thus the pro-
posed CNN model focusses on learning the residuals between the bicubic interpolation
of the LR image and the HR original image.

In the previous studies, an up-sampled image was often used as their input for the
Deep Learning-based architecture. In these models, the SISR networks will be
pixel-wise. However, 20–30 CNN layers are necessary for each up-sampled pixel and
heavy computation (up to 4x, 9x and 16x) is required, as shown in Fig. 2. It also seems
inefficient to extract a feature from an up-sampled image rather than from the original
image, even from the perspective of the reconstruction process.

Fig. 2. Simplified process structures of (a) other models and (b) our model (DCSCN).
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3.2 Feature Extraction Network

In the first feature extraction network, we cascade 7 sets of 3 � 3 CNN, bias and
Parametric ReLU units. Each output of the units is passed to the next unit and
simultaneously skipped to the reconstruction network. Unlike with other major
deep-learning based large-scale image recognition models, the number of units of CNN
layers are decreased from 96 to 32, as shown in Table 1. As discussed in Yang et al.
[10], for model pruning, it is important to use an appropriate number of training
parameters to optimize the network. Since the local feature is more important than the
global feature in SISR problems, we reduce the features by the following layer and it
results in better performance with faster computation. We also use the Parametric
ReLU units as activation units to handle the “dying ReLU” problem [11]. This prevents
weights from learning a large negative bias term and can lead to a slightly better
performance.

3.3 Image Reconstruction Network

As stated in the Model Overview, DCSCN directly processes original images so that it
can extract features efficiently. The final HR image is reconstructed in the last half of
the model and the network structure is like in the Network in Network [2]. Because of
all of the features are concatenated at the input layer of the reconstruction network, the
dimension of input data is rather large. So we use 1 � 1 CNNs to reduce the input
dimension before generating the HR pixels.

The last CNN, represented by the dark blue color in Fig. 1, outputs 4 channels (when
the scale factor s = 2) and each channel represents each corner-pixel of the up-sampled
pixel. DCSCN reshapes the 4ch LR image to an HR(4x) image and then finally it is
added to the bi-cubic up-sampled original input image. As with typical Residual learning
networks, the model is made to focus on learning residual output and this greatly helps
learning performances, even in cases of shallow (less than 7 layers) models.

4 Experiments

4.1 Datasets for Training and Testing

For training, 91 images from Yang et al. [12] and 200 images from the Berkeley
Segmentation Dataset were used [13]. We then performed data augmentation on those
training images. The images are flipped horizontally, vertically and both horizontally

Table 1. The numbers of filters of each CNN layer of our proposed model

Feature extraction
network

Reconstruction
network

1 2 3 4 5 6 7 A1 B1 B2 L

DCSCN 96 76 65 55 47 39 32 64 32 32 4
c-DCSCN 32 26 22 18 14 11 8 24 8 8 4
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and vertically to make 3 more images for each image. While in the training phase, SET
5 [14] dataset is used to evaluate performance and check if the model is likely to overfit
or not. The total number of training images is 1,164 and the total size is 435 MB. Color
(RGB) images are converted to YCbCr image and only Y-channel is processed. Each
training image is split into 32 by 32 patches with stride 16 and 64 patches are used as a
mini-batch. For testing, we use SET 5 [14], SET 14 [15], and BSDS100 [13] datasets.

4.2 Training Setup

Each CNN is initialized with the method proposed by He et al. [11] and also initialized
to 0 for all biases and PReLUs. During training, dropout [16] with p = 0.8 is applied to
each output of PReLU layers. Mean Squared Error (MSE) between the estimated
output and ground truth is used as a basic loss value and we also add the sum of L2
norms of each CNN’s weight (scaled by the factor of 0.0001) to the loss for regular-
ization. We use Adam [17] with an initial learning rate = 0.002 for the optimization
algorithm to minimize loss. When the loss does not decrease after 5 epochs of training
steps, the learning rate is decreased by a factor of 2 and training is finished if the
learning rates goes lower than 0.00002. We also present a compact version of our
proposed network (c-DCSCN) as the parameters are shown in Table 1. An example of
the results are shown in Fig. 3.

4.3 Comparisons with State-of-the-Art Methods

Comparisons with accuracy. Peak Signal-to-Noise Ratio (PSNR) are used to com-
pare the accuracy of the proposed DCSCN with other Deep Learning-based SR
algorithms. Table 2 shows quantitative comparisons for 2x SISR. Red text indicates the

Fig. 3. An example of our result of img_013 in set14 [15]

Table 2. Comparisons of accuracy with other SR algorithms. (scale = x2)

Dataset SRCNN DRCN VDSR RED30 DCSCN
(ours)

Set5 36.66 37.63 37.53 37.66 37.62
Set14 32.45 33.04 33.03 32.94 33.05

BSDS100 31.36 31.85 31.90 31.99 31.91
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best performance and the blue text indicates the second-best. The result shows our
proposed algorithm (DCSCN) has either a best or second-best performance for those
datasets.

Comparisons with computation complexity. Since each implementation occurs
under different platform and libraries, it’s not fair to test execution time to compare
these methods. Here we calculate the computation complexity of each method instead.
Since deep learning computation is usually difficult to parallelize, computation com-
plexity of 1 pixel is used as a good indicator of computation speed. CNN layers are
calculated as size2 times input filters times output filters. Bias, ReLU, adding or
multiplying layers are calculated as number of filters. When bicubic up-sampling is
needed, we calculate it as 16 multiplications and additions. Thus the approximate
computation complexity for each method is shown in Table 3. The complexity cal-
culated may slightly differ from true complexity. For example, FSRCNN [9] and RED
[7] contain transposed CNN and it needs to pad 0 before processing. However, those

Table 3. Comparisons of approximate computation complexity. (scale = x2) For comparison,
we chose f1, f2, f3, n1, n2 = (9, 5, 5, 64, 32) for SRCNN and d, s, m = (56, 12, 4) for FSRCNN

SRCNN
(9, 5, 5)

FSRCNN
(56, 12, 4)

DRCN VDSR RED30 DCSCN
(ours)

c-DCSCN
(ours)

CNN layers 3 8 20 20 30 11 11
CNN filters 32, 64 56, 12 256 64 64 32 to 96 8 to 32
Bias and
activation
layers

3, 2 7, 7 20, 19 20, 19 0, 36 10, 10 10, 10

Input image
size

x4 x1 x4 x4 x4 x1 x1

Complexity
[k]

229.5 26.2 78,083.2 2,668.5 4,152.8 244.1 26.1

Fig. 4. Comparison between reconstruction performance for set14 vs. computation complexity.
DCSCN’s complexity is taken as 1.00.
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differences are much smaller than CNN calculations and therefore are negligible.
So they are ignored to create a brief comparison between performance vs. complexity,
as shown in Fig. 4. We can see our DCSCN has a state-of-the-art reconstruction
performance, while the computation complexity is at least 10 times smaller than VDSR
[5], RED [7] and DRCN [4].

5 Conclusion and Future Works

This paper proposed a fast and accurate Image Super Resolution method based on CNN
with skip connection and network in network. In the feature extraction network of our
method, the structure is optimized and both local and global features are sent to the
reconstruction network by skip connection. In the reconstruction network, network in
network architecture is used to obtain a better reconstruction performance with less
computation. In addition, the model is designed to be capable of processing original
size images. Using these devices, our model can achieve state-of-the-art performance
with less computation resources.

Since SISR tasks are now beginning to be used on the network edge (the entry point
devices of services like mobile, tablet and IoT devices), building a small but still
effective model is rather important. While this model has been proposed through
numerous trial and error processes, there should be a better way of tuning the model
structure and hyper parameters. Establishment of a method to design suitable model
complexity for each problem is needed.

Another noteworthy aspect of this study is the use of the ensemble learning model.
Deep Learning itself has a good capacity for complex problems, however, classic
ensemble learning tends to lead to good results with less computation, even when there
is great diversity within the problem. Also, the ensemble model makes it easier to
parallelize for faster computation. Therefore, small sets of Deep-Learning models could
be made and combined to work as an ensemble model to fix real and complex
problems.
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Abstract. In deep generative networks, one of the major challenges is
to generate non-blurry, clearer images. Unlike the generative adversarial
networks, generative models such as variational autoencoders, genera-
tive moment matching networks etc. use pixel-wise loss which leads to the
generation of blurry images. In this paper, we propose an improved gener-
ative model called Generative Moment Matching Autoencoder (GMMA)
with a feature-wise loss mechanism. We use a pre-trained VGGNet convo-
lutional neural network to compute the loss at the various feature extrac-
tion layers. We evaluate the performance of our model on the MNIST
and the Large-scale CelebFaces Attributes (CelebA) dataset. Our gener-
ative model outperforms the existing models on the log-likelihood esti-
mation test. We also illustrate the effectiveness of our mechanism and
the improved generation and reconstruction capabilities. The proposed
GMMA with perceptual loss successfully alleviates the problem of blurry
image generation.

Keywords: Generative Networks · Moment Matching · Autoencoder ·
Convolutional Neural Networks · Feature extraction

1 Introduction

Generative models have the capability of producing new samples with properties
similar to the training data. Recently, adversarial models like the Generative
Adversarial Networks (GAN) [4] have been proved to be very powerful in data
generation tasks. Generative models such as Variational Autoencoder (VAE) [12,
20] and Generative Moment Matching Networks (GMMN) [15] have also become
popular. These models, unlike the adversarial models, formalize the generation
problem in the framework of a probabilistic model with latent variables.

In the current deep learning models, a pixel wise loss like L2 is commonly
used. This is because it is easy to implement and has been proved to be very
effective for training the deep networks. The generative models like VAE or
GMMN also use this loss for training the network. However, the generated images
are smoothened and blurry compared to natural images. This is because the pixel
wise loss fails to understand the perceptual difference between the original and
the generated images.
c© Springer International Publishing AG 2017
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Several recent papers successfully generate images by optimizing the percep-
tual loss, which is based on the high-level features extracted from pre-trained
deep Convolutional Neural Networks (CNNs). Hou et al. [9] constructed a VAE
by enforcing deep feature consistency using CNN. Neural style transfer [3] and
texture synthesis [2] also jointly minimize high-level feature reconstruction loss
and style reconstruction loss by optimization. These models show that the deep
representation of the CNN can capture a variety of spatial correlation properties
of the input image. This ability to enhance the reconstruction loss of the autoen-
coder by substituting the pixel-wise loss with feature-wise loss can be applied
to other generative models. The feature-wise loss can be presented as the mean
square error between two features of input images in each selected layer of a
deep pre-trained CNN such as VGGNet [21].

In this work, we address the problem of blurry image generation in the current
generative models by introducing a new model with feature-wise loss. We propose
the Generative Moment Matching Autoencoder (GMMA) with perceptual loss to
alleviate the issues faced by generative models with pixel-wise loss. The GMMA
uses a pre-trained VGGNet to extract the features of the generated images and
compare it to the original features. We compute the loss at multiple feature
levels to improve the generation capability of our model. We use the MNIST
[14] and the Large-scale CelebFaces Attributes (CelebA) [16] dataset to evaluate
our model. The GMMA can outperform the existing models on the log likelihood
estimation tests on the MNIST data. Moreover, the generated results show that
our model with perceptual loss can produce clearer images compared to GMMA
with pixel-wise loss.

2 Proposed Model

Generative models like VAE, Adversarial Autoencoders [17] suffer from the
blurry images generation problem because of the pixel-wise mean square error
reconstruction cost function. In order to address this problem, we propose a
generative moment matching autoencoder based on a feature level loss using
pre-trained networks like AlexNet [13] and VGGNet. In this work, we utilize the
VGGNet with 16 layers to compute the perceptual loss. The architecture of our
proposed model is shown in Fig. 1. We describe the details of our approach as
follows.

2.1 Generative Moment Matching Autoencoder (GMMA)

The proposed Generative Moment Matching Autoencoder (GMMA), in spirit, is
similar to the adversarial autoencoder (AAE) [17] and variational autoencoder
(VAE) [12] with a difference in the loss function. VAE and AAE use KL diver-
gence and adversarial loss functions respectively while the moment-matching
autoencoder uses the Maximum Mean Discrepancy (MMD) loss function in order
to keep the distribution of the hidden space under control. MMD is a well-known
fitness function to measure the distance between two datasets. The goal is to
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Fig. 1. The proposed GMMA with perceptual loss.

measure how much two datasets belong to the same distribution. In order to
answer this question, [5,6] proposed the MMD fitness function shown in Eq. (1).

Let X = {x1, x2, ..., xN} be the input of the autoencoder and ̂X =
{x̂1, x̂2, ..., x̂N} be the reconstructed data and ̂Z = {ẑ1, ẑ2, ..., ẑN} be the latent
variables of the input X. In the GMMA, we minimize the mean square error
(MSE) of the reconstructed ̂X while minimizing the cost function that is defined
as follows:

̂L2
MMD(Z, ̂Z) =

1
N2

N
∑

i=1

N
∑

j=1

k (ẑi, ẑj) − 2
NM

N
∑

i=1

M
∑

j=1

k (ẑi, zj)

+
1

M2

M
∑
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M
∑

j=1

k (zi, zj)

(1)

where Z = {z1, z2, ..., zN} with N samples of a known distribution q(Z) (like
Gaussian or uniform distributions) which is the target distribution of the latent
space ̂Z of the autoencoder. The GMMA attempts to minimize ̂L2

MMD(Z, ̂Z). By
minimizing the ̂L2

MMD(Z, ̂Z), the latent variables in the code space will be forced
to maintain the same distribution as q(Z). In the proposed model, the encoder
is trained using the MSE and MMD loss functions, while the decoder part is
trained only by using the MSE loss function. All parameters of the encoder and
decoder are optimized with stochastic gradient descent (SGD).

2.2 GMMA with Perceptual Loss

Since, pixel-wise reconstruction loss functions are not proper for generating high
quality images, we replace the MSE reconstruction loss function with a feature
level loss. Generally each layer in a deep structure defines a specific representa-
tion of the input images. Let T and X be the original and generated images using
GMMA, and tl and xl be the corresponding feature representation in layer l. We
can vectorize the original and generated feature map in each convolutional layer
of the deep structure in the form of xl

ij and tlij respectively, where ij indicates



GMMA with Perceptual Loss 229

the feature map of the ith channel at position j. The squared-error loss between
these two feature maps are presented by:

Li =
1
2

I
∑

i=1

J
∑

j=1

(tlij − xl
ij)

2 (2)

where tlij and xl
ij are the activation of the ith filter at position j in lth layer.

We then apply the new reconstruction loss function as follows:

Lrec =
N

∑

i=1

Li (3)

where Li indicates the feature-level loss of the ith layer in a pretrained
VGGNet16. N is the number of layers in VGGNet16.

3 Experiments and Results

We evaluated our proposed model based on two well known datasets, MNIST
[14] and Large-scale CelebFaces Attributes (CelebA) dataset [16]. We describe
the details of all the experiments and report the results of each experiment as
follows.

Fig. 2. The generated hand written digits with the proposed model.

MNIST. The MNIST dataset contains 60,000 and 10,000 training and test
images, respectively. Each image has a size of 28× 28 pixels. We implemented
three convolutional layers in the encoder and three deconvolutional [19,23] layers
in the decoder part of the autoencoder. The dimension of the code space is set to
10. We used the ADAM [11] optimizer with momentum β1 = 0.5, β1 = 0.999 and
a mini-batch size of 64. All weights were initialized with a normal distribution
with standard deviation of 0.002. We used Batch Normalization [10] after each
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Fig. 3. The original face images.

Fig. 4. The reconstructed faces using GMMA with pixel-wise loss.
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Fig. 5. The reconstructed faces using GMMA with perceptual loss.

layer except for the last layer of the autoencoders. We used the parametric
rectified linear (pReLU) [7] activation in each layer except the output layer.
We set the learning rate to 0.0005 for both the perceptual loss and the MMD
optimizers.

We need to evaluate the generative performance of the proposed GMMA.
However, there are no straightforward methods to evaluate the generative models
because we cannot compute the probability of a sample directly. We compare
our model with the current state-of-the-art generative models using the log-
likelihood estimation based method described in some recent works [1,4,22]. We
fit a Gaussian Parzen window to the generated samples from the model and
then, compute the likelihood of the test samples using that distribution. We
selected the scale parameter of the Gaussian probability distribution function
via cross-validation. We made the comparison by drawing 10,000 samples and
16,384 samples from our trained model. The log-likelihood estimation results
are shown Table 1. The results show that our model outperforms the existing
models.

Additionally, in order to generate random images, we feed the decoder part
of the autoencoder with random samples from the normal distribution with zero
mean and unit variance. The generated images are shown in Fig. 2. The results
show that the proposed model can generate new hand written digit samples
which are not included in the training data.
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CelebA. The CelebA dataset has a total of 202,599 images with 40 attribute
annotations per image. The original size of the images is 178× 218 but we align
and crop the center 64× 64 pixels of the images in order to emphasize on the
faces. We kept the settings of this experiment same as the MNIST experiment
except that the dimension of the code space is set to 100. In order to visually
compare the performance of our proposed model, we conducted two experiments.
First, we train the GMMA with a pixel-wise MSE loss and we reconstruct a set
of images given a batch of input images. The input images and the reconstructed
images are shown in Figs. 3 and 4, respectively. In the second experiment, we
train our model with the feature-wise MSE loss function using the pre-trained
VGGNet features. The reconstructed images given the same input images are
shown in Fig. 5. The results show that the proposed model can produce non-
blurry face images compared to the images generated using the pixel-wise loss.

Table 1. Log-likelihood estimations for MNIST with 10K and 16 K drawn samples
from the GMMA

Model MNIST (10 K) MNIST (16 K)

DBN [8] 138± 2 -

Stacked CAE [8] 121± 1.6 -

Deep GSN [22] 214± 1.1 -

GAN [4] 225± 2 305±8.97

GMMN+AE [15] 282± 2 -

AAE [17] 340± 2 -

VAE [12,18] - 445± 5.36

GMMA 449±3.26 476± 6.15

4 Conclusion

In this paper, we proposed the Generative Moment Matching Autoencoder with
perceptual loss that can address blurriness in generated images. The proposed
model was constructed using feature-wise loss and was evaluated using the
MNIST and CelebA datasets. The proposed model outperforms the existing
generative models in the log-likelihood estimation test. The results illustrated
that the proposed model improves the quality of the output images.
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Abstract. Deep Convolution Neural Networks (DCNNs) have achieved
state-of-the-art results in awide range of tasks, especially in image recognition and
object detection. However, millions of parameters make it difficult to be deployed
on embedded devices with limited storage and computational capabilities. In this
paper, we propose a new method called Three-Means Ternary Quantization
(TMTQ), which can quantize the weights to ternary values {�a1; 0; þ a2} during
the forward and backward propagations. Scaling factors {a1; a2} are used to
reduce the loss of quantization. We evaluate this method on MNIST, CIFAR-10
and ImageNet datasets with different network architectures. The results show that
the performance of our ternarymodels obtained fromTMTQ is only slightly worse
than full precision models but better than recently proposed binary and ternary
models. Meanwhile, our TMTQ method achieves up to about 16� model com-
pression rate compared with the 32-bits full precision counterparts, for we just use
ternary weights (2-bits) and fixed scaling factors during the inference.

Keywords: Deep learning � Model compression � Neural network
quantization � Ternary neural network

1 Introduction

Deep Convolution Neural Networks (DCNNs) have demonstrated breaking results on a
variety of computer vision tasks, including but not limited to image classification [1, 2]
and object detection [3, 4]. However, deploying Deep Convolution Neural Networks
(DCNNs) on embedded devices has been found highly difficult due to the massive
amount of storage and multi-accumulate operations. As a result, it remains a great
challenge to deploy deep CNNs on embedded devices.

Substantial efforts have been made to solve this problem. The most common
method is to compress a full-trained networks directly. [5] proposed vector quantization
techniques to compress deep CNNs, by replacing the weights in full connected layers
with respective floating-point centers obtained from k-means clustering. HashedNets
[6] reduced model sizes by using a hash function to put pre-trained weights into
corresponding buckets and force them to share the same value. However, they both
concentrated on the full connected layers only.

© Springer International Publishing AG 2017
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Another common method is using lower precision weights, which can not only
reduce the size of networks, but also speed up the execution. [7] proposed that using
SIMD instructions with 8-bits fixed-point implementation can improve the performance
of computing during inference, yielding 3� speed-up over floating-point baseline. [8]
trained deep neural networks with low precision multipliers and high precision accu-
mulators. [9] introduced an approach to eliminate the need of float-point multiplication
by converting multiplication into binary shift. Moreover, [10] eliminated the need for
multiplications by forcing the weights used in forward and backward propagations to
be binary (not necessarily 0 and 1), and achieved near state-of-the-art results on
MNIST, CIFAR-10 datasets, but performed worse than full precision counterparts by a
wide margin on ImageNet [11] dataset. Furthermore, [12] introduced a high perfor-
mance fixed-point optimization method that allow networks with ternary {−1, 0, +1}
weights and 2 or 3 bits of fixed-point signals, which can greatly reduce the word-length
of weights and signals for implementing networks on embedded devices. However, the
performance of networks shows obvious degradation on large datasets. Later, [13]
proposed ternary weight networks (TWNs) with weights quantized to {−a, 0, +a} to
find a balance between high model compression rate and high accuracy, which
achieved better performance on large dataset compared with previous quantized net-
works due to the increased weight precision and scaling factors. However, the same
scaling factors for positive and negative weights have limited the expression ability of
the ternary weight networks. Recently, lots of new methods have been proposed to train
CNNs with low-precision weights, including but not limited to BinaryNet [14],
XNOR-Net [15], DoReFa-Net [16], Bitwise Neural Network [17] and TTQ [18].

This paper makes the following contributions:

1: We introduce Three-Means Ternary Quantization (TMTQ), a new method to
quantize the weights to ternary values {�a1; 0; þ a2} for each layer during forward
and backward propagations (Sect. 3).

2: We show that TMTQ performs better than the existing quantization methods and
obtains near state-of-the-art results on MNIST, CIFAR-10 and ImageNet datasets
(Sect. 4).

2 Related Quantization Methods

Recently, more and more researchers concentrate on deploying deep neural networks
on embedded devices. In order to solve the limitations of storage and computing power,
they proposed low-precision alternatives to perform deep learning tasks, following are
some latest studies on low-precision network quantization methods.

2.1 BinaryConnect

BinaryConnect [10] proposed a method to quantize full precision weights to binary
values, shown in Eq. (1), which constrains the weights to {+1, −1} during forward and
backward propagations.
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Wb
l ¼ þ 1 if wl � 0;

�1 otherwise

�
ð1Þ

The key point of BinaryConnect is that it only binarizes the weights during forward and
backward propagations but not during the parameters update when reserved full pre-
cision weights are used. And the real-valued are restricted to [−1, 1] to reduce the
impact of the large weights. During inference, only binary weights are needed, a 32�
smaller model can be deployed on embedded devices.

2.2 Fixed-Point Feedforward Deep Neural Networks

Hwang [12] proposed a direct 3-point quantization method to constrain the weights to
{−1, 0, +1}, which is shown in Eq. (2).

Wt
l ¼

þ 1 wl [ þD
0 jwlj\D
�1 wl\� D

8<
: ð2Þ

Here Δ is the threshold used to quantize continuous weights. However, determining
threshold Δ is a difficult problem, because there is no clear relation between the
parameters and final output errors resulted in by the quantization. Therefore, the
threshold Δ is initially determined by using an L2-error minimizing approach, and then
fine-tuned by using exhaustive search to find a best value that minimized the output
error.

After training, by using 2-bits to store the ternary values, they obtained almost 16�
compression rate compared with the full precision weights. The fixed-point networks
show only negligible performance loss when compared to full precision counterparts on
small datasets according to their paper. Also the “0” value ensure the sparseness of
networks, which can prevent the network over-fitting.

2.3 Ternary Weights Networks

Ternary weight networks (TWNs) [13] – neural networks with weights constrained to
{+a, 0, −a}. A scaling factor a is used to reduce the loss between ternary and
full-precision weights, shown in Eq. (3).

Wt
l ¼

þ a wl [ þD
0 jwlj\D
�a wl\� D

8<
: ð3Þ

Also, Δ is a threshold used to quantize continuous weights. During training, a and Δ are
optimized by minimizing L2-error between full precision and ternary weights. How-
ever, because a and Δ are independent factors, this problem has no straightforward
solution as [12] (described in Sect. 2.2). To overcome this, approximated values are
used, shown in Eqs. (4) and (5).
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D ¼ 0:7 � E jwljð Þ ð4Þ

a ¼ 1
IDj j

X
i2ID wij j; ID ¼ ij wij j[Df g ð5Þ

The training process of ternary weight networks is the same as binary weights
described before. Also, with this quantization method, the authors obtained 16�
smaller models compared with full precision counterparts and achieved near
state-of-the-art results on different datasets according to their paper.

3 Three-Means Ternary Quantization

In this section, we give a detailed view of TMTQ, considering how to obtain ternary
values from full precision weights and train deep neural networks with ternary weights.
We first consider the ternary quantization method and then introduce how to train
networks with this method.

3.1 Quantization Method

Our method is shown in (6). First, we set two different thresholds Dp
l and Dn

l for
positive weights and negative weights, and then quantize the full-precision weights to
ternary values {Wp

l , 0, �Wn
l } by thresholds.

Wt
l ¼

Wp
l Wl [Dp

l
0 �Dn

l\Wl\Dp
l

�Wn
l Wl\� Dn

l

8<
: ð6Þ

Here we introduce four independent factors {Dn
l ;D

p
l ;W

n
l ;W

p
l } to quantize the contin-

uous full-precision weights. The different thresholds and scaling factors between
positive and negative weights enable networks to have stronger learning ability. Unlike
previous works which have the thresholds D�

l and scaling factors W�
l set by experience,

we propose a novel algorithm to optimizing these four factors simultaneously from the
full precision weights, which is shown in Algorithm 1.

As shown in Algorithm 1, our quantization method is similar to k-means with
k = 3, but still have some differences. First, we do not choose centers randomly. If the
weights Wl is the first time to be quantized, we just initialize three centers with
MinðWlÞ, 0, MaxðWlÞ to accelerate clustering convergence [19]. Otherwise, because
parameters update is small during each training iteration, using previous training
iteration centers is also a good way to reduce the number of clustering iterations.
Second, centers are updated during each clustering iteration process except for
center½1�, we fixed its value equals 0 to make sure the sparseness of the networks which
can prevent over-fitting of the networks like dropout. Furthermore, though we quantize
the full-precision weights with four independent factors, we do not need to know how
to calculate these specific values with our method TMTQ. We get the ternary weights
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automatically by invisible thresholds after some clustering iterations without setting
any approximate value.

The benefits of using TMTQ: (i) TMTQ method obtained all parameters auto-
matically from the weights without any artificial factors, which is easy to be imple-
mented for arbitrary networks and datasets. (ii) The asymmetric of ternary values
{þWp

l ; 0;�Wn
l } enables networks to have more model capacity.

3.2 Train Ternary Networks with TMTQ

We use ternary weights during forward and backward propagations and update the
parameters with reserved full precision weights as described before. Stochastic gradient
descent (SGD) is used to train the networks. The training steps are shown in Algorithm 2.

Noting that our training steps are similar to normal training methods except for the
ternary weights are used in forward and backward propagations. In addition, some
useful tricks are utilized to speed up training process and improve the inference accu-
racy. Batch Normalization (BN) [20] not only accelerates training by reducing internal
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covariate shift, but also reduces the impact of weights scales. And also, learning rate
scaling and momentum are both effective methods to optimize network training.

Furthermore, our TMTQ method does not increase training time much for we
update clustering centers with centers’ value obtained from previous training iterations
(Algorithm 1). Through this way, 2 clustering iterations are enough to obtain good
results during each training iteration.

3.3 Inference

In previous sections, we have introduced the way to train deep neural networks with
TMTQ method. During inference, only the ternary weights and scaling factors are
needed. By storing the weights with 2-bits values, we can reduce the mode size by
about 16�. Furthermore, due to the Wp

l and Wn
l are fixed during inference, calculating

the scaling factors on activate function in advance is an effective way to speed up
forward propagation on specialized hardware, for lots of multiplications are replaced
with addition or subtract operations.
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4 Experiments

In this section, we compare our TMTQ method with different existing quantization
methods on three benchmark datasets: MNIST, CIFAR-10 and ImageNet. For fair
comparison, the same hyper parameters are used during training, such as network
structure, learning rate, regularization method and optimization method (SGD). In
addition, MNIST and CIFAR-10 experiments are repeated 4 times to obtain the average
results, reducing the effect of random initialization and data augmentation. We
implement our experiments on Caffe [21] framework.

4.1 MNIST

The MNIST is an image classification benchmark dataset containing 60 thousand
training images and 10 thousand test images. We train LeNet-5 network on MNIST
without any data augmentation or preprocessing methods. The LeNet-5 consists of:
“32-C5 + MP2 + 64-C5 + MP2 + 512-FC + 10SoftMax”. Where 32-C5 means the
convolution layer contains 32 kernels with size 5 � 5, MP2 means 2 � 2 max-pooling
layer, FC is fully connected layer and SoftMax is an output layer. We use SGD to
update parameters with momentum equals 0.9. Minibatch size is set to 100. Learning
rate is initialized to 0.0001 and reduced by steps. Moreover, we add Batch Normal-
ization layer after every convolution layer to reduce internal covariate shift.

In order to make the quantized network converge as soon as possible, we first train
a full precision model on MNIST as a baseline, and then fine-tune the full precision
baseline with binary and ternary quantization methods. The training curves are shown
in Fig. 1. The result (Table 1) shows that our ternary model obtained from TMTQ
outperforms BinaryConnect model and TWNs model by 0.31%, 0.05% respectively
and has 0.02% accuracy degradation over full precision model.

Fig. 1. Test accuracy of Lenet-5 on MNIST with different quantization methods
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4.2 CIFAR-10

TheCIFAR-10 is an image classification benchmark dataset containing 50 thousand 32�
32 RGB training images and 10 thousand test images. We train VGG13 network which is
inspired from VGG16 [22] on CIFAR-10 with some data-augmentation operations. We
pad 2 pixels in each side of images and randomly crop 32� 32 size from padded images
during training. During inference, original 32� 32 images are used to test the networks.
OurVGG13networks denoted as: “(2�128-C3) + MP2 + (2�256-C3) + MP2 + (2�
512-C3) + MP2 + (2 � 512-C3) + MP2 + (2 � 512-C3) + MP2 + (2 � 1024-FC) +
10-SoftMax”. These layers have the same meaning as described in Sect. 4.1. Parameters
update by SGD method with momentum equals 0.9 and learning rate is initialized to
0.0001.Minibatch size is set to 100. Furthermore, Batch Normalization (BN) is used after
convolution layers to speed up the training process.

Also, we first use a full-trained VGG13 model as a baseline, and then fine-tune the
baseline with binary and ternary quantization methods. Training curves are shown in
Fig. 2. The result (Table 1) shows that our ternary model obtained from TMTQ out-
performs BinaryConnect model and TWNs model by 1.36%, 0.44% respectively, and
has 0.17% accuracy degradation over full precision model.

Table 1. Accuracy rate on MNIST,CIFAR-10 and ImageNet.

Method MNIST CIFAR-10 ImageNet(top-1)

TMTQ 99.21 91.33 55.83
TWNs 99.16 90.89 53.41
BinaryConnect 98.90 89.97 –

Full precision 99.23 91.50 56.80
BinaryNet 98.60 89.85 –

XNOR-net – – 51.20

Fig. 2. Test accuracy of VGG13 on CIFAR-10 with different quantization methods.
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4.3 ImageNet

ImageNet is an image classification dataset with over 1.28 million training images and
50 thousand validation images. We use AlexNet structure in our experiment with the
full precision weights for the first convolution layer and the last full connect layer.
During training, images are resized to 256 � 256 and randomly cropped to 227 � 227
before input. SGD method is used to update the parameters with momentum equals 0.9.
Minibatch size is set to 256. Learning rate is initialized to 0.0001 and reduced by 0.1 at
iteration 200000.

We download a full-trained AlexNet model from caffe model zoo as a baseline and
then fine-tune this baseline model with TMTQ and TWNs quantization methods,
training curves of top-1 accuracy in validation dataset are shown in Fig. 3. The result
(Table 1) shows that our TMTQ model outperforms TWNs model by 2.42% and has
only 0.97% accuracy degradation over full precision counterpart.

5 Conclusion

We propose a novel method TMTQ which quantizes continuous weights to ternary
values during forward and backward propagations. With TMTQ method, we do not
need to set any thresholds D�

l in advance or calculate the scaling factors W�
l by

approximately, all factors are obtained automatically by learning the centers of the
full-precision weights. Furthermore, our quantization method reduces the model size by
about 16� for we just need ternary weights (2-bits) and scaling factors during infer-
ence. The above experiments proved that our method TMTQ performs better than
BinaryConnect and TWNs quantization methods on CIFAR-10 and ImageNet datasets,
and has only slightly accuracy degradation over full precision counterparts. Future
works will extend those results to other models and datasets, and explore the deep
relationship between ternary values and network outputs.

Fig. 3. Validation accuracy of AlexNet on ImageNet with different quantization methods
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Abstract. Most of the multitask deep learning today use different but correlated
tasks to improve their performances by sharing the common features of the
tasks. What will happen if we use outlier tasks instead of related tasks? Will they
deteriorate the performance? In this paper, we explore the influence of outlier
tasks to the multitask deep learning through carefully designed experiments. We
compare the accuracies and the convergence rates between the single task
convolutional neural network (STCNN) and outlier multitask convolutional
neural network (OMTCNN) on facial attribute recognition and hand-written
digit recognition. By doing that, we prove that outlier tasks will constrain each
other in a multitask network without parameter redundancy and cause a worse
performance. We also discover that outlier tasks related to image recognition,
like facial attribute recognition and hand-written digit recognition, may not be
outlier tasks and have some common features in the bottom layers for the fact
that they can use the other one’s first convolutional layer to replace theirs
without any accuracy losses.

Keywords: Outlier tasks � Multitask learning � Deep learning

1 Introduction

Deep learning [1, 2] is a technique with a long history but hasn’t drawn much attention
until recent years. With AlexNet [3] winning the ILSVRC in the year of 2012, con-
volutional neural network [4], a kind of deep learning methods, started to show
remarkable performance in computer vision.

Multitask Learning [5] has been widely used in deep learning area. In [6],
Biswaranjan, Devries and Taylor demonstrates that learning representations to predict
the position and shape of facial landmarks can improve expression recognition from
images. In [7], Zhang et al. optimize the detection robustness of facial landmark
detection together with heterogeneous but subtly correlated tasks. In [8], Yu and Lane
show that by introducing a secondary task we are able to significantly improve the
performance of the main task for which the model is trained. Zhang et al. in [9] build a
deep convolutional neural network that can simultaneously learn the face/non-face
decision, the face pose estimation problem, and the facial landmark localization
problem as a post filter to their multi-view face detector.
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All the examples mentioned above use correlated tasks to improve performances of
their networks, paying no attention to outlier tasks. What would happen if we apply
outlier tasks to the multitask network? Will they deteriorate the performance? In this
paper, we try to figure this question out by comparing the performances of single task
convolutional neural network (STCNN) and outlier multitask convolutional neural
network (OMTCNN).

We choose facial attribute recognition and hand-written digit recognition as our
outlier tasks. We suppose outlier tasks would constrain each other and make the
performance worse for the reason that they don’t have any related information to share.

In the beginning, the OMTCNN perform nearly the same as the STCNN does,
which is not what we expect. We think this may be because there are too many
parameters in the network for it to perform outlier tasks independently. We prove this
by running the experiment with reducing the parameters in the network.

We also find out that outlier tasks related to image recognition, like facial attribute
recognition task and hand-written-digit recognition task, may have some common
features in the bottom layers, which means they could be related in the bottom level
while be isolated in the upper level.

2 Experiments Design

2.1 Experiment Framework

We first directly compare the accuracies during the training between the STCNN and
OMTCNN in Sect. 3. These two kinds of network has the same hidden layers and we
train them in the exact same way. So the only factor that makes the performance
different is whether it perform single task or outlier tasks. In our experiment, the
difference between the performances of STCNN and OMTCNN is pretty tiny, which
goes against our expectation.

We guess the parameter redundancy in our network structure gives the OMTCNN
the ability to perform outlier tasks independently, which makes the loss of performance
little. In Sect. 4, we redo the experiment repeatedly while we keep reducing the
parameters in the network structure. With the redundancy removed, the difference of
the performances between STCNN and OMTCNN become obvious.

However, when the complexity of the structure has been reduced to an extremely
small level, the OMTCNN outperform STCNN instead, which implies the two outlier
tasks we use might have common features in low level that help the OMTCNN to train.
We run another experiment in Sect. 5 to verify this assumption.

2.2 Outlier Tasks and Dataset

Outlier tasks should be tasks that are little correlated. Facial attribute recognition and
hand-written digit recognition are our choice. Facial image and hand-written digit
image are totally different except for they are both pictures.
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We use CelebA dataset, which contains more than 200,000 facial images labeled
with 40 attributes, as our dataset for facial attribute recognition and MNIST dataset as
our dataset for hand-written digit recognition. We choose 10000 images from each
dataset as training set and another 10000 images as testing set.

2.3 Structures of STCNN and OMTCNN

Three kinds of convolutional network are used in our experiments. A STCNN that
performs facial attribute recognition, a STCNN that performs hand-written digit
recognition and an OMTCNN that does both tasks. These three networks only differ in
their output layers, which means they have exactly the same input layers and hidden
layers.

As is shown in Fig. 1, the input layers of the three networks have a shape of
100*100*1 and take grey images as inputs. The output layer of the STCNN that
recognizes facial attributes is a softmax layer with 2 nodes which represents is or isn’t.
The output layer of the STCNN that recognizes hand-written digits is a softmax layer
with 10 nodes which represents 0 to 9. The OMTCNN has both output layers above.

In Sect. 4, we keep adjusting the structure of the hidden layers for comparison, so
the amount of layers and filters in the hidden layers of these three networks are not
fixed. Figure 1 shows the common structure of the hidden layers we use at the
beginning in Sect. 3. It has four common hidden layers, which are three convolutional
layers and one fully connected layer. The first convolutional layer has 20 4*4 filters, the
second convolutional layer has 40 4*4 filters and the third convolutional layer has
60 4*4 filters. Each convolutional layer is followed by a 2*2 max pooling layer.

Fig. 1. The basic structure of networks.
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The fully connected layer at the end has 160 nodes. The activation function used in
every layer is ReLU and the cost function we set for all three networks is cross entropy
function, both of which are widely used in image recognition task.

3 Influence of Outlier Tasks in OMTCNN

At the beginning, we directly compare the performances of the STCNN and the
OMTCNN to see if the outlier tasks worsen the performance.

First, we choose a facial attribute which is labeled in CelebA dataset, for instance,
Heavy Makeup, as our target for facial attribute recognition. Then we train the two
STCNN with their individual training sets and the OMTCNN with both training sets for
40 epochs. When we train the OMTCNN, we use images from the two training sets in
turn, which means if the data of current batch is from CelebA, the data of next batch
will be from MNIST. During the entire training, we test the training network with the
testing set after each epoch and make record of the accuracies. The accuracies of all
three networks on both tasks in 20 epochs are shown in Fig. 2.

From Fig. 2, we can see that the curves of the accuracies of the STCNN and the
accuracies of the OMTCNN nearly overlap no matter in Heavy Makeup recognition or
in hand-written digits recognition, which means the OMTCNN of these two outlier
tasks has almost the same performance as the STCNN has.

This result is not what we expect. In our hypothesis, outlier tasks will be con-
strained by each other in multitask network, which makes the performance of
OMTCNN worse than the performance of STCNN.

We change the facial attribute from Heavy Makeup to Smiling (Fig. 3) and run the
experiment again. The result remains the same.
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Fig. 2. The accuracies of STCNNs and OMTCNN on heavy makeup recognition and
hand-written digit recognition in 20 epochs.
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4 Reducing the Parameter Redundancy

We think the reason that the OMTCNN and STCNN have same performances is the
parameters in our network structure are in redundancy. That means the network has
enough parameters to perform two outlier tasks independently. So we decide to keep
adjusting the structure of the common hidden layers by reducing parameters until we
get the result we are looking for or the amount of the parameters are minimized.

4.1 Reducing the Filters in Each Layer

We reduce the parameters of the structure in two ways. One is reducing the number of
filters in each convolutional layer and the nodes in the fully connected layer. We reduce
half of the filters or nodes of every layer each time. The structures with parameters
reduced we use are shown in Table 1.

We do the same experiment with Heavy Makeup as our facial attribute in this four
structures.

From Figs. 4, 5, 6 and 7, we can see that when the number of filters is reduced to a
half of the basic structure (W1), the OMTCNN and STCNN still perform pretty closely.
When the number of filters is reduced to a quarter of the basic structure (W2), the
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Fig. 3. The accuracies of STCNNs and OMTCNN on Smiling recognition and hand-written
digit recognition in 20 epochs.

Table 1. Network structures with different parameter reduction.

Structure Filters in 1st layer Filters in 2nd layer Filters in 3rd layer Nodes in fc layer

W1 10 20 30 80
W2 5 10 15 40
W3 2 5 7 20
W4 1 2 3 10
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Fig. 4. The accuracies of STCNNs and OMTCNN of W1 structure on heavy makeup
recognition and hand-written digit recognition in 20 epochs.
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Fig. 5. The accuracies of STCNNs and OMTCNN of W2 structure on heavy makeup
recognition and hand-written digit recognition in 20 epochs.
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Fig. 6. The accuracies of STCNNs and OMTCNN of W3 structure on heavy makeup
recognition and hand-written digit recognition in 20 epochs.

Will Outlier Tasks Deteriorate Multitask Deep Learning? 251



performance of the STCNN on Heavy Makeup recognition is slightly better than that of
the OMTCNN. When the number of filters is reduced to one eighth of the basic
structure (W3), although both STCNN and OMTCNN reach the same accuracy on
hand-written digit recognition, the STCNN converges faster than the OMTCNN. When
the number of filters is reduced to one sixteenth of the basic structure (W4), the STCNN
performs better than OMTCNN either on Heavy Makeup recognition or on
hand-written digit recognition.

In conclusion, with the number of the parameters becoming less, the fact that
STCNN outperforms OMTCNN becomes more obvious.

4.2 Reducing the Number of the Layers

The other way we reduce the parameters is reducing the amount of layers of the
network. From [10], we know that reducing layers would cost more loss of complexity
than reducing filters in each layer. The two structures (D1 and D2) we use are shown
below and the result of the experiment we run on them are shown in Figs. 8 and 9.

D1: 40 filters in the 1st layer, 60 filters in the 2nd layer, 160 nodes in fully
connected layer.
D2: 60 filters in the 1st layer, 160 nodes in fully connected layer.

From Fig. 8, we can see that, with one layer removed, OMTCNN converges faster
than STCNN on Heavy Makeup recognition. And in Fig. 9, with two layers removed,
the STCNN can’t converge on Heavy Makeup recognition during the whole training
while the OMTCNN starts to converge, though very unstable, in the 19th epoch. This is
very interesting for we all expect STCNN outperforms OMTCNN but the result goes to
the contrary.

There is a mechanism called eavesdropping in multitask learning [5], which says a
task can eavesdrop some features it needs but can’t extract for some reasons (e.g., lack
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Fig. 7. The accuracies of STCNNs and OMTCNN of W4 structure on heavy makeup
recognition and hand-written digit recognition in 20 epochs.
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of parameters) from another task that also extracts these features in a multitask network.
In our case, we assume the reason that the OMTCNN can converge is that the Heavy
Makeup recognition task eavesdrops some features from the hand-written recognition
task in our multitask network, which means this two tasks may not be outlier tasks in
bottom level layers. They may have some common features in the bottom layers (e.g.,
outline detection).

5 Common Features in Outlier Tasks

From Figs. 8 and 9, we see that the OMTCNN outperforms the STCNN on Heavy
Makeup recognition when the complexity of their network structure is extremely small.
According to this situation, we propose a hypothesis that facial attribute recognition
task and hand-written digit recognition task may have some common features in the
bottom layers that help the OMTCNN.

To verify this hypothesis, we do the following experiment. As is shown in Fig. 10,
we use the first convolutional layer of the STCNN for hand-written digit recognition to
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Fig. 8. The accuracies of STCNNs and OMTCNN of D1 structure on heavy makeup recognition
and hand-written digit recognition in 20 epochs.
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Fig. 9. The accuracies of STCNNs and OMTCNN of D2 structure on heavy makeup recognition
and hand-written digit recognition in 23 epochs.
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replace the first convolutional layer of the STCNN for Heavy Makeup recognition and
see the difference of performances between this STCNN with 1st layer replaced and the
original STCNN.

To obtain the STCNN with 1st layer replaced, we first train the network (in W3
structure) with MNIST dataset for hand-written recognition for 10 epochs (at this
moment, it has already converged), then we freeze the first layer of the hidden layers,
which means the weights and the biases of it are fixed, and finally, we train the network
with CelebA dataset for Heavy Makeup recognition.

The comparison of accuracies between this network and the original one is shown
in Fig. 11.

From Fig. 11, we can see the STCNN with 1st layer replaced converge to the same
accuracy as the original network does, just with a smaller convergence rate. This can
prove that the first layer of the network that perform CelebA Heavy Makeup recognition
can be replaced by the first layer of the network that perform MNIST hand-written digits
recognition, which means this two tasks have some common features in the first layer.
We also run the experiment on STCNN for hand-written recognition with 1st layer
replaced by STCNN for Heavy Makeup recognition and get the similar result.

Fig. 10. Replace the facial attribute recognition network’s 1st layer with the hand-written digit
recognition network’s 1st layer.
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6 Conclusions

We first compare the performances between the STCNN and OMTCNN. Then we
reduce the parameters in our network structure and do the comparison again to see the
difference. By doing this, we find out that in a multitask network, outlier tasks would
constrain each other and make the performance of the multitask network worse than
that of the single task network, if the parameters of the network are not in redundancy.
We also use the first layer of a hand-written digit recognition network (trained with
MNIST) to replace the first layer of a Heavy Makeup recognition network (trained with
CelebA). Then we compare the performance of this replaced network and the original
network. By doing this, we can draw a conclusion that outlier tasks may not always be
isolated, they could be correlated or isolated in different level. For outlier tasks related
to image recognition, like facial attribute recognition and hand-written digit recogni-
tion, they could be correlated in the bottom layers for some basic image processing.
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Abstract. In recent years, with deep learning achieving a great success, deep
transfer learning gradually becomes a new issue. Fine-tuning as a simple transfer
learning method can be used to help train deep network and improve the per-
formance of network. In our paper, we use two fine-tuning strategies on deep
convolutional neural network and compare their results. There are many
influencing factors, such as the depth and width of the network, the amount of
data, the similarity of the source and target domain, and so on. Then we keep the
network structure and other related factors consistent and use the fine fine-tuning
strategy to find the effect of cross-domain factor and similarity of task.
Specifically, we use source network and target test data to calculate the simi-
larity. The results of experiments show that when we use fine-tune strategy,
using different dataset in source and target domain would affect the target task a
lot. Besides the similarity of tasks has direction, and to some extent the simi-
larity would reflect the increment of performance of target task when the source
and target task use the same dataset.

Keywords: Deep learning � Transfer learning � CNN

1 Introduction

The convolutional neural network(CNN) has achieved a great success in image
recognition. With the rapid development of GPU compute capability, large-scale
images can be used to train CNN in a relatively acceptable time. CNN model like
Krizhevsky et al. [1] has a good performance in recognizing CIFAR-10 dataset.
GoogLeNet [2] is a 22 layers deep network which achieves state-of-art performance in
the ILSVRC14.

Transfer learning aims to extract the knowledge from source task and apply the
knowledge to target task. Pan et al. [3] has a detailed introduction to transfer learning.

It is meaningful to apply transfer learning to CNN so that the performance of CNN
could be improved. Many methods of deep transfer learning have been proposed. Ge
and Yu [4] use the similar images of source task to improve the performance of target
network when training data of target task is insufficient, and they got a good result. Xu
et al. [5] use a semi-supervised method to train a network with existing labeled data and
no-labeled web data. Long et al. [6] proposed the joint adaptation networks and Ding
et al. [7] proposed the task-driven deep transfer network.
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In fact, there are many factors which influence the performance of CNN a lot.
Azizpour et al. [8] found those factors such as network width, network depth, early
stopping, source task, fine-tuning. In our experiment, we get rid of those factors which
are related to structure of network and concentrate on factors of dataset and the label of
samples. we want to get some guide conclusions that will help us to choose a better
plan to improve the performance of the target network.

In deep learning field, the trained network can be considered as a prediction
function [9] which is called ‘task’ in transfer learning field. Tasks can be divided into
source task and target task. Source task is used to help improve the performance of
target task. The similarity between source task and target task can influence the per-
formance of target task. We can get the similarity by logic thinking, but how can we
choose source task when there are some similar tasks? Logic thinking won’t work
without a hitch in this case. We try to define similarity mathematically and find a good
conclusion.

Transfer learning always uses two domains which is called source domain and target
domain individually to name datasets which are used in source task and target task.

There is no doubt that when transferring to the same target task, cross-domain
transfer learning and transfer learning whose source domain and target domain are the
same would have difference performances. Cross-domain means the dataset of source
domain and target domain are drawn from the different feature space and different
distribution, which increases the difference of source and target domain. In real world
applications, we have to use different datasets for transfer learning when there are few
samples for training in target task. Because of those reasons, the need of finding out the
influence of cross-domain and same domain on transfer learning arises.

Transfer learning uses the knowledge from source domain and source task to improve
the performance of target task. Knowledge learnt from source domain and source task
consist in weights and biases of deep network. Fine-tuning, which uses weights and bias
of network as the initializing parameter of target network, is a method of deep transfer
learning. We use this method to perform some experiments, and it gets good results.

2 Strategies of Deep Transfer Learning

Fine-tuning [10] is a method of transferring knowledge from an existed model to a
novel model. Fine-tuning uses the weights and biases of a trained network as the initial
weights and biases of novel network before the novel network starts to train. In our
experiments, the trained network is called source network and the novel network is
called target network. And we use the same CNN architecture in source network and
target network.

The other method is called simple deep feature extraction method. This method
uses the same network architecture in source network and target network, but the
convolution layers are fixed in target network so that low layer of source network could
be used as deep feature extractor. Those deep features from different task might be
similar, which could be used to transfer as the joint knowledge. In fact, simple deep
extraction method uses a simple network architecture in task network because only
several layers in network can be trained.
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In fact, since the difference between simple feature extraction method and
fine-tuning is that the former will fix convolutional layers’ weights and biases and the
latter set all weights and biases trainable, simple deep feature extraction method is a
simplified version of fine-tuning. Before starting to introduce experiments, we would
like to name Fine-tuning as strategy I and name simple deep feature extraction method
strategy II. The architectures of strategies are depicted in Fig. 1.

In the experiments, we consider that the performance which gets from using test
dataset of target task to measure the accuracy of source network is associated with the
similarity between source task and target task, because the performance of target
network could be better when tasks are similar. Validation function hðDtestÞ denotes the
accuracy of network, which is got with the test dataset Dtest. We denote the source task
validation function and target source task validation function as hSð�Þ and hTð�Þ.
DS

training;D
S
test stand for training dataset and test dataset of source domain. DT

training;D
T
test

stand for training dataset and test dataset of target domain. We denote S as the simi-
larity between source task and target task with shown as Eq. (1).

S ¼ hS DS
test

� �� ln
hS DS

test

� �

hSðDT
testÞ

ð1Þ

Fig. 1. The CNN architectures in experiments
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According to the Eq. (1), the smaller the S, the more similar the source task and
target task. There are two similarities S1; S2. Note that if source task and target task of
S1 are both different from these of S2, comparison between S1 and S2 is meaningless.

Besides, we assume that the effects of similarity between source task and target task
will be exhibited obviously when using a simple network architecture. In other words,
as the similarity of task is not the main factors of transfer learning and its effects would
be invisible when network is enough complex. In experiments, if performances of
target networks which get with strategy I are almost no difference, we could use the
strategy II to perform the same experiment so that it could show different experimental
results.

3 Experiments

3.1 Data Processing

In experiments, we use gender label, heavy makeup label and lipstick label from
CelebA1 dataset and gender label from CAS-PEAL2 dataset. CelebA dataset is a
large-scale face attributes dataset where images cover large pose variations and
background clutter. There are 99594 images in CAS-PEAL dataset that is smaller than
CelebA dataset.

Because positive and negative samples have different quantities in CelebA and
CAS-PEAL dataset, we tried to remove this effect from experiments. We extract 25000
male label images and 25000 female label images from CelebA dataset so that we get
40000 images as gender training dataset and 10000 images as gender test dataset. Like
getting gender training and test dataset, we get the training dataset and test dataset of
heavy makeup and lipstick. In CAS-PEAL dataset, we try to flip and rotate the images
for getting more samples, and finally we get a gender dataset with 15000 training
samples and 5000 test samples.

Furthermore, samples from CelebA dataset and CAS-PEAL have different size, but
our network requires a constant input dimension. We fix the samples’ size as 80� 64.

Finally, we get CelebA gender dataset, CelebA heavy makeup dataset, CelebA
lipstick dataset and CAS-PEAL gender dataset for our experiments.

3.2 Training Source Task Network

In order to prove our assumption, we use strategy I and strategy II to do a series of
experiments. According to whether cross-domain and cross task, we divide experi-
ments into four parts, that is normal network training, same domain and different tasks
training, cross-domain and same task training, cross-domain and different tasks
training.

The same domain and different tasks training only uses strategy I when the other
transfer learning experiments use both strategy I and strategy II.

1 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
2 http://www.jdl.ac.cn/peal/.
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We trained four networks, which are CelebA gender network, CelebA heavy
makeup network, CelebA lipstick and CAS-PEAL Gender network, as the source
network from the normal network training experiments. We uses this four source
networks to do transfer learning experiments. The performances of source networks are
showed in Table 1.

3.3 Different Performances of Different Transfer Strategies

We use two strategies in our experiments with the result that experiments which use
strategy I 2%-6% higher than using strategy II. The Table 2 shows differences of
performances when using different strategies. As the strategy II use a simpler network
architecture, the result gets a bit lower. In fact, strategy II can’t improve performance of
target network.

When training networks, we find that the target networks’ cross-entropy loss starts
from a low value when the target task and source task are similar as show in Fig. 2. On
the contrary, the cross-entropy loss starts from a high value and is sometimes even
higher than those using random initializing weights. And have a look at those exper-
iments, they always are cross-domain and have different source task label and target
task label. Besides, we get a good performance when epoch of training is low with
fine-tuning method, for example experiments of transferring to CelebA Gender label as
shown in the Fig. 3.

Table 1. Performances of source networks

Lebel Accuracy

CelebA gender 96.54%
CelebA heavy makeup 90.14%
CelebA lipstick 92.40%
CAS-PEAL gender 98.46%

Table 2. Using different strategy, getting different result. The notations Acc-I, Acc-II represent
accuracy from the target network which use strategy I and II respectively. The notation
Difference represents Acc-I minus Acc-II

Source task label Target task label Acc-I Acc-II Difference

CAS-PEAL gender CelebA gender 96.66% 90.74% +5.92%
CAS-PEAL gender CelebA heavy makeup 89.90% 84.88% +5.02%
CAS-PEAL gender CelebA lipstick 91.88% 87.48% +4.40%
CelebA gender CAS-PEAL gender 99.05% 96.56% +2.49%
CelebA heavy makeup CAS-PEAL gender 99.05% 95.97% +3.08%
CelebA lipstick CAS-PEAL gender 99.13% 95.86% +3.27%
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3.4 Cross-Domain Factor

Different datasets have different feature spaces. It has an impact on transfer learning.
We put the experimental results in the Table 3. We find that the results of transfer from
the CAS-PEAL network to CelebA lipstick and heavy makeup network experiments
didn’t achieve the goal of improving performances of target networks. We think that
CAS-PEAL samples are grey scale images and there are few helpful features from
CAS-PEAL gender network to help improve the performance of CelebA lipstick and
makeup network which need more mostly color features. However, it’s effective to
transfer from the CelebA lipstick or CelebA makeup network to CAS-PEAL gender
network, because CelebA samples have ample gender non-Chinese gender character-
istics, which is still helpful for transfer to CAS-PEAL gender network (Chinese gender
network).

From the Tables 3 and 4, We try to transfer gender task to heavy makeup task and
lipstick task. when the source domain and target domain use the same dataset, the task
similarity S is close to 0 which means target task is close to source task, and accuracies
are higher than those gotten from normal network. When source domain and target
domain are different, it always needs an adaption process so that there are more samples
with available and helpful features from source task to be used in target task.

The cross-domain factor is easy to consider that different domains mean different
space feature and different distribution. And it will reduce the similarity between source

Fig. 2. Comparison of Training loss of transferring to CelebA gender task experiments. Losses
of Cross-domain experiments always have higher initial values than those using the same
domain.
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task and target task. However, some joint knowledge can still be learned by target task
and the quantity of knowledge might be few when the difference between source
domain and target domain is high. If target domain has little samples for training, try to
find a similar dataset and make S small might be helpful to train and improve the target
network’s performance.

Table 3. Performance comparison of experiments. Acc represents the accuracy of networks

Target Task
Acc

Source Task

CAS- PEAL CelebA

Gender Gender Lipstick Heavy Makeup

CAS-PEAL Gender 98.46% 96.66% 91.88% 89.90%

CelebA

Gender 99.08% 96.54% 92.41% 90.64%

Lipstick 99.13% 96.78% 92.40% 90.73%

Heavy Makeup 99.05% 96.69% 92.77% 90.14%

Fig. 3. Accuracies of transferring to CelebA gender task experiments
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3.5 Transferring in the Same Dataset

When source task and target task use the same dataset, we can ignore dataset adaptation
process and pay attention to different tasks. We find that S is smaller when Acc is
higher. As shown in Table 4, in transferring to CelebA Gender experiments, the
similarity between CelebA lipstick and CelebA Gender is closer than the similarity
between CelebA heavy makeup and CelebA Gender, and CelebA lipstick transfer to
CelebA gender experiment gets the best performance in the transferring to CelebA
Gender experiments.

In our opinion, similarity of tasks has directionality. As shown in Fig. 4, the end of
the arrow represents the source task and the head of the arrow represents the target task.
Besides we marked similarity and improvement of target task in the middle of the
arrow. Note that S can be compared between transfer experiments only when source or

Table 4. Similarity Comparison. The notation S computed with Eq. (1) represents the similarity
of tasks. And the smaller the S, the higher the similarity

Target Task
S

Source Task

CAS-PEAL CelebA

Gender Gender Lipstick Heavy Makeup

CAS-PEAL Gender 0 0.2674 0.3154 0.3377

CelebA

Gender 0.3263 0 0.08286 0.1333

Lipstick 0.5241 -0.0069 0 0.0394

Heavy Makeup 0.5182 0.0197 -0.0076 0

Fig. 4. The similarity and increment of performance of transfer experiments with CelebA
dataset
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target tasks are the same. Otherwise, it would be meaningless. When we consider to
ensure that the source tasks are the same and comparing different target task, there is no
clear regularity can be found from S and increment of performance. However, when we
keep target task the same and make source task different, we find that the smaller the S,
the greater the increment. Different target tasks would have different training difficul-
ties. We make target tasks consistent so that we could get the same criteria. However, it
no longer follows the laws when source task and target task use different datasets. We
think that the factor of different datasets will affect transfer experiments with different
tasks simultaneously.

4 Conclusion

In this paper, we try to use two different strategies as transfer methods. Experimental
results show that strategy I is useful and strategy II can’t improve the performance of
target task. Then we use strategy I to find the regular of cross-domain factors and
similarity of tasks. When using different datasets, source task should have sufficient
training data and the training samples have similar feature space to those in target
domain. Finally, we find the heuristic relevance of the similarity and increment of
performance of target network. Nevertheless, our mathematical approach to compute
task similarity still needs to be further improved to apply to more different situations.
our experimental analysis should go deeper in neural networks and find more transfer
strategies in feature investigation.
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Abstract. In virtue of the superiority of handling the sequence data and the
effectiveness of preserving long-distance information, recurrent neural network
language model (RNNLM) has prevailed in a range of tasks in recent years.
However, a large quantities of data are required for language modelling with
good performance, which poses the difficulties of modeling for low-resource
languages. To address this issue, Tibetan as one of minority languages is
instantiated, and its radicals (components of Tibetan characters) are explored for
constructing language model. Motivated by the inherent structure of Tibetan, a
novel construction of Tibetan character embedding is exploited to RNNLM. The
fusion of individual radical embedding is enhanced by three ways, including
using uniform weight (TRU), different weights (TRD) and radical combination
(TRC). This structure, especially combining with the radicals, can extend the
capability to capture long-term context dependencies and solve the low-resource
problem to some extent. The experimental results suggest that this proposed
structure obtained a better performance than standard RNNLM, yielding 7.4%,
12.7% and 13.5% relative perplexity reduction by using TRU, TRD and TRC
respectively.

Keywords: Language model � Low resource � Recurrent neural network �
Character embedding � Radical

1 Introduction

Statistical language model (LM) is a crucial component of many applications, such as
machine translation, information retrieval and speech recognition [1–3], which
provides a high-level understanding of text or speech in statistical point of view.
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LM aims to calculate the probability of any given word sequence, which allows LM to
be incorporated into the statistical models. Meanwhile, the syntactic and semantic
attributes of sentences can be encoded implicitly in LM to improve prediction.

The conventional n-gram LM [4–6] has been the dominant LM for several decades
due to its easy implementation, fast training and good generalization. For n-gram LM,
however, there are two well-known issues. The first is that it cannot capture long-term
information due to its n-gram assumption. The second is the data sparsity issue.
Recurrent neural network provides a feasible solution for both of these two issues, by
projecting each word into a low and continuous space, and using recurrent connection
to keep the complete history information. Recently, RNNLM [7–9] has been proved to
outperform the traditional n-gram LM to be the state-of-the-art. However, a large
quantity of data are required for robust parameter estimation. So data sparsity is still an
issue for low-resource languages, which is the research topic in this paper. Tibetan is
one of minority languages used in China. And data sparsity issue is also the top priority
to be dealt with.

Many different approaches have been explored to address the data sparsity issue.
One direction is to reduce the amount of model parameters, including LM based class
and LM with compression layer [6, 10]. However, it is still poor to make prediction of
rare words even with a smaller amount of model parameters. RNNLM is able to
mitigate the sparsity issue by using word embedding as inputs. So another natural
approach draws support from richer features [12, 13], which can be exploited to
enhance the word embedding and help RNN learn more context information effec-
tively. Subwords [14–16] that contain some smaller units such as characters and
morphs are exploited widely. In [17], the morphological structure is leveraged by
exploiting the different uses of morphological features both in input layer and output
layer. An apparent drawback is that the morph decomposition needs extra tools.
Besides, it is inappropriate to Tibetan, in which the concept of morph is not existed.
[18] utilized the subword information by a character-level convolutional neural net-
work (CNN). Although the experimental results demonstrated that the model consis-
tently outperforms the standard LSTM baseline, it didn’t work well for Tibetan.

But for Tibetan LM, it still remains preliminary stage having not utilizing RNNLM
due to the scarcity of the training data. Character is a natural and minimal meaningful
unit for Tibetan, which is similar as word in English. By analyzing and exploiting the
features of Tibetan character, a new structure exploiting the Tibetan radical (component
of Tibetan character) encoding is proposed, which shows high potential to solve the
data sparsity issue.

In this paper, our proposed model aims to exploit the particular Tibetan radical unit,
and interpolates the radical embeddings into character embedding. To explore different
properties of different radicals, factors for different radical embeddings are introduced,
which allows the model more flexibility. And every radical embedding can be inter-
polated according to its contribution to the integral meaning of corresponding char-
acter. Besides, there is a radical combination phenomenon in Tibetan. Encoding for
radical combination can fully utilize the properties of Tibetan radicals. By the intro-
duction of radical embeddings, the character embedding is enhanced with more useful
semantic information, which can help to address the data sparsity issue.
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The rest of the paper is organized as follows. Section 2 gives a brief overview of
the standard RNNLM. Section 3 describes the proposed RNNLM with structured
character embedding enhanced with Tibetan radical encoding. The experimental setup
and evaluation results are given in Sect. 4. Section 5 gives a discussion about the
experimental results. Finally, we conclude the research and the future work in Sect. 6.

2 Review of Standard RNNLM

Statistical language model is given a sequence of words, then to measure how likely a
sentence is by predicting its probability. RNNLM can make use of sequential infor-
mation well. It preserves long-span context by the introduction of hidden layer which
captures information of what has been calculated so far. The standard structure of RNN
is depicted in Fig. 1.

xt denotes the input layer of time t, which encodes the present word wt using
one-hot vector whose size is Vword . The hidden layer, denoted as ht, preserves the
remaining context information by using the activation function. The output layer of
RNNLM is ot, which is the language model probability of each word at time tþ 1 in
vocabulary given the history word sequence \wt; . . .:;w1 [ . Input layer, hidden layer
and output layer in the propagation process of RNNLM can be computed as follows:

ht ¼ f ðWIHxt þWHHht�1Þ ð1Þ

ot ¼ gðWHOhtÞ ð2Þ

Fig. 1. Structure of standard RNNLM
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PRNN xtþ 1 ¼ k xt; ht�1jð Þ ¼ ot;k ð3Þ

where f ðzÞ and gðzmÞ are sigmoid and softmax activation functions:

f ðzÞ ¼ 1
1þ e�z

ð4Þ

gðzmÞ ¼ ezmP
k e

zk
ð5Þ

Behind the structure of RNNLM, the idea is to make full use of sequence infor-
mation in virtue of the hidden layer which is executed repeatedly for each word, so that
it can model arbitrarily long span information. But in practice it is limited to looking
back only a few steps. Still, RNNLM needs to be modified and interpolated more extra
features to model longer context.

3 RNNLM with Tibetan Radical

3.1 Introduction of Tibetan Radical

Tibetan is a low-resource language known as one of minority languages in China. In a
sentence, every two characters are separated by a tsek (a Tibetan separator). But there is
not any symbol to divide the Tibetan word, which makes word segmentation a diffi-
culty. For Tibetan, character is the minimal semantic unit, which is similar as word in
English. So character unit is chosen as the input unit.

A Tibetan character has a complex shape, which is actually a group of radicals with
size of 1 to 7 as shown is Fig. 2. Each radical has its contribution to produce the
meaning of character, therefore, it carries some information to predict the character.
Next, different model structures are explored to exploit the properties of Tibetan
radicals.

3.2 RNNLM with Structured Character Embedding

In order to enrich the input character embedding with Tibetan radical features, the
structured character embedding is proposed, which is interpolated with the weighted

Fig. 2. An example of Tibetan character and its radical decomposition
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sum of Tibetan radical embeddings. Equation (6) shows the structured character
embedding with radicals,

~cr ¼~cþ kð
X

i2N~riÞ ð6Þ

where~c denotes the character embedding,~ri represents embedding of the radical that is
in position i of the radical sequence and N is the number of radicals of a specific
character, which varies between 1 and 7. And a uniform weight k is introduced to
realize the structured character embedding~cr with radical embeddings.

~cr ¼~cþ
X

i2N ki~ri ð7Þ

In order to further explore the property of each radical, different weights ki for
different radicals are proposed to optimize the structured character embedding as Eq. (7).

The structured RNNLM with Tibetan radicals is illustrated in Fig. 3, and there is
also a compression layer which collects both the character embedding and the corre-
sponding radical embeddings. Two main benefits can be obtained by introducing
compression layer. First, it compresses the input information and extracts its more
meaningful parts. What’s more, it reduces the size of the model that becomes larger due
to the introduction of radicals. The proposed model can be trained using standard back
propagation through time (BPTT) [7] algorithm with slight parameter shift.

Fig. 3. RNNLM with structured Tibetan character embedding
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As illustrated in Fig. 3, the formulas in the propagation process of RNNLM can be
rewritten as follows:

ct ¼ f ðWICxt þ
X

i2N KiWRCrt;iÞ ð8Þ

ht ¼ f ðWCHct þWHHht�1Þ ð9Þ

ot ¼ gðWHOhtÞ ð10Þ

where Ki is the i
th weight matrix for the ith radical, and every Ki is equal for TRU, but

unequal for TRD. The parameters to be trained involve WIC; WRC; WCH ;f
WHH ; WHO;Kig.

Besides, many different units can be the inputs of RNNLM, such as phrase, word,
character, or smaller unit radical in this paper. In small unit based LM, since the
number of radicals is small in Tibetan, the radical vocabulary can cover all radicals in
data set. It not only simplifies the model structure, but more significantly, avoids
out-of-vocabulary (OOV) issue and relieves data sparsity. But large unit is usually
necessary because small unit based LM is disadvantaged in capturing long context
information under the limit of modeling distance of RNN. So it is vital to achieve a
balance between these two cases. By analyzing the property of Tibetan character, it is
unnatural to straight decompose the Tibetan character into several radicals. But some
combinations of Tibetan radicals carry more semantic information. Added Tibetan
structure information of Tibetan can further optimize the representation of Tibetan
character. Figure 4 shows an example of Tibetan radical combination. If the structure
put in the square is regarded as an integral whole, it is able to preserve more useful
information. In this paper, the fixed radical combination is also adopted.

4 Experiments and Results

Experiments were conducted to examine the performance of proposed model structures
on a small benchmark data set. Perplexity (PPL) is chosen as the evaluation criterion,
and a language model with better performance usually has lower PPL. In this section,
the experimental corpora are described in detail. Then, results of the baseline LMs are
exhibited, which are used as the contrast experiments. Finally, we present the results of
RNNLMs with Tibetan radicals.

Fig. 4. An example of Tibetan radical combination
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4.1 Experimental Setup

In this paper, the raw data about news were crawled from the internet, and then checked
and cleaned by two Tibetan experts. The clean data were divided into 25 sections, with
the standard segmentation method in [7, 18]. Section 0–20 were used as the training set
while Section 21–22 and 23–24 were picked out for validation and testing respectively.

The character vocabulary was limited to the top 2472 ranking according to fre-
quency. In addition, an OOV notation was used to present any character not in the
chosen vocabulary. The size of the corpora and the percentage of OOV character are
illustrated in Table 1. It also shows the information of Tibetan radical covered all
characters in the vocabulary, including the single radical and radical combination.

4.2 Results of RNNLM with Structured Character Embedding

The proposed RNNLMs with Tibetan radical (RNN_TR) were implemented using
CUED-RNNLM toolkit [10, 19] and we denoted the baseline RNNLM using Tibetan
character only as RNN_TC. For fair comparison, all networks were unfolded 5 times
(bptt = 5). The comparison between standard RNN_TC and two kinds of RNN_TR is
made in Table 2. It shows that RNN_TR gets a significant PPL improvement over the
standard RNN_TC. With the increase of hidden units, the PPL of standard RNN_TC
can’t be reduced due to its dependency on large amount of data. But for RNN_TR, the
performance can get stable improvement, which demonstrates that the introduction of
radical can solve the data sparsity issue to some extent.

It is also interesting to explore the properties of different radicals from the same
character. As described in Sect. 3, there are two kinds of RNN_TRs, RNNLM with
uniform weight (RNN_TRU) and RNNLM with different weights (RNN_TRD)
respectively. From Table 2, improvement of RNN_TRD is significantly higher than

Table 1. Statistics of Tibetan data

Data # Token % OOV

Char vocabulary 2472 –

Single radical 57 –

Radical combination 420 –

Training set 1.5 m 1.08
Valid set 125 k 1.12
Test set 126 k 1.11

Table 2. Evaluation results comparison between RNN_TRU and RNN_TRD

LM #Hidden
Units

PPL
_TC _TRU _TRD _TRC

RNN 400 59.9 59.6 56.5 55.9
500 58.4 58.3 55.8 54.9
600 61.8 58.0 54.9 54.4
700 62.2 57.6 54.3 53.8
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RNN_TRU. And when hidden units were 700, RNN_TRU and RNN_TRD yield 7.4%
PPL reduction and 12.7% PPL reduction. It shows that each component of a Tibetan
character has varying contributions to the integrated meaning.

To verify the effectiveness of radical combination, RNN_TRC which denotes
RNN_TR with Tibetan radical combination, was trained and evaluated in Table 2. It
shows that RNN_TRC achieved sustained performance improvement in 1% relative
PPL reduction and radical combination is a more natural semantic unit compared with
single radical.

4.3 Results of Interpolation Between RNNLM and N-Gram LM

RNNLMs and n-gram LM, as two inherently different LMs, have their respective
modeling power. RNNLMs are usually combined with n-gram LM using a fixed weight
by linear interpolation. This part mainly explores the interpolation results and verifies
their varying complementary attributes.

With the experimental verification, the best results were obtained when interpolation
weight is 0.6 for RNNs. We denoted Kneser-Ney smoothed 3-gram as KN3, and
selected the best result for each RNN structure (Hidden units are 500 for RNN_TC, and
700 for three RNN_TRs). In Table 3, we can see that our proposed RNN structures all
obtained better results compared with conventional KN3. What’s more, when RNNs are
combined with KN3, definite improvements are achieved. It demonstrates that RNNs
and n-gram both have their complementary contributes and further testify the effec-
tiveness of our modified RNNs in solving the data sparsity issue especially for Tibetan.

In this section, the structure of RNNLM with Tibetan radical is explored, and the
exploiting of radical embedding in character-based RNNLM achieves coincident
improvement in PPL reduction.

5 Discussion

This paper has investigated strategies to solve the problems with low-resource language
by exploiting Tibetan radical features in recurrent neural network language models for
limited resource scenarios. The experimental results suggest our proposed models are
more suitable for Tibetan by using the structured information of Tibetan character.

Table 3. Interpolation results between RNNs and KN3 with fixed weight 0.6 for RNNs.

PPL
LM RNN RNN + KN3

KN3 – 58.5
RNN_TC 58.4 48.0
RNN_TRU 57.6 47.9
RNN_TRD 54.3 47.0
RNN_TRC 53.8 46.9
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For this reason, this study proposes a new structure to explore Tibetan radical
features by incorporating the radical embeddings in character embedding with three
different measures. By exploiting the property of character, RNNLM acquires more
information to model longer span context. The experimental results prove that the
proposed model yields a better performance ascribed to the introduction of radical
embedding. Next, results of different weights for different radicals from one character
display a further improvement, which also reveals that radicals have different proper-
ties. Roughly speaking, varying positions of radical will change its property lightly,
which leaves many issues to explore. More interestingly, some radical combination
produces more abundant connotations. In this paper, the fixed combination is used.
More dynamic radical combinations should be exploited. Finally, the effectiveness of
our models are further testified when interpolated to n-gram.

Because of the limitation of Tibetan corpus, we firstly verify the superiority of the
Tibetan radical in our proposed structured character embedding by exploiting it in
RNN. And it is easy to migrate this structure to LSTM (long short-term memory).
Compared with RNN, LSTM can solve the gradient vanishing problem and then model
longer history context. So the performance can be further improved by exploiting the
Tibetan radical in LSTM.

6 Conclusion and Future Work

In this study, a new structure of Tibetan character embedding is proposed by analyzing
and exploiting the features of Tibetan. By exploiting the features of Tibetan radical,
Tibetan character embedding is fused with radical embeddings by three ways,
including using uniform weight, using different weights and using radical combination.
The proposed model enhances the character embedding and shows a high potential to
address the data sparsity issue for low-resource language.

For the future work, this structure will be applied to LSTM to further improve the
performance of Tibetan LM. And the relationship between the statistical characteristics
of radicals and their weights in RNNLM will be explored. It can be used to guide the
parameter initialization to jump out of local optimum to achieve a better result. Besides,
the measures of radical combination are also worth investigating to help Tibetan LM
model more useful information.
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Abstract. Recently, learning joint representation of multimodal data has
received more and more attentions. Multimodal features are concept-level
compositive features which are more effective than those single-modality fea-
tures. Most existing methods only mine interactions between modalities on the
top of their networks for one time to learn multi-modal representation. In this
paper, we propose a multi-fusion deep learning framework which learns mul-
timodal features richer in semantic. The framework sets multiple fusing points in
different level of feature spaces, and then integrates and passes the fusing
information step by step from the low level to higher levels. Moreover, we
propose a multi-channel decoding network with alternate fine-tuning strategy to
fully mine the modality–specific information and cross-modality correlations.
We are also the first to introduce deep learning features into multimodal deep
learning, alleviating the semantic and statistical property differences between
modalities to learn better features. Extensive experiments on real-world datasets
demonstrate that, our proposed method achieves superior performance com-
pared with the state-of-the-art methods.

Keywords: Multimodal � Deep learning � Multi-fusion � Semantic integration

1 Introduction

Nowadays, we often encounter data consisting of different modalities in real-world
applications. Although every modality has its specific information and statistical
properties, different modalities usually share high level concepts and semantic infor-
mation; hence there exists correlations between different modalities. Multimodal data
usually contain more information than any single-modal data. By fusing different
modalities together, we can integrate intra-modal information with cross-modal com-
plementary information to get a concept-level compositive feature, with which the
performance in retrieval and classification can be improved.

In early stage, many statistical approaches were proposed for multimodal learning. D.
M. Blei et al. [1] proposed multimodal-oriented Correspondence LDAmodel to mine the
hierarchy correlation between images and texts. E.P. Xing et al. [2] proposed a dual-wing
harmoniums model to learn a joint representation of the image and text modalities.
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Nikhil Rasiwasia et al. [3] proposed a semantic correlation matching (SCM) approach to
produce an isomorphic semantic space for cross-modal retrieval. However, due to the
poor learning ability of shallow structures, these studies failed to capture high-level
concepts from multimodal data to get accurate multimodal features.

Recently, there has been a growing interests in using deep networks for
multi-modal learning. Ngiam et al. [4] built a deep autoencoder based on restrict
boltzman machine and aggregated speech and video signals to find a shared repre-
sentation. Srivastava et al. [5, 6] successively introduced the multimodal deep belief net
and the multimodal deep boltzmann machine to learn deep generative models over joint
space of image and text inputs. Feng et al. [7] proposed a CCA based auto-encoder for
multimodal learning, which used CCA to train the network.

The quality of the learned multimodal features heavily depend on the procedure of
interaction mining between modalities. However, all of these existing methods adopt
single-fusion framework: they only mine interactions between modalities on the top of
their networks for one time.

In this paper, we enhance the interaction mining procedure by setting multiple
fusing points in different level of feature spaces, each fusing point can integrate the
interactions between modalities in current feature space with the interactions from
lower level spaces and then pass the information step by step from the low level to
higher levels. However, a direct link between different modalities will introduce more
noise due to the huge differences in semantic content and statistical properties between
modalities. To solve this problem, we introduce deep learning features and utilize a
series of normalization methods in multimodal deep learning, for making sure that the
input features of the two modalities locate in similar feature space. What’s more, in
order to train the network to fully mine the modality–specific information and
cross-modality correlations, we propose a multi-channel decoding network with
alternate training strategy to fine-tune the network. The experimental results show that
the performance of our method outperforms the state-of-the-art methods on MIR Flickr
[8], NUS-WIDE [9] and PASCAL-sentence [10] databases.

The overall contributions of our paper are as follows.

(1) We propose a novel multimodal deep learning framework to mine the correlations
between modalities in different levels, and learn the vertical correlations gradually
from low level to higher level feature spaces, so as to reinforce the interactions
between modalities.

(2) We propose a general decoding network and corresponding training strategy to
fully exploit modality–specific information and cross-modality correlations to
fine-tune the feature learning net and learn better multimodal representations.

(3) We introduce CNN visual features and Word2vec textual features into
multi-modal learning. As far as we know, this is the first time that deep learning
based features have been introduced into multimodal learning. These features
have similar statistical properties and abundant semantic information, which
improves the accuracy of cross-modality correlation mining and the quality of the
learned multi-modal features.
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The rest of this paper is organized as follows: Sect. 2 details the multi-fusion
multimodal deep learning network; Sect. 3 reports the experimental results on three
databases, followed by the conclusion in the last section.

2 Multi-fusion Multimodal Deep Learning Framework

In this section, we first elaborate the motivation and basic component of our
multi-fusion multimodal learning framework (MFMDL), and then respectively describe
the multi-fusion feature learning model, the multi-channel decoding network and
alternate fine-tuning algorithm.

2.1 Motivation and Framework

The key of multimodal learning lies in mining the correlation of different modalities. The
existing multimodal learning methods adopt single-fusion framework, i.e., they build
separate channel for eachmodality and onlymine interactions betweenmodalities for one
time on the top level of their networks to learn a joint multi-modal representation.
However, the interactions between modalities have different manifestation in every level
of the net and high level feature space may not contain all the useful information. Hence
the previousmethods have the problem that they can’t fullymine the interactions between
modalities, which restricts the quality of the output multimodal features.

To solve this problem, we propose the multi-fusion multimodal learning frame-
work. We set multiple fusing points in different levels of the feature learning network to
integrate the interactions between modalities in current feature space with the inter-
actions from lower level spaces and then pass the information step by step from the low
level to higher levels. As a result, the final joint layer on the topmost hidden layer
contains modal-specific information and cross-modal correlations from all different
layers of the whole net.

This however brought another problem: when we employ the multi-fusion model
straightforward, the quality of output feature from multi-fusion model is even worse
than those single-fusion ones. After analysis, we find the problem lies in the significant
differences between two modalities. The image and text modality vary a lot in semantic
level and statistical properties, making it difficult to project them into a common feature
space to mine the correlation between them. So the multi-fusion structure introduces
more noise than single-fusion ones and will repeatedly accumulate the noise from low to

Fig. 1. Concept diagram of our proposed multimodal learning model.
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high, degrading the performance of final learned features. To solve this problem, we
import deep learning features into multimodal learning tasks. Compared with traditional
features, deep learning features contain richer semantic information and are similar in
statistical form. With deep learning features, our multi-fusion model can easily project
two modality into common space and mine more accurate correlations from different
levels of feature spaces, which makes the best use of our multi-fusion model.

The framework is demonstrated in Fig. 1, which can be split into 3 stages. The first
stage is feature extracting and normalization. We use CNN [13] and Word2vec [14]
models fine-tuned by corresponding big datasets to extract visual and textual features as
the input of our model, then a series of normalization methods like Mean Cancellation,
KL Expansion and Covariance Equalization are adopted to balance the statistical dif-
ference between modalities. The second stage is multimodal learning. We propose a
novel multi-fusion net to learn multimodal features, which consists of full-connected
layers and multi-fusion layers. After that, in the third stage, a multi-channel decoding
net and corresponding training strategy is proposed to fine-tune the feature learning
model in stage 2.

2.2 Multi-fusion Feature Learning Net

As we have mentioned above, to learn better multimodal features, we should mine the
interactions between modalities in multiple levels of feature spaces. Inspired by the way
of how shortcut connections [11] and residual network [12] use priori knowledge from
low levels, we set multiple fusing points in different level of feature space to integrate
the interactions between modalities in current feature space and the interactions from
lower level spaces.

The multimodal learning net is shown in Fig. 2(a), which has 3 parts:

(a) The bottom layers are separate full-connected layers; they map the features from
different modalities into similar high level feature space. We build full-connected
layers at the bottom of the net by the observation that low level feature spaces
usually contain more modal-specific information, and conduct correlation mining
between modalities directly from bottom spaces will bring in more noise and
degrade the accuracy of the output multimodal features.

Fig. 2. The structure of MFMDL. (a) The multi-fusion learning net for learning multimodal
feature. (b) The multi-channel fine-tuning net to optimize the parameter of (a)
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(b) The middle part is multi-fusion layers; we add multiple fusing points in this part to
mine the vertical correlation between modalities. In this part, there are two kinds
of channels: the modality-specific channel and the inter-modal joint channel. The
modality-specific channel maps two separate modalities into higher levels of
modality-specific feature spaces while the layer in inter-modal joint channel
integrate the correlations between modalities in current feature space with the
interactions from lower level spaces and then pass the information step by step
from the low level to higher levels.

(c) The top layer is the output layer; it is connected to all the hidden nodes of the
previous layer to learn a joint multimodal representation.

2.3 Multi-channel Decoding Net with Alternate Fine-Tuning Algorithm

To learn better multimodal feature, we should fully mine the inherent semantic
information of every specific modality and the interactions between modalities, named
‘intra-modal correlation’ and ‘cross-modal correlation’ respectively.

The intra-modality correlation evaluates multimodal feature’s ability of preserving
inherent semantic information of every modality. Given multiple modalities xinz; xtnzð Þ,
where both modalities are none zero, the output multimodal feature of the model should
reconstruct the input features. The loss function of intra-modality correlation is defined as
follow:

Lintra ¼ argmin
XK

i¼1
½ x0i � xinz
�� ��2

2

� �
þ x0t � xtnz

�� ��2
2

� �
� ð1Þ

where k k2 is the L2 norm and x0i; x
0
t

� �
is the reconstruction of the inputs.

On the other hand, the cross-modality correlation mining requires that: when only
one modality is present and the rest are absent, the learned feature should have the ability
to infer the missing modality. For example, when only image feature is present and text
is absent, the loss function of the cross-modality correlation is defined as follow:

Lcross ¼ argmin
XK

i¼1
ð x00t � xtnz
�� ��2

2Þ ð2Þ

where x
00
t is the reconstruction of the text feature and xtnz is the original text feature

(During training procedure, we have bi-modal data, the text is manually set to zero).
The corresponding function when text is present vice versa.

For the aforementioned two loss functions, the ‘intra-modality correlation’ aims to
reconstruct the original input while the ‘cross-modality correlation’ aims to diverge the
original input to infer cross-modal interaction. As a result, these two loss functions are
contradictory, and when we want to integrate them into one single model, it will cause
fluctuation and make the model deviate far from the true one. In order to meet the
requirement of both correlations, we propose a multi-channel decoding net with
alternate training strategy.

The framework of the decoding net is shown in Fig. 2(b), which contains two
channels for each modality named image-none-zero (inz) channel, image-zero (iz)
channel, text-none-zero (tnz) channel and text-zero (tz) channel. Considering different
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possibilities for the bi-modal input data consisting of text and image, i.e., missing text,
missing image, and bi-modal input. When both modalities are present, we choose
bimodal path inz, tnz as shown in Fig. 3(a) and use Lintra as the loss function to
measure the intra-modality correlation. When one modality is absent (the e.g. text
feature is zero), we choose unimodal path inz and tz as shown in Fig. 3(b) and use Lcross
as the loss function to measure the cross-modality correlation. So the decoding net will
alternately choose channel corresponding to different possible condition of the input
data.

The fine-tuning algorithm of multi-fusion learning model is presented as follows.

Fig. 3. Multi-channel decoding net. (a) Bimodal decoding path. (b) Unimodal decoding path
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3 Experiments

3.1 Datasets

Flickr. [8] consists of 1 million images crawled from the social photography website
Flickr along with their user assigned tags. There are 25000 labelled images with 38
classes and every image may belong to several classes. Among the labelled data, only
22,175 images have corresponding textual tags. We only use the unlabeled data to train
the model and randomly select 5000 pairs of the labelled multimodal data as the test
set.

NUS-WIDE. [9] is a web image dataset consists of 269,648 image-text multimodal
data. A ground-truth for 81 classes in total is provided and each image is labelled by at
least one class. In the experiment, we randomly select samples belonging to top 20
largest classes and each sample contains more than 5 tags. The size of the test set is
5849 and the rest serve as training set.

Pascal Sentence. [10] contains 1000 pairs of multimodal data which are randomly
selected from 2008 Pa development kit. Each sample consists of one image and five
corresponded sentence that describing the content of image. These image-text pairs are
labeled by 20 classes, each of which has 50 image-text pairs. We randomly select 40
pairs of data from every class and there is all together 800 samples in training set and
the rest 200 samples serve as test set.

3.2 Experiment Settings

For FLICKR and NUS-WIDE, we adopt an 8-layer model: 2 full-connected layers, 3
multi-fusion layers and 3 multi-channel decoding layers. Considering the limited
samples in Pascal-Sentence, we adopt a 5-layer model, which consists of 1
full-connected layer, 2 multi-fusion layers and 2 multi-channel decoding layers. The
number of units in each layer for a single modality is summarized in Table 1.

3.3 Results

Effectiveness of the structure of MFMDL
We adopt the controlling variable method to verify the effectiveness of our proposed
model. We remove one part of our work every time and generate three models:
MFMDL with no bottom full-connected layers, MFMDL without multi-fusion layers,

Table 1. Number of units in each single-modality layer

Dataset Full-connected layer Multi-fusion layer Multi-channel decoding layer

FLICKR 4096-4096 2048-2048-1024 1024-2048-4096
NUSWIDE 4096-4096 2048-2048-1024 1024-2048-4096
PASCAL 1024 512-256 512-1024
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and MFMDL without multi-channel fine-tuning nets. Then we compare the quality of
features learned from these models.
From Fig. 4(a) we can see that:

1. Removing any part of MFMDL will degrade the performance of the learned mul-
timodal features, which proves that all the proposed strategies in this paper do
contribute to learning better multimodal features.

2. The performance of features from MFMDL with no full-connected layers degrades
more compared with the other models. This proves the correctness of our analysis in
Sect. 2.2 that low level feature spaces usually contain more modal-specific infor-
mation, and conduct correlation mining between modalities directly from bottom
space will bring in more noise. Therefore, we can draw the conclusion that in order
to learn better feature, we should abort low level cross-modal interactions and mine
the correlation between modalities in relatively high level feature spaces.

Impact of different features on single-fusion model and multi-fusion model
We compare the impact of traditional features and deep learning features on
single-fusion model and multi-fusion model respectively. Traditional image features
are represented by concatenating Phow, Gist and MPEG-7 descriptors and text feature
is Bow. For deep learning features, we use off-the-shelf CNN [13] model and
Word2vec [14] model, fine tune them with our multimodal datasets and then use them
to extract visual and textual features. We also combine one traditional feature and one
deep learning feature as input to learn joint represents. In Fig. 4(b), the ‘MF’ denotes
multi-fusion structure and ‘SF’ denotes single-fusion structure, ‘T’ means traditional
features while ‘D’ means deep learning features. For example, ‘MF_IDTT’ means we
use deep image features with traditional text features as input and test on the
multi-fusion model.

From Fig. 4(b), we can see that when use deep learning bimodal features, the
performances on both single-fusion model and multi-fusion model have significant
advantage than other cases. The multi-fusion model remarkably outperforms the
single-fusion one.

In most cases, the performances of multi-fusion model are better than single-fusion
model except using both traditional features, which demonstrates that our multi-fusion

Fig. 4. (a) Different components of our model (b) Different features on different models
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model can better mine correlations between modalities to learn more accurate features
than single-fusion model. What’s more, multi-fusion model with both traditional fea-
tures achieves worst performance, we conclude that multi-fusion model is suitable for
the case when both modalities are similar in statistical properties and semantic content.
When two modalities vary a lot, the multi-fusion structure will bring in more noise and
degrades the performance of output features.

Comparison with other baselines
We compare our method with other baselines, including DBN [5], DBM [6],
Correspondence-AutoEncoder [15] (Cor-AE) and bimodal-AutoEncoder [4] (Bi-AE).
We train every method under same condition. We run each method ten times and report
the following average results. The precision-recall curves are shown in Fig. 5.

The comparison results in Fig. 5 show that, our proposed method MFMDL
achieves superior performance compared with the state-of-the-art methods in all three
datasets. This improvement mainly comes from two folds. Firstly, the multi-fusion
structure during feature learning stage enhance the interaction mining procedure and
can well mine the correlations between modalities. Secondly, the multi-channel
decoding net and alternate fine-tuning algorithm fully exploit both modality–specific
information and cross-modality correlations so as to optimize the parameters of the
feature learning net and contribute to better multimodal features.

4 Conclusion

In this paper, we propose a novel multi-fusion based multimodal deep learning model.
The multi-fusion structure can learn the vertical correlations in different feature spaces;
therefore it can reinforce the interactions mining between modalities and learn better
multimodal features. Compared with existing single-fusion multimodal learning
methods, our method can better mine the interactions between modalities. Moreover,
we propose a general multi-channel decoding network and corresponding training
strategy that can well integrate modality–specific information and cross-modality
correlations to make the multimodal representations more accurate. We are also the first

Fig. 5. Precision-recall on three datasets. (a) FLICKR. (b) NUSWIDE. (c) PASCAL.
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to introduce deep learning features into multimodal learning. These features improve
the quality of the multimodal features and our multi-fusion structure can make best use
of them than single-fusion methods. Experimental results demonstrate a substantial
gain of our method on the three widely used public datasets.
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Abstract. Extraction of structured bibliographic data from document
images of non-native-digital academic content is a challenging problem
that finds its application in the automation of cataloging systems in
libraries and reference linking domain. The existing approaches discard
the visual cues and focus on converting the document image to text and
further identifying citation strings using trained segmentation models.
Apart from the large training data, which these existing methods require,
they are also language dependent. This paper presents a novel approach
(DeepBIBX) which targets this problem from a computer vision per-
spective and uses deep learning to semantically segment the individ-
ual citation strings in a document image. DeepBIBX is based on deep
Fully Convolutional Networks and uses transfer learning to extract bib-
liographic references from document images. Unlike existing approaches
which use textual content to semantically segment bibliographic refer-
ences, DeepBIBX utilizes image based contextual information, which
makes it applicable to documents of any language. To gauge the perfor-
mance of the presented approach, a dataset consisting of 286 document
images containing 5090 bibliographic references is collected. Evaluation
results reveals that the DeepBIBX outperforms state-of-the-art method
(ParsCit, 71.7%) for bibliographic references extraction and achieved an
accuracy of 84.9% in comparison to 71.7%. Furthermore, in terms of pixel
classification task, DeepBIBX achieved a precision and a recall rate of
96.2%, 94.4% respectively.

Keywords: Deep learning · Machine learning · Bibliographic data ·
Reference linking

1 Introduction

The delivery of knowledge through the digital format has enabled readers to
access and share knowledge around the world. This phenomenon has resulted
in digital becoming the regular format, owing to the ease of accessing, pre-
serving and sharing content. Though digital content is ubiquitous, the content
c© Springer International Publishing AG 2017
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which is not natively-digital continues to lack suitable metadata which makes it
difficult for such content to be easily discoverable. The most obvious example
of such content is the digitization of old articles, where the scanning process
renders a digital image. For the successful implementation of digital libraries,
it is important to automate the generation of bibliographic databases for non
natively-digital books.

Most of the works done so far on the task of generating bibliographic data-
bases focus on converting the image into text and then further using the text
segmentation techniques to structure citation data [1,2]. This results in the loss
of contextual information present in bibliographic document images which has
the discriminative ability to identify references from one another. In this work,
we introduce an image based reference extraction model where the above prob-
lem has been approached from a deep learning perspective.

Deep learning has recently proven to be extremely successful on various tasks
of visual recognition [3–5] including semantic segmentation [6]. In this work, we
introduce a semantic segmentation model for image based reference extraction.
The issue of unavailability of large amount of training data for this model has
been bypassed using the transfer learning approach introduced by Carauana
[7]. Also, transfer learning benefits by saving the additional cost of time and
computational resources needed to perform training on a large scale.

In this work, we have transferred the knowledge gained from the FCN-8s
network [6] trained for PASCAL VOC challenge [8] with 21 classes to identify-
ing individual citation strings based on the contextual indentation information
present in bibliographic document images.

1.1 Paper Contribution

This paper introduces a novel deep learning based semantic segmentation
model fine-tuned for reference extraction in bibliographic document images.
The trained model detects individual citation strings in a document image with
a precision of 83.9% and a recall of 84.6%. The work also presents a frame-
work in which references are identified in a document image, converted to text
and further resolved to structured segmented information for reference linking
applications. Further evaluations with the state-of-the-art ParsCit segmentation
model [1] show that while ParsCit extracted 71.7% citation strings, our app-
roach extracts 84.9% citation strings on a test set of 286 bibliographic document
images. This approach of identifying individual citation strings works for biblio-
graphic document images of any language as it utilizes the contextual indentation
information present in document images.

2 Related Works

Procedures for digitization of books have improved considerably in past few years
and several ambitious projects with libraries aim to digitize thousands of books.
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Google book-scanning project [9] works with libraries to offer digitized books
and aims to digitize every book ever printed.

In this phase of transition, digital libraries require automated cataloging
process for the purpose of generating bibliographic databases. Several projects
have focused on the creation of an electronic card catalog and the success of
these endeavors resulted in Online Public Access Catalog (OPAC) replacing the
traditional card catalog in many academic, public and special libraries. Bibli-
ographic data has more power now with new technologies assisting it’s reuse
in research with citation management softwares, linking of data from multiple
sources and also in aiding data mining of large datatsets to identify publication
trends.

Several projects have focused on automatic identification of references in
scholarly PDF documents but, they either rely only on the text [1,2], or employ
heuristics based on visual cues [10].

To the best of our knowledge, none of the approaches so far have used deep
learning to identify bounding boxes of citation strings in document images.

3 Dataset

The data for this task has been collected from print media (books, journals,
articles, etc.) present in libraries arranged in different indentation formats. The
bibliographic information belonging to these print media have been scanned at
a DPI resolution of 300 or more. For creation of the dataset, an equal number of
files are selected from each category of publication to generate a well-balanced
dataset of 440 files. These files are manually annotated with bounding boxes
around each reference. Figure 1 shows some of the sample data.

This data is further augmented by removing the whitespace around the text
area and the final transformed dataset consisted of 574 train images, 50 images
for validation and 298 images for test set. All images are further cropped to a
width×height of 500×1500 pixels. The labels of the dataset consist of a rectan-
gular bounding box surrounding each reference, the rest is labeled as background.

(a) (b) (c) (d)

Fig. 1. Examples of various kinds of bibliographic document images in raw dataset
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4 DeepBIBX: The Proposed Approach

Extraction of structured data from bibliographic document images starts with
pre-processing bibliographic document images, followed by deep learning based
reference extraction from document images, and further segmentation of each
extracted citation string into structured information like title, author, publisher,
volume, pages, etc.

4.1 Preprocessing

Before starting the actual pipeline of reference extraction, it is important to
normalize scanned document images for different qualitative distortions. To do
so, document binarization is performed to convert color and gray scale documents
into binary format. The method described by Breuel [11] is used to perform
document binarization and to correct document skew. The binarized and skew
corrected document image is then passed to the heart of DeepBIBX, i.e., Image
based reference extraction module.

4.2 Image Based Reference Extraction

Architecture. Figure 2 shows the architecture of a deep Fully Convolutional
Network (FCN) [6] which is used for semantic segmentation. FCNs take input of
arbitrary size and produce correspondingly-sized output with efficient inference
and learning. Each layer of data is a three-dimensional array of size h × w ×
d, where h and w are height, width respectively, and d is the color channel
dimension. Receptive fields are the locations in higher layers which are connected
to the locations in the image.

The basic components of an FCN consists of convolution, pooling, and activa-
tion functions. They operate on local input regions, and depend only on relative
spatial coordinates. If xij is the data vector at location (i, j)for a particular

Fig. 2. FCN-8s architecture: Pooling and prediction layers are shown as boxes while
intermediate layers are shown as vertical lines. Additional predictions from pool3, at
stride 8, provide further precision



290 A. Bhardwaj et al.

layer, and yij is the data vector for the following layer, these functions compute
outputs yij by

yij = fks(
{
xsi+δi,sj+δj

}
0<=δi,δj<=k

)

where k is called the kernel size, s is the stride or subsampling factor, and fks

determines the layer type: a matrix multiplication for convolution or average
pooling, a spatial max for max pooling, or an element nonlinearity for an activa-
tion function. An FCN operates on an input of any size, and produces an output
of corresponding spatial dimensions.

A real-valued loss function composed with an FCN defines a task. If the loss
function is a sum over the spatial dimensions of the final layer, its gradient will
be a sum over the gradients of each of its spatial components, considering all of
the final layer receptive fields as a minibatch.

Approach. Deep learning based approaches usually require a lot of training
data. However, a large amount of data for our task was unavailable. To resolve
this problem, the concept of transfer learning was adopted. In DeepBIBX, FCN-8
network, which was pre-trained on PASCAL VOC 21 class challenge [8] problem,
was used to allow for better segmentation for reference extraction. The last layer
of original FCN-8 network which in its default settings outputs 21 classes is
removed and the activations of the last hidden layer are used as the feature
descriptors of the input dataset. A final layer is added which outputs 2 classes,
reference area and background.

The network is trained on the dataset for 80 epochs with stochastic gradient
descent. The semantic segmentation output generated after training separates
the foreground from background roughly (refer Fig. 3d). This output is further
post-processed to obtain crisper boundaries using blob identification heuristics
and the output is transformed as shown in Fig. 4e. It is important to mention
here that these heuristics have been developed only on the validation set. Each

(a) (b) (c) (d) (e)

Fig. 3. An example from test set where each detected box has an IoU >= 0.5 resulting
in 100% precision and 100% recall (a) Bibliographic document image (b) Corresponding
human annotated bounding boxes, (c) processed human annotated data for evaluation
(d) prediction generated by semantic segmentation model (3) identification of bounding
boxes after post-processing, each labeled with a different color (Color figure online)
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(a) (b) (c) (d) (e)

Fig. 4. Visualization of the activation intensities of FCN-8s network at multiple layers
during the forward pass of a test image. (a) Source image (b) fuse pool3 (c) upscore8
(d) score 2 classes (e) inference image

bounding box in the post-processed result is compared to each bounding box
present in the ground truth. A box is identified if the Intersection over Union
(IoU) ratio for resulting bounding box and processed ground truth bounding box
is greater than 0.5. For each document image, these identified bounding boxes
are used to calculate precision and recall. Figure 3 shows an example of an image
from test set where inferred precision and recall rate is 100%.

In the next experiment, all text lines of the ground truth document image
have been replaced with rectangular boxes, the same length and width as that
of each text line. Keeping other parameters same as in previous experiment, pre-
trained FCN-8s was trained on this transformed dataset as well. Figure 4 shows
visualization of the activation intensities at multiple layers during the forward
pass of a test image.

4.3 Segmentation of Citation Strings

Once the region of each individual bibliographic entry is identified, OCR is per-
formed for each individual entry [11]. The resulting textual information can be
given as an input to any citation string segmentation model like AnyStyle [12],
ParsCit [1] to segment it into author, title, DOI, page, publisher, volume and
other relevant information which can be used for reference linking applications.

5 Evaluation

Due to varying parameters of the model, a complete match between predicted
and ground-truth bounding boxes is unrealistic. Therefore, approaches based on
semantic segmentation are evaluated using the IoU metric. This metric rewards
predicted bounding boxes for heavily overlapping with the ground-truth bound-
ing boxes.
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(a) (b)

Fig. 5. Precision, Recall results compared to varying IoU (a) Precision vs. IoU (b)
Recall vs. IoU

The pixel-wise evaluation for bounding box on document image gives a preci-
sion of 96.2% and a recall of 94.4%. It is important to mention here that though
the pixel wise evaluation results in good precision and recall, it is not a good
evaluation measure as the trained model might simply be a text line recognizer.
To make sure that this is not the case, results have been further evaluated for
detection of each bounding box.

For further evaluation, a reference box is identified when the IoU of predicted
bounding box and labeled bounding box is greater than 0.5 after post-processing.
This results in a precision of 82.6% and a recall of 80.0%. In the experiment,
where the lines were blurred, a precision of 83.9% and a recall of 84.6% was
observed. Figure 5 shows a precision and recall curve with respect to IoU for the
case when text lines are blurred (Table 1).

ParsCit is the current state of the art in the area of reference segmentation.
Table 2 compares the results from our approach to ParsCit. The results show
that on a test set of 286 bibliographic document images, which were converted to
text, ParsCit extracted 3645 references and our image based reference extraction
model extracted 4323 references out of a total of 5090 references. These results
suggest that visual cues are very important during identification of references
and should not be discarded.

Table 1. Evaluation of image based extraction results

Category Precision Recall

Pixel-wise evaluation 96.2% 94.4%

Bounding box detection on plain document image 82.6% 80.0%

Bounding box detection on document image with blurred lines 83.9% 84.6%

Table 2. Evaluation of results when compared to ParsCit

Category Number of extracted references Extracted percentage

ParsCit 3645 71.7%

Proposed approach 4323 84.9%
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6 Conclusion and Future Work

This work presents a novel deep learning based semantic segmentation model
for identifying references in bibliographical document images. This model is lan-
guage independent and identifies individual references with a precision of 83.9%
and a recall rate of 84.6%. The results have been compared with state-of-the-
art text based semantic segmentation model ParsCit where the proposed model
outperforms the reference detection task by a margin of more than 13%. These
results suggest that utilizing the contextual information present in bibliographic
document images is a key factor in extraction of bibliographic data. This work is
useful for the automation of library cataloging systems and for reference linking
applications. The future work will focus on a comprehensive model for the above
tasks and provide a solution for digital libraries.

Acknowledgements. This work was partially supported by the DFG under con-
tract DE 420/18-1 and by the Swiss National Science Foundation under grant number
407540 167320.
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Abstract. Spiking neural networks (SNNs) are a kind of data-driven
and event-driven hierarchical networks, and they are closer to the biolog-
ical mechanism than other traditional neural networks. In SNNs, signals
are transmitted as spikes between neurons, and spike transmission is eas-
ily implemented on hardware platform for large-scale real-time deep net-
work computing. However, the unsupervised learning methods for spike
neurons, such as the STDP learning methods, generally are ineffective in
training deep spiking neural networks for image classification application.
In this paper, the network parameters (weights and bias) obtained from
training a convolution neural network (CNN), are converted and utilized
in a deep spiking neural network with the similar structure as the CNN,
which make the deep SNN be capable of classifying images. Since the
CNN is composed of analog neurons, there will be some transfer losses
in the process of conversion. After the main sources of transfer losses
are analyzed, some reasonable optimization strategies are proposed to
reduce the losses while retain a higher accuracy, such as max-pooling,
softmax and weight normalization. The deep spiking neural network pro-
posed in this paper is closer to the biological mechanism in the design of
neurons and our work is helpful for understanding the spike activity of
the brain. The proposed deep SNN is evaluated on CIFAR and MNIST
benchmarks and the experimental results have shown that the proposed
deep SNN outperforms the state-of-the-art spiking network models.

Keywords: Spiking neural networks · Convolution neural networks · IF
neuron · Image classification

1 Introduction

Spiking neural networks (SNNs) transmit spike signals between neurons. In this
kind of event-driven computing systems, power consumptions mainly occur in
the current active parts of the networks, so the power can be effectively saved in
their inactive parts. This enables SNNs do distributed and asynchronous comput-
ing with reduced network time delays. The characteristics of SNNs make them
c© Springer International Publishing AG 2017
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more powerful in real time computing [1,2]. In recent years, Convolution Neural
Networks [3] (CNNs) have become the most successful network architectures for
natural image classification problems. However, a lot of computing resources are
required for training and running, which is the shortcomings of CNNs. Obvi-
ously, SNNs have the advantages in high speed operation performances, while
CNNs have the advantages in classification performances.

Although SNNs have great computing performances, they are still lack of
effective learning methods conforming to biological mechanism [4]. The most
preferred learning principle used in SNNs is STDP (Spike-timing-dependent plas-
ticity) learning method [4]. However, STDP learning method is still ineffective in
training multilayer neural networks. Therefore, instead of training SNNs directly
by spike-based learning rules, a converted training way has attracted attention.
It starts from a common artificial neural network, and the network is trained
through the back propagation algorithm. After training, the network parameters
(weights and bias) would be converted in appropriate methods and then utilized
in SNNs. Cao et al. tailored a normal CNN to fit the requirements of a SNN,
but this approach resulted in performance losses to some degree [5]. Diehl et al.
converted a CNN to a SNN by weight normalization, and the network perfor-
mance was improved as the conversion errors reduce [6]. Hunsberger et al. used
LIF neurons in the SNN to improve the conversion performance [7]. In theory,
the performance of SNNs is no less than CNNs [8], however, SNNs are difficult
to achieve the same performance as CNNs in practice.

In this paper, the work is focused on utilizing the network parameters of
CNNs to make deep SNNs be capable of image classification tasks. Since the
CNNs are composed of analog neurons, there must be a certain transfer loss in
the process of conversion. Therefore, based on the analysis of the main sources
of losses, some reasonable optimization strategies are proposed to reduce the
conversion errors between these two networks. The experiments on CIFAR and
MNIST benchmarks have shown that the proposed deep SNN outperforms the
state-of-the-art spiking network models.

This paper is organized as follows: the proposed deep SNN is elucidated in
Sect. 2, including the analyses of the problem of CNN-to-SNN conversion and
several optimization strategies. The evaluations on CIFAR and MNIST bench-
marks are given in Sect. 3. The conclusion is in Sect. 4.

2 Deep Spiking Neural Network

The main difference between SNNs and CNNs are the different forms of input and
transfer data. All the data are input to the traditional CNNs at once, and then
propagated between the network layers, until some numerical values are output.
However, for SNNs, the input is usually a signal sequence that represents an
event flow. SNNs can achieve the pseudo-simultaneity of the input and output
[9], and handle the time-varying input more effectively [10], and utilize specific
hardware for more efficient computing [11].

In this paper, a deep SNN is proposed by combining the advantages of both
SNNs and CNNs. Both neural networks have the same architecture, and the
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Fig. 1. Architecture sharing and parameter conversion of CNN and SNN.

network parameters (weight and bias) are obtained by training the CNN, and
then converted into the SNN. The conversion process is shown in Fig. 1. The
upper part of the figure is the CNN (composed of analog neurons), while the
bottom part is the SNN (composed of spike neurons). The parameters trained
in the CNN will be converted and utilized in the corresponding layer of the
SNN. However, there will be significant transfer losses during the conversion [10].
Therefore, both CNN and SNN need to be adjusted to reduce these conversion
losses. The conversion method mentioned in paper [5] is used.

2.1 Adjustments on the CNN

Convolution neural networks [12] usually are multi-layer supervised learning
neural networks. Convolution layers and pooling layers are their core modules for
feature extraction in CNNs. The dimension of the data is reduced by alternative
convolutional and pooling layers, and abstract features of the data are extracted
at the same time. In order to make use of the advantages of CNNs in classifi-
cation, following adjustments on the traditional CNNs for converting it into the
spiking neural network are made: (1) the bio-inspired neuron activation function
is introduced in the CNNs; and (2) the noise is introduced in the training.

Introduce in the Bio-Inspired Activation Function. The activation func-
tion in traditional CNNs aims to introduce non-linear factors in the network to
enhance the expression of image features. The common activation functions are
sigmoid, tanh, etc. These activation functions usually produce negative outputs,
which are improper to SNNs. Therefore, the output values of the traditional
CNNs must be limited, and a bio-inspired activation function – ReLU (Rectified
Linear Units) function is introduced in the CNNs:

ReLU(x) = max(0, x). (1)

where x denotes the output of a certain layer in the CNNs. The ReLU function
ensures that the neurons outputs are always positive. On the other hand, the
results obtained by ReLU activation function are proportional to the number of
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spikes emitted by neurons in the SNN at a given time. In addition, the paper
[12] has shown that using ReLU instead of the traditional sigmoid activation
function can accelerate the training process, and strengthen the sparseness of
neuronal activities, and enhance the generalization ability of neural networks.

Therefore, in this paper, ReLU is used as the activation function in all the
layers of the original CNN except the output layer.

Train with Noise. In order to adapt to the spike data transmission in the
SNN, additional noise is introduced in the training process of the CNN for better
robustness, such as denoising autoencoder [13]. Unlike CNNs using analog values,
SNNs accumulate errors when spike signals are transmitted through each layer.
For example, the truncation errors will be generated when the spike neurons
are saturated. Whats more, quantitative errors occur when discrete fire rates in
SNNs are used to represent the analog values in CNNs. These errors are gradually
accumulated through the transmission in a multi-layer network, which degrades
the performance of the multi-layer spike neural network. Training the CNN with
noise can simulate these situations, and improve the performance of conversion.

2.2 Adjustments on the Spiking Neuron Network

Spiking neural networks usually are composed of Integrate-and-fire (IF) neu-
rons. Convolution operations are implemented on spike neurons. Feature selec-
tivity and invariance are realized by using bio-inspired max pooling, normalized
weights, biases in each layer, and the transformation of the input data range,
and so on.

Integrate-and-Fire Neuron Model. The neuron model used in the SNN is a
simple integrate-and-fire (IF) model. The IF neuron dynamics are given by the
equation as follows:

dvmem(t)
dt

=
∑

i

∑

s∈Si

wiδ (t − s) . (2)

where wi is the synapse weight of i-th input neuron, δ{.} is the Dirac function,and
Si = {t0i , t

0
i , ...} denotes spike time series of i-th pre-synapse neuron. When the

membrane voltage reaches the threshold vthr = 1.0V , and the voltage resets to
vres = 0.0V .

Convolution Operation in Spiking Neuron Network. The convolution
operation in the CNN is y =

∑
i wixi, where wi is the weight of the convolution

kernel, xi is the input, and y is the output. The convolution operation in the
SNN is similar to that in the CNN. xi denotes the fire rate of i-th neuron, |wi|
is the synapse weight between i-th neuron and neuron y. If wi is large than zero,
the connection between xi and y is excitatory synapse, otherwise inhibitory. The
fire rate of neuron y corresponds to ReLU output of neuron y’ (ReLU(y’)) in the
CNN. Therefore, the convolution operation can be implemented in the SNN.
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Max Pooling in the SNN. Nonlinear pooling operations (such as max pool-
ing) usually exist in CNNs, which are the basis of feature selectivity and invari-
ance. However, since SNNs transmit discrete spike signals, the max pooling
cannot be realized by the simple maximum value operation. Although average
pooling can be used to substitute max pooling [7], this will lead to undesirable
performance errors. Therefore, it is necessary to establish a nonlinear pooling
mechanism suitable for spiking neural networks.

The architecture for max pooling used in this paper is a bio-inspired model
based on Yu et al. [14]. As shown in Fig. 2, it is a three-layer neural network with
an input layer X, an intermediate layer (performing a nonlinear transformation)
Y and an output neuron Z. Solid lines with triangular synapses and dashed lines
with circular synapses represent excitatory and inhibitory connections, respec-
tively. Each intermediate neuron Y is connected to all other Y neurons, and the
neuron Z can output a spike signal which is proportional to the maximum input.

Fig. 2. MAX pooling in the SNN. Solid lines with triangular synapses and dashed lines
with circular synapses represent excitatory and inhibitory connections, respectively.

Weight Normalization. The neuron outputs with the activation function
(ReLU) of CNNs usually have a range from zero to positive infinity. However, a
spike neurons fire rate has a limited range. If the input is too large, the spike neu-
ron will tend to be saturated. Therefore, it is necessary to calculate an appropri-
ate normalization coefficient when converting the network parameters obtained
by the CNN.

In [7], the maximum activation value of a CNN in a training set is used to
calculate a weight normalization coefficient. In the SNN, the weights of the spike
neurons of the corresponding layer are multiplied by this weight normalization
coefficient, which ensures that the fire rate of the spike neurons not exceed a
certain saturation value. However, this method may make most neurons at a
lower fire rate and lead to large quantization errors, which increases the delay
of information transmission. In this paper, a robust normalization method is
used to select the weight normalization coefficient. The coefficient with which
p-percentage of the neurons are activated is chosen.

Taking the CNN with CIFAR10 dataset as an example, the distribution of
activation values of the first convolution layer is shown in Fig. 3. The maximum
activation value is 11.8, and 99.9% of the data is less than 6.0. The normalization
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Fig. 3. Distribution of all activation values in the first convolution layer of the CNN.

coefficient is 1/11.8≈0.08 when calculated with the maximum value (11.8). The
coefficient values tend to be 1/6.0≈0.17 at the position where 99.9% of the
neurons fire. This method can guarantee 99.9% of the spike neurons with higher
fire rates, which can be enough to compensate for saturation errors caused by the
remaining 0.1% of the spike neurons. In this paper, the normalized coefficients
are calculated at the activation value where 99.9% of the neurons fire.

Function and Realization of Biases. In addition to the network weights,
biases are usually added to change the data range. Most previous spiking neural
networks choose to remove the biases, which often causes a certain network
transfer loss. In this paper, neurons that continuously release spike signals are
used as biases. The values of biases are changed according to the weights of
the connections between neurons. Through this way, the spiking neural network
could stimulate biases.

Changing the Range of Input Data, Weights and Biases. In some CNNs,
the input data will be normalized. For example, the range of input data is
changed from 0.0∼1.0 to -0.5∼0.5 by subtracting the mean value. Whats more,
in recent years, BN (Batch Normalization) layer are widely used in CNNs. This
method can accelerate the training process by normalizing the data of every
layer [15].

In SNNs, fire rates are always positive, so the range of input data need be
changed to 0.0∼1.0. However, this change will influence the output of this layer.
In this paper, the weights and biases of the first convolution layer are changed
accordingly from:

yconv1 = wconv1xconv1 + bconv1, xconv1 ∈ [xmin, xmax] . (3)

to : yconv1 = wconv1
xconv1 − xmin

xmax − xmin
+ bconv1

=
wconv1

xmax − xmin
xconv1 +

(
bconv1 − wconv1xmin

xmax − xmin

)
, xconv1 ∈ [0, 1] .
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The weights and biases of the first convolution layer are changed accordingly:
wconv1 → wconv1

xmax−xmin
, bconv1 → bconv1 − wconv1xmin

xmax−xmin
. Other layers parameters do

not need change because they have no difference to yconv1.

Conversion to a Spiking Neuron Network. The conversion is completed
as the following steps: (1) ReLUs is used for all neurons in the CNN; (2) Noise
is introduced in the process of training the CNN; (3) The weights in the CNN
are mapped directly into the SNN composed of IF neurons; (4) The range of
the input data of the spiking neuron network is changed to 0.0∼1.0, while the
weights and the biases of the first convolution layer of the SNN are adjusted
accordingly; (5) The fire rates of the input neurons in the SNN are proportional
to the amplitude of the input image. In this paper, the input range of 0.0∼1.0
is converted into 0∼255 Hz.

There exist local response normalization (LRN) layers in some convolution
neural networks, such as Krizhevsky [12] network for CIFAR10 dataset. We
remove the LRN layer because it may make the network very complex. After
removing the LRN layer, the network accuracy decreased by less than 0.1%,
namely, the effects of removing the LRN layer on the results were negligible. In
addition, the additional noise is only introduced in the training process, and it
will be removed in test.

3 Experiment and Analysis

The network architecture of the proposed deep SNN is shown in Fig. 4. The
network is composed of two convolution layers, two maximum pooling layers
and three fully connected layers. ReLUs are used as the activation functions in
the other convolution layers and the full connection layers, while softmax loss
function is used in the last layer to output the classification result.

CIFAR-10 [16] dataset that widely used in image classification tasks is used
to test the classification performance of the proposed deep SNN. This dataset
contains 60,000 images with 10 classes. The first 50000 images are used for
training and the rest 10000 images are for test. The original size of each image
is 32×32, and each image is cropped to 24×24. The weight parameters of the
CNN are preserved and converted into the SNN with the same architecture.

Fig. 4. The architecture of the proposed network.
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Factors Affecting the Accuracy of the Proposed SNN. The proposed
SNN is evaluated under different optimization strategies.

Figure 5(a) shows the accuracies of different strategies about pooling, chang-
ing the range of input data and the introduction of biases. The network accuracy
is 82.43% when the SNN uses average pooling, without biases and changes of
input. When the range of input data is changed, the accuracy becomes 83.62%.
The accuracy rises to 84.88% when biases are introduced. When max pooling
is used instead of average pooling, with or without biases, the accuracies are
86.02% and 86.21%, respectively. Introduction of noise in training set can rise
the accuracy to 86.29%.

Figure 5(b) shows the accuracies under different normalization strategies. It
can be seen that the accuracy is the highest when the normalized coefficients are
calculated at the activation value where 99.9% of the neurons fire. The accuracy
reaches to 86.43%, which is very closed to the accuracy of 86.48% of the CNN.

Fig. 5. (a). Test accuracy of the proposed SNN with different pooling, biases and ranges
of input. (b). Accuracies under different normalization strategies.

Through the optimization strategies mentioned above, the accuracy of the
proposed SNN is effectively improved, which further proves that the network
optimization methods are feasible and effective.

Comparison with Other Networks. In this paper, other spiking networks
of the same scale are chosen to compare using CIFAR-10 dataset, as shown in
the Table 1. Cao’s spiking neural network [5] with IF neurons is converted based
on Krizhevsky’s convolution neural network [12]. Hunsberger’s spiking neural
network with improved LIF neurons [7] is similar. Although their network con-
version errors are less than 2%, there is no weight normalization method in their
networks, which may lead to neurons saturation and cause more performance
problems. By using the optimization strategies mentioned above, the conversion
errors between these two networks are reduced, and the state-of-art result is
achieved compared with other networks.
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Table 1. Accuracy of different networks.

Network CIFAR-10 accuracy

CNN of this paper 86.48%

SNN of this paper 86.43%

CNN of Krizhevsky [12] 85.37%

SNN of Hunsberger [7] 82.59%

SNN of Cao [5] 77.43%

Accuracy-Delay-Tradeoff. The proposed SNN needs to balance the relation-
ship between accuracy and delay, and the network needs a longer time for obtain-
ing a higher accuracy. In this paper, the tradeoff of different normalization meth-
ods are compared, as shown in Fig. 6. The curves represent the results of different
normalization strategies, and the robust weight normalization factor mentioned
in this paper can achieve ideal tradeoff between delay and final accuracy.

Fig. 6. Accuracy-delay-tradeoff with different normalizations.

Classification Accuracy on MNIST Dataset. The test also conducts on
MNIST [3] dataset (a digital handwritten dataset). The accuracy of the CNN is
99.16%, and the accuracy of the proposed deep SNN is 99.09%.

The results on two datasets have shown that the CNN is converted into the
SNN with lower losses, and the proposed deep SNN have comparative perfor-
mances on both classification and computing compared to CNNs.

4 Conclusion

In this paper, a deep SNN is proposed for image classification. The network para-
meters (weights and bias) are firstly obtained by training a convolution neural
networks (CNN), and then are converted and utilized in the SNN. Compared
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with other spiking neural networks, the proposed deep SNN achieves compara-
tive performances on both classification and computing. Furthermore, it is closer
to the biological mechanism in the design of neurons. Our work is helpful for
understanding the spike activity of the brain. Future work includes solving the
problem of reducing the firing rate of neurons and introducing in more biologi-
cally specific neuron models.
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Groups of the National Natural Science Foundation of China (No. 61221003), and
Shanghai Jiao Tong University Agri-X Fund (No. Agri-X2015004).

References

1. Neftci, E.O., Pedroni, B.U., Joshi, S., et al.: Stochastic synapses enable efficient
brain-inspired learning machines. Front. Neurosci. 10, 241 (2016)

2. MFolowosele, F., Vogelstein, R.J., Etienne-Cummings, R.: Real-time silicon imple-
mentation of V1 in hierarchical visual information processing. In: Biomedical Cir-
cuits and Systems Conference, pp. 181–184. IEEE Press (2008)

3. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE Press 86, 2278–2324 (1999). Morgan Kaufmann

4. Brader, J.M., Senn, W., Fusi, S.: Grid Learning real-world stimuli in a neural net-
work with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912 (2007)

5. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for
energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66 (2015)

6. Diehl, P.U., Neil, D., Binas, J., et al.: Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In: International Joint Confer-
ence on Neural Networks (IJCNN) 2015, IEEE, pp. 1–8. IEEE Press (2015)

7. Hunsberger, E., Eliasmith, C.: Spiking deep networks with LIF neurons.
arXiv:1510.08829 (2015)

8. Maass, W., Markram, H.: On the computational power of circuits of spiking neu-
rons. J. Comput. Syst. Sci. 69, 593–616 (2004)

9. Camunas-Mesa, L., Zamarreno-Ramos, C., Linares-Barranco, A., et al.: An event-
driven multi-kernel convolution processor module for event-driven vision sensors.
IEEE J. Solid-State Circ. 47, 504–517 (2012)

10. O’Connor, P., Neil, D., Liu, S.C., et al.: Real-time classification and sensor fusion
with a spiking deep belief network. Front. Neurosci. 7 (2013)

11. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open
Grid Services Architecture for Distributed Systems Integration. Technical report,
Global Grid Forum (2002)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

13. Vincent, P., Larochelle, H., Bengio, Y., et al.: Extracting and composing robust
features with denoising autoencoders. In: Proceedings of the 25th international
conference on Machine learning. ACM, pp. 1096–1103 (2008)

14. Angela, J.Y., Giese, M.A., Poggio, T.A.: Biophysiologically plausible implementa-
tions of the maximum operation. Neural Comput. 14, 2857–2881 (2002)

http://arxiv.org/abs/1510.08829


304 J. Li et al.

15. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

16. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images
(2009)



Asynchronous, Data-Parallel Deep Convolutional
Neural Network Training with Linear Prediction

Model for Parameter Transition

Ikuro Sato1(B), Ryo Fujisaki1, Yosuke Oyama2, Akihiro Nomura2,
and Satoshi Matsuoka2

1 Denso IT Laboratory, Inc., Tokyo, Japan
{isato,rfujisaki}@d-itlab.co.jp

2 Tokyo Institute of Technology, Tokyo, Japan
{oyama.y.aa,nomura.a.ac}@m.titech.ac.jp,matsu@is.titech.ac.jp

Abstract. Recent studies have revealed that Convolutional Neural Net-
works requiring vastly many sum-of-product operations with relatively
small numbers of parameters tend to exhibit great model performances.
Asynchronous Stochastic Gradient Descent provides a possibility of
large-scale distributed computation for training such networks. However,
asynchrony introduces stale gradients, which are considered to have neg-
ative effects on training speed. In this work, we propose a method to pre-
dict future parameters during the training to mitigate the drawback of
staleness. We show that the proposed method gives good parameter pre-
diction accuracies that can improve speed of asynchronous training. The
experimental results on ImageNet demonstrates that the proposed asyn-
chronous training method, compared to a synchronous training method,
reduces the training time to reach a certain model accuracy by a factor
of 1.9 with 256 GPUs used in parallel.

1 Introduction

One of the findings in the last few years about Convolutional Neural Network
(CNN) is that models requiring a relatively large number of sum-of-product
Operations Per Parameter (OPP) in the forward step tend to exhibit high accu-
racies in recognition tasks [1–3]. One such example can be seen in the ILSVRC
classification task [4], where GoogLeNet [2], an example of the computation-
ally intensive deep models with about 221 OPP, scored 6.67% top-5 error rate,
whereas AlexNet [5], a parameter-rich model with about 11 OPP, scored 16.4%.

Data-parallel computation in a computing cluster provides possibilities of
significant speed-up in training of computationally intensive models [2,6–9], by
which we mean models requiring a large amount of computation to produce
gradients with a relatively small number of parameters, like GoogLeNet. In
data-parallelism each processor basically repeats two kinds of processes: (1) the
gradient-computing process reads a small set of training data, which we refer
to as “sub-batch” in this paper, and computes the gradients of the sub-batch

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 305–314, 2017.
https://doi.org/10.1007/978-3-319-70096-0_32
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cost; and (2) the parameter-update process updates parameters by adding the
gradients from all or a part of the processors utilizing high-speed interconnect
communication. Data-parallel training of a computationally intensive model is
efficient, compared to that of parameter-rich models, because communication
burden of the former is relatively low.

Two strategies mainly exist in data-parallel neural network training: Syn-
chronous Stochastic Gradient Descent (SSGD) [7,9] and Asynchronous Stochas-
tic Gradient Descent (ASGD) [6,8,10,11]. In SSGD gradient-computing process
and parameter-update process run one after the other, whereas in ASGD these
two processes run concurrently without waiting the other to be completed. When
compared two strategies under the same computational resources, ASGD gen-
erally enjoys higher parameter-update frequency for computationally intensive
models. This is because ASGD does not suffer from waiting a relatively long
period of gradient computation to complete a parameter update. On the other
hand, an expected cost or error rate drop per parameter update of ASGD is
smaller than that of SSGD in general [8,10,11]. In ASGD, gradients are com-
puted based on stale parameters, whose timestamp is older than the current
timestamp. Due to the staleness, the gradient vector computed in ASGD is no
longer parallel to the steepest descent direction at current parameters. One tech-
nical challenge is to develop a mechanism that can predict future parameters,
with which gradients are computed. If this parameter-prediction accuracy can
be made high enough so that the computed gradient vector restores the steepest
descent direction at current parameters to be updated, ASGD acquires nearly
equal expected cost or error rate drop per update as SSGD, and as a conse-
quence, ASGD having a relatively high update frequency outperforms SSGD in
speed of training a computationally intensive CNN.

We propose an algorithm for stale parameter updates in ASGD, named PP-
ASGD (PP stands for “Parameter Predicted”), aiming to improve the cost or
error rate drop per parameter update, compared to a naive ASGD. The contri-
butions of this work are as stated below:

• We propose an ASGD algorithm based on a linear prediction model for para-
meter transition, depending on parameter staleness and stale momentum.

• We show an experimental evidence that the proposed method provides good
prediction accuracies of parameter transitions.

• We show experimental evidences that PP-ASGD reduces training time to
reach a certain model accuracy, compared to a naive ASGD with no parameter
prediction.

• We show an experimental evidence that PP-ASGD reduces training time to
reach a certain model accuracy, compared to SSGD, by a factor of 1.9 for a
computationally intensive CNN trained on ImageNet with 256 GPUs.

2 Proposed Method

In this section we discuss the proposed method that works efficiently in a type
of computing clusters as stated below. Suppose we have a computing cluster, in
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which each compute node contains the same number of GPUs, and any two nodes
can communicate through high-speed interconnect. With such computational
environment use of collective communication known as MPI-Allreduce [12] is a
reasonable choice for parameter update [7,9]. This routine executes element-wise
sum of vectors (gradients, in our case) from every node and places the resultant
vector (sum of gradients) to every node. The communication period necessary to
run one MPI-Allreduce is typically O(log(#nodes)), and this sublinear behavior
helps to avoid a communication bottleneck because the communication duration
needed for an update grows moderately with respect to the number of nodes.
Previous work mostly uses MPI-Allreduce for SSGD [7,9]; however, it brings
drawback of low update frequency for computationally intensive models. To over-
come this drawback, we introduce an ASGD algorithm with MPI-Allreduce in
Sect. 2.1. ASGD generally creates a relatively large staleness value in training a
computationally intensive model. In Sect. 2.2, we discuss a parameter prediction
model to mitigate this problem.

2.1 ASGD with Collective Communication

In Algorithm 1 we give a data-parallel ASGD algorithm that can yield update
frequencies independent of the amount of computation needed to produce gra-
dients [13].1 The parameter-update thread repeats the update process inces-
santly. This decouples the parameter-update process from gradient-computing
process, thus makes the update frequency FU independent of the period of gra-
dient computation. The gradient-computation thread uses a GPU to process
gradient computation repeatedly and incessantly without any synchronization.
Gradient-computation frequency FG depends on the amount of computation
for gradients. For comparison, we give SSGD algorithm with MPI-Allreduce in
Algorithm 4, in which update frequency does depend on the load of gradient
computation.

Fig. 1. Illustration of the time behavior of 4 grad threads and 1 update thread in
ASGD.

A computationally intensive model experiences high staleness compared to
a parameter-rich model in ASGD for a given number of nodes. We define time-
average staleness, S ∈ R, as
1 Mutexes need to be implemented in appropriate places to avoid read/write collisions.
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Algorithm 1. ASGD with MPI-Allreduce

input : w0, /* w0: initial param. */

: μ, λ, /* μ: momentum rate, λ: learning rate */

: tf , G, /* tf: max #updates, G: #GPUs in a node */

: b, X /* b: sub-batch size, X: training dataset */

output : w
1 begin
2 global w, ŵ ← w0;D1,D2, · · · ,DG,M ← 0 · w0;F ← true /* in bold face */

3 thread update(w0, μ, λ, tf , G) /* See Algorithm 2 for update(). */

4 thread grad(1, b, X) /* See Algorithm 3 for grad(). */

5 thread grad(2, b, X) /* thread lines are */

6 · · · /* executed in parallel. */

7 thread grad(G, b, X)

8 wait thread /* waits until all the thread complete */

9 w ← w

Algorithm 2. Function update

1 Function update(w0, μ, λ, tf , G)

2 for t ← 0 to tf − 1 do
3 DL ← D1 + D2 + · · · + DG

4 D1,D2, · · · ,DG ← 0 · w0

5 DA ← MPI-Allreduce(DL)

6 M ← μM − λDA

7 w ← w + M
8 ŵ ← f�S�(w,M)/* Eq.(2) */

9 F ← false /* training done */

Algorithm 3. Function grad

1 Function grad(g, b, X)

2 do
3 for k ← 1 to b do
4 xk ← randpick(X)

/* random sampling */

5 w� ← ŵ /* local copy */

6 Dg ← Dg +
∑

k ∇wJ(xk; w�)
/* grad. of cost J() */

7 while F

S = 1 + FU/FG. (1)

It is an addition of the count of updates in one gradient computation period and
offset one, which comes from the fact that the consecutive updates run inces-
santly. As illustrated in Fig. 1, ASGD training of a computationally intensive
model acquires a relatively large staleness value because it has a relatively large
FU/FG.

There are mainly two approaches to mitigate problems caused by high stal-
eness: S-reduction and gradient “quality” improvement. The former approach
includes use of small sub-batch size [10], and model-parallelism [5,6,14]. The lat-
ter approach includes our momentum-based prediction mechanism as presented
next, and a delay compensation technique based on approximated Hessian [8].

2.2 Linear Prediction Model for Parameter Transition

We discuss the proposed method for predicting future parameters to improve
an expected cost or error rate drop per update in ASGD. The basic idea is
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Algorithm 4. SSGD with MPI-Allreduce
input : w0, μ, λ, tf , G, b, X /* same input as in Algorithm 1 */

output : w
1 begin
2 global ŵ ← w0; D1,D2, · · · ,DG ← 0 · w0;F ← false /* in bold face */

3 w ← w0, M ← 0 · w0

4 for t ← 0 to tf − 1 do
5 thread grad(1, b, X) /* thread lines are */

6 thread grad(2, b, X) /* executed in parallel. */

7 · · · /* See Algorithm 3 for grad(). */

8 thread grad(G, b, X) /* do-while part executed only once */

9 wait thread /* waits until all the thread complete */

10 DL ← D1 + D2 + · · · + DG

11 D1,D2, · · · ,DG ← 0 · w0

12 DA ← MPI-Allreduce(DL)

13 M ← μM − λDA

14 w ← w + M
15 ŵ ← w + μM /* NAG */

that right after parameters get updated, the method predicts future parame-
ters, with which gradients are computed, so that the computed gradient vector
becomes approximately parallel to the steepest-descent direction at the time of
update. Suppose we have a parameter vector wt ∈ R

D (D is the dimension of
the parameter space) at timestamp t, compute the forward and backward steps,
and then use the computed gradients to update wt+S to wt+S+1. Here, S is an
integer-valued staleness, with S = 0 being SSGD and S > 0 being ASGD. The
aim of the proposed method is to design a function that can predict parameter
vector that is (S + 1)-timestamp ahead; i.e., to design fS : RD → R

D so that
fS(wt, ·) � wt+S+1.

The explicit form of the parameter prediction function that we use is

fS (wt,Mt) = wt + Mt

S+1∑

S′=1

µS′
, (2)

The function depends on Mt, (stale) momentum vector at timestamp t, and S,
an integer-valued staleness given by S = �S�, where the time-average staleness
S is assumed to be measured during training. The prediction model is a natural
extension of Nesterov’s Accelerated Gradients (NAG) [15] to stale gradients; i.e.,
when a staleness value is zero (SSGD), the proposed method becomes equivalent
to NAG: f0 (w,M) = w + µM , as in Algorithm 4.

The proposed method is expected to work well in those cases, which the
popular momentum method [16] or its variants, such as NAG, can accelerate
convergence, or in other words, the gradients are quite correlated between arbi-
trary two consecutive iterations. If the parameter prediction accuracy can be
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made very high, PP-ASGD has a huge advantage to speed-up training of a com-
putationally intensive model as PP-ASGD has a higher update frequency than
SSGD.

3 Evaluation

We conducted image classification experiments to compare training times
between PP-ASGD and ASGD, and between PP-ASGD and SSGD.

We used three datasets for evaluation: (1) ImageNet-1000 [4]2 –the 1000-
class ILSVRC classification dataset; (2) ImageNet-32 –a subset of ImageNet-
1000, consisting of 32 randomly chosen classes by the authors; and (3) CIFAR-
10 [17]3. For ImageNet training, on-line data augmentation technique includ-
ing random scaling, cropping and weak elastic distortion [18] was adopted. For
CIFAR-10 training, no data augmentation is used. We used the minimum sub-
batch size, i.e., b = 1, for all ImageNet training.

We used following computational environments. All ImageNet experiments
were conducted in TSUBAME-KFC/DL supercomputer4. The program of dis-
tributed training is written in C++, CUDA and OpenMPI from scratch. All
CIFAR-10 experiments were conducted in a single node with one GPU with
a program written in MATLAB. To test (PP-)ASGD on CIFAR-10, nonzero
staleness was artificially generated.

We used simple CNN architectures as follows. Convolutional kernels always
have 3 × 3 spatial sizes. Non-overlapping maximum-pooling is adapted. Activa-
tion function is given by max(a, 0.01a), similar to ReLU [19]. Cross entropy loss
is used with softmax output. CIFAR-10 CNN has a form of CCPCPCPFFF, where
‘C’ means convolutional, ‘P’ means pooling, and ‘F’ means fully-connected layers.
Description of the numbers of maps and neurons are omitted. In all experiments
the same momentum rate 0.99 is used.

3.1 Training Speed: PP-ASGD Vs ASGD

CIFAR-10. Figure 2 shows classification error rate curves of PP-ASGD and
ASGD with staleness values S = 3, 9, 27. For S = 3 the error rate of PP-ASGD
at a given point in epoch is lower than or similar to that of ASGD. For S = 9 the
error rates of PP-ASGD in the interval of first 7 epochs is clearly lower than that
of ASGD. The most notable speed-up is observed for S = 27 by roughly 5× to
reach the same error rate 0.3. As for generalization ability, PP-ASGD produces
a much lower error rate than ASGD for S = 27. For the case of S = 3 or
S = 9, though the error rate curve fluctuates time-to-time, the model accuracy
produced by PP-ASGD is by and large equal to that produced by ASGD.
2 See http://image-net.org for details.
3 See https://www.cs.toronto.edu/∼kriz/cifar.html for details.
4 Each compute node of TSUBAME-KFC/DL contains 2 Intel Xeon E5-2620 v2 CPUs

and 4 NVIDIA Tesla K80. Since K80 contains 2 GPUs internally, each node has 8
GPUs for total. FDR InfiniBand is equipped for interconnect.

http://image-net.org
https://www.cs.toronto.edu/~kriz/cifar.html
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Fig. 2. Classification error rate curves of PP-ASGD, ASGD, and SSGD on the CIFAR-
10 validation dataset. Staleness values of PP-ASGD and ASGD are varied: (a) S = 3,
(b) S = 9, and (c) S = 27. Horizontal axes are in logarithmic scale.

ImageNet-32. The left side of Fig. 3 shows classification error rate curves of
PP-ASGD and ASGD. We used 32 GPUs (4 nodes × 8 GPUs) in each training.
The time-average staleness is about 8.5 for both cases. Note that the computa-
tional time for the parameter prediction part is negligible. It is evident from the
left side of Fig. 3 that PP-ASGD outperforms ASGD in training speed approxi-
mately by a factor of two to reach the same top-5 error rate, say 0.2.
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Fig. 3. Left: classification error rate curves of PP-ASGD and ASGD on the ImageNet-
32 validation dataset. Right: plot of ‖wt+S0+1 − fS (wt)‖2 for S = 0, 1, · · · , 13 with
measured staleness S0 = 7. Each point is an average of 100 measurements right after 1
epoch. CNN architecture: CPCPCCPCCPCCPCCF. We used 32 GPUs to train each model.

The right side of Fig. 3 shows the parameter prediction error, expressed by
‖wt+S0+1 − fS(wt)‖2, where S0 is the measured staleness and S is swept from
0 to 13. From this experiment ‖wt+S0+1 − fS(wt)‖2 has a minimum at S = S0,
indicating that the coefficient in the stale momentum term of the proposed pre-
diction model is indeed appropriate. The horizontal dashed line indicates discrep-
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ancy between the stale parameter vector and the future ((S0 + 1)-ahead) para-
meter vector; whereas the red circle indicates discrepancy between the predicted
parameter vector by our method and the future ((S0 +1)-ahead) parameter vec-
tor. The latter discrepancy (by PP-ASGD) is 42% of the former discrepancy (by
ASGD). It is considered that this improvement results in the training speed-up.

3.2 Training Speed: PP-ASGD Vs SSGD

CIFAR-10. Figure 2 also shows classification error rate curves of SSGD, besides
PP-ASGD with staleness values S = 3, 9, 27. SSGD has the largest error rate
drop in the interval of the first few epochs, but PP-ASGD with S = 3(9) reaches
very similar error rates as SSGD after 4(9)-th epoch. As for S = 27 case, PP-
ASGD clearly produces a degraded generalization performance compared with
SSGD.

ImageNet-1000. We conducted large-scale training experiments on ImageNet-
1000 by PP-ASGD and SSGD. In Fig. 4 the leftmost figure shows error rate
curves, and the middle figure shows the relative training speeds to reach 0.6
top-1 error rate. We ran each training a couple of times with different learning
rates, and show the best performing results. The learning rates used for the
results shown in Fig. 4 are ranged from 1e–4 to 8e–4.5 We did not drop learning
rate during training. From the figure it is observed that PP-ASGD consistently
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Fig. 4. (a) Classification error rate curves of PP-ASGD and SSGD on the ImageNet-
1000 validation dataset. Numbers in parentheses indicate #GPUs. (b) Relative speeds
to reach 0.6 top-1 validation error rate. Black lines indicate ideal linear speed-up lines.
(c) Time-average batch size B (here, “batch” means a set of sub-batches used for an
update), time-average staleness S, and update frequency FU . All the experiments use
the CNN of the same form, CCPCCPCPCCPCF.

5 In every case the learning rate is varied from 0 to the target value linearly from
the beginning of the training until the end of the first epoch for stability. After this
period, the learning rate is held fixed at the target value.
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outperforms SSGD in training speed by a factor of 1.8–1.9 when the same number
of GPUs are used. It is also observed that PP-ASGD exhibits a near-linear speed-
up behavior with respect to the number of GPUs up to 256-GPU, while SSGD
exhibits a sublinear behavior.

4 Discussion and Conclusion

In this work, we proposed PP-ASGD algorithm that uses a parameter predic-
tion model for asynchronous, data-parallel CNN training. The prediction model
is based on a linear function of a stale momentum vector with a coefficient
depending on measured staleness value. Experiments showed that our model
has good parameter prediction accuracies, that result in reduction of training
time to reach a certain model accuracy, compared with a naive ASGD. PP-ASGD
also outperforms SSGD in training speed to reach the same model accuracy by
a factor of 1.9, when a computationally intensive model is trained on ImageNet
using 256 GPUs in parallel.

Lastly, we discuss a possibility of further improvement of gradient quality in
asynchronous settings. Zheng, et al. [8] proposed a delay compensation technique
for asynchronous, distributed deep learning. In their method a compute thread
computes gradients and an approximated Hessian matrix using stale parame-
ters, and an update thread corrects the stale gradients by the product of the
approximated Hessian and the difference vector between the stale and current
parameter vectors. Our method differs in that gradients are computed by pre-
dicted parameters by stale momentum and that Hessian computation is not
necessary. Indeed, it is expected that by combining the method of Zheng, et al.
and ours gradient quality can be further improved. In the combined method, a
compute thread computes gradients and approximated Hessian matrix using pre-
dicted parameters, and an update thread corrects the gradients by the product
of the approximated Hessian and the difference vector between the predicted and
current parameter vectors (that is, the parameter-prediction error). Our method
can yield small parameter-prediction error, with which the Hessian correction
term would further improve the gradient quality.
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Abstract. Convolutional neural networks have dramatically improved the
prediction accuracy in a wide range of applications, such as vision recognition
and natural language processing. However the recent neural networks often
require several hundred megabytes of memory for the network parameters,
which in turn consume a large amount of energy during computation. In order to
achieve better energy efficiency, this work investigates the effects of compact
data representation on memory saving for network parameters in artificial neural
networks while maintaining comparable accuracy in both training and inference
phases. We have studied the dependence of prediction accuracy on the total
number of bits for fixed point data representation, using a proper range for
synaptic weights. We have also proposed a dictionary based architecture that
utilizes a limited number of floating-point entries for all the synaptic weights,
with proper initialization and scaling factors to minimize the approximation
error. Our experiments using a 5-layer convolutional neural network on Cifar-10
dataset have shown that 8 bits are enough for bit width reduction and dictionary
based architecture to achieve 96.0% and 96.5% relative accuracy respectively,
compared to the conventional 32-bit floating point.

Keywords: Data representation � Bit width reduction � Dictionary-based
method � Uniform/non-uniform initialization � Scaling factor

1 Introduction

In recent years, due to rapid advances in learning algorithms and the exceptional
growth of computing power, artificial neural network (ANN) has emerged as a dom-
inant computation model for many real-world problems, including vision recognition,
speech recognition, natural language processing, recommendation systems, robotics
and autonomous driving vehicles. Although the current computational requirements
have been provided by the commercial success of graphic processing units (GPUs),
explosive increase in data and network size continues to drive the research in novel
computing methods and architectures to provide better speed, accuracy and energy
efficiency.

In modern computers, the time and the energy spent on computation are only small
fractions of those needed for data communication between data memory and the
computation unit (e.g., 0.1pJ/operation for 32-bit addition, 3.0pJ/operation for 32-bit
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multiply, 10-100pJ/transfer for cache, 1.3-2.6nJ/transfer for main memory [1]).
Although the data flow and SIMD (Single Instruction Multiple Data) architectures can
in principle exploit the program flow predictability to hide the memory transfer latency,
the overall energy for computation and communication is the most limiting factor for
performance scaling in today’s large scale computing systems. Consequently, reduction
of the data transfer energy is the most promising approach to facilitate the performance
scaling in building the large scale ANN computing systems.

Recently, there has been good interest in reducing the storage, communication and
computation complexity of ANN models. [2] reduces data precision down to 16-bit
fixed point using stochastic rounding for the weights. [3] reduces it further down to
4-10 bits by applying precision scaling techniques on the weights and activations.
Some recent works have shown that more computationally efficient DNN (Deep Neural
Network) could be constructed by quantizing most of the parameters during training.
Binarized Neural Network [4] constrains the weights and activations to −1 and 1. This
approach reduces not only the memory for these parameters but also the complexity of
convolution to bitwise XNOR, which in turn makes MAC (Multiply–ACcumulate)
operation faster. In a succeeding paper, Quantized Neural Network [5] extends its work
to quantize ANNs with 1 bit weights and multi-bit activations and gradients, most
operations are done by bitwise operation and the large-size network works well for
image recognition. In approaches other than reducing data precision, [6] reduces the
storage and communication penalty of weight-dominated ANNs by using a hashing
trick to effectively map the weights to a concise table so that each table entry represents
multiple weights. In [7], several techniques are used, including network pruning,
clustering, and Huffman encoding, to optimize the inference computation of ANNs for
mobile applications. Both approaches use parameter sharing with a fixed mapping
between the parameters and the shared representatives.

In this paper, we investigate algorithmic and architectural advances that exploit
inherent redundancy of the ANNs to optimize the computation speed and efficiency
with little or no accuracy loss, thus offering further performance scaling. We introduce
two compact data representations: (1) bit width reduction and (2) dictionary-based
method with a new training scheme that updates the mapping of weights throughout
training to improve the prediction accuracy. These methods explore reduction in
memory for the network parameters such as weights and biases in a feedforward ANN,
in order to reduce the requirement in communication and storage and to minimize the
energy consumption and alleviate the performance scaling limitations. We note that
both representations are also applicable to other network parameters such as activations
and gradients. Our ultimate goal is to build a specialized ANN computing architecture
for both learning and inference, with hardware support for the proposed algorithmic
techniques. Thus we propose a new algorithm for selecting the compact data repre-
sentation values and individually mapping of network parameters. We further propose
a new learning algorithm for dictionary-based method which dynamically determines
the mapping of the individual parameters to their compact data representations.

We discuss the algorithmic and architecture implications for bit width reduction in
Sect. 2 and for dictionary-based method in Sect. 3. Section 4 provides the experi-
mental results and discussion, and Sect. 5 concludes the paper.
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2 Bit Width Reduction

There have been several efforts related to reducing the number of bits for data repre-
sentation in neural networks using fixed-point [2], power-of-two quantization [8] and
binary representation [4, 5] to achieve high energy efficiency. The merit of fixed-point
approach is less requirement on hardware resources due to simpler arithmetic operating
units and smaller memory size compared to floating points, as well as design flexibility
for energy-accuracy tradeoff. [9] evaluates the accuracy dependence on the number of
bits for network parameters in several neural networks and shows hardware metrics
such as design area, energy consumption and delay. However, there are no detailed
studies on the number of bits vs accuracy [2] and/or the best combination of integer and
decimal bits to achieve comparable training accuracy compared to the conventional
floating point [3]. In this paper, we investigate these characteristics and the design
flexibility in detail. The conventional round-to-nearest rounding is used for quantiza-
tion in this study, other rounding schemes, such as truncation and stochastic rounding,
are also applicable. The compaction ratio of memory size for the bit width reduction is
as follows:

N � 32= N � Mð Þ ð1Þ

Here N is the total number of parameters and M is the number of bits per parameter.

3 Dictionary-Based Method

Throughout the development in the field of ANN, there have been more or less direct
indications that large and complex networks usually have significant parameter
redundancy [10]. In the past, this redundancy was often deemed as detrimental, and
various techniques, such as regularization, dropout and unsupervised pre-training, have
been developed to overcome it. We exploit the parameter redundancy to minimize the
resources needed for both learning and inference.

3.1 Weights Mapping Scheme

In general terms, this is achieved by defining a many-to-one mapping function fWs:
Ws ! DWs, where Ws is the set or subset of network parameters – weights and biases
(e.g. all the weights in a layer) and DWs is the set of dictionary entries, and ||DWs|| < ||
Ws||, where || || is the dimension. By storing and transporting only the address of DWs,
which are encoded/decoded at the source/destination, we can save (1-||DWs||/||Ws||) of
the required communication and storage for weight at the expense of storing the
dictionaries at both source and destination locally, which is relatively inexpensive
considering the size of the dictionary. Figure 1 shows a generic computing core.
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There are several distinct items to fully define the mapping:

(1) Set of network parameters partitioned into disjoint set of domains of fWs: Some of
the possible choices are random, one function (i.e. one dictionary) per layer, many
functions per layer, many layers per function, one function for all layers.

(2) Definition of the DWs (how are the network parameter dictionary entries gener-
ated): Intuitively, they should represent the parameters in Ws as closely as pos-
sible to minimize the conversion error. Choices include uniform arrangement, in
which only one of the directory entries and the stride need to be specified, and
non-uniform arrangement, in which each entry needs to be determined individ-
ually using batch or online clustering.

(3) Actual mapping of the function fW: The function can be defined by the nearest
neighbors of the dictionary entries.

The dictionary entries could be 32-bit floating point, and the compaction ratio
compared to the conventional method is as follows (2):

N � 32=ðN � log2 Lð Þþ L� 32Þ ð2Þ

Here N is the total number of parameters and L is the number of the dictionary entries.
Compared to (1), this compaction ratio is smaller if L equals to 2M. The experimental
results of comparable accuracy using suitable L and M for the bit width reduction and
the dictionary-based method respectively are given in Sect. 4.

3.2 Training with Dictionary-Based Data Representation

In order to use the dictionary-based method for compact parameter representation during
the learning phase, we need to be able to train with the dictionary-based data repre-
sentation. Different from the transition to the bit width reduction after training, described
in [3, 7], the network parameters are dynamically mapped to the adequate dictionary
entries during training, this task is considerably more difficult than both the conventional
training and the static assignment of dictionary entries. When a dictionary entry is
shared among many network weights, consequently the error gradient of that shared
dictionary entry is the sum of all the gradients of the weights mapped to that entry.

Fig. 1. Mapping from the network parameters to the dictionary entries.
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To implement the update of dictionary entries in the backpropagation-based
algorithm, we design a simple scheme to re-scale the initial dictionary entries
dynamically during the learning phase to generate new dictionary entries, thus this
excludes minimum and maximum parameters for every minibatch to realize proper
precision and range for better performance, using the following formula.

Re-scale ðDi
pÞ ¼ Di

p ini � RangeðWi
kjjLab Wi

kj

� �
¼ Di

pÞ=RangeðDi
p iniÞ � alpha

þ MeanðWi
kjjLab Wi

kj

� �
¼ Di

pÞ
ð3Þ

Range Xð Þ ¼ Max Xð Þ � Min Xð Þ ð4Þ

Mean Xð Þ ¼ Max Xð Þ þ Min Xð Þð Þ=2 ð5Þ

Here Di
p is the p-th dictionary entry in the i-th layer, Di

p ini is the initial value for the
p-th dictionary entry in the i-th layer, and Range(X) and Mean(X) return the range and
the mean of variable of X respectively. Both the maximum and the minimum are used
because the parameter distribution, i.e. probability density function, is not necessarily
symmetric. With a value less than one, the scaling factor alpha would limit the
parameter range and ignore large-value parameters, which would otherwise lead to
lower precision.

The update of the parameter labels is realized by grouping the updated parameters
using the updated dictionary entries and assigning the labels of the dictionary entries to
each parameter. Note that relabeling can be used to point a parameter to a dictionary
entry with the closet value either directly or after stochastic rounding. The algorithm for
simultaneous dictionary and label update is shown in Fig. 2.

The performance of this algorithm and its convergence may depend on the initial
distribution of dictionary entries Di

p ini, which can be random, uniform, or non-uniform
such as Gaussian distribution.

1. Initialize all dictionary entries Di with uniform or 
non-uniform distribution and pointers Labi

2. Forward propagation
 For i = 1 to L, compute activations Ai using Di and Labi

3. Backward propagation
Compute output layer’s activations gradient dC/dAL

 For i = 1 to L-1, compute dC/dAi using Di and Labi 

4. Parameter updates
For i = 1 to L,

Compute weights gradient dC/dWi using Ai and dC/dA
i

Update weights Wi using dC/dWi and learning rate
Update Di based on eq. (3)
Update Labi to point Di close to Wi 

Fig. 2. Algorithm for the update of the dictionary entries and the parameter labels.
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4 Experiments and Discussion

We test the two methods for image recognition using Cifar-10 dataset, which consists
of 60,000 32 � 32 pixel images in RBG format for training and testing. For the
experiments, we implement a CNN (Convolutional Neural Network) with 5-layers
(three convolutional layers, one fully-connected layer and one classifier layer) known
as CifarQuick [11]. The convolutional layer has either 32 or 64 5 � 5 filters and max
pooling over 2 � 2 window size. We also use batch normalization [12] after the max
pooling to have better performance. We design codes using Theano Deep Leaning
framework for our experiments, the relative prediction accuracy compared to 74.87%
by conventional 32-bit floating point used to shown the experimental results of our
methods.

Figure 3 (left) shows the relative accuracy of the network with bit width reduction
in our experiments, as a function of the number of decimal bits with several curves for
several different numbers of integer bits. At 3-bit integer and 5-bit decimal (8 bit in
total), it reaches accuracy of 96.0%. Figure 3 (right) depicts the accuracy dependence
on the decimal bits, and each curve has the same total number of bits, including integer
bits and decimal bits. It is interesting to note that given a fixed number of total bits, the
higher numbers of decimal bits do not necessarily lead to better accuracy, which
implies the importance of good balance between integer and decimal bits to cover
reasonable range and precision for the parameters. We also test the performance of the
dictionary-based method with uniform initialization for several scaling factors as
shown in Fig. 4 and with non-uniform initialization as shown in Fig. 5. For both
initializations, 8-bit dictionary reaches comparable accuracy, 96.2% with a scaling
factor of 0.995 and 96.5% with a scaling factor of 0.993 respectively. The results
demonstrate that the non-uniform initialization is more suitable to reflect the parameter
distribution. The best scaling factors in Fig. 6 are slightly smaller than 1.0 and they
substantially excludes the large-value parameters, but they should not be too much
smaller than 0.99 because that would exclude too vigorously and increase the
approximation error. For example, a scaling factor of 0.985 only achieves 90.9%

Fig. 3. Relative accuracy for bit width reduction using fixed point data representation. Left: The
curves correspond to the different numbers of integer bits. Right: The curves correspond to the
different numbers of total bits.
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accuracy, which is 5% smaller than that achieved by a scaling factor of 0.993. Figure 7
shows the histograms of the parameter distribution when different scaling factors are
applied. With a scaling factor less than 1.0, the long tails are removed and replaced
with higher frequencies at the two edges (in the right figure). The settings in the number
of integer bits, the number of decimal bits and scaling factors are important, and they
could be optimized during training to achieve even better energy efficiency. Note that
the dictionary-based method achieves slightly better accuracy than the bit width
reduction, and we believe this is due to the better precision of data representation using
32-bit floating point dictionary entries. More details are illustrated in Table 1.

Fig. 5. Relative accuracy for weights sharing using 32-bit floating point data representation with
non-uniform initialization for entries. The curves correspond to the different scaling factors.

Fig. 4. Relative accuracy for the dictionary-based method using 32-bit floating point data
representation with uniform initialization for entries. The curves correspond to the different
scaling factors.
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Fig. 6. Relative accuracy for the dictionary-based method using 32-bit floating point data
representation with uniform and non-uniform initialization for entries respectively.

Fig. 7. Parameter distribution in a convolutional layer after learning for dictionary-based
method with uniform initialization (Left: scaling factor of 1.0, Right: scaling factor of 0.995).

Table 1. Performance summary

Method Data representation Relative accuracy (%)

Conventional 32-bit floating point 100
Bit width
reduction

8-bit fixed point (3-bit integer and 5-bit
decimal)

96.0

Dictionary-based 32-bit floating for entries 96.5 (non-uniform
initialization)
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5 Conclusion

In this paper, we have investigated the prediction accuracy by compact data repre-
sentation via bit width reduction and dictionary-based method respectively, in order to
save memory and energy consumption for communication between computation units,
and experiments have been done using 5-layer convolutional neural networks on
Cifar-10 dataset. We have also proposed a new training scheme to update the parameter
labels as well as the dictionary entries with non-uniform initialization and scaling factor
to minimize the quantization error and improve the accuracy of the dictionary-based
method. Our experimental results have shown that both methods with 8-bit imple-
mentations can achieve comparable accuracy of 96.0% and 96.5% respectively. Further
work that is planned includes dynamic update of the dictionary entries based on
clustering of the parameter values, instead of rescale from the initial dictionary entries.
Adjustable setting for network optimization during training, e.g., a good balance
between the numbers of integer bits and decimal bits, will also be investigated.
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Abstract. Very deep convolutional neural network has a strong representation
power and becomes the dominant model to tackle very complex image classi-
fication problems. Due to the huge number of parameters, overfitting is always a
primary problem in training a network without enough data. Data augmentation
at input layer is a commonly used regularization method to make the trained
model generalize better. In this paper, we propose that feature augmentation at
intermediate layers can be also used to regularize the network. We implement a
modified residual network by adding augmentation layers and train the model on
CIFAR10. Experimental results demonstrate our method can successfully reg-
ularize the model. It significantly decreases the cross-entropy loss on test
set although the training loss is higher than the original network. The final
recognition accuracy on test set is also improved. In comparison with Dropout,
our method can cooperate better with batch normalization to produce perfor-
mance gain.

Keywords: Deep learning � CNN � Overfitting � Model regularization

1 Introduction

Deep Convolutional Neural Network [1] (CNN) has shown significant performance
gain two decades ago [1]. The large dataset, ImageNet [2], and powerful computational
resources are the main catalysts for the revival of CNN. Following work on weights
initialization methods [3, 4] and network architectures [5–7] allow us to train network
models with hundreds of layers. The introduction of more layers, enhances the
expressive power of the model, but also increases the risk of over-fitting.

Researchers have proposed lots of methods to tackle over-fitting, which can be
divided into two main categories. The one is adding an additional constrain on the
model, which enforces the model to encode some prior knowledge [8]. It can be also a
general preference for simpler models, like ‘2 weight decay used in [9]. The other is to
increase the number of labeled data. By increasing the size of datasets, most of the
machine learning algorithms can achieve better performance. That’s because, if the
learning process can be viewed as fitting a function, more data can describe the target
manifold more accurately which helps the learning get away from outliers and results in
a function with better generalization ability. The number of training samples required is
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related to the capacity of the feature space which is exponential to the feature
dimensions [10]. The convolutional neural network is very hungry for data due to the
high-dimension nature of images. Although ImageNet provides one million labeled
images, the winning model in the competitions all utilized data augmentation [5–7, 11].

The problem of insufficient data cannot be simply solved by the data augmentation.
Most of the widely used augmentation methods are carried out on the input layer, that
is, the original image. We state that such operations can also be applied to the feature
maps produced by hidden layers. CNN is a hierarchical feature extractor, in which the
output features of the current layer is the input features of its successive layer. From
such a perspective, the input image and the feature maps at the intermediate levels have
nothing different but data representation at different abstract levels. Therefore, a feature
map can be viewed as an image with multiple channels, and data augmentation
operations applied to ordinary RGB images can naturally be used to feature maps. We
term the augmentation on feature maps as feature augmentation.

In this work, we introduce augmentation layers (AugLayer) into a regular CNN to
regularize the network. Within a AugLayer, a certain kind of augmentation operation is
performed on the inbound feature map and a modified one with information preserved
is generated as output. In order to validate our idea, two operations, contrast adjustment
and brightness adjustment are adopted in our experiments. The experimental result of
deduced cross-entropy loss and increased classification accuracy on CIFAR10 dataset
demonstrates the effectiveness of our proposed feature augmentation method on reg-
ularizing CNN model.

2 Related Work

For a long time, data set augmentation is a simple and effective method used in
supervised learning to prevent over-fitting. It is particularly popular in computer vision
community because it’s very easy to generate many variants of an image with the
information preserved. Common augmentation methods include random crop, scale
jitter, brightness adjustment, contrast adjustment, and other affine transformations.
LeCun et al. [12] applied a series of operations on the MNIST dataset while training
LeNet, which is the first successful CNN model. Krizhevsky et al. [5] use horizontal
flip, random crop and PCA analysis to improve the model robustness, resulting in an
increase by over 1% on top-1 accuracy of AlexNet [5]. VGGNet [6], the winning
model of 2014 ILSVRC, additionally utilized the scale jitter. Recently Chiyuan Zhang
et al. [13] reported that using only random cropping without any other regularization
method would allow the recognition rate of Inception Network [11] to increase from
59.80% to 67.18% on ImageNet dataset.

All these augmentation methods are applied to the image at the input layer. To the
best of our knowledge, the augmentation in the feature space of CNN received little
attention. Terrance et al. [14] proposed a method to augment the feature set. It works by
first learning a data representation and then applying interpolation and extrapolation to
features mapped to that representation. Our method differentiates from it in two points.
One is that the augmentation operations occur simultaneously with the entire training
process, and second, our method is specially designed for image data. We employee
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image enhancement methods and therefore encode domain knowledge. In addition,
there are some regularization methods performing implicit augmentation. Dropout [15]
mainly used in fully connected layers randomly discards some activations and it can be
explained as creating many variants with missing value at dropped dimensions. Our
method explicitly augments feature maps. Batch Normalization [16] (BN) is proposed
to accelerate training but also plays a role of the regularizer. In conjunction with BN,
Dropout has little effect in our experiments. By contrast, our method can still obtain
performance gain at the Residual Network [7] (ResNet) which heavily uses BN layers.

3 Model

Our model is based on ResNet. The original ResNet consists of multiple building
blocks, each of which includes two convolutions. In our proposed network architecture,
the AugLayer is inserted after some convolutions illustrated by Fig. 1. It transforms the
input feature map but preserves the spatial appearance of the feature and only functions
during training. Without loss of generality, two kinds of augmentation techniques,
contrast adjustment and brightness adjustment are used in AugLayer. In the following
section, we will provide the details of these two augmentation techniques.

3.1 Contrast Adjustment

Contrast adjustment is a common method for image enhancement. Contrast is created
by the difference of the luminance reflected by the adjacent surfaces. In the physical
world, images of the same scene with different contrast are often observed. It’s easy to
obtain many variants of one image by adjusting its contrast. Contrast adjustment is
conducted according to the following equations,

Fig. 1. Common architecture and our proposed architecture.
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I
0 ¼ I � mð Þ � f þm ð1Þ
f �Uð1� a; 1þ aÞ ð2Þ

where I is either an image or a feature map, m is the mean of each channel and f is the
contrast ratio. a is empirically set to 0.25 in experiments. It’s possible to find a better
value using grid search. The image contrast will be enhanced if f > 1, otherwise
weakened.

In our model, the contrast adjustment is applied to the feature maps. f is drawn from
a uniform distribution illustrated by Eq. (2). It means that the contrast of some channels
is enhanced and other channels weakened. The reason is that for a certain spatial
location, the sum of feature values across all channels remains roughly unchanged. We
also tried enhancing the contrast of all channels by sampling f on an interval greater
than 1, and the results showed a performance drop on test set. That’s probably because
the augmentation operation introduces a numerical bias between training set and test
set. Figure 2 demonstrates an example of contrast adjustment on an image and a feature
map, respectively.

3.2 Brightness Adjustment

The brightness of an image reflects the light intensity of the environment at the time of
image generation, and different intensities result in different images. Using a group of
determined adjustment operations but performing on different channels also leads to
images with different visual appearances. We propose to add similar operations after
convolutional layers to augment the feature maps. Therefore, the same image can
produce different feature maps when passing through the network with unchanged
weights. This makes the network lose the opportunity to remember the sample exactly,

Fig. 2. The effect of contrast adjustment. Column (b) lists a RGB image and one of its feature
maps extracted using a trained VGG16 network. Images in column (a) are variants with
decreased contrast and column (c) enhanced contrast.
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thereby improving the generalization of the model. The brightness adjustment in our
proposed method is carried out according to the Eq. (3) where stdv is the standard
deviation of features on each channel within a mini-batch, and f is the adjustment ratio,
which is obtained from a uniform distribution defined by Eq. (4). b is set to 0.05.
Larger values like 0.25 and 0.5, are also tried but they lead to poor performance.

I
0 ¼ Iþ stdv � f ð3Þ

f �Uð�b; bÞ ð4Þ

4 Experiments

4.1 Dataset and Evaluation Metric

To evaluate our method, we use the popular CIFAR10 [9] dataset. It consists of ten
categories and 60,000 color images with 32 � 32 pixels, of which 50,000 are for
training and the rest for testing. Like other classification models, our model output the
normalized probabilities of one input image belongs to each category and naturally
cross-entropy loss is used for training and test. Accuracy is computed to measure the
quality of predictions at test. In addition, the gap between training loss and test loss is
also be used for evaluation.

4.2 Implementation

We apply the proposed method in the most popular ResNet to test its effectiveness.
Basically, we follow the hyper parameters in [7]. The first layer is a 3 � 3 convolution,
and then a stack of 6n layers are used. We call every 2n layers as a stage. After each
stage, the feature map size will be halved and the number of filters will be doubled
except for the first stage. Following those convolutions, a global average pooling and a
fully connected layer are used. The number of trainable layers is 6n+2. We tried
n ¼ f1; 2; 3; 5; 7g, leading to 8, 14, 20, 32 and 44-layer network. There are two
strategies of introducing our proposed AugLayer to the model. One option is adding
one AugLayer for each stage, and the other is inserting one AugLayer after each
convolution. Both are experimented. We compare our method with Dropout and image
augmentation respectively. Dropout sets 50% activations of the flattened feature vector
to zeros. Image augmentation adjusts the contrast or brightness of input images.

4.3 Training

The training employees SGD optimizer with a momentum of 0.9, an initial learning rate
of 0.1, and learning rate decay of 0.0001. At 120th and 160th epoch, the learning rate is
dropped by 90%. Batch size is 128 and the training lasts for 200 epochs. We use simple
mean/std normalization. The basic data set augmentation method is same as that in [7],
where each side of the image is padded by 4 pixels and 32 � 32 patches are randomly
sampled and then flipped horizontally with probability 0.5. Training is conducted on a
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NVIDIA GTX1080. One run takes 1–4 h with respect to different network depth. The
introduction of AugLayer increase training time by about 5%–10%.

4.4 Results

Feature Contrast Adjustment
Figure 3 demonstrates that contrast adjustment on feature maps can effectively regu-
larize the network. The “normal” means basic configuration consisting of mean-std
preprocessing, random crop and random flip. The “image-contrast” additionally adjusts
the image contrast randomly. The “feature contrast” introduces three AugLayers while
“feature-contrast-more” aggressively inserts more AugLayers after each convolution.
All networks can achieve convergence and the loss reaches a plateau at the 120th epoch
of the first learning rate drop. The network with AugLayer has lower validation loss in
the end although it has higher training loss during the whole training. It means our
method can significantly narrow the gap between training and testing. Such phenomenon
is more obvious given more AugLayer are introduced. Randomly adjusting the contrast
of input images causes a slight performance degradation if measured by loss.

Fig. 3. The figure depicts training curves of 14, 20, 32 and 44-layer network with 4
configurations respectively. Dashed lines denote training loss and solid lines denote test loss.
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Table 1 illustrates more detailed results. It shows that the AugLayer can consistently
help the network generalize better. More AugLayers result in lower test loss. As for the
metric of accuracy, similar trend can be observed but more augmentations don’t always
lead higher accuracy. The third column of Table 1 shows a performance decline if
Dropout is inserted after the fully connected layer. We also tried replacing all
AugLayers with Dropout and got worse results which are not listed here.

Feature Brightness Adjustment
Adjusting the brightness of each channel of the feature map can also slightly increase
the generalization ability of the model. However, the test loss declines less significantly
and more AugLayer don’t consistently yield better results, either in terms of loss or
recognition rate. The effectiveness of feature augmentation by brightness is weaker than
by contrast. We don’t show results of Dropout here (Table 2).

5 Conclusion

In this study, we introduce a concept of the augmentation layer. By employing feature
contrast and feature brightness adjustment techniques, we show that augmenting fea-
ture maps can regularize a convolutional neural network. Experiments on CIFAR10
verified the effectiveness of our method. Although our model is unable to fit the
training samples as well as the original ResNet, it achieved a lower loss on the test set.
Our future work will includes introducing other types of augmentation operations,
testing compound augmentation operations, experimenting on larger networks, and
larger datasets.

Table 1. Test loss and classification error on CIFAR10

Config Normal Dropout Image-contrast Feature-contrast Feature-contrast-more

8-layer 0.46 (11.6%) 0.48 (13.2%) 0.51 (11.9%) 0.43 (11.2%) 0.42 (11.7%)
14-layer 0.45 (9.00%) 0.45 (9.16%) 0.46 (9.52%) 0.41 (8.48%) 0.41 (8.62%)
20-layer 0.47 (8.45%) 0.49 (7.92%) 0.48 (8.78%) 0.44 (7.93%) 0.40 (7.54%)
32-layer 0.45 (7.70%) 0.59 (7.99%) 0.43 (7.38%) 0.43 (7.07%) 0.41 (7.10%)
44-layer 0.45 (7.03%) 0.58 (7.44%) 0.47 (7.24%) 0.42 (6.37%) 0.39 (6.54%)

Table 2. Test loss and classification error on CIFAR10

Config Normal Image-bright Feature-bright Feature-bright-more

8-layer 0.451 (11.7%) 0.449 (11.6%) 0.442 (11.6%) 0.438 (11.2%)
14-layer 0.450 (9.90%) 0.475 (9.79%) 0.437 (9.04%) 0.447 (9.09%)
20-layer 0.473 (8.33%) 0.464 (9.36%) 0.457 (8.35%) 0.446 (7.83%)
32-layer 0.457 (7.69%) 0.476 (7.82%) 0.447 (7.22%) 0.445 (7.16%)
44-layer 0.432 (6.91%) 0.442 (7.20%) 0.445 (6.82%) 0.438 (6.77%)
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Abstract. Convolutional neural networks (CNNs) performance has
increased considerably in the last couple of years. However, as with most
machine learning methods, these networks suffer from the data imbal-
ance problem - when the underlying training dataset is comprised of an
unequal number of samples for each label/class. Such imbalance enforces
a phenomena known as domain shift that causes the model to have
poor generalisation when presented with previously unseen data. Recent
research has focused on a technique called gradient sign that intensifies
domain shift in CNNs by modifying inputs to deliberately yield erro-
neous model outputs, while appearing unmodified to human observers.
Several commercial systems rely on image recognition techniques to per-
form well. Therefore, adversarial attacks poses serious threats to their
integrity. In this work we present an experimental study that sheds light
on the link between adversarial attacks, imbalanced learning and transfer
learning. Through a series of experiments we evaluate the fast gradient
sign method on class imbalanced CNNs, linking model vulnerabilities
to the characteristics of its underlying training set and internal model
knowledge.

Keywords: Convolutional neural networks · Adversarial examples ·
Gradient sign · Imbalanced training · Transfer learning

1 Introduction

Convolutional neural networks (CNNs) are a class of non-linear machine learning
algorithms known for its state of the art performance on datasets with spatial
structure. To date, not much research has been done on adversarial attacks
against CNNs - a process on which inputs are changed to manipulate the algo-
rithm outputs. The motivation for adversarial robustness comes largely from
being able to shield image recognition systems from behaving unexpectedly.
Experimental demonstrations of the effectiveness of adversarial attacks were car-
ried out mainly by [2,5,15] and have heightened the need for improvement on
c© Springer International Publishing AG 2017
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the current state of CNNs techniques. Developing robustness to such attacks has
become of the utmost importance as many commercial applications are based
on the same small group of models.

Domain shift or dataset shift [16] is also a well known cause for low perfor-
mance of several machine learning algorithms [7,8]. This happens when the joint
distribution of inputs and outputs differs between training and testing stages,
causing models to perform badly on unseen data. The adverse effect of domain
shift is even worse on real world, as data distributions are often skewed and rarely
contains enough information to learn all the required features of the data domain.
Adversaries have been proven to more readily exploit domain shift [10,12], and
the question as to whether imbalanced training sets affects adversarial inputs
performance on CNNs is still unanswered.

The effectiveness of an adversarial attack also depends on the internal gra-
dient information of the targeted model. As shown on Papernot et al. (2016),
attacks could be classified as both black-box and white-box. The former uses gra-
dient information from a separate model, while the latter uses the target model
gradient to generate adversarial inputs. While black-box attack is an approxi-
mation of the internal knowledge of the target model, the white-box uses the
true representation of the feature space.

Currently, there is no empirical evidence on the effectiveness of adversarial
attacks on class-imbalanced CNNs. We designed a set of experiments to inves-
tigate how both imbalanced training sets and the model’s internal knowledge
affects the robustness to such attacks. The main contributions of this work are
as follows:

1. To shed new light on how CNNs trained on imbalanced datasets are affected
by adversarial attacks

2. Evaluate the impact of transfer learning on imbalanced CNNs and how classes
with similar set of features react to the perturbation caused by the gradient
sign method

Section 2 of this paper discusses the related work in both CNNs, gradient
sign methods, adversarial attacks and imbalanced/transfer learning. Section 3
provides details of the training models, imbalanced datasets and gradient sign
methods used in our experiments. Section 4 presents the results on the under-
sampled, over-sampled and balanced cases using both black/white-box attacks.
Sections 5 is dedicated to drawing conclusions and providing directions to related
future work.

2 Related Work

Previous work has shown that the high-dimensional non-linearities of convolu-
tional neural networks [11] creates adversarial pockets of space - places where
data points can be placed in order to provide a wrong model output. By exploit-
ing such characteristics, recent methods were able to deliberately create an adver-
sary that produces an incorrect, high confidence prediction for an image without
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visible distortion [13]. This is achieved by adding intentional noise to each pixel of
an image so as to fool the algorithm into predicting an incorrect label [5,14,18].

The gradient sign method was introduced by Goodfellow et al. (2014) and has
been used as the foundation of many of the experiments in adversarial attacks
on CNNs. The results have shown that convolutional neural networks have linear
behavior in very high dimensional spaces [5]. Most inputs were miss-classified
not only by Goodfellow et al. (2014) experiments but by others as well [2,15].

The work of Papernot et al. (2016) has shown that one can use transfer
learning to perform black-box attacks against CNNs [14,19] and, thus, to inten-
tionally force the model to predict specific labels. The combination of adversaries
and transfer learning creates a threat vector for many state of the art methods.
Attacks, however, depend on some specific internal information of the target
model [12,14]. For instance, the same model trained by two different configura-
tions of the same dataset would have different gradients and thus, would provide
different degrees of adversarial perturbations.

Techniques to overcome imbalanced learning have been developed for more
general machine learning models. The work of Heibo et al. [6], for instance,
provides a technique for doing weighted sampling of minority classes to minimize
the effect of imbalanced learning. Another approach could be to incorporate
unsupervised clustering on synthetic data generation mechanism in order to
avoid wrong generation of synthetic samples [1]. More recent work has used a
Bayesian framework to increase l2 robustness to adversarial examples [2].

3 Experiment Design

Our experiments aims to investigate the relationships of the underlying learning
structure of CNNs and the perturbation caused by gradient sign methods. In
particular we focus on the investigation of how the gradient step from the sign
method moves the points away from their distributions, and how this could be
affected by both balanced and imbalanced training sets. This requires class labels
of the data set to be non-hierarchical so we can make better assumptions of their
distributions.

We use the CIFAR-10 data set [9] in our experiment. CIFAR-10 data is
visually rich and empowers the analysis between different class labels. The data
set contains 32 × 32 images in 10 classes, each has 5,000 samples for training and
1,000 for testing. There is not much overlap nor hierarchical relationship between
classes. Most CNNs experiments nowadays use the 2014 ImageNet dataset [4].
However, its hierarchically organized categories adds unnecessary complexity to
the experiment design and hinders the analysis of the results (e.g. causality
relationships).

3.1 Network Architecture and Synthetic Dataset Imbalance

Network Architecture. All the experiments were performed using a modified
VGGNet [17] architecture as shown on Fig. 1. The two fully connected 4096 lay-
ers at the end were replaced by one single layer with 512 neurons and RELU
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activations. In addition, the total number of convolutions blocks and pooling
layers were reduced to 3, with the first layer having 2 stacked convolution lay-
ers followed by a max pooling of stride 2× 2 and the last two layers with 3
stacked convolutions also followed by a max pooling of stride 2× 2. We have
used RMSProp [3] as the optimisation technique with a learning rate of 10−4

and a decay 10−5. Figure 2 shows that our model has an overall accuracy of
approximately 83%, which is comparable to many state of the art models nowa-
days.

Fig. 1. Adapted VGG architecture

Fig. 2. Results of our adapted VGG architecture on the CIFAR-10 dataset shows
comparable overall performance

Dataset Imbalancing. As the CIFAR-10 dataset is not naturally imbalanced,
we have artificially created two variations on which we trained the imbalanced
models. One dataset consists of a direct under-sample of the target class to 1,000
samples, and the other was changed using an over-sampling of the target class
(or an under-sampling of all other classes). We kept the number of samples for
the target class at 5,000 while all other classes were reduced to 1,000 samples.
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For each class of the two different datasets configurations, a network was then
trained until convergence using the same hyper-parameters as the balanced case.
Each model was evaluated against a test set of 1,000 samples of the target class
which was perturbed by its own under/over-sampled model and the balanced
model. The two sources of gradient information are referred as white-box and
black-box attacks since the former has complete information of the model weights
and biases while the latter uses an approximation of the same parameters.

Both imbalanced models were separately tested for each class on white-box
and black-box adversarial attacks. The white-box test was designed to investigate
the vulnerability of class imbalance on adversarial examples while the black-box
test is designed to verify the robustness on transfer learning environments. In
total we evaluated 50 different combinations: 20 for each different imbalanced
dataset (same model gradient and balanced model gradient) and 10 for the
balanced model using its own gradients on each class. Figure 3 shows the accuracy
for the models without any perturbation. It can be seen that the individual class
accuracy for the under-sampled case is generally reduced while the same metric
is increased on the over-sampling model.

3.2 Gradient Sign Methods

The gradient sign is a method that uses internal gradient information to create
directed perturbation to input data. The resulting label will be different whether
one adds or subtracts noise according to Eqs. 1 and 2.

C(x + δ) ≈ C(x) + ε ∗ sign(∇C) (1)

C(x + δ) ≈ C(x) − ε ∗ sign(∇C) (2)

The gradient sign equation has a simple interpretation. The main goal is to
add a change δ into each pixel of the image so as to make that image closer
to the chosen label on which we extracted the gradient from the source model.
The sign on our ∇C indicates that we are only interested on the direction of the
gradient while the ε controls the magnitude of the step.

Suppose the current true label of the class is selected as a gradient candidate,
adding noise would mean that we increase the cost function of our input while
subtracting noise is the same as minimizing our loss function even further. The
equations above are usually referred as ascent and descent methods.

Perturbations could also be applied by two variations of the gradient sign
method. While the fast gradient sign method applies a single perturbation to
the input, the iterative gradient sign method performs the same perturbation a
chosen number of times iteratively [5]. Figure 4 shows an example of adversarial
created using the fast method.

In order to enforce consistency throughout our experiments, we have chosen
the true sample label as the backpropagated gradient along with the fast gradient
sign ascent method. The intuition behind this choice is that we look to increase
the cost function of the target class by moving away from the current true
label. The ε value chosen was 0.01 as it provided the best trade-off between
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Fig. 3. Individual class accuracy for under-sampled, over-sampled case on the CIFAR-
10 modified dataset shows a decrease in accuracy for classes with lower number of
samples

Fig. 4. Adversarial example crafting with fast gradient sign [5].

misclassification rate and the amount of visible change applied to the input
image.

4 Results

We use the results of the balanced model on adversarial attacks as the baseline
to evaluate whether imbalanced CNNs are more or less vulnerable to adver-
sarial learning. Table 1 shows that the accuracy for all classes is drastically
reduced when the balanced model is presented with adversarial examples. Models
with under-sampled datasets were even more vulnerable than balanced models.
Figure 5 shows the relative difference for all the three different models (balanced,
under-sampled and over-sampled). Values were calculated by finding the differ-
ence between the perturbed accuracy and the non-perturbed accuracy of each
class model. They represent the percentage on which the initial accuracy was
reduced. The under-sampled model had the higher relative difference on average,
which shows that the imbalanced nature of the dataset ended-up increasing the
vulnerability of the model.

Perturbation on the over-sampling case had a weaker effect, as the small push
caused by our ε was not enough to move points to outside of their distributions.
Objects of the over-sampled classes would need bigger steps in order to success-
fully create an adversary that leads to a wrong classification label. Accuracy for
most of the over-sampling cases was around 45% and the relative difference was
the lowest of all three models, which shows robustness of the target over-sampled
class.
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Fig. 5. Relative difference for each model. Higher numbers means more vulnerability

Class imbalanced models are naturally affected by the false positive and false
negative trade off shown on Fig. 6. The decision boundaries on such models favor
the class with more samples and, hence, increases the accuracy for this class
while decreasing for the other classes. The area under the curve for misclassified
examples on the under-sampled distribution is bigger, and it is caused by the
suboptimal exploration of feature space of that class. This effect is exploited by
adversaries as there is an increase on the misclassification rate of distributions
with lower amplitude. The increased number of samples of the over-sampled
label causes the model to perform a trade-off when optimizing its loss function.
For instance, the decision boundary would be chosen in order to minimize the
total error of the model. The cost function is lower when the decision boundary
minimizes the misclassification of the majority class as there is a higher number
of samples. The choice of a biased decision boundary could be one of the factors
explaining the higher resilience of over-sampled models.

Table 1. Results for the two different sources of perturbations along with the two
different imbalanced datasets. Under-sampling intensifies adversarial attack while over-
sampling increases model robustness

Class label Black-box White-box

Undersample Oversample Balanced Undersample Oversample

0 - Airplane 60% 87% 36% 19% 61%

1 - Automobile 64% 91% 23% 16% 63%

2 - Bird 38% 73% 20% 9.4% 27%

3 - Cat 21% 72% 11% 0.5% 19%

4 - Deer 58% 80% 20% 9.8% 20%

5 - Dog 47% 76% 15% 9% 38%

6 - Frog 76% 88% 27% 20% 49%

7 - Horse 59% 88% 20% 18% 52%

8 - Ship 69% 89% 37% 19% 59%

9 - Truck 46% 87% 49% 21% 54%
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4.1 Transfer Learning and Overlapping Distributions

Transfer Learning. The use of a different model gradient (black-box) for cre-
ating adversaries has shown less effective when compared to the same model
(white-box) attack. As the overall gradient have not only different direction but
also magnitudes, the system has proven to be more robust to the attack. The
experiment reveals that although the gradient sign method is quite effective
for fooling CNN models it does require a good amount of knowledge from the
underlying training parameters so as to unleash its full potential. Attacking an
under-sampled/over-sampled model with the gradient of the balanced model did
not show to be as effective as using the same model’s gradient. The average
accuracy of an under-sampled model attack with adversaries generated from a
different model was 53.8% while the same metric was 25.8% for the same model
attack. Even that our training samples are within the same data domain, there
are still huge differences on the gradients learned from the model.

Fig. 6. Dataset imbalance causes models to perform adjustments of decision boundaries
leading to an increase on accuracy of the majority class and decrease on the minority
class.

Overlapping Distributions. The results for the balanced model on Fig. 2
shows that for the pairs cat/dog and automobile/truck there is already a natural
misclassification between one another. For instance 13% of dog samples were
misclassified as cat in the original balanced model. Our experiment demonstrates
that the adversarial attacks intensify this phenomena in only one of the classes
of the pair. While for both under-sampled cat and truck the number of samples
misclassified with the similar class has increased, the same did not happen with
dog and automobile. Figure 7 shows that cats are increasingly misclassified as
dogs when under-sampling on the cat class is used. While on the cat under-
sampling case the percentage of samples misclassified as dogs increased from
31% to 39%, the same number decreased from 38% to 32% on the dog under-
sampling test.
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Fig. 7. Under-sample on cat and truck increases misclassification to similar classes,
while dog and automobile does not.

5 Conclusion and Future Work

We have shown that adversarial attacks are even more severe on datasets with
under-sampled class labels and that the decision boundary trade-off on the over-
sampled classes increases their robustness to such attacks. Labels with similar
features have only shown higher vulnerability to the fast gradient sign methods
in one of the classes of the pair. This specific result shows that similar classes
might have degrees of similarities on which could be more or less exploited by
the gradient method.

As several commercial applications rely on almost the same group of models,
understanding of such properties is of extreme importance. Future work in this
field could look further in datasets with a higher number of classes and more
complex relationships between labels so as to not only confirm our insights but
also discover new interesting properties of class imbalanced CNNs and adver-
sarial attacks. Current applications looking to increase their robustness to the
adversarial methods presented in this work can use over-sampling techniques on
critical labels so as to shield that label from gradient sign adversarial attacks.
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Abstract. Deep convolutional neural network (ConvNet) is one of the
most promising approaches to produce state-of-the-art performance on
image recognition. The ConvNet exhibits excellent performance on the
task of the training target as well as favorable transferability to the other
datasets/tasks. It, however, is still dependent on the characteristics of the
training dataset and thus deteriorates performance on the other types
of task, such as by transferring the ConvNet pre-trained on ImageNet
from object classification to scene classification. In this paper, we pro-
pose a method to improve generalization performance of ConvNets. In
the proposed method, the ConvNet layers are partially shared across het-
erogeneous tasks (datasets) in end-to-end learning, while the remaining
layers are tailored to respective datasets. The method provides models of
various generality and specialty by controlling the degree of shared lay-
ers, which are effectively trained by introducing the diversity into mini-
batches. It is also applicable to fine-tuning the ConvNet especially on
a smaller-scale dataset. The experimental results on image classification
using ImageNet and Places-365 datasets show that our method improves
performance on those datasets as well as provides the pre-trained
ConvNet of higher generalization power with favorable transferability.

1 Introduction

Image recognition performance has been significantly improved by deep convo-
lutional neural network (ConvNet) [1,2] in the framework of deep learning; it is
applied with great success to such as object detection [3] and tracking [4]. The
deep ConvNet stacks many convolution layers in order to extract image features
of diverse levels and a huge number of parameters contained in those layers
are trained in an end-to-end manner through back-propagation. The problem of
over-fitting is remedied by leveraging large-scale annotated data [5,6] and some
techniques such as rectified linear unit (ReLU) [7], DropOut [8] and BatchNor-
malization [9].

The so-trained Deep ConvNets exhibit excellent classification performance
on the dataset/task of the training target, while being effectively transferable
to the other datasets and tasks [10–12]. For example, the ConvNet pre-trained
on ImageNet [5] can be applied as an image feature extractor to various image
recognition tasks on which hand-crafted features [13,14] have effectively worked;
the pre-trained (off-the-shelf) ConvNets produce state-of-the art performance
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 343–353, 2017.
https://doi.org/10.1007/978-3-319-70096-0_36
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on various datasets of even middle scale [10–12]. In the pre-trained ConvNets,
however, we can find some dependency on the characteristics of the training
dataset. As discussed in [10], the ConvNet pre-trained on ImageNet [5] works
well for tasks related to object classification (ImageNet task), but it degrades
performance on scene classification tasks which are far from the targets of Ima-
geNet, and vice versa [6]. Thus, for effectively applying those ConvNets as feature
extractors, it is required to carefully consider the type of target tasks in advance.

In this paper, we propose a method to improve generalization performance
of ConvNets. The proposed method allows the ConvNet to be trained on het-
erogeneous datasets (tasks) in an end-to-end manner, while it has been usually
learned on a single (homogeneous) dataset such as either of ImageNet [5] or
Places-365 [6]. Our approach is close to the hybrid method in [6] which trains a
single ConvNet on the union of those two datasets through simply concatenating
their label sets. In contrast to [6], the proposed method deals with the label sets
separately while sharing the network partially across heterogeneous datasets.
Thus, it can provide various models of different generality and specialty by con-
trolling the degree of the shared network components. Thereby, the method
produces the ConvNet improving performance on the task of the training target
as well as the one exhibiting better generalization performance with high trans-
ferability to (other) various tasks. The multitask learning (MTL) [15,16] is also
related to our work in that the network components are shared across several
datasets in training. The MTL, however, considers only the related (homoge-
neous) tasks, thereby deteriorating performance on heterogeneous ones. In this
work, we effectively treat the heterogeneous tasks by taking into account their
diversity in mini-batch construction. And, while it has not been clearly discussed
how many network components should be shared, we thoroughly investigate the
degree of the shared components in terms of classification performance. Further-
more, we also present an effective approach toward fine-tuning in our framework.

2 Sharing ConvNet

In [6,10], the generality or transferability of the ConvNets is improved by con-
catenating the ConvNets or the datasets. Let F indicate the ConvNet architec-
ture, e.g., AlexNet [1], with the parameters denoted by θ. Suppose we have D
datasets {Dd}Dd=1, e.g., {Dd}2d=1 = {ImageNet, Places-365}, each of which con-
tains pairs of image I and its class label y. The ConvNet is usually trained on
respective datasets by

⎧
⎨

⎩
min
θd

∑

(I,y)∈Dd

l[y,F(I;θd)]

⎫
⎬

⎭

D

d=1

⇔ min
{θd}D

d=1

D∑

d=1

∑

(I,y)∈Dd

l[y,F(I;θd)], (1)

where l indicates the cost function, usually cross-entropy classification loss, and
θd is the parameter set for the d-th dataset Dd. In (1), the ConvNet of the para-
meter θd is individually trained on the dataset Dd. Then, the neuron activations
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Fig. 1. ConvNet architectures of the proposed model using the AlexNet [1]. We show
the models of l = 0, 1, 7, 8 in (a,b,c,d), respectively. Note that the separate model of
l = 0 does not share any layers and are trained individually on the respective datasets,
while the hybrid one of l = 8 shares all the layers by using the concatenated label sets.
At convolution layers, the filter sizes are shown together with the number of output
channels. The colored frames shown next to the layers indicate samples in a mini-batch;
two colors indicate samples for ImageNet and Places-365, respectively. This figure is best
viewed in color.

at the intermediate layer, such as fc7, are employed as transferable features
and concatenated across the ConvNets {F(·;θd)}Dd=1 toward general image fea-
tures [10].

On the other hand, a single ConvNet equipped with the parameter θ0 can
be trained on the union of the datasets by concatenating {Dd}Dd=1 [6];

min
θ0

∑

(I,y)∈D1∪···∪DD

l[y,F(I;θ0)], (2)

where the label set is also enlarged in accordance with the dataset concatenation.
To merge label sets, it is necessary to consider the overlap or correlation among
the class categories, though in [6] the label sets of ImageNet and Places-365 are
simply concatenated into 1,365 class labels. The so-trained ConvNet F(·;θ0) can
be applied as a general feature extractor to both object and scene classifications,
which is referred to as the hybrid-ConvNet [6].

In this study, we present an intermediate model between the above-mentioned
extreme cases for partially sharing ConvNet (parameters) across datasets. The
parameter set θ of the L-layered ConvNet is decomposed into L subsets θl,
l = 1, · · · , L, each of which parameterizes each layer, and θ1:l denotes the set
aggregating the parameters from the first layer to the l-th layer. The hybrid-
ConvNet (2) shares all the parameters θ across the datasets (Fig. 1d), while in
(1) any ConvNet parameters are not shared but trained individually (Fig. 1a).
The proposed model shares a part of the parameter θ up to the l-the layer, θ1:l,
across the datasets, and the others are tailored for respective datasets as shown
in Fig. 1b, c. The common part in the ConvNet extracts general characteristics
shared across the datasets (tasks) and the remaining part is task-oriented. In
contrast to the hybrid model, our model easily accepts multiple datasets due to
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the task-oriented part without carefully considering the overlaps among the label
sets; this is practically useful to free us from manually checking label contents.
Through learning on various datasets of heterogeneous tasks, we can enhance
the generality of the shared ConvNet, which facilitates classifying both objects
(ImageNet) and scenes (Places-365), by extracting fundamental features shared
across them.

The proposed model that shares the first l layers is trained as follows.

min
θ1:l
0 ,{θ̂l+1:L

d }D
d=1

D∑

d=1

∑

(I,y)∈Dd

l[y,F(I;θd = {θ1:l
0 , θ̂l+1:L

d })], (3)

where θ1:l
0 indicates the shared parameters of up to the l-th layer and θ̂l+1:L

d

is the remaining parameter set which is specific to the d-th dataset. In other
words, the ConvNet of F(I;θd = {θ1:l

0 , θ̂l+1:L
d }) is trained on the d-th dataset.

Note that the shared parameter θ1:l
0 sees all the data while θ̂l+1:L

d only looks at
the data appearing in the d-th dataset Dd. The degree of sharing ConvNet is
controlled by the depth l at which the ConvNet branches (Fig. 1). This unified
method (3) produces the separate model (1) by l = 0 and the hybrid model (2)
by l = L. We conduct thorough experiments in Sect. 3 by gradually changing
the depth l.

To properly learn the ConvNet (3) on heterogeneous datasets, we introduce
the diversity into a mini-batch in training as follows. The same number of samples
are drawn from respective datasets and packed into a mini-batch in order to fairly
take into account the heterogeneous characteristics derived from the datasets
at each updating step; for example, we sample 256 images from ImageNet and
Places-365, respectively, and concatenate them to construct the mini-batch of
512 samples. Then, as shown in Fig. 1, each sample in the mini-batch is passed
through the network differently according to which dataset it belongs to, and at
the shared layers the derivatives for those (heterogeneous) samples are merged
to update the network parameters {θd}Dd=1 via mini-batched SGD. Thereby,
the updating (derivative) is consistent throughout the end-to-end learning even
on the heterogeneous datasets. In contrast, the MTL method [15] fills a mini-
batch with homogeneous samples all of which are drawn from the randomly
selected dataset. This produces consistent updates only when all the tasks are
related, i.e., the training datasets are homogeneous. In the case of heterogeneous
datasets, however, the derivatives are inconsistent over the training steps since
the characteristics of the mini-batches differ at every step according to what type
of dataset is selected. This would hamper the learning, as empirically shown in
Sect. 3. Note that our mini-batches merging derivatives across heterogeneous
samples contribute to proper learning of ConvNet by effectively extracting the
common updating information across the heterogeneous datasets.

3 Experimental Results

We apply the proposed method (Sect. 2) to the AlexNet model [1] which is com-
posed of the five convolution and three fully-connected layers (L = 8) as shown
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in Fig. 1; hereafter, we follow the conventional naming of the layers, such as
conv1 for the first convolution layer. Note that since the batch normalization [9]
is embedded in the ConvNet (Fig. 1), we do not apply DropOut [8]. All the
networks are implemented by using MatConvNet toolbox [17].

3.1 Datasets

In this study, we train the ConvNets (3) on two large-scale datasets of ImageNet [5]
for object classification and Places-365 [6] for scene classification. The ImageNet

contains 1,329,405 training images of 1,000 object classes (ILSVRC2014) and the
Places-365 is composed of 1,839,960 images sampled from 365 scene categories.
For the hybrid model (2), we simply concatenate those two label sets into 1,365
class labels as in [6].

3.2 Mini-batch

For separately training ConvNets (1) (or (3) of l = 0), we apply the mini-batch
of 256 samples on the respective datasets. On the other hand, as described
in Sect. 2, we draw 256 samples from ImageNet and Places-365, respectively, to
construct the (heterogeneous) mini-batch of 512 samples, in a fair manner with
the training of the separate model (1). Note that the mini-batch of 512 samples
is split into two mini-batches of 256 samples at the branch in our ConvNets (3),
as shown in Fig. 1. Since the two datasets contain different numbers of images,
i.e. ImageNet is smaller than Places-365, we pad ImageNet dataset with images
randomly picked up from that dataset so that it has the same number of images
as Places-365. Thereby, we can draw the same number of samples from those
datasets in constructing the heterogeneous mini-batch.

The mini-batch is filled with images of 224 × 224 pixels cropped from the
original ones with random flipping and jittering in terms of position and pixel
values as in [1].

3.3 Learning

The ConvNets are trained by SGD in 20 epochs through decreasing learning
rate constantly on log-scale from 10−1 to 10−4; the learning rate is determined
as 10− 16+3t

19 , t ∈ {1, · · · , 20} where t indicates the epoch. We use the learn-
ing parameter of 0.9 for momentum and 0.0005 for weight decay. This training
scheme is applied to any ConvNets.

3.4 Performance on ImageNet and Places Datasets

We evaluate performance on the datasets used for training. According to the
standard evaluation protocols in ImageNet [5] and Places-365 [6], we measured the
top-5 classification error rates on a validation set by applying 10-crop testing
procedure to test images [1]. In the hybrid model of (2) (or (3) with l = 8),
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the last fully-connected layer is split so as to produce 1,000 class outputs on
ImageNet and 365 on Places-365 after learning, which results in the same archi-
tecture as the model of l= 7. Note that the separate model (1) corresponds to
the original AlexNet model.

Figure 2 shows the performance results. Though the performances are slightly
fluctuated due to only 1-shot evaluation, we can see that (1) the proposed model
sharing a part of ConvNet improves performance being superior even to the
hybrid model [6], and (2) the models sharing smaller part exhibit better per-
formance; the best result is achieved by the model of l = 1. The hybrid model
of l = 8 merges (concatenates) the label sets of ImageNet and Places-365 by
force, and thus might take into account the label correlation wrongly, degrading
performance, compared especially to our model of l = 7. Our method enjoys
larger performance improvement on ImageNet than on Places-365 since the sam-
ples from Places-365 compensate the smaller-scale ImageNet by favorably exploit-
ing the common characteristics across them. In contrast, the MTL method1 [15]
does not contribute to improvement but degrade the performance. The compari-
son between ours and the MTL highlights the effectiveness of our heterogeneous
mini-batch construction for leveraging the heterogeneous datasets to improve
performance. The MTL switches a dataset to produce mini-batches at each SGD
step, leading to poor results especially as the shared components increases due
to inconsistently updating the network at training steps. On the other hand,
our approach makes the update consistent throughout the learning by merging
the derivatives at each step to exploit the effective update information which is
common across the heterogeneous samples. The heavily shared model of larger l
imposes the same feature extractor on these heterogeneous tasks, which slightly
deteriorates the performance compared to those of smaller l. Such shared model,
however, would contribute to a general feature extractor as described in the next
section.

3.5 Transferability

Next, we evaluate the transferability of the above pre-trained ConvNets by apply-
ing them to the other datasets than ImageNet and Places-365. The pre-trained
ConvNets are tested on various datasets which are categorized into four types
in terms of classification targets (Table 1); VOC2007 [18] and Caltech256 [19] for
object classification, Indoor67 [20], Scene15 [21] and SUN397 [22] for scene classifica-
tion, and Bird200 [23], Flower102 [24] and Pet37 [25] for fine-grained classification,
and Event8 [26], Action40 [27] and FMD [28] for the others.

The image features are extracted by applying the pre-trained Convnet in a
convolution manner to a rescaled image of which the minimum side has 256 pix-
els, and then are max-pooled over the image region. The neuron activations at the
intermediate layer are employed to produce holistic image feature vector of fixed

1 In training by the MTL method, for fair comparison, we use the same number of
samples as in ours by padding ImageNet dataset.
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Fig. 2. Classification error rate (%) on a validation set of ImageNet/Places-365. The
top-5 error rates are measured by applying 10-crop testing procedure [1]. The ConvNets
(3) are trained by the MTL approach [15] and ours.

Table 1. Details of the datasets used for evaluating transferability. This table shows
the number of training samples, test samples and class categories from the top row to
the bottom.

Object Scene

VOC2007 Caltech256 Indoor67 Scene15 SUN397

Training samples 5011 15360 5360 1500 19850

Test samples 4952 9984 1340 2985 19850

Categories 20 objects 256 objects 67 scenes 15 scenes 397 scenes

Fine-grained Others

Bird200 Flower102 Pet37 Event8 Action40 FMD

Training samples 5994 2040 3680 560 4000 500

Test samples 5794 6149 3669 480 5532 500

Categories 200 species 102 species 37 species 8 sports 40 actions 10 materials

dimensionality. As shown in Fig. 3, the ConvNet pre-trained on ImageNet/Places-
365 exhibits dependency on the types of the training datasets. For achieving
general features, as in [10], we exploit the layers of fc72 both on ImageNet and
Places-365 (see Fig. 1b) and concatenate them into the 8,192-dimensional feature
vector for the models of l = 0, · · · , 6. On the other hand, we concatenate fc6
and fc7 to produce 8,192-dimensional features for l = 7, 8 since the layers of
fc6 and fc7 are both shared in those models (see Fig. 1c, d). The features are
finally classified by linear SVM [29] and the classification accuracy is measured
according to the standard protocol provided in the respective datasets; on Cal-

tech256, we draw 60 training samples on each class, and for the details, refer to
the respective papers.

The performance results are shown in Table 2. By combining two type
of pre-trained ConvNets for objects (ImageNet) and scenes (Places-365), the

2 fc7 outperforms fc6 as shown in Fig. 3.
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ConvNet features exhibit favorable transferability on various kinds of tasks
including both object and scene classifications. The heavily shared models of
larger l are superior to those of smaller l, which contrasts to Table 2. By shar-
ing larger part of ConvNet across the heterogeneous datasets, the pre-trained
ConvNet achieves better generalization power by exploiting common (general)
features. Especially, the model of l = 7 produces favorable performance on the
tasks of fine-grained and others. Comparing l = 7 with l = 8 (hybrid), one can
see that splitting fc8 layer is more effective than concatenating label sets for
enhancing generalization performance.

We can conclude that (1) the less shared ConvNet of l = 1 is effective for
improving performance on the task of training target (Fig. 2), and (2) the heav-
ily shared ConvNet of l = 7 provides a general feature extractor with better
transferability (Table 2).

Table 2. Classification accuracies (%) by the pre-trained ConvNets on various datasets.

Dataset Separate l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 Hybrid l = 8

VOC2007 79.97 80.50 80.20 80.52 80.59 80.38 80.15 79.96 80.05

Caltech256 74.27 74.85 75.07 74.39 74.88 74.19 74.78 74.59 74.91

avg. (object) 77.12 77.67 77.64 77.46 77.73 77.29 77.46 77.28 77.48

Indoor67 74.82 75.56 76.53 76.19 75.40 75.84 75.77 75.38 75.56

Scene15 93.11 93.39 93.47 93.35 93.65 93.31 93.05 93.03 93.06

SUN397 60.63 61.13 61.32 61.05 61.19 60.48 60.13 59.22 59.01

avg. (scene) 76.19 76.69 77.11 76.86 76.75 76.54 76.32 75.88 75.88

Bird200 63.35 62.82 62.87 62.68 62.34 63.05 63.45 65.29 64.72

Flower102 90.07 90.18 90.79 90.36 90.22 90.32 91.01 90.20 90.60

Pet37 81.92 82.33 82.41 82.10 81.62 81.55 81.66 82.37 81.68

avg. (fine-grained) 78.44 78.44 78.69 78.38 78.06 78.31 78.71 79.29 79.00

Event8 96.04 95.90 96.04 95.97 96.32 96.11 96.60 96.32 96.11

Action40 62.60 64.21 64.05 64.37 64.70 63.69 63.34 64.67 63.61

FMD 72.85 73.27 73.62 72.19 73.73 73.65 75.13 74.37 72.40

avg. (others) 77.16 77.80 77.90 77.51 78.25 77.81 78.35 78.45 77.37

3.6 Fine-Tuning

Fine-tuning is employed to further adapt the pre-trained ConvNet to the target
dataset, though requiring tedious learning parameter tuning. We fine-tune the
pre-trained ConvNet by decreasing the learning rate from 10−3 to 10−6 over 40
epochs (10− 114+3t

39 , t ∈ {1, · · · , 40}), with the mini-batch of 128 samples. Note
that the ConvNet is initialized as the optimized parameter values in Sect. 3.4
except for the last fc8 layer which is randomly initialized.

Based on the results in Table 2, we apply the model of l = 7 to the tasks
other than object and scene classifications which are the targets in the pre-
training. The performance results are shown in Table 3. By fine-tuning the model,
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Fig. 3. Performance comparison for fc6,
fc7 in the model of l = 1 and fc7 in
ConvNets pre-trained on ImageNet/Places-
365. The fc7 features exhibit superior per-
formance to fc6, and ImageNet-ConvNet
works only on the ImageNet-related tasks,
excluding scene classification.

Table 3. Classification accuracies (%) of
fine-tuned ConvNet of l = 7 pre-trained on
both ImageNet and Places-365 in Sect. 3.4.

Original Fine-tuned

Fine-grained Bird200 65.29 65.59

Flower102 90.20 91.53

Pet37 82.37 80.24

Others Event8 96.32 96.60

Action40 64.67 65.00

FMD 74.37 76.56

Table 4. Classification accuracies (%) of
the pre-trained ConvNets of l = 7 which
is fine-tuned by our method. All the three
datasets are used in our fine-tuning.

Others

Event8 Action40 FMD
Original 96.32 64.67 74.37

Standard fine-tuning 96.60 65.00 76.56

Our fine-tuning 96.81 65.13 78.03
Fig. 4. Our model (3) of l = 7 fine-tuned
on others datasets. Three datasets, Event8,
Action40 and FMD, are treated at once.

the performance is favorably improved except for Pet37; the dataset contains
images of cats and dogs which are the classification targets in ImageNet, and
thus the fine-tuning might deteriorate the generalization power due to over-
fitting. In this case, the numbers of training samples in the datasets of others
task, especially Event8 and FMD, are small, which might make the training less
effective.

To cope with such small-scale problem, we again apply the proposed frame-
work (Fig. 1) to the fine-tuning. Namely, all three datasets of others task are
utilized at once for fine-tuning the ConvNet of l = 7 with a mini-batch of
384 = 128 × 3 samples as shown in Fig. 4. Table 4 shows the performance
results, demonstrating that our fine-tuning further improves performance even
compared to the ordinary fine-tuning. Especially, FMD benefits from our fine-
tuning since the dataset is quite small-scale containing only 500 training samples
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(Table 1). Through our fine-tuning, the ConvNet can see larger number of train-
ing samples and effectively exploit common characteristics across the multiple
datasets to improve performance on the small-scale dataset.

4 Conclusion

In this paper, we have proposed a method to train a ConvNet on heterogeneous
tasks (datasets) for improving performance. In the proposed method, the Con-
vNet layers are partially shared across the different datasets in the end-to-end
learning to enhance generalization power, while the remaining layers are tai-
lored to respective tasks (datasets). By controlling the degree of shared network
layers, the method provides various types of ConvNet of different generality.
To properly learn the ConvNet on the heterogeneous datasets, we construct
a mini-batch so as to fairly contain heterogeneous samples, producing consis-
tent updates (derivatives) throughout the training. The experimental results on
ImageNet and Places-365 datasets show that the ConvNet sharing less layers
favorably improves performance on those dataset, and that of heavily shared
layers exhibits better generalization performance with favorable transferability.
We have also demonstrated that the proposed method is applicable to fine-
tuning the ConvNet especially on small-scale datasets. Our future works include
to apply the method to various ConvNets.
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Abstract. This study presents an approach of using synthetically ren-
dered images for training deep neural networks on object detection.
A new plug-in for the computer graphics modelling software Blender
was developed that can generate large numbers of photo-realistic ray-
traced images and include meta information as training labels. The per-
formance of the deep neural network DetectNet is evaluated using train-
ing data comprising synthetically rendered images and digital photos
of drinking glasses. The detection accuracy is determined by comparing
bounding boxes using intersection over union technique. The detection
experiments using real-world and synthetic image data resulted in com-
parable results and the performance increased when using a pre-trained
GoogLeNet model. The experiments demonstrated that training deep
neural networks for object detection on synthetic data is effective and
the proposed approach can be useful for generating large labelled image
data sets to enhance the performance of deep neural networks on specific
object detection tasks.

Keywords: Deep learning · Data augmentation · Big data · Image
processing · Ray tracing · Object detection · Synthetic data generation

1 Introduction

Deep Learning has achieved excellent results in image classification, object detec-
tion and other computer vision and machine learning applications [1–4]. One
of the typical issues with deep learning is the requirement of large data sets
for training. Although there are various online databases containing millions of
images [5], it can be necessary for researchers to create new data sets to better
utilize the power of deep neural networks on specific tasks. However, generating
a new image data set and labelling it manually can be very time consuming.

Computer graphics techniques such as ray tracing [6] allow the generation
of photo-realistic images and in this process the computer can be employed
for labelling of those images. As deep neural networks are typically trained on
Graphical Processing Units (GPUs), these can also be used to render large quan-
tities of images efficiently.
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 354–363, 2017.
https://doi.org/10.1007/978-3-319-70096-0_37
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The present project utilised the Blender computer graphics modelling
software with customisable settings that allows users to design detailed 3-
dimensional scenes and objects [7]. A plug-in was developed to automate the
generation of variations in the scene during rendering and to combine these
with various environmental backgrounds. Due to the software having full access
to the scene data, automated labelling of the generated images can produce a
metadata file containing information such as the bounding box of the object,
the position of the object in the scene and the position of where the image was
taken. Although this approach allows the user to be removed from the processes
of collecting and manually labelling the data, it still requires the user to initially
create the scene.

In a related study Jaderberg et al. [8] presented a framework for the recogni-
tion of natural scene text using deep neural network models trained on synthetic
text data generated by their text generation engine. Peng et al. [9] used crowd
sourced 3D models to generate synthetic non-photorealistic images of objects for
bootstrapping deep convolutional neural networks. Rajpura et al. [10] demon-
strated that synthetic images generated with Blender can be used to create
highly competitive deep convolutional nets for identifying products in refrigera-
tor scenes. They also noted that photorealism may not be necessary to achieve
results that compete with networks trained with real images.

The present project, however, uses real drinking glasses and photo-realistic
models as the objects to detect. Due to the translucent nature of a drinking
glass and its reflective properties, this is a challenging task for detection and
also tests the performance of the 3D rendering tool. Traditional image processing
techniques were reported to fail in case of translucent or transparent objects and
research on their detection is typically restricted to controlled environments,
or uses special equipment such as Light Field Cameras [11], Time of Flight
Cameras [12], or X-Ray Tomography [13].

The following sections describe the use of the plug-in, demonstrate the via-
bility of the proposed approach of using computer-generated images of drinking
glasses for training neural networks. The performance on a new data set of sim-
ilar real-world images is evaluated for comparison.

2 Methodology and Experimental Setup

Two data sets were created, one containing images of real drinking glasses in
real-world environments captured using a digital camera, and the other data set
contained similar but synthetically rendered images. Both data sets were divided
into training, validation, and test images for training of DetectNet [14]. Detection
performance of our data was also evaluated using GoogLeNet [4] trained on
ImageNet [5] as a pre-trained network.

Training of the deep neural networks was performed on NVIDIA’s Deep
Learning GPU Training System (DIGITS) [15] using a workstation equipped
with a NVIDIA Quadro K2200 GPU. Each network model was trained for 30
epochs with base learning rate of 0.0001 and solver type Adam. Training and
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testing was divided into three broader categories corresponding to the training
and test data sets which are: (1.) training and testing on real-world images,
(2.) training and testing on synthetic images, and (3.) training on synthetic and
testing on real-world images.

2.1 Bounding Boxes and Detection Rate

The network output is a list of bounding box coordinates around the detected
object. For the comparison of the output with the target bounding box, we
are using Intersection over Union (IoU) [16]. This technique is commonly used
in object detection challenges such as the PASCAL VOC challenge [17]. The
number of successful detections in a test set is counted using IoU, where:

IoU =
area of overlap
area of union

The IoU value for each detected bounding box and its corresponding target box
is compared with a pre-set IoU value. If it is greater than that pre-set IoU bound
then it means that enough area of both bounding boxes overlap to count the
network-generated bounding box around the object as a valid object detection.

Fig. 1. Example IoU values of a detection where solid line box is the target bounding
box and dashed line box is the network output.

2.2 Real-World Image Data Collection

Images for the real-world data set were collected through three sources. The
main source for the real-world data set was a Canon EOS 60D digital camera.
Images of six different types of glasses in six surroundings were taken as follows:
on a white table, on a white table with black cloth on it, on a stool in living
room, on a kitchen shelf, on a brown table in living room, and on a red sofa.
The camera resolution was set to 5184 × 3456 pixels, sensitivity to ISO 1000,
zoom set to 20 mm and autofocus was turned on. The camera was placed on a
tripod and images were taken from different angles and under several different
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lighting conditions. Using the described approach, 1,728 images were captured
and manually labelled.

ImageNet is a very large online database of images involving hundreds of
objects [5]. The object list also contains drinking glasses under the containers
category. There are over a thousand images of drinking glasses available. Many
of these were not useful for our study due to glasses being not clearly visible,
occlusions, fluid in the glasses not being in the static state, and non-transparency
of the glass or cup. A manual selection was carried out to extract the images
suitable to be included in our data set. As a result, 387 images were selected con-
taining glasses in numerous different environments and under different lighting
conditions.

Google makes millions of images available from throughout the web [18]. A
careful selection was made of useful glass images and 289 of the examined images
were determined to be suitable to be included in our data set.

By collecting images from the three described sources, the total number of
labelled images in our real-world data set reached 2,404.

2.3 Synthetic Image Data Creation

To assist in the automated creation of large computer-generated data sets of
photo-realistic images, a plug-in for the 3D modelling software Blender was devel-
oped. This plug-in required minimal user interaction and has powerful features
that helped reducing the time it takes to produce the data set. Figure 2 shows
the workflow of using the plug-in with Blender. The workflow requires the user to
spend the most time in three sections: creating the scene, setting up the cameras
and configuring the render properties.

Fig. 2. Flow chart of the process of creating a scene and rendering it with the Deep
Learning Renderer plug-in for Blender.

Creating a scene for use with the deep learning renderer requires a simi-
lar process to the normal Blender scene creation. This allows for any Blender
knowledge to easily be transferable and used with the plug-in. The plug-in aims
to simplify tasks within Blender by removing complex tasks from the user by
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abstracting them into a more simpler task, such as using a file selector to nav-
igate to a directory in which all background images reside. By doing this, the
plug-in is able to then find all images in the directory and switch between the
backgrounds during the rendering to add variation to the scene background.

Objects in the scene can be tagged in two ways, a controllable object and a
surface object. These two tags allow the deep learning renderer to analyse the
scene and build up a required function list that will be used during each render
iteration. A controllable object tag is used to distinguish which object is the
main focus of the scene and the primary target of the computer vision system.
Multiple objects can be tagged as a controllable object to allow for different
positions or modifications to the object whilst only allowing one object to be
rendered at a time. The surface object tag allows for the user to distinguish
between different objects that contain the same position, but only one should be
rendered at a time. This allows for a variety in what the object is sitting upon
to produce different varieties in the environment.

To allow for a large collection of images to be rendered, the user is required
to insert Blender camera objects into the scene to act as key points in which a
camera can interpolate its position and rotation between the key points whilst
rendering the scene (Fig. 3a). This allows for the user to force the camera along a
particular path whilst also allowing additional unspecified images to be generated
during the camera interpolations.

(a) Blender scene with several cameras

(b) A synthetic image rendering of a
scene using only a glass and a HDRI
background

Fig. 3. Rendering an image from a Blender scene with the use of the plug-in.

For added realism and to reduce the scene creation time, high-dynamic-range
imaging (HDRI) [19] images were used to provide realistic backgrounds as well
as to leverage the use of rendering techniques such as Image Based Lighting
(IBL) [20]. The use of IBL allowed for the reduction in scene creation by removing
the requirement of lighting to be set up for the scene as well as allowing for
realistic lighting conditions to be used from the background HDRI. This allows
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for the user to point the plug-in into a folder of HDRI images to allow for
automated switching of background images without the user being required to
set up multiple scenes with correct lighting conditions.

During the rendering of the images, additional metadata is saved alongside
the images. The metadata is a collection of the data that is available from the
scene that may provide useful information for computer vision tasks such as the
bounding box of the object, what object is currently visible in the scene, the
object’s x, y and z position and the camera’s x, y and z position. By creating
the metadata alongside the rendering, a significant reduction in time required for
gathering the required data for the deep learning task can be seen compared to
a user manually creating the metadata during image capture or after all images
are gathered.

Two data sets were produced using this plug-in. The first data set included
six different 3D glass renders placed in 13 different HDR 360 degree background
images. Each of the six glasses was placed on a 3D rendered flat surface some-
where in the image so that it could be perceived that the glass is standing on
an object such as table, bench, floor, or shelf (Fig. 3b). The background and
table-like objects in this data set were substantially different from those in the
real-world images. The second synthetic data set was created based on a simple
description of the backgrounds and glasses in the real-world images with the
intention that the new synthetic images of the second synthetic data set would
look in principle similar to the images of the real-world data set (Fig. 4).

Fig. 4. A real-world image on the left and a similar-looking synthetically rendered
image on the right.

The first data set comprised a total 2,678 images rendered from various angles
in 13 different surroundings containing six glasses in several different positions
relative to the cameras. Additional two glass models were employed in second
data set to generate a total of 5,026 images with surfaces and backgrounds similar
to the real-world images.
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3 Results

3.1 Training and Testing on Real-World Data

2,404 real-world images were divided into 1600 training, 404 validation, and 400
test images. After training DetectNet [14] on this data, the number of detections
was counted on the test images for varying IoU bounds. The detections ranged
from 285 to 388 for IoU bounds between 0.9 and 0.5 with a best rate of 97% for
IoU ≥ 0.5. Repeating training on the same data but using GoogLeNet pre-trained
on the ImageNet increased the detection rate for IoU ≥ 0.5 to 99.5% (Fig. 5).

3.2 Training and Testing on Synthetically Rendered Data

2,678 synthetically rendered images were divided into 1800 training, 428 valida-
tion, and 450 test images. Training was conducted similarly to the real-world
case. Detections on the test set without any pre-trained network ranged from 31
for IoU ≥ 0.9 to 368 for IoU ≥ 0.5 with best detection rate 81.77%. Using the
pre-trained GoogLeNet increased the best detection rate to 94.88% for IoU ≥ 0.5.
The detection rate in this case was relatively low compared to Sect. 3.1 because
of having more surroundings and fewer images per surrounding compared to the
real-world data (Fig. 5).

3.3 Training on Synthetic and Testing on Real-World Data

In this category, networks were trained on the two synthetic data sets described
at the end of Sect. 2.3.

Case 1: Training was conducted on the first data set that comprised 2,678
synthetically rendered images that were very different from the real-world data.
These 2,678 images were divided into 1,900 training and 778 validation images.
The same 400 real-world images that were used in Sect. 3.1 were employed for
testing. The glass detection rate for the network of this case was only 8% for
IoU ≥ 0.5. It increased to 52.5% for IoU ≥ 0.5 when GoogLeNet pre-trained on
ImageNet was used.

Case 2: The second set of training experiments employed the same 2,678
images used by the network of Case 1, but in addition the training set included
2,500 randomly selected images from the second synthetically rendered data set
which comprised images more closely related to the real-world images (Sect. 2.3).
In total the training set of Case 2 consisted of 5,178 images that were divided
into 4,000 training and 1,178 validation images. Using the same test set as for
the first network, the glass detection rate of the second network was 52.8% for
IoU ≥ 0.5 and it further increased to 71.14% for IoU ≥ 0.5 with the use of
weights from GoogLeNet pre-trained on ImageNet. Training of these networks
was repeated 10 times for different samples of the 2,500 synthetic images. The
detection rates in dependency of increasing IoU bounds are shown in Fig. 5 under
the labels S-R and PTS-R only for the best networks of Case 2.
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Fig. 5. R-R means the network was trained and tested on real-world data. S-S refers
to training and testing on synthetic data. In the case of S-R the network was trained
on synthetic data but it was tested on the real world data test set. PT means weights
were initialised using a pre-trained GoogLeNet. IoU bounds close to 0.5 can still mean
good detection (see Fig. 1).

4 Discussion

Transparent drinking glasses are challenging objects to detect and to render. Due
to their transparency, the background in which they are placed highly influences
their appearance. Changing backgrounds would have significantly less effect on
training using images containing only opaque objects.

The training experiments conducted within the scope of this pilot study
triggered a number of interesting observations about how real-world data and
synthetic data can be combined and what impact this may have for deep learning.
At least three concepts can be distinguished that could be further investigated
in this context:

1. Data complementation: The existing data is complemented by other or miss-
ing data. For example, real-world data can be complemented by simulated
data. Both types of data are equally suitable for training as indicated by our
experiments. It would be interesting to investigate what impact different pro-
portions of complementary synthetic data components have on deep learning
and how to compose the validation set in combination with the training set
when only limited knowledge about the test data is available.

2. Data supplementation: Specific data is added to the training set in order to
improve performance. In our study the networks of Sect. 3.3 showed poor per-
formance only when they were trained on very different-looking synthetic data
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compared to the real-world data they were tested on (different backgrounds
and different glass models). However, the results improved from 8% detection
rate (Case 1) to 52% (Case 2) when the training set was supplemented by
additional synthetic data that was designed to artificially resemble some basic
features of the test data. This improvement in results highlights the fact that
synthetic images can be used to improve training of deep neural networks if
the supplemented images show general similarities to the test images.

3. Object augmentation: Artificial objects are rendered into an existing scene
and the resulting synthetic images can be used for training deep nets on
specific object detection. Computer graphics rendering and ray-tracing can
take lighting and reflections into account and allow even challenging objects
such as drinking glasses to be realistically augmented into a scene. The results
of the reported pilot experiments could probably be further improved if 360
degree background images would be used by the plug-in that were captured
at the same or similar-looking locations where the real-world test data was
collected.

The new Blender plug-in can be used to augment objects into scenes and sup-
plement smaller training sets by complementing them with large amounts of
synthetic data. The improvement in detection accuracy on real-world test data
by addition of similar-looking synthetic images to the training data reported in
Sect. 3.3 demonstrates that the plug-in is capable of producing synthetic data
that is sufficiently similar to the real-world data.

5 Conclusion

This collaboration of deep learning and computer graphics research proposed
and demonstrated an approach for the generation of synthetic data and train-
ing deep neural networks on that data. This can help researchers to use larger
more diverse pre-labelled data sets for training their networks on specific tasks,
without having to spend too much time on manually collecting and labelling of
images. Our trained networks showed comparable results on both real-world and
synthetic data sets. The detection rate increased in every case when GoogLeNet
trained on ImageNet was employed as a pre-trained network. The presented
pilot experiments also indicate that a suitable selection of synthetically ren-
dered training data can help to improve the detection rate on real-world image
data.
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Abstract. Various deep convolutional neural networks (CNNs) have
been applied in the task of medical image segmentation. A lot of CNNs
have been proved to get better performance than the traditional algo-
rithms. Deep residual network (ResNet) has drastically improved the
performance by a trainable deep structure. In this paper, we proposed
a new end-to-end network based on ResNet and U-Net. Our CNN effec-
tively combine the features from shallow and deep layers through multi-
path information confusion. In order to exploit global context features
and enlarge receptive field in deep layer without losing resolution, We
designed a new structure called pyramid dilated convolution. Different
from traditional networks of CNNs, our network replaces the pooling
layer with convolutional layer which can reduce information loss to some
extent. We also introduce the LeakyReLU instead of ReLU along the
downsampling path to increase the expressiveness of our model. Experi-
ment shows that our proposed method can successfully extract features
for medical image segmentation.

Keywords: Deep learning · Semantic image segmentation · Convolu-
tional neural network · Medical image · Ultrasound Nerve Segmentation

1 Introduction

It has been widely accepted that CNNs have an impressive performance in com-
puter vision tasks in recent years. CNNs have also been widely applied to the
field of medical image segmentation and gain great popularity.

Brebisson et al. [1] apply the CNNs for anatomical brain segmentation and
get good result. Zhang et al. [2] has designed deep convolutional neural networks
for segmenting isointense stage brain tissues using multi-modality MR images. Li
et al. [3] use the CNNs to learn the intrinsic image features of lung image patches.
However, a lot of methods were based on the sliding-window technique which
was proposed by Ciresan et al. [4]. This method could lead to storage overhead
and ineffectiveness if we process a high resolution image. This method would
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 364–372, 2017.
https://doi.org/10.1007/978-3-319-70096-0_38
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also lead to hierarchical global information loss. Long et al. [5] proposed Fully
Convolutional Networks (FCN), which is based on VGG-16 [6]. FCN is an end-
to-end network which can effectively solve the overstorage problem. It is widely
acknowledged that the deeper architecture would achieve better performance.
However, the training error rate in a deeper plain network would even be higher
because the gradient would disappear more easily in a deeper architecture. He
et al. [7] proposed deep residual network which makes the deep network training
possible and achieves compelling accuracy. Furthermore, the repeated pooling
layers and convolution strides in traditional CNNs would largely reduce receptive
filed which is quite important for dense prediction tasks. The deconvolution
process would not successfully recover the detail information which are lost in the
downsampling process. Fisher et al. [8] proposed dilated convolution, which can
effectively enlarge receptive field without losing resolution. It has been proved
to improve the performance in VGG-16 network and accelerate convergence.

In this paper, we propose a new network based on ResNet and U-Net [9]. It
can effectively combine the features from shallow and deep layers through multi-
path confusion. We design a new structure called pyramid dilated convolution,
which aims to exploit global context features with multi-scale. Furthermore, we
apply the LeakyReLU [10] instead of ReLU [11] at downsampling path to increase
the expressiveness of our model. Our network was applied to the Ultrasound
Nerve Segmentation task and achieved good result.

2 Methodology

2.1 Pyramid Dilated Res-U-Net

In this paper, we propose a new segmentation architecture named Pyramid
Dilated Res-U-Net. It is based on ResNet and U-Net with pyramid dilated convo-
lution unit. This network structure is illustrated in Fig. 1. We use the deformed
residual unit as shown in Fig. 2(b) to extract the feature map. We apply U-Net
structure to combine multi-path feature maps from intermediate and deep layers.
We refine the deep feature map from the 4th block of ResNet with multi-scale

Fig. 1. Pyramid Dilated Res-U-Net
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dilated convolution to fuse global context information. As for the first block of
ResNet, we apply filter size of 5 instead of 3. Output from fusion is upsampled
by bilinear interpolation with a factor of 2 to achieve an end-to-end training.

2.2 BN-LeakyReLU Residual Unit

The basic residual unit in ResNet is shown in Fig. 2(a). The following form
denotes the basic unit:

yk = F (xk;Wl) + h(xk) (1)

xk+1 = f(yk) (2)

where xk and xk+1 represent the input and output of the k-th unit, and h is
an identity mapping function, F is a residual function and f represents acti-
vation function. He et al. [12] proposed that pre-activation of the weight lay-
ers (Fig. 2(b)) would be much easier to train and generalize better than post-
activation structure (Fig. 2(a)). According to [12], we can use the chain rule of
backpropagation [13] to get the following form:

Fig. 2. Basic residual unit (a) and deformed residual unit (b).
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where ε denotes the loss function, xk denotes the feature of k-th layer and
xK denotes the feature of K-th layer. This structure could propagate informa-
tion directly and through weight layers. Therefore, we implement this technique
into our Network (Fig. 2(b)). As for the first block, we use a filter size of 5
instead of 3 in order to get a better basic feature map. The activation function
is LeakyReLU instead of ReLU. LeakyReLU is denoted as the following form.

f(x) =

{
αx if(x < 0)
x if(x > 0)

(4)



Image Segmentation with Pyramid Dilated Convolution 367

It allows a small, non-zero gradient when the unit is not active. So it would
enlarge the expressiveness of our network to some extent.

2.3 Pyramid Dilated Convolution Unit

Fisher et al. [8] proposed dilated convolution which can exponentially enlarge
receptive field without losing resolution. It is widely known that the receptive
field affects the extent to which we exploit the context information. The context
information is of great importance for accurate segmentation. However, Zhou et
al. [14] presents that the actual receptive field of CNNs in deep layer is much
smaller than the theoretical calculation.

Fig. 3. Given an input feature map, we separately use dilated convolution with different
factors to extract information. The corresponding three extracted feature maps are then
concatenated with the input feature map to get the output.

We address this issue by designing a new structure, called Pyramid Dilated
Convolution Unit shown in Fig. 3. We apply dilated convolution with 2, 4, 8
factors at the 4th block of ResNet to refine the feature map. It can effectively
extract global context information through multi-scale dilated convolution. This
unit could also enlarge receptive field without losing resolution.

The refined feature maps of different factors generated by dilated convolu-
tion are finally concatenated together with input image. Through concatenation
operation, we can combine the raw feature information and the information in
hierarchical structure. Then the fused feature map is fed to upsampling process.
Experiment results show that the Pyramid Dilated Convolution Unit can suc-
cessfully refine feature map with global context information.
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2.4 Multi-path Fusion

As we know the feature map in the deep layer is usually of small size and it would
lead to drastically information loss if we upsample directly. The low-level features
embedded in intermediate layers are very necessary for accurate high resolution
segmentation. In our network, we implement the U-Net-like structure to deal
with multi-path fusion. Therefore, the shallow layer information and deep layer
information together make the final segmentation more reliable. Specifically,
feature map from the 5th block of ResNet is fed to the ReLU-Conv Unit (Fig. 4).
This unit could be used to fine tune the weights effectively. The output of it is
upsampled by bilinear interpolation and then concatenates the feature map from
4th block. In this way, we get fused output of half the input image size.

Fig. 4. ReLU Conv Unit

3 Experiments

Our proposed method is applied on the segmentation problem of medical image.
The method is evaluated in the Ultrasound Nerve Segmentaiton datasets and it
achieves good result.

3.1 Implementation Details

Our network is based on top of keras with the backend of tensorflow. We imple-
ment data augmentation method to generate more training data. Specifically, we
adopt small rotation, translation, random resize and random mirror. Inspired
by [9], we use the “Adam” gradient descent optimizer with 0.00002 learning
rate. For the training process, we assume that “batchsize” is of great impor-
tance because it affects the stability of the gradient and batch normalization [15].
However, we set the “batchsize” to 12 during training because of limitation of
physical memory on GPU.

3.2 Ultrasound Nerve Segmentation

Ultrasound Nerve Segmentation task is required to identify nerve structures
called the Brachial plexus in ultrasound images. This help inserting a patient’s
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Table 1. As for the network, baseline is ResNet54 (with ReLU and Pyramid Dilated
Convolution). In our test, α = 0.2 yields the best corresponding this network structure.

Parameter α Dice coefficient(%)

ResNet54 (without LeakyRelU) 64.21

ResNet54 (with α = 0.1) 67.12

ResNet54 (with α = 0.2) 69.15

ResNet54 (with α = 0.3) 65.26

ResNet54 (with α = 0.4) 63.17

pain management catheter. The dataset are consisted of grayscale images with
the corresponding binary masks. However, the dataset contains quite a lot con-
tradictory images, therefore we pre-process the images and keep 4102 training
images out of the 5500 in the end. The original images have a size of 580× 420,
we resize the images into 160× 128 since the images are quite noisy and limita-
tion of our memory resources. For the evaluation part, we use dice coefficient as
a loss and also try binary cross-entropy. The two methods get roughly the same
result.

To evaluate our network, we conduct experiments with several different set-
tings. As for downsampling, we do experiment with pooling downsampling and
convolution downsampling. We try different alpha of LeakyReLU in the down-
sampling process (Table 1).

Table 2. Deeper structure could yield better performance. However, deep network
would be harder to train and occupy more resources. So in our experiment, we choose
to use the ResNet54. PDC means Pyramid Dilated Convolution Unit.

Depth of ResNet Dice coefficient(%)

ResNet34+PDC 68.52

ResNet54+PDC 69.15

ResNet72+PDC 69.31

ResNet101+PDC 69.39

It is widely known that deeper neutral networks could yield better segmen-
tation accuracy, however the deep architecture could result in astounding cost
of training time and GPU resources. We conduct experiments for various depths
of deformed ResNet of 34,54,72,101 as shown in Table 2. We try different filter
size to extract features of first block. We find that filter size of 5 could yield a
better result than 3 and 7 in our problem.

We also compare Dilated Res-U-Net with other architectures (Table 3).
Figure 5 presents the segmentation results of ultrasound nerve images with
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Table 3. In this table, fs means filter size of the first block of ResNet. All experiments
are on the preprocessed dataset and the U-Net experiment is based on the original
dataset.

Method Dice coefficient(%)

ResNet54+PDC+fs3 69.01

ResNet54+PDC+fs5(Ours) 69.15

ResNet54+PDC+fs7 69.11

ResNet54+PDC+pooling 68.73

ResNet54(fs3) 64.52

U-Net(without prepocess) 56.00

Fig. 5. Samples of ultrasound nerve segmentation with different CNNs. From left
to right: (a) Input image, (b) U-Net, (c) Dilated-Res-U-Net, (d) Dilated-Res-U-
Net(without PDC). PDC means Pyramid Dilated Convolution Unit

different CNNs. U-Net is restored following the link https://github.com/
jocicmarko/ultrasound -nerve-segmentation. Figure 5 shows that Dilated-Res-
U-Net could get a more complete structure than the network without Pyramid
Dilated Convolution Unit. Table 3 demonstrates that this structure could effec-
tively improve the accuracy by 4.6%. Therefore, the Pyramid Dilated Convolu-
tion Unit can successfully refine feature map with global context information.

4 Conclusions

In this paper, we have proposed an effective semantic segmentation network
based on ResNet and U-net. We have developed a new structure Pyramid

https://github.com/jocicmarko/ultrasound
https://github.com/jocicmarko/ultrasound
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Dilated Convolution Unit for exploitation of global context information. This
unit also enlarges the receptive field without losing resolution. We also intro-
duce LeakyReLU in the downsampling process instead of ReLU. We designed a
structure without pooling operation and conduct experiment of different filter
size in the extraction of basic features. Experiment results on Ultrasound Nerve
Segmentation dataset show that our proposed method could effectively extract
features in medical image for segmentation.

Acknowledgments. This research is partly supported by NSFC (No: 61375048).
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Abstract. Deep clustering utilizes deep neural networks to learn fea-
ture representation that is suitable for clustering tasks. Though demon-
strating promising performance in various applications, we observe that
existing deep clustering algorithms either do not well take advantage of
convolutional neural networks or do not considerably preserve the local
structure of data generating distribution in the learned feature space.
To address this issue, we propose a deep convolutional embedded clus-
tering algorithm in this paper. Specifically, we develop a convolutional
autoencoders structure to learn embedded features in an end-to-end way.
Then, a clustering oriented loss is directly built on embedded features
to jointly perform feature refinement and cluster assignment. To avoid
feature space being distorted by the clustering loss, we keep the decoder
remained which can preserve local structure of data in feature space. In
sum, we simultaneously minimize the reconstruction loss of convolutional
autoencoders and the clustering loss. The resultant optimization prob-
lem can be effectively solved by mini-batch stochastic gradient descent
and back-propagation. Experiments on benchmark datasets empirically
validate the power of convolutional autoencoders for feature learning and
the effectiveness of local structure preservation.

Keywords: Deep clustering · Convolutional autoencoders · Convolu-
tional neural networks · Unsupervised learning

1 Introduction

Given a large collection of unlabeled images represented by raw pixels, how to
divide them into K groups in terms of inherent latent semantics? The traditional
way is first extracting feature vectors according to domain-specific knowledges
and then employing clustering algorithm on the extracted features. Thanks to
deep learning approaches, some work successfully combines feature learning and
clustering into a unified framework which can directly cluster original images
with even higher performance. We refer to this new category of clustering algo-
rithms as Deep Clustering.
c© Springer International Publishing AG 2017
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Some researches have been conducted, but what are the critical ingredients
for deep clustering still remains unclear. For example, what types of neural
networks are proper for feature extraction? How to provide guidance information
i.e. to define clustering oriented loss function? Which properties of data should
be preserved in feature space? In this paper, we focus on the first and third
questions and conclude that Convolutional AutoEncoders (CAE) and locality
property are two of key ingredients for deep clustering algorithms.

The most widely used neural networks in deep clustering algorithms are
Stacked AutoEncoders (SAE) [12,13,16,18]. The SAE requires layer-wise pre-
training before being finetuned in an end-to-end manner. When the layers go
deeper, the pretraining procedure can be tedious and time-consuming. Further-
more, SAE is built with fully connected layers, which are ineffective for dealing
with images. The work in [8] is the first trial to train CAE directly in an end-
to-end manner without pretraining.

In terms of properties of data to preserve in feature space, the primitive
work considers sparsity or graph constraints by adding prior knowledges to the
objective [13,15]. They are two-stage algorithms: feature learning and then clus-
tering. Latter, algorithms that jointly accomplish feature learning and clustering
come into being [16,19]. The Deep Embedded Clustering (DEC) [16] algorithm
defines an effective objective in a self-learning manner. The defined clustering
loss is used to update parameters of transforming network and cluster centers
simultaneously. However, they ignore the preservation of data properties, which
may lead to the corruption of feature space. We improve DEC algorithm by
preserving local structure of data generating distribution and by incorporating
convolutional layers.

Our key idea is that CAE is beneficial to learning features for images and
preserving local structure of data avoids distortion of feature space. The contri-
butions are:

– A Convolutional AutoEncoders (CAE) that can be trained in end-to-end
manner is designed for learning features from unlabeled images. The designed
CAE is superior to stacked autoencoders by incorporating spacial relation-
ships between pixels in images. We show that convolutional layer, convolu-
tional transpose layer and fully connected layer are sufficient for constructing
an effective CAE.

– The local structure preservation is considered during tuning network para-
meters according to clustering oriented loss function. We demonstrate that
preserving local structure helps stabilize the training procedure and avoid the
corruption of feature space.

– We propose the Deep Convolutional Embedded Clustering (DCEC) algo-
rithm to automatically cluster images. The DCEC takes advantages of CAE
and local structure preservation. And the resulting optimization problem
can be efficiently solved by mini-batch stochastic gradient descent and back-
propagation.

– Extensive experiments are conducted on benchmark image datasets. The
results validate the effectiveness of CAE and local structure preservation.
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2 Convolutional AutoEncoders

A conventional autoencoder is generally composed of two layers, corresponding
to encoder fW (·) and decoder gU (·) respectively. It aims to find a code for each
input sample by minimizing the mean squared errors (MSE) between its input
and output over all samples, i.e.

min
W,U

1
n

n∑

i=1

‖gU (fW (xi)) − xi‖22 (1)

For fully connected autoencoder,

fW (x) = σ(Wx) ≡ h

gU (h) = σ(Uh) (2)

where x and h are vectors, and σ is activation function like ReLU, sigmoid. Note
that the bias is omitted for convenient description. After training, the embedded
code h serves as the new representation of input sample. Then h can be fed
into another autoencoder to form Stacked AutoEncoders (SAE). To exploit the
spacial structure of images, convolutional autoencoder is defined as

fW (x) = σ(x ∗ W ) ≡ h

gU (h) = σ(h ∗ U) (3)

where x and h are matrices or tensors, and “∗” is convolution operator. The
Stacked Convolutional AutoEncoders (SCAE) [10] can be constructed in a sim-
ilar way as SAE.

We propose a new Convolutional AutoEncoders (CAE) that does not need
tedious layer-wise pretraining, as shown in Fig. 1. First, some convolutional layers
are stacked on the input images to extract hierarchical features. Then flatten
all units in the last convolutional layer to form a vector, followed by a fully
connected layer with only 10 units which is called embedded layer. The input
2D image is thus transformed into 10 dimensional feature space. To train it in
the unsupervised manner, we use a fully connected layer and some convolutional
transpose layers to transform embedded feature back to original image. The
parameters of encoder h = Fω(x) and decoder x′ = Gω′(h) are updated by
minimizing the reconstruction error:

Lr =
1
n

n∑

i=1

‖Gω′(Fω(xi)) − xi‖22 (4)

where n is the number of images in dataset, xi ∈ R
2 is the ith image.

The key factor of the proposed CAE is the aggressive constraint on the
dimension of embedded layer. If the embedded layer is large enough, the network
may be able to copy its input to output, leading to learning useless features. The
intuitive way of avoiding identity mapping is to control the dimension of latent
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Fig. 1. The structure of proposed Convolutional AutoEncoders (CAE) for MNIST. In
the middle there is a fully connected autoencoder whose embedded layer is composed
of only 10 neurons. The rest are convolutional layers and convolutional transpose layers
(some work refers to as Deconvolutional layer). The network can be trained directly in
an end-to-end manner.

code h lower than input data x. Learning such under-complete representations
forces the autoencoder to capture the most salient features of the data. Thus
we force the dimension of embedded space to equal to the number of clusters of
dataset. In this way, the network can be trained directly in an end-to-end manner
even without any regularizations like Dropout [14] or Batch Normalization [5].
The learned compact representations are proved effective for clustering task.

Another factor is that we utilize convolutional layer with stride instead of
convolutional layer followed by pooling layer in the encoder, and convolutional
transpose layer with stride in the decoder. Because the convolutional (transpose)
layers with stride allow the network to learn spacial subsampling (upsampling)
from data, leading to higher capability of transformation.

Note that we do not aim at the state-of-the-art clustering performance,
so we do not adopt fancy layers or techniques like BatchNormalization layer,
LeakyReLu activation or layer-wise pretraining. We only show the CAE is supe-
rior to fully connected SAE in image clustering task.

3 Deep Convolutional Embedded Clustering

As introduced in Sect. 2, the CAE is a more powerful network for dealing with
images compared with fully connected SAE. So we extend Deep Embedded Clus-
tering (DEC) [16] by replacing SAE with CAE. Then we argue that the embed-
ded feature space in DEC may be distorted by only using clustering oriented
loss. To this end, the reconstruction loss of autoencoders is added to the objec-
tive and optimized along with clustering loss simultaneously. The autoencoders
will preserve the local structure of data generating distribution, avoiding the
corruption of feature space. The resulting algorithm is termed as Deep Convolu-
tional Embedded Clustering (DCEC). In the following sections, we first give the



Deep Clustering with Convolutional Autoencoders 377

structure of DCEC, then introduce the clustering loss and local structure preser-
vation mechanism in detail. At last, the optimization procedure is provided.

3.1 Structure of Deep Convolutional Embedded Clustering

The DCEC structure is composed of CAE (see Fig. 1) and a clustering layer
which is connected to the embedded layer of CAE, as depicted in Fig. 2. The
clustering layer maps each embedded point zi of input image xi into a soft
label. Then the clustering loss Lc is defined as Kullback-Leibler divergence (KL
divergence) between the distribution of soft labels and the predefined target
distribution. CAE is used to learn embedded features and the clustering loss
guides the embedded features to be prone to forming clusters.

The objective of DCEC is

L = Lr + γLc (5)

where Lr and Lc are reconstruction loss and clustering loss respectively, and
γ > 0 is a coefficient that controls the degree of distorting embedded space.
When γ = 1 and Lr ≡ 0, (5) reduces to the objective of DEC [16].

Fig. 2. The structure of deep convolutional embedded clustering (DCEC). It is com-
posed of a convolutional autoencoders and a clustering layer connected to embedded
layer of autoencoders.

3.2 Clustering Layer and Clustering Loss

The clustering layer and loss are directly borrowed from DEC [16]. We briefly
review their definitions for completeness of DCEC structure.

The clustering layer maintains cluster centers {μj}K
1 as trainable weights and

maps each embedded point zi into soft label qi by Student’s t-distribution [9]:

qij =
(1 + ‖zi − μj‖2)−1

∑
j(1 + ‖zi − μj‖2)−1

(6)
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where qij is the jth entry of qi, representing the probability of zi belonging to
cluster j.

The clustering loss is defined as

Lc = KL(P‖Q) =
∑

i

∑

j

pij log
pij

qij
(7)

where P is the target distribution, defined as

pij =
q2ij/

∑
i qij∑

j

(
q2ij/

∑
i qij

) (8)

3.3 Reconstruction Loss for Local Structure Preservation

DEC [16] abandons the decoder and finetunes the encoder using clustering loss
Lc. However, we suppose that this kind of finetuning could distort the embedded
space, weaken the representativeness of embedded features and thereby hurt
clustering performance. Therefore, we propose to keep the decoder untouched
and directly attach the clustering loss to embedded layer.

As shown in [13] and [4], autoencoders can preserve local structure of data
generating distribution. Under this condition, manipulating embedded space
slightly using clustering loss Lc will not cause corruption. So the coefficient γ is
better to be less than 1, which will be empirically fixed to 0.1 for all experiments.

3.4 Optimization

We first pretrain the parameters of CAE by setting γ = 0 to get meaningful
target distribution. After pretraining, the cluster centers are initialized by per-
forming k-means on embedded features of all images. Then set γ = 0.1 and
update CAE’s weights, cluster centers and target distribution P as follows.

Update autoencoders’ weights and cluster centers. As ∂Lc

∂zi
and ∂Lc

∂μj
are

easily derived according to [16], then the weights and centers can be updated by
using backpropagation and mini-batch SGD straightforwardly.

Update target distribution. The target distribution P serves as ground truth
soft label but also depends on predicted soft label. Therefore, to avoid instability,
P should not be updated at each iteration using only a batch of data. In practice,
we update target distribution using all embedded points every T iterations. See
(6) and (8) for the update rules.

The training process terminates if the change of label assignments between
two consecutive updates for target distribution is less than a threshold δ.

4 Experiment

4.1 DataSets

The proposed DCEC method is evaluated on three image datasets: MNIST-
full: The MNIST dataset [7] consists of total 70000 handwritten digits of
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28× 28 pixels. MNIST-test: The test set of MNIST, containing 10000 images.
USPS: The USPS dataset contains 9298 gray-scale handwritten digit images
with size of 16 × 16 pixels.

4.2 Experiment Setup

Comparing methods. We demonstrate the effectiveness of our DCEC algo-
rithm mainly by comparing with DEC [16]. The two-stage deep clustering algo-
rithm is denoted as SAE+k-means (or CAE+k-means), i.e. performing k-
means on embedded features of pretrained SAE (or CAE). IDEC [17] denotes
the algorithm that adds reconstruction loss Lr to DEC’s objective. DEC-conv
is the structure that directly replaces SAE in DEC with CAE but without Lr.
DCEC is the proposed structure, which adds both Lr and convolutional lay-
ers to DEC. For the sake of completeness, two traditional and classic clustering
algorithms, k-means and Spectral Embedded Clustering (SEC) [11], are also
included in comparison.

Parameters setting. For SAE+k-means, DEC [16] and IDEC [17], the encoder
network is set as a fully connected multilayer perceptron (MLP) with dimen-
sions d-500-500-2000-10 for all datasets, where d is the dimension of input data
(features). And the decoder network is a mirror of encoder, i.e. a MLP with
dimensions 10-2000-500-500-d. Except for input, output and embedding layers,
all internal layers are activated by ReLU nonlinearity function [3]. The SAE is
pretrained end-to-end for 400 epochs using SGD with learning rate 0.01 and
momentum 0.9.

For CAE+k-means, DEC-conv and DECE, the encoder network structure is
conv5

32 → conv5
64 → conv3

128 → FC10 where convk
n denotes a convolutional layer

with n filters, kernel size of k × k and stride length 2 as default. The decoder
is a mirror of encoder. The CAE is pretrained end-to-end for 200 epochs using
Adam [6] with default parameters. The convergence threshold is set to δ = 0.1%.
And the update intervals T = 140. Our implementation is based on Python and
Keras [2] and the code is available at https://github.com/XifengGuo/DCEC.

Evaluation Metric. All clustering methods are evaluated by clustering accu-
racy (ACC).

4.3 Results

The clustering results are shown in Table 1. Our DCEC algorithm outperforms
all opponents in terms of clustering accuracy on all datasets.

Advantage of CAE. SAE+k-means, DEC and DEC-reco share the same pre-
trained SAE network structure and weights. As a counterpart, CAE+k-means,
DEC-conv and DCEC use the same CAE structure and weights. By comparing
each pair of equivalents (like DEC-reco and DCEC), we see that methods using
CAE outperform their counterparts that use SAE by a large margin. Notice that,
At pretraining stage, CAE is trained for 200 epochs while SAE for 400 epochs.

https://github.com/XifengGuo/DCEC
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Table 1. Comparison of clustering performance in terms of accuracy (%). The results
of DEC† is obtained by using the code published by authors.

Methods MNIST-full MNIST-test USPS

k-means 53.24 54.72 66.82

SEC [11] 80.37 N/A N/A

DEC† [16] 86.55 82.36 73.68

SAE+k-means 78.17 66.81 61.65

DEC 84.08 69.94 69.28

DEC-reco 84.21 71.45 72.10

CAE+k-means 84.90 79.00 74.15

DEC-conv 88.63 84.83 77.90

DCEC 88.97 85.29 79.00

And at clustering stage, methods with CAE converge much faster than SAE
counterparts. This demonstrates that CAE is superior to SAE in image cluster-
ing task.

Local structure preservation. We can see the effect of adding reconstruction
loss by comparing DEC and DEC-reco (or DEC-conv and DCEC). The cluster-
ing accuracies of DEC-reco are higher than that of DEC. And the same is true
for DEC-conv and DCEC. We assume that this superiority is due to the fact that
autoencoders can preserve local structure of data by minimizing the reconstruc-
tion loss. We validate this property by visualizing the embedded features. The
t-SNE [9] visualization on a random subset of MNIST-full with 1000 samples is
shown in Fig. 3. For DCEC, the “shape” of each cluster is almost maintained
compared with pretrained CAE. Furthermore, when you focus on clusters colored
by red and blue (digits 4 and 9), in DCEC they are still somehow separable but
totally distinguishable in DEC-conv. It can be concluded that the autoencoder
can preserve the intrinsic structure of data generating distribution and hence
help clustering loss to manipulate the embedded feature space appropriately.

5 Related Work

Existing deep clustering algorithms broadly fall into two categories: (i) two-
stage work that applies clustering after having learned a representation, and (ii)
approaches that jointly optimize the feature learning and clustering.

The former category of algorithms directly take advantage of existing unsu-
pervised deep learning frameworks and techniques. For example, [1,13,15] use
autoencoder to learn low dimensional features of original graph or data sam-
ples, and then runs conventional clustering algorithm like k-means and non-
parametric maximum-margin clustering on learned representations.

The other category of algorithms try to explicitly define a clustering loss, sim-
ulating classification error in supervised deep learning. [19] proposes a recurrent
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Fig. 3. Visualization of clustering results on subset of MNIST-full. Different colors
mark different clusters. The data structure in DCEC is preserved better than DEC-
conv. Note points with red and blue colors, they are totally mixed together in DEC-conv
while still somehow separable in our DCEC.

framework, which integrates feature learning and clustering into a single model
with a unified weighted triplet loss and optimizes it end-to-end. DEC [16] learns
a mapping from the observed space to a low-dimensional latent space with SAE,
which can obtain feature representations and cluster assignments simultaneously.
DBC [8] improves DEC by replacing SAE with CAE.

The proposed DCEC falls into the second category. It excels [19] by simplicity
without recurrent and outperforms DEC in terms of clustering accuracy and
feature’s representativeness. DBC [8] studied the CAE but still neglected the
local structure preservation problem. Our DCEC takes care of both convolutional
networks and local structure preservation.

6 Conclusion

This paper proposes a Deep Convolutional Embedded Clustering (DCEC) algo-
rithm to take advantage of both convolutional neural networks and local struc-
ture preservation mechanism. DCEC is a framework that jointly learns deep rep-
resentations of images and performs clustering. It learns good features with local
structure preserved by using Convolutional AutoEncoders (CAE) and manipu-
lates feature space by incorporating a clustering oriented loss. The experiment
empirically demonstrates the effectiveness of DCEC on image clustering task
and validates that both convolutional networks and local structure preservation
mechanism are vital to deep clustering for images.
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Abstract. In this paper, we propose an incremental deep learning net-
work for on-line unsupervised feature extraction. This deep learning net-
work is based on 3 data processing components: (1) cascaded incremental
orthogonal component analysis network (IOCANet); (2) binary hashing;
and (3) blockwise histograms. In this architecture, IOCANet can process
online data and get filters to do convolutions. Binary hashing is used to
enhance the nonlinearity of IOCANet and reduce the quantity of the
data. Eventually, the data is encoded by blockwise histograms. Experi-
ments demonstrate that the proposed architecture has potential results
for on-line unsupervised feature extraction.

Keywords: Deep learning · On-line unsupervised feature extraction

1 Introduction

Computer vision is an interdisciplinary field that deals with how computers can
be made to gain high-level understanding from digital images or videos. Many
significant fields such as artificial intelligence, neurobiology are closely related to
computer vision. However, similar images may have different lighting conditions,
misalignment, non-rigid deformations, occlusion and corruptions, which brings
great difficulties to computer vision. Hence, scientists want to extract features
from images to overcome the intra-class variability. Representative examples are
Gabor features and local binary patterns (LBP) for texture and face classification
and SIFT and HOG features for object recognition [3]. These artificial features
have achieved great success in corresponding tasks. However, these features can
not be adapted to the new conditions.

Deep neural networks (DNNs) are proposed to overcome the weakness of
hand-crafted features. The main idea of DNNs is that higher level features can
represent more abstract semantics of the data, which means that the intra-
class variability will only have little affect upon the features. Therefore these
features can achieve great results on image classification. One key ingredient to
the success of deep learning in image classification is the use of convolutional
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 383–392, 2017.
https://doi.org/10.1007/978-3-319-70096-0_40
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architectures [1], which is called ConvNet. A convolution operation on small
regions of input is introduced to reduce the number of free parameters and
improve generalization. One major advantage of convolutional networks is the
use of shared weight in convolutional layers, which means that the same filters
(weights bank) are used for each pixel in the layer; this both reduce memory
footprint and improve performance [4].

Although ConvNet has achieved great success in different vision tasks, it still
can not process the online and incremental data. Besides, although ConvNet
adopts convolution operation to reduce the number of parameters, it still needs
to train a mass of parameters, which takes a lot of time and computing resources.

The initial motivation of our study is to resolve the problem that current deep
learning has no way to process online incremental data, which means that if new
data comes, our only way is to train all the data again. This would waste a lot
of computing resources. What’s more, we want to design a simple deep learning
network. This network does not need to train a large amount of parameters.

Hence, we propose an Online Incremental Orthogonal Component Analysis
Network (IOCANet). The core of our method is to use online incremental orthog-
onal component analysis method to generate the convolution kernels. After that,
like ConvNet, we will do convolution operation to extract features. However, dif-
ferent from ConvNet, IOCANet is simple, but efficient and effective. Compared
with ConvNet, it has lower time complexity and both mass data and small
amount of data are suitable for IOCANet.

2 Related Work

In recent years, incremental learning has attracted great attention due to the
increasing demand for systems have the ability of learning and evolving. When
new data is input, incremental learning methods updated the learned model
without recalculating the whole model repeatedly. Obviously, these methods
enjoy a great advantage: their computational and storage cost is greatly reduced
while the performance is improved [2].

Hence, we propose online incremental orthogonal component analysis (IOCA)
to deal with incremental learning problem. And in IOCANet, IOCA algorithm
is used to generate the convolution kernels (filters), which are the basis in the
feature subspace of IOCA. The main principle of IOCA is “entities should not
be multiplied unnecessarily”. As is shown in Fig. 1 and we give the detailed
incremental orthogonal component analysis algorithm in Algorithm 1. In the
beginning, feature subspace S is initialized as a zero-dimensional space. Suppose
when the t-th data xt is input, b1, b2, ..., bk are the k basis vectors have been
learned, IOCA tries to update S by extracting candidate basis vectors bk+1 from
xt and outputs xt

′s low-dimensional representation yt. Then, IOCA continues
to process the t+1th data until there is no new data.
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Fig. 1. S is the feature subspace. Input vector x is projected onto S and its com-
plemented subspace S⊥. ||r||2 measures the linear dependence between x and S. The
adaptive threshold T is represented by the red line. (2a) If ||r||2 is larger than T, (3a)
IOCA will extract a new base vector and enlarge S. (2b) Otherwise, (3b) no new base
vector will be extracted and S remains unchanged.

Algorithm 1. Incremental Orthogonal Component Analysis
Initialize basis B = ∅ and its dimension k = 0.
Initialize LMAX = 0
for each input xi do

if ‖xi‖2 > Lmax then
Lt

max = ‖xi‖2

end if
Let rt = xt

for i=1:k do
Compute yi

t = rTt bi, let yt,i be the i-th entry of yt.
Compute rit = rt − yt,ibi

end for
Compute bk+1 = rt

‖rt‖2

if ‖rt‖2

L
(t)
max

≥ f( f
d
) then

Accepted bk+1 as a component and let B(k+1) = [B(k), bk+1].
Let yt,k+1 = ‖rt‖2 be the (k + 1)th entry of yt
Update basis dimension k = k + 1

end if
end for

The time complexity of IOCA is O(Ndk), N is the training set size, d is the
dimension of original data, and k is the number of basis eventually learned by the
algorithm. Note that the algorithm of IOCA is concise and its time complexity is
low. Therefore, the proposed method enjoys a low computational load and high
numerical stability. Because of its simplicity, IOCA has few limits in applications
and has the potential to be a universal approach in feature extraction.

PCANet [3] is a simple deep learning network that shares various similari-
ties with IOCANet. PCANet uses PCA algorithm to generate the convolution
kernels. PCANet needs all the data input at once and process them together,
besides, the number of convolution kernels should be given before the training,
which may require a priori information about the data. However, presumably, it
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is exactly in the absence of such information. And we always need to attempt
some values to decide which value is suitable. For IOCANet, we don’t have to
worry about this situation. IOCANet will tell you the appropriate number of
convolution kernels. Experiment in the fourth section demonstrates this.

3 Proposed Method

As shown in Fig. 2, we use two stages IOCANet as an example to describe the
proposed incremental deep learning architecture. In the first stage, we mainly
introduce the structural characteristic of each layer in IOCANet. In the second
stage, for the reason that layers are similar to each other, we mainly put the
focus on the structure between layers. In the output stage, we introduce binary
hashing and blockwise histograms to realize non-linear feature extraction.

3.1 Structures of the IOCA Network (IOCANet)

Suppose that we are given N input training images {Ii}Ni=1 of size m × n, and
we assume that the patch size (or 2D filter size) is k1 × k2 at all stages. Because
our algorithm is online and incremental, only one image will be input at a time.
Here we assume that Ii is input.

Fig. 2. The overall view of two-stage IOCANet

The First Stage. For input image Ii, around each pixel, we take a k1 × k2
patch and we collect all (overlapping) patches, i.e., xi,1, xi,2, ...xi,m̃ñ, where each
xi,j denotes the j-th vectorized patch in Ii, m̃ = m − k1 + 1, ñ = n − k2 + 1.
After that we can obtain matrix X

X = [xi,1, xi,2, ...xi,m̃ñ] ∈ Rk1k2×m̃ñ (1)

With matrix X, we use incremental orthogonal component analysis to gener-
ate the convolution kernel. After that, the basis B captures the main variation of
all of the training patches and that is the convolution kernels (or filters) we want
to get. Of course, similar to ConvNet, we can stack multiple stages of IOCANet
filters to extract higher level features.
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The Second Stage. The operation in the second stage is the same as the first
stage. Let the l-th filter output of the first stage be:

I li = Ii ∗ B1
l , i = 1, 2, ..., N (2)

where * denotes 2D convolution, and the boundary of Ii is zero-padded
before convolving with B1

l , so as to make I li have the same size as Ii. As
in the first stage, we collect all of the overlapping patches of I li , and form
Y l
i = [yi,l,1, yi,l,2, ...yi,l,m̃ñ] ∈ Rk1k2×m̃ñ, where each yi,l,j denotes the j-th vec-

torized patch in I li . Furtherly, we collect all the l-th filters output and define

Y = [Y 1
i , Y

2
i , ..., Y

L1
i ] (3)

where L1 is the num of filters in the first stage. After that, with the IOCA
algorithm, the filters of the second stage B2

l are then obtained. We set the
number of the filters in the second stage to L2. For each input I li of the second
stage, one will output L2 images of size m × n, and each convolves I li with B2

l

for l = 1, 2, 3, ..., L2

Ol
i = {I li ∗ B2

l }2l=1 (4)

The number of output images at the second stage is L1 × L2. If more stages
are helpful for us to extract suitable feature, we can repeat the above process to
build more stages.

Output Stage (Hashing and Histograms). For the input image Ii, we get
L1 images with the process of the first stage, then repeat the process, we get
L1 × L2 images with the process of the second stage. In this section, we will
reduce the number of images and extract features in an unsupervised manner.

For the images in Ol
i, we binarise these images and obtain H(Ol

i), where H()
is a Heaviside step (like) function, whose value is one for positive entries and
zero otherwise.

Around each pixel, we view the vector of L2 binary bits as a decimal number.
This converts the L2 outputs in Ol

l back into a single integer-valued image:

T l
i =

L2
∑

i=1

2l−1H(I li ∗ B2
l ) (5)

Hence, every pixel is an integer in the range [0, 2L2−1]. Besides, the value of
the pixel is different from the common number. We treat the L2 outputs equally
and the order and weights are irrelevant, which means that the distance between
0 and 2L2−1 equals to the distance between 0 and 1.

Each of the L1 images T l
i , l = 1, 2, ..., L1, is partitioned into N blocks, for

each blocks, we compute the histogram (with 2L2 bins) of the decimal values
and then concatenate all N blocks into one vector and denote as hist(T l

i ). After
that, we will concatenate all L1 images into one vector:

fi = [hist(T 1
i ), hist(T 2

i ), ..., hist(TL1

i )] (6)
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The local blocks can be either overlapping or non-overlapping, it depends on
the input data, we will walk through this in detail in an upcoming section.

The parameters of the IOCANet include the filter size k1, k2, the number of
stages, and the block size for local histograms in the output layer. The number
of filters in each stage L1, L2 can be decided by IOCA automatically.

3.2 Computational Complexity

In this section, we give you the computational complexity of IOCANet. We
take two-stage IOCANet-2 as an example. For an input image, it has m̃ × ñ
patches and the patches size is k1 × k2. Hence, in the first stage, the complex-
ity of IOCA is O(k1k2m̃ñL1). After that, the complexity of convolution oper-
ation is O(L1k1k2m̃ñ), therefore, the overall computational complexity of first
stage is O(L1k1k2m̃ñ). In the second stage, the number of input images is L1

and the computational complexity of second stage is O(L1L2k1k2m̃ñ). In the
output stage, the complexity of binary hashing is O(L2mn), and the naive his-
togram operation is of complexity mnL2

1
1−BOR log2, where BOR is block overlap

ratio and the range of BOR is 0 to 1. The overall computational complexity of
IOCANet is

O(mnk1k2L1L2N)

where m× n is the size of input images, k1 × k2 is the size of patches, L1 is the
number of filters in the first stages and L2 is the number of filters in the second
stages. N is the number of images in input to the network in an on-line way.

Beyond that, the space complexity of IOCANet is low. After we extract fea-
tures from an input image, we throw the input image away to make room for the
next image, which means that the space complexity of IOCANet is independent
of the number of images in the data set. That is particulary suited for big data.

4 Experiment

In this section, we first explore how the proposed IOCANet performs in hand-
written digit recognition tasks. Then we do the experiment on face recognition,
which would explain the performance of IOCANet on different tasks. Here we
introduce RandNet to illustrate the effectiveness of IOCANet. Compared with
IOCANet, RandNet replaces the IOCA filters with completely random filters.

4.1 Digit Recognition on MNIST Datasets

The MNIST database (Mixed National Institute of Standards and Technology
database) is a large database of handwritten digits that is commonly used for
training various image processing systems. We use this database to measure the
effectiveness of IOCANet on mass data.



An Incremental Deep Learning Network for On-Line Unsupervised 389

Databases. The MNIST database of handwritten digits has a training set of
60,000 examples, and a test set of 10,000 examples. These examples are 28 × 28
grayscale images of handwritten digits 0–9.

Classifiers. A linear SVM classifier is used in this section.

Number of Filters. In this section, experiments will tell whether the number
of filters decided by IOCANet is suitable. The block size in this experiment is
7 × 7, the block overlap ratio is 0.5, and the filter size is 7 × 7.

Firstly, for the one-stage network, we get the result that L1 = 8 automati-
cally. Regarding the two-stage networks, we can get the result that L1 = 8, L2 =
16.

After that, we remove the threshold f( fd ), with this threshold, we can deter-
mine whether a new filter is needed and get the number of filters automatically.
Then we vary the number of filters in the one-stage networks IOCANet-1 from 2
to 12. Regarding the two-stage networks IOCANet-2, we set L1 = 8 and change
L2 from 4 to 24. The result is shown in Fig. 3.

We can see that in IOCANet-1, L1 = 8 is suitable for the reason that more
filters will only bring little benefit, which is in tune with the number of filters
determined automatically by our algorithm. Regarding the two-stage networks,
L1 = 8, L2 = 16 is appropriate too. What’s more, Fig. 3 illustrates that the num-
ber of filters decided by IOCANet also is reasonable for RandNet and PCANet,
which validates the effectiveness of our algorithm.

Fig. 3. Error rate of RandNet, PCANet and IOCANet on MNIST test set. For (a), we
vary the number of filters in the first stage from 2 to 12. For (b), we set L1 = 8 and
vary the number of filters in the second stage from 2 to 12

Comparison with State of the Art. We compare IOCANet with RandNet,
PCANet, ConvNet and other state of the art methods. Regarding the parameters
of RandNet, we set the block size to 7×7. In PCANet, we set the filter size 7×7
and the number of PCA filters L1 = L2 = 8. The block overlap ratio is set to
0.5.
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Table 1. Comparison of error rates(%) of the methods on MNIST test set

Methods MNIST Methods MNIST

HSC [5] 0.77 RandNet-1 1.32

K-NN-SCM [6] 0.63 RandNet-2 0.63

K-NN-IDM [7] 0.54 PCANet-1 0.94

CDBN [8] 0.82 PCANet-2 0.66

Stochastic pooling ConvNet [9] 0.47 IOCANet-1 2.98

Conv. Maxout+Dropout [10] 0.45 IOCANet-2 0.92

The testing error rates of the various methods on MNIST are shown in
Table 1. We know that the best result is 0.23% [4]. We see from the table
that IOCANet is comparable with the state-of-the-art methods on this stan-
dard MNIST task. However, IOCANet does not need to set the number of filters
on every stage, and if new training images input, PCANet needs to combine
original training set and the new training set, then redo the experiment. For
IOCANet, we only need to input the images one by one, then we can get the
feature and do the classification.

4.2 Face Recognition on ORL Dataset

In this section, we do experiment on ORL dataset to explore how IOCANet
performs in face verification task. And for the reason that ORL dataset has
400 images, we use this dataset to check the performance of IOCANet on small
amount of data.

Databases. ORL dataset contains 40 people and per person has 10 images. The
image size is 112 × 92. All the images are frontal and slight tilt of the head. For
every person, we randomly choose 8 images as training images and the remaining
images as testing images.

Classifiers. A nearest neighbor (NN) classifier is employed in this section. Lin-
ear SVM are not selected because every person only has few images, which may
not be suitable for Linear SVM classifier.

Number of Filters. The effectiveness of the number of filters decided by
IOCANet is studied here. The filter size of the network is 17×17. The block size
is 19 × 19 and the block overlap ratio is 0.

For one stage network IOCANet-1, with out algorithm, we can get the number
of filters in the first stage L1 = 8. Regarding the two-stage networks, we can get
that L1 = 8, L2 = 18.

After that, we vary number of filters in the first stage L1 from 2 to 12.
Regarding two stage network IOCANet-2, we set L1 = 8, change L2 from 4 to
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Fig. 4. Error rates of RandNet, PCANet and IOCANet on ORL test set. For (a), we
vary the number of filters in the first stage from 2 to 12. For (b), we set L1 = 8 and
vary the number of filters in the second stage from 4 to 24

24. The result is shown in Fig. 4. We can see that L1 = 8 is suitable for IOCANet-
1, which equals the number of filters decided by our method. For IOCANet-2,
L1 = 8, L2 = 18 be slightly more than the best result, but it still is appropriate
for the reason that it has almost no effect on the performance of IOCANet.

Comparison with State of the Art. We compare IOCANet with RandNet
and PCANet. We set the parameters of PCANet to the filter size 17 × 17, the
number of filters L1 = 8, L2 = 12 and 19 × 19 block size. The filters size of
IOCANet is 17 × 17. Besides, the block size of IOCANet is 19 × 19.

The performances of all methods are given in Table 2. One can observe that
PCANet and IOCANet achieve similar result, but both PCANet and IOCANet
perform better than RandNet. What’s more, two-stages network also performs
better than one-stage network.

Table 2. Comparison of error rates(%) of the methods on ORL test set

Methods Orl Methods Orl

RandNet-1 6.25 PCANet-2 2.5

RandNet-2 2.5 IOCANet-1 3.75

PCANet-1 5 IOCANet-2 2.5

5 Conclusion

In this paper, we proposed an incremental deep learning network for online
unsupervised feature extraction – IOCANet. IOCANet is a simple deep learning
network, it only has few parameters must be given to and some of parameters
can be decided by itself. When the parameters are set, this algorithm is simple
and effective. IOCANet has low time complexity, which means that IOCA has
few limits in applications and has the potential to be a universal approach.
What’s more, IOCANet is able to keep learning from on-line and incremental
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data, which means that if new training data input, IOCANet can extract features
directly. For classical feature extraction algorithms such as ConvNet, they need
to combine original training set and the new training set, then redo the training
process, which wastes large amount of computing resources. Besides, both mass
data and small amount of data are suitable for IOCANet.

The experiments demonstrate that IOCANet can achieve reasonable result
for digit recognition and face recognition. Although the performance of the other
methods sometimes is slightly better in certain aspect, IOCANet fulfills simple
architecture, reasonable classification result and low time complexity. When the
learning is online and incremental, the performance of IOCA is outstanding.
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Abstract. A low precision deep neural network training technique
for producing sparse, ternary neural networks is presented. The tech-
nique incorporates hardware implementation costs during training to
achieve significant model compression for inference. Training involves
three stages: network training using L2 regularization and a quantiza-
tion threshold regularizer, quantization pruning, and finally retraining.
Resulting networks achieve improved accuracy, reduced memory foot-
print and reduced computational complexity compared with conventional
methods, on MNIST and CIFAR10 datasets. Our networks are up to 98%
sparse and 5 & 11 times smaller than equivalent binary and ternary mod-
els, translating to significant resource and speed benefits for hardware
implementations.

Keywords: Deep Neural Networks · Ternary Neural Network ·
Low-precision · Pruning · Sparsity · Compression

1 Introduction

Deep Neural Networks (DNNs) have revolutionized a wide range of research fields
including computer vision [1] and natural language processing [2]. However, along
with excellent prediction capabilities, the state-of-the-art architectures are both
computationally and memory intensive due to their vast number of model para-
meters. Ultra-low precision DNNs replace most floating point arithmetic with
bitwise or addition operations which greatly reduces computational complexity
and power consumption. These representations also significantly reduce hard-
ware complexity and memory bandwidth, allowing implementations of state-of-
the-art architectures on constrained hardware environments. As a result, there’s
been a growing interest in specialized hardware solutions for ultra-low precision
DNNs and specifically, Binarized Neural Networks (BNNs) [3,4], and Ternary
Neural Networks (TNNs) [5]. These networks constrain either weights alone or
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weights and activations, leading to extremely efficient hardware implementa-
tions. In the present work, we enhance the inherent sparsity of TNNs whilst
maintaining the advantages of multiplierless computations. We use similar Con-
volutional Neural Networks (CNNs) to [6] for CIFAR10 classification and achieve
similar accuracies, although their network has a full precision 1st layer compared
to our ternary weights. Regularization techniques and reduced precision weight
representations have been extensively studied for compression, acceleration and
power minimization. Many efforts have concentrated on building efficient compu-
tational structures from floating point networks through sparse weight represen-
tations and quantization [7,8]. Such networks still require fixed-point multiply-
accumulate operations which limits power savings and speed. Instead of consid-
ering sparsity and reduced precision separately, we explore sparse TNNs which
don’t require multiplies in any layers. Pruning the fully connected layers of BNNs
and TNNs was proposed in [9] to reduce the number of model parameters for
efficient hardware implementations. We prune all layers and focus on inference
acceleration. With recent breakthroughs in low precision deep learning, special-
ized hardware solutions have been increasingly investigated. FINN implements
scalable BNN accelerators on FPGAs [10] and we use this framework to explore
performance advantages of sparse TNNs.

In this paper we propose a three-stage training approach for TNNs which
is able to reduce hardware costs for inference. Firstly, the network is trained
using L2 regularization and a quantization threshold regularizer, secondly we use
quantization pruning whereby the sparsity pruning threshold is the same as the
quantization threshold and thirdly we retrain the network. During training, the
network learns in a sparse environment. This has significant benefits as we can
determine the sensitivity of the weights to sparsity regularizers, i.e. measure the
sensitivity of weights in different layers and advantageously utilize a quantization
pruning method. The contributions of this paper are thus as follows:

– The first reported low-precision training method which minimizes hardware
costs as part of the objective function. This uses a quantization threshold
regularizer and L2 regularization to encourage sparsity during training.

– A layer-based quantization pruning technique which utilizes sparsity infor-
mation obtained during training.

– A quantitative comparison of our proposed sparse TNN with state-of-the-art
multiplierless networks in terms of accuracy, memory footprint, computa-
tional requirements and hardware implementation costs.

– We achieve between 2 and 11x compression. For memory bound hardware
architectures, this would directly translate into speed-up.

2 Sparse TNN Training

The key idea in this work is to introduce sparsity in TNN weight representations
through regularization. TNN training consists of real-valued weight parameters,
wr, which are quantized deterministically to wq using a quantization threshold, η.
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wq =

⎧
⎨

⎩

1 if wr > η
0 if −η ≤ wr ≤ η
− 1 if wr < −η

(1)

For the forward path, wq is computed and used for inference. For the back-
ward path, the gradients are computed with wq and parameter updates are then
applied to wr. In training DNNs, generally many values for wr can achieve the
same training loss and regularization techniques incorporate a preference for
certain weight representations. We use several regularization techniques to min-
imize the number of nonzero parameters and induce sparsity. Our regularization
scheme considers the hardware costs not only during the fine-tuning stage, but
also during training.

Quantization Threshold Regularization. Deterministic rounding requires
partitioning the wr weight space by setting a threshold hyperparameter η. Typ-
ically different values for η are set for different assumptions made on wr. To
uniformally partition the weight space η = 0.33 [9] or to minimize quantization
error η = 0.5. In our case we increase η to make 0’s consume a large portion of
the weight space (upto 95%) which induces a similar sparsity effect to L1 reg-
ularization. However, L1 regularization has a continous shrinkage effect which
induces sparsity amongst all wr but not necessarily wq. Increasing the threshold
on the other hand, induces sparsity directly amongst wq and parameter updates
for wr are either penalized or rewarded based purely on the gradients. An exam-
ple of the regularization effect is shown in Fig. 1(a). By partitioning the weight
space by 90%, the network is initialized with high sparsity and takes longer to
converge than training with a uniformally distributed weight space.

Fig. 1. (a)Validation error convergence on MNIST. (b) Weight distribution for wr for
MLP Layer in MNIST training. With L2 regularization (top) and without (bottom),
for η = 0.9.
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L2 Regularization. In traditional TNN training the cost function C can be
represented as the average loss Li over all training examples n:

C(wq) =
1
n

n∑

i=1

Li(wq) (2)

L2 regularization has the property of penalizing peaky weights to generate a more
diffused set of weights. We add L2 regularization, as a function of the quantized
weights, directly into the cost function to penalize nonzeros and induce sparsity:

C(wq) =
1
n

n∑

i=1

Li(wq)

︸ ︷︷ ︸
data loss

+ λR(wq)
︸ ︷︷ ︸

regularization loss

(3)

where the regularization term is the quadtratic penalty over all parameters,

R(wq) =
1
2
w2

q (4)

and the gradient contribution from the regularization term becomes:

dC(wq)
dR(wq)

= λwq (5)

where λ is the regularization strength hyperparameter. With L2 regularization,
each epoch becomes a greedy search to reduce hardware costs as only the cor-
responding wr for each nonzero in wq is penalized by λ. From (5) and (1) it
is evident the regularization term will only effect the corresponding parameter
updates on wr for nonzero wq. This is desirable when used in conjunction with a
large η as peaky weights (close −1 and 1 in this case) are more likely to be pulled
below the threshold for a given regularization strength. Also, it avoids L2 regu-
larization from continually penalizing weights, making them stuck at low values.
This allows for weight values which are penalized in earlier training epochs, to
then be more easily recovered through parameter updates if required later in
training. As seen in Fig. 1(b), under L2 regularization the frequency shrinks for
weight values closer to −1 and 1. It is also evident that many weights clump
around values closer to the threshold of 0.9.

Quantization Pruning. L2 and threshold regularization achieve a certain spar-
sity before accuracy starts to degrade. This is addressed via quantization prun-
ing by utilizing weight sensitivity information after the initial training phase and
eliminating a subset of weights in wr which all quantize to zero. We then retrain
the network, using a masking vector wm which sets the pruned weights to zero:

wm =

⎧
⎨

⎩

1 if wr < −σ
0 if − σ ≤ wr ≤ σ
1 if wr > σ

(6)
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In sensitivity pruning, the sparsity hyperparameter σ is optimized by setting
different sparsities for different layers. Depending on the type and order of layer,
they have a different sensitivity to pruning. In our method, by forcing spar-
sity through regularization during training, the gradient descent minimization
process converges on the inherent sparsity sensitivity of each layer. We then uti-
lize the ratio of zeros in each layer from the first training phase by pruning only
wr below or equal to the quantization threshold.

σ ≤ η (7)

Weight initialization for retraining then becomes the elementwise multiplica-
tion wr2 .

wr2 = wr1 � wm (8)

For retraining, wr2 is updated but the pruned weights are fixed at zero. Also,
the threshold is set to the same value as in the initial training phase.

Weight Representations. When implementing TNNs for inference on com-
puter hardware, the real valued weights in wr are discarded and only wq is
stored. In order to demonstrate the benefits of the sparse nature of these net-
works, we use two different compression techniques which can be utilized for
different embedded device and specialized hardware applications depending on
memory and resource requirements. Due to the high data regularity of the weight
representations, storing all the ternary weights as 2-bits is not necessary. To con-
veniently store the unstructured sparse weight values, we use two compression
methods. The first is Run Length Encoding (RLE), which stores only the index
differences between each nonzero and also a sign bit which defines the type of
operation. In our second method we use Huffman Coding (HC) on the index dif-
ferences to assign variable length codewords whereby the most frequently occur-
ing indexes are represented with shorter length codes and vice versa. HC has
higher complexity for its decoder implementation and a higher compression rate
than RLE.

Algorithm. Algorithm 1 is the compression process and consists of four parts.
Part (1) represents typical TNN training and additionally requires hyperpara-
meters λ and η to be set as in Algorithm 2. In Part (2) the masking vector is
computed and used for retraining in Part (3). After the network is trained, the
real-valued weights are discarded and the quantized weights are encoded for Part
(4). Outputs and inputs for each layer are represented by y and x respectively;
b is the bias term (if applicable); L is the learning rate; and CGU is compute
gradient updates.
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Algorithm 1
1. Train
Set λ and η for sparsity requirements
and implement Algorithm 2
2. Prune
Compute wm with σ = η
3. Retrain
Keep λ and η the same
Repeat Step 1. with wr2 = wr1 � wm

and λ, η
4. Encode
Apply HC or RLE on resulting wq

Algorithm 2
-Forward Pass:
for each weight layer p do

wqp = Q(wr1p
) with thresh-

old η
end for
for each layer i in range(1,N) do

Compute yi with wq, xi

end for
-Backward Pass:
Compute cost: C(wq) with yN , λ
for each weight layer j do

CGU: g1 =
dC(wqj

)

dwqj
+ λwqj

CGU: g2 =
dC(wqj

)

dbj

Updates: wr1j
= wr1j

− Lg1
bj = bj − Lg2

end for

3 Sparsity and Networks

We evaluate our training methods on two image classification benchmarks,
MNIST and CIFAR10. We apply our training technique and compare directly
against results from BinaryConnect [3] and BinaryNet [4]. BinaryConnect uses
floating point ReLu activation functions and BinaryNet uses binary activation
functions. Their results are represented in Figs. 3 and 5 as ‘model-a-b’ where a is
the weight bitwidth and b is the activation bitwidth (bitwidth = 32 is for float-
ing point, bitwidth = 1 is for binary and bitwidth = 2 is for ternary equivalents
of these architectures with a uniformally distributed weight space). Our results
are reported as TNN with resulting sizes represented as x/y which represents
the sizes after encoding in RLE/HC respectively. For all results, we report the
number of weight parameters (Params) in millions, percentage of zero-valued
parameters, the error-rate and size of the network in megabytes (MB). In all
our models we used only one pruning iteration except for the MLP with floating
point activations for which we used two iterations.

MNIST. The MNIST dataset consist of 70k 28× 28 images of grey-scale hand-
written digits. The networks used for classification consist of 3 hidden layers of
4096 neurons for the network with binary activations and 1024 neurons for the
network with floating point activations. We train the network for 1000 epochs
and choose the network which produces the best validation error rate. We first
analyse the effect of quantization pruning on the MNIST dataset for different
threshold settings. No L2 regularization is used in these numbers in order to
focus on the effect of different pruning thresholds. Setting a higher threshold
allows for more aggressive pruning at the threshold. The results are displayed in
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Fig. 2 and although other threshold settings achieve similar accuracies, setting
both η = σ = 0.9 achieves significantly more sparsity. At this setting we can
prune 80% of weights without pruning away any nonzeros. It is evident that
pruning nonzeros impinges on the network performance and hence the quantiza-
tion threshold is an effective indicator for which weights can be pruned. Pruning
at a lower sparsity threshold maintains accuracy benefits, although results in
more nonzeros and to highly sparsify the network, it would have to be repeat-
edly pruned. This could require several iterations and take days/weeks as each
training iteration takes days itself. The results are displayed in Fig. 3. Using
the network with binary activations produces up to 97.6% sparsity and over 5×
compression over its binarized network (BNet) with better accuracy and approx-
imately 11× its ternary network with the same accuracy. The network with a
floating point activation function, achieves 92.8% sparsity and 3.5× compression
over its binarized equivalent network. For these networks we used η = 0.9.

η σ Pruned Error-rate Nonzeros

0.9 0.95 91% 1.08 1,220,468
0.9 0.9 80% 0.92 1,863,521
0.9 0.65 50% 0.96 3,826,912
0.7 0.8 76% 0.98 3,595,898
0.7 0.7 64% 0.91 5,243, 764
0.7 0.58 50% 0.92 6,863,798
0.5 0.9 89% 1.14 2,448,073
0.5 0.75 74% 1.04 5,416,539
0.5 0.5 74% 0.98 10,396,476

Fig. 2. Quantization pruning for TNN
(Binary Activations) on MNIST, with-
out L2 regularization

Model Params Zeros Error-rate Size (MB)

MLP-2-1 36.4 54% 0.92 9.12
MLP-1-1 36.4 0% 0.96 4.56
TNN 36.4 97.6% 0.93 0.83/1.59

MLP-2-32 2.91 34% 1.23 0.72
MLP-1-32 2.91 0% 1.29 0.36
TNN 2.91 92.8% 1.22 0.07/0.11

Fig. 3. Classification accuracies for Sparse
TNNs for MLPs on MNIST with L2 regu-
larization and pruning

CIFAR10. The CIFAR10 dataset is benchmark dataset consisting of 32×32
colour images with 10 categories. We use a VGG-derivative architecture inspired
by BinaryConnect [3]. From Fig. 5, we see that there is an improvement in accu-
racy and/or compression for both networks in contrast to their binarized and
ternary equivalents. The convolutional layers are less robust to the threshold
regularizer and hence we set a lower value for the convolutional layers η1 = 0.8
and a higher value for the fully connected layer η2 = 0.9. We show the accu-
racy and sparsity relationship in Fig. 4(a) for varying thresholds and show that
threshold regularization improves accuracy. The leftmost point is the fully dense
binarized network where η = 0 and as we introduce the threshold regulariza-
tion, the error-rate drops by up to 1.4% as the sparsity is increased. In Fig. 4(b),
we plot the percentage of nonzeros for each layer in the CNN for varying val-
ues of the threshold regularizer. By increasing the threshold, the robustness of
each layer under sparsity becomes more prominent. For most of the networks,
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Fig. 4. (a) Accuracy vs Sparsity for CIFAR10 with varying η, without pruning. (b) Per
Layer Sparsity for different threshold values on CIFAR10, no regularization or pruning

Model Params Zeros Error-rate Size (MB)

VGG-2-1 14.02 65% 11.2 3.52
VGG-1-1 14.02 0% 11.4 1.76
TNN 14.02 92.3% 10.8 0.88/1.05

VGG-2-32 14.02 35% 9.2 3.52
VGG-1-32 14.02 0% 9.9 1.76
TNN 14.02 90.1% 9.6 0.96/1.22

Fig. 5. Classification accuracies for Sparse
TNNs for CNNs on CIFAR10 with L2 reg-
ularization and pruning

Fig. 6. Diagram of decompressor feed-
ing multiple processing elements with
data reuse

the first two convolutional layers are the most sensitive to sparsity and consist of
around 80% nonzeros and the last convolutional and first fully connected layers
are the least sensitive. These are similar conclusions to [8] who pruned each layer
independantly to determine their sparsity sensitivity. In our case, the network
learns these sensitivities by training in sparse environments. This is advanta-
geous as efficient sparsity parameters are determined for any layer type or order
and don’t require a hyperparameter search. Varying the threshold provides sen-
sitivity information for the sparsity of each layer and quantization pruning takes
advantage of this by pruning each layer according to the threshold and hence
these ratios.

4 Hardware Implications of Sparse TNNs

In this section, we explore the hardware implications of implementing TNNs
with unstructured sparse data representations. Storing the weights in a com-
pressed format, requires a decompressor which incurs some overheads on hard-
ware designs. A fully parallel architecture would require a decompressor for every
weight in the convolution or fully connected layer and decompressors in this case
would consume significant amounts of resources. For sparse TNNs, we can take
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advantage of data reuse patterns which are present within convolution layers
and fully connected layers (when batching is applied) to increase the ratio of
processing elements (PEs) to decoders. When the sparsity of these networks is
taken into consideration, the number of effective operations (discussed later in
this Section) increases the potential performance of TNNs to values well beyond
those of BNNs. For conventional computing platforms (e.g., CPUs and GPUs),
the main benefit of sparsity and compression is the increase in operational inten-
sity that is achieved for a particular layer. Sequential processors, (such as CPUs)
will also be able to benefit from the reduction in required operations per layer,
as a result of the high sparsity of TNNs. For parallel processors, (such as GPUs,
FPGAs and ASICs) it is a lot more difficult to take advantage of this benefit
due to the irregular data access patterns. We describe a hardware decompres-
sor, a corresponding parallel architecture suitable for FPGAs and the potential
performance of that architecture in terms of effective operations per second.

Hardware Decompressor. Our proposed hardware decompressor iterates
through a list of weights, stored in a sign–magnitude form in on-chip memory. In
each cycle, the hardware decompressor outputs the complement of the sign bit to
represent the weight value and adds the magnitude value to an internal counter,
which is used to generate the address of the value to be accessed from the input
vector. The RLE decoder consists of a counter which controls the address of
the input to feed into the PE for computation. The resource and performance
estimates given by Vivado HLS of the resultant hardware description are that
the design can produce an address and a weight every cycle at 250 MHz while
using 112 LUT resources on the FPGA.

A Sparse TNN Accelerator. Three types of low precision networks are
described in this paper: (1) networks with binary activations (VGG/MLP-1/2-1);
and (2) networks with floating point activations (VGG/MLP-1/2-32). For all
networks, the predominant calculations for inference are multiply accumulate
operations (MACs). For type (1) networks, this corresponds to XNOR-popcount
operations [4], where a popcount is the number of set bits in a word. For type (2)
networks, this corresponds to an XNOR operation on the sign bit of a floating
point value, followed by a floating point accumulate.

Accelerator Architecture. Our proposed accelerator architecture is based
on that generated by FINN [10]. In particular, we propose a design which has
processing engines with a similar datapath to FINN. To compute the input-
weight matrix in specialized hardware implementations, typically a series or
array of PEs are used to receive input data and a weight value to perform the
multiply accumulate operations, as required for the datatype. For the compres-
sive format described in Sect. 2, these implementations require a decompressor
between the weight matrix and the PE as represented in Fig. 6. For type (1),
we estimate resource usage on the roofline given by [10], which is reported to
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have an average cost of 5 LUTs for both an XNOR and popcount operation.1

For type (2), we estimate the resource usage by instantiating a Xilinx Floating
Point 7.1 IP core addition module. The peak throughput numbers are what can
be achieved if 70% of the LUTs or 100% of the DSPs are used on the target
device, a Xilinx KU115 running at 250 MHz. These are 46.4 TOPs for type (1)
and 1.3 TOPs for type (2). The total KU115 resources are 663k LUTs and 5,520
DSPs.

Exploiting Sparsity Through Data Reuse. Convolutional layers require
many operations on different input pixels to the same weight value. Hence, we
can utilize data re-use optimizations [11] to instantiate a decompressor for a
specific weight and calculate several MAC operations on different input pix-
els. This greatly reduces the average resource usage of the decompressor per
operation. Similar optimizations can be utilized for the fully connected layers,
whereby batching can be applied to allow a single weight to calculate several
MAC operations across multiple input vectors.

Let us introduce a data re-use factor, R, which denotes the total amount of
data re-use available in a particular layer. For fully connected layers, R = B,
where B is the batch size. For convolutional layers, R = B × P , where P is the
number of output pixels in the output image. Furthermore, our RLE decoder
allows us to easily avoid calculating any zero valued weights. In comparison
to the benchmark BNNs, which have strictly dense weights, only the non-zero
weight computations need to be calculated. Our sparsity factor, then becomes
a multiplier which significantly reduces our cost per operations and hence the
regularization techniques discussed in the paper directly minimize hardware costs
during training. To this end, we introduce an effective operation cost, given by:
Ce = γ ∗ (Cop + Cd/R), where γ is ratio of non-zero weight values to total
weights in the layer, Cop is the proportion of the KU115 which is utilised by
a single operation and Cd is the proportion of the KU115 which is utilised by
the decoder. 2 An effective throughput can then be calculated as: Te = 1/Ce ∗
250MHz. Figures 7(a) and (b) show the effective throughput of type (1) & (2)
networks respectively, while varying γ and R. The horizontal lines represent the
benchmark BNN networks, MLP and VGG (VGG is labelled as CNN in figures)
from the results in Figs. 3 and 5 and the other percentages represent networks of
the same type with varying sparsities. Note that these are theoretical peak values
and further overheads are likely for all datapoints when they are implemented in
a real system. For type (2), a lower sparsity factor is required to improve on the
benchmark throughput as these operations are more expensive and hence every
zero weight has a greater hardware benefit than for the type (1).

1 FINN quotes 2.5 LUTs per operation, which is multiplied by 2 to get LUTs/per
MAC.

2 Assuming 70% of the LUTs and 100% of the DSPs can be utilised for compute.
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Fig. 7. (a) Effective throughput: BNNs vs TNNs (type 3) while varying γ and R. (b)
Effective throughput: BNNs vs TNNs (type 1) while varying γ and R. Note: VGG is
labelled as CNN.

5 Conclusion and Future Work

This paper contributes to the applicability of Deep Neural Networks on embed-
ded devices and specialized hardware. We introduce a TNN training method
which uses a quantization threshold hyperparameter, complemented by L2 regu-
larization and quantization pruning to substantially reduce the memory require-
ments and computational complexity. This was shown using different network
topologies on the MNIST and CIFAR10 benchmarks. Future work in the area
will look into extending this quantization technique to other low precision net-
works for more difficult datasets, improving accuracy whilst maintaining sparsity
and also sparse TNN hardware accelerator designs.
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Abstract. Extraction of effective image features is the key to the content-based
image retrieval task. Recently, deep convolutional neural networks have been
widely used in learning image features and have achieved top results. Based on
CNNs, metric learning methods like contrastive loss and triplet loss have been
proved effective in learning discriminative image features. In this paper, we
propose a new supervised signal to train convolutional neural networks. This
step could ensure that the features obtained are well differentiated in space,
which is very suitable for image retrieval task. We give an example on MNIST
to illustrate the intent of this loss function. Also, we evaluate our method on two
datasets including CUB-200-2011, CARS196. The experimental results show
that the retrieval effect is fairly good on this two datasets. Besides, our loss
function is much easier to implement and train.

Keywords: Image retrieval � Convolutional neural networks � Metric learning

1 Introduction

How to judge the similarity between images is a key to many visual problems. For
content-based image retrieval task, we usually first extract image features, then cal-
culate distances of those features to determine how similar they are, finally according to
the similarity of images return search results. Therefore, extracting features with high
robustness is the key to improve the retrieval performance. Previously, handcrafted
features such as [1, 2] were often used. These handcrafted features are usually very
complex and not robust enough. Recently, with the development of deep learning,
some state of the art deep convolution neural networks, such as [3–5], have been
proved to have excellent feature extraction capabilities. In general, the traditional
classification of convolutional neural networks could already be used to extract image
features, but it is not good enough. For specific tasks, many researchers design different
supervised signals to make the features learned from networks fit the task better. In
2015 Bell et al. used contrastive loss [6] to train convolutional neural networks for
visual search in interior design. In the same year, FaceNet [7] used triplet loss method
to train the network for face classification. After that, Song et al. [8] used a Lifted
Structured loss to train the network for image retrieval. These supervised signals, or
loss functions, have achieved very good results and some commonly used supervised
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signals have been widely used in different fields, including face recognition, image
retrieval etc.

However, for some reasons, the methods mentioned above are more difficult to train
than traditional classification networks. The above loss functions, in general, require
that in a mini batch, the features of the samples of the same class are brought together,
and the features of samples of different classes are far apart. Although the definitions of
those loss functions are simple, but for large data sets, the conflict among each batch
would increase during the process of stochastic gradient descent. Therefore, the net-
work would be easy to diverge in training. An important measure to solve the problem
is to pick appropriate sample pairs or triples for each batch, which increases the
complexity of training. Besides, there are no specific rules on how to choose sample
pairs and triples, which also puzzles other researchers who want to use these methods.
Nowadays, researchers [9–11] often add some supervised signal based on the classi-
fication network. On the one hand, a classification network could guarantee the stability
of training. On the other hand, additional supervised signal could also optimize the
classification loss for specific tasks. This is also the design direction of this paper. In
2016, [12] designed center loss when training classification network in the face
recognition task, and the supervised signal was simple and effective which also inspired
the design of the loss function in this paper. Based on the above research, the main
works of our paper are as follows:

We design a new supervised signal suitable for image retrieval tasks. With the joint
supervision of softmax loss and our supervised signal, the highly discriminative fea-
tures could be obtained.

We show this loss is very easy to implement and train.
We evaluate our method on two datasets. The experimental results show that the

retrieval effect is fairly good.

1.1 Our Loss Function

For a given network, the softmax loss could be presented as follows:

Ls ¼ �
Xm

i¼1
log

eW
T
yi
xi þ byi

Pn
j¼1 e

WT
j xi þ bj

ð1Þ

In Eq. 1, xi 2 R
d denotes the ith deep feature, belonging to the yi th class. d is the

feature dimension. Wj 2 R
d denotes the jth column of the weights W 2 R

d in the last
fully connected layer and b 2 R

n is the bias term. The size of the mini-batch and the
number of the class is m and n, respectively.

From experiments in [12], we know that under the supervision of softmax, the
deeply learned features are separable but not discriminative enough. In order to develop
an effective loss function to improve the discriminative power of the deeply learned
features, we add two different supervised signals to the softmax loss. As shown in
Fig. 1, our loss function consists of three parts, including Ls part, Lc part, and Lm part.

406 J. Yao et al.



For Lc part, the part of loss is calculated as Eq. 2:

Lc ¼ 1
2

Xm

i¼1
norm xið Þ � Cyi

�� ��2
2 ð2Þ

The xi 2 R
d denotes the ith deep feature, and normðxiÞ means that the feature xi is

normalized before we calculate the Lc part. The Cyi 2 R
d denotes the yi th class center

of deep features. Ideally, in each iteration we need to calculate the whole training set to
get the centers of every class, which is inefficient and even impractical. [12] has given a
solution that centers are updated based on mini-batch rather than the whole training set.
The Lc part here is designed to bring the normalized features of samples of same class
in a mini batch together which is directly shown in Eq. 2

For Lm part, the part of loss is calculated as Eq. 3:

Lm ¼ 1
2

Xm

i¼1

Xn

j 6¼yi
maxð0; a� normðxiÞ � Cj

�� ��2
2Þ ð3Þ

The n denotes the number of the classes and the Cj denotes the jth center. The a is a
parameter set by us to control the distance boundary. As we can see from Eq. 2, if a
sample in a mini batch is close to the center it does not belong to and the distance
between them is smaller than a, this sample would contribute loss for Lm. Therefore, Lm
part here is designed to separate the features of samples of different classes in a mini
batch away from each other.

Here we should notice two points. The first one is that the Lc part and Lm part
themselves are unstable just like the contrastive loss and triplet loss, but combined with
softmax loss, they would play a much better role. The second one is we do not need to
select the training samples for every mini batch which is quiet common when the loss is
contrastive loss or triplet loss. In other words, the training process is as easy as
classification networks and very stable due to the control of softmax loss.

Fig. 1. Composition of our loss function
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The whole loss is formulated as Eq. 4:

L ¼ Ls þ k1Lc þ k2Lm

¼ � 1
m

Pm

i¼1
log e

WT
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xi þ byiPn

j¼1
e
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j
xi þ bj

þ k1 1
2m
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i¼1
norm xið Þ � Cyi

�� ��2
2

þ k2 1
2m

Pm

i¼1

Pn

j 6¼yi

max 0; a� normðxiÞ � Cj

�� ��2
2

� �

ð4Þ

The k1 and k2 is used to balance the three loss functions. The conventional softmax
loss can be considered as special case of this joint supervision. The loss that L defines
can be optimized by standard SGD. The learning algorithm is very similar to the
Algorithm 1 in [12]. A little difference is that after updating the centers, all centers
would be normalized before we use to calculate loss next iteration. This is designed to
keep the length of the vector of every center is equal to 1.

1.2 An Example of MNIST

Here like the toy example in [12], we also use an example of MNIST to show the
intention of our loss function. We use CaffeNet provided by Caffe [13], which is a
popular deep learning framework, and apply our loss function. All the dropout layers in
CaffeNet are removed and the output number of last hidden layer is set to 3. The k1, k2
and distance bound a is set to 0.1,0.01 and 1,respectively. After training, we plot the
features of test images on 3-D space to see what loss function have done. The features
in the 3-D space are shown as Fig. 2.

Fig. 2. Features of test images are extracted when the iteration is 1000 (left) and 9000(left).
Notice: In fact, the blue points are located at other side of the global surface, they are not facing
us like the red and brown points. (Color figure online)
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As we can see from the Fig. 2, our loss is designed to force the points of same color
on the global surface to come together as possible as they can and also make the
distance of points of different colors larger than the margin we set. It is obvious that the
features extracted at 9000 iterations are more discriminative, for the points of same
colors are closer and the points of different colors are further away from each other. The
reason we choose the normalized features is that it is more convenient for us to measure
the similarity of two picture based on the Euclidean distance or Cosine distance of high
dimensional features.

2 Experiments

2.1 Implementation Details

For all evaluated data sets, data sets are divided into training sets and test sets. We
guarantee that there is no intersection between the set of classes used for training versus
testing, so we can test the network’s ability to extract the features of images from
previously unseen classes.

We use GoogleNet [4] as a classification network for extracting features, for which
the number of output of the final hidden layer is set to 64. In other words, the
dimension of the extracted features is 64. Contrastive, loss, triplet loss and our loss
function are applied respectively to train the GoogleNet. Experiments have proved that
dropout [3] trick has a great influence on the updating of centers when using our loss.
In order to ensure the training convergence, dropout layers in GoogleNet are removed
when optimizing our loss function. To speed up training, we use a pretrained model on
the ILSVR ImageNet [14] and the fully connected layer (the last layer) is initialized
with random weights. In the following experiments, we will detail the network
parameters on each data set.

2.2 Evaluation

For the features extracted by different networks, we evaluate them from two aspects
including the clustering quality and retrieval quality. For clustering quality, we use the
F1 and NMI [15] metrics. As shown in Eq. 5, F1 metric computes the harmonic mean
of precision and recall.

F1 ¼ 2PR
PþR

ð5Þ

Given a set of cluster X ¼ w1; � � � ;wKf g and a set of ground truth classes
C ¼ c1; � � � ; cKf g, the normalized mutual information(NMI) metric can be com-
puted.wi denotes the set of example with cluster assignment i. cj denotes the set of
examples with the ground truth class label j. As shown in Eq. 6, NMI is defined by the
ratio of mutual information and the average entropy of clusters and the entropy of
labels.
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NMI X;Cð Þ ¼ IðX;CÞ
2ðH Xð ÞþH Cð ÞÞ ð6Þ

Recall@K [16] metric is used to evaluate the retrieval quality. Each test image
(query) first retrieves K nearest neighbors from the test set and receives score 1 if an
image of the same class is retrieved among the K nearest neighbors and 0 otherwise.

2.3 Cars196

The CARS196 data set [17] has 198 classes of cars with 16,185 images. We split the first
98 classes for training (8054 images) and the other 98 classes for testing (8131 images).
On this dataset, maximum training iteration is set to 15000 for all experiments. The base
learning rate is 0.01. The margin parameter a is set to 1. The batch size is set to 64 for
contrastive, triplet and our method. The parameter k1 and k2 in our loss is set to 0.1 and
0.01 respectively. From Fig. 3, we can observe that features learned from our loss
function have much higher NMI, F1 and Recall@K {K = 1, 2, 4, 8, 16, 32} score than
other two methods on this dataset. The retrieval examples are shown in Fig. 4.

2.4 CUB-200-2011

The CUB-200-2011 dataset [18] has 200 classes of birds with 11,788 images. We split
the first 100 classes for training (5,864 images) and the rest of the classes for testing
(5,924 images). On this dataset, maximum training iteration is set to 10000 for all
experiments. The base learning rate is 0.01. The margin parameter a is set to 1. The
batch size is set to 64 for contrastive, triplet and our method. The parameter k1 and k2 in
our loss is set to 0.1 and 0.01 respectively. From Fig. 3. We can observe features learned
from our loss function also have higher NMI, F1 and Recall@K {K = 1, 2, 4, 8, 16, 32}

Fig. 3. The NMI, F1 and Recall@K score on dataset CUB-200-2011 (upper) and Cars196
(lower) for three supervised signals.
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score than other two methods on this dataset but not as much on Cars196 dataset. Maybe
further data preprocessing is needed but the effectiveness our method is proved. The
retrieval examples are shown in Fig. 5.

3 Conclusion

In this paper, we design a new supervised signal which is very easy to implement on
the basis of softmax loss. With the joint supervision of softmax loss and our supervised
signal, the highly discriminative features could be obtained. The experimental results

Fig. 4. The retrieval examples on dataset Cars196 using our method

Fig. 5. The retrieval examples on dataset CUB-200-2011 using our method

A Feature Learning Approach for Image Retrieval 411



on CUB-200-2011, CARS196 datasets show quiet good performance of our methods
for image retrieval task. Further researches like the influence of data processing and
experiments on more complicated datasets are waited to be done. In this paper, the
design of the loss is accomplished and the effectiveness has been proved on two
datasets.
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Abstract. In deep classification, the softmax loss (Softmax) is arguably
one of the most commonly used components to train deep convolutional
neural networks (CNNs). However, such a widely used loss is limited
due to its lack of encouraging the discriminability of features. Recently,
the large-margin softmax loss (L-Softmax [1]) is proposed to explicitly
enhance the feature discrimination, with hard margin and complex for-
ward and backward computation. In this paper, we propose a novel soft-
margin softmax (SM-Softmax) loss to improve the discriminative power
of features. Specifically, SM-Softamx only modifies the forward of Soft-
max by introducing a non-negative real number m, without changing the
backward. Thus it can not only adjust the desired continuous soft margin
but also be easily optimized by the typical stochastic gradient descent
(SGD). Experimental results on three benchmark datasets have demon-
strated the superiority of our SM-Softmax over the baseline Softmax, the
alternative L-Softmax and several state-of-the-art competitors.

Keywords: CNN · Softmax · L-Softmax · SM-Softmax · Classification

1 Introduction

Classification is a fundamental yet still challenging problem in machine learning
and computer vision community. Over the past years, convolutional neural net-
works (CNNs) have shown significant improvements in many classification tasks,
such as hand-written digit recognition [2], object recognition [3,4] and face recog-
nition [5,6]. To train a deep CNN model, large scale training set and the end to
end learning framework are indispensable. Facing the increasingly more complex
data, CNNs can continuously be improved with dropout [3], deeper structure [7],
new non-linear activations [8], regularization [9], stochastic pooling [10] and so
on. Besides the above efforts, a renewed trend towards boosting the classification
performance is to learn discriminative features with well-designed loss functions.
However, this is non-trivial since a new loss function usually should be easily
optimized by the typical stochastic gradient descent.

Intuitively, the learned features are good if their intra-class compactness and
inter-class separability are well maximized. Based on such idea, the contrastive
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 413–421, 2017.
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loss [5] and triplet loss [11] were proposed to enlarge the inter-class distinction
as well as alleviate the intra-class variance. However, the number of training
pairs and triplets are needed to be elaborately selected. The complexity can
go up to O(N2) where N is the total number of training samples. Considering
that CNNs often handle large scale training sets, the training processing may
be inefficient. The hinge loss was adopted in [12] for classification. However, it
is usually unstable to learn discriminative features. The softmax loss is widely
used in many CNNs due to its simplicity and probabilistic interpretation. Despite
its popularity, current softmax loss does not explicitly encourage the intra-class
compactness and inter-class separability. The center loss was introduced in [13]
and was combined with the softmax loss to enhance the intra-class compactness.
It has achieved a promising performance on face recognition task. However,
as pointed out in [14], combing a Euclidean based loss with softmax loss to
construct a joint supervision may not be optimal. The Sparsemax [15] designed
a new activation function similar to the softmax, but able to output sparse
probabilities. The L-softmax loss [1] was developed to explicitly enforce the angle
margin between different classes. However, the angle margin is a hard one since
the corresponding parameter should be an integer. Moreover, the forward and
backward computation of L-Softmax are complex.

In this paper, inspired by the recent work [1], we propose a novel soft-
margin softmax (SM-Softmax) loss to effectively learn the discriminative fea-
tures. Specifically, rather than introducing a hard angle margin as the work [1]
does, we design a soft distant margin to enlarge the intra-class compactness and
inter-class separability. In this way, we only need to change the forward com-
putation of Softmax, without modifying the backward computation. Thus our
SM-Softmax loss can be easily optimized by the standard stochastic gradient
descent. Moreover, the designed soft distant margin theoretically contains all
the hard angle margin in L-Softmax [1] and the degenerative margin (0) in Soft-
max. Thus the proposed SM-Softmax not only inherits all merits from Softmax
and L-Softmax but also learns features with large soft margin between different
classes. For clarity, the contribution of this paper can be summarized as follows:

– We design a new simple and powerful loss function namely SM-Softmax to
strengthen the intra-class compactness and inter-class separability between
learned features.

– We show that the proposed SM-Softmax loss is trainable and can be directly
optimized by the typical stochastic gradient descent (SGD).

– Extensive experiments on MNIST, CIFAR10/CIFAR10+ and CIFAR100
datasets demonstrate the superiority of our SM-Softmax over the baseline
Softmax, the alternative L-Softmax and several state-of-the-art methods.

2 Related Work

To learn discriminative CNNs features, existing works can be mainly classified
into two categories: (1) Improving the deep CNN structures; (2) Designing better
loss functions.
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CNN Structures: The NiN [17] was instantiated the misro neural net-
work with a multi-layer perceptron to enhance model discriminability for local
patches within the receptive field. The Maxout [18] was designed for leverag-
ing the dropout technique by enforcing the output to be the max of a set of
inputs. The FitNet [19] was to address the network compression by introduc-
ing intermediate-level hints. The DSN [20] aimed to simultaneously minimizes
classification error while making the learning process of hidden layers direct and
transparent. The All-CNN [21] consisted solely of convolution layers by simply
replacing the max-pooling into convolutional layer with increased layer. The R-
CNN [22] resorted to a recurrent CNN for visual classification by incorporating
recurrent connections into each convolutional layer. The GenPool [23] general-
ized the pooling operations in current CNNs to play a central role. Although
existing CNN structures have achieved promising results for classification, they
still suffer from the limited discrimination problem because of softmax loss.

Loss Functions: Currently many loss functions including contrastive loss
[5], triplet loss [11], center loss [13], L-Softmax loss [1], softmax loss etc. have
been used to train the CNNs. To make inter-class dispension and intra-class
compactness as much as possible. The work [5] combined the softmax loss and the
contrastive loss to jointly supervise the CNNs, with pairs of training samples as
inputs. The work [11] adopted the triplet loss to encourage a distance constraint,
requiring three (or a multiple of three) training samples as input at a time.
The work [13] developed the center loss and fused it with softmax loss to learn
discriminative features. The softmax loss is widely used in many CNNs and it
can be written as follows:

LSoftmax = − log
(
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T
yi

x i
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j x i

)
= − log
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where xi denotes the deep feature of the i-th training sample. yi is its corre-
sponding label. W = [W1,W2, . . . ,WK ]T is the parameters of the last fully
connected layer, which can be also seen as the classifiers. K is the total num-
ber of classes. θj is the angle between the vector Wj and xi. The L-Softmax
[1] loss employed a hard angle margin constraint in the original softmax loss,
encouraging angular decision margin between classes to learn more discrimina-
tive features. Specifically, it can be formulated as:

LL−Softmax = − log
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where a is an integer that is closely related to the classification margin.

3 Soft-Margin Softmax Loss

To formulate our soft-margin softmax (SM-Softmax) loss, we first give a simple
example to describe our intuition. Consider the binary classification and we have
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Algorithm 1: Training a L-layers CNN supervised by SM-softmax loss.

Input: Training data {xi}. Initialized parameters Θ in convolution layers.
Parameters W in SM-Softmax loss layer. Hyperparameter m.

while not converged do
Compute the forward propagation by the modified soft-margin Softmax (5);
Compute the standard backward propagation;
Update the parameters W;
Update the parameters Θ.

end
Output: The parameters Θ and the weight W.

a sample x from class 1. The original softmax classifier is to enforce W T
1 x >

W T
2 x ( i.e., ‖W 1‖‖x‖ cos(θ1) > ‖W 2‖‖x‖ cos(θ2)) to classify x correctly. To

make the classification more rigorous, the work L-Softmax [1] introduces an angle
margin as

‖W 1‖‖x‖ cos(θ1) ≥ ‖W 1‖‖x‖ cos(aθ1) > ‖W 1‖‖x‖ cos(θ2), (3)

and uses the intermediate value ‖W 1‖‖x‖ cos(aθ1) to replace ‖W 1‖‖x‖ cos(θ1)
in the training. In that way, the class 1 and class 2 are explicitly separated.
However, to make cos(aθ1) expand into Taylor series, a should be a positive
integer. In other words, this margin cannot go through all possible angles and is
a hard one. Moreover, the forward and backward computation are complex due
to the angle margin involved. To address these issues, we here introduce a soft
margin and simply let

W T
1 x ≥ W T

1 x − m > W T
2 x , (4)

where m is a non-negative real number and is a distant margin. In the training
phase, we employ W T

1 x − m to replace W T
1 x , thus our multi-class soft-margin

softmax (SM-Softmax) classifier can be defined as:
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Finally, the soft-margin softmax (SM-Softmax) loss is formulated as

Li = − log
(
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)
. (6)

Obviously, when m is set to zero, the SM-Softmax loss becomes identical to the
original softmax loss. The advantages of the soft margin (4) can be summarized
into two aspects. One is that the soft margin m can go through all the possible
desired margins, and includes the hard margin a. The other one is that the SM-
Softmax loss is easy to implement since it only changes the forward computation
of Softmax. For clarity and completeness, we summarize the major optimization
scheme in Algorithm 1.
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4 Experiments

Following the protocol in [1], we demonstrate the effectiveness of the proposed
SM-Softmax loss on three benchmark datasets and compare it with the baseline
Softmax, the alternative L-Softmax [1] and several state-of-the-art competitors.

4.1 Dataset Description

Three benchmark datasets adopted in the experiments are those widely used for
evaluating the performance of deep classification, including:
MNIST [24] is a dataset of handwritten digits (from 0 to 9) composed of 28×28
pixel gray scale images. It consists 60k training images and 10k test images. We
scaled the pixel values to the [0,1] range before inputting to the CNN architec-
ture.
CIFAR10 [25] is a set of natural color images of 32 × 32 pixels. It contains 50k
training samples and 10k test samples. We adopt two commonly used comparison
protocols on this dataset. We first compare our SM-Softmax with others under no
data augmentation. For the data augmentation, we follow the standard technique
in [1] for training, that is, 4 pixels are padded on each side, and a 32×32 crop is
randomly sampled from the padded image or its horizontal flip. In test, we only
evaluate the single view of the original 32×32 image. In addition, we subtract the
per-pixel mean computed over the training set from each image before putting
the images into the network.
CIFAR100 [25] is with the same size and format as the CIFAR10 dataset,
except it has 100 classes containing 600 images each. There are 500 training
images and 100 testing images per class. The 100 classes in the CIFAR100 are
grouped into 20 superclasses.

Table 1. The detailed CNN architecture used in our work. Conv1.X, Conv2.X,
Conv3.X denote convolution units that may contain multiple convolution layers. E.g.,
[3× 3,64]× 4 denotes 4 cascaded convolution layers with 64 filter of size 3× 3.

Layer Mnist Cifar10/Cifar10+ Cifar100

conv0.X [3 × 3,64] × 1 [3× 3,64]× 1 [3× 3,96]× 1

conv1.X [3× 3,64]× 3 [3× 3,64]× 4 [3× 3,96]× 4

Pool1 2× 2 Max, Stride 2

conv2.X [3× 3,64]× 3 [3× 3,96]× 4 [3× 3,192]× 4

Pool2 2× 2 Max, Stride 2

conv3.X [3× 3,64]× 3 [3× 3,64]× 4 [3× 3,384]× 4

Pool3 2× 2 Max,Stride 2

Fully connected 256 256 512
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4.2 Compared Methods

We compare our SM-Softmax loss with the hinge loss, the commonly used Soft-
max loss, the recently proposed L-Softmax [1] and several state-of-the-art meth-
ods including the CNN [16], the DropConnect [2], the FitNet [19], the NiN [17],
the Maxout [18], the DSN [20], the ALL-CNN [21], the R-CNN [22], the ResNet
[4], the GenPool [23]. The results of all the compared methods are cropped from
the original paper [1].

4.3 Implementation Details

We use Caffe [26] libary with our modifications to implement the proposed SM-
Softmax loss. For the adopted CNN architecture, we follow the design philosophy
of VGG-net [27], as the work [1] does. Specifically, for convolution layers, the
kernel size is 3 × 3 and 1 padding (if not specified) to keep the feature map
unchanged. For pooling layers, if the feature map size is halved, the number of
filter is doubled to keep preserve the time complexity per layer. The detailed
CNN architecture for each dataset are described in Table 1. For all experiments,
We adopt the Relu [28] as the activation function and batch size is 128. We
train all our models on a Nvidia Titan-X GPU and use the Caffe deep learning
framework. CNN training is done with SGD with momentum 0.9 and weight
decay of 0.0005. For the training, two stepwise strategy is adopted. We first
train our CNN network supervised by softmax loss to obtain a good initialization.
Then, we fine tune the CNN network supervised by our SM-Softmax loss based
on the pre-trained model, with a small learning rate 0.01.

4.4 Performance Comparison

Table 2 provides the quantitative comparison among all the competitors on three
benchmark datasets. The bold numbers in each column is the best performance.
On MNIST, it is well-known that this dataset is typical and easy in deep clas-
sification. Almost all thee competitors can achieve under 1% error rate. The
improvement of our SM-Softmax is not visibly big. On CIFAR10 and CIFAr10+,
we can see that our SM-Softmax achieves about 2% improvement over the base-
line Softmax and slightly better than the hard margin L-Softmax. On CIFAR100,
a similar trend as that shown in MNIST and CIFAR10 is provided. In summary,
the experiments have validated that the proposed SM-Softmax is significant bet-
ter than Softmax due to its explicit discrimination on features, and is slightly
better than the hard-margin L-Softmax because of its soft continuous margin.

4.5 Experiments on the Parameter m

The parameter m represent the soft margin between different classes. We inves-
tigate the sensitiveness of m on CIFAR10 and CIFAR100 as an example. Specifi-
cally, we vary the soft margin m from 0 to 0.9, with the stepsize of 0.1. From the



Soft-Margin Softmax for Deep Classification 419

Table 2. Recognition error rate(%) on MNIST, CIFAR10 and CIFAR100 datasets.
CIFAR10 denotes the performance without data augmentation, while CIFAR10+ is
with data augmentation.

Method MNIST CIFAR10 CIFAR10+ CIFAR100

CNN [16] 0.53 N/A N/A N/A

DropConnect [2] 0.57 0.41 9.32 N/A

FitNet [19] 0.5 N/A 8.39 35.04

NiN [17] 0.47 10.47 8.81 35.68

Maxout [18] 0.45 11.68 9.38 38.57

DSN [20] 0.39 9.69 7.97 34.57

ALL-CNN [21] N/A 9.08 7.25 N/A

R-CNN [22] 0.31 8.69 7.09 31.75

ResNet [4] N/A N/A 6.43 N/A

GenPool [23] 0.3 7.62 6.05 32.37

Hingeloss 0.47 9.91 6.96 32.90

Softmax 0.40 9.05 6.50 32.74

L-softmax [1] 0.31 7.58 5.92 29.53

SM-softmax 0.30 7.50 5.73 29.28

(a) CIFAR10 (b) CIFAR100

Fig. 1. Classification accuracy on CIFAR10 and CIFAR100 with different m.

curves in Fig. 1, we can observe that, as m grows, the accuracy rate grows grad-
ually at the beginning and changes very slightly in a relatively large range of m.
Moreover, we can clearly see that it reveals the effectiveness of our SM-Softmax
(m �= 0) in comparison with the baseline Softmax (m = 0).

5 Conclusions

This paper has proposed a novel soft-margin softmax (SM-Softmax) loss for deep
classification tasks. The SM-Softmax achieves the discrimination of features by
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introducing a soft margin m between different classes. SM-Softmax only changes
the forward of Softmax. Thus it can be easily optimized by the SGD. Extensive
experiments have shown the advantages of our SM-Softmax over the baseline
Softmax, the alternative L-Softmax and several state-of-the-art competitors.
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Abstract. Deep learning based vision understanding algorithms have recently
approached human-level performance in object recognition and image cap-
tioning. These performance evaluations are, however, limited to static data and
these algorithms are also limited. Few limitations of these methods include their
inability to selectively encode human behavior, movement of multiple objects
and time-varying variations in the background. To address these limitations and
to extend these algorithms for analyzing dynamic videos, we propose a temporal
attention CNN-RNN network with motion saliency map. Our proposed model
overcome scarcity of usable information in encoded data and efficiently integrate
motion features by incorporating dynamic nature of information present in
successive frames. We evaluate our proposed model over UCF101 public
dataset and our experiments demonstrate that our proposed model successfully
extract motion information for video understanding without any computationally
intensive preprocessing.

Keywords: Video understanding � Action recognition � Saliency map �
Convolutional neural network � Long short term memory � Deep learning

1 Introduction

Understanding of sensory information is essential in various real life tasks like speech
recognition, natural language processes, and computer vision. Visual information, in
particular that correspond to around 70% of sensory information is the most valuable for
understanding our environment. Various studies have demonstrated human-level per-
formance on static data understanding such as object recognition [1] and image cap-
tioning [2]. These successes in vision for static data have motivated works in a direction
towards understanding dynamic applications like videos. As an example of such studies,
Karpathy et al. proposed a basic Convolutional Neural Network (CNN) with Recurrent
Neural Network (RNN) model for action recognition [3]. Likewise, Donahue et al.
improved Long Short TermMemory (LSTM) for video understanding [4]. Venugopalan
et al. developed video caption system based on prior art researches [5]. These studies,
however, failed to enjoy equitable success compared to what has been achieved in case
of static datasets. Difficulties in selectively encoding important information out of
numerous information in videos is the primary reason behind the failure of these
methods over dynamic application scenarios. Another challenge in capturing the
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necessary information in dynamic scenarios arise from the fact that the scale of nec-
essary information to understand videos is too small and the scene keeps changing with
time. Some studies are undertaken to address this problem. Srivastava et al. proposed
unsupervised learning with RNN Autoencoder [6]. Tran et al. proposed a 3D CNN
structure [7]. These methods, however, did not yield satisfactory performance despite
having used large datasets for training. After having known the shortcomings of these
models in dynamic scenarios, image processing techniques such as optical flow [8],
Dynamic Saliency Map (DSM) [9] or Improved Dense Trajectory (IDT) [10] offer better
approach to video understanding problems and also exhibit better performance. It is to
remark that these image processing methods are heuristics and require large computa-
tional resources. To this end, we propose a temporal attention network with motion
saliency map for efficient video understanding. The proposed model captures additional
motion information in a computationally efficient manner and exhibits satisfactory
performance compared to the state-of-the-art methods.

2 Related Works

2.1 Long Short-Term Memory

RNN and its variants incorporate feedback loops to store memory which is important in
sequential data. LSTM [11], a variant of RNN can efficiently train recurrent neural
network on even very long sequence without suffering from long-term dependency
problem (Fig. 1).

LSTM improve upon RNN by so-called gating mechanism. We briefly introduce
operations of gates in LSTM as follows:

it ¼ rðWxixt þWhiht�1 þ biÞ ð1Þ

ft ¼ rðWxf xt þWhf ht�1 þ bf Þ ð2Þ

Fig. 1. LSTM unit
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ot ¼ rðWxoxt þWhoht�1 þ boÞ ð3Þ
gt ¼ tanhðWxcxt þWhcht�1 þ bcÞ ð4Þ

ct ¼ ft � ct�1 þ it � gt ð5Þ

ht ¼ ot � tanhðctÞ ð6Þ

r denotes sigmoid function ð1þ e�xÞ�1 which squashes real-value within a range
[0, 1], � means element-wise multiplication.

When input xt is given at a time t, input gate it, forget gate ft, output gate ot, cell
candidate (input modulation gate) gt are calculated. If the current input has more
important information compared to the previous input then it would be close to 1 and ft
would be close to 0 that makes LSTM forget previous data and update based on the
current input. By incorporating this mechanism, LSTM selectively stores information
from long sequential data and prevents long term dependency problem.

2.2 CNN-RNN Architecture

A combined model comprising CNN and RNN, which we refer as CNN-RNN is one of
the most successful network in terms of performance and applicability in various areas.
At each time step, a frame is input to the CNN and a corresponding feature vector is
obtained. An LSTM RNN processes this feature vector as its input in each step and
encodes it with previous information into hidden states that represents the given frames
till the current time step. The hidden state of the LSTM is used to predict the labels and
it is compared with the target. Basic CNN-RNN network generates prediction label at
every time step. This LSTM classifier was proposed in [6]. It is natural since basic
CNN-RNN network primarily focus on spatial information such as objects and back-
ground. Therefore it can predict action labels at every time step and improve test
(generalization) performance by predicting based on a single frame as well as multiple
frames.

3 Proposed Model

The proposed method consists of a two flow network as shown in Fig. 2. One is a basic
CNN-RNN network that mainly deals with static information such as objects and
backgrounds with little motion information. The other one is a temporal attention
network that handles additional motion information. The proposed model, temporal
attention network, can successfully extract motion information by using three con-
secutive frames as input. If we compare different actions in videos with similar
background having similar objects then the basic CNN-RNN model that captures
spatial information cannot classify the actions correctly. In this case, the proposed
temporal attention network will be able to complement the spatial information with
additional motion information, thereby, improving the video understanding capability
of the combined network.
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3.1 Motion Saliency Map

Motion information is important for better performance in action recognition and has to
be incorporated despite being computationally intensive to obtain it. We proposed
motion saliency map, an innovative framework that allows to extract motion infor-
mation without time-consuming preprocessing. Motion Saliency Map (MSM) is a
modified version of DSM to obtain motion information in a simple and efficient
manner. DSM is used to analyze the dynamics of the successive static saliency maps,
and can localize an attention region in dynamic scenes to focus on specific moving
objects. In processing for creating the static saliency map, center-surround difference is
used to remove non-dominant and remain dominant region. For MSM, dynamics of the
successive input images are considered in the center-surround difference as shown in
Fig. 3. The center image is obtained by concatenation of three gray scale images from
t to t + 2. The color region of center image include motion information. To highlight
motion information, MSM is obtained by subtracting the surround image, which is
average image of three gray scale images from t to t + 2.

Fig. 2. Architecture of the proposed model

Fig. 3. Flow graph of MSM
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3.2 Temporal Attention Network

As described in the previous section, we build the MSM that carries motion infor-
mation. However, encoding motion information is challenging as it is too sensitive to
the presence of noise in the MSM frame. This is because an MSM frame consists of
only important information such as shape and position that can be highly affected by
the noise. In order to overcome this issue, we utilize a pre-trained VGGNet trained on
ILSVRC2012 datasets (Fig. 4) [1]. The pre-trained CNN is not easily distracted by the
noise such as non-informative lines or patterns since it has a tendency to focus on the
shape of objects. For example, if the input frame has motion information with noise, the
CNN can selectively choose the motion information by ignoring meaningless patterns
which are generated by unstable camera or changing backgrounds. Therefore, by
combining the pre-trained CNN with the proposed MSM, we are able to develop an
efficient network for motion information extraction. However, we need to carefully
control the weights of the network in such a way that we retain the benefits of the
pre-trained CNN and also optimize the network for the current task. On the other hand,
if we train the network with random initialization, it would lose the aforementioned
advantages of a pre-trained CNN.

We train our proposed model by initializing the weights of the convolution layers
with the pre-trained model but randomly initializing the fully connected layers. In
addition, we fixed the weights of the first three convolution layers and optimize the
remaining layers on the action recognition dataset.

4 Experiments

4.1 Dataset

In this paper, we evaluate proposed model on UCF101 dataset [12]. UCF101 consist of
101 action classes in over 13 k clips with 27 h of video data. Videos are realistic
user-uploaded which are containing camera motion and cluttered background. This
database is the most challenging dataset in action recognition because of large number
of classes and unconstrained nature of such clip.

Fig. 4. Structure of VGGNet
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4.2 Implementation Details

Our proposed network can be trained together with simple backpropagation in an
end-to-end manner. However the database we are using for evaluation has less number
of videos. Hence we train each network separately in order to impart enough gradient
information to motion attention network. We assign 1024 units for LSTM and use
orthogonal initializer. For CNN, initialize convolution layers with pre-trained weights
and fix the weights of layer 1, 2, 3. We extracted 40 frames for every video thus LSTM
step is set as 40. However, for the temporal attention network has 38 MSMs since the
raw frames are to be concatenated. The code is implemented in Tensorflow [13]. For
optimization, we use the Adam Optimizer [14] with learning rate 0.00001.

4.3 Results and Discussion

Table 1 presents the action recognition accuracy of the proposed method compared to
two baselines and current the state-of-the-art methods. The upper section of the table
shows the results of the two baselines. The middle section present the results of the
methods that use only RGB frames as inputs. And the lower section reports the per-
formance of models using optical flows. Our proposed method shows the best per-
formance among models that use only RGB frames except C3D + linear SVM [7].
However, the higher accuracy in C3D + linear SVM model mainly comes from the
linear SVM classifier where the features are the same as in C3D + fc6 [15]. Based on
these results, we claim that our method is better in terms of feature extraction for video
understanding.

LRCN with Flow [4] uses optical flow with basic CNN-RNN network and shows
similar result with ours. This illustrates that our method successfully extract motion
information from videos without the computationally expensive optical flow prepro-
cessing mechanism.

Table 1. Action recognition results on UCF101

Method Accuracy

Imagenet + linear SVM 68.8
iDT w/BoW + linear SVM [10] 76.2
Deep networks [3] 65.4
LRCN-fc6 [4] 68.2
Spatial Convolutional Net [8] 73.0
LSTM composite model [6] 75.8
C3D + fc6 [15] 76.4
Proposed model 79.1
C3D + linear SVM [7] 82.3
LRCN with Flow [4] 80.90
LSTM composite model [6] 84.3
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In order to understand the contribution of the basic CNN-RNN and the temporal
attention network in the proposed model, we estimate the accuracy of the basic
CNN-RNN and the temporal attention network separately on every task in the dataset.
For example, in the action recognition task shown in Fig. 5(a), the basic CNN-RNN
and temporal attention network shows 41.67% and 83.33% accuracy respectively. We
analyzed the result to understand the performance difference between the two networks
and we found that the basic CNN-RNN network misclassify Fig. 5(a) as Fig. 5(b),
since Figs. 5(a) and (b) exhibits similar spatial information. But the dynamic infor-
mation in both videos are different. In Fig. 5(a) the bowler ‘runs’ to throw the ball
however in Fig. 5(b) the batsman ‘swings’ to hit the ball and runs. Therefore, because
of the big difference in the dynamic information, the temporal attention network shows
higher accuracy. In another example, for Fig. 5(c), the basic CNN-RNN network and
the temporal attention network show 47.06% and 94.12% accuracy respectively.
Figures 5(c) and (d) includes a similar object that are types of rope. The dynamic
information in Fig. 5(c) is jumping but Fig. 5(d) mainly consists of hand movements.
Therefore, temporal attention network shows much better performance in classifying
those videos.

According to our analysis, we conclude that the basic CNN-RNN cannot fully
understand video without the help of temporal information. On the contrary, a stan-
dalone temporal attention network without the help of spatial information may have
difficulties in understanding the videos entirely. Thus both network should be com-
bined in order to harmonize spatial and temporal information for understanding the
total information present in videos.

5 Conclusion

In this paper, we proposed a video understanding model that consists of a temporal
attention network and a basic CNN-RNN network. The temporal attention network
focusses on temporal information whereas the CNN-RNN network captures spatial
information. We argue that the basic CNN-RNN by itself is not sufficient to fully
understand videos without the help of temporal information. Hence, we integrated these

Fig. 5. Examples of datasets
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two networks in order to enhance the performance of our model. This combined model
offers an efficient feature extraction method for video understanding without complex
preprocessing and is comparable to the current state-of-the-art action recognition models.

In the future, we plan to improve the proposed model by introducing hierarchical
structure in the temporal attention network and enhance the motion information
extraction ability by training it on larger kinetics dataset.
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Abstract. Deep Convolutional Neural Networks (DCNNs) are the state-of-the-
art in fields such as visual object recognition, handwriting and speech recog-
nition. The DCNNs include a large number of layers, a huge number of units,
and connections. Therefore, with the huge number of parameters, overfitting can
occur. In order to prevent the network against this problem, regularization
techniques have been applied in different positions. In this paper, we show that
with the right combination of applied regularization techniques such as fully
connected dropout, max pooling dropout, L2 regularization and He initializa-
tion, it is possible to achieve good results in object recognition with small
networks and without data augmentation.

Keywords: Deep learning � Deep convolutional neural networks � Object
recognition � Fully connected dropout � Max pooling dropout � L2
regularization

1 Introduction

Visual object recognition is an extremely hard computational problem in computer
vision research. It has a lot of potential applications that touch a lot of areas of artificial
intelligence including video data mining, object identification for mobile robots, and
image retrieval. It searches to identify and localize categories, places and objects in
order to recognize and classify images.

Visual object recognition has gained the interest of the research community and has
been further applied successfully to a lot of other application areas [1–5]. However, it is
still an open problem and a challenging task. The core problem is due to the high
variability of the objects constituting an image. In fact, the object may have variation in
the view point, the illumination, the scale and the imaging conditions [6, 7].

Recently, deep learning, especially the Convolutional Neural Networks (CNNs),
has attracted huge attention among computer vision research communities thanks to its
high performance in classification tasks [8, 9]. It has produced extremely promising
results for various tasks of pattern recognition issues like handwritten digits, face
recognition, sentiment analysis, object detection and image classification [9–11]. Those
models have some advantages and disadvantages. Indeed, the main advantage of Deep
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CNNs (DCNNs) is their accuracy in image recognition problems. Also, they are very
good at discovering high-dimensional data having intricate structures [8]. On the other
hand, they have some disadvantages such as the high computational cost, so if you do
not have a good GPU, they will quite slow to train the model (for complex tasks) and
they will need a lot of training data.

This paper introduces a DCNN model to obtain a high multi-classification accuracy
on object recognition. The architecture of the CNN model is neatly elaborated to extract
deep hidden features and model small training datasets, which fits well for the used
datasets. The CIFAR-10 and STL-10 datasets are labeled subsets of an 80-million-tiny-
image dataset. These datasets are used to evaluate the performance of the CNN model.
The experiment results prove that the CNN model with the right combination of
regularization techniques has an adaptive accuracy rate on classification.

The main contributions of this study are the following:

– The method uses the CNN to classify images into 10 categories and produce an
accuracy of 97% utilizing the CIFAR-10 and 75.4% using the STL-10.

– The CNN model utilizes three convolution layers, a regularization layer, and a high
efficiency optimizer to be adaptive to the CIFAR and STL datasets.

The remaining of this paper is set as follows: In the second section, we present
some related work. In the third section, we describe the details of applying the CNN
model to object recognition. Our experimental study and results using this system are
provided in the fourth section. In the final section, we present some concluding remarks
and future directions.

2 Related Work

Although the problem of object recognition is still a very active and challenging task,
good results have been recorded thanks to the new learning capabilities offered by deep
neural networks.

In this context, Tobias et al. in [10] presented the implementation of light-weight
CNN schemes on mobile devices for domain-specific objection recognition tasks. In
the same optic, the DCNNs were investigated by Lorandet et al. in [12] for RGB-D
based object recognition. The DCNNs outperformed other classifiers and proved a
significant classification accuracy.

Krizhevsky in [13] suggested a large DCNN to classify 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into 1000 different classes. The model
achieved top-1 and top-5 error rates. The neural network was composed of five con-
volutional layers, some of which were followed by max-pooling layers and three
fully-connected layers with a final 1000-way softmax. In order to accelerate the training
process, non-saturating neurons and a very efficient GPU implementation of the con-
volution operation were used. Nevertheless, to minimize overfitting, some regulariza-
tion techniques like the dropout proved to be very effective.

In handwritten digit recognition, Calderon et al. in [14] and Alwzwazy in [15]
proposed a robust DCNN for classification, which achieved superior results. A com-
bination of the CNNs and the RNNs was presented by Peris in [16] and applied for the
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generation of video and image descriptions. These models demonstrated that they
outperformed the previous state of the art.

Indeed, Haiteng in [11] put forward advanced DCNNs for body constitution to
simulate the function of pulse diagnosis, which is able to classify an individual’s
constitution, based on their pulse. The CNN model employed the latest activation unit
and rectified the linear unit and the stochastic optimization. This model attained a
recognition accuracy of 95% on classifying nine constitutional types.

Peyrard et al. in [17] proposed a blind approach to super-resolution based on the
CNN architecture. The network could deal with different blur levels without any a
priori knowledge of the actual kernel utilized to give LR images. The obtained results
showed the success of the suggested approach for the blind set-up and were comparable
with non-blind approaches.

A deep-neural-network-based estimation metric was investigated by Sholomon
et al. in [18] to solve the jigsaw puzzle problem. The proposed metric indicated an
extremely high precision even without extracting any manual feature.

Two CNN architectures were presented by Garcia et al. in [19] for emotion
recognition in order to classify images into seven emotions. The first architecture
checked the effects of minimizing the number of deep learning layers. However, the
second architecture horizontally divided the given image into two streams based on eye
and mouth positions. This method performed good results compared it other approa-
ches proposed in the literature.

3 Object Recognition Based on DCNN Model

The success of any DCNN comes from the efficient use of GPUs, Rectified Linear
Units (ReLUs), a new regularization technique such as a max pooling dropout, a fully
connected dropout, and techniques for data augmentation to generate more training
examples by deforming the existing ones. In the following section, we describe the
major improvements and overall architecture of the DCNN model.

3.1 Initialization and Stochastic Optimization

Before starting to learn the parameters of the network, we must initialize its parameters.
An initialization establishes the probability distribution function for the initial weights.
The model uses a uniform initialization such as the He weight initialization. This
initialization method effectively resolves the bottleneck of the extremely deep neuronal
network training [11]. Yet, in order to optimize and update various CNN parameters,
the Adam algorithm is used. It is a simple and efficient computational algorithm for
optimization based on the gradients of stochastic objective functions. This algorithm is
well suited for a CNN with a complex structure and large parameter spaces and it
combines the strength of two newly popular optimization methods: the ability of
AdaGrad to cope with sparse gradients and the ability of RMSProp to handle
non-stationary objectives.
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3.2 Leaky Rectified Linear Unit

In general, to learn a neural network, the saturated counterpart, such as a hyperbolic
tangent or a logistic sigmoid, is used. However, in recent years, the most popular
activation function for the deep network is the ReLU. It calculates the following
function:

f xð Þ = max 0; xð Þ: ð1Þ

There are some advantages in using the ReLU. First, the ReLU is faster to calculate
because it does not require any normalization or exponential calculation (like those
required in sigmoid activations or tanh). Second, the use of the ReLU accelerates the
convergence of the stochastic gradient descent. This is argued to be caused by its linear
and non-saturating form. Third, it does not face the problem of gradient degradation as
for the sigmoid and tanh functions. It has been demonstrated that deep networks can be
trained effectively utilizing the ReLU even without pre-training.

3.3 Over-Fitting Prevention and Regularization

Learning the CNNs uses a large number of layers, a huge number of units, and
connections related to its complex structure and numerous filters in each convolutional
layer. These are prone to overfitting, which is a serious problem. To deal with this
problem, dropout learning and regularization methods have been developed to improve
the CNN performance and reduce overfitting.

L2 and ridge regularization
In order to reduce the regression coefficient overfitting, regularization penalties are
appended to CNN parameters. In fact, the L2 regularization and ridge are used in a
fully connected layer. L2 weight regularization penalizes weight values by adding the
sum of their squared values to the error term to drive all weights to smaller values.
Nevertheless, ridge regularization decreases the approximated regression coefficients
towards surmount overfitting, which is caused by high dimensionality [7]. The penalty
parameter is set to 0.01.

Max pooling dropout
In recent years, Wu and Gu in [20] proposed to use a special dropout variant with the
CNN, known as the max pooling dropout. Actually, the traditional CNN is composed
of alternating convolutional and pooling layers, with fully-connected layers on
top. However, the max pooling dropout can be seen as a special variant of stochastic
pooling. It is used within the pooling layers to introduce stochasticity into the learning
process with the difference that activations are utilized with a probability proportional
to their rank, instead of the strength of their activation.

Fully connected dropout
Dropout learning is used in deep learning to avoid overfitting. A small number of data
compared with the size of a network may cause overfitting [21]. Dropout learning
follows two processes. At the training stage, some hidden units are neglected with a
probability p, and this process reduces the network size. If a dropout probability p of
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0.5 is used, roughly half of the activations in each layer will be deleted for every
training sample, thus preventing hidden units from relying on other hidden units being
present. At the testing stage, the neglected inputs and hidden units are combined with
the learned hidden units and multiplied by p to express the final output. As a result, the
weights are rescaled proportional to the dropout probability. For example, for a dropout
probability of 0.5, all weights are divided by two [21]. This regularization can improve
the network performance and significantly reduce the error rate.

3.4 Architecture of Proposed DCNN

The suggested system is presented in Fig. 1. The CNN architecture is composed of six
layers: three convolutional layers with 15, 20 and 25 filters, where each filter has a size
of 5*5 and each convolutional layer is followed by a max pooling layer of a size of
2*2; two fully connected layers with 600 and 300 units performed after the convolu-
tional layers, and the softmax layer, which is the final layer of the CNN model clas-
sifying the output into 10 class labels.

A dropout layer is applied to the output with a probability of 0.5 on the 1st, 2nd and
3rd convolutional layers and to two fully connected layers. With this fixed architecture
we then proceed to test the effects of the different regularization techniques on the set
classification task.

4 Experimentation

We conduct our experimental studies using the proposed DCNN for object recognition.
This architecture and the previously described regularization methods are trained and
tested to classify images from two datasets: CIFAR-10 and STL-10. The next section
introduces the dataset and the overall performance of the DCNN model.

Fig. 1. Overall CNN architecture
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4.1 Database Description

To evaluate the performance of the proposed system, the experiments are conducted on
the benchmark object recognition datasets: CIFAR-10 and STL-10.

The CIFAR-10 dataset [13] consists of 60,000 color images of 32 � 32 pixels in 10
classes: airplanes, automobiles, birds, cats, deers, dogs, frogs, horses, ships, and trucks.
The total dataset is split into 50,000 training images and 10,000 testing ones. The last
10,000 training images are used for validation. Here are the classes in the dataset, as
well as 10 random images from each class (Fig. 2):

We use also the STL-10 dataset that contains 96 � 96 RGB images in 10 cate-
gories. This dataset has 5,000 labeled training images and 8,000 test images. Addi-
tionally, it includes 100,000 unlabeled images for unsupervised learning algorithms,
which are extracted from a similar but broader distribution of images [22].

4.2 Results and Discussion

We perform classification experiments on CIFAR-10 and STL-10. Then, we proceed to
compare the effects of various regularization methods on seven different classifiers. The
following seven settings are tested:

1. No regularization
2. CNN withLReL
3. CNN with LReL, max pooling dropout
4. CNN with LReL, max pooling dropout, fully connected dropout
5. CNN with LReL, max pooling dropout, fully connected dropout, L2
6. CNN with LReL, max pooling dropout, fully connected dropout, L2, ADASYS
7. CNN with LReL, max pooling dropout, fully connected dropout, L2, He

Fig. 2. CIFAR-10 dataset
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The results of each method are illustrated in Fig. 3a and b. Rate recognition is
defined as to the number of correctly recognized samples divided by the total number
of test samples. The objective is to classify the input image into 10 class labels. Using
CIFAR-10, the initial CNN model achieves a higher recognition rate of 75.5% with the
LReL as shown by Fig. 3a. With the LReL and the max pooling dropout, the recog-
nition rate significantly increases by 25.5%. With the addition of the fully connected
dropout, the recognition rate goes up by 3.08%. Applying the L2 regularization slightly
raises the rate to 94.3%. With the ADASYS method, the rate decreases to 90.07%. The
final CNN model with the He initialization gives the highest performance of 97.15%.

The experimental results show the outperformance of the DCNN based on the max
pooling dropout and the fully connected dropout compared to the standard CNN. In
fact, the DCNN model demonstrates its superiority based on a very complex and high
dimensional dataset with limited samples and without any data augmentation. How-
ever, the training and test DCNNs are time-consuming tasks due to the implementation
of the fully connected dropout and the max pooling dropout.

5 Conclusion

In this paper, we have presented a DCNN model for object recognition and examined
the effects of regularization techniques on the training of DCNNs. This regularized
model is able to surmount the shortcomings of traditional recognition methods and
improves the multi-classification recognition rate. The experiments have proven that
the combination of the DCNN with the max pooling dropout and fully connected
dropout can avoid the problem of overfitting. In addition, we have shown that the right
combination of regularization techniques can have a big impact on the performance of
DCNNs and their trained features by giving an adaptive recognition rate on an
extremely complex dataset. As a perspective, these regularization techniques can be
used together with data augmentation and more complex CNNs with more filters or
more layers, to potentially achieve good results and minimize the execution time on
challenging datasets.

Fig. 3. (a) Comparison of results on CIFAR-10 dataset and (b) Comparison of results on STL
dataset
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Abstract. In this work, we propose a novel framework combining tem-
poral action localization and play-break (PB) rules for soccer video
event detection. Firstly we treat event detection task in action-level, and
adopt 3D convolutional networks to perform action localization. Then
we employ PB rules to organize actions into events using long view and
replay logo detected in the first step. Finally, we determine the semantic
classes of events according to principal actions which contain key seman-
tic information of highlights. For long untrimmed videos, we propose a
shot boundary detection method using deep feature distance (DFD) to
reduce the number of proposals and improve the performance of local-
ization. Experiment results verify the effectiveness of our framework on
a new dataset which contains 152 classes of semantic actions and scenes
in soccer video.

Keywords: Soccer event detection · Temporal action localization · 3D
convolutional networks · Deep feature distance

1 Introduction

Soccer video analysis is widely applied in many fields like TV program pro-
duction, match summarization, tactical analysis, etc. The semantic information
learned from soccer video could be utilized to produce high-quality programs
and provide valuable advices to coaches.

Audience always prefer the highlights such as goal, shot, penalty, free kick and
so on, but these highlights are commonly extracted from match video manually,
which is rather time-consuming. Meanwhile, the development of hardware leads
to improvement on video resolution and sharp growth of storage cost.

Automatic soccer event detection is a brilliant solution to solve the problems
mentioned above. Recent years, a large number of approaches are proposed for
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this task [1,2]. Prior methods define an event as a multi-shot video segment, and
train different classifiers like SVM [1], CNN+LSTM [2] in event-level directly. In
fact, semantic information captured from events is coarse and ambiguous due to
the presence of those shots with poor semantic support, e.g. passing, ordinary
close-up view, spectator activities and so on.

In this work, we consider soccer event detection in action-level, and adopt
action localization methods [3,4] based on 3D convolutional networks for soccer
videos. After localization, we utilize the Play-Break (PB) rules as a mapping from
actions to events. As the key elements of PB rules, long view and replay logo
are recognized by extra classifiers in [1,2], while we eliminate the classification
procedure by regarding them as two classes of actions and applying PB rules in
action sequences directly. Finally, the semantic class of each event is determined
by the principal action (e.g. goal, shooting, penalty, yellow/red card) which has
the highest confidence inside the event.

Fig. 1. Our detection framework firstly pre-trim entire video into shots using DFD-
based SBD, and perform action localization in every shot. Following PB rules, we orga-
nize actions into event sequences, and finally determine the semantic class according
to principal action which achieves the highest confidence.

Popular action localization methods [4–7] usually start with a proposal gen-
eration process to obtain candidate segments from untrimmed videos. In this
paper, we present a novel shot boundary detection (SBD) method based on
Deep Feature Distance (DFD) to pre-trim the entire long soccer videos into
shots, which can significantly reduce the number of proposals. Unlike prior SBD
methods using pixel difference [8], histogram [9], perceptual hash and so on,
our method extracts the deep feature of each frame by Convolutional Neural
Networks (CNNs) and then calculates Euclidean distance of feature vectors as
the measurement of the difference between two adjacent frames. The experimen-
tal results show that our SBD method is more effective and efficient with the
support of GPU accelerating.

The main contributions of our work are summarized as follows:
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1. Different with methods in [1,2], we consider soccer event detection task in
action-level, and combine the strength of temporal action localization and
Play-Break rules.

2. Instead of extra classification procedure of long/non-long view and logo shots
in [1,2], we regard long view and replay logo as two separate action classes,
so that PB rules could be applied in action localization results directly.

3. For better performance in action localization, we propose a shot boundary
detection method using Deep Feature Distance to pre-trim videos into shots
accurately and efficiently.

2 Action-Level Soccer Event Detection

As mentioned in Sect. 1, event-level semantic information captured by [1,2] is
coarse and ambiguous due to the presence of those shots with poor semantic
support. Our experiments show that with the increase of semantic event classes
(from 5 to 8), the performance of classifiers in [1,2] will decline in varying degrees.

To address this issue, we treat an event as a set of actions, and perform
detection in action-level. For example, a goal event should be divided into sev-
eral actions: (1) passing, (2) shot, (3) celebration and (4) multi-camera replays
(start and end with a logo respectively). Comparing with event, every action has
definite semantic information, which could describe the video more explicitly.

2.1 Action Localization Using 3D Convolutional Networks

Remarkable development has been achieved in action recognition and localiza-
tion in recent years.

For video action clips trimmed manually, [10,11] use dense trajectories to
encode video sequences and classify them using SVM, [12] fuses two streams of
features: temporal (still images) and spatial (dense optical flow) to predict video
classes, and [3,13] employ 3D convolutional networks to learn spatiotemporal
feature from video volumes directly.

For untrimmed long videos, the basic framework of many action localization
methods is the combination of a proposal generator and an action classifier. The
common used proposal generation methods include sliding window [4,6] and
RNN sequence encoder [5,7].

In our framework, we adopt 3D convolutional networks like C3D [3] and
SCNN [4] in action-level soccer video event detection because of their excellent
efficiency comparing with state-of-the-art two-stream methods [12,14].

C3D [3] is an architecture of 3D ConvNets using 3×3×3 convolution kernels
in all layers. It learns both appearance and motion features from video volumes
(typically 16 frames) directly, and produces classification results after a standard
softmax layer.

The training examples of SCNN are the proposals generated by sliding win-
dow, and corresponding overlap values with ground truth instances measured by
Intersection-over-Union (IoU). As illustrated in Fig. 2, SCNN consists of three
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Fig. 2. Flowchart of Segment-CNN (SCNN), which consists of three 3D ConvNets
(C3D).

networks similar to C3D: (1) a proposal network trained on positive sam-
ples PIoU>0.7 and negative samples PIoU<0.3, which is used to remove back-
ground proposals; (2) a classification network for action categories trained on
PIoU>0.7 and PIoU<0.3 (as background); (3) a localization network trained on
the same dataset used in (2) but with a new loss function which takes overlap
into account.

For each mini-batch that contains N samples, the standard softmax loss is
defined as

Lsoftmax =
1
N

∑

n

(−log(P kn
n )

)
, (1)

where kn denotes the positive label, and P kn
n is the prediction score vector after

the softmax layer. The overlap loss is defined as

Loverlap =
1
N

∑

n

(
1
2
·
(

(P kn
n )2

(vn)α
− 1

)
· [kn > 0]

)
, (2)

where vn denotes the overlap measured by IoU. [kn > 0] equals 0 when
kn = 0, which means the sample is a background proposal. If the sample is
an action proposal, [kn > 0] = 1. The loss function of localization network
Lloc = Lsoftmax + λ · Loverlap, λ is a balance parameter and equals 1 in [4].

2.2 Play-Break: Mapping from Actions to Events

Recent works like [1,2] use Play-Break rules to form shots into semantic event
sequences. The key idea is that in soccer match video, long and non-long view
shots always switch frequently. Specifically, consecutive multiple non-long view
shots and replay logos usually appear during the breaks of the match. A typical
Play-Break segment is illustrated in Fig. 3.

Similar to methods in [1,2], we summarize the basic rules of Play-Break as
follows:

1. Consecutive non-long shots (break) that contain a total of more than Tbreak

frames (Tbreak is the break threshold) is defined as a Break.
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Fig. 3. A typical instance of play-break in action sequences: (1) A long view scene
followed by non-long view actions, and (2) several principal actions surrounded by a
pair of replay logos. These two segments are regarded as a Play and a Break respectively,
and contribute to a Play-Break event sequence. In this example, the principal action
‘goal’ achieves the highest confidence and determines the semantic class of this event.

2. Shot sequences surrounded by a pair of replay logos form a Break.
3. The last long view shot in front of a Break is defined as a Play. We regard

the action sequences from Play to Break as an event.

In our dataset Soccer-152A, long view shot and replay logo are defined as
two separate classes. Therefore, temporal actions can be organized into event
sequences following PB rules directly. To determine the semantic classes of
events, we specify 8 classes of actions as Principal Action, including goal,
shot, penalty, yellow/red card, free kick, corner, etc. The semantic class of an
event depends on the principal action which achieves the highest confidence in
the event sequence.

2.3 Shot Boundary Detection Using Deep Feature Distance

An entire soccer match video often has a duration of almost 100 min. Obvi-
ously, generating proposals from entire videos is inefficient because of massive
overlapping proposals and time-consuming location procedure.

Naturally, an automatic video pre-trimming method is needed to solve the
problem. SBD is widely used in video retrieval, indexing, analysis, etc. There
are two common types of shot boundary: abrupt and gradual transition, while
we focus primarily on abrupt shot boundary in soccer match video.

The key problems of SBD are how to measure the difference between adjacent
frames, and select a proper threshold to determine the boundaries. Prior SBD
methods calculate frame difference using pixel-level difference [9], histogram [8],
block histogram, perceptual hash and so on. One of the common disadvantages
of these methods is that the features used to represent the picture are sensitive
to illumination, motion and camera movements, which affects the accuracy of
detection results.

Inspired by image classification and image retrieval tasks, we propose a SBD
method which extracts features from video frames using convolutional neural
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networks (CNNs), and calculates Euclidean distance of deep feature vectors to
evaluate the difference between two adjacent frames. The procedure of DFD-
based SBD is described as follows:

1. Feed CNN models (e.g. LeNet, ResNet50) with a sequence of video frames
V {v1, v2, ..., vn};

2. Obtain the output vector f1×k
i from full connected (FC) layer in CNNs

(specifically, average pooling layer in ResNet), k denotes the size of output
vector after FC layer;

3. Normalize the feature vector using Min-Max Normalization:

f̂i =
fi − min(fi)

max(fi) − min(fi)
(3)

4. Calculate Euclidean distance between every two adjacent frames.

d =

√√√√
k∑

j=1

(f̂ j
i − f̂ j

i−1)2 (4)

5. Select a boundary-labeled video as ground truth and search the optimum
threshold that achieves the highest F1 value, then set the threshold as abrupt
threshold Tabrupt which determines shot boundaries.

We test the performance of different CNNs pre-trained on ImageNet 2014 and
SSID dataset [2] respectively. SSID is a soccer semantic image dataset in which
soccer video shots are divided into nine types of camera views. Experimental
results show that models pre-trained with ImageNet achieve best performance.

3 Experiments

3.1 Soccer-152A: Semantic Soccer Actions and Scenes

To verify the effectiveness of our detection framework, we collect 14 matches (10
matches for training and 4 for testing) in FIFA World Cup 2014, and segment
them into 152 classes of actions. These actions include not only the behaviors of
players, coaches, referees and spectators, but also some specific semantic scenes
like long view, replay logo, starting line-up, etc. In particular, the presence of
long view and replay logo is the prerequisite of Play-Break rules.

Another vital property of soccer actions is that one single shot in soccer video
always contains one or more actions (including background), and this property
ensures the effectiveness of our DFD-based SBD method.

We organize the dataset named Soccer-152A in the format similar to
THUMOS 2014 [15] and UCF-101 [16].
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3.2 Shot Boundary Detection Using DFD

As mentioned in Sect. 2.3, we calculate DFD using CNNs pre-trained on Ima-
geNet and SSID respectively. For experiments, we select four matches in FIFA
World Cup 2014 and label 1248 abrupt boundaries manually. The performance
comparison of prior SBD methods and DFDs based on ResNet-50 is given in
Table 1

Table 1. Performance of DFDs comparing with prior SBD methods

Method Precision Recall F1 fps

Pixel level 60.8% 63.6% 62.1% 2.6

Histogram 70.6% 78.4% 74.2% 21.7

Perceptual Hash 71.4% 80.9% 75.8% 11.3

DFD-SSID 75.5% 86.7% 80.7% 51.6

DFD-ImageNet 81.3% 89.1% 85.0% 51.5

The results show that the DFD using Resnet-50 trained on ImageNet achieves
the best performance in shot boundary detection. Meanwhile, with the support
of GeForce Titan X GPU, our DFD method reaches a processing speed of 51
frames per second and outperforms prior methods significantly.

3.3 Action Localization in Soccer-152A

According to the distribution of action durations shown in Fig. 4, we set the
lengths of sliding window to 32, 64, 128, 256, 512, 1024 frames, and generate
proposals in 10 training videos using sliding window. Then we calculate over-
lap values of each proposal evaluated by IoU. If a proposal straddles two or
more ground truth instances, we assign the maximum of IoU and corresponding
category of the instance to the proposal.

Follow the steps described in Sect. 2.1, we select two kinds of proposals
PIoU>0.7 and PIoU<0.3 as the train samples. Firstly we train the proposal network
using PIoU>0.7 and PIoU<0.3 as positive and negative samples respectively. Then
we train the classification network with 152 categories of actions in PIoU>0.7, and
background samples in PIoU<0.3. Finally, the localization network fine-tunes on
the classification network with overlap loss function defined in Eq. 2.

The networks we use in localization are based on Caffe [17] and trained with
a Nvidia GeForce Titan X GPU. All the networks are trained with an initial
learning rate of 10−4 and a momentum of 0.9, and optimize the parameters
using stochastic gradient decent (SGD) for 15000 iterations. The results of action
localization are shown in Table 2. SW and Prop stand for initial sliding window
and background filtering by the proposal network respectively.

After action localization, we use Play-Break and 8 classes of principal actions
to perform event detection. For comparison, we implement the method in [2]



Soccer Video Event Detection and SBD via DFD 447

Fig. 4. The distribution of action durations in our dataset.

Table 2. Performance of action localization

Method Number of Proposals mAP

SW Prop tIoU=0.4 tIoU= 0.6 tIoU= 0.8

SCNN 15691 12074 0.44 0.35 0.23

DFD+SCNN 12337 10035 0.41 0.36 0.26

using Keras 1.2.2 and train the models on a dataset which contains 8 categories
of event. The performance of event detection is given in Table 3

Table 3. Performance of action Event Detection

Event Total Precision(%) Recall(%)

[2] Ours [2] Ours

Goal 13 53.8 70 71.4 76.9

Shot 41 58.8 65.2 81.6 78.4

Free kick 15 33.3 66.7 69.2 60

Penalty 2 50 100 100 100

Fault 63 79.3 71.4 83.8 90.4

Corner 19 73.6 60.8 80 84.2

Yellow/Red Card 14 42.8 60 81.8 64.2

Offside 9 44.4 66.7 58.3 77.8

4 Conclusion

We propose a novel soccer video event detection framework combining the
strength of temporal action localization and Play-Break rules. We abstract soc-
cer video highlights into 152 classes of actions, and perform action localization
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based on them using 3D convolutional networks. Then we employ PB rules to
organize the action sequences into events by means of long view and replay logo
localized by 3D ConvNets. Finally, we determine the class of events according
to the principal action which achieves the highest confidence.

To reduce the number of proposals in entire match video, we propose a shot
boundary detection method based on Deep Feature Distance to pre-trim videos
into shots, which outperforms prior SBD methods significantly and improve the
performance of proposal generation.

In this work, we use Play-Break rules as the mapping from actions to events.
In the future, we would like to use 3D convolutional networks trained in action-
level as visual encoders, and add a Recurrent Neural Network layer as a sequence
encoder to generate proposals and perform End-to-End localization in event-level
directly.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (No. 61273273).
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Abstract. Handwritten Digit Recognition (HDR) has become one of the
challenging areas of research in the field of document image processing during
the last few decades. In this paper, inspired by the success of the very deep
state-of-the-art VGGNet, we proposed VGG_No for HDR. VGG_No is fast and
reliable, which improved the classification performance effectively. Besides, this
model has also reduced the overall complexity of VGGNet. VGG_No con-
structed by thirteen convolutional layers, two max-pooling layers, and three
fully connected layers. A Cross-Validation analysis has been performed using
the 10-Fold Cross-Validation strategy, and 10-Fold classification accuracies of
99.57% and 99.69% have been obtained for ADBase database and MNIST
database, respectively. The classification performance of VGG_No is superior to
existing techniques using multi-classifiers since it has achieved better results
using very simple and homogeneous architecture.

Keywords: VGGNet � Digit recognition � ADBase � MNIST

1 Introduction

Handwritten digit recognition (HDR) is a difficult task that has been intensely studied
for many years in the field of handwritten recognition. Recognition of digits, whether
handwritten or machine typed, belongs to the field of optical character recognition
(OCR) which is one of the preliminary applications of the Pattern Recognition (PR) and
Computer Vision (CV) techniques [1]. However, HDR is a challenging problem due to
unlimited variation in shapes and sizes of handwritten digits. It has a wide variety of
applications including reading the amounts in cheque, mail sorting, reading aid for the
blind and so on. Therefore, HDR methods should be investigated with due importance.

The existing approaches of HDR can generally be divided into two groups:
Handcrafted approach and unsupervised/supervised learning approach. For the first
group, the most commonly used methods are Hidden Markov Model (HMM) [2, 3],
Support Vector Machine (SVM) [4] and Histogram of Oriented Gradient (HOG) [5].
The second group is known as the group of deep learning approaches. This approach
has acquired a reputation for solving many computer vision problems, and its
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application to the field of handwritten recognition has been shown to provide signifi-
cantly better results than traditional methods.

Arabic is one of the most spoken languages; it is the fifth most popular language in
the world [6]. About 267 million people use Arabic as their speaking and writing
purpose in their daily life. Despite this fact, past and recent works in the field of HDR
have extensively investigated on various languages, Arabic is still a mostly unexplored
field of study. The important distinction between Arabic and other languages is that
Arabic words are written from right to left. Nonetheless, digits of an Arabic number is
written from left to right [7]. A major obstacle to research on Hindi/Arabic handwritten
digit recognition is the nonexistence of benchmark databases. Unlike Latin, Previous
research was reported by databases collected in laboratory environments. While several
standard databases, such as NIST, MNIST [8] and CEDAR [9] are available for Latin
digits. Various methods have been proposed for the recognition of Arabic handwritten
digits. Al-Omari and Al-Jarrah [10] presented a recognition system for online hand-
written Arabic digit one to nine. The system skeletonizes the digits, and then geo-
metrical features of the digits are extracted. Probabilistic neural networks (PNNs) are
used for recognition. The developed system is translation, rotation, and scaling
invariant. Abdelazeem [11] studied the performance of a different set of classifiers for
Arabic digit recognition. Some different features were used, and various combinations
of features and classifiers were investigated. Gradient features with SVM (RBF kernel)
gave the best results of 99.48% for the ADBase database. Parvez and Mahmoud [12]
used a polygonal approximation of character contour and a classifier based on turning
functions for isolated Arabic alphanumeric character recognition. The authors obtained
over 97% accuracy for the ADBase database for Arabic digits.

Recently, Deep Neural Networks (DNN) has achieved great success for object
recognition, and several successful architectures were proposed for image classification
such as Alex net [13] and GoogLeNet [14]. In 2014, Simonyan and Zissermaanother
presented VGGNet [15]. VGGNet is a very deep architecture has achieved a high
classification accuracy of the massive Imagenet database [16]. However, this network
has a high number of parameters compared to other Deep Convolutional Neural Net-
works (DCNN), which makes it computationally more expensive to evaluate and
requires a significant amount of memory for optimizing the learning parameters.

In this paper, inspired by the success of VGGNet, we proposed VGG_NO for
Hindi/Arabic HDR. VGG_NO is straightforward to implement and shows effectiveness
in improving classification performance. Moreover, it reduces the overall complexity of
VGGNet while keeping the same excellent performance of the net. To improve the
generalization capability of the VGG_No, the dropout regularization method is
adopted. A Cross-Validation analysis has also been performed, and a 10-Fold classi-
fication accuracy of 99.57% has been obtained from the ADBase database [17]. We
also VGG_No on the MNIST handwritten digit database, and a 10-Fold classification
accuracy of 99.69% has been obtained.

The remainder of the paper consists of the following. Section 2 gives an overview
of standard VGGNet and our proposed VGG_NO. Section 3 describes the databases
used and our training scheme, and in Sect. 4 we report on results. Finally, conclusion
and future work are drawn in Sect. 5.
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2 Offline Handwritten Digit Recognition

In this section, we briefly summarize standard VGGnet. We then describe our proposed
VGG_No for offline handwritten digit recognition.

2.1 VGGNet Architecture

The VGGnet [15] created by Simonyan and Zisserman presents a very deep, very
simple and homogeneous architecture. In VGGNet, a given image is passed through a
stack of convolutional layers; the filters are generally with size: 3 � 3. The stride and
the spatial padding are both fixed to 1 pixel. The width of convolutional layers starts
from 64 to 512. Max pooling layers are followed some of the convolutional layers.

Max pooling is performed over a 2 � 2 pixel window, with stride 2. Finally, three
Fully-Connected (FC) layers follow the stack of convolutional layers: the first two have
4096 channels each, the third contains 1000 channels. The final layer is the softmax
layer. All convolutional layers are equipped with the rectified function (Relu), which is
formulated by:

f xð Þ ¼ max 0; xf g ð1Þ

where x denotes a feature value produced over the former layer. The architectures of
VGG_16 is shown in Fig. 1.

(224*224) Input image

(224*224*64) CON1_1

(224*224*64) CON1_2

(112*112*128) CON2_1

(112*112*128) CON2_2

Maxpool

Maxpool

(56*56*256) CON3_1

(56*56*256) CON3_2

(56*56*256) CON3_3

Maxpool

(28*28*512) CON4_1

(28*28*512) CON4_2

(28*28*512) CON4_3

(14*14*512) CON5_1

(14*14*512) CON5_2

(14*14*512) CON5_3

(1*1*4096) FC6

(1*1*4096) FC7

Maxpool

(1*1*1000) FC8

Soft MaxMaxpool

Fig. 1. The VGG_16 architecture. The number in brackets indicates the number of nodes within
a layer of the neural network. CON = convolutional layer, FC = fully connected layer
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2.2 VGG_NO

In this section, we introduce our proposed architecture that improves the recognition
performance of the given databases. The architecture of the VGG_No is shown in
Fig. 2. VGG_No follows the standard model of VGGNet, which contains 16 layers
with some differences. The filters numbers divided by factor of 8 throughout the
network. The filters numbers in a convolutional layer set to 8, 16, 32, and 64 and the
first two fully connected layers set to 512. Since the original VGGNet was trained on
1000 classes, its last fully connected layer produces 1000 outputs. We replace this layer
with a new fully connected layer that has as many outputs as the number of classes
(10 for the ADBase database). The final layer is the soft-max layer.

The important issue in VGG_No design is the selection of input image size. When
the image size is set to 28 � 28, the complexity of the network is very low. However,
there are several drawbacks, which cannot be ignored using this setting. In one hand,
the max-pooling layers have significance to the performance of a deep network. Max
pooling partitions the input image into a set of non-overlapping rectangles and, for each
such sub-region, outputs the maximum value. It leads to faster convergence rate by
selecting superior invariant features, which improve generalization performance. When
the image size is 28 � 28, the number of max-pooling layers is hard to determine.
However, after several experiments, we kept the fourth and the fifth max-pooling layer
and discarded the first three. On the other hand, if we want to remove all the
max-pooling layers, the deep model size will be very large since the number of weights
in fully connected layers increases significantly. The number of parameters of the
VGG_No is very low compared to the number of parameters of standard VGG_16
when applied to binary images. In Table 1 we report the number of parameters for each
network configuration. In spite of a large depth, the number of parameters in our
networks is around 2 million while VGG_16 is higher than 138 million.

(28*28) Input image

(28*28*8) Con1_1

(28*28*8) Con1_2

(28*28*16) Con2_1

(28*28*16) Con2_2

(28*28*32) Con3_1

(28*28*32) Con3_2

(28*28*32) Con3_3

(28*28*64) Con4_1

(28*28*64) Con4_2

(28*28*64) Con4_3

(14*14*64) Con5_1

(14*14*64) Con5_2

(14*14*64) Con5_3

(1*1*512) Fc6

(1*1*512) Fc7

Maxpool

(1*1*10) Fc8

Soft Max

Maxpool

Fig. 2. The architecture of VGG_NO. The number in brackets indicates the number of nodes
within a layer of the neural network. CON = convolutional layer, FC = fully connected layer
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3 Experiments Setup

3.1 Databases

ADBase database. The ADBase is composed of 70,000 digits written by 700 par-
ticipants. Each participant wrote each digit (from ‘0’ to ‘9’) ten times. The database is
partitioned into two sets: a training set (60,000 digits to 6,000 images per class) and a
test set (10,000 digits to 1,000 images per class). This database is available on the
website [17]. Sample images of digits from the ADBase database is shown in Fig. 3.

MNIST database. The MNIST digit database is composed of 60,000 images of 10
digit classes in the training set and 10,000 digit images in the test set for 70,000 images
in the database. The spatial resolution of the images is 28 � 28 pixels, and all images
are grayscale images. This database is available at the website maintained by Lecun
et al. at [18]. Sample images of digits from the MNIST database is shown in Fig. 4.

3.2 Training

The architecture of VGG_NO is composed of 13 convolution layers and two
max-pooling layers. The layer 10 and layer 13 are followed by a max-pooling layer,
with a pooling size of 2 � 2 and a stride of 2 pixels. The receptive field of each
convolutional layer is 3 � 3. The convolution stride is fixed to 1 pixel; the spatial
padding of convolution layer input is such that the spatial resolution is preserved after
convolution. Three Fully-Connected (FC) layers follow the stack of convolutional
layers: the first two have 512 channels each. Since the original VGG net was trained on
1000 classes, its last fully connected layer produces 1000 outputs. We replace this layer
with a new fully connected layer that has as many outputs as the number of classes
(10 for the ADBase and MNIST databases). The final layer is the soft-max layer.

Table 1. Number of parameters

Network VGG_16 VGG_No
Number of parameters 138,357,544 2,104,354

Arabic digit 1 2 3 4 5 6 7 8 9 0

English digit 1 2 3 4 5 6 7 8 9 0

Image

Fig. 3. Sample images of digits (0–9) from the ADBase database.
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The training is carried out by using Adam optimization algorithm. Adam is a
first-order gradient-based algorithm, developed for the optimization of stochastic
objective functions with adaptive weight updates based on lower-order moments.
Adam optimizer has four parameters: one is the learning rate, exponential decay rates
(beta_1) for the moving averages of the gradient, the squared gradient (beta_2) and the
smoothing term (epsilon). After related experiments, we left the parameters to their
default values, learning rate equal to 0.001, decay rates equal to 0.9, the squared
gradient was equal to 0.999 and the smoothing term was equal to 1e-08.. The batch size
was set to 256 and the momentum to 0.9. The training was regularized with the weight
of 5 � 10−4 and dropout regularization for the first two fully-connected layers (dropout
ratio set to 0.5).The type of nonlinearity used is Rectified Linear Unit (ReLU).
VGG_NO was trained for 30 epochs. The whole training procedure for a single net-
work took at most 3 h on a desktop PC with an Intel i7 3770 processor, a NVidia
GTX780 graphics card and 16 GB of onboard RAM.

4 Results

To determine the performance of VGG_NO, we have conducted a large number of
experiments. The k-Fold cross-validation methodology has been used to determine the
classification performance of VGG_NO. The classifier performance has been measured
regarding Classification Accuracy.

4.1 Performance of the VGG_NO on the k-Fold Cross Validation (CV)

Cross validation is a technique by which we split our training data into complementary
subset to then conduct analysis and validation on different sets, aiming to reduce
over-fitting and increase out-of-sample performance. To obtain the k-Fold cross-
validation performance, the available training Set and test Set are first concatenated to
get an overall dataset of 70,000 digit images. We then performed a 3-fold, 5-fold, and
10-fold cross-validation and got classification performance averaged over each fold. In
the 10-fold cross-validation strategy, the available database is divided into 10-folds

Fig. 4. Sample images of digits (0–9) from the MNIST database.
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with nine folds used for training and the remaining 10th fold used for testing. The
process is repeated for all ten folds in turn, and the performance is averaged over the
ten folds.

To improve the generalization capability of the VGG_No, the fully connected
layers is regularized by 0.5 dropout ratio. Dropout consists of setting to zero the output
of each hidden neuron with probability 0.5. If the neurons in CNN are dropped out,
they do not contribute to the forward pass and do not participate in back propagation.
During testing, we use all the neurons but multiply their outputs by 0.5. However,
VGG_No suffered slightly from overfitting even it dropped out values for the fully
connected layers. During training, the dropout with probability 0.5 is added to the fully
connected layers and the two Max pool layers. The final training and k-fold
cross-validation accuracies are reported in Table 2. We evaluate the performance
without dropout and with dropout: Overall, without dropout, 3-fold, 5-fold and 10-fold
classification accuracies of 98.33%, 98.47%, and 98.80% have been achieved for the
ADBase database, and 99.47%, 99.49%, and 99.53% have been achieved for the
MNIST database. Figure 5 displays the classification accuracy attained by a VGG_NO
on the training and cross-validation data without dropout at different training epochs.
With dropout, the accuracy of the network increases, a 3-fold, 5-fold and 10-fold
classification accuracies of 99.13%, 99.34%, and 99.57% have been obtained for the
ADBase database, and 99.55%, 99.61%, and 99.69% have been obtained for the
MNIST database. Figure 6 displays the classification accuracies attained by a
VGG_NO on the training and cross validation data with dropout at different training
epochs.

4.2 Performance Comparison with State-of-the-Art

Unlike Latin, the task of Arabic handwritten digits recognition suffers from the lack of
benchmarking database. To the best of our knowledge, this is the first work incorporate
deep learning approach for recognizing ADBase database digits. In this subsection, to
evaluate the effect of our proposed deep model, we compared the performance of the
model with those used ADBase database. Our classification accuracy achieved 99.57%
(0.43% of error rate). Table 3 compares the classification accuracy of different methods
on ADBase database. Particularly, our best performance is noticeably higher than the
result achieved by other methods. From Table 3 the work of Abdelazeem et al. [11]
have reached recognition accuracy near to ours (i.e., greater than 99% recognition
accuracy). However, this result is obtained by using ensemble methods of RBF kernal
and SVM. In contrast, our model is quite simple and generic to apply so it may also
work well with handwritten characters such as Latin or Arabic characters. We achieved

Table 2. Top-k accuracy on ADBase and MNIST database.

Database Top-3 (%) Top-5 (%) Top-10 (%)
NO dropout Dropout NO dropout Dropout NO dropout Dropout

ADBase 98.33 99.13 98.47 99.34 98.80 99.57
MNIST 99.47 99.55 99.49 99.61 99.53 99.69
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of 99.69% recognition rate (0.31% of error rate) on the MNIST benchmark database.
The homepage of the MNIST database lists the best performances on their database
achieved by various methods [18]. The lowest error rate on the list is 0.23% obtained
by [19]. The best result was obtained by committees of many DCNNs, not by single
classifiers.

Fig. 5. Training vs. cross validation accuracies for ADBase database and MNIST database
without dropout

Fig. 6. Training vs. cross validation accuracies for ADBase database and MNIST database with
dropout

Table 3. Comparison regarding classification accuracy between our model (highlighted) and the
state-of-the-art methods on ADBase

Author(s) Method Accuracy (%)

Parvez et al. [12] Fuzzy turning function 97.17%
Abdelazeem et al. [11] SVM with RBF kernal 99.48%
Proposed VGG_NO 99.57%
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5 Conclusion

In this paper, we proposed VGG_No net for Hindi/Arabic handwritten digit recognition
task. VGG_No is an optimized version of the very popular VGGNet. We show
incremental improvements of the digits recognition comparable to approaches used
Support Vector Machine (SVM) or Fuzzy Logic (FL). VGG_No improved the clas-
sification accuracy and reduced the overall complexity of VGGNet by factor 8. We
evaluated our network on two databases. We achieved very promising results with
validation accuracy of 99.57% (error rate of 0.43%) using dropout regularization
technique. As a future work, we plan to experiment the various VGGNet architectures
(VGG_11, VGG_13, and VGG_19) on Arabic handwritten digits, characters and words
recognition.
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Abstract. It is usually difficult to find datasets of sufficient size to train
Deep Convolutional Neural Networks (DCNNs) from scratch. In practice,
a neural network is often pre-trained on a very large source dataset. Then,
a target dataset is transferred onto the neural network. This approach
is a form of transfer learning, and allows very deep networks to achieve
outstanding performance even when a small target dataset is available.
It is thought that the bottom layers of the pre-trained network contain
general information, which are applicable to different datasets and tasks,
while the upper layers of the pre-trained network contain abstract infor-
mation relevant to a specific dataset and task. While studies have been
conducted on the fine-tuning of these layers, the removal of these layers
have not yet been considered. This paper explores the effect of removing
the upper convolutional layers of a pre-trained network. We empirically
investigated whether removing upper layers of a deep pre-trained network
can improve performance for transfer learning. We found that removing
upper pre-trained layers gives a significant boost in performance, but
the ideal number of layers to remove depends on the dataset. We sug-
gest removing pre-trained convolutional layers when applying transfer
learning on off-the-shelf pre-trained DCNNs. The ideal number of layers
to remove will depend on the dataset, and remain as a parameter to be
tuned.

Keywords: Convolutional neural networks · Transfer learning · Deep
learning

1 Introduction

Deep Convolutional Neural Networks (DCNNs) have achieved great success in
large-scale image recognition. This success is partially due to the availability
of large public image databases, such as ImageNet [5]. The ImageNet dataset
contains over 1.2 million labeled images, belonging to a thousand distinct object
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 460–469, 2017.
https://doi.org/10.1007/978-3-319-70096-0_48
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classes. However, data acquisition can often be difficult, and obtaining high-
quality annotation may be costly. For many specific areas, no large scale database
similar to ImageNet exists. For example, the unavailability of labeled medical
data is a hindrance for greater use of DCNNs in medical imaging tasks [14].

Transfer learning [2–4] is an increasingly popular approach to alleviate the
problem of insufficient training data. This approach generally involves pre-
training [7,13,19] a DCNN with a very large source dataset. Then, a smaller
target dataset is “transferred” onto the pre-trained DCNN. This approach has
allowed deep networks, such as GoogLeNet [17], and VGGNet [15] to achieve
impressive results [6,11] for image detection and classification tasks, even when
very little data is provided.

Research has been conducted on the transferability of features during trans-
fer learning [18]. The lower layers of the DCNN contain more general features,
while upper layers contain more specific information about the source dataset.
In particular, the first layer contains features resembling Gabor filters and colour
blobs [18]. The transferability of features decreases significantly in higher lay-
ers, as there are discrepancies between the domains of the source and target
datasets. In other words, the features contained in the higher layers of a pre-
trained DCNN depend relatively heavily on the source dataset and task it has
been trained on, and may be less useful when transferred to a new task. An
approach often employed is to only retain pre-trained features up to a cer-
tain layer, and re-train layers above the chosen layer from randomised weights.
Empirical results [18] show that having pre-trained upper layers performs bet-
ter than having randomised upper layers, if a fine-tuning process is undertaken
after the initial transfer. However, the effect of completely removing the upper
convolutional layers from pre-trained DCNNs before applying the transfer, has
not been considered nor investigated. To the best of our knowledge, there cur-
rently exists no framework or approach that utilises layer removal on off-the-shelf
pre-trained architectures to improve performance.

As pre-training a DCNN on a large source dataset may be very time-
consuming and hardware-demanding, off-the-shelf pre-trained DCNNs [12] are
often used in transfer learning. These off-the-shelf DCNNs are publicly available,
and have weights pre-trained on ImageNet. The availability of pre-trained off-the-
shelf DCNNs have allowed transfer learning to be applied widely. Many previous
studies done on specific tasks [9,10,14] involve transferring small target datasets
onto pre-trained off-the-shelf DCNNs. However, these attempts focused on select-
ing the best off-the-shelf pre-trained model for a specific problem, with no mod-
ifications to the pre-trained convolutional layers of the off-the-shelf model. The
results in this paper show that modifying, in particular removing, a certain num-
ber of convolutional layers will improve the performance of transfer learning.
Removing convolutional layers will retain the pre-trained weights in the remain-
ing layers, and not require any extra training on a source dataset. Hence, this
option provides an efficient way to increase performance for transfer learning on
off-the-shelf pre-trained models.
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In this paper, we make the following contributions:

1. We suggest an efficient procedure that enhances performance, when applying
transfer learning: to remove a suitable number of upper convolutional layers,
before applying transfer learning to an off-the-shelf pre-trained model. The
ideal number of layers to remove will depend on the dataset, and remain as
a parameter to be tuned.

2. We demonstrate that removing upper pre-trained convolutional layers can
improve the performance of transfer learning on off-the-shelf pre-trained
architectures. This result is unintuitive, as results from Yosinski et al. [18]
suggest that networks with fine-tuned pre-trained upper convolutional lay-
ers outperform those containing upper convolutional layers re-trained from
randomised weights.

3. We perform transfer learning on over ten different convolutional neural net-
works, each with a different number of layers removed or with no layers
removed, derived from an off-the-shelf pre-trained architecture. The trends
of how the performance of the networks change, as the number of layers
removed changes, are investigated.

2 Approach

2.1 Creating Different Networks by Removing Layers

Yosinski et al. [18] showed that for an eight layer CNN, having any number of
upper convolutional layers with randomised weights in a pre-trained network
results in worse performance than a network with pre-trained weights in all
convolutional layers. However, although the approach of re-training these upper
layers have been considered, there has yet to be any study that has looked into
completely removing these upper layers. There have also not been any attempts
to enhance performance by removing pre-trained convolutional layers. In this
paper, we focus on investigating the effect of the removal of upper convolutional
layers. In particular, we are interested in seeing whether we can significantly
surpass naively applying transfer learning to a pre-trained model, by simply
removing these upper convolutional layers.

We base our experiments on an off-the-shelf VGGNet-16 architecture.
VGGNet-16 uses very small (3 × 3) convolutional filters, and contains 16
weighted layers, of which the lower 13 are convolutional layers. Convolutional
layers in the model are assembled into blocks, with a maxpooling layer after each
block. We replace the upper fully connected dense layers, with a global average
pooling layer followed by two fully connected dense layers and a dropout layer
[16] sandwiched between fully connected layers. The maxpooling layers associ-
ated with specific convolutional layers remain untouched. Other networks will
be derived from this architecture by removing convolutional layers.

Using the popular off-the-shelf VGGNet architecture with weights pre-trained
on ImageNet, we remove the upper-most convolutional layers, layer by layer.
A different CNN is created every time a convolutional layer is removed from
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the top. In total, twelve networks are created. The deepest network contains
13 convolutional layers and the most shallow contains 2. Each network has 2
fully-connected layers on top of the convolutional layers. The uppermost fully-
connected layer contains as many neurons as the number of classes in the tar-
get dataset. The fully-connected layers have randomised initial weights. A soft-
max activation function is used to output the predictions. A dropout layer with
dropout probability 0.5 is also added between the two fully-connected layers.
All of the convolutional layers in each network contain weights pre-trained on
ImageNet.

2.2 Details on Transferring

Transfer learning is applied to the different networks we have derived. Transfer-
ring includes training on fixed features and fine-tuning. They are done in the
following manner:

1. Training fully connected layers with features extracted from fixed
convolutional layers: The fully connected layers in each network have ran-
domly initialised weights. We freeze the convolutional layers of the networks,
and only train the fully connected layers using our training data. The top
fully-connected layers are used for classification, these layers are trained on
the features extracted from the fixed convolutional layers.

2. Fine-tuning all the layers: The convolutional layers of each network are
then un-frozen, and the entire network is fine-tuned on the training data. This
involves re-training the CNN, starting from the retained weights, and using
a very small step size. In our experiments, the step size used for fine-tuning
was 1000 times smaller than that used to exclusively train the fully connected
layers.

2.3 Datasets

We apply transfer learning on each different pre-trained network. Two different
benchmark datasets were used.

The datasets used in our experiments are the CIFAR-10 [1] dataset and
the Flowers dataset. The CIFAR-10 dataset includes coloured images belonging
to 10 classes (Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship,
Truck), each of which contains 5000 images for training, and 1000 images for
testing. All of the images in the CIFAR-10 dataset are of size 32 × 32 pixels.
The Flowers dataset was released with the Tensorflow deep learning library.
The Flowers dataset includes images from 5 classes (Daisy, Dandelion, Rose,
Sunflower, Tulip), with each containing over 600 images. The images in the
Flowers dataset are not of uniform size, and have different aspect ratios. We
randomly split the dataset into a training set and testing set, adhering to an
8:2 ratio. Data augmentation is performed by zooming into the images by a
factor 0.2, and horizontally flipping them. Data augmentation is done randomly
on-line.
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2.4 Training Details

During the training fully connected layers with features from fixed convolutional
layers, a Stochastic Gradient Descent (SGD) optimiser with a step size 0.01 is
used to train the data in batches of 128. The loss function is cross entropy. During
fine-tuning, a SGD optimiser with a step size of 0.00001 is used to train the data
in batches of 128. All of the images used for training and testing are resized
to 224 × 224 pixels, in accordance to the size of the input layer of VGGNet.
The classification accuracy of each network is tested using the testing data, and
recorded at each training epoch.

We train the Flowers dataset for 40 epochs in total. The convolutional layers
are frozen in the first 20 epochs, and the fine-tuning of the entire network occurs
in epochs 21–40. We train the CIFAR-10 dataset for 80 epochs in total. The
convolutional layers are frozen in the first 40 epochs, and the fine-tuning of the
entire network occurs in epochs 41–80.

3 Results

3.1 Performance of Each Network

We apply transfer learning, starting from the network with the most convolu-
tional layers to that with the fewest. We stop when a sufficiently large drop in
performance is observed in the network with the fewest pre-trained convolutional
layer relative to that of the previous.

The top-1 testing classification accuracies of the different models, at each
epoch of training, are shown in Figs. 2 and 3. The final top-1 classification accu-
racies for the networks, each with a different number of convolutional layers, are
presented in Figs. 1 and 4.

4 Discussion

4.1 The Effect of Removing Upper Convolutional Layers

The experiments conducted on pre-trained networks of different layers show that
the performance of the network after transfer learning generally increases when
pre-trained convolutional layers are removed. Accuracy on CIFAR-10 dataset
may be affected by the up-sizing of CIFAR-10 images of size 32 × 32 to the
VGGNet input size of 224 × 224. Our experiments on the CIFAR-10 dataset
show that the classification accuracy of the network with one convolutional
layer removed is 87.43%. This represents a roughly 2% increase of the perfor-
mance of transferring to a vanilla off-the-shelf pre-trained VGGNet (85.57%
accuracy). Further improvements in performance, of up to nearly 10%, occurs
when more convolutional layers are taken away. Similar effects can be observed in
the experiments on the Flowers dataset. The off-the-shelf pre-trained VGGNet,
with no upper convolutional layers removed, can achieve a classification accuracy
of around 84.76% on the Flowers dataset. After two upper convolutional layers
have been removed, the accuracy rises up to over 90.61%.
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Fig. 1. Final testing accuracies of different models on the Flowers dataset

Fig. 2. Testing accuracies of different models during training on the Flowers dataset
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Fig. 3. Testing accuracies of different models during training on the CIFAR-10 dataset

Fig. 4. Final testing accuracies of different models on the CIFAR-10 dataset



Layer Removal for Transfer Learning 467

4.2 Trends in the Removal of Upper Convolutional Layers

The final accuracies of the networks that have been transferred, using the Flowers
dataset, as shown in Fig. 1, gradually increase up to the network with 6 convo-
lutional layers. The performance of the network with 5 convolutional layers is
comparable to the one with 6. However, upon taking away another convolu-
tional layer, the performance worsens rapidly. As shown in Fig. 2, the testing
accuracy of the 4 convolutional layer network, during training, exhibited mas-
sive fluctuates, indicating instability. This points to the existence of a limit to
how many layers can be removed. If we remove pre-trained convolutional layers
beyond this limit, important information that is useful for the classification task
becomes lost, and performance decreases.

As shown in Fig. 4, the final accuracies of the networks with CIFAR-10 as
the target dataset gradually increase up to the network with 4 convolutional
layers. The network with 3 convolutional layers performs similarly to that with
4 convolutional layers. However, the performance drops when another convolu-
tional layer is removed. Looking at the testing accuracies of the networks while
training, shown in Fig. 3, none of the models exhibit the unsteadiness found in
the experiment on the Flowers dataset. Nevertheless, the existence of a limit, at
which performance cannot be further improved by layer removal is evident.

We can also see that the marginal improvement in performance is more signif-
icant when the upper convolutional layers are removed. For the Flowers dataset,
the boost in accuracy from removing convolutional layers 11–13 (the top 3 convo-
lutional layers) is much more marked than that resulting from further removing
convolutional layers 6–10. Similarly, for the CIFAR-10 dataset, removal of convo-
lutional layers 11–13 (the top 3 convolutional layers) causes the greatest perfor-
mance enhancement. This observation corroborates with the results of Yosinski
et al., suggesting that the upper convolutional layers are less transferable.

4.3 Recommendations for Applying Transfer Learning to
Off-the-shelf Pre-trained DCNNs

The networks with the best performance on the benchmark datasets are rela-
tively shallow. This suggests that the suitable depth of the architecture used
for transfer learning on small datasets may not be very deep. Very significant
improvements have been observed upon removing convolutional layers for trans-
fer learning, using both benchmark datasets tested. By simply using the bottom 3
convolutional layers of VGGNet, we achieved a classification accuracy of 94.26%,
comparable to the state-of-the-art performance of 96.53% [8]. It is likely perfor-
mance improvements in transfer learning, achieved by removing convolutional
layers, also apply to many other datasets of similar size and nature. Potential
performance benefits can be gained with little trade-off, as removing upper con-
volutional layers before applying transfer learning is not a time-consuming nor
cumbersome task.

Comparisons between the experiments on the two datasets show that the
most suitable number of layers to remove before applying transfer on each dataset
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is different, and depends on the nature of the dataset. The best performance on
the Flowers dataset occurred when 6 convolutional layers remain, while the best
performance for CIFAR-10 occurred when 3 convolutional layers remain. Hence,
it may be useful to set the number of layers to remove from an off-the-shelf
pre-trained architecture as a tunable parameter.

It should also be noted that networks with more convolutional layers removed
from off-the-shelf architectures tend to reach steady-state in less epochs, as
shown in Fig. 2. Therefore, in practice, we can apply transfer learning to the
networks with fewer layers for a few number of epochs.

5 Conclusion

We have investigated the effect of removing convolutional layers of pre-trained
DCNNs, when using transfer learning. In particular, we have conducted exper-
iments on two benchmark datasets, the CIFAR-10 dataset and the Flowers
dataset. Performance was found to improve when upper convolutional layers
were removed from an off-the-shelf pre-trained model. An improvement of up to
nearly 10% in classification accuracy could be achieved by reducing the number
of convolutional layers in the pre-trained model.

We also observed that the number of layers was negatively correlated to per-
formance, up to a given limit. Removal of the uppermost layers had a greater
marginal improvement to accuracy than removing the middle convolutional lay-
ers.

Many studies have achieved outstanding results by applying transfer learning
to off-the-shelf pre-trained DCNNs [9,10,14], without any alteration. Our results
suggest that performance improvements are likely to occur if layer removals are
performed on off-the-shelf pre-trained DCNNs. Furthermore, the ideal number
of convolutional layers to remove varies with the dataset. Therefore, we propose
the procedure of removing a suitable number of pre-trained convolutional layers
before performing transfer learning on off-the-shelf DCNNs. As the most suitable
number of layers to remove varies, the number of pre-trained layers to remove
before transferring should be left as a parameter to tune.
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Abstract. The ConditionaL Neural Networks (CLNN) and the Masked
ConditionaL Neural Networks (MCLNN) exploit the nature of multi-
dimensional temporal signals. The CLNN captures the conditional tem-
poral influence between the frames in a window and the mask in the
MCLNN enforces a systematic sparseness that follows a filterbank-like
pattern over the network links. The mask induces the network to learn
about time-frequency representations in bands, allowing the network to
sustain frequency shifts. Additionally, the mask in the MCLNN auto-
mates the exploration of a range of feature combinations, usually done
through an exhaustive manual search. We have evaluated the MCLNN
performance using the Ballroom and Homburg datasets of music genres.
MCLNN have achieved accuracies that are competitive to state-of-the-
art handcrafted attempts in addition to models based on Convolutional
Neural Networks.

Keywords: ConditionaL Neural Networks (CLNN) · Masked Con-
ditionaL Neural Networks (MCLNN) · Conditional Restricted Boltz-
mann Machine (CRBM) · Deep Belief Nets (DBN) · Music Information
Retrieval (MIR)

1 Introduction

Automating the feature extraction is currently an active research field aiming
to learn enhanced representations directly from the raw data rather than hand-
crafting them. Neural Network based architectures have been used in this regard
for image recognition [13] and sound [1]. The adoption of these architectures
to sound recognition usually occurs after they gain wide acceptance in other
application domains such as image recognition. For example, stacked Restricted
Boltzmann Machines (RBM) [5] forming a Deep Belief Net (DBN) [9] to extract
features were initially introduced to showcase the capability of these stacked gen-
erative layers to be used as a dimensionality reduction technique when applied
on images of handwritten digits. Later, Hamel et al. [8] trained a DBN of three
RBM layers over frames of a spectrogram to extract abstract representations
from music files that were classified using a Support Vector Machine (SVM) [37]
for a music genre classification task. Convolutional Neural Networks (CNN) as

c© Springer International Publishing AG 2017
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well were initially introduced in the work of LeCun et al. [14] for images, and
later attempts followed to use it for sound [11,28,30].

Despite the success of these architectures for images, they are not designed to
exploit the time-frequency representation of sound efficiently. For example, DBNs
ignore the inter-frames relation by treating a spectrogram’s frame in isolation
from neighboring frames, and CNNs depend on weight sharing, which does not
preserve the spatial locality of the learned features.

The ConditionaL Neural Networks (CLNN) [20] and the Masked ConditionaL
Neural Networks (MCLNN) [20] are designed to preserve the spatial locality of
the learned features, where there is a dedicated link for every feature in a feature
vector compared to the weight sharing using the CNN. The CLNN preserve the
temporal relation between the frames by considering a window rather than the
isolated frame used in the RBM, and the mask in the MCLNN enforces a sys-
tematic sparseness over the network’s links. The mask design follows a band-like
pattern, which allows the network to be frequency shift-invariant mimicking a
filterbank. Additionally, the mask explores several feature combinations concur-
rently analogous to handcrafting the optimum combination of features through
a mix-and-match operation, while preserving the spatial locality of the features.

2 Related Models

The Conditional Restricted Boltzmann Machine (CRBM) [35] by Taylor et al.
extended the RBM to the temporal dimension to allow an RBM to learn about a
temporal window of frames rather than being trained on static bag-of-frames. To
fulfill this aim, the CRBM adapted conditional links to capture the influence of
the previous frames on the current one. Figure 1 shows a CRBM layer, where the
normal RBM is represented with the bidirectional connections Ŵ going across
the visible vector v̂0 and the hidden nodes ĥ. The B̂ links in the figure represent
the conditional links from the previous visible vectors (v̂−1, v̂−2, ..., v̂−n) to the
hidden layer ĥ. Similarly, the Â links capture the autoregressive relation from
the previous visible vectors to the current one v̂0. Layers of a CRBM can be
stacked over each other similar to a DBN, where Taylor et al. trained a CRBM
to model the human motion over a multichannel signal of human joints activity.
Mohamed et al. [22] extended the CRBM with the Interpolating Conditional
Restricted Boltzmann Machine (ICRBM), which showed an enhanced perfor-
mance by including the influence of the future frames in addition to the past
ones for phoneme recognition. The work of Battenberg et al. [3] was another
attempt to use the CRBM for sound, where they used the CRBM to analyze
drum patterns.

Similar modifications were introduced to the CNN to fit the time-frequency
representation. The CNN architecture, shown in Fig. 2, is based on the two
primary operations: convolution and pooling. The convolution operation scans
the 2-dimensional representation with a small weight matrix (or filter), e.g. 5×5,
where a form of a weighted sum is generated from the element-wise multiplication
between the filter and the region of the image being scanned. The output of each
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Fig. 1. Conditional RBM Fig. 2. Convolutional neural network

step of the filter is a scalar value positioned in a new representation of the image
known as the feature map. The convolutional layer generates several feature
maps. The number of feature maps matches the number of filters used. Mean or
max pooling follows the convolution to reduce the resolution of the feature maps.
These two operations are consecutively repeated to form a deep architecture
of a CNN, where the output of the final layer is flattened to a single feature
vector to be fed to a fully connected neural network for the final classification.
CNN depends on weight sharing, which performs well in favor of large images
without the need to have a dedicated weight going across each pixel and the
network’s hidden layer. Weight sharing does not preserve the spatial locality of
the learned features, which is practical for images, but not for time-frequency
representation. This is related to the influence of the location of the detected
feature at a specific frequency as a property to distinguish between sounds.
The work of Abdel-Hamid et al. [1] approached this problem by redesigning the
convolutional filters to operate over bands. Another attempt was in [28], where
they proposed using separate filters to convolve each of the time and frequency
dimensions separately combined in the same model.

The Masked ConditionaL Neural Network (MCLNN) was introduced in [20]
with an analysis of the influence of the data split on model accuracy. In this work,
we further evaluate the MCLNN performance on the music genre classification
task.

3 Conditional Neural Networks

The ConditionaL Neural Network (CLNN) [20] is a discriminative model
that extends from the generative Conditional Restricted Boltzmann Machine
(CRBM) [35] discussed earlier. The CLNN adapts the conditional previous visi-
ble to hidden links proposed in the CRBM, and it further extends the connections
to the future frames as presented in the ICRBM [22].

The CLNN is formed of a vector shaped hidden layer, similar to a conven-
tional multi-layer perceptron, having e dimensions. The input layer accepts a
number of frames in a window of size d, where the window’s middle frame is
conditioned on the past and future frames. The width of the window follows (1)

d = 2n + 1, n ≥ 1 (1)
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where the 1 refers to the window’s central frame and the n frames refer to the
neighboring frames to the middle one (2 is to account for the past and future
directions). There are dense connections between each vector in the input window
and the hidden layer. Accordingly, there are 2n + 1 weight matrices forming a
tensor. The weight tensor dimensions are [feature vector length l, hidden layer
width e, window’s depth d ]. Each vector of length l in the input window of size
d has a corresponding dedicated weight matrix in the weight tensor. The new
vectors generated from the vector-matrix multiplication between each feature
vector and its corresponding weight matrix are summed together feature-wise
before applying a nonlinear transformation. The activation of a hidden node is
given in (2)

yj, t = f

(
bj +

n∑
u=−n

l∑
i=1

xi, u+t Wi, j, u

)
(2)

where yj, t is the activation at node j of the hidden layer for the window’s middle
frame at index t of the segment. The segment, discussed later in detail, is a chunk
of frames of a minimum size equal to the window. f is the transfer function and
bj is the bias at the jth node. xi, u+t is the ith feature of the feature vector x. u
refers to the index within the window and t refers to the window’s middle frame
(having u = 0 in the window), which is at the same time the index of the middle
frame in the input segment. Wi, j, u is the weight between the ith feature of the
vector at position u in the window and the jth neuron in the hidden layer. u is
the index of a frame in the window and also the index of its corresponding weight
matrix in the weight tensor. The hidden layer activation can be reformulated in
a vector form in (3).

ŷt = f

(
b̂ +

n∑
u=−n

x̂u+t · Ŵu

)
(3)

where the hidden layer activation vector ŷ for the window’s middle frame
xt conditioned on the n neighboring frames in either direction is given by the
transfer function f , the bias vector b̂ and the vector − matrix multiplication
between the feature vector x̂u at index u and its corresponding weight matrix
Ŵu at the same index. The number of matrices in the weight tensor is equal
to 2n + 1 matching the number of frames in the window, where each frame is
processed by its dedicated matrix. The conditional distribution is formulated
in p(ŷt|x̂−n+t, ..., x̂−1+t, x̂t, x̂1+t, ..., x̂n+t) = σ(...), where σ is a logistic function
such as a Sigmoid or the output layer Softmax.

Figure 3 shows two CLNN layers of order n = 1 followed by a global pooling
layer [17] that aggregates the features over k extra frames before feeding them
to a fully connected network for classification. Each CLNN layer consumes 2n
frames generating a fewer number of frames. Accordingly, a CLNN is trained
over segments of size following (4)

q = (2n)m + k, n, m and k ≥ 1 (4)
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Fig. 3. Two CLNN layers with n = 1.

where q is the segment size, the order n is for the number of frames in a single
direction (the 2 is for the past and future frames), m is the number of layers,
and k is for the extra frames to be pooled across beyond the CLNN layers. For
example, at n = 4, m = 3 and k = 5, a segment of size (2 × 4) × 3 + 5 = 29
frames is presented at the input of the first CLNN layer. The second CLNN layer
will receive 29 − (2 × 4) = 21 vectors at its input and consequently will generate
21 − (2 × 4) = 13 vectors as an output. Similarly, the third layer will generate
13 − (2 × 4) = 5 vectors, which undergo flattening or pooling to a single vector
before the fully-connected layers.

4 Masked Conditional Neural Networks

Spectrograms represent the energy at different frequency bins as the signal pro-
gresses through time. Despite the usefulness of such representations for signal
analysis, they are susceptible to the frequency shifts, which could provide dif-
ferent spectral representations for very similar sounds. Frequency shift involves
a smearing in the energy of a frequency bin across nearby bins due to uncon-
trolled factors affecting the signal propagation. Filterbanks tackle the frequency
shifts in raw spectrograms. A filterbank is a group of filters used to subdivide
the spectrograms into frequency bands allowing the new representation to be fre-
quency shift-invariant. They are the principal operating component of Mel-scaled
transformations such as the MFCC. The Masked ConditionaL Neural Networks
(MCLNN) [20] embed a filterbank-like behaviour within the network by enforcing
a systematic sparseness over the network’s links that follows a band-like pattern.

The mask design is controlled by two tunable hyper-parameters: the Band-
width and the Overlap. Figure 4a shows a masking pattern with a Bandwidth
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Fig. 4. Masking patterns. (a) Bandwidth = 5 and Overlap = 3, (b) the active links
following the masking pattern in a. (c) Bandwidth = 3 and Overlap = −1

of 5 and an Overlap of 3. The Bandwidth values refer to the successive 1’s in
a column, and the Overlap refers to the superposition of the patterns between
one column and another. Figure 4b depicts the active connections following the
mask in Fig. 4a. Each neuron in the hidden layer of Fig. 4b has a focused spatial
region of the feature vector to observe. Figure 4c shows a mask with a negative
overlap depicting the non-overlapping distance between two columns. The linear
indexing of the binary values of a mask is formulated in (5)

lx = a + (g − 1)(l + (bw − ov)) (5)

where the linear index lx is given by the bandwidth bw, the overlap ov and
the feature vector length l. a takes the values in [ 0, bw − 1 ] and g is in the
interval [ 1, �(l × e)/(l + (bw − ov))� ]. The mask plays another role of exploring
a range of feature combinations analogous handcrafting the optimum feature
combinations. This operation is applied in the MCLNN for several feature com-
binations concurrently as shown in Fig. 4c, where the 2nd set of three columns
holds a shifted version of the 1st three columns and similarly for the 3rd set.
In a closer analysis, each hidden node (mapped to a column in the mask) will
have a different input to observe. For example, the input at the 1st node is the
first three features of the feature vector, the 4th node’s input is the first two
features, and the 7th node is the first feature. The masking is applied through
an element-wise multiplication following (6).

Ẑu = Ŵu ◦ M̂ (6)

where Ŵu is the original weight matrix at index u, M̂ is the masking pattern
and Ẑu is the masked weight matrix to replace the original one in (3).

Figure 5 shows a single MCLNN step, where a window of frames of size 2n+1
is processed with a matching count of matrices. Each frame in the window has a
corresponding matrix to process. The vector-matrix multiplication generates d
new vectors, which are summed feature-wise before applying the nonlinearity by
a transfer function. The output of a single step over the window is a resultant
single frame. The highlighted cells in each matrix depict the active links enforced
through the mask.
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Fig. 5. Single MCLNN step.

5 Experiments

We evaluated the performance of the MCLNN using the Ballroom [6] and the
Homburg [10] datasets widely adapted for Music Information Retrieval tasks
including genre classification.

The Ballroom dataset is composed of 698 music clips of 30 s each, unevenly
partitioned across 8 music genres: Cha Cha (CC), Jive (Ji), Quickstep (Qs),
Rumba (Ru), Samba (Sa), Tango (Ta), Viennese Waltz (VW) and Slow Waltz
(SW).

The Homburg dataset contains 1886 music clips of 10 s each, distributed
across 9 classes: Alternative (Al), Blues (Bl), Electronic (El), FolkCountry (FC),
FunkSoulRnb (FS), Jazz (Ja), Pop (Po), RapHiphop (RH) and Rock (Ro).

All files for both datasets were transformed to a logarithmic mel-scaled spec-
trogram of 256 bin using an FFT of 2048 and 1024 hop size. Segments were
extracted following (4) and the z-score parameters of the training data were
used to standardize the testing and validation sets. Experiments were carried
out using a 10-folds cross-validation with the mean accuracy across the folds
reported. The hyper-parameters used for the MCLNN are listed in Table 1.

Table 1. MCLNN hyper-parameters for the Ballroom and the Homburg

Layer Hidden
nodes

Mask
bandwidth

Mask
overlap

Order n
(Ballroom)

Order n
(Homburg)

1 220 40 −10 15 5

2 200 10 3 15 5

The two MCLNN layers are followed by a global single dimension pooling
layer to pool feature-wise over the k extra frames. The global pooling emulates
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Table 2. Reported accuracies on
Ballroom

Classifier and features Ac.%

SVM + 28 feature, Tempo [26] 96.13

KNN + Modulation Scale Spec. [19] 93.12

Manhattan Dist. + Block-Level feat. [32] 92.44

MCLNN + Mel−Spec. (this work) 90.40

SVM + Rhyth., Hist., Stat., Onset, etc. [16] 90.40

KNN + 15 MFCC-like desc., Tempo [7] 90.10

KNN + Rhythm and Timbre [27] 89.20

SVM + 28 features without Tempo [26] 88.00

CNN + Mel-Scaled Spectrogram [28] 87.68

SVM + Rhyth., Hist., Statist. [15] 84.20

KNN + Tempo [7] 82.30

Table 3. Reported accuracies on Homburg

Classifier and features Ac.%

JSLRR + Cortrical Representations [25] 63.46

LRSM + Cort., MFCC, Chro. [24] 62.40

MCLNN + Mel−Spec. (this work) 61.45

KNN + LFP, VDSP, CP, SCP [33] 61.20

SVM + ESA-MFCC [2] 57.81

KNN + Rhythm and Timbre [27] 57.00

KNN + mcRBM, PCA, MVG-MFCC [23] 55.30

SVM + Marsyas features [21,36] 55.00

KNN + Multiple features [10] 53.23

SVN + Novelty Functions [18] 51.10

KNN+ mcRBM, PCA, Mel-Spec. [31] 45.50

the aggregation over a musical texture window, which was studied by Bergstra
et al. [4]. We used k = 11 and k = 2 for the Ballroom and the Homburg,
respectively. Two densely connected layers of 50 and 10 nodes followed the global
pooling layer, before the final Softmax. The model was trained using ADAM [12]
to minimize the categorical cross-entropy between the predicted vector and the
target label. Dropout [34] was used as a regularizer. The final decision of the
clip’s category is decided using probability voting across the frames of the clip.

As listed in Tables 2 and 3, MCLNN achieved an accuracy of 90.4% and
61.45% on the Ballroom and the Homburg, respectively, which surpasses several
neural network based architectures in addition to hand-crafted attempts on both
datasets. MCLNN achieved the mentioned accuracies without a special design to
exploit musical perceptual properties compared to other attempts. In the work of
Peeters [26], he achieved 96.13% on the Ballroom using the Tempo annotations
released with the dataset. Peeters reapplied his proposed handcrafted features
without Tempo data, and the accuracy was 88%, which shows the influence of
the tempo annotations. In a similar type of analysis, Gouyon et al. [7] used the
Tempo annotations as a baseline to benchmark their proposed handcrafted fea-
tures, where the Tempo annotations alone achieved 82.3% and their proposed
features with the Tempo achieved 90.1%. The work of Marchand et al. [19]
achieved 93.12% using multiple processing stages including on-set energy calcu-
lation, autocorrelation, modulation scale spectra and dimensionality reduction to
exploit rhythmic pattern in a music clip. Seyerlehner et al. [32] achieved 92.44%
using several features extracted from blocks of the spectrogram. A neural net-
work based attempt in the work of Pons et al. [28] achieved 87.68% using a shal-
low CNN architecture with pre-trained filters convolving the time and spectral
dimensions separately in the same model. Handcrafted features for the Homburg
dataset has been explored as well. The work of Panagakis et al. [25] achieved
63.46% using the auditory cortical representations in combination with their
introduced classifier. Their work reports the accuracy achieved on the Ballroom
dataset using the same features (cortical representations) and the classifier used
for the Homburg, where they achieved 81.93% on the Ballroom dataset. The work
in [24] achieved 62.4% on the Homburg dataset using auditory cortical repre-
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sentations, MFCC and Chroma as features. A neural network based attempt on
the Homburg dataset in the work of Schluter et al. [31] achieved 45.5% using
mcRBM [29], a variant of the RBM, applied on a mel-spectrogram.

Figures 6 and 7 show the confusion matrix for Ballroom and the Homburg
datasets, respectively. High confusion is noticed for the Rumba and the Waltz
genres with the Slow Waltz, which overlap with the findings in [18]. For the
Homburg dataset, less confusion is noticed with the availability of more samples
in the genre category.

Fig. 6. Ballroom confusion using the
MCLNN.

Fig. 7. Homburg confusion using the
MCLNN.

6 Conclusions and Future Work

In this work, we have explored the applicability of the ConditionaL Neural Net-
work (CLNN) and the Masked ConditionaL Neural Network (MCLNN) on the
music genre classification task. The CLNN preserves the inter-frames relation of
a temporal signal and the spatial locality of the features. The MCLNN extends the
CLNN by enforcing a systematic sparseness over the network’s links following a
band-like pattern, which mimics a filterbank. The filterbank-like pattern induces
the network to learn in frequency bands. The mask also automates the exploration
of several feature combinations concurrently, which is usually a manual process of
handcrafting the optimum feature combinations. The MCLNN has achieved com-
petitive accuracies on the Ballroom and the Homburg music datasets compared to
several handcrafted attempts, in addition to state-of-the-art Convolutional Neural
Networks. The MCLNN has achieved these accuracies without depending on any
musical perceptual properties used in several hand-crafted attempts, which allow
the MCLNN to generalize to other types of multi-dimensional temporal signals.
Future work, we will consider using deeper MCLNN architectures with more opti-
mization to the masking patterns used, in addition to using different orders across
the layers. We will also explore applying the MCLNN to multi-dimensional tem-
poral representations other than spectrograms.
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Abstract. Deep learning techniques have shown to perform well in Question
Answering (QA) tasks. We present a framework that combines Memory Net-
work (MN) and Reinforcement Learning (Q-learning) to perform QA, termed
Reinforced MN (R-MN). We investigate the proposed framework by the use of
Long Short Term Memory Network (LSTM) and Dynamic Memory Network
(DMN). We call them Reinforced LSTM (R-LSTM) and Reinforced DMN
(R-DMN), respectively. The input text sequence and question are passed to both
MN and Q-Learning. The output of the MN is then fed to Q-Learning as a
second input for refinement. The R-MN is trained end-to-end. We evaluated
R-MNs on the bAbI 1 K QA dataset for all of the 20 tasks. We achieve superior
performance when compared to conventional method of RL, LSTM and the
state of the art technique, DMN. Using only half of the training data, both
R-LSTM and R-DMN achieved all of the bAbI tasks with high accuracies. The
experimental results demonstrated that the proposed framework of combining
MN and Q-learning enhances the QA tasks while using less training data.

Keywords: Question Answering � Long Short Term Memory Network �
Reinforcement Learning � Dynamic Memory Network

1 Introduction

Question Answering (QA) is one of the most complex tasks in Natural Language
Understanding (NLU) [1]. QA requires recalling, reasoning and understanding the
question and context in which the answer is embedded [2]. Deep learning techniques
have shown to enhance the performance of the QA tasks [3]. QA can benefit signifi-
cantly by using past information. Memory Networks (MNs) [2] such as Long Short
Term Memory Network (LSTM) and Dynamic Memory Network [4] (DMN) have the
ability to recall information from the memory, which makes them suitable for QA tasks
[5–7]. LSTM [8] can hold information over a long time period and LSTM based
techniques can achieve most QA tasks due this characteristic [4, 6, 9]. Another MN
approach, DMN has been used in recent years for QA tasks [4]. It looks at the question
and uses gates to identify the related answer. However, MN is not capable of achieving
QA on its own because MN is not capable of modeling dynamics of question-fact
interaction and complex reasoning in achieving some category of the QA tasks [10].
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Reinforcement Learning (RL) has been shown to perform at human level and can
surpass human performance in games, which require reasoning [11]. RL is capable of
performing complex reasoning in order to achieve a given goal. Deep neural networks,
e.g., deep Q-learning can outperform humans on a number of games [12] due to the
ability to use past information. Apart from this, Branavan et al. [13] show that RL is
capable of learning from action based on read instructions. To the best of our
knowledge, Q-learning has not been used with MN for QA tasks.

In this paper, we propose a framework that combines MN with Q-learning for QA
tasks, termed as Reinforced MN (R-MN). As LSTM [5, 6] and DMN [4] are the two
MN techniques used for QA in recent publications, we illustrated the proposed R-MN
framework by using LSTM and DMN, named as R-LSTM and R-DMN in this paper.
MN is used to hold prior information to generate the answer. Q-learning is added to the
memory network in order to compare and refine results created by the MN using the
reasoning capabilities it holds. Our experiments show that R-LSTM and R-DMN
generate accuracies of 99.02% and 98.72% respectively. We compare our results with
the state-of-the-art DMN, LSTM and basic RL. R-LSTM has the capability of recalling
more information compared to R-DMN and produces better results. We also show that
using only half of the training data we can achieve the state-of-the-art performance.

2 Background

Deep learning uses multilevel data processing, which enables machines to understand
complex patterns [3]. This has prominently been used in NLP tasks. Yu et al. [14] use
to match the answer sentence to a given question using deep learning. Furthermore, this
avoids feature selection and linguistic data. The use of deep learning has improved how
the QA task can be processed more efficiently.

There have been a number of QA datasets released in the recent years. Weston et al.
[2] introduced the challenging bAbI dataset, which holds 20 different types of QA
tasks. They show a baseline method using strongly supervised memory networks. They
use Adaptive Memory Network combined with N-gram and non-linear matching
function, which achieved 16 of the bAbI tasks.

DMN [4], introduced by Kumar et al. has achieved the current state-of-the-art results
on bAbI. DMN identifies the question and tracks the answer through the content. The
gates used in the DMN is trained to identify the answer and remove the irrelevant
information. Despite using all of the training datasets, DMN can achieve 18 out of 20
bAbI tasks. DMN failed on two tasks (i.e., path finding and position reasoning) which
require a high level of reasoning capability. LSTM performs similar to a DMN [4].
However, LSTM holds more information in the memory through the gates and removes
fewer information compared to DMN. LSTM is more data intensive compared to DMN.
The bAbI tasks cover a variety of topic and are not specified into a particular area.
Therefore, the tasks are complex to achieve using only a memory network.

Neural network based reasoning [10] is explored for the two specific bAbI tasks in
which the DMN fails. Although neural network reasoning achieved better results
compared to DMN for those two tasks, it still could not technically achieve those tasks
(because the accuracy was less than 95%).
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Guo et al. [15] use an RL based memory network to achieve the QA tasks. In the
experiments, two methods are followed: baseRL [15] and impRL. In impRL, the
memory network is integrated to baseRL. ImpRL was only tested on two tasks: sup-
porting fact and bAbI dialog.

Bakker [16] shows that Reinforcement Learning (RL) and LSTM complement each
other in T-maze tasks and pole balancing tasks. LSTM provides the memory in order to
support RL and supports the long path to the reward. This shows the capability to
improve RL tasks using the memory of memory networks. Memory for the pole
balancing and T-maze tasks supports the predictions by holding past information.

To summarise, to the best of our knowledge memory networks with reinforcement
learning have not been proposed for QA tasks. None of the existing techniques has
reported to achieve all the tasks in the bAbI dataset.

3 The Proposed R-MN Framework

The main architecture of the proposed framework is shown in Fig. 1. It consists of
three modules: input module, MN module and Q-learning module. In order to explain
the proposed framework, LSTM is used as the MN method for the MN module, which
is the R-LSTM in this paper. The proposed R-DMN is using the same architecture as
described here, with DMN as the MN method for the MN module. The input sequence
is first fed into both Q-Learning and MN. The output of the MN, which we call a coarse
result, is passed to Q-learning as the second input. Q-learning first checks (comparison
module) if the coarse result is already a correct answer. If it is a correct answer,
Q-learning simply passes that coarse result as the final results. Otherwise, Q-learning
refines the coarse results to a final result.

3.1 Input Module

We followed the same protocol as [4] for this module. The Gated Recurrent Network
(GRU) [17] is used to embed both the input sequence and the answer. Time step t, input
xt and hidden state ht can be used to define the GRU:

Fig. 1. The architecture of the proposed technique. The input sequence is passed to both LSTM
and Q-learning. MN generates an output (coarse result) and passes to Q-learning for checking
and refinement. The Q-learning module generates the final result.
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ht ¼ GRUðxt; h t�1ð ÞÞ ð1Þ

Details can be found in [4]. The input module encodes the sentence sequence, the
questions and the answers. The encoded sentence sequence will be the input to the MN
with the question. Encoded answers are then used to train the MN in this stage (Fig. 2).

LSTM and DMN as shown in [4] exhibit the state-of-the-art-performance by
achieving 18 bAbI tasks. LSTM’s capability of recalling and passing information from
one sequence to the next is vital for performing QA tasks.

3.2 Q-Learning

The output of the LSTM is then passed to the Q-Learning module. In the training
phase, this module compares the LSTM generated result with the original response. If
the result and the original response are not the same, we say that there is an error. The
Q-learning module will then refine the result to correct the error. The Q-Learning is
trained to achieve its goal of generating the best answer. Q-Learning is trained to
identify and generate the best result it requires. The module acts as a correction module
to refine the LSTM result to match the correct answer. The module will be trained by
using the output of the LSTM and the training result.

The initial comparison module would compare the output of the LSTM’s result with
the original response. The expected result and the LSTM generated result are compare.
If the expected result and the LSTM generated result is the same, the gate will pass the
LSTM generated output forward. If the results are different, using the concept of RL, the
results are corrected and passed as the output. Q-Learning can be denoted by:

Q s; að Þ ¼ rþ cðmaxðQðs0; a0ÞÞÞ ð2Þ

where s, a, r represent the state, action, and the current reward, respectively.
cðmaxðQðs0; a0ÞÞÞ represent the maximum discounted reward for predicted s0 state for a

Fig. 2. The Comparison Module: in the training phase, it takes the original response (the
labelled answer in the training data, i.e., the expected output from the LSTM) and the output of
the LSTM. The original response is treated as an award state. If the LSTM output is in the award
state, the gate passes the final output. Otherwise, it becomes a correction state and it is corrected
through the actions (DQ learning) to the award state.
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predicted action a0. The Q-Learning predicts the best action or set of actions to leads to
the maximum reward state.

In training Q-learning observes LSTM output and the expected result. The
Q-learning learns to generate 1 for the correct answer (goal state) and 0 for any other
answer. When the LSTM generates an answer which is not the goal state (correct
answer) the Q-learning learns to change from the current state to the goal state to
generate the current answer.

4 Experimental Results and Analysis

We evaluated the proposed framework on the bAbI dataset for QA. The two proposed
methods of R-LSTM and R-DMN were compared to the conventional method of RL,
and the state of art methods of LSTM and DMN. The objective of the comparative
experiment is to find which method can complete all the bAbI tasks with less training
data. Our experiments were developed using Python. We used Keras (Theano as the
back end), Tensorflow and NumPy to develop the deep neural networks. Q-learning
was developed using Gym library.

4.1 The bAbI Tasks Dataset

The bAbI dataset [2] contains 20 different types of QA tasks. It has been benchmarked
that the task needs to obtain more than 95% of accuracy to be considered as achieved.
Otherwise, the task is considered a fail. The tasks are different from one another. The
training for each task consists of 1 K sets of data, where each set contains context,
question and an answer. It has been mentioned that in order to show adaptability, a
technique should be trained using a subset of the training set, and then tested on the full
test set. For example, the training dataset size can be reduced to 500 for each task and
test to see if they can achieve more than 95% accuracy. Accuracy is defined by:

Accuracy ¼ Number of Correctly Answered Questions
Number of All the questions in testing dataset

ð3Þ

4.2 Results from DMN and LSTM

For the first set of experiments, we implemented DMN and LSTM based methods. The
results are summarized in Table 1. Our results are very similar to those reported in [4].
As shown in Table 1, DMN and LSTM produce comparable results. Eighteen out of 20
tasks were achieved. Two tasks i.e., ‘position reasoning’ and ‘path finding’ scored low
accuracy for both LSTM and DMN methods. They failed these two tasks because the
memory networks are not capable of modeling dynamics of question-fact interaction
and complex reasoning. Additionally, the capability of recalling information can be
prone to recalling information, which may not be relevant. This irrelevant information
can create a burden on the memory network by lowering the accuracy.
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4.3 Results of RL

As shown in Table 1, RL can achieve ‘path finding’ and ‘position reasoning’ tasks.
However, RL failed to achieve, single supporting factor, two supporting factors, three
argument relation, counting, Lists/set, Simple negation, indefinite knowledge basic
co-reference, compound co-reference, time reasoning, basic deduction, basic induction,
agents motivations tasks. This shows that most of the tasks RL fails is in which
memory should play a key role. From the results in Table 1, it can also be concluded
that neither RL nor LSTM/DMN can independently achieve all tasks but they com-
plement each other. However, the overall performance in achieving the bAbI tasks are
higher in LSTM and DMN than RL as shown in the Table 1.

4.4 Results of R-DMN

From Table 1, it can be observed that R-DMN can achieve all the bAbI tasks. R-DMN
outperforms the RL, the LSTM and DMN methods. R-DMN structure uses gates to

Table 1. DMN, LSTM, RL results for 1000 training datasets and R-DMN and R-LSTM for 500
training datasets

Tasks Accuracy (%)

1000 Training
dataset

500 Training
dataset

DMN LSTM RL R-DMN R-LSTM

1 Single supporting fact 100 100 76.3 100 100
2 Two supporting facts 98.2 97.5 83.6 98.8 99.1
3 Three supporting facts 95.2 96 96.2 96.5 97.2
4 Two argument relations 100 99.1 95.7 99.6 99.5
5 Three argument relations 99.3 98.7 90.89 99 99.6
6 Yes/No questions 100 100 96.1 100 100
7 Counting 96.9 97.2 55.4 97.3 97.6
8 Lists/Sets 96.5 96.1 66.1 96.7 97.2
9 Simple negation 100 99.3 53.2 100 100
10 Indefinite knowledge 97.5 98.1 73.6 99 98.9
11 Basic co-reference 99.9 100 79.3 100 100
12 Conjunction 100 100 95.3 99.5 100
13 Compound co-reference 99.8 99.2 91.5 99 100
14 Time reasoning 100 99.6 89.2 99.6 100
15 Basic deduction 100 100 93.5 100 100
16 Basic induction 99.4 99.1 88.52 100 99.7
17 Positional reasoning 59.6 57.2 96.4 96.2 97.5
18 Size reasoning 95.3 96.5 95.5 96.2 96.5
19 Path finding 34.5 38.2 96.9 97.1 97.6
20 Agent’s motivations 100 100 89.2 99.8 100

Mean 93.6 93.59 85.12 98.72 99.02
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retain only the specific information that is required to generate the results, and thus can
perform better for all the tasks. R-DMN combined the capability of recalling infor-
mation as well as the enhancement of performing complex reasoning.

4.5 Results of R-LSTM

The experiment shows that the R-LSTM outperforms the R-DMN using the same
proposed R-MN framework. As shown in Table 1, both R-LSTM and R-DMN can
achieve all the bAbI tasks. However, the R-DMN underperforms slightly when com-
pared to R-LSTM. For instance, R-LSTM and R-DMN achieved overall accuracies of
99.02% and 98.72%, respectively. This is because DMN forgets more important
information when compared to LSTM. Consequently, DQ-learning has less influence
in correcting the result that is generated by the DMN. This is due to the functionality of
the gates in which LSTM retains more information compared to DMN. Further,
removes the irrelevant information to produce a better result as it is capable of retaining
more information which support the Q-learning compared with DMN.

4.6 Training Data Analysis

Another area of comparison beside accuracies of achieving the tasks is the number of
training data used to establish the model. Table 1 shows the accuracies achieved for the
testing dataset. The testing set is the set of available data left after the training data set

Fig. 3. Accuracy versus training data size. The plot shows the over-all mean accuracy for
R-LSTM, R-DMN, RL, DMN and LSTM. The training size was increased starting from 50 to
1000 and tested on the full testing dataset. This shows that the results for R-LSTM and R-DMN
peaked at 500 training size (only at half of the training data).
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has been randomly selected. In this experiment, in order to see the impact of the
number of training data required to achieve the tasks, the training data-size have been
randomly selected from 50 to 1000. Figure 3 shows the increment of the overall
accuracy for the whole testing dataset. It shows that at 500 training data-size for
R-LSTM and R-DMN, the accuracies have plateaued. As for the RL, DMN and LSTM,
the accuracies are still lower than R-LSTM and R-DMN at 1000 training data-size. This
implies R-LSTM and R-DMN can achieve all the tasks with less training data, while
RL, DMN and LSTM cannot achieve all of the tasks even with the full 1000 training
data-size.

5 Conclusion

We proposed a framework to combine the memory networks with reinforcement
learning to achieve QA tasks. R-MNs’ memory networks hold information and RL
supports complex reasoning in achieving tasks. DMN and LSTM is used in our
experiments for the memory networks. We have achieved all 20 of the 1 K bAbI tasks
using R-DMN and R-LSTM with a mean accuracy of 98.72% and 99.02% respectively.
This sets new state-of-the-art on the 1 K bAbI dataset. The proposed R-MN can
achieve such high accuracy only using half of the training dataset.
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Abstract. In this study, we investigate various deep learning mod-
els based on convolutional neural networks (CNNs) and Long Short
Term Memory (LSTM) recurrent neural networks for sentiment analysis
of Arabic microblogs. Unlike English, the Arabic language has several
specifics which complicate the process of feature extraction by tradi-
tional methods. We adopted a neural language model created at Google,
known as word2vec, for vectorizing text. We then designed and eval-
uated several deep learning architectures using CNN and LSTM. The
experiments were run on two publicly available Arabic tweets datasets.
Promising results have been attained when combining LSTMs and com-
pared favorably with most related work.

Keywords: Word embedding · Long short-term memory · Convolu-
tional neural network · Arabic sentiment analysis · Deep learning

1 Introduction

Sentiment analysis or opinion mining is one of the very active research areas in
natural language processing (NLP). It is widely studied for mining and summa-
rizing opinions of social media on the Web. This field of study is important to
the extent that it has spread to other sciences such as management, politics,
economics, and sociology. According to Liu [1], sentiment analysis is defined
as “the field of study that analyzes people’s opinions, sentiments, evaluations,
appraisals, attitudes, and emotions towards entities such as products, services,
organizations, individuals, issues, events, topics, and their attributes”. The task
of sentiment analysis has several variants including: opinion extraction, sen-
timent mining, subjectivity analysis, affect analysis, emotion analysis, review
mining, etc.

Similar to other applications of supervised machine learning, the systematic
approach for sentiment analysis is composed of three main phases, namely: feature
extraction, feature selection and classification. In the first phase, several feature
extraction methods can be applied to vectorize text including bag-of-words, part-
of-speech tags, etc. However, this might generate a large number of features which
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 491–500, 2017.
https://doi.org/10.1007/978-3-319-70096-0_51
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lead to more complex models and poor performance due to the curse of dimension-
ality phenomenon to analyze data in a high-dimensional space. Here, feature selec-
tion techniques can be employed, in the second phase, to reduce these features by
eliminating redundant and/or irrelevant features. This class of methods depends
on a feature scoring criterion such as mutual information or correlation. Alterna-
tively, a reduced set of new features can be generated using techniques such as
PCA (Principle Component Analysis) or LSA (Latent Semantic Analysis). The
last phase utilizes some machine learning mechanisms for classification, such as
support vector machines (SVM), k-NN, Näıve Bayes (NB), etc.

Recently, due to the remarkable success of deep learning in computer vision,
it has been attempted for other domains including natural language processing.
Deep neural language models have been successfully applied for feature extrac-
tion. The main advantage of these models is that they don’t require any feature
engineering for learning continuous text representation from data. Instead, deep
contextual features about words are extracted in a lower dimensional space. Many
techniques have been proposed for learning word vectors such as word2vec [2,3].
Other deep learning models that have been applied to NLP include Convolutional
Neural Networks (CNNs) [4–6] and Long Short-Term Memory (LSTM) [7]. For
instance, Kalchbrenner et al. [5] introduced a dynamic CNN for modeling sen-
tences and evaluated it for sentiment prediction and question classification demon-
strating good performance. Kim [4] presented an improved scheme based on CNN
which employs dynamic and static word embeddings simultaneously for sentence
classification and evaluated it on English sentiment analysis.

Unlike the English language, the research on Arabic sentiment analysis is still
in its infancy. Arabic is spoken by 500+ million people worldwide (as the first
or second language) in 58 countries with complex word structures and numerous
morphological forms. A number of approaches have been proposed to address
the Arabic sentiment analysis and opinion mining tasks including supervised
and unsupervised machine-learning-based, lexicon-based and hybrid approaches.
Various machine learning techniques have been applied including SVMs [8–13],
Näıve Bayes [8–10,12,13], k-NN [8–10], decision trees [8,12,13], logistic regres-
sion [12,13] and SGD [12,13]. Ensemble classification methods have also been
investigated [8,14,15].

Most of the work on Arabic sentiment analysis is based on hand-crafted fea-
tures for either sentiment classification [8–10,12,13,16–19] or sentiment intensity
prediction [20] and such approaches can be referred to as traditional models. An
alternative approach has been proposed to address sentiment analysis based on
joining feature extraction and classification in a single integrated scheme [21–
23]. Such method is referred to as end-to-end learning, feature learning or deep
learning model. Al-Sallab et al. [21] presented a deep learning framework for
Arabic text sentiment classification based on Deep Belief Networks, Deep Auto
Encoder and Recursive Auto Encoder. However, the input data model is based
on the traditional Bag-of-Words (BoW). Altowayan and Tao [22] trained word
embeddings based on CBOW (continuous bag-of-words) method and used them
for training several binary classifiers (SVMs, Decision trees, Näıve Bayes, and
Random forests) to detect subjectivity and sentiment in both Standard Arabic
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and Dialectal Arabic. Dahou et al. [23] investigated different neural word embed-
ding architectures using a corpus of 3.4 billion words chosen from a collected
web-crawled corpus of 10 billion words. Then, a CNN architecture similar to [4]
was trained on top of the pretrained word embeddings to classify sentiments.
However, that work only explored the non-static model.

The intension of our work is to investigate various CNN and LSTM models
for sentiment analysis of Arabic microblogs. Arabic word vectors from an unsu-
pervised neural language model (word2vec) are used as input to the investigated
models. In addition, we proposed five novel combinations of deep learning mod-
els and evaluated them for Arabic sentiment analysis on two benchmark Arabic
tweet datasets.

The remaining of this paper is organized as follows. Section 2 describes the
framework and adopted methods. Section 3 describes the datasets used to train
and evaluate the models and discusses the results from several experiments.
Section 4 concludes the paper.

2 Framework and Methods

Figure 1 shows the layout of the investigated deep learning framework for polarity
determination of Arabic text. The Arabic text is first preprocessed, e.g. remov-
ing non-Arabic symbols, removing diacritics (harakat), removing punctuation
marks, removing stretching character (tatweel or kashida), and removing dupli-
cate characters. Then, various deep learning models are developed and applied.
Each of the main operations in this block diagram is described in details in the
following subsections.

Fig. 1. Investigated framework for Arabic sentiment polarity determination using var-
ious deep learning methods

2.1 Word Embedding

In order to convert text into vectors, we adopted word2vec, which is an unsu-
pervised word embedding neural model developed by Tomas Mikolov et al. at
Google in 2013 [2,3]. It computes real-valued word vector representations in a
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relatively lower-dimensional vector space. It is proved to be an efficient and a
successful technique in the applications of NLP. Word vectors are located in the
vector space such that words that have similar semantic and share common con-
texts are mapped nearby each other in the space. Word2vec has two neural net-
work architectures: continuous bag-of-words (CBOW) and skip-gram (SG). Both
CBOW and SG employ a probabilistic prediction method capable of obtaining
syntactic and semantic information to reflect word similarities and relationships.
With word embedding, word relations are measured by simply using the distance
between two embedding vectors, e.g. (King + Woman − Man) = Queen. CBOW
and SG architectures are algorithmically similar. However, CBOW is trained to
predict the current word with the help of its given context (surrounding words)
whereas SG is trained to predict the context (surrounding words) of a given
word.

2.2 Arabic Sentiment Analysis Using CNN

A CNN architecture similar to Kim [4] with minor changes is investigated.
Assume a sentence S of n words, S = {m1,m2, ...,mn}, where mi is the ith

word in S and the task is to predict the sentiment polarity as positive or neg-
ative. The sentence S is represented by an n × k matrix, where the element
in the ith row corresponds to a k-dimensional vector xi ∈ R

k of the ith word.
To conduct convolution operation, a filter w ∈ R

h×k is applied to a window
of h words to generate a new feature. For each possible window in the sen-
tence {x1:h, x2:h+1, ..., xn−h+1:n}, the filter is applied to each possible window
of words in the sentence to produce a feature map c = [c1, c2, ..., cn−h+1], where
c ∈ R

n−h+1. The next layer is a polling operation such as max, average or L2-
norm is applied to the feature map. Max-polling is the most common one and
takes the maximum of feature map, i.e. ĉ = max{c}. Average-pooling was often
used historically but has recently fallen out of favor compared to max-pooling in
computer vision, especially object recognition [24]. We validated this claim by
conducting some experiments using Arabic Sentiment Tweets Dataset (ASTD)
where max-pooling performed better than the average-pooling operation.

In order to generate multiple features, multiple filters are used with different
window sizes. This forms a vector z = [ĉ1, ĉ2, ..., ĉm], where m is the number of
filters, in the penultimate layer, which is then passed to a fully connected soft-
max layer. The final output is the probability distribution over classes. Although
deep neural networks are very powerful machine-learning systems, a main prob-
lem related to them due to a large number of parameters is overfitting. Addi-
tionally, these networks are slow to use when they are large; making it difficult
to deal with overfitting by combining the predictions of many different large
neural nets at test time. This problem is addressed by randomly dropping out
a proportion p of the hidden units in the penultimate layer during training [25].
In forward propagation the output unit y without dropout is y = w.z + b, while
with dropout it becomes y = w.(z ◦ r) + b, such that r ∈ R

m is a vector of
Bernoulli random variables with probability p of being 1, and ◦ is element-wise
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multiplication operator. During testing, the learnt weight vectors are scaled by
p such that ŵ = pw then ŵ is used to score the testing sentences.

The main steps of the adopted CNN method are shown in Fig. 2. We used
three convolutional filters (3, 5, 7) and used max-over-sampling pooling filter
since it reflects the most significant feature [4]. The dropout rate is set to 0.5,
and a sigmoid function is applied to generate the final classification.

Fig. 2. Adopted CNN architecture for Arabic sentiment analysis

2.3 Arabic Sentiment Analysis Using LSTM Models

We investigated four paradigms of LSTM recurrent neural network models to
predict the sentiment polarity of Arabic text. Considering the opinion as a
word sequence, LSTM has the advantage of recalling long-term spatial and tem-
poral dependencies by linking past contexts to present one. For implementa-
tion of LSTM models, we used the Keras deep learning package with Theano
backend [26].

The models considered here are as follows:

– Simple LSTM: Here, each word mi is represented using one-hot encoding.
LSTM model then takes this vector and converts it into a word embedding
dependent vector.

– CNN-LSTM: We added an LSTM layer to a CNN model and the resulting
model is referred to as CNN-LSTM.

– Stacked LSTM: Three LSTM layers are stacked on top of each other allowing
the model to learn higher-level temporal representations. The first two LSTMs
return their full output sequences, but the last one only returns the last step
in its output sequence, thus dropping the temporal dimension (i.e. converting
the input sequence into a single vector).

– Combined LSTM: We proposed an architecture based on LSTM by combining
two LSTMs with dropout probabilities of 0.2 and 0.5, respectively. We inves-
tigated different combination methods including: summation, multiplication
and concatenation. The layout of this model is shown in Fig. 3.
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Fig. 3. Combined LSTMs for Arabic sentiment analysis

3 Experiments

3.1 Datasets and Preprocessing

Our focus is on predicting the positive and negative polarity sentiment of Ara-
bic microblogs. Hence, we evaluated various models using two datasets of Arabic
tweets: Arabic Sentiment Tweets Dataset (ASTD) [12], which is composed of over
10,000 tweets, and Arabic sentiment analysis (ArTwitter) [27], which consists
of 2000 Arabic tweets. For ASTD, we used the balanced dataset preprocessed
by Dahou et al. [23] and for ArTwitter we used the dataset preprocessed by
Altowayan and Tao [22]. We conducted other preprocessing operations, includ-
ing removing non-Arabic symbols, removing dialectical marks, removing punc-
tuation marks, removing Tatweel, and removing duplicate character.

3.2 Pre-trained Arabic Word Vectors

We used an Arabic corpus of around 190 million words compiled from vari-
ous sources (Quran-text, Watan-2004, CNN-Arabic, BBC-Arabic and consumer
review) [22] to train CBOW and SG. These models were implemented in Python
using gensim package with the parameters described in Table 1. After comparing
different vector sizes in our experiments, the reported results are for a vector size
of 300.

Table 1. Training parameters of Arabic word vectors

Model Dimensionality Window Sampling Negative Min count Iterations

CBOW 300 10 0.0001 10 5 15

Skip-Gram 300 10 0.0001 10 5 15

3.3 Results

We conducted several experiments and compared the various models using four
evaluation measures: precision (Prc), recall (Rec), accuracy (Acc), and F1 score.
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We first conducted experiments to compare CBOW and skip-grams using dif-
ferent deep learning models on both datasets (ASTD and ArTwitter). Following
Kim [4], two model variations are experimented in our work including static and
non-static (dynamic) word initialization. Table 2 shows the results of the tested
models. The highest results are presented in bold. In general, non-static models
with the combined LSTMs give better results.

Table 2. Performance comparison of various models on ASTD and ArTwitter datasets
with static and non-static initializations for CBOW and skip-gram word embeddings

Word2vec Dataset Method Static Non-Static

Prec Rec Acc F1 Prec Rec Acc F1

CBOW ASTD CNN 74.86 74.40 74.40 74.43 74.12 74.10 74.10 74.11

LSTM 75.04 74.70 74.70 74.74 80.12 80.12 80.12 80.07

CNN-LSTM 71.18 68.07 68.07 67.58 76.92 73.49 73.49 72.00

Stacked-LSTM 72.98 65.66 65.66 63.90 73.60 70.18 70.18 69.70

Combined-LSTM-SUM 79.04 78.31 78.31 78.33 81.02 81.02 81.02 80.98

Combined-LSTM-MUL 78.43 77.41 77.41 77.40 82.32 81.63 81.63 81.64

Combined-LSTM-CONC 78.64 77.11 77.11 77.05 80.45 80.42 80.42 80.35

ArTwitter CNN 77.47 77.21 77.21 77.06 78.13 77.82 77.82 77.67

LSTM 83.22 83.16 83.16 83.17 84.59 84.39 84.39 84.40

CNN-LSTM 79.78 78.23 78.23 78.10 81.79 80.70 80.70 80.63

Stacked-LSTM 82.54 82.34 82.34 82.35 82.12 81.93 81.93 81.85

Combined-LSTM-SUM 82.58 82.55 82.55 82.55 84.80 84.80 84.80 84.80

Combined-LSTM-MUL 83.01 82.96 82.96 82.96 85.42 85.42 85.42 85.42

Combined-LSTM-CONC 83.22 82.96 82.96 82.96 86.46 86.45 86.45 86.45

Skip-grams ASTD CNN 73.96 61.45 61.45 57.5 73.96 66.57 66.57 64.90

LSTM 76.85 76.51 76.51 76.54 77.88 77.41 77.41 77.44

CNN-LSTM 76.35 75.90 75.90 75.56 75.34 71.99 71.99 71.58

Stacked-LSTM 70.79 68.98 68.98 68.80 77.02 76.51 76.51 76.54

Combined-LSTM-SUM 78.31 78.31 78.31 78.31 79.01 78.92 78.92 78.94

Combined-LSTM-MUL 77.82 77.11 77.11 77.13 78.73 76.20 76.20 76.02

Combined-LSTM-CONC 79.09 78.61 78.61 78.64 80.90 80.42 80.42 80.45

ArTwitter CNN 81.2 75.56 75.56 74.73 84.2 83.16 83.16 83.11

LSTM 82.49 80.90 80.9 80.79 83.62 83.57 83.57 83.54

CNN-LSTM 78.51 73.92 73.92 72.45 84.24 84.19 84.19 84.20

Stacked-LSTM 82.21 81.72 81.72 81.72 82.95 82.96 82.96 82.95

Combined-LSTM-SUM 83.04 82.55 82.55 82.54 85.64 85.63 85.63 85.61

Combined-LSTM-MUL 82.28 81.72 81.72 81.71 85.83 85.83 85.83 85.82

Combined-LSTM-CONC 81.45 81.31 81.31 81.32 87.36 87.27 87.27 87.28

Different optimizers can be used to compile models on Keras1 including:
Adagrad, Adam, Rmsprop and SGD. The previous experiments were carried
out using Adam optimizer [28]. We investigated their impact on various mod-
els with their default parameters on ArTwitter dataset and non-static CBOW
model. As shown in Table 3, the average performance of Rmsprop is the best
followed by Adam. Moreover, the highest results obtained for ArTwitter dataset
is obtained using Rmsprop in case of the combined LSTMs with non-static word
initialization model.
1 https://keras.io/optimizers/.

https://keras.io/optimizers/
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Table 3. Compilation optimizers with ArTwitter and non-static CBOW model

Method Adagrad Adam Rmsprop SGD

Acc F1 Acc F1 Acc F1 Acc F1

CNN 52.36 35.99 77.82 77.67 78.85 78.84 79.67 79.64

LSTM 85.83 85.84 84.39 84.40 84.19 84.19 68.79 68.77

CNN-LSTM 80.29 80.24 80.70 80.63 82.75 82.72 82.34 82.30

Stacked-LSTM 84.19 84.19 81.93 81.85 84.19 84.19 57.49 53.89

Combined-LSTM-SUM 84.80 84.81 84.80 84.80 83.37 83.38 66.74 66.30

Combined-LSTM-MUL 85.01 85.02 85.42 85.42 86.65 86.65 64.07 64.08

Combined-LSTM-CONC 86.04 86.04 86.45 86.45 87.06 87.07 65.71 65.72

Average 79.79 77.45 83.07 83.03 83.87 83.86 69.26 68.67

Finally, we compared the highest attained performance with that in the lit-
erature as shown in Table 4. It is clear that our proposed method of combining
LSTMs compares favorably with other work.

Table 4. Comparisons with other related approaches

Dataset Approach Technique Accuracy

ASTD Dahou et al. [23] CNN non-static 75.90

Our work Combined-LSTM-Mul, non-static,
CBOW, Adam optimizer

81.63

ArTwitter Dahou et al. [23] CNN non-static 85.01

Abdulla et al. [27] Root-stemmer + SVM 85.00

Our work Combined-LSTM-CONC, non-static,
Skip-gram, Adam optimizer

87.27

4 Conclusion

In this work, we evaluated several deep learning methods based on convolu-
tional neural network and long short-term memory models for sentiment analy-
sis of Arabic microblogs. We trained neural language models using two different
word2vec based technique: CBOW and skip-gram. The top layer of those archi-
tectures are designed to include different approaches: static and non-static word
initialization. The experiments showed using word2vec vectors updated during
learning achieves the highest results in nearly all cases. In addition, the experi-
ments showed that LSTM performs better than CNN. Moreover, the proposed
combined LSTM architectures perform better than other models. Our plan for
future work is to investigate different language models generated using large cor-
pora and optimization of parameters for the proposed architectures for further
enhancements of the results.
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Abstract. Recently, Encoder-Decoder, a framework for sequence-to-sequence
(seq2seq) tasks has been widely used in the open domain generation-based
conversation system. One of the most difficult challenges in Encoder-Decoder
based open domain conversation systems is the Unknown Words Issue, that is,
numerous words become out-of-vocabulary words (OOVs) due to the restriction
of vocabulary’s volume, while a conversation system always tries to avoid their
appearances. This paper proposes a novel approach named Low Frequency
Words Compression (LFWC) to address this problem by selectively using
K-Components shared symbol for word representations of low frequency words.
Compared to the standard Encoder-Decoder works at word-level, our LFWC
Encoder-Decoder works at symbol-level, and we propose Sequence Transform
to transform a word-level sequence into a symbol-level sequence and
LFWC-Predictor to decode from a symbol-level sequence into a word-level
sequence. To measure the interference of OOVs in neural conversation system,
besides log-perplexity (LP), we apply two more suitable metrics UP-LP and
UP-Delta to evaluate the interference of OOVs. The experiment shows that the
performance of decoding from compressed symbol-level sequences to
word-level sequences achieves a recall@1 score of 60.9%, which is much above
16.7% of baseline, with the strongest compression ratio. It also shows our
approach outperforms the standard Encoder-Decoder model in reducing inter-
ference of OOVs, which achieves almost the half score of UP-Delta in the most
of configurations.

Keywords: seq2seq � Conversation system � Vocabulary � Encoder-Decoder �
OOVs

1 Introduction

Neural conversation system is a challenging natural language processing task, which
involves natural language understanding, inference and generation. In the early stage,
researchers focus on the rule-based methods [1] which are skilled in performing con-
versations with specific processes since they are guided by the hand-crafted rules but
hard to extend to the open domain. Thanks to the explosive growth of the Internet, now
we can obtain massive data from the Internet. Hence, data-driven approach is recently
playing a leading role in the open domain conversation. Data-driven conversation
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methods can be divided into two categories: retrieval-based and generation-based. The
idea of retrieval-based method is to retrieve the best-matched response from the already
existing database based on the post, whereas the generation-based method is considered
as a seq2seq task that tries to understand the meaning of the post sequence and then
learn to generate natural language sequence as a response.

A framework for data-driven seq2seq tasks is proposed by [2], which mapping a
sequence into another sequence and then it has evolved to Encoder-Decoder framework
[3–5]. The Encoder-Decoder framework first summarizes the source sequence as a
context, then feeds this context into Decoder to generate target sequence. In a standard
conversation system, Encoder and Decoder share a same modest-sized vocabulary. For
the out of vocabulary words (OOVs), a universal special symbol unk is applied to
replace all of them. Unsurprisingly, if there are many OOVs, it is hard for a conver-
sation system to understand the post and generate the response. Due to the computa-
tional complexity and memory capacity, the size of vocabulary in a practical system is
often restricted, and we called this issue as Unknown Words Issue.

In this paper, we present a novel method called Low Frequency Words Com-
pression (LFWC) to address this Issue. By reviewing many corpus of natural language,
we verified an empirical fact called Zipf’s Law that the frequency of one word is
inversely proportional to its rank in the frequency table, so the low-frequency words
have fewer chances to appear in an utterance. Considering this, we take a novel way to
represent low-frequency words. In a regular word-level Encoder-Decoder, each word in
vocabulary occupies one record, which is too expensive for low-frequency words
because they are seldom used. So, in our approach we let k different low-frequency
words share a single symbol, thus compresses the vocabulary size and then reduce the
appearances of OOVs. We also implement the LFWC Encoder-Decoder framework,
which compromises the Sequence Transform, symbol-level Encoder-Decoder, and
LFWC-Predictor. We first construct the mapping dictionary based on the mentioned
idea that k low-frequency words share a symbol so we can use the Sequence Transform
to encode a word-level sequence into a symbol-level sequence as the input of Encoder.
Then the symbol-level Encoder-Decoder reads it and generates a symbol-level
sequence as output. Finally, we use LFWC-Predictor to decoding from the output of
Decoder to a word-level sequence as the natural language response. We perform
experiments on the mixture of two public datasets, the results show that the perfor-
mance of decoding from a compressed symbol-level sequence to a word-level sequence
achieves a recall@1 score of 60.9% in average when we use 6-Component shared
symbol, which is a great improvement over the baseline Random Choice (16.7%).
LFWC Encoder-Decoder outperforms the standard Encoder-Decoder model in both
UP-LP (reduced by 0.07 to 0.24) and UP-Delta (reduced by 50% in almost configu-
rations), which indicates that our approach can improve the performance of the dia-
logue system under the same volume of vocabulary, thus address the Unknown Words
Issue.
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2 Related Work

Recently, there have been several works that try to solve the problem caused by the
OOVs, and these works can be divided into two categories. The first category tries to
bypass the issue of limited volume of vocabulary directly. Working at character-level
[6] or the hybrid [7] of character-level and word-level is the typical way, which
decomposes all OOVs into characters. However, it prolongs the lengths of both input
and output sequences, which raises computational complexity significantly. And it just
works well within the language composed by a small alphabet. The second category
works try to reduce the computational complexity, for instance, adopting the
sampled-softmax [8] to reduce the complexity on softmax operation, or using a binary
tree to represent a hierarchical clustering of words [9]. These methods speed up the
training process by more efficient operations, but still be restricted by memory capacity
because they cannot reduce the size of model.

3 Method and Implementation

3.1 Low Frequency Words Compression

Low Frequency Words. Ordinarily, Encoder-Decoder based neural conversation
models are trained and operated at word-level. Due to the computational complexity and
memory grows linearly with the vocabulary size Vj j, these models only use the Top-K
most frequent words, and the OOVs are replaced by a universal symbol unk. Evidently,
OOVs reduce the ability to understand dialogue contexts and the quality of generated
response texts in Encoder-Decoder models. Zipf’s law, an empirical law formulated
using mathematical statistics, says a fact that in a common natural language corpus, a
word’s frequency is inversely proportional to its rank in the frequency table, thus only a
small part of words is used frequently. Given a corpus, we illustrate this law by defining
a metric DataCoverage ¼ #allwords�#OOVs

#allwords , where #ðxÞ means the counts of x.
As shown in Fig. 1(a), we compute the DataCoverage rates on the full Chinese
Wikipedia corpus, which has 167 M terms and 312 K unique words. The top-5 K most
frequent words already hold approximately 60% share. With the incensement of the
vocabulary size, the earnings growth rate of DataCoverage is falling, which reflects the
low-frequency words are massive but rarely used in most utterances.

LFWC Method. Assuming one vocabulary maintains at most Vj j records, then a
regular Encoder-Decoder only recognizes and generates Vj j words because one record
simply represents a word, which is inefficient. Here, we propose a novel method called
Low Frequency Words Compression (LFWC) to alleviate it by selectively using k-
Components shared symbol to represent low frequency words. As shown in Fig. 1(b),
LFWC let m symbols keep the way that one symbol denotes a word, and use nðnþm ¼
Vj jÞ symbols to represent k � n words, where k is a parameter. Thus, LFWC represents
ðk � 1Þ � n more words compared to original one. LFWC comprises the following key
steps:
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Preparation. Extracts the top mþ k � n most frequent words from the corpus and
divides them into two sets: the first is Conventional set that contains top m words and
another is Compressed set that contains the rest k � n words. In the Conventional set,
the representation is still using one symbol to represent one word. But in the Com-
pressed set, the way is changed to one symbol represents k different words. For con-
venience, the symbol in the first set is called Raw-Unit, the symbol in the second set is
called Compressed-Unit, and the rules that map words to symbols are stored in a
dictionary.

Sequence Transform. In our approach, Encoder-Decoder works at symbol-level, so we
develop this process to transform from word-level to symbol-level. Given a word-level
sequence w ¼ fw1; . . .;wLg, we map w to a symbol-level sequence s ¼ fs1; . . .; sLg as:

si ¼ cmp seqðwiÞ ¼ sidj; if wi in cmp lookupðsidjÞ
unk; otherwise

�
ð1Þ

Where the function cmp lookup is used to look up a word wi or a group of words
fw1; . . .;wkg correspond to symbol si.

LFWC-Predictor. Now, we discuss how to decode from a symbol-level sequence s to a
word-level sequencec w. Because one Compressed-Unit symbol represents k words,
LFWC-Predictor predicts the target word from k candidate words by its context. Given
s ¼ s1; . . .; sLf g, if si is a Raw-Unit, the result wi can be obtained directly because there
are just one candidate, but if si is a Compressed-Unit, we let all previously known
Raw-Units symbols fsrjr\i; sr is a RawUnitg as context seq, and compute the context
encoding vector craw by applying a RNN on the top of the word embeddings of
context seq and then select the last hidden state hsrrl as craw:

hsr1 ; . . .; h
sr
rl

� � ¼ RNNðcontext seqÞ ð2Þ

Then we use craw ¼ hsrrl to predict a word that is most likely the answer from k
words in this Compressed-Unit. We take raws context and all candidates’

Fig. 1. Results of data coverage and an example of LFWC. (a) The data coverage rates on
original way and compressed by LFWC. (b) An example of LFWC.
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word-embeddings feword1 ; . . .; ewordk g as inputs, and train a classifier. We use a bilinear
term Wp to compute the possibility between craw and ewordi :

P wijcrawð Þ ¼ softmaxðcrawWpewordi Þ ð3Þ

3.2 Encoder-Decoder Framework

In a standard Encoder-Decoder framework, Encoder summarizes the input into a
context and Decoder utilizes this context to generate a sequence as output. Encoder
applies a RNN to read a source sequence of x ¼ fx1; . . .; xLg, into a context vector c;
which is considered to have summarized all information of source sequence:

c ¼ qðfh1; . . .; hLgÞ ð4Þ

Where hidden states fh1; . . .; hLg are computed by RNNs, and q is a nonlinear
function. Generally, we use q fh1; . . .; hLgð Þ ¼ hL.

Decoder uses another RNN to generate the target sequence y ¼ fy1; y2; . . .; yMg,
which maximizes the conditional probability of y given the context vector c:

P yjcð Þ ¼
YM

t0¼1
Pðyt0 j y1; . . .; yt0�1

� �
; xÞ ð5Þ

Pðyt0 j y1; . . .; yt0�1

� �
; xÞ ¼ gðyt0 �1; zt0 ; cÞ ð6Þ

Where zt0 is the hidden state of Decoder’s RNNs at time t
0
. g is a nonlinear function

that outputs the probability of yt0 :
To boost the performance, it’s common to implement with Attention [4]. Instead of

using a fixed context vector c, with Attention, at each time t
0
the Decoder dynamically

computes a context vector ct0 to replace the vector c in Eqs. (5, 6).

3.3 LFWC Encoder-Decoder Framework

As it shown in Fig. 2, in our framework, all the word-level sequence will be processed
by Sequence Transform before they are fed into Encoder and the symbol-level
sequence generated by Decoder would be decoded into word-level sequence by the
LFWC-Predictor. The dictionary that saved the mapping rules between words and
symbols is developed in advance, and then keep unchanged. One important thing
should be noted, the essence of our work is that LFWC-Predictor should be trained
beforehand, instead of being jointly trained with Encoder Decoder. The prediction
process of LFWC-Predictor doesn’t ask for the hidden states of Decoder’s RNN
because it only relies on the word embeddings of previously known Raw-Units sym-
bols. This design makes the computational complexity and memory capacity of our
model rely on the size of unique symbols rather than the size of words. Another
advantage is that this design allows us to utilize most natural text corpus besides
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conversation texts to train LFWC-Predictor, which is numerous and much easier to
obtain from Web.

Encoder. Existing Encoders often take word-embeddings as input, but we add an
additional feature, i.e., part-of-speech embeddings. We map all part-of-speech tags into
pe-dimensional vectors of real numbers. Given a raw word input sequence wx and its
part-of-speech tag sequence px, we transform wx into a symbol sequence sx by Sequence
Transform, then we calculate its word embeddings and part-of-speech embeddings and
their concatenation is the input for Encoder. For word-embedding matrix Eword , duo to
the Raw-Unit symbols are raw words themselves, their word-embedding values are
obtained from pre-trained resources. The Compressed-Unit symbols are some special
symbols that only appears in our work, therefore, the word-embeddings of
Compressed-Unit symbols are initialized as the average of k candidate’s embedding
values and then jointly training them with Encoder-Decoder. The part-of-speech
embedding matrix Epos is fully jointly learned with Encoder-Decoder.

Decoder. The Decoder is essentially a standard RNN language model. Decoder out-
puts a sequence of symbols sy (not raw words directly) based on the hidden states
generated by Encoder, and the generation probability of the i-th symbol is calculated
by:

P syi jsyi�1; . . .; s
y
1; s

x
� � ¼ g syi�1; zt; ct

� � ð7Þ

Where gð�Þ is a nonlinear function as Eq. 6, zt is the hidden state of Decoder at time
t, which is calculated by zt ¼ RNN syi�1; zt�1; ct

� �
. ct is a dynamically calculated context

vector based on Attention Mechanism.

Training, Evaluation and Inference. The training and inference in our approach are
similar to the way standard Encoder-Decoder works. In the training stage,
LFWC-Predictor is not required because all the datasets should be firstly transformed to
symbol-level by Sequence Transform, then minimize the cross-entropy between the
generated symbol sequence and the target symbol sequence. In the inference or eval-
uation stage, we search for the most likely symbol-level sequence using the left-to-right

Fig. 2. LFWC encoder-decoder framework
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beam search method. After that, we apply the pre-trained LFWC-Predictor to decode
and finally output the most likely word-level sequence wy, which calculates the
probability of a raw word as:

P wy
ið Þ ¼ Pðsyi Þ; ifsyi 2 Conventional Set

Pðsyi Þ � P wy
i jcrawð Þ; if syi 2 Compressed Set

�
ð8Þ

4 Experiment

4.1 Settings

Datasets. We evaluate our approach on the mixture of a dataset released by Shang [3]
and a dataset from a GitHub project1. Shang’s dataset is crawled from Weibo, which
contains various topics and plentiful rare words. The dataset from GitHub contains
many semi-structured dialogues organized by human. We extract 900 K post-response
dialogue pairs from each dataset, then randomly divide these 1.8 M pairs into to train
set (70%) and test set (30%). We pre-trained a Word2Vec model with the corpus of
Wikipedia2 with dimension = 200. For all datasets, we apply the toolkit jieba3 to
segment and figure out part-of-speech tags.

Implement Details. For LFWC-Predictor, we use a 3-layer bi-directional LSTM with
128 hidden units for context encoding. The baseline for LFWC-Predictor is Random
Choice. For LFWC Encoder-Decoder, we use a 3-layer bi-directional LSTM with 256
hidden units for Encoder, and a 3-layer LSTM with 256 hidden units for Decoder. Here
the baseline is standard Encoder-Decoder with Attention. All the training examples are
divided into mini-batches of 256 examples each. For both, dropout with p = 0.5 is
applied to all hidden units of LSTMs, and Adam algorithm is used to optimize.

4.2 Results and Analysis

Analysis on Efficiency of LFWC. As mentioned, decoding from a compressed
symbol-level sequence into a word-level sequence is a key phrase. Hence, we analysis
the efficiency of LFWC on different parameter configurations. We use LFWC-Predictor
to decode symbol sequences generated by Sequence Transform on the corpus. For a
Compressed-Unit symbol in a sequence, LFWC-Predictor is used to predict the right
one from k candidate words given its all previously known Raw-Unit symbols. For
evaluation, we use the average of Recall@1 results of all Compressed-Units samples.
The parameters include size of symbol vocabulary v of 3 k, 5 k, 7 k, compression ratio
r ¼ n

nþm of 0.3, 0.5, 0.7, and bin size k of 2, 4, 6. A higher score of Recall@1 means
LFWC-Predictor has more chance to restore a fully correct raw word sequence.

1 https://github.com/rustch3n/dgk_lost_conv/tree/master/results.
2 http://download.wikipedia.com/zhwiki/latest/.
3 https://github.com/fxsjy/jieba.
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As it shown in Fig. 3, our approach performs much better than the baseline method that
randomly choose a candidate, which demonstrates LFWC-Predictor is a feasible model
to select the right word from a lot of candidates. With the increase of parameter k, one
Compressed-Unit represents more words, and our approach can keep an acceptable
Recall@1 (* 60%) while the random choice method is decreased sharply, which
shows that LFWC-Predictor can utilize all previous known Raw-Units as context to
predict the correct raw word even when a Compressed Unit symbol represents many
words simultaneously. For the parameter compression ratio r, it doesn’t affect the
performance much if the volume of vocabulary is not too small (see Fig. 3b and c). It’s
also found in the experiment that if the volume of vocabulary is very small, then, a
lower compression ratio r is a better choice because a lower r can protect high fre-
quency words from being compressed.

Analysis on LFWC Encoder-Decoder. perplexity ¼ expð� 1
M

PM
i¼1

logpðyiÞÞ or it’s log
version log-perplexity (LP) is the most popular automatic metric for language modeling
and conversation system, the lower LP is, the better performance is. However, per-
plexity has several flaws, the biggest one is that perplexity is not appropriate in eval-
uating a model with many OOVs because a model can get a good LP by simply
predicting any unk word as unk class [10]. For instance, when all words in a sentence
are OOVs, a model predicting every word as unk will obtain an extremely good
perplexity. Obviously, unk symbols can’t provide useful information in a conversation
system, and influences the accuracy of the evaluation. To this end, we use the
unknown penalized log-perplexity (UP-LP) proposed by Ahn [10]. UP-LP penalizes the
likelihood of unknown words as follows:

pup yunkð Þ ¼ pðyunkÞ
jVallnVvocabj ð9Þ

Where Vall is the full set of words, Vvocab is the global vocabulary used for
Encoder-Decoder. The set of OOVs is VallnVvocab. UP-LP theoretically has a higher
value than LP because of the penalization of OOVs, hence the difference between LP

Fig. 3. Performance comparison between LFWC and the baseline method.
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and UP-LP can figure out the bad impacts of OOVs in a model. Considering this, we
propose a metric named UP-Delta to evaluate the bad impacts of OOVs, which equals
to UP-LP minus LP. Here, the less UP-Delta is, the fewer OOVs appear in our model.

Table 1 shows that our LFWC framework outperforms than the standard
Encoder-Decoder framework. For LFWC Encoder-Decoder, the configuration with the
best comprehensive performance is selected here. Compared to the standard frame-
work, our approach significantly reduces the UP-Delta, where LFWC with v = 3000
has a lower UP-Delta compare to baseline with v = 7000. Meanwhile, our experiment

Table 1. LFWC vs baseline

Model Configurations LP UP-LP UP-Delta

Std. Encoder-Decoder v = 3000 4.75 5.21 0.46
Std. Encoder-Decoder v = 5000 5.08 5.38 0.30
Std. Encoder-Decoder v = 7000 5.32 5.54 0.23
LFWC Encoder-Decoder v = 3000, k = 4, r = 0.5 4.75 4.97 0.22
LFWC Encoder-Decoder v = 5000, k = 4, r = 0.5 5.09 5.22 0.13
LFWC Encoder-Decoder v = 7000, k = 4, r = 0.5 5.38 5.47 0.09

Fig. 4. The results of UP-LP and UP-Delta on different combinations of k and r. The y-axis and
x-axis of each plot correspond to the k and r. Each pixel shows the value of UP-LP or UP-Delta
corresponds the combination of its coordinate. Specially, values of the row that k = 0 are same,
which is the result of the baseline model. (a–c) show the result of UP-LP on different vocabulary
size, and (d–f) show the result of UP-Delta on different vocabulary size.
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results also show that LFWC could reduce the UP-LP, especially in the low configu-
ration situations. The decreases of UP-Delta and UP-LP indicate that our approach
LFWC has the ability to address the problem of OOVs.

Sensitivity Analysis. Two parameters are important to our approach: bin size k and
compression ratio r. Thus, to figure out the sensitivity of these two parameters, we
experiment on several different parameter combinations between k and r.

As shown the Fig. 4, we see that our model doesn’t outperform the baseline model
in all configurations if only focus on UP-LP. The reason behinds this is that our model
actually handles ðk � 1Þ � n more words compared to baseline (see Sect. 3). Although a
larger vocabulary is helpful, the more words a vocabulary handles, the higher
LP/UP-LP is, which can be verified in Table 1. If we compare our model with baseline
according to the volume of known words instead of vocabulary size, it can be found our
model still perform better. We find that our model completely outperforms than
baseline model if focus on UP-Delta, which indicates our model reduced the problem of
OOVs significantly. Meanwhile, we find that r = 0.5 is a right choice in most situations
which has the balance of the performance of UP-LP and UP-Delta.

5 Conclusion

We propose a novel approach to address the Unknown Words Issue in the
Encoder-Decoder based neural conversation system by selective compressing the
representations of low frequency words. Our LFWC Encoder-Decoder framework
works at symbol-level, which enables to recognize and generate more words compared
to general word-level Encoder-decoder. In the framework, the Sequence Transform
method is implemented to compress a word-level sequence into a symbol-level
sequence and the LFWC-Predictor is built to recover a word-level sequence from
symbol-level sequence. Results of experiment indicate that our model has achieved the
goal that reduces the appearance of OOVs without increasing the size of vocabulary.

In this paper, while the LFWC method that randomly let k low frequency words
share a symbol is effective, it still primitive. In the future work, we will explore more
strategies about how to map low frequency words into symbols and then check their
effects. Meanwhile, we aim to extend LFWC to other seq2seq tasks, for instance, neural
machine translation and text summarization. Meanwhile, we also aim to design a fully
end-to-end training across the LFWC-Predictor and Encoder-Decode.
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Abstract. Air pollution is a major problem in modern cities and developing
countries. Fine particulate matter (PM2.5) is a growing public health concern
and become the most serious air pollution. In this study, we formulate the PM2.5
inference problem in conventional environmental sensors as a sequence-to-
sequence problem. We adopt the encoder-decoder LSTM (Long short term
memory) framework to solve the PM2.5 inference problem. A novel
width-variable window attention mechanism is proposed for the encoder-
decoder LSTM system. The proposed method learn the position and width of the
attention window simultaneously. The proposed method is evaluated on large
scale data and the experimental results show that it achieves better performance
on two datasets with different concentration of PM2.5.

Keywords: LSTM � Attention model � RNN

1 Introduction

Real-time information about the air quality, especially the concentration of Particulate
Matter 2.5 (PM2.5), is of vital importance to protect human health and monitor
environment in urban city and developing countries. PM2.5 denotes fine particles with
a diameter of 2.5 lm or less. Many countries have established standards for concen-
tration of PM2.5. The unit lg/m3 is specified for calculating the particulate contribution
to the air quality index. High concentration PM2.5 considerably leads to respiratory
illnesses and even increases daily death rates [1–3]. For every increase of 10 lg/m3 in
PM2.5, the lung cancer rate rose 9% [4].

Nowadays, air quality is monitored by networks of air quality measurement stations
operated by official authorities. These stations are highly reliable and can accurately
measure a broad range of air pollutants. However, the expensive cost of acquiring and
maintaining measurement stations results in insufficient installations. For instance,
Beijing of area 16410 km2 only has 35 air quality measurement stations as illustrated in
Fig. 1. Unfortunately, the concentration of PM 2.5 is affected by traffic, industrial

© Springer International Publishing AG 2017
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installations, meteorology, urban structure and so on and it varies by locations
non-linearly [4]. Additionally, indoor PM2.5 concentration and outdoor concentration
differs from each other. Furthermore, the air measurement stations report the average
value of the concentration of PM2.5 every hour. However, sometimes, especially
encountering severe air pollution, the concentration of PM2.5 dramatically increases
within half an hour as shown in Fig. 2. To use the accurate and real-time measurement
of a concentration of PM2.5 in local and small area, a calibration method for con-
ventional environment sensors has been reported in [5].

Fig. 1. Air quality measurement stations in Beijing.

Fig. 2. The PM2.5 concentration segments.

A Width-Variable Window Attention Model for Environmental Sensors 513



In this paper, we infer the real-time and accurate PM2.5 concentration with deep
learning using a conventional PM sensor device. As the Fig. 3 shows, the current
PM2.5 concentration is not only related to the current measurements of particulate
matters, temperature, humidity and air pressure, it also related to their history mea-
surements as well. Here, the x-axis shows the timeline in minutes and y-axis shows the
correlation coefficient. Additionally, it is useful to provide the entire varying tendency
of PM2.5. Therefore, we formulate a sequence to sequence problem to infer the PM2.5
concentration. There are many literatures on this topic [6], from traditional machine
learning method [7–9] to the popular deep learning method [10, 11]. In this study we
propose a variable-width window attention model to solve the problem. We evaluate
the proposed model on large scale data and the experimental results show that the
proposed model achieve better performance.

2 Width-Variable Window Attention Model

In our experiment, we find that the current PM2.5 concentration obtained by a con-
ventional sensor device is not only related to the current measurements of particulate
matters, temperature, humidity and air pressure, it also related to their history mea-
surements as well as shown in Fig. 3. In addition, it is useful to provide the entire
varying tendency of PM2.5. Therefore, we formulate the calibration problem to a
sequence to sequence problem. More specifically, we obtain the sequence data of small
particles and large particles by air quality monitor and the sequence data of temperature,
humidity and air pressure by other sensors. We calibrate the current PM2.5 value and its
history values simultaneously. Formally, we observe the input vector sequence X ¼
ðX1;X2; . . .;XTÞ and we predict the true output vector sequence Y ¼ ðY1; Y2; . . .; YTÞ,
where Xi denotes the values of small particles, large particles, temperature, humidity and
air pressure at time i, and Yi denotes the value of PM2.5 in lg/m3 at time i.

Fig. 3. The Pearson product-moment correlation coefficient between the current true value of
the PM2.5 and current measure values of PM0.5, PM2.5, temperature, humidity and air pressure
and their history values.
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The deep RNN (Recurrent Neural Network) model can be adopted to this problem.
In the Encoder-Decoder framework, an encoder reads a sequence of vectors X ¼
ðX1;X2; . . .;XTÞ into a vector c. The decoder is trained to predict the value of Yi given
the input representation vector c and all the previous predicted values fY 0

1; Y
0
2; . . .;

Y
0
t�1g. However, the RNN model suffers the vanishing gradient problem. It cannot

long-term dependencies. The LSTM (Long-Short Term Memory), a special kind of
RNN, is explicitly designed to avoid the long-term dependency problem. Remembering
information for long periods of time is practically their default behavior.

The LSTMs have the form of a chain of repeating modules of neural network. The
repeated models have the following structure:

ft ¼ r Wf ht�1; xt½ � þ bf
� � ð1Þ

it ¼ r Wi ht�1; xt½ � þ bið Þ ð2Þ

Ot ¼ r WO ht�1; xt½ � þ bOð Þ ð3Þ

C
0
t ¼ tanh WC ht�1; xt½ � þ bCð Þ ð4Þ

Ct ¼ ft � Ct�1 þ it � C0
t ð5Þ

ht ¼ Ot � tanhðCtÞ ð6Þ

where ft, it, and Ot are “forget gate layer”, “input gate layer” and “output gate layer”; C
0
t

is the new candidate values for the cell state, Ct is the new cell state, ht is the output of
the LSTM model at step t; r denotes a sigmoid function. We use C ¼ ðh1; h2; . . .; hTÞ
to encode the input vector sequence.

In order to predict more accurate values, attention-based encoder selects different
parts of the vector c for each step. Bahdanau et al. [13] propose to compute different

context vector by Ci ¼
PT

j¼1
aijhj, where the scores aij are computed on an attention

module. As shown in the Fig. 4, the attention module takes both the decoder’s previous
state S and the encoder’s state h into account. It scores the element of h regardless of
their position in the sequence, so it belongs to content-based attention mechanism [14].
This model actually make different weights for elements of the encoder’s state h at
different step inspired by human vision attention mechanism [15].

However, the previous attention model only handle fixed window size and the
position of the window is also predetermined. In many cases, only a small size of
window need to be watched and the position of the window is also variable. Therefore,
we propose a width-variable window attention model to generate context from the
encoder’s state for the decoder at different steps. The Fig. 5 shows the proposed model.
At each step, the proposed attention model only focus on a window of the encoder’s
state h and the size of the window is variable. The location and size of the window is
learned from the decoder’s previous state and the encoder’s state. More specifically, we
design the width-variable window attention model as follows:

A Width-Variable Window Attention Model for Environmental Sensors 515



contex ¼ V� tanhð½st�1; h1; h2; . . .; hT �Þ ð7Þ

Pt ¼ T � sigmod Wp � contexþ bp
� � ð8Þ

Lt ¼ 1
2
T � sigmod WL � contexþ bLð Þ ð9Þ

ai ¼ Relu Lt � abs i� Ptð Þð Þ i 2 f1; 2; . . .; Tg ð10Þ

Where Pt is the center of the window, Lt is the half size of the window and ai takes
values decreasing from the window center and takes 0 outside the window. The scores
ai take non-zero values on window, so the proposed attention module only attends the
window part of the input representation.

LSTM LSTM LSTM LSTM

[h1, h2, …, hn]

h1 h2 h3 hn

Y0 Y1 Yn

LSTM LSTM

α
1
, α

2
, …, α

n

tanh

V softmax

...

...

...

X1 X2 X3 Xn

Fig. 4. The attention model for PM2.5 inference

516 C. Hou et al.



3 Experiments

3.1 Data Collection

In our experiments, we use a device Dylos dc1100 to measure the concentration of
PM2.5. The device Dylos dc1100 uses light scattered from laser to count particles
passing through a chamber. The device report two values, the first value shows the
number of particles which diameter is larger than 0.5um, and the second value shows
the number of particles which diameter is larger than 2.5um. Since the unit of PM2.5 is
unit lg/m3, it is necessary to infer the PM2.5 index from the particles numbers.
However, most devices cannot give high accuracy particle number due to different size,
shape of fine dust and refractive index [12]. Therefore, we added sensors to our device
to measure the humidity, temperature and air pressure to calibrate the measurement
value about PM2.5.

The ground truth of the PM2.5 is also prepared, as follows. Since the air quality
measurement stations report the concentration of PM2.5 per hour, it’s difficult to get
enough data for training and testing. In this study, the PM2.5 concentration per minute

LSTM LSTM LSTM LSTM

X1 X2 X3 Xn

[h1, h2, …, hn]

h1 h2 h3 hn

Y0 Y1 Yn

LSTM LSTM

tanh

V

pt,wt

...

...

...

0,…,0,α
pt-wt

,…,α
pt

,…, α
pt+wt

,0,…0

Fig. 5. The width-variable window attention model for PM2.5 inference
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data, obtained by a high performance particulate monitoring analyzer. The two devices
measure data every minute. Since the PM2.5 concentration is quite difference in dif-
ferent seasons, especially in winter and summer, we split our data into two datasets
according to the concentration of PM2.5 to evaluate the models.

3.2 Evaluation

We evaluate the calibration system by two criterions, one is the MSE (mean square
error) and the other is TIC (Theil Inequality Coefficient). TIC is a common criterion to
evaluate the regression model. In general, the smaller the value of TIC, the better of the
model. MSE and TIC are computed by following equations.

MSE ¼ 1
n

X
i
ðPi �MiÞ2 ð11Þ

TIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
iðPi �MiÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i P

2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i M

2
i

q ð12Þ

Where P is the prediction value and M is the true values.

3.3 Experimental Results

The proposed model is compared with two other models. The first model is a traditional
LSTM model, which directly calibrates PM2.5 values by adding a layer to the LSTM’s
state. The second model is an attention mechanism based encoder-decoder model and it
adopt the attention mechanism proposed in [13]. We evaluate these three models on our
two datasets and the experiments are shown in Tables 1 and 2. There are 48,559 data in
dataset1 and 124,960 data in dataset2. The evaluation is conducted by 10-fold
Cross-validation. From Tables 1 and 2, we can find that the attention-based
encoder-decoder systems achieve better performance than the simple LSTM model. It
is because the encoder-decoder system considers both the previous input representation
and the later information at one step. Hence the encoder-decoder framework systems
obtain better performance. From the experimental results, we can also find that our

Table 1. TIC of the system

LSTM Attention Variable Window

DataSet1 0.2553 0.2514 0.2149
DataSet2 0.1243 0.1077 0.096

Table 2. MSE of the System

LSTM Attention Variable Window

DataSet1 18.18 17.74 16.92
DataSet2 41.42 36.69 33.79
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proposed width-variable window attention module is better than the common attention
module. Here, the constrained attention mechanism and the variable width all contribute
to the better performance.

4 Conclusion

In this paper, we formulate the PM2.5 inference problem by environmental sensors to a
sequence-to-sequence problem. We propose a width-variable window attention
mechanism for the adopted encoder-decoder structure system. The proposed attention
mechanism learn the position and width of the attention window from the context of
encoder and decoder model. We compare our proposed model with the other two
models. Experimental results on large scalar dataset show that the proposed
width-variable window attention model achieve better performance.
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Memorizing Transactional Databases
Compressively in Deep Neural Networks

for Efficient Itemset Support Queries
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Abstract. Can a deep neural network memorize a database? Though
deep artificial neural networks are remarkable for large memory capacity
that makes fitting any dataset possible, memorizing a database is a novel
learning task unlike other popular tasks which intrinsically model map-
pings rather than “memorize” information internally. We give a positive
answer to the question by showing that through training with maxi-
mal/minimal and frequent/infrequent patterns of a transactional data-
base, a dynamically constructed deep net can support random itemset
support queries with relatively high precision in regard to data compres-
sion ratio. Due to the compressive memorization, the amount of trans-
actions in the database becomes irrelevant to the query time cost in our
efficient method. We further discuss the potential interpretation of learnt
database representation by analyzing corresponding statistical features
of the database and activation patterns of the neural network.

Keywords: Transactional database · Artificial neural network ·
Approximation query · Pattern mining · Data compression

1 Introduction

In the past few years, deep learning has achieved significant improvement of
performance on many machine learning applications such as image recognition,
speech recognition, natural language processing, even knowledge representation
and reasoning [1]. Despite their massive size, deep artificial neural networks
of different kinds can almost infinitely fit any large scale dataset and exhibit
remarkably small generalization error. A recent research [2] even shows deep
neural networks easily fit random labels, thus raising the question whether
deep neural networks learn via memorization. Researchers with different opinion
argue that deep neural networks first learn and then refine simple patterns from
training data and only incorporate more case-by-case memorization as a later
resort [3].

c© Springer International Publishing AG 2017
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1.1 Our Contributions

So far, the term “memorization” in deep learning refers to driving down training
loss by fitting training dataset without capitalizing on any patterns in the data.
In this paper, we propose to memorize transactional databases as the learning
task itself but not the means. As shown in Fig. 1, we generate training data from
a transactional database by pattern mining algorithms and train a deep neural
network for a regression task which takes any itemset as input, and outputs
itemset support, i.e., frequency of the itemset being contained by transactions,
thus equivalently memorizing the transactional database in the deep net com-
pressively. The compression is lossy due to training loss but highly effective
especially when the transaction-item ratio is extremely large, because the width
of our deep net mainly depends on the item number and the depth increases with
the transaction number logarithmically. The compact size of our deep net signifi-
cantly accelerates itemset support query by reducing computational complexity,
compared to any other query method that requires transaction-level traversal.

Our database memorization task has three major differences compared to
brute-force dataset memorization: (i) the target transactional database is not
used as training data directly, (ii) the learning task is semi-supervised because
only partial itemset support information in the complete power set of items is
used to learn the structural representation of a transactional database, (iii) our
deep net does not memorize by simply cramming transactional data, whereas
stored information of the database is learned and constructed internally in the
parameter space.

Fig. 1. System architecture of the training process

1.2 Related Work

Related researches have been focusing on information retrieval in databases via
deep autoencoders. This task derives the common benefits from dimensionality
reduction by deep autoencoders, but also derives the additional benefit that
retrieval can become extremely efficient in certain kinds of low dimensional
spaces. Semantic hashing [4] is proposed to learn a deep graphical model of the
word-count vectors obtained from a large set of documents, in order to extend
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the efficiency of hash-coding to approximate matching query by mapping docu-
ments to memory addresses in such a way that semantically similar documents
are located at nearby addresses. The idea of training a hashing representation
has been further explored in several directions, including learning similarity pre-
serving hash functions that map high dimensional data onto binary codes [5].
Although deep learning techniques have been applied to various kinds of infor-
mation retrieval tasks, the main focus in related research is still generalizing
from data rather than memorizing information precisely by representation con-
struction.

Ideas for approximation of itemset frequency queries have also been proposed
before. A special data structure called Free-Sets [6] is presented for compressing
frequent itemsets defined by a certain threshold, whereas not entire information
of the database is represented and condensed.

2 Training Data Generation

For being used as a training dataset for a deep neural network, a transactional
database typically has far less transactions than the exponential size of the
power set of its items, for example, the commonly used dense dataset Mushroom
has 119 items and only 8124 (� 2119) transactions. Even if the transaction
number is large enough to serve as training data, every transaction’s constant
support of 1 still causes a deep net to yield prediction values that are narrowed
in an extremely small range. Therefore, pattern mining algorithms are applied to
original database to generate valid training data. Moreover, the itemset empirical
distribution can be derived from the deterministic data generation scheme and
database statistics to fine-tune the training optimization.

2.1 Pattern Mining in Transactional Databases

Pattern mining is a traditional research area in the field of data mining. In
general, pattern mining tasks in transactional databases focus on finding out
most representative itemsets, including but not limited to frequent itemsets,
infrequent itemsets, maximal frequent itemsets (MFI) and minimal infrequent
itemsets (MII). Given a transactional dataset T = {t1, t2, ..., tn} where each
transaction tq (q ∈ [1, n]) consists of items in I = {i1, i2, ..., im}, the terms
itemset and support refer to a set of items I ⊆ I and the frequency of an itemset
defined as SuppT (I) = |{tq ∈ T : I ⊆ tq}|, respectively. In addition, we say an
itemset I with a threshold τ is:

– τ -frequent if SuppT (I) ≥ τ holds;
– τ -infrequent if SuppT (I) < τ holds;
– maximal τ -frequent if it is τ -frequent and all of its proper supersets are τ -

infrequent; and
– minimal τ -infrequent if it is τ -infrequent and all of its proper subsets are

τ -frequent.
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For generating training data, the fact that it is impractical to exhaustively
enumerate all itemsets in the item power set naturally leads to the idea that
we selectively mine most representative itemsets to construct a training dataset
of a reasonable size. Based on the instinctive thought that MFIs and MIIs con-
tain more information and less redundancy about the original database than
randomly sampled itemsets, we apply two mining algorithms, MAFIA [7] and
MIWI-Miner [8], to generate pattern itemsets1 for training dataset construction.
For constantly growing databases and streaming data, which are common in
practice, incremental itemset mining algorithms [9,10] can be used instead, so
that after slightly fine-tuning with newly generated training data, our model is
updated for following support queries.

Specifically, we run two algorithms for a transactional database under a range
of support thresholds [τmin, τmax] and aggregate all MFIs and MIIs together. In
the combination procedure, we first uniquify the mining results because of dupli-
cate itemsets, i.e., an itemset I can be maximal/minimal τk-frequent/infrequent
for different k at the same time, and then we normalize the itemset support
distribution by filling the dataset with non-maximal frequent and non-minimal
infrequent itemsets of minority supports to approximate a uniform output in
training data. The amounts of pattern itemsets under different thresholds and
unnormalized itemset support distribution are shown in Fig. 2.

Fig. 2. Training data generation on 4 example transactional databases

1 Zero-support (1-infrequent) itemsets are truncated due to excessive cardinality.
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2.2 Itemset Empirical Distribution

In our database memorization task scenario, the performance measure P is
intractable for its combinatorial property. We therefore optimize P indirectly
by reducing a query cost function J(θ) in the hope that doing so is sufficient to
guide the learning process of a deep net to construct an approximate represen-
tation inside. Typically, the cost function can be written as

J(θ) = E(x,y)∼pdataL(f(x;θ), y), (1)

where L is the mean square error function, f(x,θ) is the predicted itemset sup-
port when the input is x, and pdata is the itemset distribution. In most machine
learning problems, we do not know much about pdata(x, y) but only have a train-
ing set of samples. In order to minimize the empirical risk, we generally replace
the true distribution pdata with the empirical distribution p̂data by averaging on
the training set

J(θ) = Ex,y∼p̂data [L(f(x;θ), y)] =
1
m

m∑

i=1

L(f(x(i);θ), y(i)). (2)

Nevertheless, in practice we can achieve a more authentic itemset empirical dis-
tribution by postulating a data generation model and deducing from statistical
features of the original database. Synthetic transactional datasets have been
widely used for evaluating the performance of pattern mining algorithms over a
wide range of data characteristics. The Quest dataset generation scheme [14] suc-
cessfully mimics the transactions in the retailing environment by picking trans-
action size from a Poisson distribution and then assigning a series of potentially
large itemsets to the transaction. According to a theoretical analysis toward
Quest scheme [15], for each item i ∈ I, the random variable for the number
of transactions in T containing i complies with binomial distribution, so the
itemset possibility in training data is

p(x) = 1 −
∏

τmin≤τ≤τmax

[(1 − p(f̂(x) ≥ τ | θ))(1 − p(f̂(x) < τ | θ))], (3)

and by Bayes’ rule, the itemset-support probability function can be derived as

p(x, y) = p(y | x)p(x) =
y∑

d=0

(
1
n

)d(1 − 1
n

)y−d
∑

i1,...,id

d∏

j=0

1
2xj+1 − 1

. (4)

Under such a data generation model, we can determine the itemset empirical
distribution for adjusting the weight of training samples. In order to estimate the
parameters of the generation model, we adopt maximum likelihood estimation
method fitting the given transactional dataset

θML = arg max
θ

Ex∼p̂data log pmodel(x;θ). (5)
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3 Network Architecture and Training Algorithm

As shown in Fig. 1, our deep neural network for memorizing transactions must
have an input layer of an identical width, i.e., the number of activation units,
with the number of items in the database. Any itemsets can be represented by
a binary vector in such a way for our training process. The output unit of our
deep net is a single real value, representing the itemset support normalized into
[0, 1] by dividing by the number of transactions. Therefore, the input and output
of our deep net have a similar form of an ordinary regression task.

Although different network architectures may have similar memory capacity,
past research has shown that dynamic structuring neural network can provide
stable and adaptive control of nonlinear systems [11]. In our case, the architecture
directly affects the learnt representation and the limitation of compression ratio
as well. To this end, a deep learning technique called adaptive greedy layer-wise
training is proposed to help us determine the optimal depth and width for each
hidden layer. This method is adaptive because the optimal depth and width are
not decided before training but dynamically updated during training by a greedy
layer-wise approach, which is fully presented in Algorithm 1.

Algorithm 1. Adaptive greedy layer-wise training
Input: α = adjustment factor, M = maximum iterations, TOL = loss tolerance

1 Initialize the deep net with only input layer and output unit
2 while validation error decrease −ΔJ(θ) > TOL do
3 Initialize hidden layer L of same width as input layer
4 Insert L into the network as the last layer
5 Train 1 epoch
6 while iteration < M do
7 Initialize hidden layer L+ with (1 + α) width of L by copy-and-fill
8 Initialize hidden layer L− with (1 − α) width of L by random dropout
9 Replace L with L+ and L− respectively

10 Train 1/M epochs separately
11 if −ΔJ+(θ) < TOL and − ΔJ−(θ) < TOL then
12 break
13 end
14 if −ΔJ+(θ) > −ΔJ−(θ) then
15 L ← L+

16 else
17 L ← L−
18 end

19 end

20 end

As for the network depth, our adaptive method continuously adds single
hidden layer between the current last hidden layer and the output unit, until
evaluation result on validation set stops improving significantly. This process
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resembles greedy layer-wise training except that we do not have prior knowl-
edge about the optimal depth at all. For each hidden layer, the width is deter-
mined by a greedy search. The linear adjustment factor α in Algorithm 1 allows
for expanding or shrinking the searching space, obtaining a trade-off balance
between computational cost and searching granularity. Note that when hidden
layer L+ is initialized, the related weights are first copied from layer L and then
residual connections are created; when hidden layer L− is initialized, all weights
without random dropout are simply kept, so that the computational cost for
subsequent training is minimized.

Figure 3 reveals how the network architecture is dynamically constructed and
affected by the statistical features of a series of synthetic transactional database.
It is implied that our adaptive method enables the deep neural network to struc-
ture an optimal architecture by adjusting depth and width dynamically, and the
generally believed logarithmic relation between network depth and number of
training samples is testified, as well as the influence of number of items on the
memorization task.
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Fig. 3. Dynamically constructed network architecture

The internal relevance between the network architecture and learnt database
representation is further analyzed. Inspired by other efforts for improving deep
neural network interpretability by contingent means [12,13], we reasonably spec-
ulate that the internal structure of representation is organized in such a manner
that activation units are gradually polarized along with depth increase in regard
to different clusters of itemsets.

In order to quantify the neuron differentiation, we select the first, middle and
last hidden layers of a series of trained deep nets and run k-means clustering
for pattern itemsets with cluster numbers equal to the width of selected layers
k1, k2, k3. The Euclidean distance of binary itemset vectors is adopted for clus-
tering process. Next, we calculate the average output unit response for each pair
of itemset cluster and activation unit, with result shown in Fig. 4. The pattern
clearness is enhanced as depth increases and activation unit specialization cor-
responding to pattern itemset clusters grows prominently as width decreases. In
the last layer, it can be clearly observed that for each row that stands for an



528 Y. Ji and Y. Ohsawa

activation unit, there usually exists one and only one highlighted response col-
umn that stands for a itemset cluster, which implies that a structural database
representation is learnt through our adaptive training.
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4 Experiments

We conduct our training process and itemset support query tests on both syn-
thetic datasets and real-world datasets. Synthetic datasets T10I4D100K.dat and
T40I10D100K.dat are sparse, generated by IBM Quest Generator [17] and con-
structed according to the properties of typical weakly correlated data. Real-world
datasets we used in our experiments include mushroom.dat, a dense and highly
correlated dataset which describes mushrooms characteristics and kasumi.dat, a
recently collected supermarket basket data from Data Jackets [16].

Training data is generated from these datasets as described in Sect. 2. As
for validation and test dataset, we sample random itemsets by picking item-
set size from Binomial distribution, filling in items with uniform probability
and pre-calculate the true support in the database. The evaluation criterion in
our experiments is the mean value of support absolute error on test set. For
each dataset, we test all combinations of pattern itemsets or randomly sampled
itemsets as training data and dynamically constructed or stationary network
architecture. For fair comparisons, we impose approximately equal number of
parameters on different network architectures. The stationary network architec-
ture has same width with item number for each hidden layer, and the depth is
decided under the parameter number restriction.

The experimental results on different datasets are shown in Fig. 5. The advan-
tages of our pattern mining based training data generation and adaptive train-
ing algorithm for dynamic architecture construction are illustrated with faster
convergence and lower support error on all datasets. Specifically, the data gen-
eration scheme seems to have more significant influence on the query precision
than network architecture. In the best case, our method reaches a mean itemset

http://T10I4D100K.dat
http://T40I10D100K.dat
http://mushroom.dat
http://kasumi.dat
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support query error less than 0.001, which can be quite satisfying for approx-
imation queries. As for database compression, when the transaction number is
large enough, the compression ratio approaches 100:1 (assuming the database
is stored using binary vectors), because the compression is essentially a special
kind of transformation where only itemset support query is allowed, whereas
reconstructing original database can be extremely rough and time consuming.
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Fig. 5. Training loss and query test precision on 4 datasets

5 Conclusion and Future Work

In this work we presented a novel learning, memorizing transactional databases
by constructing structural representation in deep neural networks, and an effec-
tive method, utilizing pattern mining and an adaptive greedy layer-wise training
algorithm for dynamically building network architecture. With solid experimen-
tal results and analysis, we conclude that deep neural networks are capable
of precisely memorizing and compressing information other than generalizing
knowledge from information. Our method can be applied for approximate item-
set support queries, with relatively high precision but low cost in both aspects
of time and space complexity, and the compressive memorization is especially
efficient in practice for offline processing and reducing concurrency control in
database access.

Our activation pattern analysis for deep nets is helpful for interpreting the
constructed representation yet insufficient for fully understanding the principles.
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While similar techniques have been employed for other deep nets, more general
methods for universal interpretation of deep learning models for various tasks
should be considered in future study.
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Abstract. There are two difficulties in classifying offensive sentences:
One is the modifiability of offensive terms, and the other is the class
imbalance which appears in general offensive corpus. Solving these prob-
lems, we propose a method of pre-training fake sentences generated as
character-level to convolution layers preventing under-fitting from data
shortage, and dealing with the data imbalance. We insert the offensive
words to half of the randomly generated sentences, and train the con-
volution neural networks (CNN) with theses sentences and the labels of
whether offensive word is included. We use the trained filter of CNN
for training new CNN given original data, resulting in the increase of
the amount of training data. We get higher F1-score with the proposed
method than that without pre-training in three dataset of insult from
kaggle, Bullying trace, and formspring.

Keywords: Text classification · Convolution neural networks ·
Character-level model · Transfer learning

1 Introduction

Offensive sentence classification is the problem like spam filtering which can
resolve with traditional text processing algorithm. In few recent years, Social
Network Service (SNS) has extended a lot, and the number of replies, tweets,
and comments on the internet also increased at the same time; and these contain
many profanities, insulting words, and hate speeches. Besides, many people on
the web have been modifying their words to non-general forms when they want
to write offensive words on the internet to avoid simple filter of profanities.
These obfuscated offensive words use special characters, digits, and non-English
characters are called “profanitype” or “symbol swearing.” As the form of offensive
words become diverse for this way, traditional text processing algorithms are
inappropriate to catch the features of these words in nowadays.

Because there is no way for the classifier to automatically detect whether the
input text is offensive or not in training process; many researchers have chosen
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 532–539, 2017.
https://doi.org/10.1007/978-3-319-70096-0_55
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supervised learning approach giving the sentence with the label which indicates
offensiveness of the expression together. There are many different offensive sen-
tences on the web, though, to apply supervised learning of each sentence are
required, and the more sentences, the more expensive the cost is, so the resources
for learning is limited in quantity. Besides, the rate of offensive sentences in the
whole corpus is relatively lower than that of non-offensive ones. This charac-
teristic causes data imbalance and results in the inappropriate update of the
classifier.

We use the character-level model to deal with modified words and use transfer
learning to reduce the effects of data imbalance. The method is similar to the
oversampling method in the view of making over-sampled data but is different
to oversampling, using trained layer, not data themselves (Table 1).

Table 1. Previous studies on detecting offensive words

Authors Feature extraction Classification Dataset

Chen, et al. n-gram of BoW SVM, NB Youtube

Sood, et al. n-gram of BoW SVM News comments

Xiang, et al. lexicon features DT, SVM, LR, RF Twitter

Djuric, et al. paragraph2vec Unsupervised Yahoo finance

Zhao, et al. embedding w/BoW SVM Bullying traces

Nabata, et al. embedding w/features Regression Yahoo finance

2 Related Works

Previous studies about the classification of offensive sentences used conventional
machine learning methods. The simplest way is extracting features from sen-
tences with Bag-of-Word (BoW) (n-gram of BoW), and classifying with Support
Vector Machine (SVM) [1,2]. However, as described previously, the difficulty of
the task becomes higher; the conventional approach does not work like as before.

Recently, many text processing approaches are being tried to overcome the
weaknesses of standard machine learning algorithms, especially in the large and
noisy dataset like SNS [3]. Djuric, et al. used word embedding to extract offen-
sive features from the many text data; though the processing speed got faster
due to the reduction of the feature vector size, the difference of AUC score with
BoW was just 1.18% [4]. After this result, the approaches of recent research have
changed to applying additional information. Semantic, linguistic, and other bul-
lying features are used for classifying offensive sentences including hate speeches
[5,6].

As described in above, the data-driven approach does not work well in offen-
sive sentence classification. We thought that the reason is for data imbalance.
Therefore we tried to decrease the effect of data imbalance, and one approach is
transfer learning whose training data is free for imbalance.
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3 Offensive Sentence Classification

3.1 Character-Level Convolution Neural Networks

We propose Convolution Neural Networks (CNN) with character-level [7] as
a classifier for classifying offensive sentences. Though character-level CNN is
already known as a useful method for text classification, this model is helpful
to get the robustness in the noisy environment such as SNS including modi-
fied offensive sentences. Since the CNN model makes the noise of given texts
during convolution and pooling process; CNN adapts to words having changed
characters.

The details concerning the equations of character-level CNN are found in
[7], but as an important part of our approach, transfer learning of CNN, we
introduce a few equations about the processes updating the weight of each CNN
filter.

When feature vector xi and output of the l-1 th convolution layer yl−1 are
given, the weight of m × m sized filter w from the lth layer is applied as follows.

clxy =
m−1∑

a=0

m−1∑

b=0

wab y
l−1
(x+a)(y+b) (1)

The output of convolution layer cl−1 passes max-pooling operation, in k × k
sized field, given pooling stride T, N × N sized output vector plxy is calculated
as follows.

plxy = max cl−1
xy×T (2)

During this process, the noise of feature vector is generated and applied in
weight of CNN filters. Passing several convolution and max-pooling layers, and
finally at the fully-connected layer, CNN model predicts the attributes of the
feature vector.

3.2 Generating Fake Sentences

First, we make fake sentences with randomly selected characters. As the input
to classifier is character-level, the fake sentences used for transfer learning also
generate in character-level. These random sequences of characters reflect the
characteristics of typical sentences.

Using a random generator Rsentence, fake sentence S is chosen to be

Rsentence(x) = S ∈ Cn where S = (c1, c2, ..., cn), ci ∈ C (3)

Where the Eq. (3), x denotes the seed of random generator, n the length of
sentence, and C set of overall characters (Fig. 1).

Then, we make the sentences which have characteristics of offensive words.
These sentences are the sequences of characters with inserted offensive words.
The offensive words come from the offensive wordlist which the web service
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Fig. 1. Training process of proposed method using transfer learning

providers such as google, twitter, and facebook want to block. We extract the
offensive words Wbad, whose length is k from the list.

Rbad−word(x) = Wbad = (w1, w2, ..., wk) and wi ∈ W (4)

We insert an extracted word from Eq. (4) to sentence S generated by Eq. (3)
at the index chosen by random generator Rindex in Eq. (5), and then this process
makes the sentence offensive.

ci+k = wk for k = 1, 2, ..., |Wbad|, i = Rindex(x) ∈ {1, ..., n}
S′ = (c1, c2, ..., w1, w2, ..., wk, ci+k+1, ..., cn) (5)

We label the sentence S′ as the offensive sentence and the sentence S as
the non-offensive sentence. The number of each marked sentence is controllable,
solving data imbalance. These fake sentences are used for transfer learning.

3.3 Transfer Learning Process

Transfer learning is the method using the weights from the pre-training. In pre-
training process, the classifier learns the features of offensive words from the
pseudo-training dataset which is generated by above section. Normal sentences
are generated from Eq. (3), and offensive sentences from Eq. (5). If the sentence
contains a word from the bad-words dataset, we label the sentence as 1, if not,
we label 0. Then, we train the pair of sentence and label to character-level CNN
model by supervised approach. By doing so, the filters of CNN learn to the way
of classifying normal one and offensive one.

After pre-training, filters of the trained CNN have the characteristics of clas-
sifying the offensive sentences with normal sentences. Therefore CNN model
which using the transferred filters starts the training with some pre-knowledge
with the task, whereas CNN with no transfer learning starts the training at the
initial state. This difference makes the different point of convergence, and the
model with transfer learning gets the higher score.
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Table 2. Imbalance of each dataset used in experiment

Dataset # of total
sentences

# of offensive
sentences

Ratio of offensive
words

insults [8]
8815

2818 31.92%

bullyingV3 [9]
4742

1226 25.86%

formspring [10] 25825 2360
9.14%

4 Experiments

4.1 Dataset

We have used three datasets, Kaggle’s “Detecting insults in Data Commentary”
(insults) [8], “Bullying trace data set” (bullyingV3) [9], and formspring dataset
[10]. Table 2 shows the statistics of each dataset. All datasets have data imbal-
ance, and consist of the relatively small amount of sentences compared to the
number of texts used in general text processing tasks.

Table 3. Sample sentences expressing the nature of each dataset.

Dataset Label Sample sentence

insults 1 Eat shit and die Andrew

um holy fuck i need a cigarette

0 That guy is a real fuckstick.

needs to give me a fucking like hows everyone doin?

bullyingV3 1 D: I’m not a bully.

your just bullying me, you love me so..

0 Fuck me Flights are expensive these days

lol. I’ll bully u!

formspring 1 ilOVEU fAtASS ! <3

w@n+ y0 b!q d!(k $uRf@(!n m@ l!pSz

0 iguess yew dnt fucks wit mhe anymo

w@N+ yUh +0 $M@(K m3 m@k3 dH@ SEx w!Ld n h0+

Table 3 shows the example sentences of each dataset. The insults dataset
tends to label as semantic insulting, and has several mislabeled sentences, the
noise of data. The bullyingV3 dataset includes the smallest number of sentences
among three datasets. Since the number of data is small, it is hard to learn the
features of offensive texts, which we want to classify. The formspring dataset has
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Fig. 2. Length distribution of real sentences and generated fake sentences.

very high data imbalance. Also, there are many words modified by omitting the
character, capitalizing the character, and replacing to symbols.

4.2 Deciding the Parameters

Using the method in described in Sect. 3.2, we generate the fake sentences for
transfer learning. We configure one sentence as 300 characters; about 95% of
sentences in all datasets are matched in this condition.

We have found that the distribution of sentence length follows F distribution
approximately. Figure 2 shows that the distribution of the length of original sen-
tences in the corpus and of the lengths of fake sentences chosen by the probability
of F distribution is similar.

We use google-bad-words for the word-list used in Eq. (4). The word-list
includes 550 words banned in the web from google.

The character set has 69 characters including 26 English alphabet, ten digits,
and 33 special characters. Below is the set of characters used for creating fake
sentences in ascending order of ASCII.

!”#$%&’()*+,-./0123456789:;<=>?
@[]ˆ ‘abcdefghijklmnopqrstuvwxyz{|}˜

If the fake sentence is generated with the same probability for all charac-
ters, the sentence is far different from the original sentence. In most sentences,
however, the frequency of occurrence of each character is similar. Therefore, we
generate the sentence depending on the probability of the occurrence of each
character. The generated sentence is similar to the actual sentence at the signal
level.
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Fig. 3. Variation of the F1 score on the number of sentences for each dataset.

We generate the fake sentences with the methods and the parameters
described above, divide into training and validation sets with the ratio of 7:3.
Then, we train CNN filters with these sentences.

4.3 Results

We have applied the original training sentences and the test sentences divided
into 6:4 respectively, and compared one CNN whose filter is learning the fake
data in the previous section with another CNN whose filter is a default.

Since the imbalance of dataset is high, the accuracy is not appropriate to
evaluate the model. Therefore, we calculate the F1 score used as test measures
of binary classification. The score indicates how well the model works.

As shown in Fig. 3, the F1 score is higher than when transfer learning applied
than the case which transfer learning does not apply to all datasets. This result
means transfer learning with fake sentences helps the classifier to get higher
performance. However, the number of the fake sentences is not a significant
variable which affects the performance of the classifier. The filter of CNN changes
similarly regardless of the number of fake sentences.

Though we evaluate our method with F1 score, there is no comparative
research. For bullyingV3 dataset, [5] got 0.78 of F1 score. For the other datasets,
unfortunately, there is no comparable result.

5 Conclusion

Original character-level CNN does not show good performance in offensive clas-
sification because the dataset is not enough to train the features. For solving the
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problem, we propose a method of pre-training with generated fake sentences.
In this paper, we apply the method to only offensive classification with the bad
words list, but, the method is applicable regardless of the words in the dictionary,
and it means the method is also used for any kinds of syntactic searching.

We know the transfer learning helps the model to learn the features though,
exact mechanism and principle of the method are veiled. Future work will be the
investigation of how the method works and how it differs from without transfer
learning.
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Abstract. Topic classification is useful for applications such as foren-
sics analysis and cyber-crime investigation. To improve the overall per-
formance on the task of Chinese conversation topic classification, we
propose a hierarchical neural network with automatic semantic features
selection, which is a hierarchical architecture that depicts the structure
of conversations. The model firstly incorporates speaker information into
the character- and word-level attentions and generates sentence represen-
tation, then uses attention-based BLSTM to construct the conversation
representation. Experimental results on three datasets demonstrate that
our model achieves better performance than multiple baselines. It indi-
cates that the proposed architecture can capture the informative and
salient features related to the meaning of a conversation for topic classi-
fication. And we release the dataset of this paper that can be obtained
from https://github.com/njoe9/H-HANs.

Keywords: Hierarchical attention networks · Chinese conversation ·
Topic classification · Recurrent neural networks

1 Introduction

Conversational texts have a variety of sources, such as Instant Message (IM,
e.g. WhatsApp and WeChat), Social Networking Site (SNS, e.g. Facebook and
Weibo) and speech to text, which play an important role in many applications.
For example, instant messaging communications were utilized in forensics analy-
sis [1], and chat conversations from SNS can be used for cyber-crime investiga-
tion [2]. In a typical application, the user firstly need to get a set of utterances
about some particular topics that he/she has interests in, e.g. sports and enter-
tainment. Keyword retrieval is usually employed as the first method. However, it
cannot achieve satisfactory results due to low precision and recall. The topic of a
conversation containing the keyword “sports” may not belong to the sports, e.g.
the sports park means a place. Hence, topic classification is introduced to make
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 540–550, 2017.
https://doi.org/10.1007/978-3-319-70096-0_56
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more sophisticated decisions to improve performance, which is a multi-class text
classification problem. Given a set of predefined topics, each conversation must
be categorized into one of them. In some occasions, a conversation may be clas-
sified into more than one class, these are multiple topic classification systems.
In this work, we assume that each conversation only can be categorized into one
class.

A conversation is usually a sequence of many utterances, which is com-
posed of two utterances at least. Without considering the speakers, a conver-
sation is similar to a document that is a sequence of many sentences. There
are many document classification methods, including traditional methods (e.g.
SVM classifier with Bag-Of-Words [3]) and deep learning methods (e.g. Recur-
rent Convolutional Neural Networks [4]). Meanwhile, short text classification is
also being well studied [5]. These above classification approaches can be immedi-
ately applied to categorize conversations into topics. Nevertheless, they may not
achieve the desired performance. Furthermore, according to our review, there
are few researches in the literatures to classify the topics of Chinese conversa-
tion. These motivate our work to explore an appropriate method for Chinese
conversation topic classification.

Table 1. A typical example of the Chinese conversation corpus. {As1 , As2} and
{Bs1 , Bs2} are the utterances of speakers A and B respectively.

In this paper, we propose a neural model, named Hierarchical Hybrid Atten-
tion Networks (H-HANs), which combines attention-based Recurrent Neural Net-
works (RNN) with word and character embeddings to classify Chinese conver-
sation. Firstly, we build a hierarchical attention-based neural model to generate
sentence-level and conversation-level representations jointly. The model makes
the classification decision through two levels, i.e. sentence and conversation lev-
els. Sentence-level representation captures the salient words and characters in
each utterance, which can determine the meaning of the utterance. Conversation-
level representation selects the informative sentences of the conversation by the
salient words and characters. Secondly, we explore the value of the speaker
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based attention. The model incorporates each speaker into the sentence repre-
sentation. Furthermore, to address the problem of lack of Chinese conversation
corpus, we introduce a dataset of Chinese conversation based on the real-world
topic instances, which will be released to public. Table 1 shows an example of the
Chinese conversation corpus. Experimental results show that our model outper-
forms baseline methods for Chinese conversation topic classification.

The main contributions of this work are as follows: (1) we propose an effec-
tive neural topic classification model for Chinese conversation by taking the
combination of word- and character-level attentive features into consideration.
(2) we explore the influence of speakers information for Chinese conversation
representation. (3) we construct and release a dataset for Chinese conversation
with specific topics.

The remainder of this paper is organized as follows: Sect. 2 briefly introduces
the works related to this study. Section 3 describes the H-HANs model in detail.
Experimental results and discussion are reported in Sect. 4. Section 5 concludes
this paper.

2 Related Work

Our work aims to classify Chinese conversation within the given classes (topics).
This work is related to topic identification techniques, such as Latent Dirichlet
Analysis (LDA), Latent Semantic Analysis (LSA) and Latent Semantic Indexing
(LSI), which apply unsupervised learning (clustering) approaches to infer possi-
ble topic classes. In contrast, our work uses supervised learning (classification)
method to assign a predefined class to a conversation. The followings are more
closely related to ours.

There are some works about social media topic classification. Kinsella et al. [6]
used the Multinomial Naive Bayesian with the metadata retrieved from external
hyperlinks in user-generated posts to improve topic classification of social media.
Fei and Liu [7] put forward a center-based similarity space (CBS-L) method to
get relevant posts accurately about a topic from social media, which transformed
document representation from the traditional n-gram feature space to a center-
based similarity (CBS) space where the covariate shift problem was significantly
mitigated. For twitter trending topic classification, Lee et al. [8] proposed twitter
social network-based approach to predict the class of a topic knowing the classes
of its similar topics, which made use of topic-specific influential users that were
identified using twitter friend-follower network. Husby and Barbosa [9] employed
distant supervision with Freebase1 to categorize topics of blog posts. For Chinese
topic classification, Chen et al. [10] introduced a semi-supervised Bayesian net-
work model for microblog topic classification and deeply exploited the hidden
information from unlabeled data and related text resources.

Some neural networks have been proposed for text classification, such as
Convolutional Neural Networks (CNN) [11], character-level convolutional net-
works [12]. Traditional approaches to text classification depend on hand-crafted
1 http://www.freebase.com/.

http://www.freebase.com/
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feature extraction, which are not enough to capture the complete semantics
of text. For instance, the word order in the Bag-Of-Words (BOW) model is
missing while it is very important for understanding the semantics. Yet these
proposed neural network based methods can learn low-dimensional text features
(i.e. word embedding [13]) without feature engineering, and achieved state-of-
the-art performance. For Chinese text classification, Zhou et al. [5] indicated
that the combination of word and character embeddings can achieve better per-
formance. Recently, attention-based neural networks have been introduced to
improve further performance for text classification [14–16]. Experimental results
showed that the attention-based neural models can select informative words or
sentences in a document. Since a conversation consists of a sequence of sentences
(i.e. utterances), we assume that some words or sentences hint the topic.

Motivated by the successful utilization of attention mechanism in machine
translation [17], there are also some works that incorporate attention signals
into CNN and RNN. Zhang et al. [18] introduced attention pooling-based con-
volutional neural network for classification, which used bidirectional LSTM
(BLSTM) to generate the intermediate sentence representation and then com-
pared it with local representations generated by the convolutional layer to calcu-
late the attention weights. Yang et al. [15] proposed the Hierarchical Attention
Network (HAN) for document classification, which applied word- and sentence-
level attentions to capture qualitatively informative words and sentences in a
document. Furthermore, Chen et al. [19] proposed a hierarchical neural LSTM
model which incorporated user and product information via word- and sentence-
level attentions to improve document sentiment classification. Zhou et al. [16]
introduced a hybrid neural networks (HANs) with character- and word-level
attentions for Chinese short text classification. Of these our model is most closely
relative to the HAN model [15] and the HANs model [16]. We use the HANs
model to represent each utterance of a conversation. However, we explore the
structure of Chinese conversation and represent the whole text with character-,
word- and sentence-level attentions. Moreover, we incorporate the speakers infor-
mation that those documents do not have into the hierarchical neural networks.

3 Methods

Before formulating our approach, we first define some notations. A Chinese con-
versation is composed of two or more sentences. Postulated that there are two
speakers (i.e. A and B) who talk to each other about some topics, the conversa-
tion is denoted by the following set SL = {As1 , Bs1 , ..., Asm

, Bsn
}, where m and

n are the number of sentences that the speaker A and B said respectively and L
is the total of sentences. The conversation is associated with a predefined class
ci with belonging to C = {c1, c2, ..., ck}. We aim to predicate the category label
with H-HANs for each Chinese conversation. The model comprises four parts:
embedding layer, sentence representation layer, attention and conversation layer,
and classification layer. The overall architecture of H-HANs is shown in Fig. 1.
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Fig. 1. The architecture of the hierarchical hybrid attention networks, where
{As1 , ..., Asm} and {Bs1 , ..., Bsn} are the sequences of different speaker utterances and
α is the weight given by sentence-level attention.

3.1 Embedding Layer

Each sentence in a Chinese conversation is considered as two sequences, i.e.
word sequence {w1, w2, ..., wi} and character sequence {ch1, ch2, ..., chj}, where
i ∈ {1, Lw} and j ∈ {1, Lc}, Lw and Lc are the lengths of the word and charac-
ter sequences respectively. We map each word into its embedding representation
Ewi

∈ Rd and each character into its embedding representation Echj
∈ Rd, where

d is the dimension of a word or character vector. As a result, the input conver-
sations are mapped into a series of word embedding vectors {Ew1 , Ew2 , ..., Ewi

}
and character embedding vectors {Ech1 , Ech2 , ..., Echj

} respectively.

3.2 Sentence Representation

Zhou et al. [16] introduced the hybrid attention networks that represents a
Chinese short text and captures its semantics effectively. For a Chinese con-
versation, each utterance is a Chinese short text. Therefore we apply the idea
to represent each utterance in a Chinese conversation. It is a noteworthy fact
that each utterance is owned to a particular speaker. Hence we contact the
speaker information with his/her utterance and feed the sequence into the HANs
model. The model firstly builds text representation from word and character lev-
els respectively, then concatenates two intermediate vectors into the final vector
representation which is the utterance representation. Finally, the model outputs
the sequential sentence representations, i.e. {S1, S2, ..., SL}.

3.3 Attention and Conversation Layer

It is observed that not all utterances in a conversation contribute equally to the
representation of the conversation meaning. When reading a Chinese conversa-
tion, people usually can roughly judge which sentences in the conversation are
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more important. We implement this idea using BLSTM-based attention mecha-
nism in our model from sentence-level attention.

LSTM is an effective way to represent sequential text. However, one direc-
tional forward LSTM cannot capture long-range semantic dependency from
future context when predicting the semantics in the beginning or middle of
an input sequence. Bidirectional LSTM (BLSTM) provides an improved way to
capture the semantics from both directions at the same time. In our model, the
output of sentence representation layer is fed into the forward LSTM layer and
the reverse of the output is fed into the backward LSTM layer. Assume that the
LSTM layer outputs the vectors [h1, h2, ..., hL]. Correspondingly the new rep-
resentation Sα of a Chinese conversation is computed by an attention-weighted
sum of these output vectors, which is defined as Eq. (1). The attention weight is
computed by the Eqs. (2) and (3), where αt ∈ R.

Sα =
L∑

t=1

αtht (1)

ut = tanh(Whht + bh) (2)

αt = softmax(Wαut) (3)

According to above equations, we employ attention mechanism to compute
the new representation

−→
Sα and

←−
Sα for the output of forward and backward LSTM

respectively, and concatenate
−→
Sα and

←−
Sα to obtain the attentive representation

Sα of the BLSTM layer.
Figure 2 describes the architecture of the BLSTM-based attention layer. The

output of this layer is the conversation representation that can capture as many
salient utterances in a conversation from both directions as possible. The output
represents the semantics of a Chinese conversation and is used to determine
which topic of the conversation.

Fig. 2. The architecture of the BLSTM-based attention layer in our model.
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3.4 Topic Classification

The final vector Sα is a high level representation of the Chinese conversation
and is fed into the top supervised classifier. We apply a linear transformation
layer and a softmax layer to produce conditional probabilities. The linear layer
converts conversation representation Sα to a real-valued vector whose dimen-
sion is the number of topics, and the softmax layer maps each real value to a
conditional probability that is computed by Eq. (4).

Pc = softmax(WcSα + bc) (4)

4 Experiments

In this section, we introduce the experimental datasets, settings and results on
the task of Chinese conversation topic classification.

4.1 Datasets

We collect Chinese conversation corpus from some English learning websites
and tag them with 9 topic classes, including banking, dating, diet, health, job,
sentiment, shopping, sports and travel. From this corpus, we build three experi-
mental datasets with 5-class, 7-class and 9-class respectively. The 5-class dataset
(#DataSet1) consists of the conversations with banking, diet, sentiment, shop-
ping and travel. The 7-class dataset (#DataSet2) consists of the conversations
with banking, dating, diet, job, sentiment, shopping and travel. The 9-class
dataset is the whole corpus, i.e. #DataSet3. We show the corpus statistics in
Table 2.

Table 2. The statistics of the experimental datasets.

Dataset statistics #DataSet1 #DataSet2 #DataSet3

The number of conversations 1,994 2,799 3,415

The number of total sentences 13,590 20,225 25,602

Max/Avg. sentences per conversation 34/7 34/7 34/7

Max/Avg. length per sentence 277/18 415/18 415/18

For each dataset, we choose 80% of the samples for training and 20% for test.
We release the corpus on the GitHub2.

2 https://github.com/njoe9/H-HANs.

https://github.com/njoe9/H-HANs
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4.2 Baselines

We compare our models with several neural network based approaches as follows.
Most neural methods applied to text classification are variants of convolutional
or recurrent networks. We select four neural network baselines including RCNN,
C-LSTMs/BLSTMs, HAN and HANs.
RCNN: Lai et al. [4] introduced a two-layer model, the first layer represented
the documents using a bi-directional recurrent structure, and the second layer
selected the informative features in the documents by a max-pooling mecha-
nism. We implement the RCNN baseline with word embedding and LSTM-RNNs
instead of vanilla RNNs.
C-LSTMs/BLSTMs: Zhou et al. [5] put forward a compositional recurrent
neural networks with LSTM or BLSTM, which concatenated the word- and
character-level representations into a sentence vector for Chinese short text clas-
sification.
HAN: Yang et al. [15] proposed the HAN model for document classification.
Inspired by this idea, we firstly concatenate word- and character-level attentive
representations for each utterance to get a sentence representation, then use
sentence-level attention mechanism to generate conversation representation for
classification. We apply LSTM and BLSTM to model sentence and conversation
attentive representations respectively, i.e. HAN-LSTM and HAN-BLSTM.
HANs: Zhou et al. [16] developed the model for Chinese short text classification.
We explore the effectiveness of the model on the task of topic classification for
longer text.

4.3 Experimental Setup

Different from western languages (e.g. English), there have no delimiter between
the words or characters in a Chinese text. Therefore, for each utterance text, we
apply Jieba3 to conduct Chinese word segmentation, and initialize the lookup
tables of input texts with the 100-dimensional pre-trained word and character
embeddings [5] respectively. The hyperparameters of our model are tuned on
the validation set and early stopping is utilized within 20 epoches. Dropout rate
of 0.4 is set to obtain better performance. We use Stochastic Gradient Descent
(SGD) to train all models with learning rate of 0.01 and momentum of 0.9.
Table 3 shows the hyper parameter settings in detail.

4.4 Results and Analysis

For the baselines except HAN model, we concatenate all utterances in each con-
versation to form a long text which is the input (we assume that the max length
of each text is 600). For the HAN and H-HANs models, utterances in each conver-
sation are fed into the models in temporal sequence, and their hyperparameters
are the same. Table 4 shows the experimental results.
3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba
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Table 3. The experimental parameter settings in our model.

Parameter Choice Experiment range

Max sentences per conversation 10 10, 15, 20

Max length per sentence 140 100, 140, 200, 600

Word/Character embedding dimension 100 50, 100, 300

LSTM/CNN hidden layer size 100 64, 100, 128, 256

Dropout rate 0.4 0.4, 0.5

Epoch size 20 10, 15, 20

Mini-batch size 8 8, 16, 32, 64

Table 4. Results in percent of weighted-average. H-HANs+BL and H-HANs+BB
denote the model with sentence representation using HANs-BLSTM, and conversa-
tion representation using LSTM and BLSTM respectively. H-HANs+BB+Speaker
denotes the model H-HANs+BB combined with the speakers.

Methods F1 (Precision, Recall)

#DataSet1 #DataSet2 #DataSet3

RCNN [4] 86.3 (87.4, 86.5) 80.8 (81.4, 80.9) 83.2 (83.2, 83.7)

C-LSTMs [5] 44.5 (60.3, 47.4) 34.7 (55.0, 39.8) 33.6 (43.1, 38.9)

C-BLSTMs [5] 43.2 (50.1, 45.9) 31.7 (36.0, 36.2) 27.8 (42.5, 31.2)

HAN-LSTM [15] 78.3 (79.2, 78.7) 73.1 (74.2, 73.4) 84.9 (85.0, 85.1)

HAN-BLSTM [15] 81.9 (83.8, 82.5) 77.2 (79.7, 77.7) 80.0 (80.6, 79.8)

HANs-BLSTM [16] 86.1 (86.3, 86.0) 82.1 (83.1, 82.1) 85.2 (85.9, 85.5)

H-HANs+BL 88.7 (89.2, 88.7) 83.8 (83.9, 83.9) 83.4 (84.2, 84.0)

H-HANs+BB 89.9 (89.9, 90.0) 84.5 (84.7, 84.6) 85.5 (85.6, 85.5)

H-HANs+BB+Speaker 91.8 (92.2, 91.7) 85.8 (86.2, 85.7) 87.5 (87.9, 87.4)

The experimental results from Rows 4 to 5 show that LSTM or BLSTM
have different effectiveness on different datasets. The results reveal that HAN-
BLSTM is better than HAN-LSTM on #DataSet1 and #DataSet2 while it is
opposite on #DataSet3. The results in Rows 1 to 6 imply that HANs-BLSTM
almost achieves better performance than other baselines, which is the basis of
our model. In our model, we firstly apply HANs to represent each utterance in
a conversation, then feed each sentence representation into the attention-based
LSTM/BLSTM layer. Rows 7 and 8 show the results with attention-based LSTM
and BLSTM respectively.

Among all baselines, C-LSTMs/BLSTMs obtain lowest performance
although they can achieve better performance for Chinese short text classifi-
cation [5]. It may be concluded that C-LSTMs/BLSTMs are not applied to our
corpus. However, Row 6 shows that on the basis of C-LSTMs/BLSTMs, HANs
model builds word- and character-level attentions with BLSTM, and improves



H-HANs for Chinese Conversation Topic Classification 549

performance further. Compared Row 5 with Row 6, it indicates that sentence
representation plays a leading role in hierarchical attention networks. HAN-
BLSTM only uses attention-based BLSTM to represent each utterance, while
HANs-BLSTM combines the C-LSTMs/BLSTMs and attention-based BLSTM.

Compared Row 7 with Row 8, it shows that our attention-based BLSTM for
conversation representation achieves better performance than attention-based
LSTM. In Fig. 2, our model firstly computes the attentive representation for
the forward and backward LSTM layer respectively, then concatenates the two
outputs to generate the representation of the input text. Therefore the attentive
representation from both directions picks out the informative sentences in a
conversation.

Row 9 shows that our model can significantly improve the performance
with the consideration of speaker information. It proves that not all utterances
in a conversation contribute equally to the conversation meaning for different
speaker. Comparison with H-HANs+BB model, H-HANs+BB+Speaker further
improves the F1-score by 1.9%, 1.3% and 2.0% on three datasets respectively.
Experimental results indicate that our model effectively captures the informative
and salient utterances in a conversation.

5 Conclusion

In this paper, we propose a hierarchical hybrid neural networks (H-HANs) for
topic classification of the whole Chinese conversation, which incorporates speak-
ers information into character- and word-level attentions for sentence represen-
tation and use attention-based BLSTM to generate conversation representation.
Experimental results indicate that our approach can effectively select the salient
utterances in a conversation with attentive mechanism, which are important
to judge the topic of a conversation. Meanwhile, we release the corpus, a new
dataset for Chinese conversation topic classification.
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Abstract. Distantly supervised relation extraction is a powerful learn-
ing method to recognize relations of entity pairs. However, wrong label
problem is inevitable among large-scale training data. In this work we
propose a hierarchical attention neural network to effectively allevi-
ate the impact of noise instances. Moreover under distantly supervised
scenario, connections and dependencies widely appear among relation
classes, which we call class interactions. Previous end-to-end methods
that considered the relations as independent failed to make use of these
interactions. To better utilize these important interactions, we propose
a soft target as training objective to learn class relationships jointly.
Experiments show that our model outperforms state-of-the-art methods.

Keywords: Distant supervision · Hierarchicial attention · Soft target

1 Introduction

Traditional relation extraction, which aims to recognize the relationship between
two named entities, is inevitably limited by the lack of labeled data. In recent
years, the utilization of large-scale knowledge bases (KBs) like Freebase [2] has
arisen in many NLP tasks. The KBs are built up with relation triples that con-
tain a pair of entity and their relationship, e.g., (Steve Jobs, founder, Apple).
Since data labeling is time consuming and labor intensive, [9] proposed distantly
supervised (DS) relation extraction which can automatically generate labeled
data. The DS method assumes that if an entity pair has a specific relation in the
KBs, then all sentences containing the entity pair, which are called relation men-
tions, also express this relation. Training data is generated by aligning relation
triples in KBs to free texts. However, under this assumption, data could be very
noisy since not all the sentences containing the entity pair exactly express such
relations. Thus, DS relation extraction suffers from wrong labeling problem.

To relax the wrong label problem, [6,11,14] adopted multi-instance rela-
tion extraction. However, these methods with manual feature engineering deeply
depends on NLP tools so that noises will also be generated during sentence anno-
tation and parsing. Recently, the utilization of deep neural networks [12,16,18]
has relaxed relation extraction from handcraft features. [7,19] utilized convolu-
tional neural networks (CNN) in DS relation extraction. Since recurrent neural
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 551–561, 2017.
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networks (RNN) have the strength at modeling sequences, in this work we employ
a bidirectional RNN with gated recurrent units (GRU) as our sentence encoder.

The effectiveness of attention mechanism [1] has been proved in several NLP
works. [17] applied hierarchical attention networks to boost document classifica-
tion. [7,21] also respectively used word and sentence level attention in relation
extraction. In this work, we follow the previous multi-instance learning frame-
work, and employ both word and sentence level attentions to alleviate noises from
all aspects. In the hierarchical attention structure, word level attentions recog-
nize the segments strongly suggesting these relations and the following sentence
level attentions dynamically select the convincing instances and relax the impact
from noisy instances.

Previous DS approaches assign exactly one certain relation label to indi-
vidual sentences and entity pairs. However, they failed to consider the internal
interactions among relations. As [6] argued, the fact that more than one relation
classes are expressed in a relation mention is common in DS scenario. We further
find that relations that appear simultaneously usually have inherent interactions.
Taking the sentence that is one reason that Hunan’s fast-growing provincial cap-
ital, Changsha, is beginning to siphon some workers back from Guangdong for
example, the relation contains and capital of are both expressed in the sen-
tence for the entity pair Hunan and Changsha. If a relation mention expresses
the relation capital of, the relation contains must be expressed at the same time.
Here is another example that the appearance of relation place of birth sometimes
suggest the relation place of live. Interactions among relations are common and
important in relation extraction. The dependencies and connections between
relations can be expressed by their co-occurrence. In this work, we design a
novel scheme to model the interactions. Inspired by [5], we heuristically propose
a soft target (ST) by modifying the labels of relation mentions. In the modified
labels, the value of each class is set as the probability of the relation mention
being classified to this class, instead of a binary value. By the soft target, we
jointly aggregate the class interactions during training that leads to a better
model performance.

Figure 1 shows the overall structure of our proposed model. Words in input
sentences are initialized with pre-trained word embeddings [8] and position
embeddings [18]. We first embed the sentences into semantic vector space by
a bi-GRU with word attentions, then all the sentence embeddings are weighted
by sentence attentions as the embedding of the entity pair. Finally the embed-
dings are learned to fit the soft target.

The contributions of this work are summarized as follows: (1) We argue that
class interactions are important for distantly supervised relation extraction and
propose a soft target to enhance relation extraction by jointly learning the class
interactions. (2) We propose a hierarchical attention network that is powerful to
alleviate wrong label problem and restrain noises from all aspects.
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Fig. 1. Hierarchical attention network with soft target

2 Related Work

Relation extraction is a fundamental task in natural language processing. Tra-
ditional relation extraction is limited by the expensive annotated training data.
Thus, [9] addressed the DS method to generate training data. To address the
wrong label problem, [11] introduced multi-instance method and [6,14] adopted
multi-instance multi-label learning. Multi-instance learning considers the label
of a bag of instances instead of individual instances. However, these methods
deeply rely on traditional handcraft features that suffer from error propagation.
[19] incorporated multi-instance learning with neural networks. [7] utilized sen-
tence level attentions to selectively combine information from multiple instances
and achieved the state-of-the-art performance. These end-to-end methods simply
used naive neural network structures and failed to consider the internal interac-
tions between relations. [4] proposed a global learning method that jointly model
relation mentions and relation facts in a Markov random field. [20] modeled rela-
tion likelihood via learning to rank algorithm. Our work is closely related to these
two works that considered relation interactions during learning.

Deep learning is reported to gain considerable promotions in many NLP
tasks. As for relation extraction, [13] used recursive neural networks to extract
relations. [12,18] used end-to-end CNNs in relation extraction. Meanwhile in
[3,10], several variants of RNN is also designed for relation extraction. The atten-
tion mechanism has shown its effectiveness in several previous relation extrac-
tion works. [15,21] reported their attention based neural relation extraction and
showed promising results. Base on these previous works, we utilize a bidirec-
tional RNN to effectively encode the relation mentions and design a hierarchical
attention structure to furthest alleviate the harm from noises.
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3 Model

3.1 Embedding Layer

The raw input for the network is a sentence x. We first embed every words in
the sequence to distributed vectors. The embedding for every token includes
following two parts.

Word Embedding. We use a word embedding matrix to transfer words into
distributed representations. Given a sentence xi = {w1, w2, · · · , wm} with m
words, every word wi is encoded to a real-value vector. The embedding matrix
V ∈ R

d×|V | where d denotes the dimension of word vectors and |V | denotes the
size of vocabulary. The column vectors of V are initialized by pre-trained word
vectors that contain syntactic and semantic information of the words.

Position Embedding. Following [18], we use position embeddings that speci-
fied by the relative distance between current word and entity pair. The distance
between the ith word and the entity word at jth place is defined as i − j. Two
distances towards the entity pair are calculated for every words and then mapped
into fixed size vectors. We concatenate two parts of embeddings and the input
matrix is denoted as w = {w1,w2, · · · ,wm} where wi ∈ R

dw+2×dp . dw denotes
the dimension of word vectors and dp denotes the dimension of position vectors.

3.2 Sentence Encoder

We embed sentences by a bidirectional RNN with gated recurrent units (GRU).
The GRU [1] traces the historical hidden states by gating mechanism. GRU
keeps two types of gates called reset gate rt and update gate zt to decide the
way to process previous information. At time t, the GRU updates a new state

ht = (1 − zt) � ht−1 + zt � h̃t (1)

where � denotes element wise product. In this equation, hidden state from pre-
vious time step ht−1 and current state h̃t are reorganized by the update gate zt
which controls the proportion of information from two parts. zt is calculated as

zt = σ(Wzxt + Uzht−1 + bz) (2)

xt is the input vector at time t. Then the candidate state h̃t is calculated as

h̃t = tanh(Whxt + rt � Uhht−1 + bh) (3)

rt is the reset gate that determine how much previous information is kept for
candidate state. The reset gate is computed as

rt = σ(Wrxt + Urht−1 + br) (4)

For a input sentence si, the network updates a forward hidden state
−→
hit and

a backward hidden state
←−
hit separately, we add the two hidden states

hit =
−→
hit +

←−
hit (5)

as the hidden state at time t.
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We employ word level attentions to determine important segments in sen-
tences. For each output state hit, we compute its attention weight αwt as

uit = tanh(hit) (6)

αwt =
exp(uT

ituw)
∑

t exp(uT
ituw)

(7)

uw is a query vector and we acquire the sentence represent si as

si =
∑

t

αwthit (8)

and si is the attention weighted sentence representation.

3.3 Scoring Instances with Sentence Attention

To alleviate the wrong labeling problem, we apply sentence attentions to dynam-
ically evaluate the reliability of instances. During training, sentence attention
weights are learned for every instance. The final representation of the entity pair
is a linear combination of all the sentence embeddings weighted by attentions.

Specifically, for each sentence si we compute an attention αsi and the repre-
sentation of entity pair s is weighted as

s =
∑

i

αsisi (9)

αsi =
exp (ei)∑
k exp (ek)

(10)

ei is a sentence score computed from a bilinear query function as

ei = siAr (11)

where A is a diagonal matrix represent and r is a query vector.
In order to measure the similarity between relations and entity pairs, the

model also learns relation embeddings locating in the same feature space with
sentence embeddings. Then we use a score function to determine confidence of
entity pairs being classified to each relation. Scores for a entity pair with a
representation s is computed as

c = sR + b (12)

where R ∈ R
dh×|r| is a relation embedding matrix. Column vector in R are

representations of relations. dh is the dimension of sentence embeddings and |r|
is the number of relations. Each element in c is a relation score.
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3.4 Learning Class Interactions with Soft Target

As introduced above, in this work we employ soft target instead of one-hot labels
as our learning objective. Since entity pairs often contain multiple relations that
have inherent interactions, soft target model that interactions into the network.
Here we define soft target as

π = {p1, p2, · · · pr} (13)

where
∑

i pi = 1. pi is the probability that the entity pair is assigned to the
ith class. And class scores in Eq. (12) are normalized by a softmax layer as the
probabilities to classify the entity pair to each relation

p(r|S, θ) =
exp (cr)

∑|r|
i=1 exp (ci)

(14)

Where S represents the input instances, θ is the set of parameters and |r| is the
number of relations. We use cross-entropy objective to measure empirical risk

L(θ) =
N∑

i=1

πi log p(ri|Si, θ) (15)

where N is the total number of entity pairs. In this work the class interactions are
mainly considered on the co-occurrence of relation classes. We simply consider
positive classes have the same probability.

4 Experiments

4.1 Dataset and Evaluation Metrics

Our experiments are implemented on a widely used dataset that developed by
[11] and has been used by [6,7,14,19]. The dataset was generated by aligning
the relation facts discovered in Freebase with free texts from New York Times
corpus (NYT). There are 53 kinds of relations including a Not Related relation in
the corpus. There are 522,611 sentences, 281,270 entity pairs and 18,252 relation
facts contained in the training data, and 172,448 sentences, 96,678 entity pairs
and 1850 relational facts in the testing set.

We evaluate our model with metrics similar to [9]. We adopt held-out eval-
uation in all of our experiments. Both precision/recall curves and precision@N
(P@N) is reported as evaluation criterion of the model.

4.2 Experiment Settings

Word Embedding: In this work, we use the word2vec tool [8] to pre-train
word embeddings with NYT corpus. Words that appear less than 100 times
in the corpus are aborted and a UNK symbol is assigned for the rare words
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whose embedding is randomly initialized. The word embedding matrix is updated
during training.
Parameter Settings: Following previous works, we use three-fold validation on
the training data to tune the parameters and mini-batches are fed into the net-
work randomly. We use grid search to determine the optimal hyper-parameters.
Batch size is set as {60, 120, 240, 480}. Word embedding size is tuned as {50,
100, 150, 200}. We select learning rate among {0.1, 0.05, 0.01, 0.005, 0.001}.
We keep other hyper-parameters same as [7,19]: the size of sentence embedding
is 230, position embedding size is set to 5 and dropout rate is set as 0.5.

4.3 Comparison with Baseline

We select following models for comparison through held-out evaluation:

Mintz [9] the first work on distant supervised relation extraction.
MultiR [6] a graphical model based multi-instance learning method.
MIML [14] a multi-label method to address relation overlapping.
PCNN+ATT [7] neural method that achieved the state-of-the-art

performance.

Fig. 2. PR curves of our model and the baselines.

Figure 2 shows the precision/recall curves of our model and baselines. Both
HAGRU and HAGRU+ST significantly outperforms previous conventional and
neural methods. The precision of PCNN+ATT drops fast after the recall rate
reaching 0.025 while ours keeps a considerable precision. The superiority of our
method derives from its model structure and the ability of organizing potential
interactions of relation facts. The attentive GRU encoder alleviates noises at
word and instance aspect and adequately captures the latent features since the
inter-class information is propagated through the network via the soft target.
These mechanisms guarantee the model to be effective from different aspects.
We notice that when recall is tiny, the PCNN model works better than our
RNN based models. This may because for some straightforward sentences, local
features extracted by CNN work better for the classification.
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4.4 Effect of GRU with Hierarchical Attentions

To evaluate the impact of attentions at different level, we train several mod-
els with different attention mechanism. The results are presented in Fig. 3 and
Table 1. In the experiments, We train a GRU encoder with only word atten-
tions (GRU+WATT) that combines the sentence embeddings by averaging.
GRU+WATT shows comparable performance with PCNN+ATT even without
sentence level attentions, which proves that word level attention precisely con-
centrates on important segments in sentences for relation extraction. Meanwhile
the fact that GRU encoder with only sentence attentions (GRU+SATT) works
not so good also suggests that word attentions is quite important. And when
sentence level is further applied, HAGRU is shown much more powerful than
PCNN+ATT and GRU+WATT. From these facts, it is concluded that hier-
archical attention mechanism which denoises at multiple levels well boosts the
model’s ability of extracting relation facts.

Table 1. P@N for relation extraction with different number of sentences.

P@N(%) 100 200 300 400 500 Mean

GRU+SATT 80.0 69.5 64.3 58.8 58.2 66.2

GRU+WATT 83.0 80.0 74.0 68.8 66.0 74.4

HAGRU 87.0 79.0 74.3 69.8 67.4 75.5

HAGRU+ST 85.0 81.0 77.3 71.0 70.4 76.0

Fig. 3. mpact of different atten-
tions.

Fig. 4. Impact of soft target.

4.5 Effect of Soft Target

The effectiveness of soft target is shown in Fig. 4 and Table 1. We observe from
the PR curves that when more positive classes are recalled, HAGRU+ST keeps
a higher precision rate than HAGRU. HAGRU suffers a steep reduction of preci-
sion when recall rate reaches 0.05 while HAGRU+ST keeps a long range higher
precision. The soft target implies the co-occurrence and dependency among the
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Fig. 5. Class probabilities of the entity pair in different model

classes. Under this objective, embeddings of related classes are restricted closer
while the margins between irrelevant classes are maximized. Hence, our model
gains the ability to precisely assign relations for entity pairs and recall the fine-
grained relations that usually related to coarse-grained ones.

4.6 Case Study

To demonstrate the effectiveness of soft target, we randomly select a entity
pair China and Inner Mongolia which simultaneously express the relation
of /location/contains and /country/administrative divisions as our study case.
Then we inspect the label distribution to discover how the model works.

As shown in Fig. 5, the output probability of administrative divisions signifi-
cantly increases after the class relationship is jointly learned by soft target which
indicates the two classes are learned to be closer. Another benefit brought by
joint learning is that fine-grained relations like administrative divisions are more
likely to be recalled. If learned with single label, these relations are easy to be
masked by vast coarse-grained labels.

5 Conclusion

In this paper, we introduce a hierarchical attention network to model relations
between entities and eliminate noise. A soft target is further proposed to jointly
learn the interactions among relations. This novel scheme is shown to be powerful
for relation extraction under distant supervision.

Acknowledgments. This work is supported by the Fundamental Research Funds
for the Central Universities (2017RC02) and Beijing Natural Science Foundation
(4174098).
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Abstract. The traditional neural networks are only able to process vec-
torial data, resulting in the loss of spatial information in high-dimensional
structural data when vectorising data. The matrix neural networks (Mat-
Net), a new approach, is only capable of capturing structural information
on the first and the second dimension/mode of matrix data. Although
the state-of-the-art method multilinear tensor regression (MLTR) man-
ages to capture the linear relational information in high dimensions,
the possible nonlinear relationships within multidimensional data may
be ignored. To analyse both linear and nonlinear relationships among
each mode of the multidimensional relational data, a new model, named
tensorial neural networks, is proposed. Within the tensorial neural net-
works, the hidden layers are in high-dimensions rather than one dimen-
sion or two dimensions. The backpropagation algorithm for tensorial
neural networks is derived and provided. The performance of the new
approach is assessed in analysing longitudinal network data which con-
tains weekly international relationships among 25 countries from 2004
to mid-2014 from World-Wide Integrated Crisis Early Warning System.
In other words, the application of this newly proposed method, tensorial
neural networks, is on international relationship study in this paper. The
dependencies among the international relationship data are generally
reciprocity and transitivity which are also the interests of the research.

Keywords: Tensorial neural networks · Longitudinal networks · Inter-
national relationships · Machine learning

1 Introduction

In recent years, machine learning has drawn incredibly increasing attention in
many research areas and the request of processing large volume of data with a
higher speed has been highly demanded. Data acquired from science and tech-
nology is remarkable not merely for the often-mentioned volume, but also multi-
and high-dimensional with the rapid proliferation in new data types. The rise of
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 562–571, 2017.
https://doi.org/10.1007/978-3-319-70096-0_58
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massive multi-dimensional data has led to new demands for Machine Learning
(ML) systems to learn complex models with millions to billions of parameters
for new types of data structures, that promise adequate capacity to digest mas-
sive datasets and offer powerful predictive analytics thereupon. The data types
are, not limited to, e.g., the 2D data like digital images1, 3D data like videos2

and multispectral images in remote sensing3 and longitudinal network data from
social and political networks4.

Most traditional learning algorithms only deal with vectorial data. Vectoris-
ing multi-dimensional data results in even higher dimensions, demanding pow-
erful computing equipment and more efficient algorithms. In some cases such as
in political network analysis, it has been proved that vectorising network data
is not a good choice for representing data, see [1]. Hence exploring new machine
learning algorithms to directly deal with the data in specially organised data
structures has been a challenge in the last decade. We have seen a number of
state-of-the-art development in new algorithm design taking care of special data
structures like multi-dimensional data and even manifold-valued data, see [2]. In
literature, multidimensional data is usually called tensorial data, as the exten-
sion of the ordinary vectorial data, see [3]. A number of linear analysis tools or
techniques for tensorial data, in the case of multilinear analysis mentioned, have
been well studied in the last two decades. The new techniques are making their
ways to other disciplines.

To analyse longitudinal relational data, Hoff [4] applied the multilinear tensor
regression. With this approach, this linear model is able to process the multidi-
mensional data which are autocorrelated (for example, as a time series). Thus
this method can capture the spatial information, such as the long-term longi-
tudinal dependence between the data and the transitivity and the reciprocity
of the data. Minhas et al. [1] also proposed a method which can capture the
interdependence among the data points with the tensor regression based net-
work approach to estimate parameters. These parameters are able to describe
the effect of one pair of nodes on the other pair(s) of nodes (one element of the
tensor, xi1,i2,t where i1 and i2 are one pair of nodes, describes the relationship
between this pair of nodes at time t). These approaches are parsimonious and
also reduce the number of parameters to estimate significantly.

Given the fact that the multidimensional data such as longitudinal relational
data (as a time series) are highly complicated, all the aforementioned multilinear
analysis may not be able to reveal any hidden complex nonlinear relationship
between the independent variables and the dependent variables, to detect possi-
ble interactions between the predictors, or to enable the flexibility of the model
to capture the information in the data sufficiently.

There was a new approach proposed to enable neural networks to handle
the input data in matrix structure, which increases the speed of the process,

1 http://sipi.usc.edu/database/database.php?volume=misc.
2 https://www.youtube.com/watch?v=OeyZyrXGgtM.
3 http://dx.doi.org/10.5067/ASTER/AST L1T.003.
4 http://snap.stanford.edu/data.

http://sipi.usc.edu/database/database.php?volume=misc
https://www.youtube.com/watch?v=OeyZyrXGgtM
http://dx.doi.org/10.5067/ASTER/AST_L1T.003
http://snap.stanford.edu/data
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reduces the size of the parameters significantly and captures the spatial infor-
mation which is in 2 dimensions, see [5]. However, this approach can be applied
to the longitudinal relational data which is actually in tensor form. In addition,
during the vectorization or matricisation, the solution space is significantly large.
Thus the probability to obtain a meaningful local minimum is decreased, since
the domain of the sub-optimum is large. What is more, as the model complex-
ity increases, the learning capacity of the model tends to be deteriorated. The
computational cost is also significantly high.

The objective of this paper is, under the deep learning neural network frame-
work, to propose a new nonlinear machine learning algorithm which is able to
explore nonlinear relations among multidimensional data, specially for the lon-
gitudinal relational data, and to preserve and capture spatial features of the
data, for example, tensor structured time series with interdependent elements.
This method will take tensors directly as the input. In other words, the input
layer neurons form a tensor and each neuron represents an element of the tensor.
Each neuron receives the information which is summarized through the multi-
linear mapping of the outputs from the neurons of the immediate previous layer,
plus an offset term which is the bias. Then the neurons are activated with a
specific activation function. In terms of obtaining the most optimal parameters,
the backpropagation will be proposed to train tensorial neural networks (TNN).
In addition, the tensorial neural network (TNN) will not only further reduce the
solution space, but also in consequence reduce the model complexity, increas-
ing the chance to reach a meaningful local minimum compared with the classic
neural networks or the matrix neural networks (MatNet) [5]. After we completed
this work based on MatNet, we note the recent work on the same topic in [6].

The paper is organized as follows. In Sect. 2, we propose the new tensorial
neural networks and investigate the BP algorithms and relevant regularisations.
Section 3 focuses on assessing the performance of the proposed TNNs, evaluated
on a real-world dataset. Finally, conclusions and suggestions for future work are
provided in Sect. 4.

2 Tensorial Neural Networks

2.1 Preliminaries

Our purpose in this study is to propose a deep learning for tensorial data based
on the new neural network structure. We will follow the tensor notation used
in [3]. A tensor is a multidimensional array. It is higher-order generalization of
scalar (zeroth-order tensor), vector (first-order tensor), and matrix (second-order
tensor). In this paper, lowercase italic letters (x, y, · · · ) denote scalars, boldface
lowercase letters (x, y, · · · ) denote vectors, boldface uppercase letters (X, Y,
· · · ) denote matrices, and boldface Euler script letters (X, Y, · · · ) denote tensors.
Specifically a K-order tensor X is an element of the tensor product of K vector
spaces with K coordinates index by (i1, i2, ..., ik), denoted by

X = (xi1,i2,...,iK )1≤i1≤I1,1≤i2≤I2,...,1≤iK≤IK
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where K is called the order/dimensionality and I1, I2, ..., IK are the relevant
dimension along each of K modes of the tensor. Thus all the I1 × I2 × · · · ×
IK elements of the tensor X are arranged in the high-dimensional rectangular
structure.

The k-mode product of an K-order tensor X with a matrix Uk = (ujk,ik) ∈
R

Jk×Ik is denoted by X ×k Uk. The result is a K-order tensor of dimension
I1 × · · · × Ik−1 × Jk × Ik+1 × · · · × IK . Elementwise, the k-mode product can be
expressed as (X×kUk)i1,··· ,ik−1,jk,ik+1,··· ,iK =

∑Ik
ik=1 xi1,··· ,ik−1,ik,ik+1,··· ,iKujk,ik .

In this paper, we are particularly interested in the following multiple linear
transformation defined by the so-called Tucker multiplication, see [3],

X → Y = X ×1 U1 ×2 U2 ×3 · · · ×K UK � [X;U1,U2, ...,UK ]. (1)

2.2 Tensorial Network Settings

The tensorial neural networks that we propose consists of L layers of K-order
tensorial structure, the neighbouring layers of which are connected by the mul-
tiple linear mappings defined by (1) with appropriate bias tensors. Specifically,
let X(l) ∈ R

Il1×···×IlK be the tensorial variable at layer l where l = 0, 1, ..., L.
The layer 0 is called the input layer and the layer L is called the output layer.
Layer l − 1 and layer l (l = 1, ..., L) is connected as

X(l) = σ(l)(X(l−1),W(l)) = σ(X(l−1) ×1 U
(l)
1 ×2 · · · ×K U(l)

K + B(l)). (2)

where B(l) ∈ R
Il1×···×IlK , U(l)

k ∈ R
Ilk×I(l−1)k (k = 1, 2, ...,K), and W(l) =

{U(l)
1 , ...,U(l)

K ,B(l)} denotes the parameters/weights between layers l − 1 and l
with an appropriate activation function σ such as the sigmoid function.

The overall function defined by these L layers networks is given by, based on
the notation in (2),

f = σ(L) ◦ σ(L−1) ◦ · · · ◦ σ(1) : RI01×···×I0K → R
IL1×···×ILK , (3)

which is parameterised on the parameter set W = {W(l)}L
l=1.

2.3 Loss Function and Regularisation

The basic principal of any neural network learning for a given set of training
D = {(Xt,Yt)}N

t=1 and a loss function � is to use the empirical risk minimization.
It suffices to minimize the following empirical risk to learn a function that will
do well in general, i.e.,

min
W

1
N

N∑

t=1

�(f(Xt,W),Yt). (4)

The loss function � can be chosen as the squared error for regression problems
and typical softmax loss for classification problems, see [7].
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To maintain a stable training process, as usual, we also add the follow-
ing regularisation term to the loss function (4), ‖W‖2 :=

∑L
l=1

∑K
k=1 ‖Ulk‖2F .

In fact, this regularisation term can be replaced with more strong constraints
‖Ulk‖2F = 1 where 1 ≤ k ≤ K − 1 on each layer to maintain scale uncertain in
multiple products. However our experiments have shown that the previous ridge
regularisation is sufficient in most cases.

As a common practice, we prefer sparse response inside hidden layers. In par-
ticular, we impose a sparsity constraint on the hidden neurons. For this purpose,
define ρ(l) = 1

N

∑N
t=1 X

(l)
t , the average activations of hidden layer l (averaged

over the training set). We wish the average tensor to be a given constant tensor
with all the elements to be a given constant ρ. We utilise the following entropy
measure to enforce the sparsity:

Rl = sum
(

ρ log
ρ

ρ(l)
+ (1 − ρ) log

1 − ρ

1 − ρ(l)

)

, (5)

where sum(M) means the sum of all the elements of tensor M, and log and /
are applied to tensor elementwise.

2.4 Optimisation and Implementation

Finally the overall objective function for training tensorial neural networks has
become

� =
1

2N

N∑

t=1

‖Yt − f(Xt,W)‖2F + λ‖W‖2 + β

L∑

l=1

Rl. (6)

The classic deep learning neural network training relies on one of gradient
descent optimisation algorithm. Given the forward-feed structure of the proposed
tensorial neural networks, we can present an effective Backpropagation (BP)
algorithm to back-pass the computation of the gradient of the loss function with
respect to each of tensorial neural network parameters/weights W for efficient
training or learning. We refer readers to [5] for the computation of gradients of
two regularisation terms in (6).

In the BP algorithm, the core is to derive the derivatives of the overall loss
function with respect to both the parameters and activation variables X(l) on
each hidden layer, as suggested in [8].

The BP algorithm recursively computes gradients with respect to both the
inputs to the layers and their parameters by making use of the chain rule. To
be concrete, denote by �(l) = � ◦ σ(L) ◦ σ(L−1) ◦ · · · ◦ σ(l) the loss as a function
of the layer Xl−1. This notation is convenient because it conceptually separates
the network architecture from the layer design.
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For a data tuple (Xt,Yt) and a layer l this is computing

∂�(l)(X(l−1)
t ,Yt)

∂W(l)
=

∂�(l+1)(X(l)
t ,Yt)

∂Xl
t

∂σ(l)(X(l−1)
t )

∂W(l)
, (7)

∂�(l)(X(l−1)
t ,Yt)

∂Xl−1
t

=
∂�(l+1)(X(l)

t ,Yt)
∂Xl

t

∂σ(l)(X(l−1)
t )

∂X
(l−1)
t

, (8)

where X
(l)
t = �(l)(X(l−1)

t ,W(l)) is the function from the input layer to layer l.
Here (7) and (8) define the backpropagation algorithm. All variables Xs are
tensors, so the products in the chain rules are actually the contraction products
of relevant tensors, see [3]. For our convenience, we define

N(l) = X(l) ×1 U
(l)
1 ×2 · · · ×K U(l)

K + B(l). (9)

Then it is not hard to prove the following lemma according to the derivative
formula in [9]

Lemma 1. Denote by K(l) = Il1 · Il2 · · · IlK (l = 0, 1, ..., L), then
(

∂N(l)

∂X(l−1)

)

(K(l)×K(l−1))

= U(l)
K ⊗ · · · ⊗ U(l)

1 , (10)

where the matriced form has been applied and ⊗ means the Kronecker product
of matrices.

To save the space, we present the following derivative formulas in the follow-
ing theorem without proof.

Theorem 1 (Backpropagation Derivatives). Suppose the sigmoid activa-
tion function is applied on all the hidden layers of the tensorial neural networks,

then the derivatives ∂σ(l)(X
(l−1)
t )

∂W(l) and ∂σ(l)(X
(l−1)
t )

∂X
(l−1)
t

used in the BP algorithm (7)

and (8) can be calculated as follows,

∂σ(l)(X(l−1)
t )

∂X
(l−1)
t

= σ′(N(l))
∂N

(l)
t

∂X
(l−1)
t

= σ(N(l)
t ) � (1 − σ(N(l)

t ))
∂N

(l)
t

∂X
(l−1)
t

; (11)

∂σ(l)(X(l−1)
t )(k)

∂U(l)
d

= [(U(l)
K ⊗ · · · ⊗ U(l)

k+1 ⊗ U(l)
k−1 ⊗ · · · ⊗ U(l)

1 )X(l−1)�
t(k) ] ⊗ IIk ;

(12)

∂�(l)(X(l−1)
t ,Yt)

∂B(l)
= σ(N(l)

t ) � (1 − σ(N(l)
t )) � ∂�(l+1)(X(l)

t ,Yt)
∂Xl

t

. (13)

where M(k) is the k-unfolded matrix of tensor M ([3]), I is the identity matrix of
relevant size, and � means Hadamard product of tensors, i.e., the elementwise
product.
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Remark: The backpropagation derivatives in the above theorem are presented
for the case of sigmoid activation function. For any other activation function we
can replace σ′(N(l)) = σ(N(l)

t ) � (1 − σ(N(l)
t )). This is simply the derivative of

activation function applied on a tensor elementwise.
It is easy to take (10) and (11)-(13) into (7) and (8) to implement the entire

BP algorithm over the proposed tensorial neural networks. Our implementation
in Mathwork R© Matlab based on the tensor toolbox [10,11]. All the experiments
were conducted on a laptop with a CPU Intel i7-4980HQ and an memory size
of 16 GB.

3 Applications and Experiments

3.1 Longitudinal Network Data

To utilise the new method TNN in the real data, an empirical study should
be conducted. In this study, the real data is collected from Integrated Crisis
Warning System (ICEWS)5 which is the same weekly dataset applied in the
study of MLTR [4] for the relationship between 25 countries in four types of
actions: material cooperation, material conflict, verbal cooperation and verbal
conflict, from 2004 to mid-2014. Thus at any particular time point, the data
is a 3D tensor of dimensions 25 × 25 × 4. That is, each input Xt ∈ R

25×25×4.
To explore different types of patterns often seen in relational data and social
networks, we organise explanatory tensors X in the following different ways.

Case I: As done in [4] we construct the target tensor Yt at time t as the lagged
Xt−1. In total, we construct an overall dataset {(Xt,Yt)}543t=1 of size 543 in which
all Xt and Yt are 3D tensors.

Case II: In order to explore the pattern of tendency for actions from one
country to another country, we organise the explanatory tensor Xt ∈ R

25×25×8

such that Xt(i, j, k) = Xt(j, i, k−4) for k = 5, 6, 7, 8 while keeping Yt unchanged
from Case I. That is, slices k = 5, 6, 7, 8 are actually the transposed version of
slices k = 1, 2, 3, 4 respectively.

Case III: To reveal third-order dependence known as transitivity among
action data, we further extend the explanatory tensor as Xt ∈ R

25×25×12 such
that, for k = 9, 10, 11, 12, Xt(i, j, k) =

∑25
l=1(Xt(i, l, k − 8) + Xt(l, i, k − 8))

(Xt(j, l, k − 8) + Xt(l, j, k − 8)).
To eliminate the missing values, the NaN elements in the tensors are trans-

formed into 0. After standardising the dataset, the two tensors are split into the
training set of the first 400 weeks with the size of 25×25×4(or 8 or 12)×400 and
the test set of the last 134 weeks with the size of 25 × 25 × 4(or 8 or 12) × 134.

3.2 Experiment Setting

For each of three cases described above, we train TNNs with two hidden layers
also in tensor shape. We set the size of hidden layers 8 × 8 × 4(or 8 or 12) and
5 http://www.lockheedmartin.com/us/products/W-ICEWS/iData.html.

http://www.lockheedmartin.com/us/products/W-ICEWS/iData.html
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12 × 12 × 4(or 8 or 12) for one of three cases. For TNN training, we randomly
initialize all the matrix parameters U’s. To determine the appropriate value of
the parameters λ and the sparsity ρ in the training loss function, we use the
alternative grid search method to find the best λ and ρ which generate the
smaller test errors over testing dataset. We obtained the proper λ’s for Case I,
Case II and Case III as 0.0012, 0.0017 and 0.15 respectively, and ρ’s with 0.010,
0.012 and 0.019, respectively.

3.3 Experiment Results and Analysis

In all three cases, the output layer of TNN is a 25 × 25 × 4 tensor, i.e., Yt. The
performance of TNN is evaluated based on the relationships revealed among 25
countries and the test error, which can demonstrate the sufficiency of the spatial
information captured by TNN in the high-dimensional data. After training the
TNN (with two hidden tensor layers), we collect weights matrices Ul

i with i =
1, 2, 3 and l = 1, 2, 3 where i = 3 refers to the action/reciprocity/transitivity
mode. We suggest to define the following overall matrices

B1 = U(3)
1 × U(2)

1 × U(1)
1 ; and B2 = U(3)

2 × U(2)
2 × U(1)

2 (14)

and use them to infer the relationship among the 25 countries. The relation can
be revealed in a network graph where each node represents each country and
each arc with a number (the element in B1 or B2) represents the strength of
the likelihood of the relationship between each pair of countries. Note both B1

and B2 contain the information from four actions (Case I), or four actions with
reciprocity (Case II) or four actions with transitivity and reciprocity (Case III),
respectively. For B1, each ij element reveals how likely there will be a relation-
ship between Country i and Country k for each type of action, considering the
reciprocity and transitivity information, given that there has been a relationship
between Country j and Country k. Similarly, for B2, each lk element measures
how likely there will be a relationship between Country j and Country l for each
type of action, considering the reciprocity and transitivity information, given
that there has been a relationship between Country j and Country k. Thus for
B1 and B2 together, what they measure is that when there has been a relation-
ship between Country j and k for each type of action considering reciprocity
and transitivity, how likely there will be a relationship between Country i and
Country l.

As a demonstration, Fig. 1 shows the relations revealed by TNN for Case I,
where the color map shows the countries in the data. Similar results are shown in
Fig. 2(a) and (d) for Case II. However more interesting findings are presented in
Fig. 2(b), (c), (e) and (f). Both of them demonstrate the relations that are more
likely to happen than not, i.e. with highest half chance to happen. It is clear
to see that our method has revealed more informative results. The relational
graphs of the results from MLTR demonstrates that MLTR does not provide
necessary information on the relationships between countries, since the network
is overcomplicated. It is hard to find any significant relationships between the
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(a) (b) (c)

Fig. 1. Learned Coefficients of Networks for Case I: (a) B1; (b) B2 and (c) map with
colour for referencing countries.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Learned Coefficients of Networks B1 on the top row and B2 on the second row:
Case II (a) and (d); Case III (b) and (e) (Our method), (c) and (f) (Hoff’s model).

countries. On the contrary, TNN generates comparatively clearer relationships
between the countries. From Fig. 2(b) and (e), we can see that Afghanistan, Iran,
North Korea, Pakistan, USA, France, Lebanon, Russia, Ukraine and Syria are
the centres of the international actions in the world. This result aligns with the
common impression of the international relationship events during these decades.
Thus TNN captures more structural international relationship information than
the previous method MLTR in the longitudinal case.
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4 Conclusion

This paper proposes the tensorial neural networks for learning from multidimen-
sional data. We have derived the BP algorithm for the new neural networks and
demonstrated the algorithm performance by applying the proposed method for
the longitudinal network data. The experiment results show the new method can
actually reveal the nonlinear relations which might be missed out the multiple
linear regression models. We would also like to point out that the current method
should be improved to have a more stable algorithm. All the mode transform
matrices U’s are regularised by the so-called ridge regulariser. However the ideal
regularisation should be normalisation thus removing the identifiability of all the
matrices in multiple production in the basic multiple linear transformation.

In general, TNN outperforms the previous method MLTR which is applied
in longitudinal international relationship network analysis. TNN captures more
structural information and reveals a more informative picture of the international
relationships. This method has the significances in business, social science and
science and technology fields. The application of TNN on the social network and
international relationship networks is also novel in the machine learning field
and the research on international relationship.
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Abstract. The rapid spread of fake news is a serious problem calling
for AI solutions. We employ a deep learning based automated detector
through a three level hierarchical attention network (3HAN) for fast,
accurate detection of fake news. 3HAN has three levels, one each for
words, sentences, and the headline, and constructs a news vector: an
effective representation of an input news article, by processing an article
in an hierarchical bottom-up manner. The headline is known to be a dis-
tinguishing feature of fake news, and furthermore, relatively few words
and sentences in an article are more important than the rest. 3HAN gives
a differential importance to parts of an article, on account of its three
layers of attention. By experiments on a large real-world data set, we
observe the effectiveness of 3HAN with an accuracy of 96.77%. Unlike
some other deep learning models, 3HAN provides an understandable out-
put through the attention weights given to different parts of an article,
which can be visualized through a heatmap to enable further manual
fact checking.

Keywords: Fake news · Deep learning · Text representation · Attention
mechanism · Text classification

1 Introduction

The spread of fake news is a matter of concern due to its possible role in manip-
ulating public opinion. We define fake news in line with The New York Times
as a “made up story with the intention to deceive, often with monetary gain as
a motive” [1]. The fake news problem is complex given its varied interpretations
across demographics.

We present a three level hierarchical attention network (3HAN) which creates
an effective representation of a news article called news vector. A news vector
can be used to classify an article by assigning a probability of being fake. Unlike
other neural models which are opaque in their internal reasoning and give results
that are difficult to analyze, 3HAN provides an importance score for each word
and sentence of an input article based on its relevance in arriving at the output
probability of that article being fake. These importance scores can be visualized

S. Singhania and N. Fernandez—These authors contributed equally to this work.

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 572–581, 2017.
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through a heatmap, providing key words and sentences to be investigated by
human fact-checkers.

Current work in detecting misinformation is divided between automated fact
checking [2], reaction based analysis [3] and style based analysis [4]. We explore
the nascent domain of using neural models to detect fake news. Current state-
of-the-art general purpose text classifiers like Bag-of-words [5], Bag-of-ngrams
with SVM [6], CNNs, LSTMs and GRUs [7] can be used to classify articles by
simply concatenating the headline with the body. This concatenation though,
fails to exploit the article structure.

In 3HAN, we interpret the structure of an article as a three level hierarchy
modelling article semantics on the principle of compositionality [8]. Words form
sentences, sentences form the body and the headline with the body forms the
article. We hypothesize forming an effective representation of an article using
the hierarchy and the interactions between its parts. These interactions take the
form of context of a word in its neighbouring words, coherence of a sentence with
its neighbouring sentences and stance of a headline with respect to the body.
Words, sentences and headline are differentially informative dependent on their
interactions in the formation of a news vector. We incorporate three layers of
attention mechanisms [9] to exploit this differential relevance.

The design of 3HAN is inspired by the hierarchical attention network (HAN)
[10]. HAN is used to form a general document representation. We design 3HAN
unique to the detection of fake news. When manually fact-checking an article
the first thing that catches the eye is the headline. We observe a headline to be
(i) a distinctive feature of an article [11], (ii) a concise summary of the article
body and (iii) inherently containing useful information in the form of its stance
with respect to the body. We refer to these observations as our headline premise.
The third level in 3HAN is especially designed to use our headline premise.

From our headline premise, we hypothesize that a neural model should accu-
rately classify articles based on headlines alone. Using this hypothesis, we use
headlines to perform a supervised pre-training of the initial layers of 3HAN for
a better initialization of 3HAN. The visualization of attention layers in 3HAN
indicates important parts of an article instrumental in detecting an article as fake
news. These important parts can be further investigated by human fact-checkers.

We compare the performance of 3HAN with multiple state-of-the-art tradi-
tional and neural baselines. Experiments on a large real world news data set
demonstrate the superior performance of 3HAN over all baselines with 3HAN
performing with an accuracy of 96.24%. Our pre-trained 3HAN model is our
best performing model with an accuracy of 96.77%.1

2 Model Design

The architecture of 3HAN is shown in Fig. 1. We define a news vector as a
projection of a news article into a vector representation suitable for effective

1 Our code is available at: https://github.com/ni9elf/3HAN.

https://github.com/ni9elf/3HAN
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Fig. 1. Model Architecture of 3HAN

classification of articles. A news vector is constructed using 3HAN. To capture
the body hierarchy and interactions between parts when forming the news vector,
3HAN uses the following parts from HAN [10]: word sequence encoder, word
level attention (Layer 1), sentence encoder, sentence level attention (Layer 2).
In addition to the preceding parts, we exploit our headline premise by adding:
headline-body encoder and headline-body level attention (Layer 3).

Sequence Encoder using GRU. A Gated Recurrent Unit (GRU) [12] adap-
tively captures dependencies between sequential input sequences over time. Gat-
ing signals control how the previous hidden state ht−1 and current input xt gen-
erate an intermediate hidden state ˜ht to update the current hidden state ht.
GRU consists of a reset gate rt and an update gate zt. rt determines how to
combine xt with ht−1 while zt determines how much of ht−1 and ˜ht to use. �
denotes the Hadamard product. The GRU model is presented at time t as:

˜ht = tanh (Whxt + Uh (rt � ht−1) + bh) (1)

ht = (1 − zt) � ht−1 + zt � ˜ht (2)

with the gates presented as:

zt = σ (Wzxt + Uzht−1 + bz) , rt = σ (Wrxt + Urht−1 + br) (3)

Word Encoder. We denote word j of sentence i by wij with sentence i con-
taining Ti words. Each word wij is converted to a word embedding xij using
GloVe [13] embedding We (xij = We (wij)). We use a bidirectional GRU [9] to
form an annotation of each word which summarizes the context of the word with
preceding and following words in the sentence. A bidirectional GRU consists of
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a forward
−−−→
GRU and backward

←−−−
GRU. The overhead arrow in our notation does

not denote a vector, it instead denotes the direction of the GRU run.
−−−→
GRU

reads the word embedding sequence ordered (xi1, xi2, . . . , xiTi
) to form forward

annotations using hidden states
(−→

h w
i1,

−→
h w

i2, . . . ,
−→
h w

iTi

)

. Similarly
←−−−
GRU reads the

word embedding sequence ordered (xiTi
, xiTi−1, . . . , xi1) to form backward anno-

tations
(←−

h w
iTi

,
←−
h w

iTi−1, . . . ,
←−
h w

i1

)

. hw
ij is formed as

[−→
h w

ij ,
←−
h w

ij

]

(concatenation).

−→
h w

ij =
−−−→
GRU (xik) , k ∈ [1, j] (4)

←−
h w

ij =
←−−−
GRU (xik) , k ∈ [Ti, j] (5)

hw
ij =

[−→
h w

ij ,
←−
h w

ij

]

(6)

Word Attention. A sentence representation is formed using an attention layer
to extract relevant words of a sentence. The word annotation hw

ij is fed through
a one-layer MLP to get a hidden representation uij [10]. The similarity of each
word uij with a word level relevance vector uw decides the attention weights
αij normalized using a softmax function [10]. The sentence encoding si is a
weighted attentive sum of the word annotations. The relevance vector can be
interpreted as representing the contextually most relevant word over all words
in the sentence. uw is fixed over all inputs as a global parameter of our model
and jointly learned in the training process.

uij = tanh
(

Wwhw
ij + bw

)

(7)

αij =
exp

(

uT
ijuw

)

∑

j exp
(

uT
ijuw

) , si =
∑

j

αijh
w
ij (8)

Sentence Encoder. Similar to the word encoder, a bidirectional GRU is applied
to (s1, s2, . . . , sL) to compute the forward annotations

−→
h s

i and backward anno-
tations

←−
h s

i for each sentence. These annotations capture the coherence of a
sentence with respect to its neighbouring sentences in both directions of the
body. hs

i is formed as
[−→

h s
i ,

←−
h s

i

]

.

Sentence Attention. Similar to word attention, we identify relevant sentences
in the formation of the body vector vb by using an attention layer. A sentence
level relevance vector us decides attention weights αi for sentence annotation
hs
i . us can be interpreted as representing the coherently most relevant sentence

over all sentences in the body. vb is composed using
∑

i αih
s
i .

Headline Encoder. To exploit our headline premise we design a third layer
of encoding and attention with the headline being inputted word by word. We
denote the k words of the headline by w01 to w0k. The word embedding yi
for word w0i is obtained using GloVe embeddings (We) by yi = We (w0i). We
denote vb as yk+1. A bidirectional GRU is run on (y1, y2, . . . , yk+1) to compute
the forward and backward annotations of each word. These annotations capture
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the stance of the headline words with respect to the body word. The digit 3 in
our notation denotes the third level. h3

i is formed as
[−→

h 3
i ,

←−
h 3

i

]

.

−→
h 3

i =
−−−→
GRU(yj) , j ∈ [1, i] ,

←−
h 3

i =
←−−−
GRU (yj) , j ∈ [k + 1, i] (9)

Headline Attention. A relevance vector u3 is used to compute the attention
weights βi for annotation h3

i . The news vector vn is formed as the weighted sum
of the annotations h3

i with βi as the weights.

ui = tanh
(

W3h
3
i + b3

)

(10)

βi =
exp

(

uT
i u3

)

∑

i exp
(

uT
i u3

) , vn =
∑

i

βih
3
i (11)

News Vector for Classification. We use the news vector vn as a feature
vector for classification. We use the sigmoid layer z = sigmoid (Wcvn + bc) as
our classifier with binary cross-entropy loss L = −∑

d pd log qd to train 3HAN.
In the loss function qd is the predicted probability and pd is the ground truth
label (either fake or genuine) of article d.

Supervised Pre-training using Headlines We propose a supervised pre-
training of Layer 1 consisting of the word encoder and an attention layer of 3HAN
for a better initialization of the model. The pre-training is performed using the
headlines only. The output label for a headline input is the corresponding article
label.

3 Experiments

3.1 News Data Set

Due to the high turnaround time of manual fact-checking, the number of avail-
able manually fact-checked articles is too few to train deep neural models. We
shift our fact-checked requirement from an article level to a website level. Keep-
ing with our definition of fake news, we assume that every article from a website
shares the same label (fake or genuine) as its containing website. PolitiFact [14]
a respected fact-checking website released a list of sites manually investigated
and labelled. We use those sites from this list labelled fake. Forbes [15] compiled
a list of popular genuine sites across US demographics. Statistics of our data set
is provided in Table 1. To maintain a similar distribution as fake articles, we use
genuine articles from January 1, 2016 to June 1, 2017, with 65% coming from
the 2016 US elections and politics, 15% from world news, 15% from regional
news and 5% from entertainment.

3.2 Baselines

To validate the effectiveness of our model, we compare 3HAN with current state-
of-the-art traditional and deep learning models. The input is the article text
formed by concatenating the headline with the body.
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Table 1. Dataset Statistics: (average words per sentence, average sentences per article)

Type Sites Articles Average Words Average Sentences

Fake 19 20,372 34.20 16.44

Genuine 9 20,932 32.78 27.55

Word Count Based Models. These methods use a hand crafted feature vector
derived from variations of frequency of words of an article. A binomial logistic
regression is used as the classifier.

1. Majority uses the heuristic of taking the majority label in the training set as
the assigning label to every point in the test set.

2. Bag-of-words and its TF-IDF constructs a vocabulary of the most frequent
50,000 words [5]. The count of these words is used as features. The TF-IDF
count is used as features in the other model variant.

3. Bag-of-ngrams and its TF-IDF uses the count of the 50,000 most frequent
ngrams (n <= 5). The features are formed as in the previous model.

4. SVM+Bigrams uses the count of the 50,000 most frequent bigrams as features
with an SVM classifier [6].

Neural Models. The classifier used is a dense sigmoid layer.

1. GloVe-Ave flattens the article text to a word level granularity as a sequence
of words. The GloVe embeddings of all words are averaged to form the feature
vector.

2. GRU treats the article text as a sequence of words. A GRU with an annotation
dimension of 300 is run on the sequence of GloVe word embeddings. The
hidden annotation after the last time step is used as the feature vector.

3. GRU-Ave runs a GRU on the sequence of word embeddings and returns all
hidden annotations at each time step. The average of these hidden annotations
is used as the feature vector.

4. HAN and Variants include HAN-Ave, Han-Max and HAN [10]. HAN uses a
two level hierarchical attention network. HAN-Ave and Han-Max replaces the
attention mechanism with average and max pooling for composition respec-
tively. Since the code is not officially released we use our own implementation.

3.3 Experimental Settings

We split sentences of bodies and tokenized sentences and headlines into words
using Stanford CoreNLP [16]. We lower cased and cleaned tokens by retain-
ing alphabets, numerals and significant punctuation marks. When building the
vocabulary we retained words with frequency more than 5. We treat words
appearing exactly 5 times as a special single unknown token (UNK). We used
100 dimensional GloVe embeddings to initialize our word embedding matrix and
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allowed it to be fine tuned. For missing words in GloVe, we initialized their word
embedding from a uniform distribution on (−0.25, 0.25) [17].

We padded (or truncated) each sentence and headline to an average word
count of 32 and each article to an average sentence count of 21. Hyper parameters
are tuned on the validation set. We used 100 dimensional GloVe embeddings and
50 dimensional GRU annotations giving a combined annotation of 100 dimen-
sions. The relevance vector at word, sentence and headline-body level are of 100
dimensions trained as a parameter of our model. We used SGD with a learn-
ing rate of 0.01, momentum of 0.9 and mini batch size of 32 to train all neural
models. Accuracy was our evaluation metric since our data set is balanced.

3.4 Results and Analysis

We used a train, validation and test split of 20% | 10% | 70% for neural mod-
els and a train and test split of 30% | 70% for word count based models. In
3HAN-Ave vectors are composed using average, in 3HAN-Max vectors are com-
posed using max pooling, 3HAN is our proposed model with an attention mech-
anism for composition and 3HAN+PT denotes our pre-trained 3HAN model.
Results are reported in Table 2 and demonstrate the effectiveness of 3HAN and
3HAN+PT due to their best performance over all models.

Neural models using the hierarchical structure (HAN and variants, 3HAN
and variants) give a higher accuracy than other baselines. The attention mech-
anism is a more effective composition operator than average or max pooling.

Table 2. Accuracy in Article Classification as Fake or Genuine

Word Count Based Models

Model Accuracy

Majority 49.42%

Bag-of-words 90.21%

Bag-of-words
+TFIDF

91.92%

Bag-of-ngrams 91.41%

Bag-of-ngrams
+TFIDF

92.47%

SVM+Bigrams 83.12%

Neural Network Models

Model Accuracy

GloVe-Ave 93.63%

GRU 91.11%

GRU-Ave 95.65%

HAN-Ave 94.91%

HAN-Max 94.66%

HAN 95.4%

3HAN-Ave 94.81%

3HAN-Max 95.25%

3HAN 96.24%

3HAN+PT 96.77%
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This is demonstrated by the higher accuracy of 3HAN against 3HAN-Ave and
3HAN-Max. Our headline premise is valid since 3HAN which devotes a sepa-
rate third level in the hierarchy for the headline performs better than HAN.
HAN is indifferent to the headline and focuses its two hierarchical levels only
on words and sentences. Pre-training helps in better initialization of 3HAN with
3HAN+PT outperforming 3HAN.

4 Discussion and Insights

The visualization of attention layers provides evidence. An advantage
of attention based neural models is the visualization of attention layers which
provides insight into the internal classification process. On the other hand, non-
attention based models work like a black box. 3HAN provides attention weights
to words, sentences and headline of an article. These attention weights are use-
ful for further human fact-checking. A human fact-checker can focus on verify-
ing sentences with high attention weights. Similarly, words with high attention
weights can be investigated for inaccuracies.

We visualize the attention weights given to words, sentences and the headline
for a sample article through a heatmap in Fig. 2. The sentences with the top five
attention weights and the first eight words in each sentence are shown for clarity.
Word attention weights αw are normalized using sentence attention weights αs

by αw =
√

αsαw. Sentence attention weights are shown on the extreme left edge.
We observe that sentence 5 and has been assigned the highest weight (0.287).
Interestingly, sentence 5 which states “Even refugee welcoming Canada levies a
12 percent penalty on immigrant money” is a factually incorrect sentence.

Fig. 2. Visualization of Attention Layers in a Fake News Article with Headline “Trump
Defies Left with Brilliant Move - You Will Cheer”
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Word count based models perform well. The high accuracy of simple word
count based models which do not take into account word ordering or semantics
is an indication of vocabulary and patterns of word usage from the vocabulary
being a distinguishing feature between fake news and true news.

The attention mechanism is effective. This is observed through the supe-
rior performance of HAN compared to non-attention based 3HAN-Max and
3HAN-Ave.

Our headline premise is valid. This is observed from the superior perfor-
mance of 3HAN to HAN with the third hierarchical level of 3HAN especially
designed for our headline premise playing a role.

The inverted pyramid style of writing is used. Inverted pyramid refers to
distributing information in decreasing importance in an article. We inferred the
usage of the inverted pyramid through our experiments from the small improve-
ment in accuracy even with higher padding sentence counts. Fake news articles
tend to be repetitive in information content [11].

5 Conclusion and Future Work

In this paper, we presented 3HAN which creates news vector, an effective repre-
sentation of an article for detection as fake news. We demonstrated the superior
accuracy of 3HAN over other state-of-the-art models. We highlighted the use of
visualization of the attention layers. We plan to deploy a web application based
on 3HAN which provides detection of fake news as a service and learns in a real
time online manner from new manually fact-checked articles.
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Abstract. Parameter Sharing (or weight sharing) is widely used in
Neural Networks, such as Recursive Neural Networks (RvNNs) and its
variants, to control model complexities and extract prior knowledge. The
parameter sharing in RvNNs for language model assumes that non-leaf
nodes in treebanks are generated by similar semantic compositionality,
where hidden units of all the non-leaf nodes in RvNNs share model
parameters. However, treebanks have several semantic levels with signif-
icantly different semantic compositionality. Accordingly, this leads to a
poor classification performance if nodes in high semantic levels share the
same parameters with those in low levels. In the paper, a novel parameter
sharing strategy in a hierarchical manner is proposed over Long Short-
Term Memory (LSTM) cells in Recursive Neural Networks, denoted as
shLSTM-RvNN, in which weight connections in hidden units are clus-
tered according to hierarchical semantic levels defined in Penn Treebank
tagsets. Accordingly, the parameters in the same semantic level can be
shared but those in different semantic levels should have different sets of
connections weights. The proposed shLSTM-RvNN model is evaluated
in benchmark data sets containing semantic compositionality. Empiri-
cal results show that the shLSTM-RvNN model increases classification
accuracies but significantly reduces time complexities.

Keywords: Recursive neural networks · Long short-term memory
networks · Sentiment analysis · Parameter sharing

1 Introduction

Parameter sharing (or weight sharing) has been widely used in neural networks
to control model complexities [1–3]. Here, parameter sharing refers to clusters of
weights shared among many connections in network connections so that it reduces
model complexities yet with a better generalization of neural networks. To make
parameter sharing effective, it is important to specify in advance which parame-
ters should be identical in problems being addressed such that the parameters
can be shared in network connections with similar properties or structures [4].

c© Springer International Publishing AG 2017
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This idea of parameter sharing has been successfully applied to Convolutional
Neural Networks (CNNs) [3] and Recurrent Neural Networks (RNNs) [5–7].

Language models are usually modeled by a RNN network with a recursive
structure, i.e., Recursive Neural Networks (RvNNs) [8]. The RvNN networks
inherits the idea of parameter sharing but nodes are connected in a recursive
structure defined by Penn Treebank [9]. In RvNN networks, all semantic struc-
tures are projected into a low dimensional vector space represented by units in
hidden layers, where the connections from hidden layers to output ones share
the same parameters in all the nodes. In this way, it assumes that all semantic
relationships from children nodes to parent nodes follow the same pattern of
compositionality. According to Penn Treebank tagsets, non-leaf nodes can be
grouped to at least three semantic levels, such as words, phrases and clauses.
Therefore, it violates the idea of parameter sharing in which nodes with the
same structure share the connection weights. Usually, Long Short-Term Mem-
ory (LSTM) is designed to capture long-term temporal dependencies in RNN
networks by introducing a memory cell and input/output gates to solve the
gradient exploding or vanishing problem in recurrent neural networks [10,11].

In the paper, a hierarchical strategy of parameter sharing is proposed over
simplified Long Short-Term Memory cells in Recursive Neural Networks to
extract different semantic composition patterns in treebank, which is denoted
as shLSTM-RvNN. In particular, parameters of hidden LSTM cells are clus-
tered hierarchically into word, phrase and clause levels based on types of node
tags defined in Penn Treebank tagsets. Here, nodes of the same hierarchy share
the same connection weights, while those in different hierarchies use different sets
of parameters. The proposed shLSTM-RvNN model is evaluated in the bench-
mark data sets containing semantic compositionality, i.e., sentiment analysis
on Stanford Sentiment Treebank and semantic relatedness on SICK (Sentences
Involving Compositional Knowledge) data set.

According to the statistics of different sentiment compositions, three different
strategies of clustering Penn Treebank tagsets are adopted to cluster tagsets into
semantic levels. Empirical results show that it outperforms state-of-art RNN,
RvNN and LSTM networks by increasing classification accuracies of nodes not
only in sentence level, but all the nodes of treebank. By clustering Penn Tree-
bank tagsets, our model achieves better classification accuracies over all nodes
compared to the state-of-the-art. Simultaneously, it can significantly decrease
computational complexities.

The rest of the paper is organized as follows. The next section describes
the preliminary work on Recursive Neural Networks (RvNNs) and Long Short-
Term Memory (LSTM) model. In the following, a novel strategy for parameter
sharing in a hierarchy is proposed for weight connections over the LSTM-RvNN
model, denoted as shLSTM-RvNN in Sect. 3. Section 4 illustrates the data sets
used in the experiments, and reports and discusses the results provided by the
proposed shLSTM-RvNN model and state-of-the-art neural networks. Finally,
Sect. 5 draws the conclusions of this paper.
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2 Preliminary Works

A treebank is a parsed text corpus that annotates a syntactic or semantic sen-
tence structure in linguistics [12] and the popular structure is in a tree schema
for the ease of reading. To model the semantic compositionality of treebank
in natural language, Recursive Neural Networks are often introduced to model
recursive semantic structures, where words, phrases, and clauses can be pro-
jected into the same vector space [8], and thus all the semantic structures can
be classified with unique text classifier.

To attack the problem of gradient vanishing, the hierarchical strategy is car-
ried out over LSTM cells in Recursive Neural Networks (RvNNs). In the following,
Recursive Neural Networks is firstly introduced in recursive grammar structures
with parameter sharing. Next, LSTM cells in RvNN networks are briefly described
based on recently proposed work in [13,14], where [13] also includes peephole con-
nections to the model, denoted as LSTMp-RvNN in the paper.

2.1 Recursive Neural Networks

As shown in Fig. 1(a), every node is a fully connected three-layer neural network
connected recursively with its parent node. There are two types of nodes in
RvNNs: leaf nodes and non-leaf nodes. Leaf nodes get external word vectors as
inputs, predict with fully connected networks with activation function of σ, and
share parameters with other leaf nodes, as denoted by green hidden units in
Fig. 1(a).

The three-layer neural networks with yellow hidden units are non-leaf nodes,
which get hidden layers of children as inputs, propogate through fully connected
networks and activation function of σ, and share parameters with other non-leaf
nodes, as denoted in Eq. 1.

ht = σ(W (n)
L hL + W

(n)
R hR + b(w)),

ot = f(Wsht + bs),
(1)

where Ws is the fully connected parameters from hidden layer to output layer,
WL(n) and WR(n) are full connected parameters from left hidden layer hL and
right hidden layer hR of parent nodes, respectively.

2.2 LSTM Cells in Recursive Neural Networks

The key idea in Long Short-Term Memory (LSTM) neural network [11] and its
variants [13–17] is to introduce memory cells to maintain states over time and
to solve the gradient exploding or vanishing problem in recurrent neural net-
works [10]. Long Short-Term Memory is extended to a hierarchical structure in
Recursive Neural Networks, where a memory cell can reflect the history memo-
ries of multiple child cells [13,14].

LSTM cells in Recursive Neural Networks inherit LSTM structures in Recur-
rent Neural Networks by introducing two forget gates controlling the information
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(a) (b)

Fig. 1. Language Models with LSTM cell in Recursive Structures with parameter shar-
ing in the traditional way shown in (a) and in a hierarchical way shown in (b), where,
green units denote shared parameters in leaf nodes (word level), yellow units in non-leaf
nodes, blue units in phrase level, and red units in clause level.

flow from two children to their parent. At each time t for non-leaf nodes, the
LSTM cell is composed of a collection of vectors in Rd: an input gate it, a left
forget gate fL

t , a right forget gate fR
t , an output gate ot, an update gate ut, a

memory cell ct, and a hidden state ht, where d is the memory dimension of the
LSTM cells. And leaf nodes get inputs from word vectors.

3 LSTM Networks with Hierarchical Parameter Sharing

The LSTM-RvNN model described above shares parameters within leaf nodes
and non-leaf nodes, respectively, as the structures in leaf and non-leaf nodes are
significantly different. Furthermore, non-leaf nodes can be clustered to phrases
and clauses levels based on the definition of Penn Treebank, which is shown in
Table 1. According to the idea of parameter sharing, weight sharing of non-leaf
nodes in the proposed model is carried out in a hierarchical way in terms of
different semantic levels, i.e., phrase and clause levels.

In the recently proposed LSTM-RvNN models [13,14], all leaf and non-leaf
nodes have input gates shown in Fig. 2(a). However, non-leaf nodes receive infor-
mation from the hidden layers of their left and right children and they can ignore
input gates. Accordingly, LSTM models can be simplified to be introduced in
the following.

3.1 Simplified Version of LSTM Cells

After removing input gates in non-leaf nodes, the LSTM cells can be simpli-
fied to two structures: leaf structure with input gates (word vectors as input)
shown in Fig. 2(c) and non-leaf structure without input gates shown in Fig. 2(b).
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Accordingly, output, left and right forget, hidden gates in non-leaf nodes can be
summarized as follows:

ot = σ(WL(o)hL + WR(o)hR + b(o)),

fL
t = σ(WL(fl)hL + WR(fl)hR + b(fl)),

fR
t = σ(WL(fr)hL + WR(fr)hR + b(fr)),

ct = fL
t × cL

t−1 + fR
t × cR

t−1,

ht = ot × tanh(ct),

(2)

As shown in Sect. 4.5, the simplified version of LSTM-RvNN model, denoted
as sLSTM-RvNN, slightly improves classification accuracies, while it can signifi-
cantly reduces temporal and spatial complexities. The modified LSTM model can
help to reduce spatial complexity of the proposed hierarchical parameter sharing
strategy. Note that the two models have the same structure in leaf nodes shown
in Fig. 2(c).

(a) (b) (c)

Fig. 2. Structures of LSTM cells: recently proposed LSTM models in [14] and in [13]
without peephole connections shown in (a), non-leaf structure of simplified LSTM cells
shown in (b), and leaf structure of simplified LSTM cells shown in (c).

3.2 Hierarchical Parameter Sharing

In LSTM cells of RvNN networks, leaf nodes are grouped to the cluster in word
level with shared parameters W (w). Furthermore, non-leaf nodes are clustered
in phrase and clause levels and thus connection weights are shared in the corre-
sponding level of non-leaf nodes in a hierarchical way, denoted as hLSTM-RvNN.
The structure is shown in Fig. 1(b), where green units denote shared parameters
in leaf nodes (word level), blue and red units show parameter sharing in phrase
and clause levels respectively, in non-leaf nodes. Similar to (2), output, left and
right forget, and hidden gates in non-leaf nodes can be summarized as follows:
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ot = σ(W (s)
L(o)hL + W

(s)
R(o)hR + b

(s)
(o)),

fL
t = σ(W (s)

L(fl)hL + W
(s)
R(fl)hR + b

(s)
(fl)),

fR
t = σ(W (s)

L(fr)hL + W
(s)
R(fr)hR + b

(s)
(fr)),

ct = fL
t × cL

t−1 + fR
t × cR

t−1,

ht = ot × tanh(ct),

(3)

where W
(s)
L(g), W

(s)
R(g) and b

(s)
(g) (g representing o, fl, and fr) are parameters shared

in cluster p, and are assigned by the following strategy:

W
(s)
L(g) =

⎧
⎪⎨

⎪⎩

W
(c)
L(g) node t in clause level,

W
(p)
L(g) node t in phrase level.

(4)

In the following, a hybrid LSTM model is proposed to integrate LSTM cells
in a simplified version and LSTM cells in hierarchical parameter sharing, denoted
as shLSTM-RvNN. Experimental results show that the shLSTM-RvNN model
can achieve the best classification performance with less temporal complexity
compared to the state-of-the-art.

3.3 Prediction

In recursive structure, each node will be given a class label ŷ from a discrete set
of classes Φ, and the class label of each node is assigned to the subtree whose root
is that node. Two NLP tasks, i.e., sentiment analysis and sentiment relatedness,
are adopted to validate the effectiveness of representing semantic features of
texts classified by the proposed LSTM model and the variants of LSTM, RNN
and RvNN networks in the following.

Sentiment Analysis. In this task, at each node a softmax classifier is applied
to predict the label ŷt. The hidden state ht at the node is input to the classifier.

p̂θ(y|xt) = softmax(W (s)ht + b(s)),
ŷt = argmaxyp̂θ(y|xt),

(5)

where θ is a set of model parameters, W (s) is a d × m matrix, and b(s) is a
m-dimension vector, in which m is the number of classes.

Semantic Relatedness. The task of semantic relatedness is to predict sentence
relatedness in pair. For example, ‘car’ is related to ‘road’ and ‘driving’. Score of
relatedness is in [1,K] where K > 1 is an integer, and a higher score indicates
a greater degree of relatedness. In the tree-structured network, two sentences
can be represented by two hidden vectors, hL and hR, respectively. According
to [14], the relatedness score ŷ between two generated representations can be
calculated by a two-layer neural network, in which both distance and angle of
the representations are as inputs.
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4 Experimental Results

To validate the effectiveness of generated semantic representation of the proposed
Long-Short Memory in Recursive Neural Networks with hierarchical parameter
sharing, in this section, the following experiments are conducted on two NLP
tasks: (1) sentiment analysis on Stanford Sentiment Treebank (SST) [18], and
(2) semantic relatedness prediction on the SICK data set [18].

The corpus can be represented in Contituency treebank (denoted as “Con-” in
the following experiments) and Dependency treebank (denoted as “Dep-” in the
following experiments). Accordingly, the methods are denoted by combining the
form of structures and different variants of LSTM-RvNN with hierarchical weight
sharing, a simplified strategy and/or peephole connections, e.g., Con-hLSTM-
RvNN denotes to use the proposed LSTM-RvNN with hierarchical parameter
sharing.

4.1 Clusters of Node Types in Constituency Treebank

In order to obtain semantic information in a hierarchical structure, three strate-
gies are adopted based on Penn Treebank. The details are shown in Table 1.
Here, strategy-I is generated by the definition of Penn Treebank II [19]. To
obtain finer semantic levels, strategy-II and strategy-III are developed in terms
of the strategy-I by counting composition types in train dataset of Stanford Senti-
ment Treebank. As the strategies in Constituency treebank tagsets, Dependency
tagsets [20] are grouped by counting sentiment composition types in training
dataset of Stanford Sentiment Treebank.

Table 1. Clusters of parameter sharing in Constituency treebank tagsets in non-leaf
nodes

Strategies Clusters Tagsets

Strategy-I Clauses ROOT, S, SBAR, SBARQ, SINV, SQ

Phrases ADJP, ADVP, CONJP, FRAG, INTJ, LST, NAC, NP, NX,
WHPP,
PP, PRN, PRT, QP, RRC, UCP, VP, WHADJP, WHAVP,
WHNP

Strategy-II Clauses ROOT, S, SBARQ, SINV, SQ

Phrases other non-leaf tags

Strategy-III Clauses ROOT, S

Phrases other non-leaf tags

4.2 Sentiment Analysis on Sentence Level

In Stanford Sentiment Treebank (SST), there are two subtasks: binary clas-
sification and fine-grained classification [18]. In binary classification, sentences
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are classified to negative and positive classes while in fine-grained classification,
there are five classes of sentences: very negative, negative, neutral, positive and
very positive.

The SST dataset is divided into train, dev and test sets. In binary classifica-
tion, we use train/dev/test splits of 6920/872/1821 sentences and in fine-grained
classification, the splits of 8544/1101/2210 sentences are used. The data of Con-
stituency treebank is from the Stanford Sentiment Treebank, and the data of
Dependency treebank is generated by the dependency parser of Stanford [21].

From Table 2, one can see that the proposed model achieves best classifica-
tion accuracies in both binary and fin-granted sentiment classification tasks. Due
to hierarchical parameter sharing, the number of parameters could be at least
increased to two folds compared to state-of-the-art networks. In the experiments,
for fair comparison the internal memory of all the parameters are kept the same
so that the dimensionality d of hidden layers is decreased. However, integrated
with simplified version of LSTM, the hybrid models can obtain the best accura-
cies as well as significantly decrease temporal and spatial complexities of LSTM
structures.

Table 2. Accuracies of average sentiment analysis with standard deviation and average
results of Semantic Relatedness with standard deviation, over 10 runs

Method Fine-grained (%) Binary (%) Pearson γ

MV-RvNNs [14] 44.4 82.4 -

RNTN [14] 45.7 85.4 -

LSTM [14] 46.4(1.1) 84.9(0.6) 0.8528 ± 0.0031

Bidirectional LSTM [14] 49.1(1.0) 87.5(0.6) 0.8567 ± 0.0028

Con-LSTM-RvNN [14] 51.0(0.5) 88.0(0.3) 0.8582 ± 0.0038

Dep-LSTM-RvNN [14] 48.4(0.4) 85.7(0.4) 0.8676 ± 0.0030

Con-LSTMp-RvNN 49.2(0.3) 87.7(0.2) 0.8454 ± 0.0049

Dep-LSTMp-RvNN 48.2(0.2) 85.7(0.2) 0.8583 ± 0.003

Con-sLSTM-RvNN 51.1(0.3) 88.2(0.4) 0.8602 ± 0.0025

Dep-sLSTM-RvNN 48.5(0.4) 86.0(0.2) 0.8679 ± 0.0019

Con-hLSTM-RvNN 51.3(0.2) 88.3(0.4) 0.8611 ± 0.0020

Dep-hLSTM-RvNN 48.7(0.4) 86.0(0.3) 0.8698 ± 0.0016

Con-shLSTM-RvNN 51.7(0.2) 88.9(0.3) 0.8651 ± 0.0014

Dep-shLSTM-RvNN 49.0(0.2) 86.1(0.2) 0.8713 ± 0.0018

4.3 Semantic Relatedness

Semantic Relatedness is validated on the Sentence Involving Composition Knowl-
edge (SICK) data set [18] with a split of 4500/500/4927 for train/dev/test
data sets. The sentences are derived from existing image and video description.
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Each pair of sentences is annotated with a score y ∈ [1, 5]. y = 1 means that the
two sentences are obviously unrelated, and y = 5 means that the two sentences
are tightly related.

In Table 2, the proposed model with Dependency treebank achieves the best
performance on semantic relatedness, while both mLSTM-RvNN and hLSTM-
RvNN contribute to the performance.

4.4 Sentiment Analysis on All Nodes

From Table 3, one can see that, in constituency treebank, the performance of
sentiment analysis becomes worse with higher semantic levels. The proposed
model significantly improves the performance of sentiment analysis on all nodes,
and achieves best accuracies with Strategy-II. Meanwhile, the results show that
the performance of the three strategies differs in clause level, which contains root
nodes and determines the performance on sentence level.

Table 3. Accuracies of sentiment analysis on all nodes of Constituency treebank, with
three strategies of parameter sharing.

Clusters (%) LSTM shLSTM LSTM shLSTM LSTM shLSTM

-RvNN -RvNN -RvNN -RvNN -RvNN -RvNN

Strategy Strategy-I Strategy-II Strategy-III

Roots 88.23 88.76 88.23 88.90 88.23 88.63

All-Nodes 91.78 92.13 91.78 92.24 91.78 92.01

Cluster-1 87.87 88.30 87.79 88.43 87.83 88.18

Cluster-2 90.46 90.76 90.61 90.91 90.60 90.83

Words 97.76 98.15 97.76 98.14 97.76 98.12

Table 4. Average results of sentiment analysis and semantic relatedness over 10 runs

Method Sentiment analysis Semantic relatedness

Time (s) Memory (KB) Time (s) Memory (KB)

Con-LSTM-RvNN 116.0 309.4 38.2 221.0

Dep-LSTM-RvNN 91.1 264.8 41.5 198.6

Con-sLSTM-RvNN 75.8 220.9 23.7 128.1

Dep-sLSTM-RvNN 71.6 172.5 23.7 128.1

Con-hLSTM-RvNN 162.3 442.1 54.1 333.5

Dep-hLSTM-RvNN 139.6 393.7 63.2 284.5

Con-shLSTM-RvNN 104.2 352.6 31.7 245.7

Dep-shLSTM-RvNN 98.9 290.2 37.9 211
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4.5 Spatial and Temporal Complexities

The running time is an average one over the first ten epochs by running the
same neural network model. Spatial complexity is measured by the number of
composition function parameters in neural networks in memory. From Table 4,
one can see that sLSTM-RvNN can achieve better performance with less spatial
and temporal complexity in both two tasks.

5 Conclusion

Both the simplified LSTM cells and hierarchical parameter sharing help improve
the performance, while the hybrid of them achieves better performance. The pro-
posed model improves the accuracies of classification of all the semantic struc-
tures, especially for those in high semantic levels, and significantly reduces the
temporal complexity. With a finely tuned strategy of clusters on semantic levels,
the proposed model achieves best performance, which proves that parameters
should be shared among network connections with similar properties or values.
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Abstract. In the last few years, rapid development of deep learning
method has boosted the performance of face recognition systems. How-
ever, face recognition still suffers from a diverse variation of face images,
especially for the problem of face identification. The high expense of
labelling data makes it hard to get massive face data with accurate iden-
tification information. In real-world applications, the collected data are
mixed with severe label noise, which significantly degrades the general-
ization ability of deep learning models. In this paper, to alleviate the
impact of the label noise, we propose a robust deep face recognition
(RDFR) method by automatic outlier removal. The noisy faces are auto-
matically recognized and removed, which can boost the performance of
the learned deep models. Experiments on large-scale face datasets LFW,
CCFD, and COX show that RDFR can effectively remove the label noise
and improve the face recognition performance.

Keywords: Deep learning · Noise removal · Face recognition

1 Introduction

Deep learning has achieved consistent breakthroughs in different tasks, including
face recognition [1], scene understanding [2], and image caption [3]. The superior
performance of deep learning owns to the representations of data with multiple
levels of abstraction and massive labelled training data [4]. However, the lack
of accurate label information makes it hard to learn a well-trained deep model
with only a few labelled samples. For face recognition, despite the success of deep
learning in face verification [5,6], it is hard to achieve satisfactory recognition
accuracy without sufficient training data, especially when there are a large num-
ber of subjects in face identification. DeepFace uses a large-scale face dataset
that consists of 4 millions face images of 4000 subjects [1]. FaceNet is learned
on a much larger dataset with 200 millions of 8 millions subjects [5]. The large-
scale face databases with accurate labels dramatically improve the performance
of face recognition in that the deep learning models can be well trained.

How to acquire correctly labeled face dataset is one of the key challenges
in constructing a successful face recognition system. One intuitive way is to
manually collect and label the face images. The other way is a semiautomatic
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 593–602, 2017.
https://doi.org/10.1007/978-3-319-70096-0_61
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annotation by online image searching. The searching results contain massive
label noise, which should be manually corrected. However, manual annotation
suffers from high time consumption, labelling expense and inevitable labelling
error [7]. Hence, there is a need to construct an effective face tagging method
that can automatically remove noise, and allow collection of a large-scale face
dataset with accurate identification information.

To deal with label noise, there are mainly three types of methods: noise-
robust, noise-removal, and noise-tolerant. The first category of methods learn
models that are robust to label noise. Manwani et al. proposed that when the
loss functions are given, the learned model is claimed to be robust to noise if
the misclassification probability is irrelevant to label noise [8]. Patrini et al. pro-
posed to improve label noise robustness by loss factorization in weakly supervised
learning [9]. Gao et al. divided the loss function into two parts: one irrelevant
to noise and the other related with noise, by risk minimization [10]. The second
type of methods consider that the noisy face images can be relabelled or directly
discarded by a filter. These methods need to manually set a threshold for noise
removal [11]. Wilson et al. reviewed the noise removal methods based on locality
smoothness. Brodley et al. proposed to detect noisy samples by classification
confidence scores [12]. The third type of methods model the noise distribution.
Thus, the classification model and the noise model are directly separated. The
most common noise modeling method is to estimate the noise distribution by
the Bayesian methods.

For face recognition, noise removal aims to clean the noisy samples of each
subject and then get a clean face dataset. Beside visual information, the side
information can help to correct the label noise. Schroff et al. proposed to fuse
visual and textual information to reorder the face images [13]. Li proposed to
reorder the samples by incremental model learning using the searching results
as the initialized rank [14]. Collins et al. used active learning to label a subset
of face images helping noise removal. In real-world applications, the small-scale
manually labelled face dataset and the side information maybe can be not reliable
[15]. Hence, it is one of the most challenging issues to automatically detect noise
samples in unsupervised setting and develop robust deep face recognition model.

In this paper, we propose a robust deep face recognition method by automatic
label noise removal. A deep CNN model is firstly trained on a clean dataset
with a small sample size. Deep features are extracted for a large-scale noisy
face dataset by the pre-trained deep model. Then label noise is automatically
removed by unsupervised one class learning (UOCL). Finally, a deep model is
trained on the clean large-scale face dataset and tested on a validation set. This
process is repeated until the recognition accuracy on the validation set does not
increase. We use MS-Celeb-1M as the large-scale noisy dataset. Experiments on
LFW, CCFD, and COX datasets shows that the proposed method can effectively
alleviate the impact of label noise and improve the recognition performance of
the learned deep models.
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2 Robust Deep Learning

This section presents the proposed robust deep face recognition method.

2.1 Framework

The lack of data with accurate identification information blocks the improve-
ment of the face recognition performance. Although it is easy to collect massive
face images, the label noise may greatly degrade the performance of the recog-
nition system. To make the best use of the large-scale noisy data, we propose a
robust deep face recognition (RDFR) method by an automatic noisy removal.
The framework is given in Fig. 1. Firstly, a deep model is trained on a clean
dataset with a small sample size. The deep features are extracted for a large-
scale noisy face dataset by the pre-trained deep model. Then, the noisy samples
are removed by unsupervised one class learning (UOCL). This process is repeated
to remove the noisy samples until the recognition rate on the validation set does
not increase. RDFS aims to extract a clean subset from the large-scale noisy
data to train a better deep model.

Fig. 1. The flowchart of robust deep face recognition via automatical label removal.
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2.2 Unsupervised One Class Learning

In real-world applications, face images are more easily available and reliable com-
pared to other information. Severe outliers should be removed from the large-
scale dataset to make the visual information of face images well utilized. The
common strategy to deal with a label noise is to transform outlier removal to an
unsupervised one-class learning task. The representative methods are robust ker-
nel density estimation (RKDE) [16] and sparse modeling for finding representa-
tive objects (SMRS) [17]. In this work, we introduce an efficient automatic noise
removal method, namely, unsupervised one class learning (UOCL) [18]. UOCL
is built upon two intuitive assumptions: (1) outliers originate from low-density
samples, and (2) neighboring samples tend to have consistent classifications.

Given an unlabeled dataset X = {xi ∈ R
d}ni=1 we aim to get a classification

function f : Rd �→ R, which is similar to one class SVM. By leveraging a kernel
function κ : Rd × R

d �→ R that induces the Reproducing Kernel Hilbert Space
(RKHS) the target classification function is in the following expression:

f(x) =
n∑

i=1

κ(x,xi)αi, (1)

where αi is the expansion coefficient contributed by the functional base κ(·,xi).
Let us introduce a soft label assignment Y = {yi ∈ {c+, c−}}ni=1, where c+ is a
positive value for positive samples and c− is a negative value for outliers. Let
y = [y1, · · · , yn]T be the vector representation of Y.

Now we establish the UOCL model as minimizing the following objective:

min
f∈H,{yi}

n∑

i=1

(f(xi) − yi)2 + γ1‖f‖2M − 2γ2
n+

∑

i,yi>0

f(xi)

s.t. yi ∈ {c+, c−},∀i ∈ [1 : n],

0 < n+ = |{i|yi > 0}| < n, (2)

where γ1, γ2 > 0 are two trade-off parameters controlling the model, ‖f‖2M is
the manifold regularization item.

2.3 Deep Model

For label noise removal, we use VIPLFaceNet and in the stage of face recog-
nition, we use Resnet-VIPL. VIPLFaceNet contains 7 convolution layers and 3
full connected layers. Resnet-VIPL is modified from the classic Resnet [19], and
consists of 82 convolution layers and 2 full connected layers. Compared with
Resnet-101, Resnet-VIPL greatly reduces the computation burden while keeps
the performance.

3 Experiments

Experiments are conducted on large-scale face databases to evaluate the perfor-
mance of the proposed method (Fig. 2).
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Fig. 2. A part of Resnet-VIPL.

3.1 Datasets

We use a large-scale noisy face dataset MS-Celeb-1M for training. The perfor-
mance is evaluated on three datasets, including LFW, CCFD and COX.

MS-Celeb-1M is a large-scale noisy dataset from Microsoft [20]. MS dataset
has 8,456,240 real-world facial images of 99,891 identities. It is a large-scale
dataset that contains large variations in age, pose and so on. There are severe
label noises, which may degrade the performance of deep models.

CCFD (Chinese Celebrity Face Dataset) is a large-scale real-world face
dataset collected by VIPL. This dataset consists of 263,696 images of 1,001
subjects, with two subsets for training and testing. The training set contains
171,792 images of 701 subjects and the testing set contains 91,904 images of 301
subjects. Facial images in CCFD are collected from the internet and have large
variations in age, expression, light, occlusion and pose.

LFW (Labeled Faces in the Wild) is a classic face dataset that consists of
13,233 images of 5,749 identities [21].

CASIA-WebFace is a public face dataset that consists of 494,414 images
of 10,575 subjects [22].

COX consists of the gallery set and probe set. The gallery set contains 20,312
face images of 20,312 subjects. The images in the gallery set are the face images
of the Chinese identity card. The probe set contains 1,102 test images, which
are collected in the wild.

The comparison of different large-scale face datasets are illustrated in Table 1.
The test protocols of the three datasets are different.

CCFD: The test set of CCFD contains 91,904 face images of 301 subjects.
The test set is divided into the target set and the query set. The verification
rate under different false acceptance rate is used to evaluate the recognition
performance. Here, the verification rate when FAR is 0.1 is reported.
COX: The ROC curse is used to evaluate the performance.
LFW: The average face verification rate of ten folds are used. There are 300
positive pairs and 300 negative samples per fold.

3.2 Experimental Settings

Face preprocessing. The face images of differen datasets are all resized
to 256 × 256. Deep features are extracted for label noise removal and
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Table 1. The comparison of large-scale face datasets

Datasets Subject Image Property

LFW 5,749 13,233 public(clean)

WDRef 2,995 99,773 private(clean)

CelebFace 10,177 202,599 public(clean)

MSRA-CFW 1,583 202,792 public(clean)

CCFD 1,001 270,706 private(clean)

CASIA-WebFace 10,575 494,414 public(clean)

SFC 4,030 4,400,000 private(clean)

MS-Celeb-1M 99,891 8,456,240 public(noise)

Google 8,000,000 200,000,000 private(clean)

face recognition. The deep feature dimension for noise removal is 2,048 and
the dimension for face recognition is 1,024.
Parameter setting. The platform of our experiments is Caffe. SGD is uti-
lized to train the VIPLFaceNet and Resnet-VIPL. For VIPLFaceNet, we set
the base lr as 0.06, mini-batch size as 128, iter size as 1, total iteration in
pre-train process as 120,000, momentum as 0.9, and weight-decay as 0.0002.
The learning rate is decreased according to the polynomial policy with gamma
value equals to 0.5. For Resnet-VIPL, we set the base lr as 0.04, mini-batch
size as 32, iter size as 4, total iteration in pre-train process as 300,000, momen-
tum as 0.9, and weight-decay as 0.0002. For UOCL, we use Gaussian kernel
k(x, y) = exp(−‖x − y‖2) / 2σ2), where σ =

∑n
i,j=1 ‖xi − yi‖2 / n2 (Fig. 3).

Fig. 3. The process of label removal on MS-Celeb-1M database. Red bounding box
represents the correctly labelled samples while green bounding box represents noisy
samples. The face images of one person is taken as example. (Color figure online)
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3.3 Experimental Analysis

We use CASIA-WebFace as the clean dataset with small sample size to train
a CNN model. Noisy samples are iteratively removed from MS-Celeb-1M. We
compare the recognition rate of the raw noisy dataset and the clean dataset
after noise removal. Figure 4 shows that by automatical noise removal, the noisy

Fig. 4. The number of face samples in MS-Celeb-1M before and after noise removal.

Table 2. The face verification rate on LFW dataset

Method Training dataset Accuracy

Resnet-VIPL MS-Celeb-1M 99.25%

Resnet-VIPL MN 01 99.40%

Resnet-VIPL MN 02 99.25%

DeepFace SFC 97.35%

WSTFusion WSTFusion 98.73%

VGGFace VGGFace 98.95%

DeepID2+ DeepID2+ 99.47%

FaceNet Google 99.63%

Table 3. The face recognition rate on CCFD dataset

Method Training dataset Finetune Accuracy

Resnet-VIPL MS-Celeb-1M No 58.10%

Resnet-VIPL MN 01 No 64.72%

Resnet-VIPL MN 02 No 61.19%

Resnet-VIPL MS-Celeb-1M Yes 65.04%

Resnet-VIPL MN 01 Yes 70.66%

Resnet-VIPL MN 02 Yes 68.41%
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samples are partially removed after then first iteration. Then in the second iter-
ation, all noisy samples are removed together with some clean samples. Hence,
noise removal may discard also many clean face samples.

Figure 4 shows the number of samples left in MS-Celeb-1M. After the first
iteration, about three million face images are removed while during the second
iteration, the other three million samples are removed. The number of removed
samples shows that during the iterations, we should carefully use the noise
removal algorithm.

Table 2 shows the face verification rate on LFW dataset. MN 01 and MN 02
represent the results of the 1st and the 2nd noise removal. The results show
that compared with the raw noisy data, the verification rate is improved by
0.25% after the 1st noise removal. Compared with DeepFace, VGGFace and
DeepID2+, the performance of the proposed method is superior or comparable.

(a) The ROC curve when MS-Celeb-1M is used for training

(b) The ROC curve when the cleaned MS-Celeb-1M is used for
training

Fig. 5. The comparison of ROC curve on COX dataset
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FaceNet achieves 99.63% in that it uses 200 million face images to train the deep
model. After the second iteration, the recognition rate is the same as the raw
noisy data. However, the number of training samples is only a quarter of the raw
data. Hence, the time consumption and storage burden is greatly reduced.

Table 3 shows the recognition rate on CCFD dataset. Note, that the face
images in MS-Celeb-1M are all collected from European and American while
CCFD contains only the face images of Chinese Celebrities. To reduce the gap
across different ethnic groups, we finetune the parameters on the training set of
CCFD to improve the recognition performance. From the result, we can see that
similar to LFW, the model trained on MN 01 is much better than on MS-Celeb-
1M. Compared with the result without finetuning, the recognition rate is much
improved. Note that after the second noise removal, the rate slightly decreases,
since too many clean data have been removed together with the noisy face images.

Figure 5 shows results on COX dataset. The ROC curves before and after
label noise removal clearly reflect the effectiveness of the proposed method.

4 Conclusions and Future Work

In this paper, we proposed a robust deep face recognition method by automatical
noise removal. Because of the parameter explosion in deep learning techniques, a
large-scale face dataset with correct label information is badly needed to train an
accurate deep learning model. Unsupervised one-class learning is used to remove
the massive noisy face images. Experiments on large-scale face datasets in the
wild validate the effectiveness of the proposed method. In the future, we will
focus on end-to-end robust deep face recognition model.

Acknowledgements. This work was supported by the National Program on Key
Basic Research Project under Grant 2013CB329304, the National Natural Science
Foundation of China under Grants 61502332, 61432011, 61222210.
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Abstract. With the improvement of face recognition precision, face recognition
system is used in many fields. However, the face recognition system sometimes
cannot recognize the makeup face. In this paper, a new image-to-image trans-
lation algorithm based on GAN and dual learning is proposed to remove the
makeup. Especially, the proposed algorithm is weakly supervised and it com-
bines the paired and unpaired image-to-image translation model. The dual model
is firstly trained using a small number of paired data, then the performance of the
model is improved by large number of unpaired data. The proposed
weakly-supervised image-to-image translation algorithm is applied into
makeup-removal task, and the experimental results demonstrate its higher per-
formance than other algorithms.

Keywords: Image-to-image translation � Dual learning � GAN �
Makeup-removal

1 Introduction

With the improvement of face recognition precision, face recognition system has been
used in many scenes such as station, airport, bank and so on. Nowadays, makeup is
becoming more and more popular. However, makeup faces are usually different from
corresponding makeup-free faces, which will reduce the accuracy of the face recog-
nition system. Our goal is to propose a makeup-removal model to recover the
makeup-free face from the corresponding makeup ones.

Image-to-image translation task has made great progress recently. Similar to lan-
guage translation, the image-to-image translation task is to convert an image from one
domain to another domain. Many problems can be described as image-to-image
translation, for example the makeup removal task. Conditional GAN [1] has been used
to implement image-to-image translation, such as image super-resolution, image
inpainting, image manipulation and video prediction [2–5]. The “pix2pix” framework
[6] uses conditional GAN to learn a mapping from the input image to the target image.
All of these tasks are based on supervised framework with paired input and output
images fx; yg (Fig. 1.left) can be obtained. These models are trained by combining
content loss and adversarial loss.
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Furthermore, some models have been proposed to consider the unpaired setting.
CoupledGAN [7] learns the relationship between two fields or the joint distribution by
sharing the parameters of the partial layer of the generator and the discriminator in
GAN. DualGAN [8], CycleGAN [9], DiscoGAN [10] train dual generation models
G : x ! y and F : y ! x simultaneously which could form an image translation cycle.
For each image x, the image translation cycle should be able to bring x back to the
original image, i.e. x ! GðxÞ ! FðGðxÞÞ � x. For each image y, the cycle should also
satisfy the constrain:y ! GðyÞ ! GðFðyÞÞ � y. This is called feedback consistency
and is used to train the model. However, paired images can be obtained in some
situations so we could use these data to train the model. Our goal is to train
image-to-image translation model using paired and unpaired images.

In this paper, we propose a new image-to-image translation model using paired and
unpaired images and use it in the makeup-removal task. We are given two data sets,
one is a paired image dataset (Fig. 1.left) which consists of paired training examples
fxi; yig, where the yi corresponds to each xi. The other is unpaired datasets dataset
(Fig. 1.right) consisting of a source set fx; g 2 X and a target set fyjg 2 Y, without any
information to indicate that which xj matches which yj. Firstly we train G : x ! y and
F : y ! x dual model with a small number of paired input-output images, and then use
a large number of unpaired images to improve the performance of the model. We use a
GAN discriminator [1] DY to classify GðxÞ apart from y to train the G translates the
domain X to a domain distributed identically to Y and add a feedback consistency loss
that encourages F G xð Þð Þ � x. Similarly, we use a GAN discriminator [11] DX to
classify FðyÞ apart from x to train the F that translates the domain Y to a domain
distributed identically to X and add a feedback consistency loss that encourages
G F yð Þð Þ � y. G and F are trained simultaneously. Our primary contribution is to

Fig. 1. Paired image data(left) consists of paired training examples fxi; yig, unpaired image data
(right) consisting of source set fxjg 2 X and a target set fyjg 2 Y.
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propose a new algorithm which combines paired and unpaired image-to-image trans-
lation methods. Our second contribution is to propose a makeup-removal algorithm and
obtain good results. As far as we know, this is the first makeup-removal algorithm
based on GAN.

The paper is organized as follow. Section 2 introduces the related work. Section 3
presents the proposed method. Section 4 presents the experiments with results and
discussion. Section 5 concludes the paper with insights for future work. Our code is
available at: https://github.com/houxuedong/makeup-removal.

2 Related Work

Generative adversarial networks (GANs). GAN [11] can learn a generator to cap-
ture the distribution of real data by introducing an adversarial discriminator that evolves
to discriminate between the real data and the fake. Generative adversarial networks are
paired networks: one of which is a generator network, learns to create new samples
from a probability distribution defined by a series of training examples; the other is a
discriminator network that tries to discriminate between the real data and the fake.
Every time the discriminator notices a difference between the two distributions, the
generator adjusts its parameters slightly to make it go away. Until at the end the
generator exactly reproduces the true data distribution and the discriminator is guessing
at random, unable to find a difference. However, the original GAN has many disad-
vantages, such as training instability, non-convergence, gradient missing, model col-
lapse and so on. Subsequently, many methods and techniques have been proposed to
solve these problem [1, 12, 13]. We introduce an adversarial loss to learn the mapping
such that the translated image cannot be distinguished from images in the target
domain.

Dual learning. Dual learning [14] was first proposed to reduce the requirement on
labeled data in training English-to-French and French-to-English translators. The key
idea of dual learning is to set up a dual-learning game which involves two agents, each
of them only understands one task, but two dual tasks can form a closed-loop feedback
system. It can evaluate the consistency between feedback content and original input,
which allows us to obtain feedback information from unlabeled data. Then, we can use
the feedback information to improve the models in dual tasks. In our case, the GAN is
utilized to generate images same as the distribution of target images, and feedback
consistency loss is adopted to constrain the feedback content to consist with the
original input.

3 Method

Our goal is to learn mapping functions between two domains X and Y. We are given
two datasets, one is a paired image dataset which consists of paired training examples
fxi; yig. The other is unpaired dataset consisting of a source set fxjg 2 X and a target
set fyjg 2 Y . The paired dataset has a few images, so the model will not work well if
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we train the model using paired data only. Our algorithm train the model by combining
paired and unpaired data. The training procedure is divided into two steps: we use the
paired data to train dual model G : x ! y and F : y ! x firstly, then improve the
model’s performance using the unpaired data.

3.1 Paired Image-to-Image Translation

At the first step, paired images are used to train image to image translation model,
which is illustrated in Fig. 2(a): we train G : x ! y and F : y ! x networks using the
paired dataset at the same time. L1 norm loss is applied to both mapping functions as
L1 distance encourages less blurring than L2. We also tried adding the L1 norm loss
with an adversarial loss between GðxÞ and y, and between FðyÞ and x, but did not get
better result. For the mapping function G : x ! y, we express the objective as:

‘paired G; x; yð Þ ¼ G xð Þ � yk k1 ð1Þ

For the mapping function F : y ! x, the objective is:

‘paired F; y; xð Þ ¼ F yð Þ � xk k1 ð2Þ

3.2 Unpaired Image-to-Image Translation

At second step, image-to-image translation is trained using unpaired data which is
illustrated in Fig. 2(b). The objective contains two terms: an adversarial loss to match
the distribution of generated images with the data distribution of the target images, and
a feedback consistency loss to prevent the learned mappings G and F from contra-
dicting each other [9].

Fig. 2. (a) Our model learning two mapping functions G : x ! y and F : y ! x using paired
data. (b) We train the model using unpaired data. Our objective contains two terms: an
adversarial loss and a feedback consistency loss.
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Adversarial Loss. A GAN discriminator is used to classify G xð Þ apart from y and train
the G translates the domain X to a domain distributed identically to Y. The objective is
formulated as:

‘GAN G;DY ; x; yð Þ ¼ logDY yð Þþ logð1� DYðGðxÞÞÞ ð3Þ

A similar adversarial loss for the mapping function F : y ! x is defined as follows:

‘GAN F;DX ; y; xð Þ ¼ logDX xð Þþ logð1� DXðFðyÞÞÞ ð4Þ

Feedback consistency loss. The feedback consistency loss is introduced to push G
and F to generate images constrained by input images. For each image x from domain
X, the image translation cycle should be able to bring x back to the original image, i.e.
x ! GðxÞ ! FðGðxÞÞ � x. For each image y from domain Y, the image translation
cycle should also be able to bring y back to the original image, i.e. y ! FðyÞ !
GðFðyÞÞ � y [8–10]. We call this feedback consistency, and it can be expressed as:

‘cons G;F; x; yð Þ ¼ FðG xð ÞÞ � xk k1 þ GðF yð ÞÞ � yk k1 ð5Þ

Full objective. To train the unpaired image-to-image translation model, it is like to
minimize the combination of adversarial loss and feedback consistency loss. The full
objective of unpaired image-to-image translation is expressed as:

‘unpaired G;DY ; x; yð Þ ¼‘GAN G;DY ; x; yð Þþ ‘GAN G;DY ; y; xð Þ
þ k‘cons G;F; x; yð Þ ð6Þ

Where k controls the relative importance of the two terms.

4 Experimental Results

We apply the proposed weakly-supervised image-to-image translation algorithm to
makeup-removal task. To demonstrate the effectiveness of our proposed method, we
create a new dataset with paired makeup and makeup-free faces.

Datasets. We collect around 100 makeup-free faces images from the Internet, then
synthesized makeup face through a makeup website TAAZ [15]. One makeup-free face
image can produce different makeup face images using different makeup templates. We
synthesize 800 around paired images (Fig. 1.left) and divide the data into training
dataset consists of 700 around paired images and test dataset consists of 100 around
paired images. The makeup-free face images is different in training and test datasets.

The training data was used in two steps: At first step, we randomly select 100
paired images to train paired image-to-image model. Then we use all makeup images
and makeup-free images in training dataset to train unpaired image-to-image model.
All images was resized to 128 � 128 pixels. Figure 1 illustrates some examples of
makeup-free and makeup faces.
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Baselines. Our method is compared with different baseline image-to-image translation
methods on makeup-removal task where ground truth output images are available for
evaluation. These methods could be roughly divided into three categories: supervised
learning, unsupervised learning, and semi-supervised learning.

cGAN. This method [6] trains a conditional GAN to generate makeup-free face from
makeup ones. The discriminator D is trained to identify whether the image is real or
generated images. The generator is trained to fool the discriminator. Unlike an uncon-
ditional GAN, both the generator and the discriminator observe an input image [2].

L1. This method trains the model using L1 norm loss to minimize the distance
between output images and target images.

Pre-training + L1. This method uses unsupervised pre-training to improve
image-to-image translation model’s performance. An autoencoder is used to pre-train
the model using training images, then L1 norm loss is adopted to minimize the distance
between output images and target images.

L1 + GAN(pix2pix). This method [6] trains the image-to-image translation model
by combining adversarial loss and L1 norm loss. This method is based on supervised
learning and paired images are used to train the model.

DualGAN. This method [8] trains two models G and F at the same time, which
contains two loss terms: an adversarial loss for matching the distribution of generated
images to the distribution in the target domain, and a reconstructed loss to prevent the
learned mappings G and F from contradicting each other.

Implementation and training details. We adapt ‘‘U-net’’ [6, 16] as the architecture
for our generative networks which add skip connections between each layer i and layer
n � i, where n is the total number of layers. Such a design enables low-level infor-
mation to be shared between the input and output, which is beneficial because many
image translation problems implicitly demand alignment between input and output
structure (e.g., objects, shapes, edges, textures, clutters, etc.) [8]. For the discriminator
networks we use 70 � 70 PatchGANs [6, 8, 17], which tries to classify whether
70 � 70 overlapping image patches are real or fake. Such a patch-level discriminator
architecture has fewer parameters than a full-image discriminator, and can be applied to
arbitrarily-sized images in a fully convolutional fashion.

To stabilize our model training procedure, we replace the negative log likelihood
objective of GAN by a least square loss [18]. This loss performs more stably during
training and generates higher quality results. We alternate between one gradient
de-scent step on discriminator, then one step on generator. For all the experiments, we
set k = 100 in Eq. 6. The RMSProp solver [19] with a batch size of 1 is used. All
networks were trained with learning rate of 0.00005 for 100 epochs and a rate of
0.00003 for the next 100 epochs if the model is trained in two steps. At inference time,
the generator net is run in exactly the same manner as during the training phase, please
see [6, 8, 9] for more details (Table 1).

Comparison against baselines. In Fig. 3, we select three makeup faces corresponding
to different people and translate these faces to makeup-free using different methods.
The results shows that our method can recover makeup-free images quiet well.
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In Fig. 4, we choose three makeup faces of one person with different makeup style and
translate these faces to makeup-free using different methods. The experiments results
also show that our method can recover the makeup-free faces from different makeup
style.

Table 1. Translation performance for different methods

Method Aver-image L1 dist. Method Aver-image L1 dist.

cGAN 0.078 L1 0.089
Pre-train + L1 0.063 L1 + GAN 0.022
DualGAN 0.054 ours 0.031

Fig. 3. Different methods for makeup-removal task

Fig. 4. Makeup-removal task for same women wearing different makeups
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Furthermore, we evaluate the quality of makeup-removal results produced by dif-
ferent image-to image translation methods using averaged L1 distance between output
images and target images in test dataset. The smaller distance the better. Our method
can achieve better results than cGAN, L1, Pre-training + L1 and DualGAN models,
and obtain similar result to L1 + GAN (pix2pix) model. However, L1 + GAN (pix2pix)
is a supervised model, which need many paired images to train and can not utilize the
unpaired images.

5 Conclusion

In this paper, we propose a new weekly-supervised image-to-image translation model
and apply it into makeup-removal task. Our method consists of two steps where paired
and unpaired images data are used respectively. The experimental results have shown
our methods can effectively recover the makeup free image from makeup ones and
usually achieve better results in most cases. In the future, we intend to reduce the model
complexity by only using GAN in second step and apply our method into other
image-to-image tasks.
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dation of China (NSFC 61603197), Natural Science Foundation of Jiangsu Province
(BK20140885) and NUPTSF (NY2141).

References

1. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.
1784 (2014)

2. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.,
Tejani, A.,Totz, J., Wang, Z.: Photo-realistic single image super-resolution using a
generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)

3. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature
learning by inpainting. In: IEEE Conference on Computer Vision and Patten Recognition
(2016)

4. Zhu, J.Y., Krahenbuhl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on
the natural image manifold. In: European Conference on Computer Vision (2016)

5. Mathieu, M., Couprie, C., LeCun, Y.: Deep multiscale video prediction beyond mean square
error. In: International Conference on Learning Representations (2016)

6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image to-image translation with conditional
adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

7. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Neural Information
Processing Systems, pp. 469–477 (2016)

8. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: Unsupervised Dual Learning for
Image-to-Image Translation. arXiv preprint arXiv:1704.02510 (2017)

9. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks. arXiv preprint arXiv:1703.10593 (2017)

610 X. Hou et al.

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1704.02510
http://arxiv.org/abs/1703.10593


10. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to Discover cross-domain relations
with generative adversarial networks. In: International Conference on Machine Learning
(2017)

11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio. Y.: Generative adversarial nets. In: Neural Information Processing Systems,
pp. 2672–2680 (2014)

12. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

13. Wu, H., Zheng, S., Zhang, J., Huang, K.: GP-GAN: Towards Realistic High-Resolution
Image Blending. arXiv preprint arXiv:1703.07195 (2017)

14. Xia, Y., He, D., Qin, T., Wang, L., Yu, N., Liu, T.Y., Ma, W.Y.: Dual learning for machine
translation. arXiv preprint arXiv:1611.00179 (2016)

15. TAAZ Homepage, http://www.springer.com/lncs. Accessed 5 June 2017
16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical

Image Segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/
978-3-319-24574-4_28

17. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative
adversarial networks. In: European Conference on Computer Vision (2016)

18. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z.: Multiclass generative adversarial networks
with the l2 loss function. arXiv preprint arXiv:1611.04076 (2016)

19. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2) (2014)

Weakly-Supervised Dual Generative Adversarial Networks 611

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1703.07195
http://arxiv.org/abs/1611.00179
http://www.springer.com/lncs
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1611.04076


Analysis of Gradient Degradation and Feature
Map Quality in Deep All-Convolutional Neural
Networks Compared to Deep Residual Networks

Wei Gao(B) and Mark D. McDonnell

Computational Learning Systems Laboratory,
School of Information Technology and Mathematical Sciences,

University of South Australia, Mawson Lakes, SA 5095, Australia
gaowy009@mymail.unisa.edu.au

Abstract. The introduction of skip connections used for summing fea-
ture maps in deep residual networks (ResNets) were crucially important
for overcoming gradient degradation in very deep convolutional neural
networks (CNNs). Due to the strong results of ResNets, it is a nat-
ural choice to use features that it produces at various layers in transfer
learning or for other feature extraction tasks. In order to analyse how
the gradient degradation problem is solved by ResNets, we empirically
investigate how discriminability changes as inputs propagate through the
intermediate layers of two CNN variants: all-convolutional CNNs and
ResNets. We found that the feature maps produced by residual-sum lay-
ers exhibit increasing discriminability with layer-distance from the input,
but that feature maps produced by convolutional layers do not. We also
studied how discriminability varies with training duration and the place-
ment of convolutional layers. Our method suggests a way to determine
whether adding extra layers will improve performance and show how
gradient degradation impacts on which layers contribute increased dis-
criminability.

Keywords: Convolutional Neural Networks · Deep residual networks ·
Deep features · Image classification · Phoneme classification · CIFAR ·
TIMIT

1 Introduction

The recent trend in deep CNNs has been for the number of layers of trained
weights to become larger and the convolutional kernels to become smaller
[1–3]. The trend has been exemplified by the consecutive winning approaches
in ILVSRC computer vision competitions [1–3]; however, the increasing depth
exacerbates the problem of gradients degradation in deep CNNs, which was pre-
viously investigated by [4]. This induced the advent of deep residual network that
effectively solves the problem [5]. ResNets have rapidly become an architecture
of choice since firstly showing its strength by winning the ImageNet Challenge
in 2015 [5].
c© Springer International Publishing AG 2017
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Prior to all-convolutional CNNs, the widely shared architecture of advanced
CNNs such as AlexNet [1] and the VGG model [2], were constructed by gener-
ally stacking convolutional weights layers, pooling layers and then several fully-
connected layers at the end. All-convolutional CNNs were firstly designed by
[6] in which the pooling layers and all-to-all layers (as in [1]) were replaced by
stride-2 convolutional layers and a global average pooling layer respectively.

Derived from the all-convolutional structure, the deep residual network in
[5] introduced the idea of residual learning, which enables processed data and
gradients to bypass certain layers during training and deployment. A following
paper [7] discussed various mapping mechanisms for skip connections, as well
as the sequence of applying activation functions and batch normalisation, the
latter of which [8] has largely superseded dropout [9] as the preferred method of
regularisation in deep CNNs. In order to further understand residual networks,
a lesion study was performed [10], demonstrating that what makes deep residual
networks outperform their plain counterparts is not the depth, but the implicit
ensembling of many shallower networks with shared weights. The idea of wide
ResNets was then proposed by Zagouruyko and Komodakis [11] who explored the
capability of residual networks in terms of width, specifically by increasing the
number of channels in each convolutional layer instead of stacking layers deeper.
It turned out that wide residual networks can improve accuracy in less-deep
residual networks at the cost of significantly more trainable weights. Crucially,
however, they also showed that for the same number of parameters, better per-
formance can be achieved with a wide network than with a very deep network,
in a shorter run-time.

In this paper, we investigate empirically the superiority of residual networks
in comparison with networks without skip-connections, by quantifying the dis-
criminability of the feature maps following intermediate layers from ResNets
and all-convolutional networks. This enables us to cast light on the gradient
degradation problem and how it is alleviated by ResNets. Similar to [12], we do
not propose a new algorithm for training deep CNNs; rather, our results provide
analysis and insight into what is learnt by different layers in deep CNNs, so as to
suggest how to optimise the design of models to be trained on a specific dataset,
such as CIFAR10/100 and TIMIT datasets.

The paper is structured as follows. In Sect. 2 we describe how this paper
relates to prior work. Then in Sect. 3 we outline the datasets we use and our
methods for comparing residual networks with plain deep CNNs, before Sect. 4
presents our results. The paper is concluded in Sect. 5 with discussion and sug-
gestions for further research.

2 Prior Work

The term deep-features was coined in [13] to describe the result of applying
multiple layers of pre-trained convolutional kernels to a new training set, and
using the results to train the simple classifier—see e.g. [13,14]. The focus of [13]
was on demonstrating the utility of deep-features extracted from distinct new
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training sets after processing of data through the final layer of a pre-trained deep
CNN. It was shown that performance declines when deep-features are instead
extracted from layers closer to the input.

Our paper has related objectives to Zeiler and Fergus [12], who used a novel
deconvolutional approach to determine what image input features individual
units in a deep CNN that become tuned to respond to. They showed that the
trend is for hidden units further from the input layer to have learnt to respond
invariantly to increasingly complex features in comparison with units close to the
input layer. The work in [15] proposed linear classifier probes where such probes
were added to each layer of pre-trained LeNets and also networks with 128 fully-
connected layers, so as to interpret the internal state of those models. However,
to our knowledge, there has been no comprehensive comparison of deep-features
obtained from residual networks versus plain deep CNNs.

To quantify discriminability in this paper we use a similar approach to that
of [14], where a so-called extreme-learning machine (ELM) [16] was employed as
a simple classifier that received as input deep-features obtained from training
a deep CNN on the ImageNet dataset. The ELM approach has several advan-
tages over support vector machines or other simple classifiers, such as being
trainable without iterations, being amenable to large input data dimensionality,
and yet being very powerful when applied to datasets that have high inherent
discriminability [16,17].

3 Methods

3.1 Datasets and Preprocessing

CIFAR-10 and CIFAR-100. Originally released by [18], the CIFAR-10
dataset consists of 60,000 32 × 32 pixel RGB color images in total. The stan-
dard training set of CIFAR-10 is comprised of 50,000 images, distributing uni-
formly amongst 10 labelled classes, while the test set contains the remaining
10,000 images. The CIFAR-100 dataset shares similar features to the CIFAR-10
dataset except that all 60,000 images are uniformly distributed among 100 pre-
labelled classes, which makes its classification task more challenging than that
of CIFAR-10.

TIMIT. The TIMIT dataset consists of approximately four hours of speech
recorded at 16 KHz from 630 speakers, well labelled into 61 phonemes. Following
standard practise, we reduced the number of phoneme labels from 61 to 39 [19].
For the purposes of analyzing deep residual networks, we synthesised static 50×
50 pixel greyscale images from each labelled phoneme in the TIMIT speech data.
To do this, we used a “cochleagram” approach [20]. Each wav file was processed
in its entirety by a 50-channel bank of length-64 fourth-order gammatone digital
bandpass filters, with centre frequencies between 100 and 8000 Hz. The result for
each channel was then half-wave rectified and low-pass filtered by 400-sample
boxcar kernels, which recovers the envelope of the narrow-band responses in
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each channel. Next, the 50 × 50 representation of each phoneme was obtained
by downsampling in each channel to 50 samples uniformly spaced between the
phoneme boundaries. The net result is a training set of 142910 greyscale images
from 4620 wav files and a test set of 51681 images from 1680 wav files, all
categorized into 39 classes.

3.2 Deep CNN Architecture and Training

Implementation Details. The architecture of the deep residual network we
used was the version with identity mappings applied to CIFAR-10 in [7]. As
in [5], the plain CNN we used was identical to the residual network, but with
the skip connections removed. We trained 56-layer non-wide networks, as well
as “wide” 20-layer networks with three times the number of channels per layer
than the deep networks applied to CIFAR in [5], for comparing the enhanced
training process due to residual learning in both cases. A batch-normalization
layer was applied directly to the input data, which was different to the set-up
[7]. As we used batch-normalisation after each weight layer, all biases were set
to zero. This approach was identical for both residual and plain networks.

The mini-batch size was 125, with momentum of 0.9 and weight decay with
parameter 0.0005 for stochastic gradient descent (SGD). We used warm restart
techniques to manage the learning rate schedule [21], with learning rate con-
stantly dropping between 0.1 and 1 × 10−5 before resetting to 0.1 at Epoch 3,
7, 15 and 31, and terminating training after 62 epochs. For comparison, we also
trained 56-layer networks on CIFAR-100 for 126 epochs, with a reduced initial
learning rate of 0.05. We performed standard light augmentation of each train-
ing images, i.e. random horizontal flips and random crops were applied to each
image throughout the training phase.

3.3 Analysis of Deep Features

ELM Classifiers. Thanks to its simplicity, training speed and accuracy, the
ELM classifier [16,17] was utilised for analysing discriminability of deep-features.
These classifier have the architecture of a single-hidden-layer neural network, but
due to having a linear output layer, can be trained by applying multi-class least
squares regression to the hidden-layer responses for all training data in a single
batch. The input layer weights are selected randomly and are not learnt, and
hence hidden layer sizes need to be increased from typical values to compensate.

We use Identical random weight layers of size M × L were used whenever
the deep CNN layers produced identical feature dimensionality, where M is the
number of hidden units and L is the product of the number of channels and the
x and y dimensions of each layer’s feature map. We also used ridge-regression
as in [17].

We trained ELM classifiers on the responses to the entire training set of
all layers in the CNNs. This included input layers, weights layers, batch nor-
malization layers (BN) with ReLU activations, global average pooling layers,
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residual-sum layers and softmax layers. The ELM classifier probes were inserted
prior to each warm restart, i.e. at epoch 2, 6, 14, 30, 62, 126.

4 Results

Figures 1 and 2 show our results quantifying the discriminability of different lay-
ers in deep CNNs applied to the CIFAR-10 and CIFAR-100 test sets. We noticed
that the BN and ReLU activations showed similar behaviours and error rates to
the weights layers among the experiments we did, so we do not show any results
for them in this paper. However, due to the residual-sum layer placed at the
front which processed weights from the early layers, the overall discriminabil-
ity of BN layers with ReLU activations was suffering larger fluctuation than
that of weights layers. We found that reducing learning rate can ameliorate such
discriminability fluctuation for activated BN layers.
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Fig. 1. Comparison for CIFAR-10 of deep-feature discriminability in 20-layer (left)
versus 56-layer (right) CNNs after completing 62 epochs of training. The black dot-
dashed horizontal lines indicates the classified input data, and dotted vertical lines
indicate the layers that perform downsampling. The other lines denote the test errors
of the ELM classifier probe inserted at those layers as indicated by the legends. The x-
axis shows layer indexes for the residual network; the points for the plain network were
shifted to align with the layer indexes in the residual network. Clearly, residual-sum
layers show improved discriminability throughout training, and this is not the case for
weights layers in either network.
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Fig. 2. Comparison for CIFAR-100 of deep-feature discriminability in 20-layer (left)
versus 56-layer (right) CNNs after completing 62 epochs of training. The same trends
as for CIFAR-10 are evident.

In general, the discriminability of residual-sum layers among layers closer to
the input is superior to that of convolutional weights layers. However, for ResNets
trained on CIFAR-10, the high variability disappears after the first downsam-
pling, while weight layer discriminability becomes superior to that of residual-
sum layers. Such a turning point is detected at the second downsampling when
ResNets were trained on CIFAR-100. Although we only show the results of the
ELM classifier probe after 62 epochs of training, it was observed that these trends
held throughout training. The variability in ELM discriminability almost disap-
pears after the first downsampling of ResNets trained on CIFAR-10; for CIFAR-
100, such fluctuation is gradually reduced after the downsampling each time.

We also observe that the residual networks show a consistent decrease in error
rate with depth away from the input, whereas the plain networks do not. This
trend is consistent with previous discussion of the benefits of using skip connec-
tions in residual networks [5,7]. For the plain networks trained on CIFAR-10,
we see a sharp decline in the discriminability spanning roughly 9 weights layers
in the 56-layer network, which resembles the constant decrease of error rates
spanning 12 weights layers in the 20-layer network. For CIFAR-100, learning in
the 56-layer network prior to the second downsampling layer is almost entirely
absent, with ELM classification saturating at the level of classifying the input
layer or even leading to worse error rates as the training proceeds. This could
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Fig. 3. Comparison for CIFAR-100 of deep-feature discriminability in 56-layer CNNs
after 62 epochs of training (left) and after 126 epochs of training (right). The data
indicates very deep plain networks that are subject to gradient degradation take more
epochs to train to their best performance than their residual network counterparts,
possibly due to the reduced number of layers that contribute to discriminability.

reflect the fact that in a plain deep network, CIFAR-100 requires much longer
training and a smaller learning rate than CIFAR-10 to achieve good performance.

We further observe that for 20-layer networks trained on both CIFAR-10
and CIFAR-100, the discriminability of feature maps following weights layers
in residual networks is comparable to that of weight layers in plain networks.
Specifically, after 14 epochs of training, the error rates obtained by the ELM clas-
sifier probe continually decreases with distance from the input while the overall
discriminability can be slightly improved as trainings continue until Epoch 62.
This is not so much the case for 56-layer network where the discriminability of
weights layers in plain network show a distinct non-monotonic trend, in stark
contrast to weights layers in residual network.

Figure 3 shows the ELM features extracted from 56-layer networks trained on
CIFAR-100, after completing 62 epochs of training and 126 epochs of training.
Compared to the residual networks shown in Fig. 2, simply reducing the learning
rate cannot improve the accuracy of the probe on the softmax layer but it reduces
the error rates at intermediate features. Neither can training ResNets longer
improve discriminability as measured by the ELM probe. The plain networks
are also unable to learn better with a reduced maximum learning rate. Another
62 epochs of training is required to contribute to the reduction of test error.
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Fig. 4. Comparison for TIMIT of deep-feature discriminability in 20-layer ResNets
with difference placement of convolutional layers. The numbers in legends indicate
how many weight layers placed at the stages before or after each downsampling

The previous experiments indicate the fact that the discriminability of feature
maps following weights layers does not undergo a smooth decline trend as the
inputs propagate through the network. We assume that there is redundancy in
weights at layers which are closer to the input. In order to verify this, we trained
another 20-layer ResNet and its ELM classifiers on TIMIT dataset, but with dif-
ferent structure where a residual block placed before the first downsampling was
shifted to somewhere after the second downsampling. This change results in 25%
more parameters to be trained but 6% improvement of training speed, since some
convolutional calculations for high dimensional feature maps have been replaced
with such calculations for lower dimensional data. Figure 4 compares its result
with the ELM classifiers trained on standard 20-layer after 30 epochs training.
Both ELMs show similar behaviours and also similar quantitative outcomes in
terms of the discriminability of intermediate layers.

5 Discussion and Future Work

The poor and highly fluctuating test error rates of ELM classifier probes for
layers close to the input (comparable to that from directly classifying the raw
input pixels using an ELM) are in part due to the fact that we did not attempt
to optimise the ELM classifiers, and in the early layers they were applied to
very high-dimensional data. We observed that experiments with increasing M



620 W. Gao and M.D. McDonnell

(hidden layer size of the ELM probe) led to the error rates coming down, but
achieving the lowest possible error rate is not the point of this paper. Rather,
we are interested in comparative results using vanilla classifiers. Also, tuning the
ridge regression parameter λ in the ELM probe did not ameliorate this issue;
therefore in this paper, we do not report the exact values of M or λ used for
each experiment. A suggesting range for the number of hidden units M is from
500 up to 5,000. For the choice of λ, we tried various values between 1 × 10−6

and 1 × 106.
The comparison made between weights layers of the plain networks trained

on CIFAR-10 supports the argument that networks with deeper architecture
may harm the classification capability, due to gradient degradation [5], which
partially reflects the success of wide residual network. The observed monotonic
improvement with depth in residual networks is absent in the plain version,
consistent with the view that skip-connections overcome gradient degradation
in very deep network and adds further support to the demonstrated importance
of skip-connections for training very deep CNNs.

We trained networks longer and changed the learning rate schedule for the
results shown in Fig. 3, since the analysis of the intermediate features in previous
experiments suggests doing so. Then in Fig. 4, we slightly altered the placements
of convolutional layers in 20-layer ResNets showing almost no loss in test accu-
racy compared to the standard ResNet. It is demonstrated that inserting ELM
probes into pre-trained networks can provide intuition and evidence on how to
optimise the models trained on a specific dataset.

Moreover, our results suggest which feature maps of a residual network are
best for discriminability when used in transfer learning or feature extraction
tasks; closer to the input layer, residual-sum layers provide better discriminabil-
ity, whereas closer to the output, the feature maps following convolutional layers
may be better.

In future work, we will repeat the experiments of injecting ELM classifiers
into pre-trained networks on larger datasets, such as tiny ImageNet dataset and
the complete ImageNet, so as to verify the generality of the observations made
in this paper. It will also be interesting to examine if our method can be used to
determine quickly how many layers will provide benefits in very deep networks.

Acknowledgements. This work is funded by Australian Government Research Train-
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Abstract. Single image super-resolution (SISR) plays an important role in
remote sensing image processing. In recent years, deep convolutional neural
networks have achieved state-of-the-art performance in the SISR field of com-
mon camera images. Although the SISR method based on deep learning is
effective on general camera images, it is not necessarily effective on remote
sensing images because of the significant difference between remote sensing
images and common camera images. In this paper, the VDSR network (pro-
posed by Kim et al. in 2016) was found to be invalid for Sentinel-2A remote
sensing images; we then proposed our own neural network, which is called the
remote sensing deep residual-learning (RS-DRL) network. Our network
achieved better performance than VDSR on Sentinel-2A remote sensing images.

Keywords: Single-Image Super-Resolution � Residual-Learning �
Sentinel-2A � Deep convolution neural network

1 Introduction

Single image super-resolution (SISR) has important application value in improving the
spatial resolution of remote sensing images. On one hand, although there is a revisit
time for the earth observation satellite to allow access to the same location of the scene,
the acquired image is likely to be changed when the satellite revisits the same place and
shoots again, affected by clouds, shelters, and the motion of objects. On the other hand,
the spatial resolution of remote sensing images is determined by the optical hardware
and sensor of the remote sensing satellite. However, the satellite’s hardware capabilities
limits improving the spatial resolution of remote sensing images because the distance
between the spaceborne sensor and perceived objects is very large. Therefore, the SISR
technology is of great significance to boost the spatial resolution of remote sensing
images for facilitating subsequent processing, such as classification [1], segmentation
[2], and so on. SISR is designed to generate a high-resolution (HR) image from a
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low-resolution (LR) image. However, the SISR process is an ill-posed, underdeter-
mined inverse problem, that is, there are many corresponding HR images for a single
LR image.

In recent years, thanks to big data, GPU, and rectified linear unit (ReLu) [3]
activation function, deep neural networks have achieved great success in computer
vision. In 2012, Krizhevsky proposed the AlexNet convolutional neural network [4],
which showed higher image classification accuracy compared with the runner up by a
large margin on the ImageNet Large Scale Visual Recognition Challenge 2012 [5]. In
the SISR field of common camera images, deep convolutional neural networks have
achieved state-of-the-art performance. The SRCNN network proposed by Dong et al.
[6] used three-layer convolutional networks to learn an end-to-end mapping from LR to
HR. Although SRCNN has the powerful ability to extract more discriminative features
than traditional methods, the authors found that the deeper SRCNN was hard to train
and could not achieve better performance. However, the VDSR network [7] (as shown
in Fig. 1) successfully includes 20 convolutional layers through learning residuals, and
achieves better performance than the SRCNN network. The VDSR network also has
faster convergence speed and a larger receptive field than SRCNN.

There are great differences in term of the spatial resolution and radiometric reso-
lution between remote sensing images and common camera images. Here the
Sentinel-2A remote sensing images are employed as an example. The size of
492 � 492 px Sentinel-2A remote sensing images may contain a whole town. How-
ever, the same size of common camera images may contain only a house and a few trees.
The radiometric resolution of the Sentinel-2A is 12 bit [8], which enables the image to
be acquired over a range of 0 to 4095 light intensity values, but the radiometric reso-
lution of a common camera is only 8 bit. These differences may make it difficult to train
a deep convolutional neural network on Sentinel-2A remote sensing images.

In paper [9], the training dataset was generated from Level-1C of Sentinel-2A on
the B02, B03, and B04 band images (10 m resolution) corresponding to RGB and the
scale denominator was set to 2. Then, the authors retrained the SRCNN for about
20 days on the Tesla K40c without changing any parameters introduced in [6],

Input: ILR
Batch_size:64

conv1
num_output:64
Kernel_size:3

Stride:1
Pad:1

ReLU

conv20
num_output:64
Kernel_size:3

Stride:1
Pad:1

Total 20 layers

Output:HR+

Fig. 1. Architecture of the VDSR network. As paper [7] points out, an interpolated
low-resolution (ILR) image directly adds the output of the twentieth convolutional layer.
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but failed eventually. Then they changed the learning rate from 0.0001 to 0.01, and the
mini-batch size employed by the Gradient descent algorithm [10] from 64 to 256. The
convergence speed of the SRCNN network was still slow (approximately 10 days on
the Tesla K40c), and their experimental results showed that the difference of the
average peak signal-to-noise ratio (PSNR) between the reconstructed images and the
interpolation images was less than 0.4 on their B02, B03, and B04 band test dataset. In
this paper, the VDSR network was trained on our training dataset, but failed (as shown
in Sect. 3.1). Then, a new neural network called the remote sensing deep
residual-learning (RS-DRL) network was designed for remote sensing images, com-
bining VDSR and SRCNN. Our proposed network converged as fast as VDSR. Our
experimental results showed that the difference of the PSNR between the reconstructed
images and the interpolation images was larger than 0.9 on our B02, B03, and B04
band test dataset, which is significantly superior to VDSR. Since training the SRCNN
is very difficult [7], the proposed network was only compared with the VDSR network.

2 Training Dataset and Proposed Neural Network

2.1 Training Dataset

The European Space Agency is developing a new family of missions called Sentinels,
and provides free access to observation data [11]. Each Sentinel mission is based on a
constellation of 2 satellites. Sentinel-2 is a HR, multi-spectral imaging mission.
Sentinel-2 carries an optical instrument payload that samples 13 spectral bands: 4 bands
at 10 m, 6 bands at 20 m, and 3 bands at 60 m spatial resolution. The Level-1C
orthorectified product of Sentinel-2A, which is encoded in 16 bit/px JPEG2000 format,
was used to generate our dataset. Our source dataset contains 5 Sentinel-2A granules
acquired in the eastern United States without cloud coverage and no-data values. Only
B02, B03, and B04 band images were used to generate our training set and test set.
Each image was 10980 � 10980 px, and was subdivided into 484 tiles of
492 � 492 px, 22 tiles of 156 � 492 px, 22 tiles of 492 � 156 px, and 1 tile of
156 � 156 px. For each band type, 2420 tiles of 492 � 492 px were used to generate
the training dataset, and 225 tiles of 3 different size images were used to generate the
test dataset. LR simulation images were generated by sampling those tiles down and up
again using bicubic interpolation at a scale denominator of 2. All tiles were cut into
41 � 41 patches, and then those patches were stored in HDF5 [12] format.

2.2 Proposed Neural Network

In this section, the RS-DRL network (as shown in Fig. 2), which integrates SRCNN
and VDSR, is proposed. Our network consisted of 17 convolutional layers. From the
second to the sixteenth layer, each layer had 64 filters of the size 3 � 3 � 64. The first
convolutional layer had 64 filters of the size 9 � 9, and the last layer had a single filter
of the size 3 � 3 � 64 to reconstruct the image. After each convolutional operation,
the size of the output data was reduced. In order to maintain the same size of the input
data for each convolutional layer, 0 was filled around the input data before the
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convolutional operation. The sum of the output of the first layer and the sixteenth layer
was inputted into the seventeenth layer. In order to make the input data and the
receptive field of our network have the same size (41 � 41), the filter size of the first
convolutional layer was set to 9 � 9. Let yi denote a ground truth image and xi denote
an interpolated LR image. Let xi; yið Þf gNi¼1 denote our training data. Our goal was to
learn a model f that predicted values ai ¼ f xið Þ, where ai was a reconstructed image.
The equation loss ¼ 1

2N

PN
i¼1 yi � aik k2 was expected to be optimized to minimum.

3 Experiments

3.1 Training VDSR Network

The VDSR network used the residual structure proposed by He et al. [13], which makes
it possible to train a deeper convolutional neural network. In this section, the Caffe
framework [14] was used to train the VDSR network on our dataset described in
Sect. 2.1. Firstly, the size of the mini-batch was set to 64. The learning rate was set to
0.1, and then decayed 0.1 times every 20 epochs. The technique of adjustable gradient
clipping used in [7] is an improvement on the standard gradient clipping technique,
which is usually used to suppress exploding gradients [15]. In Caffe, the technique of
adjustable gradient clipping can be achieved through clip_gradients parameter after
modifying the Caffe framework. In this section, the clip_gradients parameter was set to
0.01. The momentum parameter was set to 0.9, and the weight decay parameter was set
to 0.0001. The approach depicted in [16] was used for weight initialization. Secondly,
the size of the mini-batch was changed to 256 as in [9], and then the VDSR was trained
without changing other parameters. The matcaffe, which is the MATLAB interface of
Caffe, was used to test the test dataset on a GPU GTX1080. The VDSR network was
trained on the GPU GTX1080 with 80 epochs based on early stopping theory [17]. The
average PSNR and average structural similarity (SSIM) [18] of 2 experiments on our
test dataset are shown in Tables 1 and 2.

Input: ILR
Batch_size:64

conv1
num_output:64
Kernel_size:9

Stride:1
Pad:4

Feature 
representation

ReLU

conv2
num_output:64
Kernel_size:3

Stride:1
Pad:1

ReLU

conv16
num_output:64
Kernel_size:3

Stride:1
Pad:1

ReLU

conv17
num_output:1
Kernel_size:3

Stride:1
Pad:1

Nonlinear mapping: total 15 layers Reconstruction

Output:HR

+

Fig. 2. Architecture of our RS-DRL network. The first layer of this network extracts a set of
feature maps. There are 15 convolutional layers in the residual unit, which are used for nonlinear
mapping. The last layer produces the final HR image.
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3.2 Training Our RS-DRL Network

In Caffe, gradient clipping can be achieved through the clip_gradients parameter. In
this paper, the RS-DRL network was trained without using adjustable gradient
clip-ping, but the clip_gradients parameter was set to 1. The learning rate was set to
0.0005, and then decayed 0.97 times every 10 epochs. The momentum parameter was
set to 0.9, and the weight decay parameter was set to 0.0001. The mini-batch size was
set to 64. The bias was initialized to the constant 0. The method depicted in [16] was
used for weight initialization. Matcaffe was used to test the test dataset on a GPU
GTX1080. All experiments in this section were performed on the GPU GTX1080 with
80 epochs. The average PSNR and average SSIM of our RS-DRL network on our test
dataset are shown in Table 3. Train and test loss curves, and qualitative (visual effect)
results are shown in Figs. 3, 4 and 5 respectively.

Table 1. Average quantitative index of the VDSR network when mini-batch was set to 64.

Band Measure Bicubic Reconstruction Difference

B02(Blue) PSNR 65.2317 65.1921 –0.0396
SSIM 0.9995 0.9995 0

B03(Green) PSNR 64.0410 63.7381 –0.3029
SSIM 0.9994 0.9994 0

B04(Red) PSNR 61.5956 61.5885 –0.0071
SSIM 0.9991 0.9991 0

Table 2. Average quantitative index of the VDSR network when mini-batch was set to 256.

Band Measure Bicubic Reconstruction Difference

B02(Blue) PSNR 65.2317 65.2271 –0.0046
SSIM 0.9995 0.9995 0

B03(Green) PSNR 64.0410 64.0379 –0.0031
SSIM 0.9994 0.9994 0

B04(Red) PSNR 61.5956 61.5677 –0.0279
SSIM 0.9991 0.9991 0

Table 3. Average quantitative index of the RS-DRL network when mini-batch was set to 64.

Band Measure Bicubic Reconstruction Difference

B02(Blue) PSNR 65.2317 66.1615 0.9298
SSIM 0.9995 0.9996 0.0001

B03(Green) PSNR 64.0410 65.0622 1.0212
SSIM 0.9994 0.9996 0.0002

B04(Red) PSNR 61.5956 62.8303 1.2347
SSIM 0.9991 0.9993 0.0002
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(a) Loss curves of B02 band 

(b) Loss curves 0f B03 band 

(c) Loss curves of B04 band 
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Fig. 3. Train and test loss curves of our RS-DRL network. Each experiment was trained for 80
epochs, and each epoch was iterated for 5444 times. The Caffe was set to display test loss every
1361 iterations.
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4 Discussion

As described in [6], the third convolutional layer of the SRCNN directly outputs
re-construction images. In VDSR, the network learns residual images, and reconstruc-
tion images are generated by the input of VDSR plus the output of the twentieth layer.
This significant change greatly improves the experimental effect and convergence speed

(a) B02 band

(b) B03 band

(c) B04 band

Fig. 4. From left to right, the ground truth image, the bicubic interpolation image, and the
reconstructed image respectively.

Fig. 5. The reconstructed image minus the bicubic interpolation image. From left to right, the
B02 band, B03 band, and B04 band.
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on common camera images. However, this change is found to be invalid for remote
sensing images. The results in Table 2 show that the difference of the average PSNR
between reconstructed images and interpolation images was close to 0 when the
mini-batch was set to 256. That is, VDSR had not learned the HF information described
in [7] successfully. In order to force the VDSR network to learn the HF information
successfully, the VDSR’s deep residual unit was replaced with the non-linear mapping
convolutional layer of SRCNN in this paper. However, the receptive field size of our
proposed network was the same as the VDSR network’s because the residual block of
the proposed network only had 15 convolutional layers. As shown in Table 3, the
difference on our B02, B03, and B04 band test dataset was larger than 0.9, which is
better than the results shown in Tables 1 and 2. As shown in Fig. 4, it seems difficult to
discern the added details of the reconstructed image compared with the bicubic inter-
polation image without remote sensing software. In this paper, the added detail infor-
mation is showed through the reconstructed image minus the bicubic interpolation
image (as shown in Fig. 5).

5 Conclusions and Future Work

In this paper, the VDSR network was found to be invalid for remote sensing images,
and we proposed the RS-DRL network for SISR on remote sensing images. Our
RS-DRL network achieved a better result than VDSR, and converged as fast as VDSR.
At present, our network is effective when the scale denominator is 2. In the future, the
quantitative indicators and visual effects will continue to be improved, and our
net-work will be expanded to any denominator.
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Abstract. Recent large CNNs have delivered impressive performance but their
storage requirement and computational cost limit a wide range of their applica-
tions in mobile devices and large-scale Internet industry. Works focusing on
storage compression have led a great success. Recently how to reduce compu-
tational cost draws more attention. In this paper, we propose an algorithm to
reduce computational cost, which is often solved by sparsification and matrix
decompositionmethods. Since the computation is dominated by the convolutional
operations, we focus on the compression of convolutional layers. Unlike sparsi-
fication and matrix decomposition methods which usually derive from mathe-
matics, we receive inspiration from transfer learning and biological neural
networks. We transfer the knowledge in state-of-the-art large networks to com-
pressed small ones, via layer-wise training.We replace the complex convolutional
layers in large networks with more efficient modules and keep their outputs in
each-layer consistent. Modules in the compressed small networks are more effi-
cient, and their design draws on biological neural networks. For AlexNet model,
we achieve 3.62� speedup, with 0.11% top-5 error rate increase. For VGG
model, we achieve 5.67� speedup, with 0.43% top-5 error rate increase.

Keywords: Deep learning � Network compression � Layer-wise training

1 Introduction

Large CNNs have recently demonstrated state-of-the-art performance in image classi-
fication task, which is treated as an important benchmark for computer vision [10].
A well-known competition, Large Scale Visual Recognition Challenge (ILSVRC) [10],
and its database have given birth to lots of famous CNNs. These networks (e.g. AlexNet
[1] and VGG [2]) are powerful and possess great representation capability. Usually very
similar models are used in the training stage and the deployment stage despite their
enormously different requirements. In the training stage, most state-of-the-art CNNs
focus on decreasing classification error rate. Thus, CNNs are usually designed to have
parameters as many as possible if they could achieve lower error rate. Consequently, a
huge number of redundant parameters will be generated in this stage [4]. In deployment
stage, apart from the error rate, there are strict requirements on storage and computa-
tional cost [6]. Improving the efficiency of CNNs is of critical importance.
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To address these issues, there is growing concern about network compression in
recent years. It can be roughly divided into storage compression and computation
compression. The study of storage compression has been considerably thorough [6]. As
a representative work, a three stage pipeline was introduced by Han et al. [6]. Pruning,
trained quantization and Huffman coding worked together to reduce the storage
requirement by 35� to 49� without increasing the error rate. However, storage
compression methods are not remarkably efficient for computation compression.
Sparsification and matrix decomposition are fundamental approaches in computation
compression. Denton et al. [3] exploited the linear structure of the parameters and
found appropriate low-rank approximation of the parameters in different layers. Zhang
et al. [5] enabled an asymmetric reconstruction that reduced the rapidly accumulated
error when multiple layers were compressed, achieving 5� FLOPs reduction with
1.0% top-5 error rate increase (5� /+1.0) on VGG model. Figurnov et al. [7] sped up
the bottleneck convolutional layers by skipping their evaluation in some of the spatial
positions, achieving 2� /+2.0 on AlexNet and 1.9� /+2.5 on VGG. Kim et al. [8] used
Tucker Decomposition on each layer with the rank determined by a global analytic
solution of VBMF, achieving 2.67� /+1.70 on AlexNet and 4.93� /+0.50 on VGG.

These computation compression methods mainly focus on decomposition algo-
rithms [5, 8] or position choosing algorithm [7] deriving from mathematics. Different
from them, we focus on training algorithm inspired by transfer learning. We study how
to transfer knowledge in state-of-the-art (big model) networks to compressed networks
(small model). Since the computation is dominated by the convolutional operations [3],
we focus on the compression of convolutional layers. Firstly we train a big model with
redundant parameters to reach the highest possible performance. After that, we propose
“layer-wise training”, to compress the redundant parameters in the big model and
transfer its useful information into the small model. An earlier work proposed by
Hinton et al. [4] utilized the last layer output of the big model to train a small model.
However, not all of the big model knowledge is included in the last-layer output.
Feature maps, generated by convolutional layers, including knowledge about how the
network identifies objects, are helpful to teach the small model. For example, when we
teach a baby to identify a car, we will not only tell him that this is a car but also tell him
that a car has four wheels, the anterior window and others. In our layer-wise training
algorithm, we teach the small model not only what the image is but also how to identify
the image. Efficient modules in the small model are designed to replace conventional
convolutional layers in the big model. We keep the each-layer outputs of the small
model and the big model to be consistent. The design of modules draws on biological
neural networks, and they also can be explained from the perspective of matrix
decomposition.

This paper has the following major contributions:

(1) We propose the layer-wise network training to compress a big model into a small
model to reduce computational cost.

(2) We design a set of novel and efficient modules inspired by biological neural
networks for layer-wise training and it is the first trying on network compression.
Besides they can also be explained from the perspective of matrix decomposition.
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(3) We evaluate our methods on large datasets, achieving 3.62� FLOPs reduction
with 0.11% top-5 error rate increase on AlexNet model, and 5.67� FLOPs
reduction with 0.43% top-5 error rate increase on VGG model.

2 Layer-Wise Training to Create Efficient CNNs

2.1 Overall Framework

In this section, we introduce the scheme of our layer-wise training method. Our scheme
consists of three steps: the big model training, layer-wise training for compression, and
the small model fine-tuning. Here we use AlexNet [1] as an example, as illustrated
in Fig. 1.

In the first step, we train a big redundant model (e.g. AlexNet [1], VGG [2]) to
achieve the highest possible performance. In the second step, we train modules in the
small model to replace convolutional layers in the big model. We keep the each-layer
outputs of them to be consistent. We choose Euclidean-Loss function,

E ¼ 1
2

x� mk k22: ð1Þ

where x andm are the outputs of convolutional layers in the big model and modules in the
small model respectively. In this step, as shown in Fig. 1, only white and grey lines work,
and the black lines are cut off. The training unit is a block, marked with a red frame.
Each block consists of a convolutional layer and a module. In fact, we train modules in
each block independently, which means no back propagation between blocks.

Fig. 1. The scheme of training algorithm. The upper flow in this chart, from conv1 to conv5,
represents convolutional layers in the big model. The lower flow, from module1 to module5,
represents modules in the small model. The rest part, fc6, fc7, and fc8, represent fully connected
layers shared by both big model and small model. Data means input image or we can say training
data. Euclidean Loss means the Euclidean Loss layer which computes loss and generate
gradients. The red frames are blocks. Since we focus on convolutional layers, ReLU, Pooling and
LRN [1] are omitted and represented in a box. (Color figure online)
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In the third step, we fine-tune the small model using cross-entropy loss. Since we
use softmax function after the last layer output, we combine it with loss function,

E ¼ �log
eflPc
j¼1 e

fj
¼ log

Xc

j¼1
efj � fl; ð2Þ

where f is the output of last fully connected layer in the small model, c is the channel
(dimension) of this output, l is the label index of the training image, and fl is the scalar
of f on label index. Image is filled with noise obstructing the classification, and it is
learned by parameters. The experiment on AlexNet shows the existence of noise along
parameters after layer-wise training. So we fine-tune the whole network after layer-wise
training. In this step, only grey and black lines in Fig. 1 work, and the white lines are
cut off. The fully connected layers in the small model are copied from the big model,
and they share the same parameters.

2.2 Matrix Decomposition

In this section, we introduce matrix decomposition theory in our work. Formally, each
convolutional layer takes a stack of feature maps as input, a 3-D tensor denoted as
Z 2 R

c�h�w, where h and w are the height and width of feature maps respectively, and c
is the number of feature maps also called channel. The parameters of convolutional
layers, also called kernels, are denoted as W 2 R

n�c�d�d , where n is the number of
output feature maps, c is the number of input feature maps also called input channels,
and d � d is the spatial kernel size. The output of a convolutional layer, A 2 R

n�h0�w0
is,

Au;i; j ¼
Pc

v¼1

Pd
m¼1

Pd
n¼1 Zv; i�1ð Þsþm�p; j�1ð Þsþ n�pWu;v;m;n

i:e: A ¼ Z �W ;
ð3Þ

where p and s are padding size and convolutional stride respectively, and � represents
spatial convolution. If we decompose W into two matrices, denoted as P 2 R

c�k and
Q 2 R

n�k�d�d,

Wu;v;m;n ¼
Xk

l¼1
Pv;lQu;l;m;n: ð4Þ

Au;i; j ¼
Pc

v¼1

Pd
m¼1

Pd
n¼1 Zv; i�1ð Þsþm�p; j�1ð Þsþ n�p

Pk
l¼1 Pv;lQu;l;m;n

¼ Pk
l¼1

Pd
m¼1

Pd
n¼1 ð

Pc
v¼1 Zv; i�1ð Þsþm�p; j�1ð Þsþ n�pPv;lÞQu;l;m;n

i:e: A ¼ Z � P� Q:
ð5Þ

This formula means that the origin convolutional layer can be decomposed into two
sequentially connected convolutional layers: one layer with 1� 1 kernels and the other
with d � d kernels. Besides, if we exchange the orders of P and Q, we have

Wu;v;m;n ¼
Xk

l¼1
Qv;l;m;nPl;u: ð6Þ
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In this way, we can obtain a variant of sequentially-connected convolutional layers,
which are one layer with d � d kernels and the other with 1� 1 kernels.

2.3 Modules Inspired by Biological Neural Networks

In this section we introduce the principles behind our module design method. The
Ventral Stream, going through V1, V2, V4 and the inferior temporal lobe area, is
involved in object identification and recognition [9]. We design three kinds of modules,
called MODULE-A, MODULE-B, and MODULE-C, shown in Fig. 2. Following the
inspiration from Ventral Stream, MODULE-A corresponds to V1 and V2. MODULE-B
and MODULE-C correspond to V4 and the inferior temporal lobe area respectively.

MODULE-A usually takes the role of the first layer in the small model. Similarly V1
and V2 are in the front of visual cortex. Color and shape are treated in different areas in
V1 and V2 [9]. As shown in Fig. 2, MODULE-A has two paths which learn shape and
color respectively: one path consists of conv1 and conv2, and the other consists of
average pooling and conv3. The number of output feature map of conv1 is 1, which
means conv1 translates the input color image into a colorless image. Therefore conv2
can only learn the shape. Average pooling is used to decrease the size of input, because
we find the color path requires lower resolution. Conv3 receives all color channels,
reflecting the color path. The output of MODULE-A is a linear combination of conv2
and conv3 via projection (convolution with 1 � 1 kernels). The structure of
MODULE-A can also be explained from the perspective of matrix decomposition

Fig. 2. Three kinds of modules used in our model. A concatenate layer (Concat) concatenates
two or more outputs of convolutional layers along the channel axis.
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introduced in Sect. 2.2. Firstly we decompose the original convolutional layer into
conv’ and projection. Then conv’ can be divided into two parts along channel axis, noted
as conv2’ and conv3’. Then we decompose conv2’ into conv1 and conv2. And we
decrease kernel size of conv3’ to obtain conv3. To keep the receptive fields of two paths
consistent, we add an average pooling layer before conv3.

Our MODULE-B, similar with V4, replaces the middle convolutional layers in the
big model. V4 has a significant function in visual attention [13]. Inspired by this,
MODULE-B focuses on the important part of feature maps and filters the jamming
information. MODULE-B has three paths representing different scales of attention. The
kernel sizes in conv3, conv4 and conv5 are 5 � 5, 3 � 3, and 1 � 1 respectively.
Finally we combine different scales of attentions together via projection. There is also
another explanation for MODULE-B from matrix decomposition scheme in Sect. 2.2.
Firstly we decompose the original convolutional layer into conv’ and projection. Then
conv’ can be divided into three parts along channel axis, noted as conv1’, conv3’, and
conv5. We decompose conv1’ into conv1 and conv2. Similarly we decompose conv3’
into conv3 and conv4. Finally we decrease the kernel sizes of conv4 and conv5.

In deeper layers, we adopt MODULE-C. The inferior temporal lobe is capable of
remembering particular objects [12]. MODULE-C is very simple, consisting of conv1
and conv2, with 1 � 1 and 5 � 5 kernels respectively. Conv2 works as a memory unit,
storing the information of object. Conv1 fuses feature maps to match the memory.
Conv1 and conv2 in MODULE-C also can be considered as decomposition of a
convolutional layer. If we exchange the position of conv1 and conv2, we obtain a
variant of MODULE-C. Here conv2 is still a memory unit, but conv1 copes with
memory information to form more complicated object.

3 Experiment

To validate our algorithm, we reduce computational complexity of state-of-the-art
CNNs without much error rate increase. Following [5, 7, 8], we measure the compu-
tational complexity as the number of floating point multiply accumulate operations
(FLOPs) in the forward propagation through convolutional layers. In our method,
conventional convolutional layers in large CNNs are replaced with our proposed
modules that need much fewer FLOPs. All CNNs are implemented using Caffe [11].
The layer-wise training adopts batch gradient descent method.

3.1 MNIST

MNIST is a large database of handwritten digits. We introduce lenet-conv, a model in
Caffe [11], consisting of two convolutional layers and two fully connected layers. The
validation error rate of lenet-conv is 1.03%. We use a variant of MODULE-C to replace
convolutional layers in lenet-conv and the new model is denoted as lenet-conv-dec, as
shown in Table 1.
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We compare our layer-wise training algorithm with Distilling [4] and label training,
to prove that our algorithm enables faster convergence rate. We didn’t compare with
other methods [5, 7, 8], because they were designed for large networks and results on
this small database were not reported. Label training is the original training algorithm
of lenet-conv. Distilling and label training run 15K iterations, and the lowest error rates
and corresponding iterations were recorded, shown in Table 2. Our algorithm run 500
iterations on layer-wise training and 5000 iterations on fine-tuning. In the compare of
error rates, they are all close to lenet-conv, but ours is a little lower. In the compare of
training iterations, our algorithm has an advantage.

3.2 ILSVRC

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [10] evaluates
algorithms for image classification at large scale. We adopt two famous CNN models,
AlexNet [1] (CaffeNet [11] as a variant) and VGG-16 [2], as our baselines. The
AlexNet and VGG-16 are directly downloaded from Caffe’s [11] model zoo. In the
following experiment, we adopt the increase of top-5 error rate and reduction of FLOPs
as benchmarks to compare different algorithms. In this section, we prove our algorithm
is better than previous algorithms [5, 7, 8] in both the error rate and compression rate.
All cited results come from their papers. We didn’t compare Distilling method [4]
because the results on this large database were not reported and we achieve poor results
with this method.

AlexNet Model
Structures of different models are detailed in Table 3. The increase of top-5 error rate
and reduction of FLOPs are given in Table 4. The alex-base model is the original
AleNet, with 19.78% top-5 error rate and 666M FLOPs.

Table 1. The structure of lenet-conv and lenet-conv-dec. Conv1, conv2, fc1, and fc2 are layer
names. (K � K, N) denotes a convolutional layer with N kernels of K � K size. Fc1 has 500
neurons and fc2 has 10.

model conv1 conv2 fc1 fc2

lenet-conv 5�5,20 5�5,50 500 10
lenet-conv-dec 5�5,4 1�1,20 5�5,10 1�1,50 500 10

Table 2. Error and training iterations of different algorithms. Our algorithm run 500 iterations
on layer-wise training and 5000 iterations on fine-tuning.

Algorithm Error Training iterations

Label training 1.07 12500
Distilling [4] 1.04 11500
Layer-wise training 0.99 500 + 5000
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alexnet-dec-base
This model is used to show that layer-wise training can reproduce convolutional layers
in alexnet-base from scratch. The structure of alexnet-dec-base is the same with
alexnet-base and convolutional layers in alexnet-dec-base work as modules. We use the
convolutional layer in alexnet-dec-base to learn the one in alexnet-base. We did not
fine-tune the network after layer-wise training. The error rate of this model is close to
alexnet-base. We visualized the kernels of conv1 in two models, and discovered they
were almost the same except that kernels in alexnet-dec-base had more noise. Though
noise didn’t jeopardize this model, it become complicated when models have less
redundancy. So in the following experiments we fine-tune the model after layer-wise
training.

alexnet-dec-back and alexnet-dec-front
These two models are used to validate our decomposition scheme in Sect. 2.2. We
replace each convolutional layer in alexnet-base with a sequence of two convolutional
layers, consisting of d � d kernels and 1 � 1 kernels respectively, and the new model is
called alexnet-dec-back. The alexnet-dec-front is similar but its first layer is unchanged.
Our alexnet-dec-back model achieved 2.16� FLOPs reduction, with 0.04% increase in
the error rate. It proved that decomposition were capable of achieving an acceptable
compression rate with little increase in the error rate. Our alexnet-dec-front achieved

Table 3. The structures of five variants of AlexNet. The labels, from conv1 to conv5, represent
layer names of five convolutional layers. (K � K, N, %G, /S) represents a convolutional layer
with N kernels of K � K size, S strides and G groups. If a hyper-parameter is omitted, it is 1.
(avepool5�5, /2) means an average pooling layer with 5 � 5 kernel size and 2 strides.

Layer alexnet-base alexnet-dec-base alexnet-dec-back alexnet-dec-front alexnet-dec-mod

conv1 11�11,96,/4 11�11,96,/4 11�11,48,/4 11�11,96,/4 1�1,1 avepool5�5,/2

11�11,24,/4 5�5,40,/2

1�1,96 1�1,96

conv2 5�5,256,%2 5�5,256,%2 5�5,128,%2 1�1,48,%2 1�1,16 1�1,12 1�1,16

3�3,48 5�5,64

1�1,256,%2 5�5,256,%2 1�1,256

conv3 3�3,384 3�3,384 3�3,192 1�1,128 1�1,128

1�1,384 3�3,384 3�3,384,%2

conv4 3�3,384,%2 3�3,384,%2 3�3,192,%2 1�1,192,%2 1�1,96

1�1,384,%2 3�3,384,%2 3�3,384,%2

conv5 3�3,256,%2 3�3,256,%2 3�3,128,%2 1�1,192,%2 1�1,128

1�1,256,%2 3�3,256,%2 3�3,256,%4

Table 4. Comparison of top-5 error rate increase and FLOPs reduction based on AlexNet.

Model alexnet-dec-
base

alexnet-dec-
back

alexnet-dec-
front

alexnet-dec-
mod

Kim’s [8] Figurnov’s [7]

error" +0.01 +0.04 −0.10 +0.11 +1.70 +2.0
FLOPs# 1�1 2.16� 1.65� 3.62� 2.67� 2.0�
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1.65� FLOPs reduction, lower than alexnet-dec-back but it achieved 0.10% decrease in
the error rate. It proved the existence of redundant parameters.

alexnet-dec-mod
Finally we used the modules in Sect. 2.3. The first convolutional layer is replace with
MODULE-A, the second layer is replaced with MODULE-B, and the following layers
are replaced with MODULE-C. We try to imitate the structure of Ventral Stream. We
achieve 3.62� FLOPs reduction, with 0.11% increase in the error rate (3.62� /+0.11).
Comparing to the methods of Kim (2.67� /+1.70) [8] and Figurnov (2� /+2.0) [7], our
method has enormous advantages for the error rate and compression rate.

VGG-16
VGG-16 has 15.35G FLOPs, with 10.10% top-5 error rate. Structures of vgg-base
(VGG-16) and our vgg-dec-mod model are shown in Table 5. The increase of top-5
error rate and reduction of FLOPs are given in Table 6.

Conv1_1 is unchanged. MODULE-B is used to replace conv1_2, conv2_1, con-
v2_2, conv3_1, and conv3_2. MODULE-C is used to replace the other convolutional
layers. Here MODULE-B is a little different from the prototype. The kernel size of
original convolutional layers is 3 � 3. So the convolutional layer with 5 � 5 kernel
size in MODULE-B and the layer in front of it are not necessary. Finally we achieve
5.67� FLOPs reduction, with 0.43% increase in top-5 error rate (5.67� /+0.43).
Comparing to the methods of Kim (4.93� /+0.50%) [8], Figurnov (1.9� /+2.5%) [7]
and Zhang (5� /+1.0%) [5], our method has advantages on both the error rate and
compression rate.

Table 5. The structure of vgg-16-base (original VGG-16) and vgg-dec-mod. The meaning of
each label is the same with Table 3.

Layer vgg-16-base vgg-dec-mod Layer vgg-16-base vgg-dec-mod

conv1_1 3�3,64 3�3,64 conv1_2 3�3,64 1�1,12 1�1,8
3�3,24
1�1,64

conv2_1 3�3,128 1�1,24 1�1,8 conv2_2 3�3,128 1�1,36 1�1,16
3�3,48,%2 3�3,48,%2
1�1,128 3�3,512,%2

conv3_1 3�3,256 1�1,36 1�1,16 conv3_2 3�3,256 1�1,48 1�1,32
3�3,96,%2 3�3,96,%2
1�1,256 1�1,256

conv3_3 3�3,256 1�1,96 conv4_1 3�3,512 1�1,96
3�3,256,%2 3�3,512,%2

conv4_2 3�3,512 1�1,144 conv4_3 3�3,512 1�1,128
3�3,512,%2 3�3,512,%2

conv5_1 3�3,512 1�1,256 conv5_2 3�3,512 1�1,256
3�3,512,%4 3�3,512,%4

conv5_3 3�3,512 1�1,256
3�3,512,%4
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4 Conclusion

In this work, we propose a layer-wise training algorithm to create efficient convolu-
tional neural networks and achieve better results than previous works, validated by
better compression rate, lower error rate and faster convergence rate. Inspiration from
visual cortex of brain help us design efficient modules to replace conventional con-
volutional layers. Besides our method is extremely flexible. It is easy to adopt other
module design methods to achieve higher compression rate and lower error rate in the
future.
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Abstract. Image similarity is widely applicable in image understand-
ing and object tracking. It is easy for human to fulfill while difficult
for machines. In this paper, we present a simple but efficient end-to-
end mechanism to transfer an image into its corresponding representa-
tion in vector space based on Convolutional Neural Networks supervised
by word2vec, which can then be applied to applications such as image
classification and object detection, and a further work of image cap-
tion/description. We describe how we train the model to achieve a deep
semantic understanding of the image along with its caption. We train our
method on Flickr8k and Flickr30k datasets respectively, and evaluate on
Corel1k benchmark dataset. Through the visualization of how our model
extracts the features of images and produces similar vectors for similar
images, we demonstrate the effectiveness of our proposed model.

Keywords: Image similarity · Vector space · Convolutional neural
network · Word2vec

1 Introduction

Humans can easily distinguish whether two images are similar or not. However,
this remarkable ability is a difficult task for visual recognition systems. To cope
with this problem, image representation is proposed. The image representation
allows the use of learning techniques for the analysis of images (for computer
vision) as well as for the synthesis of images (for computer graphics) [1]. Cur-
rently, two main directions of computer vision domain are image classification
and image caption. Image representation is more advanced than image classifi-
cation, as well as the middle-layer for image caption.

In order to generate a discriminative image representation, efforts combin-
ing with hand-crafted local features and Bag-of-Feature (BoF) [2] have been
made, and its improved approaches, such as Vector of the Locally Aggregated
Descriptors (VLAD) [3] and Fisher Vector (FV) [4]. With the rapid develop-
ment of machine learning, especially the deep learning [5], Convolutional Neural
Networks (CNNs) [6] are proposed to tackle with image-oriented problems.

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 642–652, 2017.
https://doi.org/10.1007/978-3-319-70096-0_66
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In this paper, we take advantage of various CNNs to generate the image rep-
resentation in a vector space, with the output of the word2vec as the exemplar.
Concretely, our main contributions are twofold:

– We develop an end-to-end mechanism that produce a characteristic image
representation in vector space based on Convolutional Neural Networks.

– We take advantage of the word2vec model to supervise the quality of the
image representation.

The remainder of this paper is organized as follows. The related work is
provided in Sect. 2. In Sect. 3, we provide a brief overview of our proposed mech-
anism. Section 4 describe our experiments, and in Sect. 5, we evaluate our model
as an application. We conclude the paper in Sect. 6.

2 Related Work

2.1 Image Representation

Our model is mainly inspired by the previous works on image representation
while with a more advanced and efficient approach. Sivic et al. [2] studied the
BoF representation which groups local descriptors. Schmid et al. [3] proposed an
efficient way of aggregating local features into a vector of fixed dimension, namely
VLAD. And a formulated probabilistic version of VLAD called Fisher Vector was
addressed by Perronnin et al. [4]. Our model takes advantage of Convolutional
Neural Networks and produce an end-to-end mechanism for image representation
in vector space.

2.2 Image Caption

The most promising application in computer vision domain is image caption, or
called image description. Some pioneering methods that address the challenge
have been developed [7,8]. However, these approaches often rely on hard-coded
visual concepts and sentence templates, which imposes limits on their variety.
Kiros et al. [9] firstly take the neural networks to generate sentence for image by
proposing an image-text multimodal log-bilinear neural language model. In [10],
a multimodal Recurrent Neural Networks model is proposed for image caption,
which directly models the probability of generating a word given previous words
and image. Furthermore, Vinyals et al. [11] propose an end-to-end neural net-
works system by utilizing LSTM to generate sentence for image. These models
enlighten our direction, and our model can make a step further to learn how to
generate a description giving an image.

2.3 Word2vec

In Natural Language Processing (NLP) domain, representation of words has been
explored by several pioneers. A very popular model [12] called Neural Network
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Language Model (NNLM) was proposed, where a feedforward neural network
with a linear layer and a non-linear hidden layer was used to learn jointly the
word vector representation and a statistical language model. In 2013, Mikolov
et al. [13] produce a powerful tool which provides an efficient implementation
of the continuous bag-of-word and skip-gram architectures for computing vector
representations of words1. Our model uses the word2vec to obtain the ideal
vector for the supervised approach.

2.4 CNNs in Visual Domains

Multiple methods have been developed for representing images in higher level
representations. Convolutional Neural Networks (CNNs) have recently emerged
as a powerful set of models for image classification and object detection [14].
LeNet [6] is the first successful application of CNN, which was proposed by
LeCun et, al. to recognize the handwriting digits. AlexNet [15] is a mightier as
well as more complex model, which won the Imagenet Large Scale Visual Recog-
nition Challenge 2010 (ILSVRC-2010). In recent years, more powerful architec-
tures of Convolutional Neural Network have been proposed, such as VGG-Net
[16], ResNet [17] and Inception [18]. In our proposed mechanism, we choose the
LeNet and AlexNet to be the more advanced training models, as well as the
classic convolutional one.

3 Our Model

Our model is a supervised approach based on CNNs and word2vec. A high-level
overview of our model is presented in Fig. 1.

There are two parts in our model. On the left side of Fig. 1 (Train stage), we
transfer an image to vector1, and its corresponding caption to vector2 by means
of word2vec. Then we train the CNN to learn how to represent an image in its
correlative vector by minimizing the difference between vector1 and vector2. On
the right side (Test stage), we have obtained the trained CNN (CNN∗), then we
feed test images to it and measure the similarity among their generated vectors.
Our approach can further be applied to image classification and object detection.

For an input image and its corresponding caption, the main steps are as
follows:

1. CNN is used to transfer an image to a vector (vector1)
2. Word2vec is used to convert a caption to a vector (vector2)
3. Learning a deep semantic understanding of the image along with its caption

1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Fig. 1: Overview of our approach

3.1 Weight Updating

Generally, the basic math representation of convolution operation can be
described like:

f(x, y) ◦ w(x, y) =
a∑

s=−a

b∑

t=−b

w(s, t)f(x − s, y − t) (1)

For image-oriented task, f(x, y) is the pixel value of image, and w(x, y) is the
convolution kernel, while a and b define the kernel size.

Take the classic convolution network as an example, the detailed form of our
approach is as follows:

xij = tanh((Wc × I)ij + bc) (2)
hk = max((xij)k), for x ∈ kernelij (3)
vk = tanh((Wv × hk) + bv) (4)

where I is the image, and xij , hk, vk are the output of convolution, max-pooling
and dense (fully connected) layer, respectively. Because the element of the vector
that generated by word2vec is between -1 and 1, we choose tanh() to be the
activation function, which is a hyperbolic tangent that ensures the output values
are between the same interval.

In our proposed approach, I is resize to 224×224, and the max-pooling layer
has the kernel of size 3 × 3. In the end, every image is represented as a set of
128-dimensional vectors.

The other corresponding vector is provided by word2vec, then we apply MSE
to compute the loss and adjust the parameters Wc,Wv and the respective biases
bc, bv through backpropagation algorithm.
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4 Experiment

Datasets. We use Flickr8k [19], Flickr30k [20] and Corel1k [21] benchmark
datasets in our experiments. The former two datasets contain 8,000 and 31,000
images respectively, and annotated with 5 sentences using Amazon Mechanical
Turk. And Corel1k dataset contains 1,000 images of common objects for standard
image testing. See Table 1 for the detailed information.

Table 1: Details of datasets

Dataset name Size

Train Validation Test

Flickr8k 6,000 1,000 1,000

Flickr30k 28,000 1,000 1,000

Corel1k - - 1,000

Data Preprocessing. We alter all sentences to lowercase, discard non-
alphanumeric characters. We filter words to those which occur at least 2 times in
the whole caption set. Then we apply gensim’s Word2Vec() function to train the
corresponding model for the Flickr8k and Flickr30k, respectively. This operation
results in a less number of vocabulary set for the model. In detail, each word in
the vocabulary set is convert to a 128-dimensional vector. For the sentence, we
just take the dimension-wise mean of each word vector as the ultimate vector,
which is the corresponding one the CNNs endeavor to learn.

CNN Models. In our experiments, we use three type of CNN architectures,
namely simple Conv, LeNet and AlexNet. The detailed information can be seen
from Table 2.

In Table 2, the conv(a × a, b, c) stands for convolution layer with kernel size
a × a, strides b, and output size c; max-pooling and dense layer are present as
max pool(pool size, strides, output size) and dense(output size), respectively.
The total params denotes the parameters the model need to learn.

4.1 From Image to Vector

Convolutional Neural Networks are widely used and studied in computer vision
domain for their excellent performance for image tasks, and are currently state-
of-the-art for object recognition, detection and localization [14]. For our method,
we begin with a simple CNN with one convolution layer followed by one max-
pooling layer. Then a LeNet-like model [6] is used to take the depth of network
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Table 2: Details of CNN models

Conv LeNet AlexNet

Layer name conv(11×11,4,96) conv(11×11,4,96) conv(11×11,4,96)

max pool(3×3,2,96) max pool(3×3,2,96) max pool(3×3,2,96)

dense(128) conv(5×5,1,256) conv(5×5,1,256)

- max pool(3×3,2,256) max pool(3×3,2,256)

- dense(128) conv(3×3,1,384)

- - conv(3×3,1,384)

- - conv(3×3,1,256)

- - max pool(3×3,2,256)

- - dense(4096)

- - dense(4096)

- - dense(128)

Layer depth 3 5 11

Total params 8,341,760 3,926,528 22,105,600

into consideration. Lastly, an AlexNet-like architecture [15] is applied to improve
the performance.

For the original LeNet is utilized to train on small resolution images for
handwriting digit recognition, we modify the convolution filter to a larger size
to process the Flickr8k and Flickr30k datasets (the same as the first few layers
of AlexNet, for simplicity), and the output is a 128-dimensional vector.

AlexNet is a more powerful model to extract the features of an image. In
our framework, we slightly modify the last layer to 128 dimension so as to keep
consistent with the output of word2vec.

4.2 From Caption to Vector

For the Flickr8k [19] and Flickr30k [20] datasets, each image is paired with five
different captions which provide clear descriptions of the salient entities and
events.

We first concatenate the five captions into only one and generate the tok-
enized words. For simplicity, we convert all the letter to lower case, remove the
punctuation and stop words. Then there comes the word2vec, the most impor-
tant preprocess part of our model. Word2vec is a group of related models that
are used to produce word embeddings. In our framework, nltk2 and gensim3 are
used to obtain the vector that CNNs endeavor to learn.

2 http://www.nltk.org/.
3 http://radimrehurek.com/gensim/.

http://www.nltk.org/
http://radimrehurek.com/gensim/
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4.3 Learning Deep Semantics by Minimizing the Difference

We train our model on the keras4 platform with TensorFlow5 as the backend.
Keras is a high-level neural networks API, written in Python and capable of
running on top of either TensorFlow or Theano6. And TensorFlow is an open
source deep learning software library for numerical computation using data flow
graphs powered by Google Inc.

The CNN is trained to minimize the difference between two vectors, thus two
images looks alike will be similar. Our method is able to differentiate utterly-
alike and generally-alike, since varying weights apply the MSE (Mean Squared
Error) loss function to evaluate the quality of the CNNs.

4.4 Generating Vector for Image

We first investigate the quality of the generated vector. For all of our experi-
ments, we limit the size of the vocabulary to 128, so is the dimension of the
generated vector.

Results of our experiment are depicted in Table 3. And the detailed loss
during training through 50 epochs can be found in Fig. 2.

Table 3: MSE losses of our approach

Model Flickr8k Flickr30k

Train Validation Test Train Validation Test

Conv(3) 0.3593 0.3780 0.3793 0.3764 0.3930 0.3575

LeNet(5) 0.0527 0.0491 0.0515 0.0872 0.0893 0.0879

AlexNet(11) 0.0470 0.0444 0.0475 0.0800 0.0818 0.0804

In Table 3, the number behind the model name is the total amount of layers
(including the output layer, but not the input one). Conv is the model of 1
convolution layer following by 1 max-pooling layer, and a dense (fully connected)
layer. LeNet is the modified of the standard one, so is the AlexNet. We take the
MSE to measure the performance of the quality of models (lower is better).

Figure 2 shows the MSE losses of the experiments. (We omit the curves of
Conv for its scores are too high.) (a) For the Flickr8k, the losses are less than
that of Flickr30k, but the validation losses are higher than the train ones. We
will talk about this phenomenon again later on. (b) For the Flickr30k, the losses
are a little higher, but the performance of the model is better.

4 https://keras.io/.
5 https://www.tensorflow.org/.
6 http://deeplearning.net/software/theano/.

https://keras.io/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
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(a) Flickr8k (b) Flickr30k

Fig. 2: MSE losses of the experiments during training (val: validation)

The Impact of Data Scale on Performance. From Table 3, we can see
that with the increment of the amount of layers, all MSE losses are obviously
dropped. But there is something abnormal we need to notice: for the Flickr8k
dataset, the train losses are lower than the validation ones. For the reason that
the performance of the model on Flickr30k, which shows that the validation
losses are slightly higher than that of the train ones, we can guess that this
is due to the inadequacy of the data scale. We can further infer that with the
augmentation of the data scale, our model can perform better.

5 Applications

Our proposed model has potential applications in image classification and object
detection, where measuring image similarity is important in both scenarios.

We now evaluate the ability of our model with Cosine Similarity Score (CSC)
as the metric to measure the similarity between images. We firstly select a sample
image from Corel1k dataset and compute the CSC, then we compute the CSCs
of all the images in the whole dataset. Finally, we choose the ones whose CSC to
the sample one is greater than 0.990, 0.985 and 0.900 (higher is more similar),
respectively. The result of this experiment is shown in Fig. 3.

In Fig. 3, the center image is the sample, and the numbers denote the image
order and the correlative CSC. We sort the images in a clockwise direction
following the decrease of CSC. The images on the top, right and left of the
dashed line is the ones whose CSC to the sample one is greater than 0.990, 0.985
and 0.900, respectively. Although all the images are similar to some extent, our
approach can still find the differences between them. For example, the 6th image
differs slightly from the sample one in flower’s color, and the 7th image has a
quite different pose and without green leaves. Whereas the 8th and 9th images
are varying obviously in flower’s color, thus get the much lower CSC.
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Fig. 3: Illustration of similarity between images: flowers (Color figure online)

As we can observe in Fig. 3, the model learns image similarity that agree
very strongly with human intuition. The above experiment demonstrates that
our model can extract the features and learn the image representation well, and
that the effectiveness of our model.

6 Conclusion

In this paper, we propose a simple but efficient end-to-end mechanism to produce
a vector representation for image based on Convolutional Neural Networks. We
train our model in Flickr8k and Flickr30k datasets respectively, and evaluate
it on Corel1k dataset, and showing that our model is capable of extract the
features from image and generate similar vectors for similar images with cosine
similarity score as the metric. Our work is promising in computer vision domain
for image classification and object detection.
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Abstract. Knowledge tracing is a significant research topic in educa-
tional data mining. The goal is to automatically trace students’ knowl-
edge states by analyzing their exercise performance. Recently proposed
Deep Knowledge Tracing (DKT) model has shown a significant improve-
ment to solve this task by applying deep recurrent neural networks
to learn interaction between knowledge components and exercises. The
input of the model is only the one-hot encoding to represent the exercise
tags and it excludes all other heterogeneous features, which may degrade
the performance. To further improve the model performance, researchers
have analyzed the heterogeneous features and provided manual ways to
select the features and discretize them appropriately. However, the fea-
ture engineering efforts are not feasible for data with a huge number
of features. To tackle with them, we propose an automatic and intel-
ligent approach to integrate the heterogeneous features into the DKT
model. More specifically, we encode the predicted response and the true
response into binary bits and combine them with the original one-hot
encoding feature as the input to a Long Short Term Memory (LSTM)
model, where the predicted response is learned via Classification And
Regression Trees (CART) on the heterogeneous features. The predicted
response plays the role of determining whether a student will answer
the exercise correctly, which can relieve the effect of exceptional sam-
ples. Our empirical evaluation on two educational datasets verifies the
effectiveness of our proposal.

Keywords: Recurrent neural networks · Knowledge tracing · Decision
tree

1 Introduction

Recently, Massive Online Open Course (MOOC) platforms, such as Coursera,
Edx, and Khan Academy, have provided high quality online courses, which
attract a large amount of enrolled users worldwide [1]. Data collected from these
platforms enables researchers to investigate and monitor the learning process of
students, which triggers more attention on educational data mining (EDM) [2,3].
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 653–662, 2017.
https://doi.org/10.1007/978-3-319-70096-0_67
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Knowledge tracing is a significant research topic in EDM, where its goal is to
model students’ knowledge state over time so that we can estimate their learning
progress of mastering the required knowledge components [4]. Inferring student
knowledge allows us to adapt to the levels of students and to recommend suitable
exercises and learning materials to students according to their needs [5,6].

In the literature, there are two main streams of approaches to solve this
task. One is Bayesian Knowledge Tracing (BKT) [4,7,8], which applies a Hidden
Markov Model (HMM) to model the knowledge components. The hidden states
are updated according to each student’s responses to the exercises. The other
is Deep Knowledge Tracing (DKT) [9,10], which utilizes deep recurrent neural
networks (RNN) to discover the hidden structure of the correlation of exercises by
analyzing students’ responses to the exercises. It is shown that DKT can achieve
25% gain in AUC when compared to BKT [9], though some researchers later
argue that, with suitable extensions, BKT can achieve performance comparable
with DKT [2]. More applications of DKT are also investigated in [11–13].

In DKT models, the input is only a one-hot encoding of the exercise tags [9].
It excludes many rich features, such as the exercise title, the number of attempts
to answer, and the duration time of answers. These heterogeneous features not
only provide additional exercise information, but also capture students’ exer-
cise behaviors. They indeed will help to trace students’ learning procedures.
Researchers then try to incorporate various features [14,15], such as measuring
the effect of students’ individual characteristics, assessing the effect in tutor sys-
tem and measuring the effect of subskills. In [15], a manual method is proposed
to analyze the features and to select appropriate features for discretization based
on the statistics of the features. This method is restricted in two aspects: (1) they
require sufficient domain knowledge to understand the data. This may introduce
bias when practitioners do not fully explore the data. (2) They are infeasible to
discretize the features when they are huge.

To resolve the above problems, we propose an automatic and intelligent app-
roach to integrate the heterogeneous features into the DKT model. More specifi-
cally, we conduct a preprocessing step via the Classification And Regression Trees
(CART) to predict whether a student can answer an exercise correctly given the
heterogeneous features. Here, we consider CART because it is one of the most
popular data mining algorithms for classification and also outputs meaningful
and interpretable features for decision making [16,17]. We then encode the pre-
dicted response and the true response into a 4-bit binary code and combine them
with the original one-hot encoding feature as the input to feed into a Long Short
Term Memory (LSTM) model. Although the preprocessing step is simple, we
believe that the predicted response can provide information of the performance
of a student and how the student deviates from others based on the collected
features. Our empirical evaluation on two educational datasets verifies our con-
jecture and demonstrates the effectiveness of our proposal.

The rest of the paper is organized as follows: Sect. 2 details the overall archi-
tecture of our proposal. Especially, how the heterogeneous features are learned
and incorporated. Section 3 presents the datasets, the experimental setup, and
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the experimental results with explanation. Finally, Sect. 5 concludes the whole
paper with some future work.

2 Our Proposal

Figure 1 illustrates the overall architecture of the proposed model, Deep Knowl-
edge Tracing with Decision Trees (DKT-DT). The bottom part is the preprocess-
ing procedure for the heterogeneous features, which are learned by CART to pre-
dict whether a student will answer the exercise correctly. The predicted response
and the true response are then encoded into a 4-bit binary code and concate-
nated with the original one-hot encoding on the exercise tag as a new input.
This input is fed into a LSTM [18] to learn the similarity of exercises and trace
the knowledge components mastered by the students. Figure 1 shows a vanilla
RNN for simplicity, the knowledge tracing model can be implemented by either
a vanilla RNN or an LSTM.

2.1 Input and Output

Consider a specific student practicing an exercise at the t-th time stamp, let
et and at be the exercise tag and the heterogeneous features, respectively. ct

Fig. 1. The architecture of our proposal, see detailed explanation in the text.
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denotes whether the student will answer the exercise correctly. ct is 1 for correctly
answering and 0 for others. As shown in Fig. 1, CART will take at as the input
and try to predict whether the student will correctly answer the exercise. The
corresponding predicted response is then denoted as a′

t.
All the features, including the exercise tags, the predicted responses, and

the true responses, are represented in the one-hot encoding by O(·, ·), where
O(et, ct) is the original one-hot encoding for an exercise tag and O(a′

t, ct) is a
newly learned one-hot encoding from CART. Suppose M is the number of all
exercises, the size of O(et, ct) is 2M . Suppose the current exercise is the i-th in
the whole quiz set, if the exercise is correctly answered, 1 will be denoted at the
i-th index of the feature; otherwise, 1 will be denoted at the i + M -th index of
the feature. Similarly, O(a′

t, ct) is represented into a feature of four bits. If CART
predicts the student will correctly answer the exercise and the true response is
correct, then the representation of O(a′

t, ct) is 1010. It is similar to define other
cases. The concatenation of O(et, ct) and O(a′

t, ct) generates the input of LSTM
xt to train the corresponding model, which outputs a vector yt with the size
of M to denote the predicted probability of whether a student will answer the
question correctly. In Fig. 1, different color grade in the nodes of yt represents
different level of the probability.

2.2 The Model

CART is utilized to automatically partition the feature space and outputs pre-
dicted response about whether a student will correctly answer a question. We
briefly introduce the splitting criteria of CART in the following.

At each node, CART continuously conducts binary partitioning to group the
interaction of the same class by maximizing the gini index or information gain.
Given a set S at a node contains training data at ∈ R

n and the corresponding
labels ct ∈ {0, 1}, CART partitions the data into two subsets

Sl = (at, ct)|at,j < t, and Sr = S \ Sl (1)

where j is the splitting variable and t is the threshold determined by minimizing
the impurity H, which are defined as follows:

(j∗, t∗) = arg min
j,t

G(S, j, t) :=
|Sl|
|S| H(Sl) +

|Sr|
|S| H(Sr), (2)

where | · | denotes the size of the set. H(·) defines impurity measured by the cross
entropy. For region R with N observations, the cross entropy H is defined as

H(X) = −
∑

k

pk log(pk), where pk =
1
N

∑

at∈R

I(ct = k), (3)

In binary classification, k ∈ {0, 1}.
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By minimizating cross entropy, CART learns a set of classification rules. At
time t, at is fed into the root of CART and follows the path assigned by the
classification rules until getting a prediction a′

t. It is noted that the information
of heterogeneous features is absorbed by a′

t. The role is to encode the performance
of a student and to measure how it deviates from other students. This can be
viewed as a key factor of personalized effect, which helps the training of the
LSTM.

The input xt = [O(et, ct), O(a′
t, ct)], capturing students’ previous exercise

performance, is fed into a LSTM to learn the hidden structure and to predict
the probability that a student will correctly answer the question in the next time
stamp. The similarities between previous questions and students’ responses are
then learned via the LSTM. The LSTM then outputs yt, a vector denoting the
predicted probability that a student will answer the exercise correctly. We need
to predict all M exercises because we do not know which exercise a student is
going to answer in the next time stamp. The probabilities are then updated in
each time stamp.

In the test, the average loss is computed by the binary cross entropy defined
as follows:

L =
1
N

N∑

n=1

tn0 +Tn

∑

t=tn0

cnt+1 log ŷnt + (1 − cnt+1) log(1 − ŷnt ), (4)

where N is the number of students, tn0 is the starting index for the n-th student
in the test set and Tn is the number of exercises for the student. The predicted
value ŷnt is the inner product of predicted output and the one-hot encoding of
the exercises conducted by the student n, i.e., ŷnt = ynt

�O(ent+1) because ŷnt can
output the corresponding predicted probability that the student n can answer
the question correctly in the next time stamp.

3 Experiments

3.1 Datasets

Two educational datasets collected from the computer-based online learning
platforms are test in the experiments [15]. They are:

ASSIStments 2009-20101 [15]: The dataset consists of 4,151 students exer-
cising on 124 knowledge components with 332 thousands interactions. It is
also called the mastery learning data because a student is considered to have
mastered a skill when certain criterion is met. This is the dataset selected
in [15]

1 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
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Junyi Academy2: The dataset is collected from a Chinese e-learning plat-
form established on the basis of the open-source code released by the Khan
Academy. The dataset contains students’ practicing log in hundreds of math-
ematics exercises. We select 1,000 most active students for the practicing log,
which consists of 657 knowledge components and 971 thousands interactions.

3.2 Experimental Setup

A 5-fold student level cross-validation is conducted in the test. The results are
evaluated by the Area Under the ROC Curve (AUC) and R2, two standard
metrics for evaluation the predicted performance [9,15,19–21]. The following
models with different ways of feature processing are compared in the experiment:

– Deep Knowledge Tracing (DKT) [9]: the input feature is one-hot encod-
ing of the exercise tags.

– Deep Knowledge Tracing with Feature Engineering (DKT-FE) [15]:
Feature engineering has been conducted by manually selecting a subset of
heterogeneous features and discretizing them by a certain pre-determined
criterion while reducing the dimensionality of the input via autoencoder. The
learned feature is concatenated with one-hot encoding of the exercise tags as
the input.

– Deep Knowledge Tracing without Feature Engineering (DKT-W):
The selected heterogeneous features are the same as those of DKT-FE, but
without any further feature processing. The selected feature is directly con-
catenated with one-hot encoding of the exercise tags as the input.

– Deep Knowledge Tracing with Decision Trees (DKT-DT): This is
our proposed method, where all available features except those cannot eas-
ily be represented in the numerical form are applied on CART to extract
the predicted response. The number of selected features for the ASSIStments
dataset and the Junyi Academy dataset is 12 and 10, respectively. The pre-
dicted response and the true response are concatenated with the one-hot
encoding as the input.

For the LSTM, we set the hidden dimensionality to 200 and train it via the
stochastic gradient descent on the size of a mini-batch as 5. Other parameters
are set default in the Tensorflow.

3.3 Results

Table 1 reports the results of all four methods. We have the following
observations:

– Our proposed DKT-DT achieves significantly better performance than other
methods in terms of both the AUC and R2 metrics on both datasets. Notably,
our proposed DKT-DT attains 13% gain than DKT in the R2 metric.

2 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198.

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Table 1. AUC and R2 results

Model ASSISTments Junyi

AUC (%) R2 AUC (%) R2

DKT 73.8 ± 0.7 0.161 ± 0.010 72.5 ± 0.4 0.076 ± 0.014

DKT-FE 73.1 ± 1.0 0.163 ± 0.010 68.8 ± 0.5 0.039 ± 0.004

DKT-W 60.9 ± 0.2 0.010 ± 0.012 70.0 ± 0.6 0.052 ± 0.005

DKT-DT 74.9 ± 0.6 0.182 ± 0.7 73.0 ± 1.1 0.086 ± 0.011

– An interesting observation is that including heterogeneous features without
appropriate preprocessing degrades the performance of DKT. We conjecture
this may be due to the introduction of noise, which intervenes DKT to extract
the similarity between exercises.

– The degrading effect of DKT-W is highly dependent on the size of dataset.
The size of the Junyi dataset is much larger than that of the ASSISTments
dataset and it may help to relieve the effect of training the LSTM.

– The performance of DKT-FE is slightly poor than that of DKT-W in the
Junyi dataset. The reason is that we adopt the same criterion to process the
feature as the ASSISTment data shown in [15]. The provided criterion is not
extensible to the new Juny dataset.

– Overall, the experimental results show that including additional features may
improve the prediction accuracy, but it requires proper preprocessing.

4 Detailed Study

In the following, we further investigate the data to understand how the decision
tree helps on prediction.

Figure 2 illustrates parts of the decision tree learned from both datasets. It
clearly shows how the splitting by the decision tree can help us to determine the

(a) ASSISTments (b) Junyi

Fig. 2. Trees learned by CART on the ASSISTments dataset and the Junyi dataset
are partially shown.
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(a) Correlation (b) Prediction

Fig. 3. (a) Correlation of the error rate and the root mean square of the difference
between the predicted probabilities given by DKT and DKT-DT. (b) Predicted prob-
abilities of DKT and DKT-DT on a student with the largest rms.

importance of the features and divide them without manual efforts. For example,
sme features, such as “attempt counts” and “the total usage of hints”, appear in
the root nodes for both datasets. This conforms to our intuition that repeated
attempts or using hints can effectively boost students’ performance.

Figure 3(a) shows the effect of decision tree by comparing the predicted prob-
abilities given by DKT and DKT-DT on the ASSISTment dataset. Due to the
space limitation, we only show the results from the ASSISTment dataset. For
the Junyi dataset, the results are similar. In this figure, the error rate of a
student is defined by |Q \ Qc|/|Q| and the root mean square (RMS) is defined

by
√∑T

t=1(p
t
DKT − ptDKT−DT )2/T , where Q is the question set of the student

exercises and Qc is the set of questions correctly answered by the student. ptDKT

and ptDKT−DT denote the predicted probabilities of the t-th question given by
DKT and DKT-DT, respectively. The results show that there is a significant
correlation between the error rate and RMS. The difference between DKT and
DKT-DT gets larger if a student gives more wrong answers. This implies that the
decision tree can adjust the predicted probabilities according to the performance
history of students.

We then select the student with the largest RMS from the testing set. The
student tried to answer 7 questions of the same skill, but yielded wrong answers.
We show the predicted probabilities of correctly answering these questions by
DKT and DKT-DT in Fig. 3(b). The result shows the predicted power of our
proposed DKT-DT: at the beginning, both models attain similar predicted per-
formance. As the number of practices increases, DKT tends to increase the pre-
dicted probability by assuming that the student can gain proficiency by repeat-
ing practices, but DKT-DT can reduce the predicted probabilities after learning
the additional heterogeneous features. By further scanning the features, such
as “attempt count” and “first action”, we can observe that this student never
attempt to answer the same question again and asked for hint immediately with-
out trying to attempt. The student may be reluctant to repeated training and
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cannot gain proficiency and hance yield repeated errors. The observation again
confirms the power of our proposed DKT-DT in utilizing the heterogeneous fea-
tures sufficiently.

5 Summary and Future Work

We have proposed an effective method to preprocess the heterogenous features
and to integrate them in the original deep knowledge tracing model. The pre-
processing step is conducted by CART to output the predicted response of a
student whether he/she will answer the current exercise correctly given the het-
erogenous features. This allows us to capture students’ behaviors in the exercises
and to provide a good initialization to the DKT model. Our experiments on
two educational datasets demonstrate the effectiveness of our proposed feature
processing scheme.

Several interesting future work can be considered: First, decision trees have
the power of interpreting the data. How to utilize the learned features from
CART to guide educational practitioners needs further investigation. Second,
there are many types of decision trees and variants of recurrent neural networks.
It is worthwhile to investigate how to integrate them seamlessly to further boost
the model performance. Third, it is valuable to further extend the current model
to provide personalized recommendation for students to select appropriate exer-
cises and to conduct selective practice.

Acknowledgment. The work described in this paper was partially supported by the
Research Grants Council of the Hong Kong Special Administrative Region, China
(Project No. UGC/IDS14/16).
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Abstract. Boxless action recognition in still images means recognizing
human actions in the absence of ground-truth bounding boxes. Since no
ground-truth bounding boxes are provided, boxless action recognition is
more challenging than traditional action recognition tasks. Towards this
end, AttSPP-net jointly integrates soft attention and spatial pyramid
pooling into a convolutional neural network, and achieves comparable
recognition accuracies even with some bounding box based approaches.
However, the soft attention of AttSPP-net concentrates on only one fix-
ation, rather than combining information from different fixations over
time, which is the mechanism of human visual attention. In this paper,
we take inspiration from this mechanism and propose a ReAttSPP-net
for boxless action recognition. ReAttSPP-net utilizes a recurrent neural
network model of visual attention in order to extract information from
a sequence of fixations. Experiments on three public action recogni-
tion benchmark datasets including PASCAL VOC 2012, Willow and
Sports demonstrate that ReAttSPP-net can achieve promising results
and obtains higher recognition performance than AttSPP-net.

Keywords: Action recognition · Convolutional neural network · Soft
attention · Recurrent neural network · Spatial pyramid pooling

1 Introduction

Boxless action recognition in still images aims at recognizing human actions with-
out the supervision of ground-truth bounding boxes. Compared with traditional
ground-truth based action recognition, boxless action recognition is much more
challenging, not only due to quick changes in appearance and clutter background
confronting to traditional action recognition, but also owing to the requirement
for locating the actors just like the bounding boxes do meanwhile reducing the
negative effect of action deformation without any supervised knowledge. How-
ever, benefiting from the removal of requirement for bounding boxes, boxless
action recognition greatly extends still image based action recognition to prac-
tical applications.

Several works have tried to tackle challenging boxless action recognition prob-
lem. Zhang et al. [23] perform boxless action recognition by first utilizing a five-
step iterative optimization pipeline for unsupervised discovery of a foreground
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 663–673, 2017.
https://doi.org/10.1007/978-3-319-70096-0_68
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action mask of current image, then designing dedicated feature representation
from the action mask for recognition purpose. Compared with their complex-
ity, we have proposed an attention focused spatial pyramid pooling (SPP) net-
work, i.e., AttSPP-net (Attention SPP network) [4] that makes straightforward
and lightweight modification to the existing deep convolutional neural network
(CNN) architecture. Specifically, AttSPP-net jointly integrates a soft attention
layer and a SPP layer into a CNN. By assigning large weights to feature bins
of SPP layer which corresponds to salient image regions through a soft atten-
tion layer, AttSPP-net can readily locate the action performer of interest, thus
conducts action recognition without the supervision of ground-truth bounding
boxes. AttSPP-net also exploits SPP to boost robustness to action deforma-
tion as well as respects spatial structures among image pixels. The end-to-end
AttSPP-net shows effectiveness for boxless action recognition.

However, the soft attention mechanism utilized in AttSPP-net considers only
one fixation, rather than combining information from different fixations over time
to build up the representation of an image. We humans usually focus attention
selectively on parts of the visual space with different locations to be fixated on
over a sequence of time and currently acquired information guiding future eye
movements, i.e., future fixations [14]. In this paper, we take inspiration from
these facts and embed the soft attention mechanism within a recurrent model in
order to combine information from different fixations over time.

Similar to AttSPP-net, our proposed Recurrent AttSPP-net, termed
ReAttSPP-net, jointly integrates a recurrent visual attention layer and SPP
into a CNN. The recurrent model is a recurrent neural network (RNN). With
the sequential modeling capability of RNN, ReAttSPP-net can locate salient
image regions at different time with the salient information at current time guid-
ing the locating of salient image regions at subsequent time. But the RNN also
introduces difficulty for training ReAttSPP-net. To evaluate the effectiveness of
ReAttSPP-net, we conduct experiments on three public benchmark datasets
including PASCAL VOC 2012 [3], Willow [1], and Sports [8]. Experimental
results demonstrate higher mean recognition accuracy than AttSPP-net and
promise of ReAttSPP-net for boxless action recognition in still images.

2 Related Work

Still image based action recognition has long been a popular topic in visual
applications. For a comprehensive study on this topic, we refer interested readers
to the survey paper [16]. According to whether to use ground-truth bounding
box or not, we classify action recognition methods into bounding box based
approaches and boxless ones.

For bounding box based action recognition in still images, most methods
adopt the BoW [11,18] approach. The BoW approach firstly detects key-point
regions, describes these regions with local features, and finally quantizes these
features against a learned visual vocabulary. Besides, some methods combine
part-based information within the BoW framework [12,19].
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Compared with traditional methods [7,13,20,21], CNNs have achieved more
astonishing results on various computer vision tasks, and researchers have
exploited CNNs to automatically extract features for action recognition. Oquab
et al. [15] utilize a CNN to extract features of the bounding boxes and further
obtain a small gain in performance against previous methods. Hoai [9] employe
the fc7 features of a network trained on ImageNet dataset to weight different
image regions. Gkioxari et al. [5] train body part detectors based on the pool5
features and then combine them with the bounding box to jointly train a CNN.
Later on, they use a CNN to extract features from the bounding box region and
the candidate regions generated by the bottom up region proposals method, and
then combine the features of the bounding box region and the most informative
candidate region to make the final prediction [6].

The aforementioned methods strongly rely on the prior knowledge of the
ground-truth bounding boxes. They can be regarded as weak supervised methods
and may be fragile in real-world applications. For boxless action recognition free
from the ground-truth bounding boxes in a completely unsupervised manner,
there are only a few works. Zhang et al. [23] perform boxless action recognition
by discovering a foreground action mask of current image in an unsupervised
manner. Feng et al. [4] propose an AttSPP-net that utilizes a soft attention
mechanism to automatically focus on salient action region.

3 Recurrent Visual Attention Focused SPP Network

In this section, we are ready to present our network model, i.e., ReAttSPP-
net. The overall structure is illustrated in Fig. 1(a). ReAttSPP-net is based on
AttSPP-net [4], with a recurrent visual attention layer replacing the soft atten-
tion layer of AttSPP-net. The recurrent visual attention layer is modeled with a
RNN, as pictured in Fig. 1(c). By assigning large weights to feature bins of SPP
layer (shown in Fig. 1(b)) which corresponds to salient image regions through the
soft attention mechanism, and incrementally combining information from differ-
ent fixations at a sequence of time through the recurrent model, the recurrent
visual attention layer of ReAttSPP-net can locate the action performer of inter-
est, thus conducts action recognition without the supervision of ground-truth
bounding boxes.

Particularly, given an image I, ReAttSPP-net first extracts features with the
convolutional layers, and then pools the extracted features using three-level spa-
tial pyramid pooling. Subsequently, the recurrent visual attention layer assigns
a weight to each spatial bin at each time step with the weights at current time
step guiding the weights at subsequent time steps, and derives the aggregated
features by weighted summation at the final time step. Then, ReAttSPP-net
feeds the aggregated features as input of the fully-connected layers, and in the
final softmax layer outputs probabilities of each action.
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Fig. 1. The schematic structure of our ReAttSPP-net. (a) Overall network structure.
(b) The detailed spatial pyramid pooling layer. (c) The detailed recurrent visual atten-
tion layer.

3.1 The Recurrent Visual Attention Layer

ReAttSPP-net utilizes the recurrent visual attention mechanism to automatically
focus on salient image regions, and model the recurrent visual attention layer
with a RNN.

Same to AttSPP-net [4], we represent the spatial bins of the SPP layer as a
feature matrix:

X = [X1,1,X2,1, · · · ,Xh,4h−1 ] ∈ R
s×D, (1)

where h denotes number of spatial levels, s denotes the total number of spa-
tial bins, D denotes the feature dimensionality of each spatial bin, and Xi,j

corresponds to the i−th scale and j−th region of each image.
Assuming the total time steps of the RNN is n. For each spatial feature col-

umn Xi,j , the RNN generates a positive weight αt
i,j at time step t (t ∈ [1, n])

representing the relative importance to give to the spatial bin when aggregat-
ing Xi,j together. To compute α1, the recurrent visual attention layer uses a
perceptron network taking the SPP feature X as input:

e1i,j = WTXi,j + b

α1
i,j =

exp(e1i,j)
∑h

p=1
∑4h−1

q=1 exp(e1p,q)
,

(2)

where W and b are parameters of the perceptron network.
For time step t ∈ [1, n−1], the input xt of the RNN is the weighted summation

of feature matrix X using weights αt. Once the weights αt are computed, the
recurrent visual attention layer computes xt ∈ R

D as following:

xt =
∑h

i=1

∑4h−1

j=1
αt
i,jXi,j . (3)
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The recurrent hidden units ht of the RNN at time step t ∈ [1, n−1] aggregate
information from the beginning to the current time step by taking hidden units
ht−1 at previous time step as extra inputs:

ht = tanh
(
Wix

t + Whht−1
)
, (4)

where Wi and Wh are the input-to-hidden and hidden-to-hidden weight para-
meters of the RNN. Note that h1 do not have previous hidden units as extra
inputs. The number of hidden units in our experiments is 256.

The output of the RNN at time step t ∈ [1, n − 1] are the fixation weights
αt+1 of the spatial bins at time step t + 1:

et+1
i,j = Woh

t

αt+1
i,j =

exp(et+1
i,j )

∑h
p=1

∑4h−1
q=1 exp(et+1

p,q )
.

(5)

where Wo is the hidden-to-output weight parameter of the RNN.
The output of the RNN is the input xn at the final time step n. ReAttSPP-

net then feeds xn to the fully-connected layer fc6. ReAttSPP-net is smooth and
differentiable under the deterministic soft attention mechanism, and the end-to-
end learning can be optimized by standard back-propagation.

3.2 Loss Function

To train ReAttSPP-net, we use cross-entropy loss together with weight decay.
The loss over a mini-batch of training examples B= {Ii, yi}Mi=1 is given by

loss (B) = − 1
M

M∑

i=1

C∑

c=1

yi,c log ŷi,c + λ
∑

j
θ2j , (6)

where yi and ŷi are the one hot label vector and class probabilities vector of
image Ii respectively, C is the number of action classes, λ is the weight decay
coefficient, and θ represents all the model parameters.

4 Experimental Results

In this section, we evaluate the effectiveness of ReAttSPP-net for action recog-
nition in still images on the PASCAL VOC 2012 dataset [3], the Willow dataset
[1], and the Sports dataset [8] by comparing with AttSPP-net [4], VGG19 SPP
which removes the recurrent visual attention layer from ReAttSPP-net, and the
baseline VGG19 model which removes both the recurrent visual attention layer
and SPP layer from ReAttSPP-net. During the testing time, we estimate prob-
abilities for all actions for every example, and compute AP for each action and
the mean AP.

We train our model with stochastic gradient descent (SGD) using back-
propagation. Based on the learned model parameters of 19-layer VGGNet, we



668 W. Feng et al.

first fine-tune ReAttSPP-net on the ImageNet [2] dataset for the image classi-
fication task. We set the learning rate to 0.001, the batch size to 32, and the
weight decay coefficient to 0.0002. We fine-tune for 230 K iterations on ImageNet
dataset under Caffe [10] framework. After the fine-tuning, we train our model
on each action recognition dataset for 50 K iterations with a batch size of 32.

4.1 PASCAL VOC 2012 Dataset

The PASCAL VOC 2012 Action dataset consists of 10 different actions, Jump-
ing, Phoning, Playing Instrument, Reading, Riding Bike, Riding Horse, Run-
ning, Taking Photo, Using Computer, Walking. Since ReAttSPP-net can only
recognize one action from one image for this moment, we ignore images occurred
more than one action in the same image. The final training dataset consists of
1865 images and the testing dataset contains 1848 images.

For this dataset, we use the validation set for testing and ReAttSPP-net
obtains a mean AP of 78.08%. We show the comparison of ReAttSPP-net with
other approaches in Table 1. The upper part of Table 1 is the result of bounding
box based methods, and the lower part of methods without bounding boxes.
Our experiments show that ReAttSPP-net performs effectively, and achieves
higher mean AP compared with AttSPP-net, demonstrating effectiveness of the
recurrent model for visual attention. In spite of no ground-truth bounding boxes
available, ReAttSPP-net obtains higher AP for some action categories like Phon-
ing and Reading, though lower AP for Running, Walking compared with Hoai et
al. [9] and Oquab et al. [15]. In terms of mean AP, ReAttSPP-net achieves better
result than these two bounding box based methods, showing the effectiveness of
ReAttSPP-net for boxless action recognition.

4.2 Willow Dataset

The Willow dataset contains 7 classes of actions in 968 images. The actions
are interacting with computer, photographing, playing instrument, riding bike,
riding horse, running, walking. Similar to PASCAL VOC 2012 dataset, we do
not consider images with more than one action, and the final training set has
429 images, and the testing set has 484 images. ReAttSPP-net achieves a mean
AP of 88.84% on the test set. The performance varies from 72.22% for walking
to 96% for riding horse. The full confusion matrix obtained by ReAttSPP-net is
shown in Fig. 2.

In Table 2, we compare our methods with existing approaches on the Wil-
low test set. The upper and lower part of Table 2 correspond to bounding box
based and boxless action recognition results, respectively. PBoW [1] uses bag-of-
features methods as well as part-based representation and obtains 59.6% mean
AP. The Dsal [18] uses the saliency map and semantic pyramid to find semanti-
cally meaningful regions and obtain a mean AP of 65.9%. The EPM [19] achieves
a mean AP of 67.6%. The CF [11] obtains a mean AP of 70.1%. The SMP [12]
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interacting with 
computer

photographing

playing music

riding bike

riding horse

running

mean AP: 88.84%

walking

h 
0.931 0.035 0.034

0.027 0.824 0.041 0.014 0.041 0.068

c 0.0288 0.009 0.953 0.009

0.011 0.011 0.011 0.957 0.011

e 0.02 0.96 0.02

g 0.017 0.862 0.121

0.069 0.028 0.181 0.722

Fig. 2. The confusion matrix obtained by ReAttSPP-net on the Willow dataset.

Table 2. Comparison of different approaches on the Willow dataset.

AP(%) int. Photographing Playing Riding Riding Running Walking Mean

computer music bike horse AP

PBoW [1] 58.2 35.4 73.2 82.4 69.6 44.5 54.2 59.6

Dsal [18] 59.7 42.6 74.6 87.8 64.2 56.1 56.5 65.9

EPM [19] 64.5 40.9 75.0 91.0 87.6 55.0 59.2 67.6

CF [11] 61.9 48.2 76.5 90.3 84.3 64.7 64.6 70.1

SMP [12] 66.8 48.0 77.5 93.8 87.9 67.2 63.3 72.1

GSPM [24] 67.9 49.1 86.5 93.0 86.2 65.7 72.6 74.4

VGG19 89.66 68.92 84.11 93.62 96 72.41 69.44 80.79

VGG19 SPP 96.55 82.43 92.52 96.81 98.0 79.31 72.22 85.95

AttSPP-net [4] 93.1 78.4 90.7 93.6 92.0 84.5 70.8 86.2

ReAttSPP-net 93.1 82.43 95.33 95.74 96.0 86.21 72.22 88.84

reaches a mean AP of 72.1%. The GSPM [24] introduces a generalized symmet-
ric pair model and achieves a mean AP of 74.4%. Again, ReAttSPP-net achieves
higher mean AP than AttSPP-net on the Willow dataset.

4.3 Sports Dataset

The Sports dataset consists of 6 different actions in different sports. These
sports are cricket batting, cricket bowling, tennis serve, tennis forehand, vol-
leyball serve, and croquet shot. There are 300 images in total with 50 images
per action, 180 images for training, and 120 images for testing. ReAttSPP-net
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achieves a mean AP of 98.33% on the test set, and 100% AP for cricket batting,
cricket bowling, croquet shot, and tennis forehand. Figure 3 shows the confusion
matrix obtained using ReAttSPP-net. We also show all the failure cases in the
figure. The failure case in the tennis serve is due to the scenes in tennis forehand
and tennis serve are exactly the same. And because the poses during volleyball
serve and tennis serve are quite similar, volleyball serve includes one image
misclassified into tennis serve.

cricket  batting

cricket  bowling

croquet serve

tennis forehand

tennis serve

volleyball serve

mean AP: 98.33%

0.05

0.05

Fig. 3. The confusion matrix obtained by ReAttSPP-net on the Sports dataset.

We compare ReAttSPP-net with others on the Sports dataset in Table 3.
The SFC [8] method applies spatial and functional constraints on perceptual
elements for coherent semantic interpretation and obtains a mean AP of 79.0%.
By modeling interactions between humans and objects, the HMI [17] method
obtains a recognition rate of 83.0%. The HOI [22] method jointly models the
mutual context of objects and human poses and achieves an action recognition
accuracy of 87.0%. The SMP [12] method obtains a mean AP of 92.5% on this
dataset. On the Sports dataset, ReAttSPP-net also achieves higher accuracy
than AttSPP-net.

Table 3. Comparison of different approaches on the Sports dataset.

Method SFC HMI HOI SMP VGG19 VGG19 SPP AttSPP-net ReAttSPP-net

Mean AP(%) 79.0 83.0 87.0 92.5 95.0 95.8 97.5 98.33

5 Conclusion

This paper develops a simple yet effective model termed ReAttSPP-net for action
recognition in still images. It is able to automatically pay attention to differ-
ent image regions of the action and combine information from these fixations
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over a sequence of time without the supervision of the ground-truth bounding
boxes and provide an alternative way for real-world situations. Experiments show
that ReAttSPP-net achieves higher mean recognition accuracy than AttSPP-net,
demonstrating the effectiveness of the recurrent neural network model for visual
attention. Modifying the recurrent visual attention layer by concatenating infor-
mation at every time step is our future work.
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Abstract. This paper describes a Hierarchical Composition Recurrent
Network (HCRN) consisting of a 3-level hierarchy of compositional mod-
els: character, word and sentence. This model is designed to overcome
two problems of representing a sentence on the basis of a constituent
word sequence. The first is a data sparsity problem when estimating the
embedding of rare words, and the other is no usage of inter-sentence
dependency. In the HCRN, word representations are built from charac-
ters, thus resolving the data-sparsity problem, and inter-sentence depen-
dency is embedded into sentence representation at the level of sentence
composition. We propose a hierarchy-wise language learning scheme in
order to alleviate the optimization difficulties when training deep hier-
archical recurrent networks in an end-to-end fashion. The HCRN was
quantitatively and qualitatively evaluated on a dialogue act classifica-
tion task. In the end, the HCRN achieved the state-of-the-art perfor-
mance with a test error rate of 22.7% for dialogue act classification on
the SWBD-DAMSL database.

Keywords: Rare word · Inter-sentence dependency · Hierarchical recur-
rent neural network · Hierarchy-wise learning · Dialogue act

1 Introduction

Sentence representations are usually built from representations of constituent
word sequences using a compositional word model. Many compositional word
models based on neural networks have been proposed, and have been used for
sentence classification [15,21] or generation [11,24] tasks. However, learning to
represent a sentence on the basis of constituent word sequences involves two
difficulties. First, estimating the embedding of rare words suffers from the data-
sparsity problem and poorly estimated embedding can cause sentence represen-
tations of inferior quality. Second, conventional sentence representation does not
take into account inter-sentence dependency, which is an important linguistic
context for understanding the intention of the sentence.

In this paper, we propose a Hierarchical Composition Recurrent Network
(HCRN), which consists of a hierarchy of 3 levels of compositional models: char-
acter, word and sentence. Sequences at each level are composed by a Recurrent

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 674–685, 2017.
https://doi.org/10.1007/978-3-319-70096-0_69
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Fig. 1. Illustration of the hierarchical composition recurrent network. The thick arrows
indicate affine and non-linear transformation, the thin arrows indicate identity trans-
formation. For simplicity, each level is shown with one layer.

Neural Network (RNN). In the HCRN, the output of the lower levels of the
compositional model is fed into the higher levels. Sentence representation by
the HCRN enjoys several advantages compared to sentence representation by a
single compositional word model. From the compositional character model, the
word representation is built from characters by modeling morphological processes
shared by different words. In this way, the data-sparsity problem with rare words
is resolved. From the compositional sentence model, inter-sentence dependency
can be embedded into sentence representation. Sentence representation with
inter-sentence dependency is able to capture implicit intention as well as explicit
semantics of a given sentence. Training the HCRN in an end-to-end fashion has
optimization difficulties because a deep hierarchical recurrent network may suffer
from the vanishing gradient problem across different levels in the hierarchy. To
alleviate this, a hierarchy-wise language learning algorithm is proposed, and it
is empirically shown that it improves the network’s optimization. The efficacy of
the proposed method is verified on a spoken dialogue act classification task. The
task is to classify the communicative intentions of sentences in spoken dialogues.
Compared to conventional sentence classification, this task presents two chal-
lenging problems. First, it requires that the model estimate representations of
spoken words which often include rare and partial words. Second, understanding
the dialogue context is often required to clarify meanings of sentences within a
given dialogue. The HCRN with the hierarchy-wise learning algorithm achieves
state-of-the-art performance on the SWBD-DAMSL database. The source code
of this work is available at github.com/gmkim90/HCRN DA.

2 Method

2.1 Hierarchical Composition Recurrent Network

Figure 1 shows our proposed Hierarchical Composition Recurrent Network
(HCRN). Consider a dialogue D consisting of sentence sequences s1:TD

and its

http://www.github.com/gmkim90/HCRN_DA
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associated label t1:TD
. The HCRN consists of a hierarchy of RNNs with composi-

tional character, compositional word and compositional sentence levels. At each
level, each sequence encoding(e) is obtained by the hidden neuron(h) of RNN at
the end of the sequence [3,25]. Compositional Sentence model additionally takes
a binary vector which indicates speaker identity change across dialogue. The
composition rule is summarized in Table 1. The notation of well-known trans-
formations are represented as follows: gating units such as LSTM or GRU are
represented as g, and Multi Layer Perceptron with Softmax non-linearity as r.

Table 1. Composition rules used in each hierarchy of HCRN

Compositional character Compositional word Compositional sentence

h
(C)
s,w,c = g(h

(C)
s,w,c−1, e

(C)
s,w,c)

e
(W )
s,w = h

(C)
s,w,Tsw

h
(W )
s,w = g(h

(W )
s,w−1, e

(W )
s,w )

e
(S)
s = h

(W )
s,Ts

h
(S)
s = g(h

(S)
s−1, e

(S)
s ,xs)

P (ys|s1:s) = r(h
(S)
s )

Loss is defined as the negative log-likelihood of the label of the sentences
within dialogue.

L(s1:TD
) = −logP (y1:TD

|s1:TD
) = −

TD∑

t=1

logP (yt|s1:t)

One advantage of the HCRN is its ability to learn long character sequences.
For example, in our experiment, the sentence becomes a much longer sequence
when represented by characters (37.92) compared to words (8.28), in average.
While conventional stacked RNNs have difficulty when dealing with very long
sequences [1,8], the hierarchy of the HCRN deals with segmented short sequences
at each level so vanishing gradient problems during back-propagation through
time are relatively insignificant. Each level of the HCRN uses a different speed
of dynamics during sequence processing, so that the model can learn both short-
range and long-range dependencies in large text samples. The following abbre-
viations are used for the rest of this paper: the compositional character model
(CC), the compositional word model (CW ), the compositional sentence model
(CS), and the multi layer perceptron (MLP ).

2.2 Hierarchy-Wise Language Learning

To alleviate the optimization difficulties of end-to-end training of HCRN,
hierarchy-wise language learning is proposed. In the hierarchy of composition
models, the lower level composition network is trained first, higher level com-
position layers are gradually added after the lower level network is optimized
for a given objective function. This approach is inspired by the unsupervised
layer-wise pre-training algorithm in [7], which is known to provide better ini-
tialization for subsequent supervised learning. Word-hierarchy proceeds in an
unsupervised way by reconstructing the character sequence of each word using
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RNN Autoencoder, proposed in [22]. This stage is viewed as learning to spell.
Sentence-hierarchy and Discourse-hierarchy learning proceed in a supervised way
to classify the given label of the sentence.

3 Experiments

3.1 Task and Dataset

The HCRN was tested on a spoken dialogue act classification task. The dia-
logue act (DA) is the communicative intention of a speaker in each sentence.
We chose the SWBD-DAMSL database1, which is a subset of the Switchboard-I
(LDC97S62) dialogue corpus annotated with DA for each sentence. The SWBD-
DAMSL has 1155 dialogues on 70 pre-defined topics, 0.22M sentences, 1.4M
word tokens and a 42-class tagset shown in Table 2. The number of elements in
the character dictionary is 31 including 26 letters, - (indicating a partial word),
’(indicating possessive case), . (indicating abbreviation), <noise> (indicating
non-verbal sound) and <unk> (indicating unknown symbols) for all other char-
acters. We follow the train/test set division in [23]: 1115/19 dialogues, respec-
tively. Validation data includes 19 dialogues chosen from the training data. After
pre-processing of the corpus, the number of sentences in the train/test/validation
sets are 197370, 4190 and 3315 respectively. All letters are converted into lower-
case. Disfluency tags and special punctuation marks such as (? ! ,) which cannot
be produced by a speech recognizer are removed.

3.2 Common Settings

We employ the Gated Recurrent Unit (GRU) as a basic unit of the RNN [4,12].
The configuration of the HCRN is represented by the hierarchy of the compo-
sitional level and its size, CCsize − CWsize − CSsize as shown in Table 3. In all
supervised learning, the classifier consists of 3-layers and 128 hidden units MLP
with Rectified Linear Units and Softmax non-linearity. A common hyperparame-
ter setting is used in all experiments. All weights are initialized from a uniform
distribution within [−0.1, 0.1] except for the pre-trained weights. We optimized
all networks with adadelta [26] with decay rate (ρ) 0.9 and constant (ε) 10−6,
gradient clipping with threshold 5, and batch size of 64, 64, 8 for word, sentence
and discourse hierarchy learning. Early stopping based on validation loss was
used to prevent overfitting.

3.3 Unsupervised Word-Hierarchy Learning

During word-hierarchy learning, CC is jointly trained with the RNN Decoder to
reconstruct input character sequences. The number of all unique words in the
training set is 19353. The end of word token is appended to every end of the
1 The dataset is available at https://web.stanford.edu/∼jurafsky/swb1 dialogact

annot.tar.gz.

https://web.stanford.edu/~jurafsky/swb1_dialogact_annot.tar.gz
https://web.stanford.edu/~jurafsky/swb1_dialogact_annot.tar.gz
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Table 2. 42-class tagset of dialogue act provided from SWBD-DAMSL. Classes are
sorted from the most frequent to the least frequent, from top-left to bottom-right with
column-major order.

Non-opinion Declarative question Other answers

Backchannel Backchannel(question) Opening

Opinion Quotation Or clause

Abandoned Summarize Dispreferred answer

Agreement Non-yes answer 3rd party talk

Appreciation Action-directive Offers

Yes-No-Question Completion Self talk

Non-verbal Repeat phrase Downplayer

Yes answer Open question Accept part

Closing Rhetorical question Tag question

Wh-question Hold before answer Declartive question

No answer Reject Apology

Acknowledgment Non-no answer Thanking

Hedge Non-understand Others

Table 3. Size of compositional model at each level, represented by (# layers) × (# cell
in each layer). Note that the complexity of the model increases as the level of hierarchy
increases, following the assumption that the complexity of composition increases as the
level of language increases.

CC CW CS

Small 1 × 64 2 × 128 2 × 256

Large 2 × 128 3 × 256 3 × 512

character sequence. Learning is terminated if validation loss fails to decrease by
0.1% for three consecutive epochs.

Pre-training performance itself is evaluated by sequence reconstruction abil-
ity. For reconstruction, the RNN Decoder generates character sequences from
the encoder vector which is the last time step hidden neuron of CC. Genera-
tion is performed based on greedy sampling at each time step. The performance
is evaluated on two measures: Character Prediction Error Rate (CPER) and
Word Reconstruction Fail Rate (WRFR). CPER measures the ratio of incor-
rectly predicted characters to the reconstructed sequence. WRFR is the ratio of
words where complete reconstruction fails out of the total words in the test set.
The reconstruction performance of the RNN Encoder-Decoder on words both
in vocabulary and out-of-vocabulary (OOV) is summarized in Table 4. Overall,
the model almost perfectly reconstructs the character sequences of the training
data, and even generalizes well for the unseen words. The large size model out-
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Table 4. Reconstruction performance of the RNN Encoder-Decoder on words in the
vocabulary and out-of-vocabulary (OOV). The length column presents the mean and
standard deviation (in parentheses) of the character length of words for which complete
reconstruction failed.

Model In vocabulary Out of vocabulary

CPER (%) WRFR (%) Length CPER (%) WRFR (%) Length

CC1×64 0.39 2.25 13.1(2.6) 2.06 9.17 12.3(2.2)

CC2×128 0 0 - 1.21 5.28 12.7(2.4)

performs the small size model. Almost all cases in which reconstruction failed
involved sequences longer than 12 characters on average.

3.4 Supervised Word-Hierarchy and Sentence-Hierarchy Learning

Initialization of CC: Random VS. Pre-trained. The performance of
sentence-hierarchy learning with and without the word-hierarchy learning are
compared to evaluate how the pre-trained CC provides useful initialization for
sentence-hierarchy learning. With the pre-trained CC, at first, the parameters of
the CC are frozen, and the CW and MLP are trained for 1 epoch2. After that,
the whole architecture consisting of the CC, CW and MLP is jointly trained.
Evaluation was performed on architectures with different CC and CW sizes (see
Table 3).

Fig. 2. Result to show the quality of our pre-trained CC for initialization on sentence-
hierarchy learning. (a) Test error rate (%) of comparing learning CC-CW with different
initialization: pre-trained CC and random. (b) Test error rate (%) of comparing learning
CC-CW and CW. At each level, size is represented as either small (S) or large (L) in
Table 3.

In addition, pre-training on two different training dataset sizes (50% and
100%) are compared. The results are shown in Fig. 2(a). Pre-training consistently
2 The number of epochs to freeze the pre-trained model is chosen as the best parameter

from preliminary experiments on the validation set.
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reduces the test error rate on the various architectures, especially when fewer
training data are available.
CC VS. non-compositional word embedding. We compare two different
methods to build word representation in this section: CC and conventional non-
compositional word embedding (=non-CC). Since CC is used to learn the mor-
phological structures of words, it is not comparable with widely used pre-trained
word embedding such as Word2Vec [19], which aims to learn semantic/syntactic
similarities between different words. Therefore, for a fair comparison we ran-
domly initialized both models rather than employing pre-trained word embed-
ding. For the non-CC embedding method, we set two different cutoff frequencies:
τc = 5 (6294 words), τc = 2 (11746 words). Word embedding size is 64 and 128
for both CC and non-CC. Figure 2(b) shows the comparison of test error rates
on the above settings. Non-compositional word embedding with the high cutoff
(τc = 5) outperforms the low cutoff (τc = 2). This is because the data sparsity
problem during the estimation of rare words is more severe for the model with
the lower cutoff setting. Compared to the non-CC, CC outperforms or is on a
par, with fewer parameters.

Fig. 3. Learning curve on (a) training data and (b) test data. The objective function
is converged to a much lower value when the model employs initialization from the
pre-trained model resulting from sentence-hierarchy learning.

3.5 Discourse-Hierarchy Learning

During discourse-hierarchy learning, the CS on top of the CC2×128 − CW2×128

is trained. For the first 5 epochs, the network is trained with the CC and CW
frozen. Then, the whole network is jointly optimized.
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Optimization difficulty of end-to-end learning. We compared the learning
curves of discourse-hierarchy learning using two different model initializations:
with the pre-trained model from sentence-hierarchy learning, and with random
initialization (end-to-end learning). The learning curve in Fig. 3 clearly shows
that initializing with the pre-trained model significantly alleviates optimization
difficulties.

Table 5. Test error rate of sentence hierarchy learning and discourse hierarchy learning.
Discourse-hierarchy learning outperforms Sentence-hierarchy learning.

Hierarchy Model Err (%)

Sentence CC2×128 − CW2×128 26.27

Discourse CC2×128 − CW2×128 − CS2×256 22.73

CC2×128 − CW2×128 − CS3×512 22.99

Effects of dialogue context on sentence representation. Table 5 shows
the test classification error rate of sentence-hierarchy learning and discourse-
hierarchy learning. Compared to sentence-hierarchy learning, discourse-hierarchy
learning improves performance significantly.

Table 6. An example of dialogue segment containing 8 sentences. Predictions of label
from model of sentence-hierarchy learning (without dialogue-context) and discourse-
hierarchy learning (with dialogue-context) are provided along with true labels.

Dialogue segment True Without context With context

A: and uh quite honestly i just got
so fed up with it
i just could not stand it any more

S S S

B: is that right BQ YQ BQ

A: yeah A B A

A: i mean this is the kind of
thing you look at

S O S

B: yeah B B B

A: you sit there S S S

A: and when you are writing up
budgets

you wonder okay how much
money do we need

S WQ S

* S= Statement, A= Agreement, B = Backchannel, WQ = Wh-Question.
YQ = Yes-No-Question, O = Opinion, BQ = Backchannel-Question.

To qualitatively analyze the improvement, we show examples of sentences on
the test set for which prediction is improved by dialogue context. Analysis is
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done with model CC2×128 − CW2×128 − CS2×256, which achieved the best test
accuracy during discourse-hierarchy learning. Table 6 shows a dialogue exam-
ple including 8 sentences, comparing sentence-hierarchy and discourse-hierarchy
learning. Highlighted sentences indicate cases where discourse-hierarchy learning
predicts correctly while sentence-hierarchy learning fails to predict. For example,
“yeah” in the 3rd sentence of the example can be interpreted as both Agreement
and Backchannel, and an informed decision between the two is only possible
when the dialogue context is available. This example demonstrates that sentence
representation with dialogue context helps to distinguish confusing dialogue acts.
Comparison with other methods. Several other methods for dialogue act
classification are compared with our approach in Table 7. Our approach outper-
forms the other benchmarks, achieving 22.7% classification error rate on the test
set. Similar approaches employ a neural network based model that hierarchically
composes sequences starting from word sequences [10,14,20]. We conjecture that
the improvement demonstrated by our model is due to two factors. First, our
model build word representations from constituent characters and so suffers less
from the data sparsity problem when learning the embedding of rare words. Sec-
ond, the hierarchy-wise language learning method alleviates the optimization
difficulties of the deep hierarchical recurrent network.

Table 7. Performance comparison with other methods for dialogue act classification
on SWBD-DAMSL.

Method Test err. (%)

Class based LM + HMM [23] 29.0

RCNN [14] 26.1

HCRN with word as basic unit + End-to-End
learninga [20]

24.9

Utterance feature + Tri-gram context + Active learning +
SVM [6]

23.5

Discourse model + RNNLM [10] 23.0

HCRN with character as basic unit +
Hierarchy-wise learning

22.7

aWe evaluated this performance by ourselves due to task difference.

4 Related Works

The difficulty for RNNs in learning long-range dependencies within character
sequences has been addressed in [2]. Hierarchical RNNs have been proposed as
one possible solution, which design RNN architecture in which different layers
learn at different speeds of dynamics [5,13,17]. Compared with these models, the
HCRN deals with segmented shorter sequences at each level, and thereby the
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vanishing gradient problem is rendered relatively insignificant. There are several
recent studies on representing large context text hierarchically for document clas-
sification [25] and on the dialogue response model [20]. These approaches benefit
from hierarchical representations that represent long sequences as a hierarchy
of shorter sequences. However, the basic unit used in these approaches is the
word, and models that begin at this level of representation open themselves to
the data sparsity problem. This problem is somewhat resolved by building word
representations from character sequences. Successful examples can be found in
language modeling [16,18] and machine translation [9].

5 Conclusion

In this paper, we introduced the Hierarchical Composition Recurrent Network
(HCRN) model consisting of a 3-level hierarchy of compositional models: char-
acter, word and sentence. The inclusion of the compositional character model
improves the quality of word representation especially for rare and OOV words.
Moreover, the embedding of inter-sentence dependency into sentence represen-
tation by the compositional sentence model significantly improves the perfor-
mance of dialogue act classification. The HCRN is trained in a hierarchy-wise
language learning fashion, alleviating optimization difficulties with end-to-end
training. In the end, the proposed HCRN using the hierarchy-wise learning algo-
rithm achieves state-of-the-art performance with a test classification error rate
of 22.7% on the dialogue act classification task on the SWBD-DAMSL database.
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Abstract. Face anti-spoofing is a hot research area in computer vision.
With the progress of Deep Neural Networks (DNNs) in computer vision,
some work has introduced neural networks into face anti-spoofing. How-
ever, the neural networks that most of the approaches use consist of
only a few layers due to the limitation of training data. Inspired by
the fact that deep efficiently trained neural networks are often possible
to learn better representation than shallow networks. In this paper, we
propose a fully data-driven ultra-deep model based on transfer learning.
The model adopts a pre-trained deep residual network to learn highly dis-
criminative features, and combines it with the Long Short-Term Memory
(LSTM) units to discover long-range temporal relationships of from video
frames for classification. We conduct extensive experiments on two most
common benchmark datasets, namely, REPLAY-ATTACK and CASIA-
FASD. Experimental results demonstrate that our ultra-deep network
framework archives state-of-the-art performance.

Keywords: Face anti-spoofing · Face liveness detection · Deep
learning · Transfer learning

1 Introduction

Face recognition is one of the most commonly used techniques in application of
biometrics. One of the main obstacles of applying face recognition systems are
especially vulnerable to spoofing attacks made by spoofing faces. Face spoofing
attacks can be performed in a variety and relatively cheap ways such as print
attack, photo attack, video attack or 3DMask attack. A print attack, one of the
most common and simple among the afore-mentioned spoofing attack type, refers
to facial spoofing carried out by presenting a printed photo to a vision senser.
Different from print attacks, a photo attack is a way to spoof biometric system
via target’s photo on digital media, such as mobile phone, tablet. A video attack
exploits target’s face video to intrude biometric systems. With the development
of 3D reconstruction and 3D print technologies, 3D masks can easily be made
with one or few client’s face images to spoof the face recognition system.

In recent years, Deep Learning has achieved impressive results in computer
vision and speech recognition relying on efficiently training DNNs from the raw
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inputs directly. It is often possible to learn better representations than hand-
crafted features, by feeding with sufficient data. The leading results [1–3] on
the challenging ImageNet dataset [4] also show that depth of network is of cru-
cial importance for many computer vision tasks. Driven by the significance of
depth [5], In this paper, we propose a method which use a ultra-deep neural
network to learn effective and powerful representations for face anti-spoofing.

The rest of this paper is organized as follows: We begin with a review of the
related work in Sect. 2. Section 3 describes about the system design. The exper-
iments and results obtained to validate our scheme, including data preparation
and evaluation metrics are reported in Sect. 4. Section 5 presents conclusion and
future work.

2 Related Works

A number of face anti-spoofing approaches had been developed to enhance the
reliability of face recognition systems. The topic of anti-spoofing methods has
been reviewed in detail in a number of recent review article [6,7]. The coun-
termeasures of 2D face spoofing attacks detection generally can be divided into
two main categories: those based on static features and those based on dynamic
features, depending on the type of features used.

Static features based methods assume that there are inherently different tex-
ture properties between genuine faces and fake ones. The analysis of facial fea-
tures is done by using various feature extraction algorithms such as Histogram
of Oriented Gradient (HOG) [8], Local Binary Pattern (LBP) and its vari-
ants [9,10]. Li et al. [11] argue that the frequency distributions on the image
of a live person and the image of an attack are different. In [12], micro texture
patterns for printed artifacts are analyzed by using a multi-scale LBP method. A
Support Vector Machine (SVM) was utilized to discriminate between the genuine
face and fake face. In [10], a liveness detection algorithm based on color texture
analysis was proposed. The LBP descriptor is used to characterize the image
by combining the color (RGB, HSV and YCbCr) texture information. In [13],
the authors derive a new multi-scale space to represent the face images before
texture features extraction. The new multi-scale space representation is derived
through multiscale filtering. Recently [14] achieved excellent performance on
detecting spoofing attempts via extracting block-wise Haralick texture features
from redundant discrete wavelet transformed frames obtained from a video. The
proposed algorithm yields an equal error rate (EER) of 6.7% with 30 frames
experiment and 1.1% with all frames experiment.

Dynamic features based methods tend to exploit motion information of
detected faces as cues to recognize the attack using a sequence of input frames.
In [15], the authors employed a multi-resolution strategy in a single descriptor
from three orthogonal planes of the local binary pattern (LBP-TOP) that com-
bines the space and time information. The authors reported a HTER of 7.6%
on the REPLAY-ATTACK database and EER of 10.0% on the CASIA-FASD
database. Santhosh et al. [16] performed his analysis on image spoofing based
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on printed pictures and replayed video. The authors used a pipeline of Dynamic
mode decomposition, LBP and SVM with a histogram intersection kernel. It
was proved that the pipeline is efficient, convenient and effective to use. Yang
et al. [17] use Convolutional Neural Networks (CNNs) to extract static features
from the original image and dynamic features from the dynamic maps. The face
liveness detection result is obtained from the output of the SVM classifier. In [18],
DOFV (displacement of optical flow vector) was extracted, and then use kNN for
classifing. The authors reported a HTER of 22.81% on the REPLAY-ATTACK
database.

In the previous work [19], the authors construct a deep neural network classi-
fier by putting a LSTM layer above a convolutional architecture which contains
two convolutional layer with max pooling after each. But the structure is too
shallow to learn powerful representations of input frames, and yields a ERR
of 5.93% on CASIA-FASD. In order to make up for the weakness of the pre-
vious work, we propose an improved method in this paper. The key factor of
our method is that we extract spacial features of sequenced frames using a very
deep pre-trained neural network. Then, the sequenced extracted spacial features
are fed into long short-term memory (LSTM) units to extract temporal fea-
tures which are useful for final classification. Despite its simplicity, we found our
method to be surprisingly effective. A detailed explanation will be described in
the following sections.

3 Proposed Method

The performance of those CNN-based approaches heavily rely on the availability
of annotated images for training. Due to the limitation of training data in face
anti-spoofing databases, it is quite hard to train a high performance entire large
network classifier. A common way used to avoid overfitting a large network is
using transfer learning when there is not enough data to train it from scratch.
Ours face anti-spoofing method use a pre-trained network called “ResNet-50” to
discover high-level semantic information and meaningful hidden representations.
Then, LSTM units are used to learn temporal features of images sequences.
Finally, the learned features are used to distinguish genuine faces from fake
ones.

3.1 Deep Residual Networks

Deep Residual Networks (ResNets) [3] lead a recent and dramatic increase in
both depth and accuracy of CNNs, facilitated by constraining the network to
learn residuals. ResNets are built up by stacking residual units, see Fig. 1. For
residual unit i, let x and y be the input and output vectors of layers considered.
The F(·) be its trainable non-linear residual mappings. The output of residual
unit i can be expressed as:

y = F(x,Wi) + x (1)
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where Wi denotes the trainable parameters of i-th residual unit. ResNets
can be intuitively understood by thinking of residual functions as paths through
which information can propagate easily. This means that, in every layer, a ResNet
learns more complex feature combinations, which it combines with the shallower
representation from the previous layer. This architecture allows for the construc-
tion of much deeper networks.

Fig. 1. Residual networks block illustration.

3.2 Long Short-Term Memory

Different from feed-forward CNN which can only discover spacial information,
Long short-term memory (LSTM) units [20] are capable of learning long-range
temporal dependencies from input sequences. The core idea behind the LSTM
architecture is a memory cell which can maintain its state over time, and non-
linear gating units which regulate the information flow into and out of the cell.
Using LSTM-CNN architecture can combine the advantages of CNN and LSTM
to extract spatial-temporal information from videos. Therefore we put a LSTM
layer above the ResNet-50 model except for the top layers, which forms our
LSTM-ResNet architecture. The framework of introduced scheme is illustrated
in Fig. 2.

3.3 Model Details

In this study, we use a fixed weights pre-trained on ImageNet database to initial
our ResNet-50 model. To adapt the ResNet-50 model for our face anti-spoofing
task, we directly output the spatial average of the feature map via applying a
global average pooling [21] to the output of last convolutional layer. The input
of each timestep is normalized color image of shape 3 × 224 × 224. After the
features are extracted layer by layer, we get a 2048 dimensions feature vector
output from the ResNet-50 model. Moreover, the feature vector is fed into LSTM
layers which consists of 256 internal units. Here, the output of LSTM layer
each timestep will be stacked and passed to a full-connected layer with 512
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Fig. 2. Brief illustration of the LSTM-ResNet Architecture of the proposed method.

neurons. To avoid over-fitting, the full-connected layer is followed by a dropout
layer. Finally, considering face anti-spoofing as binary classification problem. we
choose softmax as the decision function for classification and use cross entropy
loss function to optimize the classifier. We train with a batch size of 16 using
Adam with a learning rate of 1 × 10−4 without weight decay.

4 Experiments

In this section, we implement our algorithm on two challenging face spoofing
databases: REPLAY-ATTACK [22] and CASIA-FASD [23]. We provide an in-
depth analysis of the results obtained with the proposed method. The following
experiments were performed on a INTEL(R) CORE(TM) i7-7700K (4.20 GHz)
processor and a Nvidia GTX 1080 GPU with 8 Gbyte RAM.

4.1 Experimental Databases

This section presents an overview of the two selected databases which consist of a
number of real access attempts and fake face attacks under different conditions.
The details of the all the databases are discussed below.

CASIA-FASD Database consists of 600 videos from 50 subjects in which
20 subjects are used for training and 30 subjects are used for testing as defined in
the protocol. Total 12 videos are recorded for each subject with 3 different camera
resolutions: low, normal and high. Three different kinds of attacks with two
different support conditions were considered. The database is divided into: (1)
Training set and (2) Test set with 20 and 30 independent subjects, respectively.
Some samples of the database are shown in Fig. 3.
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Fig. 3. Example of real accesses and attacks in different scenarios.

Replay-Attack Database consists of 1, 200 short video recordings of real
accesses and attack attempts of 50 clients. A set of videos were recorded of each
clients in the database under two different illumination conditions: controlled
and adverse. The first condition was with uniform background and office lights
turned on. The second condition was under following scene: non uniform back-
ground and the office lights were out. All subjects in database are partitioned
into three non-overlapped sub-sets with 15, 15, and 20 subjects respectively: (1)
Training set, to tune parameters of the classifier; (2) Development set, to fix
the decision threshold; (3) Test set, to evaluate final classification performance.
Figure 4 shows some frames of the captured spoofing attempts.

Fig. 4. Example of real accesses and attacks in different scenarios. In first row, samples
from adverse scenario. In the second row, samples from controlled scenario. Columns
from left to right show examples of real access, printed photograph, mobile phone and
tablet attacks.

4.2 Experiment Setup

We follow the official overall test protocols of two selected face anti-spoofing
databases. For each database, we use the training set to train the classifier, and
the development set to tune the classifier for good performance. For evaluating
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the performance of the model, the test set is intended to be used. It should be
remarked that CASIA-FASD database is lack of the specific development set, we
split the training set into five folds, use one of them as development set and the
other for training. As for REPLAY-ATTACK database, the development set is
already given, there is no need to divide the original sets.

4.3 Data Augmentation

Our method takes a video as the input. Pan et al. [24] exploited the observation
that humans blink once every 2–4 s, therefore, we divide each video into two
second (50 frames at 25 fps) video clips in our experiments. Then, each video
clip is subsampled to 25 frames to reduce the complexity for brevity. A hori-
zontal flip strategy is applied to all video clip to generate more training data.
The face coordinates are determined using machine learning toolbox Bob1 [25].
we calculate the region-of-interest (ROI) which is the minimum bounding box
that contains all the face regions of its frames of each sample. Following the
method proposed in [17], the background information is useful for classifying,
we enlarge the face bounding box by factor of 2.0 to make use of the information
of background. The pixels which exceed the border of video frames will simply
filled with zero. Finally all input frames are resized into 224 × 224 before being
fed into neural networks.

4.4 Performance Measure

In the performance measurement, to make fair comparison with other related
works, the performance evaluations of the studied anti-spoofing algorithm are
measured in terms of the equal error rate (EER) and half total error rate
(HTER). The EER is a biometric security system algorithm used to prede-
termining the threshold value which defined as the common value when the
false acceptance rate (FAR) and false rejection rate (FRR) are equal. HTER is
defined as

HTER =
FAR(τ,D) + FRR(τ,D)

2
(2)

where FRR is the proportion of fake images misclassified as real, FAR means the
proportion of fake images misclassified as real, the threshold τ corresponds to
the EER operating point of the used development set, and D is the test sub-set.
We use overall results combined all the quality and attack sets to report the final
performance of the two benchmark databases.

4.5 Experimental Results

Firstly, to prove the effectiveness of our approach, we compare the performance
with the results of other state-of-the-art approaches in Table 1. The overall
1 http://www.idiap.ch/software/bob/.

http://www.idiap.ch/software/bob/
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test of our proposed algorithm obtains a HTER of 1.22% (EER is 1.00%) on
CASIA-FASD and a HTER of 1.18% (EER is 1.03%) on REPLAY-ATTACK
with 25 frames experiment, respectively. There is a HTER of 5% performance
improvement in face spoofing attacks detection comparing with first LSTM-CNN
method [19] on CASIA-FASD. It clearly shows that our proposed method is bet-
ter than most of the previous works on two selected databases. The slightly lower
performance than the [14] is most likely due to that DNNs need large amount
of data to train. Meanwhile, different with DMD [16], our approach gives robust
results on both two databases.

Table 1. Comparative test results for different databases among our method and
state-of-the-art methods.

Databases CASIA-FASD REPLAY-ATTACK

EER (%) HTER (%) EER (%) HTER (%)

LBP-TOP + SVM [15] 10.00 - 7.8 7.60

Context based [8] - - - 5.11

Haralick feature + SVM [14] - 1.1 - -

LSTM-CNN [19] 5.17 5.93 - -

CNN [17] - 5.08 - 2.43

DPCNN [26] 2.9 6.1 4.5 -

DMD [16] 21.7 - 5.3 3.7

Scale space + LBP [13] 4.2 - 0.7 3.1

Non-linear diffusion [27] - - - 10.00

Proposeda 1.63 1.80 1.16 1.28

Proposedb 1.00 1.22 1.03 1.18
a trained with single input frame per sample
b trained with 25 input frames per sample

Secondly, using 25 frames for face spoofing attacks detection may be time-
consuming for certain hardware conditions. Therefore, we perform an additional
experiment to explore the performance of our architecture on single frame based
classification via feeding only one frame each sample into our network when
training. As it shown in Table 1, the HTER has relative increased by 50.0%
on CASIA-FASD and 8.7% on REPLAY-ATTACK datasets, respectively. The
result indicates the positive effect of temporal features extracted from 25 frames
on face anti-spoofing task. Despite the performance has declined, it still has
comparable performance with state-of-the-art methods. It means that there is a
good compromise between complexity cost and performance.

5 Conclusions

In this paper, we introduced an utlra-deep neural network approach to
address the problem of face anti-spoofing using sequenced frames. We use data
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augmentation strategies to generate more training data and utilize background
information and spacial-temporal features for face spoofing attacks detection.
Experimental results on two challenging databases demonstrate that our pro-
posed method makes a significant improvement compared with other shallow
neural networks [17,19,26] and achieves state-of-the-art results in overall proto-
col for video based anti-spoofing. It clearly shows that our network framework
is more effective and powerful.

For future work, we think it is worth exploring other CNN architectures
and different complex benchmarks. We also plan to test our approach on other
databases and improve the generalization ability of the countermeasures.
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Abstract. License plate detection plays an important role in intelligent trans-
portation system. However, it is still a challenging task due to plenty of complex
scenes. Recent studies show that deep learning approaches achieve prominent
results on general object detection. Therefore, in this paper, we propose a deep
cascaded convolutional neural network for improving license plate detection in
complex scenes. Firstly, we utilize convolutional features to generate candidate
vehicles proposals. Then a network is used to detect a license from each vehicle
proposal by analyzing the correlation between vehicles and licenses. Finally, we
enhance detection performance by processing license boundary. Experimental
results on a large dataset demonstrate that our method works effectively in a
variety of complex scenes.

Keywords: License plate detection � Cascaded convolutional neural network �
Vehicle proposals

1 Introduction

Due to the development of intelligent transportation system, license plate detection, as
an important part of the system, has received considerable attention. It has numerous
potential applications, such as traffic monitoring and road accidents remote processing
[1]. However, it is still not easy to detect license plates in an open environment. The
difficulty does lie in the influence of complex environmental factors, for example,
different illumination, weather and patterns similar to plates. Besides, the variation of
the plates, for instance, plate location, size, and occlusion also affect final detection
results. Previous work on license plate detection mainly use some handcrafted features
to estimate the possibility of the plate. Since some features may be sensitive in complex
environment, some approaches can only be effective in certain circumstances and
generate many false positives in other scenes [2].

Owing to its ability to acquire multi-scale discriminative representations of the
objects, deep convolutional neural network (CNN) [3] obtains remarkable achieve-
ments in object detection. One of the classical object detection work is R-CNN [4]. It
extracts certain amounts of candidate regions, and then uses CNN for feature extraction
and classification for the regions. The following state-of-the-art methods such as Fast
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R-CNN [5] and Faster R-CNN [6] adopt similar idea. Faster R-CNN utilizes a region
proposal network (RPN) which combines object proposal and detection into an inte-
grated network. Thanks to RPN, Faster R-CNN achieves accuracy improvement and
time-consumption reduction. Inspired by the good effect of CNNs in generic categories,
some of the CNNs based specific categories such as face and pedestrian detection have
been proposed in recent years [7–9].

Similarly, as a specific category detection, CNN can also extract more expressive
discriminative features from license plate so as to improve the accuracy of detection.
Despite CNN has such a big advantage, these approaches still have some drawbacks
which makes them less adaptable. They cannot handle the balance between small
objects and high confidence because the bounding boxes may not contain enough
features for detection if they are too small. In complex scenes, the proportion of license
plate in an image is usually small, which makes it difficult to detect. However, some of
the available plate detection methods ignore the correlation between vehicles and
licenses. In real world, a license plate may only appear within vehicle. In addition, both
the ratio of a license plate in a car and the ratio of a car in an image are in a suitable
range. This inherent correlation may make detection more accurate.

In this paper, we propose a framework to utilize unified cascaded CNNs. The
proposed CNNs consist of two stages. In the first stage, it produces vehicles proposals
through a CNN. Then, we detect license plates from the proposals which have been
extracted in former stage through a more powerful CNN. Finally, we refine each
bounding box according to the boundary of license plate region. Using this framework,
we can detect license plates with different variations such as colors, fonts or sizes in
complicated environments. Extensive experiments on a set of real traffic images with
day and night illuminations show that the proposed method could get performance than
state-of-the-art methods in license plates detection.

The rest of paper is organized as follows. Section 2 discusses related work.
Section 3 presents the proposed method. Section 4 reports and analyzes experimental
results. Finally, Sect. 5 concludes our work.

2 Related Work

2.1 License Plate Detection

Although plenty of plate detection methods have been proposed in recent years, it is
still a challenging problem because of free viewpoint and presence of various illumi-
nation situations. In general, a license plate consists of three parts, edges, plate and
characters. So the detection based on handcrafted features can be roughly classified into
three types: edge based methods [10, 11], plate feature based methods [12, 13] and
character based methods [14–16].

Edge based approaches try to find regions with obvious edge density as license
plates. In [10, 11], these license plate localization methods used edge detector com-
bining with some geometric transformation to search the rectangles which can be
regarded as candidate license plates. This strategy performs well in relatively simple
scenarios. However, it is difficult to find license plates if their edges are blurry.
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Plate features mainly includes color and texture. Both of them can be used because
they are usually different from other parts of the vehicle body. Deb et al. [13] proposed
HSI color model to detect candidate license plate regions. Giannoukos et al. [12]
advanced Sliding Concentric Window (SCW) to confirm license plate based on the
local irregularity texture characteristic of the plate. It performs as well as edge based
method in simple scenarios. However, they are too sensitive to unwanted similar
features which are very common in natural scene images.

Characters are the most important elements of license plates and the easiest feature
to distinguish the plate region. Matas et al. [14] introduced the well-known character
feature detector Maximally Stable Extremal Region (MSER) to detect license plates
and other traffic signs. As the MSERs are highly robust against environmental changes,
many researchers utilize MSER combing with conditional random model [15] or
label-moveable clique [16] to remove unwanted character regions. However, the
method [16] which was introduced by Gu et al. is hard to recognize the right order of
the characters and Li et al.’s [15] approach is unable to detect multi-scale license plates.

2.2 CNN for Object Detection

With the outstanding results on image classification, CNN has been applied to object
detection and achieves exceptional performances. In [17], detection problem is treated
as a regression problem to object bounding box’s location. Sermanet et al. [18] used a
pre-trained classification network to predict object bounding box in a tedious and
computationally expensive way. Girshick et al. [4] proposed R-CNN which uses object
proposals generated by selective search to choose the object region for detection tasks.
To reduce the computation of each proposal in R-CNN, Fast R-CNN [5] has been
introduced by sharing convolutional features and dealing with object proposals from
the last convolutional layer. Recently, Faster R-CNN [6] substituted RPN for the object
proposals generated by selective search and obtained higher accuracy with faster speed.
SSD [19] segmented the input image into some grids and predicted the object bounding
box through the grids in CNN. In addition to detect general categories, CNN has used
in the detection of specific categories. Angelova et al. [7] applied CNN in pedestrian
detection and achieved high accuracy. Yang et al. [20] trained CNNs for facial attribute
recognition to generate candidate facial region, which also obtained remarkable effect.
Chen et al. [21] used convolutional features to replace hand-crafted features and
detected the location in image pyramid by traditional sliding window scheme.

2.3 Cascaded Network

The cascade face detector proposed by Viola and Jones [22] utilized Haar-like features
and AdaBoost to train cascaded classifiers. The idea of reduce candidates by combining
a number of simple features is also applied to CNNs. Li et al. [8] used a shallow
network to reject easy non-face samples at first, then eliminated more negatives through
two deeper networks. Zhang et al. [9] proposed cascaded CNNs by multi-task learning
for joint face detection and alignment, each detection network can benefit from the
result of previous network. Angelova et al. [7] cascaded a shallow deep network and a
fine-tune Alexnet to achieve real-time pedestrian detection. The shallow network
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removed amounts of candidates and reserved an appropriate number of candidates for
the following CNN to detect.

3 Approach

3.1 Cascaded Convolutional Neural Network

The overall structure of our approach is shown in Table 1. The proposed cascaded
CNN is composed of two stages. We employ similar structure of Faster R-CNN with
different convolutional layers for feature map extraction in each stage of CNN. We use
RPNs [6] to predict object region proposals with different scales and ROI pooling layer
[5] to classify and localize in both of the stages. As a RPN outputs multi-scale can-
didate boxes with class confidence, we just use a single-scale image whose shorter side
is re-scaled to 600 pixels, instead of resizing it many times to build an image pyramid.

Table 1. The overall structure of our cascaded CNN

Stage 1 CNN Stage 2 CNN

Input Input

Convolution(kernel: 7 � 7, stride: 2) Convolution(kernel: 3 � 3, stride: 1)
Convolution(kernel: 3 � 3, stride: 1)
Max pooling(kernel: 2 � 2, stride: 2)

Max pooling(kernel: 3 � 3, stride: 2) Convolution(kernel: 3 � 3, stride: 1)
Convolution(kernel: 3 � 3, stride:1)

Convolution(kernel: 5 � 5, stride: 2) Max pooling(kernel: 2 � 2, stride: 2)
Convolution(kernel: 3 � 3, stride: 1)
Convolution(kernel: 3 � 3, stride: 1)

Max pooling(kernel: 3 � 3, stride: 2) Convolution(kernel: 3 � 3, stride: 1)
Max pooling(kernel: 2 � 2, stride: 2)

Convolution(kernel: 3 � 3, stride: 1) Convolution(kernel: 3 � 3, stride: 1)
Convolution(kernel: 3 � 3, stride: 1)
Convolution(kernel: 3 � 3, stride: 1)

Convolution(kernel: 3 � 3, stride: 1) Max pooling(kernel: 2 � 2, stride: 2)
Convolution(kernel: 3 � 3, stride: 1)
Convolution(kernel: 3 � 3, stride: 1)

Convolution
(kernel: 3 � 3, stride: 1)

RPN Convolution
(kernel: 3 � 3, stride: 1)

RPN

ROI pooling ROI pooling
Fully connected (4096) Fully connected (4096)
Fully connected (4096) Fully connected (4096)
Fully connected Fully connected Fully connected Fully connected
Softmax(4) Bounding box

regression(16)
Softmax(2) Bounding box

regression(8)
Note: ReLU which is not shown in the table is followed by every convolution layer
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Stage 1: we train a simple CNN which includes 5 convolutional layers with a RPN
to generate three categories of candidate vehicles proposals from the last convo-
lutional layer. The stage 1 CNN can get the vehicle proposal with the highest
Intersection-over-Union (IoU) overlap with a ground-truth box. The threshold
setting for IoU is not too high to ensure all vehicles can be extracted.
Stage 2: each vehicle proposal with high confidence is fed to another powerful CNN
after padding with 50% on each side. In this network, we use the architecture of
VGG16 [23] with RPN to get better detection results because of two reasons: the
first one is that a car is changed from foreground to background making background
more complex; the other one is that license detection, similar as face detection,
needs more discrimination features to get better performance [8].

For each proposal, we need to get a ground-truth class u and bounding-box
regression target v. v is a vector with 4 values which represents coordinates of left top,
height and width respectively. Therefore, the learning target of joint classification and
bounding-box regression can be formulated as:

L p; u; t; vð Þ ¼ Lcls p; uð Þþ k � ptLreg t; vð Þ ð1Þ

where Lcls p; uð Þ is cross-entropy loss for true class u. p is the probability computed by
the network that the proposal belongs to the true class. t is the coordinated vector of the
ground-truth box associated with the proposal. For the regression loss, we use
Lreg t; vð Þ ¼ L1ðt � vÞ where L1 is the robust loss function (smooth L1) defined in [15].
The term ptLreg t; vð Þ means it is activated only for the object proposal (pt ¼ 1) and not
used otherwise (pt ¼ 0).

3.2 Bounding Box Refinement

After detection by cascaded CNNs, we find that some detected bounding boxes cannot
surround the license plate completely. For example, Fig. 1(a) only contains the left part
of the license plate. It may not be considered as a license plate and then be rejected by
CNN because of the low IoU. Therefore, we perform a simple process for refining
bounding box according to edge feature of license plate. For each bounding box of a
license plate with the highest IoU, we enlarge its edges with 30% on each side. Then
we utilize Canny operator on the enlarged region of license plate to perform edge
detection. We can find the top and bottom boundaries by horizontal projection. Sim-
ilarly, the left and right boundaries can be found by vertical projection. Figure 1(b)
shows an example of bounding box refinement.

 (a) (b) 

Fig. 1. (a) and (b) represent the bounding box before and after refinement, respectively.
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3.3 Training Details

The convolutional layers for feature extraction in our CNN model is initialized by
pre-training on the ImageNet [24], and all rest of new layers are randomly initialized by
a zero-mean Gaussian distribution with standard deviation 0.01. We randomly sample
128 positive and negative object proposals to compute the learning target function of a
mini-batch to avoid detecting. We sample positive proposals from all proposals if an
IoU ratio is higher than 0.7 for any ground-truth box and assign a negative label to the
proposal that has an IoU overlap lower than 0.3. At the beginning of training, we flip
the input image horizontal for data augmentation. We use a learning rate of 0.001 for
60 K iterations and decrease it to 0.0001 for the last 20 K iterations in each training
phase. We use a momentum of 0.9 and a weight decay of 0.0005 [25]. In the first stage
of the networks, we set the IoU threshold value of 0.4 to ensure that all of the vehicle
proposals can be extracted. Our network is implemented by Caffe [26].

4 Experimental Results

4.1 Dataset

Since there are few public Chinese license plate datasets available, we collected a
challenging dataset including 30975 images to test our approach. The dataset is taken
from different real traffic monitoring scenes with various illumination conditions,
including sunny, cloudy, daytime, nighttime and different kinds of vehicle (bus, truck,
car, etc.). Some samples from dataset are shown in Fig. 2. Resolution of the images is
2048 � 1536 pixels. Detailed description of the dataset is listed in Table 2. In the
experiment, the proportion of train set, validation set and test set is 4:1:1. Ground-truth
of vehicle and license plate location are manually labeled.

4.2 Weighting Parameter

The weighting parameter k manages the balance between the two loss functions. As
stated in [2], there is no uniform way to evaluate performance of different license plate
detection systems. In this paper, we follow the general evaluation criterion for detection
results using precision and recall rate. Precision is defined as the number of correctly
detected license plates divided by the total number of detected regions. Recall is
defined as the number of correctly detected license plates divided by the total number

Fig. 2. Some samples of our dataset. A number of images in the dataset contain more than one
vehicle or license plate.
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of ground-truth boxes. A detection is considered as correct if the IoU between the
detection and ground-truth bounding box is greater than 0.5. To evaluate the impact of
k, we conduct experiments comparing the average precision (AP) of our approach at
k ¼ 0:01; 0:1; 1; 10; 100f g. Figure 3 shows that our approach performs the best when
k is near to 1. Therefore, for simplify, we set the weighting parameter k ¼ 1.

4.3 Detection Results

We give a comparison between our approach and some previous methods in Table 3.
We choose Faster R-CNN [6] and SSD [19] for comparison because both of them
achieve good effect in detection task. Li et al. [15] ’s method used character with
conditional random field model and edges to detect license plates and works effec-
tively. Statistical analysis is shown in Table 3 and some of detection results are
illustrated in Fig. 4. Based on the evaluation criterion described above, our approach
outperforms the other methods in both precision and recall, which is higher 0.26% and
0.90% than the second best method, respectively. Figure 5 shows an example of
detection result. As shown in Fig. 5(c), the method proposed by Yuan et al. [11]
approach cannot detect license plate correctly because the hand-crafted features are
sensitive to noise in natural scene. Because of gaining enough discriminant features,
our method can detects both plates as shown in Fig. 5(d) and Fig. 5(e). However, faster
R-CNN fails to detect one plate. These results indicate that our approach is more robust
to image size, illumination and orientation.

The Fig. 6 shows the candidate proposals which are extracted from a region of a
bus. CNN detect the license plate correctly and regard the other proposals as back-
ground because only a proposal which contains a plate can achieve high probability.

Table 2. Detail of the dataset

Category License Plate Car Bus Truck

Number 32038 28854 1125 2006

Fig. 3. Evaluation of the weighting parameter k.
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This successful detection demonstrates outstanding discrimination power of CNN. We
can also find that the recall rate of Faster R-CNN is lower than Li et al. [15] ’s method.
This result reveals the Faster R-CNN’s shortcoming that it cannot detect small object in

Table 3. Comparison of plate detection results by different methods. Our cascaded CNN
approach in bold

Method Precision (%) Recall (%)

Li et al. [15] 97.19 89.61
SSD [19] 97.83 84.54
Faster R-CNN [6] 98.16 86.68
Our approach 98.42 90.51

Fig. 4. Some of successful results. Red bounding boxes labeled in the first picture in each line
are the vehicle proposal. The boxes in remaining pictures in each group are the detected locations
of license plates in the corresponding vehicle proposals. Better viewed by zooming. (Color figure
online)

 (a)  (b)  (c)

(e)(d)

Fig. 5. An example of detection result by different methods. (a) Original image with red
bounding which are vehicle proposals. (b) is result of Faster R-CNN, (c) is result of the method
proposed by Yuan et al.’s [25] and (d), (e) are results of our approach. Better viewed by zooming.
(Color figure online)
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a large background because of lacking enough features. However, our approach
enhances the recall rate by generating proposals from vehicles which turns the area of a
license plate into an appropriate size.

Figure 7 shows some of detection failure examples. In Fig. 7(a), the license plate is
too small for stage 2. In Fig. 7(b), our approach omits the license plate since it is
located in the top of the picture and the car which owning this plate is not detected by
our CNN.

5 Conclusion

In this paper, we have proposed a license plate detection system using the cascaded
convolutional neural networks. A simple CNN is used to generate the candidate vehicle
proposals and then a deep CNN detects a license plate carefully in the proposal
according to the relationship between vehicles and licenses. We fine-tune the bounding
box of a license plate through its edges. Experimental result shows that this approach
can produce effective performance in complex scenes. Our future work is to further
explore proposal for detecting small object easily, based on the limitations in our
current work. Another direction is to transform the cascaded networks into an
end-to-end network which can get a variety of vehicle and license information.

Acknowledgement. This work is partially supported by Shenzhen fundamental research fund
(Grant No. JCYJ20170412170438636) and the Natural Science Foundation of China (NSFC)
(No. 61772296). We gratefully acknowledge the support of NVIDIA Corporation with the
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Fig. 6. Some of the proposals extracted from stage 2 of the proposed CNN. Only the first image
is recognized as the license plate and the other are regarded as the background.

 (a) (b)

Fig. 7. Some of our failures. Our approach only generates the vehicle proposal in stage 1, but
fail to detect the license plate.
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Abstract. Personal identification plays an important role in the infor-
mation society. However, the traditional methods of identification can-
not fully guarantee security. As a new type of biometrics, brainprint
has remarkable advantages of non-stealing and unforgeability. It is a
more secure biometrics for personal identification. In this paper, we pro-
pose a new method for brainprint recognition based on brain networks
of electroencephalogram (EEG) signals. Firstly, we construct the brain
functional networks upon the phase synchronization of EEG channels.
Then, the degree of brain networks is computed to form a novel feature
vector. Lastly, we utilize linear discriminant analysis (LDA) to classify
extracted features. Experiments are conducted on four data sets. The
average recognition accuracy of each data set is over 0.937 and the best
one reaches 0.993.

Keywords: EEG · Brainprint recognition · Brain networks · Phase
synchronization

1 Introduction

Nowadays, the security of personal information becomes more important [1].
Most of existing biometric personal identification methods, such as fingerprint,
palm vein and face, suffer from the risk of being copied or forged easily. Different
from these identification approaches, brainprint [2] has unique advantages. For
example, it can not be stolen or forged, and only alive person can produce it.

The concept of brainprint was firstly proposed by Armstrong et al. [2] in
2014. They used the components of event-related potential (ERP) as character-
istics to identify 45 subjects, the accuracy rate was in the range of 82%-97%.
Further, these features were stable over time. Brainprint refers to a unique and
durable biometric, which is produced by the brain. At present, there are many
methods and applications for brainprint recognition. Das et al. [3] used visually
evoked neural activity for discriminating individuals and analyzed EEG data in
a holistic manner. Discriminative spatio-temporal filters were utilized to extract
features. Then they used LDA and support vector machines (SVM) to classify
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 709–717, 2017.
https://doi.org/10.1007/978-3-319-70096-0_72
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20 subjects. Recognition rates ranged from 75% to 94%. Yeom et al. [4] found
that everyone would produce a different reaction when he confronted self-face
and non-self-face, which can be measured by EEG. So they proposed a new bio-
metric system and devised a novel stimulus presentation paradigm for personal
authentication. The mean accuracy rate was 86.1%. Gui et al. [5] used wavelet
packet decomposition to extract frequency features from 32 subjects, and per-
formed classification based on an artificial neural network. The classification rate
can reach around 90%. Maiorana et al. [6] extracted features through eigenbrains
or eigentensorbrains for recognition. Principal component analysis (PCA) and
multilinear PCA (MPCA) were used to define two bases for EEG signals. They
evaluated the method on a database comprising EEG recordings acquired from
30 subjects. The accuracy rate of the experiment was 87.9%.

As described above, researches of brainprint recognition were based on the
amplitude of the EEG signals. In fact, EEG signals consist of amplitude and
phase information. Both the phase and the amplitude contain important EEG
information. However, due to the lack of measurement and calculation models,
the phase information has been rarely analyzed and implemented. The phase syn-
chronization of the EEG signals is based on phase information of EEG signals.
Using phase synchronization to study EEG signals, we can find new solutions
that have not been found in amplitude studies. Phase synchronization calculates
the instantaneous phase values between different channel pairs by the Hilbert
transform (HT), so as to compare the phase difference of the two oscillatory
sequences. Instantaneous phase extracts from observed signals, but neglects the
effect of instantaneous amplitude. Relevant studies have shown that the phase
synchronization of EEG signals is a reflection of the differences in white mat-
ter architecture in individuals [7,8]. Therefore, we use the relationship between
phase synchronization and the physiological features of the brain, analyze the
phase synchronization features of each channel to obtain the phase synchro-
nization matrix, and then extract features for recognition. Besides, methods of
existing brainprint recognition generally were tested on one data set with specific
task in their work. Therefore, the methods they used can not be widely applied.

In this paper, a method is proposed for brainprint recognition. First, phase
locking value (PLV) is computed to measure phase synchronization. The coherent
matrix constructed by PLV will obtain a weighted undirected network. Then,
the degree of brain networks is utilized to form a feature vector. Finally, we use
LDA to obtain the classification results. Phase synchronization of EEG signals
is considered in our experiment rather than amplitude information. It not only
describes the interaction of channel pairs, but also reflects the relationship of
instantaneous phase between channels. Different from one type of EEG signals
from one task, the proposed method evaluates on four different data sets from
diverse tasks, namely two public data sets [9,10] and other two data sets collected
by our laboratory [11,12].
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2 Methods

2.1 Preprocessing

In our experiments, EEG data are filtered 2 Hz to 47 Hz by using bandpass fil-
ters. The value of every channel has been dealing with common average reference
(CAR) [13]. Then, Butterworth band-pass filters are used to select correspond-
ing band, namely theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma
(>30 Hz).

2.2 Phase Synchronization

Phase synchronization analyzes the interrelation of EEG signals based on phase
and synchronization angles [14]. It can retain phase components of EEG signals
and inhibit the impact of amplitude [15].

First, the analytical signal Zx(t) of EEG signal x(t) is defined as:

Zx(t) = x(t) + jx̃(t) = Ax(t)ejΦx(t) (1)

where Ax(t) and Φx(t) are instantaneous amplitude and instantaneous phase of
x(t), respectively.

The Hilbert transform x̃(t) for the given continuous time series x(t) is:

x̃(t) =
1
π

P

∫ +∞

−∞

x(τ)
t − τ

dτ (2)

where P denotes the Cauchy principal value.
Φx(t) can be defined as:

Φx(t) = arctan
x̃(t)
x(t)

(3)

And Φy(t) has the similar definition.
Phase-locking value (PLV) is used to measure the phase synchronization

information [16], which is defined as follows::

PLV = |< exp(j{Φx(t) − Φy(t)})>| (4)

where < . > means the averaging operator of a continues time t.
PLV can be calculated with an one-second time window. There are H non-

overlapping time segmentations of each sample. The average PLV is the mean
of H seconds PLV. One channel EEG signals are as a time series. Different
channel pairs can be constructed by pair-wise channels. Then we can get a n×n
symmetric matrix V as below:

V =

⎡
⎢⎢⎢⎢⎢⎣

1 v12 . . . v1n

v21 1 . . . v2n

...
...

...
...

v(n−1)1 v(n−1)2 . . . v(n−1)n

vn1 vn2 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

(5)
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Figure 1 shows the symmetric matrix V. We use it as the coherence matrix
of brain networks [17].

Fig. 1. The symmetric matrices V obtained from a data set with 22 channels

2.3 Degree of Brain Networks

The concept of brain network is derived from graph theory [18]. Generally, a
weighted undirected graph G consists of a set of nodes N , a set of undirected
edges between nodes E and a set of weights W that describes the strength of
the connections, namely G = {N,E,W}.

In this paper, each channel is considered as a node in brain networks. Phase
synchronization between channels is used as the connection strength. We describe
the phase synchronization of EEG signals by using PLV. The degree of brain
networks is used as features for brainprint recognition.

The degree of brain networks represents the number of edges connected to
the node, which is an essential attribute of the graph. For an undirected graph
G, the degree of node kw

i represents the sum of the connection strength of the
connected edge, wij ∈ W . It is defined as below:

kw
i =

∑
j∈N

wij (6)

Linear discriminant analysis (LDA) is a typical data analysis method for
dimension reduction and classification [19]. We utilize it to classify the extracted
features for brainprint recognition.

2.4 Summary of the Proposed Method

The detailed steps of the method are shown in Fig. 2. The method includes
several stages: signal preprocessing, calculate the mean PLV symmetric matrix
as a coherence matrix of the brain function network, use the degree of nodes
of the brain network as features for brainprint recognition, utilize LDA for
classification.
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Fig. 2. Framework of the proposed method.

3 Experiments

3.1 Data Acquisition

We focus on studying brainprint recognition in task-free state, so that four data
sets are used in this paper. The first data set obtains from BCI Competition 2008
- Graz data set A [9]. It contains 9 subjects. We call it BCI data. The second
data set obtains from the BNCI Horizon 2020 project [10]. It is a two-class motor
imagery task data set. There are 14 participants. We talk about it as Motor
data. The third data set is collected from an experiment with 20 subjects [11].
We call it NMk data. The fourth data set is collected through a fatigue driving
experiment [12]. This experiment includes 12 subjects aged between 23 and 25.
We talk about it as DRI data.

For each dataset, we intercept 480s long raw data of each subject. 30s pro-
longed non-overlap segments are selected to calculate the mean PLV which is
used to construct brain networks. There are 16 samples collected from each sub-
ject. For each subject, half of the samples are used as training samples. The
other half is used as test samples.

3.2 Feature Analysis

The degree of brain networks is used as the features of brainprint recognition,
which has certain particularity for each subject. In a brain functional network
based on EEG signals, an electrode channel represents a node. The degree of
brain networks is an important feature for brainprint recognition. We obtain the
mean value of the degree of brain networks for all samples of each subject. These
mean values are used as EEG information carried by each channel. We draw the
brain topographic maps to show the features in a visual way. The DRI data are
taken as examples shown in Fig. 3.
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Fig. 3. Brain topographic maps of 12 subjects in DRI data.

Figure 3 shows the brain topographic map of 12 subjects. In DRI dataset, the
subjects are asked to perform simulated driving tasks and have to drive under dif-
ferent conditions. It consists of eight conditions or stages. Fatigue driving tasks
are complex. Cognitive reactions of subjects are distinct for different tasks. It can
be seen from the figure, for each subject, the distribution of the strength shows
significant differences. The same statement does not exist between every two sub-
jects. This indicates that the degree of brain networks of each subject is unique.

In order to better prove the conclusion, we calculate the mean value of the
average of the degree of brain networks among each subjects. A mean value rep-
resents a subject. Then the variance of each subject is calculated. Furthermore,
we also calculate the variance of all subjects. The BCI data set is taken as an
example and the results are shown in Fig. 4.

It can be seen from the figure, the variances of each subject and the variance
of all subjects (i.e., within-class variance and between-class variance) have a
significant gap. All subjects’ variance is larger than each subject’s variance.

Fig. 4. The variance of each subject and all subjects
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3.3 Classification Results

EEG signals are rhythmic and behave differently in different frequency bands.
Four bands are used to study the brainprint recognition based on EEG signals.
We make a comparison to explore in which band the degree of brain networks
would have better performance. For each data set, the samples are randomly
divided into test set and training set. Ten times are performed. Then classifica-
tion accuracies can be obtained. Figure 5 is the result of four frequency bands
on four data sets.

Fig. 5. Four frequency bands classification accuracies for datasets. (a) BCI data; (b)
Motor data; (c) NMK data; (d) DRI data.

It can be seen that the accuracies of beta and gamma frequency bands are
significantly higher than that of alpha and theta frequency bands in four data
sets. According to the experimental results, based on the phase information of
EEG signals, we believe that brainprint recognition based on brain networks will
achieve better performance in beta and gamma frequency bands.

Average values of ten times recognition accuracies are computed. Table 1
show the recognition accuracies of four data sets in the beta frequency band.

As can be seen from Table 1, the average accuracies of ten times are above 0.99
for Motor data and DRI data. Results show that the degree of brain networks is
well done in brainprint recognition for different data sets.

In addition, we compare the experimental results with [20]. Nguyen et al.
used the mel-frequency cepstral coefficients (MFCCs) to extract features and
evaluated this method in EEG-based datasets, which included BCI data. The
recognition accuracy rate was 46.24%. Compared with the MFCCs, our method
has significant advantages (50.57% higher). The results are shown in Table 2.
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Table 1. Average recognition accuracies of four data sets

1 2 3 4 5 6 7 8 9 10 Average

BCI data 0.972 0.972 0.972 0.972 0.972 1 0.917 0.986 0.931 0.986 0.968

Motor data 0.973 0.991 0.991 0.991 1 0.991 0.991 0.982 1 1 0.991

NMk data 0.913 0.944 0.925 0.944 0.956 0.956 0.931 0.919 0.956 0.925 0.937

DRI data 1 1 0.979 1 1 1 1 0.979 0.979 0.990 0.993

Table 2. Brainprint recognition accuracy of BCI data obtained by degree of brain
network and mel-frequency cepstral coefficients

Recognition accuracy

Degree of brain network 96.81%

Mel-frequency cepstral coefficients 46.24%

4 Conclusion

In this paper, we have carried out the research on brainprint recognition of
different data sets. The symmetric matrix is used as the coherence matrix of brain
network, which is constructed by PLV. The degree of brain networks is used to
form feature vectors. LDA is classifying the test sample to obtain the final result.
We evaluate this method on four EEG data sets that subjects execute different
tasks. The average recognition accuracies are all above 0.93. The best accuracy
of this method is above 0.99. The beta and gamma frequency bands have better
recognition result based on the phase information of the EEG signals. During the
experiment, we find that degree of brain networks is of considerable difference
among different subjects. It is clear evidence that the feature vectors combined
with the degree of brain networks are effective for brainprint recognition.
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Abstract. Reservoir Computing (RC) is a paradigm for efficient training of
Recurrent Neural Networks (RNNs). The Echo State Network (ESN), a type of
RC paradigm, has been widely used for time series forecasting. Whereas, few
works exist on classification with ESN. In this paper, we shed light on the use of
ESN for pattern recognition problem, i.e. emotion recognition from Electroen-
cephalogram (EEG). We show that the reservoir with its recurrence is able to
perform the feature extraction step directly from the EEG raw. Such kind of
recurrence rich of nonlinearities allows the projection of the input data into a
high dimensional state space. It is well known that the ESN fails due to the poor
choices of its initialization. Nevertheless, we show that pretraining the ESN with
the Intrinsic Plasticity (IP) rule remedies the shortcoming of randomly initial-
ization. To validate our approach, we tested our system on the benchmark
DEAP containing EEG signals of 32 subjects and the results were promising.

Keywords: Echo state network � Intrinsic plasticity � Feature extraction �
Classification � Electroencephalogram � Emotion recognition

1 Introduction

Emotion is defined as a mental state and an affective reaction towards an event based on
subjective experience [1]. In psychology, there is a difference between discrete emotions
and affective states. Ekman [2] grouped emotions into six different categories such that
happiness, sadness, surprise, disgust, anger, and fear. While, Russell [3] defined emo-
tions in the bipolar model, valence and arousal dimensions are explored. The valence is
ranged from negative (unpleasant) to positive (pleasant), and the arousal is the activation
level of the emotion. Later, a three-dimensional Pleasure-Arousal-Dominance
(PAD) model was proposed by Mehrabian and Russell in [4]. In this model, a third
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dimension is added called dominance. It represents the controlling and dominant nature
of the emotion. It ranges from submissive (or without control) to dominant (or in
control/empowered).

Emotion recognition is a pattern recognition problem. Thus, the recognition process
involves all basic steps in that area beginning with preprocessing, dimensionality
reduction and classification. Dimensionality reduction basically consists in feature
extraction selection. For instance, in a handwritten recognition problem, several works
proposed new features [5, 6] while other approaches focus on the learning process to
achieve better recognition rate [7–10]. For the case of EEG signals, the main goal is to
be able of training the classifier in such a way that when new instances are presented,
they are correctly classified. The current work deals with the proposition of a new
method for feature extraction, to know, the use of the hidden layer of the Echo State
Network (ESN) [11] pretrained with the intrinsic plasticity rule (IP) [12] for the feature
extraction from the preprocessed EEG raw data.

In this paper, we proposed an ESN for EEG-based emotion recognition adopting
the two-dimensional model of emotions. We have not found any other methodology
using ESNs for emotion classification with EEG signals as input. We don’t make use of
signal processing techniques to do that, but we input a temporal signal to the ESN.
Furthermore, we have not found any other work using RNN to test the DEAP
benchmark [13]. It contains 1280 EEG trials of 32 subjects using a Biosemi cap with 32
channels. These are our two main contributions to the state of art in this topic.

The remainder of this paper is organized as follows: Sect. 2 gives an overview of
the proposed approaches for EEG-based emotion recognition. Section 3 first presents
the general architecture of ESN, secondly, introduces the IP rule and details the pro-
posed approach. Section 4 first describes the DEAP dataset and then gives the
experimental results and discussion. Section 5 summarizes the paper and outlines our
future work.

2 Related Works on Emotion Recognition

During the past few years, EEG-based emotion recognition research has progressed
rapidly. In this section, we provide an overview of the current state-of-the art EEG-based
emotion recognition with the recognized emotions in Table 1. Most of works, classify
emotions into positive and negative (P/N) of valence dimension and LA/HA according
to the excitation level of arousal dimension. Four classes can be composed by com-
bining Low/High Arousal and Low/High Dominance, which includes HAHD, HALD,
LAHD and LALD. Besides, combination of valence, arousal and dominance can give 8
emotional states that we will explore in Sect. 4.

Most of the existing approaches are based on the power spectral features using
Short-Time Fourier Transform [14] and statistical methods like Fractal dimension [14].
Moreover, Recurrence Plot analysis is used for the extraction of non-linear features as
in [15]. In contrast, few works as in [18, 19] didn’t perform the feature extraction step
and classified the raw EEG signals using the Hidden Markov Model (HMM) and Deep
Belief Network (DBN). In the current work, ESN has as input the preprocessed EEG
raw and the classification is also performed by the readout layer.
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According to Table 1, it is clear that several approaches are based on Support
Vector Machines (SVM) [13, 14, 17]. Whereas, other approaches are based on the use
of deep neural networks such as DBN [19] and Graph regularized Extreme Learning
Machine (GELM) [20]. Note that, [14, 16] have selected only 10 and 8 participants
EEG signals, respectively, from DEAP dataset for classification.

Bozkhov et al. [21] fed the ESN with all data from a private EEG dataset. They
only used the hidden layer of ESN pretrained with IP to have a new representation of
the EEG dataset. Next, a feature selection step is done by using projection of 2D, 3D
and 4D of the new representation. They achieved 76.9% with using Linear Discrimi-
nant Analysis (LDA). But, the projection step is very complex and hence the com-
putational time is high. The main difference between our work and that of [21] is that
we use ESN as an architecture for both representation of input data and its classifi-
cation. This will be detailed in the next section.

3 The Proposed System for Emotion Recognition

In the current work, we proposed a novel approach for emotion recognition. It consists
in using the reservoir computing for feature extraction and classification. Our approach
is mainly based on two pioneering works [12, 21]. In this line, we explore the ESN
model and the adaptation of its internal dynamic with the IP.

Table 1. Existing methods for emotion recognition form DEAP dataset

Refs EEG Features Classification Emotions Accuracy (%)

[13] Power spectral features SVM 2 (LA/HA) 62
2 (P/N) 57.6

[14] Statistical features, fractal
dimension features and power
bands features

SVM HAHD,
HALD,
LAHD,
LALD

63.04

[15] Non-linear features KNN 2 (P/N) 58.05 ± 0.093
2 (LA/HA) 64.56 ± 0.107

[16] Ontological concepts Ontological
model

2 (P/N) 75.19
2 (LA/HA) 81.74

[17] Two-part generative model
representation from Segment
level features

SVM 2 (P/N) 70.9 ± 11.4
2 (LA/HA) 67.1 ± 14.2

[18] raw EEG signal HMM 2 (P/N) 58.75 ± 3.8
2 (LA/HA) 55 ± 4.5

[19] raw EEG signal DBN 2 (P/N) 58.4
2 (LA/HA) 64.3

[20] Differential entropy features GELM HAHD,
HALD,
LAHD,
LALD

69.67
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3.1 Echo State Network Model

ESNs are a kind of recurrent neural network originally proposed by Jager [11]. It
consists of a three layered network: the input layer which contains the input, the hidden
layer called the reservoir and the output layer often called readout layer. It looks like
the basic feedforward neural network, but enriched with recurrence in the reservoir
Wres, possible feedback connection from the output layer to the reservoir Wfb and a
possible connection from the input to the output layer. Jager et al. [11] proposed the
ESN accelerating the learning process. The manner to get such situation is through the
random initialization of weights of the network and selecting just the weights from the
connections between the hidden units and the readout units to be trained. Many models
were proposed for time series prediction (e.g. [22, 23]), but ESN as a model outper-
forms existing works in that field as in [24].

ESNs are powerful tools for data representation yet quite algorithmically simple.
Input data is encoded through a non-linear transformation into a high dimensional state
space. Note that, the recurrent connections implement a short-term memory by means
of transient network states. The non-linearity with the memory allows us to capture the
EEG dynamics signals and to represent them as spatio-temporal patterns. We believe
that the reservoir is able to perform to the feature extraction, a fundamental and very
important step in the emotion recognition process.

Figure 1 illustrates the proposed architecture, the recurrent connections are only in
the hidden layer, there is not feedback connections.

As input, the ESN capture the preprocessed EEG signals. The reservoir generates a
new representation of the input data. The activation states of the reservoir are con-
sidered as a feature vector. The last layer is the classification step. The latter is per-
formed using the following equation:

y tð Þ ¼ Woutðx tð ÞÞ ð1Þ

where x tð Þ is the activation state vector at time step t.

Fig. 1. The proposed architecture for EEG-based emotion recognition
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Fast training, dynamic non-linear behavior in the reservoir and having the memory
thanks to the recurrent connections are all the key ingredients of the success of the
ESN. Nevertheless, many works have reported that due to the initial random states the
reservoir has not or has a late stable behavior. The question, here, is how to guarantee a
stable behavior in the reservoir.

As a first initiative, Jager proposed to use the so called “echo state property”. The
maximal absolute eigenvalue of the reservoir connections weights should be less than
one q Wresð Þ\1, this is the so called “spectral radius”. The new matrix connections will
be the division of the randomly generatedWres by the calculated spectral radius q Wresð Þ.
This condition ensures that the ESN have validated the echo state property and in this
manner the reservoir will be sparse. However, the sparsity still does not guarantee that
the ESN will converge in all cases. Besides, several approaches have been proposed for
the optimization of the ESNs using Particle Swarm Optimization as in [24, 25].

From a biological point of view, Triesh [12] was the first who proposed the use of
IP in the neurobiological model.

Since we have used the IP as a pretraining algorithm, we did not give here the basic
mathematical representation of the ESN as proposed by Jager [11]. Instead, we present
the adapted equations by the IP rule in the next sub-section.

3.2 The Pretraining with the Intrinsic Plasticity Rule

In order to achieve an optimization of the reservoir, we follow previous works in which
they used the IP rule [12, 26–28]. Inspired by biology, Triesch [12] proposed the
concept of intrinsic plasticity. It is thought of as changes to neuron’s activation function
from f xð Þ to f ðaxþ bÞ, it is not an update of weights that traditional training algorithms
realize. Actually, the biological neuron does not adapt its synapses, it adapts its
intrinsic parameters. Triesch derived the IP rule for fermi activation function and for an
exponential desired distribution. Thereafter, Schrauwen et al. [28] extended IP con-
sidering also hyperbolic tangent as an activation function with Gaussian desired
distribution.

The aim of the IP is to maximize information at the output of a single neuron, it
contains the maximum information about its input. Entropy maximization ensures the
information maximization. So, the neuron will be able to adapt its response in an
autonomous way to the desired distribution. Equation (2) measures the distance
between the actual probability density p xð Þ of the neuron’s output and the targeted
probability density pdðxÞ using the Kullback-Leiber divergence metric [12].

DKL p xð Þ; pd xð Þð Þ ¼ Z
p xð Þlog pðxÞ

pdðxÞ
� �

dx ð2Þ

With respect to the Gaussian distribution with µ as mean and r as a standard
deviation, the Kullback-Leiber divergence becomes as shown in Eq. (3).

DKL p xð Þ; pd xð Þð Þ ¼ �H xð Þþ 1
2r2

E x� lð Þ2
� �

þ log
1

r
ffiffiffiffiffiffi
2p

p ð3Þ
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Therefore, IP will be a compromise between the maximization of the actual entropy
H and the minimization of the expected entropy E. To achieve this balance, at each
time step the neuron’s gain a and bias b are updated using Eqs. (4) and (5) where g
represents the learning rate.

Da ¼ g
a
þDbðWin þWresxÞ ð4Þ

Db ¼ �g � l
r2

þ x
r2

2r2 þ 1� x2 þ lx
� �� �

ð5Þ

Thus, the activation state of the hidden neural units is defined by Eq. (6).

x tð Þ ¼ f resðdiag að ÞðWinin tð ÞþWresx t � 1ð ÞÞþ bÞ ð6Þ

The update of the gain and bias in the IP with both the hyperbolic tangent and
Gaussian distribution has the exactly same effect as when using fermi and exponential
distribution. For this reason, Schrauwen et al. [28] claimed that the relation is inde-
pendent of the chosen non-linearity function and the targeted distribution.

4 Experimental Results

In this section, we aim to validate our proposed approach. So, it was tested on the
DEAP benchmark in order to be able to compare our results to the current
state-of-the-art methods. Thereafter, we have studied the effectiveness of IP on the
emotion recognition process, as well as on the size of the reservoir.

4.1 DEAP Dataset Description

The DEAP dataset is a challenging benchmark. It provides up to 1280 EEG trials. The
format varies from the EEG raw data with noise (file extension is.bdf) to the preprocessed
EEG raw data. The emotions in the DEAP dataset are expressed in the three-dimensional
space such that arousal, valence and dominance. Consequently, we have used it for
binary classification problem to discriminate positive and negative emotions, low and
high arousal. Besides, Table 2 shows 8 emotional states as done in [14].

4.2 Experiment Settings

For the ESN model, the input size depends on the EEG signals and the output size is
determined by the classes of emotions to discriminate. Actually, the ESN performance
is conditioned by the selection of a number of hypermeters which are:

• Reservoir size NR: It is the number of neurons in the hidden layer of the ESN. In
fact, when the fixed size is superior to the length of the input signal, the role of
reservoir is the expansion of the input into a high dimensional space. Otherwise, the
reservoir role is the compression of the input signal, which is our case.

Optimized Echo State Network with Intrinsic Plasticity 723



• Spectral radius q Wresð Þ: Jaeger [11] has recommended to satisfy the Echo State
Property. And this is by setting the q Wresð Þ below 1. We remind that the spectral
radius is defined as the largest absolute eigenvalue of the internal weight matrix,
Wres. Scaling the latter will ensure that the length of the activity vector stays about
the same after each iteration. This allows the input to echo around the network for a
long time.

• Sparsity degree: It consists in setting most of the weights to zero. So, two cases are
envisaged, ESN model will be either densely connected with smaller internal
weights, or sparsely connected with higher internal weights [11]. Stability can be
maintained in either case, however, other characteristics of the network may change,
and an excessive sparsity degree will lead to stronger coupling of neural internal
states and reduce the diversity of the neuronal states in the reservoir.

• Input scaling Win 2 ½Wmin
in ;Wmax

in �: It is very important to set the random connections
very carefully so the ESN does not explode or die [11]. The scaled inputs need to
drive the loosely coupled oscillators without wiping out the information from the
past that they already contain.

Unfortunately, while the setting of ESN model was recommended to be done
carefully, there is not an automated method allowing us to determine the optimal
hyperparameters values. So, we fixed varied values and we have tested the ESN model
on DEAP benchmark. The input weights were scaled between −0.1 and 0.1. The
internal weights Wres values were scaled between −0.5 and 0.5. We also varied the
reservoir size from 500 to 1500. In other words, each EEG preprocessed signal is
encoded into a 500-D or 1000-D or 1500-D vector by ESN with IP for final
classification.

Schrauwen et al. [28] proved that the reservoir states converged to the targeted
distributions. They suggested to use zero value for the mean, 0.1 for the variance and
for 0.0005 the learning rate. For the gain vector, it is also initialized to ones et the bias
vector is initialized with zeros. It has been showed that the IP training can be stopped
after performing 5 to 10 iterations. Koprinkova-Hristova [29] has found the same
conclusion. The author added that unlike supervised algorithms which look to fit the
output to a target data, the IP procedure aims to fit the internal units’ responses to
reflect input data structure.

Table 2. Mapping emotional states into the VAD model

Valence Arousal Dominance Emotional state

Positive Low Low Protected
Positive Low High Satisfied
Positive High Low Surprised
Positive High High Happy
Negative Low Low Sad
Negative Low High Unconcerned
Negative High Low Frightened
Negative High High Angry
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4.3 Results and Discussion

We have evaluated the performance of our system on the DEAP dataset. The influence
of the number of iterations of IP is studied as well as the number of neurons in the
reservoir. We examine the binary classification problem depending on the level of the
valence or the arousal as well as a multi-labels classification problem, i.e. the case of 8
emotional states.

Each EEG channel signal is encoded in 8064 data for a period of 60s. ESN-IP was
fed with a single channel data with each correspondent label. ESN output is the
predicted label for one channel. To classify an EEG trial, we averaged all predicted
labels of 32 channels to get a percentage. Next, the label is the one which has the higher
percentage.

According to Table 3, our proposed approach shows higher recognition rate than
the existing approaches. Thereby we report the best results found with reservoir size
1500 and 10 IP iterations.

There is only one work using 8 emotional states [30] which found 69.53% as result.
When compared with this work, our system has relatively lower accuracy classification
up 68.79%. But, we recall that the input type is not the same and this influences on the
performance measure.

Throughout the experimental results, we have validated the effectiveness of the
ESN model for ensuring the emotion recognition process. When compared with one or
two works having the same input as ours, i.e. a raw EEG signal, the ESN model
outperforms the proposed systems in [18, 19]. The main contribution of the current
work is to prove that the ESN, more specifically the reservoir, is able to generate a
feature vector for classification of emotions.

5 Conclusion

The goal of this paper is to understand the ability of the ESNs for feature extraction and
classification. Actually, our system captures the EEG raw signal and relays it to the
reservoir. The latter plays the role of a kernel such that it projects the input into a high
dimensional space. More specifically, the reservoir performs the extraction of
spatio-temporal features from EEG signals. It is believed that the random initializations
of the ESNs are their big flaw, but in our work, we address this problem by using the IP
rule which guarantees to have a Gaussian distribution of reservoir neurons responses, in

Table 3. ESN-IP results for emotion discrimination in comparison with existing methods

References Valence accuracy (%) Arousal accuracy (%)

System based on HMM [18] 58.75 ± 3.8 55 ± 4.5
System using DBN [19] 58.4 64.3
The proposed ESN based on IP 71.03 – 1.2 68.28 – 1.7
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other words stable behavior of the reservoir. Comparing to the state-of-the-art methods,
we have found encouraging results on the DEAP benchmark.

The proposed system is the first to consider the EEG as spatio-temporal input for
the ESN, it is neither a feature vector nor a power spectral density. Nevertheless, the
current study was mainly conducted to ensure the emotion recognition task. The choice
of the ESN hyperparameters was not varied, hence a future sensitivity analysis of the
performance on these hyperparameters will be conducted. This is due to lack of
existing tools for finding the optimized values of ESN hyperparameters. Until now,
these choices are test and trial. Moreover, we will focus on studying the plasticity effect
on the reservoir for the emotion recognition problem as well.
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of Higher Education and Scientific Research of Tunisia under the grant agreement number
LR11ES48.
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Abstract. Near-infrared spectroscopy (NIRS) has been widely used in medical
imaging to observe oxygenation and hemodynamic responses in the cerebral
cortex. In this paper, the major target is reporting our current study about the
computational investigation of functional near infrared spectroscopy (fNIRS) in
the somatosensory region with noxious stimulations. Based on signal processing
technologies within communication network, the related technologies are
applied, including cross correlation analysis, optic flow, and wavelet. The visual
analysis exposed pain-related activations in the primary somatosensory cortex
(S1) after stimulation which is consistent with similar studies, but the cross
correlation results strongly evidenced dominant channels on both cerebral
hemispheres. Our investigation also demonstrated that the spatial distribution of
the cortical activity origin can be described by the hemodynamic responses in
the cerebral cortex after evoked stimulation using near infrared spectroscopy.
The current outcomes of this computational investigation explore that it is good
potential to be employed to deal with pain assessment in human subjects.

Keywords: Brain-computational investigation � Brain-machine interface �
Brainwave feedback

1 Introduction

1.1 A Subsection Sample

Brain activity and its related research have been drawing huge attention from various
researchers in different areas, such as biomedical science, medical science and
engineering. The current research in this paper is a part of the collaborations
between the University of Canberra, Australia and Taipei Medical University, Taiwan.
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As pain detections for non-verbal people (or patients) would be a big challenge in
clinical processing. We are primarily expecting our research outcomes will explore
some relevant information between pain and pain-control for those people who have
oral and/or writing difficulties to make a communication to a doctor, such that it could,
in the foreseeable future, improve the quality of medical services in real time. As an
example, it may be possible for mitigating the pain for a patient who is undergoing an
oral operation in real time.

We have gained from the rapid developments of high technologies, including
medical science, such as applications of near-infrared spectroscopy (NIRS). An NIRS
is a non-invasive optical imaging technique that can be used as a non-invasive neu-
roimaging method to obtain brain activity by measuring real-time changes of oxy-
genated (HbO) and deoxygenated haemoglobin (Hb) in real time. The NIRS
technology can make a design of lower cost, portable equipment, and wearable imaging
caps with real-time processing. This neuroimaging technique can be used to assess
cortical activity in diverse experimental and clinical applications. As an outcome, it has
been successfully applied in both research and medical settings to assess cerebral
functioning. In particularly, functional NIRS (fNIRS) has many applications in brain
computer interface (BCI) [1, 2] brain activity studies in active and resting states, pain
research [3, 4] face processing [5, 6], and language training and improvements [7, 8].

In order to take the challenge for an effective detection of cortical activity in a brain
many researchers have used different methods to improve the cortical activity, such as
contrast to noise ratio (CNR) [8], principal component analysis (PCA) [9], and prob-
abilistic analysis for a brain network [10]. However, there is little description about the
relation mapping active region in a brain responding to evoked stimulations.

In this paper, we shall demonstrate our novel algorithm for a close look at spa-
tiotemporal characteristics of brain activities in NIRS responding to the evoked stim-
ulations from near infrared spectroscopy. The medical images clearly present the
obtained oxygenation and hemodynamic response in the cerebral cortex. The features
against the hemodynamic responses after acupuncture stimulations are also presented.
In Sect. 2, it is describing experiment design and related theoretical analysis methods.
Section 3 is about the experimental results and discussions. Finally in Sect. 4, a con-
clusion for this paper will be presented. These outcomes of the computational inves-
tigation strongly recommended that the obtained spatiotemporal features are helpful for
understanding the function of active regions in the brain. Those features explored will
be expected for the future real life applications, such as pain mitigation.

2 Experiment Designs and Theoretical Analysis Methods

2.1 Experiment Designs

For our experiments, there is a group randomly picked up from the volunteers, healthy
individuals (1/3 females, 2/3 males) with ages between 25 to 35 years old. No par-
ticiparits reported a prior history of neurological or psychiatric disorder. All the
stimulations are running at right-handed. The participating people were examined again
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before our experimental works to make sure all the subjects have no significant medical
disorder and any current unstable medical condition or currently under any medication.

The configuration for the current experiment was using two probes of 12 channels
each to measure neurologic activity, which is shown in Fig. 1. The area examined was
the bilateral motor cortex area, where it is expected to have hemodynamic responses in
the somatosensory cortex area (S1) [11, 12]. According to the international EEG 10–20
system [13], the probes were centered on the C3 and C4 position.

2.2 Implementing Experiments

This investigation is part of research collaboration between the School of Oral Medi-
cine of Taipei Medical University (TMU, Taiwan) and the University of Canberra,
Australia (UC, Australia). The study and methods were carried out in accordance with
the guidelines of the Declaration of Helsinki (DoH) and approved by full-board review
process of the TMU-Joint Institutional Review Board under contract number
201307010.

Hemodynamic data were collected using an optical topography system (ETG-4000,
Hitachi Medical Corporation, Tokyo, Japan). All experiments were carried out at the
Laboratory at TMU with the conditions of a quiet, room temperature (22–24o) and
room humidity (40–50%) via a controller at the laboratory room. The experiments were
done in the morning (10:00 am–12:00 pm) and each experiment lasted around 30 min.
In order to obtain stimulation-related activation in the cerebral cortex, acupuncture was
used to induce pain stimulation in a safe manner. Traditional Chinese acupuncture
techniques were performed by a professional acupuncturist of TMU Hospital. The
acupuncture point (acupoint) used for the stimulation was at the “hegu point,” which is
located between the thumb and forefinger in the back of the hand. The acupuncture
procedure consisted of three types of acupuncture stimulations (tasks) [14]: the first
stimulation is needle insertion (T1), the three following stimulations are needle twirl to
increase Qi (T2), and the last stimulation is needle removal (T3). All acupuncture
stimulations lasted five seconds. Pre-time and resting time (Rt) between acupuncture
stimulations was 30 s, post-time was 10 s. The complete data experiment is described
in [14], this data set was used as primary source of our study.

Fig. 1. The probes locations and their channels. The measuring probes were centered on the C3
and C4 of the international 10–20 system; right hemisphere (channels 1–12) and left hemisphere
(channels 13–24).
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2.3 Channel Cross Correlation Analysis

In order to investigate the relations against the time base, cross correlation is used to
calculate the temporal similarity among the channels and identify the dominant
channels on both hemispheres. This time-dependent analysis provides evidence for the
presence of regions where the cortical activity can be associated with increased
localized cerebral blood flow. The time cross correlation function was running among
channels 1 to 12 in the right probe and 13 to 24 in the left probe (refer to Fig. 1). The
time cross correlation between two waveforms x(t) and y(t) can be defined as Eq. (1) as
follows:

rxyðsÞ ¼
X1
�1

xðtÞyðt � sÞ: ð1Þ

Here, s is dummy variable for the time-lag between x(t) and y(t), the variable of ϒxy

represents the difference (lag/lead) between channel signal y(t) and channel signal x(t).
The cross correlation values between the two channels in the same probe are done by
the stimulation from –40 s to +40 s at a sampling rate of 10.

2.4 Optical Flow Analysis

Optical flow (OF) can be defined as a “flow” of pixel values at the image plane in terms
of time varying for the images. It is an algorithm that performs at pixel level and
estimate local displacement or checking the change velocity between two
temporally-consecutive images. In other words, optical flow is referring to the per-
ceived motion of an object in a field of view by an image sensor or human eye [15, 16].
In our case, we applied an optical flow algorithm to evaluate the time and spatial
relationship between channels, in terms of intensity of distributions of stimulations. To
the best of our knowledge, this is the first study where OF is used as dynamic analysis
method of activation of NIRS signals.

2.5 Wavelet Analysis

It is obviously the fact that the brain’s responses to the stimulations signals are the
functions of both time and spatial. Hence, we can analysis the responses and obtain the
information of brain activity in terms of temporal domain, or in terms of spatial
domain, however, we could not obtain the information from both temporal and spatial
domains simultaneously due to “Heisenberg uncertainty principle”.

Fortunately we can use wavelets to create a way to do so at a reasonable level.
Mallat algorithm is one of the most popular wavelet algorithms used in different areas
of research. The algorithm is based on a multi-resolution pyramid decomposition and
synthesis method. Similarly, Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet trans-
form (WT) is another lifting scheme based wavelets transform that can reduce the
computational complexity [17, 18]. Following the notations used in our previous
research [17, 18] the mathematical representations of yL and yH can be defined as
below:
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yLðnÞ ¼
PNL�1

i¼0
ĥðiÞxð2n� iÞ

yHðnÞ ¼
PNH�1

i¼0
ĝðiÞxð2n� iÞ

8>><
>>: ;

where the variables NL and NH are the lengths of low pass and high pass filters
respectively. The current aim is to find out when the signal response in the brain
network is actually completed after the stimulations. We assume that the objective of
compressive sensing de-noising process is to estimate the original image x with
dimension N � N, pixels by corrupted together with noise (or a disturbance based on
the stimulation), n, from the following equation:

f ¼ xþ n ð2Þ

The real sample of signal, f, that could be represented by transform coefficients x,
which is

f ¼ Wx ¼
XN
i¼1

xi þ niÞwi: ð3Þ

Here w ¼ ½w1;w2; . . .;wN � is the transform basis matrix using by sparsity transform
and s = [(x + n)1, (x + n)2, …, (x + n)N] being an N-vector of coefficients and there are
only with S < <N significant elements in x. Hence, we sample from mixing matrix or
measurement matrix F that is stable and incoherence with matrix transform Y:

Y ¼ Uf ¼ UWx ¼ Hðxþ nÞ ð4Þ

Here H is the compressive sensing matrix. We need to reconstruct the original
signal from the observation. It is well know that sparsity is a fundamental principle in
fidelity reconstruction, and noise is not sparse in the standard domain. Therefore, we
can reconstruct the exact signal due to sparsity. Our major interest is to find out how
does the “n” decay to the value less than the threshold value we designed, which
indicates the “stimulation processing” is approximately close to the completed status.
The flow chart of computing this situation is shown in Fig. 2. We take the ith n, denoted
as ni, and comparing it with the threshold at t = i, denoted as, thredi. If ni is larger than
the threshold, thredi then we shall take this case as that the active region in the brain is
keep going (hence, no reaction will take), or if it is less than the threshold at this time,
we shall take the case that at t = i, the activity brain is approximately close to the end of
process and will be picked it up as targeted image.

We are, from [17], [18], applying them in different way as we are interested in
when the stimulation processing is effectively completed after the current stimulation,
which is given by
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Tðj; lÞ ¼ b
r2j;l
r2w;j;l

r2j;l ¼ medianðjHPj;ljjÞ
0:6745

� �2

r̂2w;j;l ¼ maxðr̂2y � r̂; 0Þ;
ð5Þ

where, r̂2y ¼ 1
M�N

PM;N

j;l¼1
y2j;l, b is the parameter define by threshold. With proposed

threshold, a “de-noised” (for this paper, it is for separating the original part and the
changed part) OMP/BP (optimum pass/bandpass) coefficient x̂T ;j;l is calculated as
follows:

x̂T ;j;l ¼
xr;j;l½xr;j;l�Ta�

jxr;j;lj for jxr;j;lj � Tðj; lÞ
0 for jxr;j;lj\Tðj; lÞ

(
ð6Þ

where, xr,j,l is the coefficients value after image reconstruction by OMP/BP. Here, a and
b are smooth signal parameters and we have chosen a = 20 and b = 0.3 due to the
experimental base [17, 18].

3 Experimental Results and Discussions

When it is completed for the applications of the noxious stimulation to the subject, we
observed the responses of Oxyhemoglobin (HbO) in different channels on both
hemispheres. The purpose of this observation is to find out whether the obtained visual
results can show any relation between significant active areas and patters in the NIRS
data. The analysis showed dominant areas where the HbO concentration was higher
and also showed propagation delays from more-active areas to less-active areas. As
examples, three images are shown in Fig. 3 for subject 4 and subject 5.

From Fig. 3, it is observed that these two examples showed the regions with higher
activation after the stimulation. The NIRS data exhibited these areas in all subjects on

Fig. 2. Proposed image de-noise framework based on compressive sensing can be used for
checking whether the “stimulation completed” is done or not.
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both hemispheres. These patterns present the activation area on the cerebral cortex. We
can observe that the brain activity response increased to channel 7 (Ch7 in subject 4) on
the right hemisphere and the area around channel 16 (Ch16 in subject 5) on the left
hemisphere. These two areas are part of the postcentral gyrus in the parietal lobe.

The postcentral gyrus is the location of the primary somatosensory cortex (S1) area
that is involved with the perception and modulation of painful somatosensory sensa-
tions. It is important to confirm the fact that the cortical activity presented a bilateral S1
activation after the acupuncture stimulation. Our experimental results and confirma-
tions are consistent with other similar studies. Nevertheless, other experiments have
reported that pain activation can also be detected in the secondary somatosensory
cortex (S2), the anterior cingulate cortex (ACC), and the insular cortex (IC) [11, 26].

We can obtain the brain activation by using the stimulation reactions from the color
patterns or OFs. As the distributions of the intensity and direction represent the activity
features, we can also make the prediction of the activity. As shown in Fig. 4, two
examples of the optical flows predict the progressions of activated areas in time are
presented.

In the top panel of Fig. 4, two image frames (t1 and t2) showed a constant increase
(expansion) of cortical activity in the dominant region, it is noted that the weak regions

Fig. 3. Activated areas present in the NIRS data. “A” (see the top row) Dominant region around
Ch7 on right hemisphere in subject 4. “B” (see the bottom row) Dominant region around Ch16
on left hemisphere in subject 5.

Fig. 4. Optical flow for movement prediction for cortical activity. (A) The top panel is the
images taken on the left hemisphere (Ch13 to Ch24) from the subject 3. (B) The bottom panel
represents the frames taken on the right hemisphere (Ch1 to Ch12) from subject 6.
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shrink (dotted circle). In fact, the colour pattern also showed that the weaker areas
become stronger; this indicates that the stimulations are in continuous process. This
phenomenon is more evidence using the motion vectors of the optical flow result; in
this image we can see the expansion (outer movement) of OF vectors from dominant
channel Ch16 and the contraction (inner movement) of OF vectors to Ch18.

Therefore, these results show that by using the optical flow field it could be possible
to predict the direction of the cortical activity.

It is interesting that we can further show the relations between the OxyHemoglobin
samples and the OF, which are shown in Fig. 5.

From the above descriptions and observations, we come to the fact that a stimu-
lation is a processing and its behaviors can be expressed partially by either OxyHe-
moglobin time waves (hence we can calculate its speed information) or OF or colour
activity areas (hence we have spatial information). However, if we would like to know
both exact time and spatial information simultaneously about the stimulation process, it
would be impossible due to “Heisenberg uncertainty principle” which is one of physics
principles [22].

If we take the intensity as the two parts showed in Eq. (2), namely x is the original
value and n is the changed value after the current invoked stimulation. Now the target is
finding the value n and comparing it with the threshold that was described in [17, 18].

The experimental results of the wavelet tracking algorithm are shown in Fig. 6.

Fig. 5. The slope direction (bottom panel) heavily links the distributions of the OF (top panel)
directions and intensities. This observations showed that NIRS data can also be reflected by the
OF. The dash lines represent the duration of the acupuncture stimulation processing.
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Figure 6 clearly shows that after the current stimulation about 6.3 normalized
sub-sections, the stimulation process is virtually completed. As we expected that the
response was not uniformly changed. The wavelet analysis also presented the most of
the brain activity of the spatiotemporal distribution for the current stimulation as it
would be the point of intensity, n, changing from increasing to decreasing (as shown in
Fig. 6, around the time section 1.34). Also as an example, in Fig. 4, at t = 420 ms the
n value is significantly changed so the brain activity around t = 420 ms was the highest
(refer to the top “A” row).

4 Conclusions

We have first shown our investigations on spatiotemporal analysis of brain active
region in a brain network with optical flow and wavelet using near-infrared spec-
troscopy (NIRS). The outcomes of this investigation, including there is a dominated
channel, the stimulations are not decayed uniformly, and active region that reflected the
“pain” can be visualized by our technologies such as OF. All research outcomes have
potential applications for the research in the analysis of brain activities such as brain
computer interface, pain research, vision impaired, and for people with intellectual
disability to enable a choice to understand their pain sensation.

The wavelet technology also allows us to monitor the stimulation processing in
both time and spatial regions simultaneously. The wavelet algorithm also offered the
information about the process completion information.

This study presented a new method to analyze functional near-infrared spec-
troscopy (NIRS) data. The NIRS data represented the cortical activation in subjects
after noxious stimuli. It is important to investigate the significance of these cortical
areas in response to the acupuncture stimulation in the future. Finally, NIRS-based
analysis in conjunction with wavelet coherence offered a powerful method to study
functional connectivity of somatosensory stimuli in humans.

Fig. 6. Wavelet tracking results in terms of time section number.
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Abstract. Event-related potentials (ERP) based brain-computer inter-
faces (BCI) is a promising technology for decoding mental states. Due
to the high trail-to-trial variability and low signal-to-noise ratio caused
by volume conduction, analyzing brain states corresponding to ERP on
a single trial is a challenging task. In this paper, we propose a compu-
tationally efficient method for ERP feature extraction, termed spatial
filtering and temporal down-sampling (SFTDS). The spatial filters and
the temporal down-sampling weight vectors can be optimized under a sin-
gle objective function by SFTDS. Experiments on real P300 data from
10 subjects show the superiority of SFTDS over other algorithms.

Keywords: ERP · Spatial filter · Weighted down-sampling · Regular-
ization

1 Introduction

Brain-computer interfaces (BCI) aims at designing an effective communica-
tion interface between human brain and external control devices. Event-related
potentials (ERP), which is usually measured by electroencephalogram (EEG), is
a popular noninvasive technology for detecting brain activities. In recent years,
ERP based BCI have gained more and more attention [1–3]. However, the charac-
teristics of ERP signal make the utility of ERP based BCI extremely challenging:
(1) The ERP signal is often contaminated with strong task-unrelated noises, and
the recorded ERP signal of a single channel is a mixed activity from multiple
brain sources due to volume conduction [4]. (2) The correlation between the tem-
poral features of ERP signal is relatively strong due to the high dimensionality.
Therefore, how to enhance the signal-to-noise ratio (SNR) and apply efficient
down-sampling strategy on the ERP signal, plays an important role in feature
extraction and classification stage for the ERPs based BCI.

Coherent averaging method averages the ERP signal over a large number of
trials to enhance the SNR [6], however, performing single-trial classification is of
tremendous importance considering the real-time requirement of BCI. As coher-
ent averaging neglects the spatial information of the multichannel EEG signal.
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 739–747, 2017.
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Spatial filtering techniques were introduced for ERP analysis, as the ERP sources
and other noises usually exhibit distinct spatial patterns. Several blind source
separation such as principle component analysis (PCA), independent compo-
nent analysis (ICA) and its variants, sparse component analysis (SCA), have
been widely applied in EEG signal analysis [7–10]. Several tensor decomposi-
tion techniques have been introduced into EEG analysis, to decompose the EEG
signal as several sources corresponding to distinct modes [11,12].

Other supervised spatio-temporal filtering algorithms were devised for ERP
feature extraction. The signal-to-noise ratio maximizer (SIM) algorithm [13] was
designed by maximizing the SNR of the ERPs, which was based on a probabilistic
generative model to estimate the ERP components. And then a Bayesian model
for ERP analysis from multichannel EEG was proposed [14], and the number of
ERP components can be automatically determined by sparse Bayesian learning.
The discriminative spatial patterns (DSP) method [15] and spatial-temporal
discriminant analysis (STDA) method [16] maximize Fisher criterion. However
DSP did not involve the extraction of temporal patterns, and STDA optimized
the spatial filters and temporal filters iteratively.

In view of the real-time requirement of BCI, we propose an efficient feature
extraction method for ERP analysis, which optimizes the spatial filters and the
weighted down-sampling vectors under a single objective function. This method
is named spatial filtering and temporal down-sampling (SFTDS). In pursuing
the optimal parameters, SFTDS maximizes the ERP power while minimizes
the power of the noises. Moreover, to enhance the generalization capacity of
SFTDS, a regularization term was introduced to constrain the model complexity.
Experimental results show that with SFTDS applied in ERP signal analysis, we
get a superior performance than other methods.

The rest of the paper is structured as follows. In Sect. 2, the methodology for-
mulation of SFTDS is presented, and the efficacy of SFTDS on a real ERP data
set over other algorithms is demonstrated in Sect. 3. Finally Sect. 4 concludes
this paper.

2 SFTDS

In this section, we describe the mathematical formulation of SFTDS in details.
SFTDS is motivated by the following hypothesis:

– The ERP signal is approximately identical for each trial, which is time-locked
and phase-locked to external stimuli.

– The evoked potentials related to the target stimuli can be enhanced by spatial
filtering.

– The source signal at distinct time points is strongly correlated, and it is
helpful to reduce the redundancy by linearly superimposing the signals at
distinct time points.
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2.1 Spatial Fitering

The primary problem of ERP signal analysis is the low SNR. We expect to max-
imize the energy of the evoked ERP responses while minimize the uncorrelated
background noises by spatial filtering. The basic assumption is that the ERP
signal is stable under different trials, and the background EEG signal can be
modeled by zero-mean Gaussian distribution.

Let C denotes the number of recorded channels, T denotes the number of
sample points, R denotes the number of recorded trials of ERP signal. The
multichannel signal is presented as Xr, r = 1, 2, · · · , R, by which the ERP signal
is estimated as

S =
1
R

R∑

r=1

Xr (1)

Then the noise signal of the r-th trial is Nr = Xr − S. Actually, S is the
least-squares solution that minimizes the total noise energy of the R trials. The
objective function of spatial filter w ∈ R

C×1 is as follows:

max
w

w�Dw
w�Rw

(2)

where D is the covariance matrix of the estimated ERP signal S, R is the
covariance matrix of the sum of background noise Nr. The definition of D and
R are:

D = S · S�, R =
1
R

R∑

r=1

Nr · N�
r (3)

The final problem can be solved by generalized eigenvalue decomposition (GED).
The generalized eigenvectors corresponding to the generalized eigenvalues, is the
resulted spatial filters.

2.2 Temporal Down-Sampling

Most of the existing algorithms ignore the correlation of ERP signals in the
temporal domain, even assume that the signal samples at different time points
are statistically independent. Superimposing the signals at adjacent time points
is a common approach for suppressing high frequency noises [6]. Therefore, we
expect to enhance the superability of the ERP features by superimposing the
temporal signal, while eliminating the redundant information.

Let M denotes the dimension of the weighted down-sampling vectors a, T
denotes the number of sample points of the recorded data, then the number of
samples after superimposed by a is demoted as P . For a one-dimension signal
x ∈ R1×T , the i-th feature of the temporal signal after processed by a can be
presented as:

vi =
M∑

k=1

a(k) · x((i − 1) · M + k), i = 1, 2, · · · , P (4)
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where the down-sampled signal v ∈ R
P×1.

To control the model complexity, we constrain that one single channel shares
a single weight vector. Denote the weight vector for the c-th channel as ac ∈
R

M×1, c = 1, 2, · · · , C. Let ∗̄ represents the weighted down-sampling processing,
then for the ERP signal of the c-th channel Sc, the down-sampled signal can be
presented as:

vc = ac∗̄Sc (5)

Let

S̃ =

⎛

⎜⎜⎜⎝

S̄(1)

S̄(2)

...
S̄(N)

⎞

⎟⎟⎟⎠ (6)

where S̄(k) = (S(:,k), S(:,M+k), . . . , S(:,(P−1)×M+k)) Then the ERP signal S
after spatial filtered by w and weighted down-sampled can be presented as:

Y = (w1, w2, · · · , wC)

⎛

⎜⎜⎜⎝

a1∗̄S(1,:)

a2∗̄S(2,:)

...
aC ∗̄S(C,:)

⎞

⎟⎟⎟⎠ = w̃ · S̃ (7)

here w̃ = vec((w� ⊙
A)�) = [w1a1(1), w2a2(1), · · · , wCaC(1), · · · , w1a1(M),

w2a2(M), · · · , wCaC(M)] is a reparametered vector encompassing both spa-
tial filter w and weighted down-sampling vector matrix A, where A =
[a�

1 ,a�
2 , · · · ,a�

C ] ∈ RC×M .
By this way, we can optimize the spatial filter and channel-specific weighted

down-sampling vectors under a single objective function, and the ultimate opti-
mization function is:

max
w̃

w̃�S̃S̃�w̃

w̃�( 1
R

∑R
r=1 ÑrÑ�

r )w̃
(8)

where Ñr is the noise signal processed by ( 6) as the ERP signal. In this paper,
we choose the w̃’s corresponding to the three largest eigenvalues.

2.3 l2-norm Regularization

As the number of unknown parameters is relatively larger (MC), the model
tends to overfit the training data. One feasible way for controlling the model
complexity is incorporating regularization term to restrict the parameter space.
In this paper, we employ l2-norm penalty to seek the tradeoff between the gen-
eralization capacity and the model complexity. Actually, l2-norm regularization
has been widely used, and the GED problem can be efficiently optimized with
l2-norm penalty incorporated. The optimization problem of SFTDS is:

max
w̃

L(w̃) =
w̃�S̃S̃�w̃

w̃�( 1
R

∑R
r=1 ÑrÑ�

r + ρ · I)w̃
(9)
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where ρ is the regularization parameter, we set it as ρ = 0.5 in this paper.
Furthermore, the features of ERP signal and non-ERP signal extracted by

SFTDS, are used to construct a one-way feature vector. Finally, Fisher linear
discriminant analysis (FLDA) is applied to classify this two types of features,
with the performance is evaluated by mean classification accuracies.

3 Data Analysis and Results

The data set used to evaluate the performance of SFTDS is from ten healthy
subjects (S1-S10), who participated a P300-speller experiments. The interface
was composed of 36 virtual buttons (letter or digit), with six rows by six columns
(the interface was presented in Fig. 1). The ERP data were sampled at 200 Hz,
recorded by a Neuroscan SynAmps system with 30 recorded channels. There
were 12 epoches for each subject, and each buttons intensified 15 times ran-
domly during one acquisition. Therefore for each epoch, a total of 180 trials
were obtained, with 30 targets and 150 non-targets. As the determination of
P300 basically components can be viewed a binary classification problem, then
for each subject, a total of 240 trials (with 120 targets and 120 non-targets) and
1820 trials (with 240 targets and 1680 non-targets) were derived as the train-
ing data set, and the testing data set. The EEG data were digitally filtered at
1-15 Hz, and time segments of 0.1-0.7 s were used for analysis.

Fig. 1. The P300-speller interface.

Two feature extraction methods were considered, named STDA from [16]
and Raw-Channels from [17] (the six channels were Fz, Cz, Pz, Oz,PO7, PO8),
with the down-sampling rate M ∈ {1, 5, 10, 15, 20}. To evaluate the performance
of weighted down-sampling and the classic down-sampling method, we also con-
sidered the R-SFTDS (with M = 1 in SFTDS, and down-sampled the spatially
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filtred ERP data manually). The classification performance of the four methods
are presented in table 1. It can also be observed that the performance of SFTDS
are increased over STDA and Raw-Channels substantially. The superiority of
SFTDS over R-SFTDS indicates the advantage of weighted down-sampling.

Table 1. The classification performances (%) of SFTDS, R-SFTDS, STDA, the Raw-
Channels algorithm (select six channels by experience), when the number of training
samples for the target is 120.

SFTDS R-SFTDS

M 5 10 15 20 M 1 5 10 15 20

S1 87.40 88.59 89.74 92.08 S1 80.36 82.19 88.07 85.57 84.58

S2 77.66 79.53 82.03 84.48 S2 70.68 71.20 81.15 79.27 81.20

S3 81.93 87.40 87.55 88.49 S3 78.59 83.07 85.52 83.28 83.44

S4 75.68 80.73 84.01 84.43 S4 71.61 75.31 77.55 75.52 70.63

S5 79.95 83.59 85.52 85.36 S5 74.58 78.49 84.58 81.25 78.65

S6 70.99 76.98 78.13 79.95 S6 69.58 71.15 75.68 72.55 72.86

S7 85.63 86.25 85.68 87.86 S7 80.57 84.01 88.59 84.17 79.11

S8 80.47 82.45 84.22 87.03 S8 76.88 77.34 82.08 75.78 79.90

S9 88.13 90.26 90.94 90.83 S9 78.33 86.72 90.42 85.36 80.63

S10 76.56 79.27 77.55 74.84 S10 72.50 77.19 83.70 82.66 76.25

ave 80.44 83.51 84.54 85.54 ave 75.37 78.67 83.73 80.54 78.72

std 5.49 4.46 4.42 5.11 std 4.11 5.30 4.76 4.56 4.40

STDA Raw-Channels

M 5 10 15 20 M 1 5 10 15 20

S1 70.05 76.09 80.31 79.01 S1 55.78 68.80 80.63 77.24 80.63

S2 72.97 74.90 79.11 73.59 S2 59.74 67.71 75.16 75.94 72.50

S3 64.64 70.42 70.63 76.41 S3 60.36 71.61 79.53 75.94 75.26

S4 65.94 63.85 67.24 62.86 S4 56.04 64.69 68.13 71.25 63.70

S5 72.76 71.93 73.70 70.68 S5 56.15 69.53 73.75 73.07 67.29

S6 57.66 60.52 63.13 62.40 S6 61.56 59.64 63.65 64.38 65.16

S7 64.38 70.36 73.59 70.21 S7 63.91 72.71 80.63 77.03 71.51

S8 69.69 71.77 68.23 73.18 S8 58.39 66.46 69.11 68.85 66.25

S9 76.67 79.53 77.29 78.49 S9 57.92 70.73 81.72 77.76 74.74

S10 63.07 66.98 68.18 66.41 S10 55.10 72.76 79.38 81.93 76.93

ave 67.78 70.64 72.14 71.32 ave 58.49 68.46 75.17 74.34 71.40

std 5.67 5.69 5.63 5.98 std 2.88 4.08 6.33 5.06 5.62

We highlight the results by showing the extracted spatial filters and the
resulted temporal features of subject S1 in Fig. 2, To be specific, the curves
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Fig. 2. (a) The topological distribution of the three spatial filter for subject S1 under
different down-sampling rate M . (b) The curves connected by the temporal features for
subject S1 averaged by 120 trials, which are obtained by the ERP signal after spatial
filtering and wieghted down-sampling processing. (Color figure online)

in sub-figure (b) of Fig. 2, are connected by the temporal features for subject
S1 averaged by 120 trials (with the red lines denote the target, and the blue
lines denote the non-target), which are obtained by the ERP signal after spatial
filtering and temporally down-sampling processing.

4 Conclusions

We propose an algorithm SFTDS for ERP feature extraction, which optimizes
the spatial filters and weighted sown-sampling vectors under a single objective
function. Therefore, the SNR can be enhanced by SFTDS, and the discriminative
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features in temporal domain can be extracted. SFTDS was applied to the single-
trial binary classification of a P300 data set. The classification performance
indicated the efficacy of SFTDS over other algorithms.
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2015CB351703), the National Natural Science Foundation of China (No. 61403144, No.
61633010), the tip-top Scientific and Technical Innovative Youth Talents of Guangdong
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Abstract. Electroencephalography (EEG) signal based intent recogni-
tion has recently attracted much attention in both academia and indus-
tries, due to helping the elderly or motor-disabled people controlling
smart devices to communicate with outer world. However, the utiliza-
tion of EEG signals is challenged by low accuracy, arduous and time-
consuming feature extraction. This paper proposes a 7-layer deep learn-
ing model to classify raw EEG signals with the aim of recognizing sub-
jects’ intents, to avoid the time consumed in pre-processing and feature
extraction. The hyper-parameters are selected by an Orthogonal Array
experiment method for efficiency. Our model is applied to an open EEG
dataset provided by PhysioNet and achieves the accuracy of 0.9553 on
the intent recognition. The applicability of our proposed model is fur-
ther demonstrated by two use cases of smart living (assisted living with
robotics and home automation).

Keywords: Intent recognition · Deep learning · EEG · Smart home

1 Introduction

Smart living involves a collection of technologies that monitor and control
domestic living environments, intended to support residents’ routine activities
to improve their quality of lives. However, the existing smart living control tech-
nologies (e.g., voice control [1] and application-based control [2]), may still be
found difficult in situations that people have troubles in motor abilities, such as
aged individuals, people having motor neuron disease (e.g., Parkinson disease,
cord injury, brain-stem stroke) or disabilities.

Thus, to assist such individuals, new smart home systems based on intent
recognition are essential, which likely can alleviate aforementioned issues.

Electroencephalography (EEG) signals reflect activities on certain brain areas
not requiring any initiative actions such as gesture, voice, or so on. EEG data
is generated when a subject imagines performing a certain action such as close
hands. Therefore, EEG signal are widely captured to recognize one’s intent, with
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 748–758, 2017.
https://doi.org/10.1007/978-3-319-70096-0_76
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the intent of using it as input to communicate or interact with external smart
devices such as wheelchairs or service robots a real-time brain-computer interface
(BCI) systems [3].

So far, existing EEG-based intent recognition approaches face several chal-
lenges. First, the data pre-processing, parameters selection and feature engi-
neering are time-consuming and highly dependent on human expertise. Second,
current accuracies mostly center around 60 ∼ 85% [4–6], which are too low for
real-world deployment. Finally, existing research mainly focus on binary intents
recognition while multi-intent scenario dominates the practical applications.

On the other hand, deep learning based approaches are capable of modelling
high level representations as well as capturing complex relationships, which are
often hidden in raw data, via stacking multiple layers of information processing
modules in hierarchical architectures [7]. Recurrent Neural Networks (RNNs) is
one example making use of sequential information. In particular, Long Short-
Term Memory (LSTM) is one RNN architecture designed to model temporal
sequences and their long-range dependencies, and often results in higher accurate
compared to conventional RNNs [8]. In this paper, we propose a deep recurrent
neural network model for intent recognition in smart living, to help individu-
als with motor impairments. Reusable source code and dataset are provided to
reproduce the results1. Our main contributions of this paper are highlighted as
below:

– We propose a LSTM recurrent neural network for smart living intent recog-
nition, which directly processes raw EEG data under multi-class scenario.

– We apply Orthogonal Array experiment method for hyper-parameters tuning,
which saves 98.4% of time compared to exhausting tuning.

– We evaluate our approach over an open EEG dataset and achieves 0.9553 of
accuracy. We also demonstrate the applicability of proposed intent recognition
in two real use cases.

2 Related Work

The current application of EEG signals is mainly in medicine and neurology.
[9] proposes a Logistic Regression (LR) approach to analyse EEG signals to
detect seizure patient and achieves as high as 91% of accuracy. Wavelet analysis
[10] is employed to carry on a diagnosis of Traumatic Brain Injury (TBI) by
quantitative EEG (qEEG) data and reaches 87.85% of accuracy. Power spectral
density [11] are extracted as EEG data features to input into SVM, extreme
learning machine and linear discriminant analysis to predict the outcome of
Transcranial direct current stimulation (TDCS) treatment. The work achieves
76% accuracy with the data from FC4 ∼ AF8 channels and 92% with the data
from CPz ∼ CP2 channels.

All the aforementioned literature uses binary classification and extracts fea-
tures in different areas manually. Recent research focuses more on the perfor-
mance comparison of different classifiers. [12] builds one deep belief net (DBN)
1 https://github.com/xiangzhang1015/EEG-based-Control.

https://github.com/xiangzhang1015/EEG-based-Control
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classifier for each channel and combines them through Ada-boost algorithm and
classifies the left and right hand motor imagery. The work achieves average 83%
accuracy. [5] adopts SVM as the classifier and achieves an average accuracy of
65% with the input data being denoised by a wavelet denoising algorithm before
power spectral density (PSD) feature selection. [13] yields an accuracy of 80%
with the foundational universal background models (UBMs) classifier after the
data is processed by I-vectors and Joint Factor Analysis (JFA). [14] combined
convolutional neural networks (CNN) and stacked autoencoders (SAE) to clas-
sify EEG Motor Imagery signals and results 90% accuracy. The application of
related methods in smart living in relatively limited. As an example, [15] uses
high pass and low pass filter to reduce the noise signal interference and extracts
EEG features by fisher distance. The switch control experiment results show
that their approach achieves an accuracy of 86%.

3 The Proposed Approach

In this section we introduce the flow chart of the proposed approach at first and
then involve to more details. The architecture of our approach is shown in Fig. 1.
The system consists of two components: the online component and the offline
component.

Fig. 1. Workflow of the proposed approach

In the online component, raw EEG data, collected from subjects, are used
to train a deep recurrent neural network model (Sect. 3.1). The model directly
works on raw EEG data without any pre-processing, smoothing, filtering or
feature extraction. The parameters in the deep learning model are optimized by
the Orthogonal Array experiment (Sect. 3.2). In the offline component, the user’s
willing (EEG signal) is sent to above pre-trained RNN model and then recognized
as specific intent. The intent is subsequently used to command devices, such as
turning lights on/off or driving a robot to serve a cup of water.
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3.1 LSTM Recurrent Neural Network

RNN, as a class of deep neural networks, can help to explore the feature depen-
dencies over time through an internal state of the network, which allows us
to exhibit dynamic temporal behavior. In order to precisely recognize the user’s
intent in smart living surrounding, we propose a 7-layer LSTM Recurrent Neural
Network model including three components: 1 input layer, 5 hidden layers, and
1 output layer. In hidden layers, two of them are consisted of LSTM cells [16]
(shown as the rectangles in Fig. 1).

Assume one collection of EEG signals is E = {E1, E2, ..., Ej , ..., Ebs}, Ej ∈
R

K with nbs denotes the batch size, j denotes the j-th EEG sample, and K
denotes the number of dimensions in each EEG raw signal (K = 64 in this
paper). And in the RNN model, we denote the i-th layer (i = 1, 2, · · · , I, I = 7
in this paper) Xr

i = {Xr
ijk|k = 1, 2, · · · ,Ki},Xr

i ∈ R
[nbs,1,Ki] (K1 = K = 64),

where Ki denotes the dimension of the layer. Note that the number of dimension
equals to the amount of neurons accordingly in each layer. When the input only
contains one EEG sample, the first layer can be Xr

1 = Ej .
Weights between layer i and layer i+1 can be denoted as W r

i,(i+1) ∈
R

[Ki,Ki+1], for instance, W r
1,2 describes the weight between layer 1 and layer

2. bri ∈ R
Ki denotes the biases of i -th layer. The connection between the i-th

and (i + 1)-th layer will be Xr
i+1 = Xr

i ∗ W r
i,i+1 + bri .

Please note the sizes of Xr
i , W r

i,i+1 and bri must match. For example, in Fig. 1,
the transformation between H1 layer and H2 layer, the sizes of Xr

3 , Xr
2 , W[2,3],

and br2 are correspondingly [nbs, 1,K3], [nbs, 1,K2], [K2,K3], and [nbs, 1]. The
5-th and 6-th layers here are LSTM layers, and they can be connected by:

fi = sigmoid(T (Xr
(i−1)j ,X

r
(i)(j−1)))

ff = sigmoid(T (Xr
(i−1)j ,X

r
(i)(j−1)))

fo = sigmoid(T (Xr
(i−1)j ,X

r
(i)(j−1)))

fm = tanh(T (Xr
(i−1)j ,X

r
(i)(j−1)))

cij = ff � ci(j−1) + fi � fm

Xr
ij = fo � tanh(cij)

where fi, ff , fo and fm represent the input gate, forget gate, output gate and
input modulation gate accordingly, and � denotes the element-wise multiplica-
tion. The cij denotes the state (memory) in the j-th LSTM cell in the i-th layer,
which is the most significant part to explore the time-series relevance between
samples. The T (Xr

(i−1)j ,X
r
(i)(j−1)) denotes the operation as follows:

Xr
(i−1)j ∗ W + Xr

(i)(j−1) ∗ W ′ + b

where W , W ′ and b denote the corresponding weights and biases. At last, we
obtain the RNN predict results Xr

7 and employ the cross-entropy as the cost
function. The �2 norm is selected as the regularization function and the cost is
optimized by the AdamOptimizer algorithm [17].
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Fig. 2. OA selection

Table 1. Factors and levels

3.2 Orthogonal Array Experiment Method

Although deep learning algorithms can generally achieve good performance in
many areas, tuning the hyper-parameters (e.g., the number of layers, the number
of nodes in each layer and the learning rate) is time-consuming and dependent
on one’s experience. This paper employs the Orthogonal Array (OA) experi-
ment method [18] to select the hyper-parameters, which works much faster than
traditional hyper-parameters tuning methods. OA2 is widely used in design of
experiments, coding theory, and cryptography, however, to our best knowledge,
this paper is the very first work to apply OA of the parameter tuning in machine
learning and data mining areas.

OA is a systematic and statistical method and its principle is to compare
the dependent variable which is resulted from a different combination of inde-
pendent variables. It chooses certain representative combinations instead of all
combinations for testing. In this method, independent variable is called “factor”
and different values of factor are called “levels”. For instance, if the program has
three factors and each of them has three levels, which are represented by a cube
with 27 nodes (each node represents one combination of hyper-parameters), OA
only chooses 9 representative groups of parameters to optimize the selection. As
shown in Fig. 2, A1, A2, A3 represent 3 levels of factor A, while factors B,C are
by the same token (the factor is supposed to be statistically independent with
the others). The 9 circled nodes are the nine groups selected by OA. Each edge
(totally 27 edges) in the cube has one circled node and each face (totally 9 faces)
has three circled nodes.

For different number of factors and levels, corresponding OA table is pro-
vided. Generally, an OA table can be written as Lna(nnc

b ), where na denotes
the number of hyper-parameter combination, nb denotes the number of levels of
each factor and nc denotes the number of factors.

2 https://www.york.ac.uk/depts/maths/tables/taguchi table.htm.

https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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Table 2. Intents and corresponding label and
function in case studies

Table 3. The confusion matrix of
5-classes classification

4 Experiments

4.1 Dataset

We select the widely used EEG data from PhysioNet eegmmidb (EEG motor
movement/imagery database) database3 to evaluate the proposed approach. The
EEG signals we selected are under 5 categories of intents. The intents are shown
in Table 2. In our work, we select 280,000 EEG samples from 10 subjects (28,000
samples each subject) for the experiment. Every sample is a vector of 64 elements
corresponding to 64 channels.

4.2 Overall Comparison

This section is aimed to demonstrate the efficiency of the proposed approach, for
which we compare our approach with the state-of-the-art methods. Our model
is composed of 7 layers RNN with 2 LSTM layers, the learning rate and the λ
are set as 0.004 and 0.005, the number of the nodes in each hidden layer is 64
and the number of batches nb is 3 (detailed in Sect. 4.3).
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Fig. 3. ROC curves. X-axis is the logarithmic of the False Positive Rate.

3 https://www.physionet.org/pn4/EEGmmidb/.

https://www.physionet.org/pn4/EEGmmidb/
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Our intent recognition result, the confusion matrix and the corresponding
evaluation are presented in Table 3. It can be read that our approach produces
a mean accuracy of 0.9553, in tests of five intents recognition on 10 subjects.
The ROC (Receiver Operating Characteristic) curves of five intents are dis-
played in Fig. 3. Additionally, comparison with the state-of-the-art methods is
shown in Table 5 (the Binary/Multi column refers binary intents recognition or
multi-intents recognition). The KNN sets the number of neighbors as 3; the
SVM adopts One-vs-the-rest (OvR) multi-class strategy and the estimator is
LinearSVC; the RF sets the number of estimators as 300; the AdaBoost adopts
the number of estimators as 50 and the learning rate as 0.3; all the not men-
tioned parameters are set as default values. We can perceive that the proposed
approach significantly outperforms all the state-of-the-art methods, by a large
margin of 10%.

4.3 Hyper-parameter Tuning

The intent recognition results rely on hyper-parameters since we adopt deep
learning model. To achieve optimal recognition accuracy, we employ OA to opti-
mize the hyper-parameters. In this paper, we select five most common hyper-
parameters including λ (the coefficient of �2 norm), lr (learning rate), Ki (the
hidden layer nodes size), I (the number of layers), and nb (the number of
batches4), and they are shown in Table 1. Since this OA experiment contains
5 factors and 4 levels, the total number of factor combinations can be found in
the standard orthogonal experiment table5. As shown in the standard orthogonal
experiment table, 5 factors with 4 levels OA experiment has 16 different com-
bine ways, which means 16 experiments should be conducted to optimize the
hyper-parameters. The combination of hyper-parameters and the range analy-
sis of results of the experiment, are shown in Table 4. The optical λ, lr, Ki,
I, and nb tuned by OA are 0.004, 0.005, 64, 7, and 3, respectively. The para-
meter selection of 5 factors and 4 levels needs 1024 = 45 combinations in an
exhaustive method, while with OA only 16 combinations are needed. This means
(1 − 16/1024) = 98.4% of time are saved. In Table 4, Rleveli is the sum of accu-
racy of all the combinations contains leveli. We selected the best levels listed in
Table 4 for training the model and obtain an accuracy of 0.9553.

4.4 Feature Evolution

To better understand the essence of the proposed model, we graphically describe
the feature evolution procedures. Figure 4 shows the revolution of variations
between samples from different classes. In the input layer, the samples are chaotic
entangled; and they become clear and observable in the last LSTM layer after

4 The size of training dataset and testing dataset depends on nb since the total dataset
is fixed, e.g., if nb equals 1, there will be 14,000 training dataset and 14,000 testing
dataset. If nb equals 3, we will have 21,000 training dataset and 7,000 testing dataset.

5 https://www.york.ac.uk/depts/maths/tables/l16b.htm.

https://www.york.ac.uk/depts/maths/tables/l16b.htm
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Table 4. OA experiment factor analysis
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Fig. 4. Feature evolution. The black rectangles in (d) indicate the features which can
clearly show the difference between the various intents.

the training through several hidden layers. Particularly, in Fig. 4(d), the black
rectangles display parts of the dimensions which can clearly show the difference
between the intents. Conclusively, the proposed approach is enabled to automat-
ically extract distinguishable features (Fig. 4(d)) from the chaotic raw EEG data
(Fig. 4(a)).

4.5 Deployment

In this section, the efficiency of intent recognition is demonstrated by two appli-
cations. The structure of RNN and the corresponding parameters used in this
section are the same as the counterparts in Sect. 4.2.

Assisted Living with Mind-controlled Mobile Robot. A simulated robot
is navigated by our system, which learns user’s intent from EEG recordings,
to take a can of beverage from a table in the kitchen and put it in a table in
living room. This case randomly selects some EEG raw data from Subject 1
dataset as simulation inputs. The path is shown in Fig. 5, which is designed for
the EEG data to drive PR2 to implement its service task. Starting from near
the Kitchen’s table, the PR2 robot walks forward and holds its hand to grasp
the beverage can. Then it turns back and walks along the path to the table in
living room and unlooses hands to put the beverage on the table. It shows that
the robot can precisely grasp and unloose target according to the path planned
in the subject’s mind. The simulation platform is in Gazebo toolbox6 and the
robot controlling program is powered by Robot Operating System (ROS)7. The

6 http://gazebosim.org/.
7 http://www.ros.org/.

http://gazebosim.org/
http://www.ros.org/
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Table 5. Performance comparison with the
state of the art methods. RF: Random Forest,
LDA: Linear Discriminant Analysis. All the
methods are evaluated using the same
database.

Fig. 5. Use Case 1: mind-controlled
PR2 assistive robot performs a daily
task: reaching a cup of water in
kitchen area and getting it back onto
a table in living room.

simulation environment is depicted in Fig. 5 and the demo can be found at here8.
The robot executes 5 actions according to 5 commands described in Table 2.

Assisted Living with Mind-Controlled Appliances. The most common
scenario in a smart home would be controlling household appliances. In this
case, we control four LEDs ON/OFF through intents. LED commands corre-
sponding to specific intents are mentioned in Table 2. For every command, the
corresponding LED keeps on for 2 s and then turns off. Such test is conducted 10
times with totally 80 commands, and our model accomplishes 100% of accuracy,
which indicates that the EEG-based mind control have potential to be significant
in household in the future.

5 Conclusion and Futurework

In this paper, we present an LSTM-RNN approach to recognize the smart living
user intents in EEG raw signals. By experimenting on large scale EEG dataset,
we can claim that our proposed approach significantly outperforms a series of
the state-of-the-art methods by achieving 0.9553 of accuracy. It provides insight
into feature revolution by visualizing the data shape, waveform fluctuation flow-
ing through each layer of our proposed model. Moreover, we demonstrate the
applicability of the approach by implementing two use cases, wherein an assistive
robot performs a physical task, and household appliances are interacted, based
on intent recognition. Our prior work atop multi-task learning based framework
[21] shows the capability to capture certain underlying local commonalities under

8 https://www.youtube.com/watch?v=VZYX1095Vkc.

https://www.youtube.com/watch?v=VZYX1095Vkc
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the intra-class variabilities shared by all the activities of different subjects. Our
future works will focus on improving the accuracy in person-independent sce-
nario, wherein the training and testing data can be from different subjects.
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Abstract. With the development of intelligent wearable technology, the
need for a more effective and practical means of human-computer inter-
action is becoming increasingly urgent. In this paper, we used only one
forehead Electromyogram (EMG) channel to accurately recognize at least
6 different voluntary blink and bite patterns as output interactive com-
mands. Differential square moving average (DSMA) and square mov-
ing average (SMA) were used to distinguish blink and bite, voluntary
blink and natural blink, respectively. Then, random forests classifier was
employed to classify the 6 blink and bite patterns with extracted time-
domain features. The accuracy of 92.60 ± 2.55 was obtained for the
dataset of 10 subjects. It provides an effective human-computer inter-
action method with the advantages of rich commands, good real-time
performance, low cost and small individual differences. The method pro-
posed can be conveniently embedded in wearable device as an alternative
of interaction.

Keywords: Human-computer interaction · Wearable device · EMG ·
Blink recognition · Bite recognition

1 Introduction

In recent years, intelligent wearable technology has been gaining more and more
attention from the academic and the business community around the world,
which has been considered as the core and main form of the next generation of
smart device [1,2]. However, the lack of an effective human-computer interaction
hinders its further development in practical applications.

At present, the interaction methods based on speech and gesture recogni-
tion are dominant in wearable device [3,4]. But these methods can’t be applied
to many practical situation, such as in the meeting. Recently, Brain-computer
interface (BCI) technology begins to attract attention, and is considered as the
most appropriate, natural way of interaction [5]. Facebook by Mark Zuckerberg
and Neuralink by Elon Musk has put forward ideas from “speech-to-text” to
“thought-to-text” using BCI technology. Despite the rapid development, BCI
based on EEG (such as P300 [6], Motor imagination [7], SSVEP [8]) is still
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 759–766, 2017.
https://doi.org/10.1007/978-3-319-70096-0_77
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mainly used by patients, subject to the richness and accuracy of output com-
mands and individual differences. As well known, however, a variety of Elec-
tromyogram (EMG) signals caused by facial muscle movements are captured
as artifacts while recording scalp EEG. Can we recognize the voluntary facial
muscle movements from these EMG signals to interact with computer? Some
work has been done for this. Bo Ning [9] and Mihai Duguleana [10] have tried
to control wheelchair and robot by eye blink.

In this paper, we employed less EMG electrodes (single electrode located
on forehead) to accurately recognize more voluntary facial muscle movements
(at least 6 as in this paper: single eyes blink, double eyes blink, long eyes blink,
single bite, double bite, long bite). With this, we can provide an effective human-
computer interaction method with the advantages of rich and accurate interac-
tive commands, good real-time performance, low cost, easy to carry and small
individual differences. The method we proposed can be conveniently embedded
in wearable device as an alternative of interaction.

2 Materials and Methods

2.1 Materials

Mindwave Mobile headset by Neurosky Company was used for forehead EMG
signal recording with sampling rate of 512 Hz. Mindwave Mobile headset is an
embedded system with a single bio-sensor to acquire forehead EMG and EEG
signals. The sensor is placed on forehead at FP1 location and a reference elec-
trode is connected to the ear lobe [11], using Bluetooth to transmit recorded
data. This headset has been used in lots of research works. Abo-zahad et al. [12]
used it to study blink signals as human identification. Adnan Mehmood Bhatti
et al. [11] used it to study emotion recognition based on EEG signals. Alpha-
Trainer [16] used it to implement a Brain-computer interface system based on
android.

In this paper, we want to recognize six kinds of voluntary facial muscle move-
ments, including single blink, double blink, long blink, single bite, double bite,
long bite. These six motions are easy to implement by every person and have
obvious characteristics in their EMG waveform, as shown in Fig. 1.

In this paper, the dataset is recorded from ten healthy adult subjects (21–25
years old, 5 males and 5 females). The purpose of the experiment is to acquire
subjects’ forehead EMG signals while they are biting or voluntary blinking. Dur-
ing the recording, the subjects were seated in front of a screen and implement
the facial movements by instruction. Ten 5-minutes trials were done for every
subject. In each trial, every motion of six voluntary blink and bite patterns was
implemented 10 times. The first 30 s of each trial doesn’t include any volun-
tary motions with rest state and natural blink. Each motion was required to be
finished within 1 s. There are 10 s interval between two facial movements. All
the trials were finished within 2 weeks. So, we obtained 100 samples of every
voluntary facial motion for each subject, and the total of 6000 samples.
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Fig. 1. EMG signals for single blink, double blink, long blink from left to right on top
panel, and EMG signals for single bite, double bite, and long bite from left to right on
bottom panel.

2.2 Signal Preprocessing

Firstly, the data for each subject was preprocessed as follows:

Step 1. Subtract mean value for each trial to eliminate the baseline drift;
Step 2. Merge all trials of the subject into one new trial X;
Step 3. Normalization of X to [−1,1], denoted as X′;
Step 4. Squared moving average (SMA) method and differential squared moving

average (DSMA) method [13] are used to calculate two kinds of short time
energy of the data X′. The formulas of SMA and DSMA are as follows. The
moving step of two methods is 0.1 s.

Square moving average method (SMA):

SMA(i) =
1
52

51∑

j=0

X(i + j)2 (1)

Differential square moving average method (DSMA):

DSMA(i) =
1
52

51∑

j=1

[X(i + j) − X(i + j − 1)]2 (2)

where i = 1, 2, ...., L − 51; L is the length of X ′. And the performance of this
step is shown in Fig. 2.

Step 5. Calculate basic segmenting threshold T. Firstly, calculate the short-time
energy of the first 30-seconds rest state data by SMA. The basic segmenting
threshold T is set as 0.1 times of the maximum of the short energy.
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Fig. 2. The upper sub-figure shows the normalized data. The middle sub-figure shows
the data after square moving average. And the bottom sub-figure shows the data after
differential square moving average. SMA and DSMA method are used as preclassifica-
tion methods. The red line segment the bite group data and the black line segment the
blink group data.

Step 6. Data segmentation. The threshold T is used to automatically segment
data X′ into sample data containing interesting motion data. While a data
point’s SMA value is higher than T, choosing this point as the starting
point, and the 1-second length data after the starting point is segmented as
a sample data. The result of this step is shown in Fig. 3.

Fig. 3. Data segmentation

2.3 Feature Extraction

21 time domain features are extracted for classification. Every 1-second sample
data is divided into ten 100-ms segments, then the positive and negative energy
of each segment is calculated as the first twenty features. The last feature is the
total energy of this sample.
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Positive Energy:

E+(i) =
51∑

j=1

X(i ∗ 51 + j) (3)

Where X(i ∗ 51 + j) > 0, i = 0, 1, 2, ..., 9
Negative Energy:

E−(i) =
51∑

j=1

X(i ∗ 51 + j) (4)

Where X(i ∗ 51 + j) < 0, i = 0, 1, 2, ..., 9
Total Energy:

Eall =
512∑

i=1

X(i) (5)

2.4 Classification

Just as mentioned in step 4 of 2.2, the pre-classification step are as follows.

(1) Distinguish the bite sample and blink sample. For each sample, if any DSMA
value is higher than the threshold T, this sample is classified into the bite
group or into the blink group.

(2) Distinguish natural blink and voluntary blink. For each blink sample, if the
number of the data points with SMA value higher than T is bigger than
77 (about 0.15 s), it will be categorized into voluntary blink group or into
natural blink group.

Now, we have two sample groups, one for voluntary blink and another for bite.
Each group contains 3 different motion patterns (single blink, double blink, long
blink for blink group data, single bite, double bite, long bite for bite group data).
Random forests classifier [14] with 200 sub-trees is employed for each group to
distinguish the 3 patterns. The random forests classifier is suitable for dealing
with the problem of multi-class classification [15]. And the all process of forehead
EMG recognition is shown in Fig. 4.

Fig. 4. The process of recognition
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3 Result

For comparison, we also directly feed the original 512 sample data into classifier
as features. Table 1 shows the average classification accuracy and standard devi-
ation of each subject. 5-fold cross validation were applied to increase the reliabil-
ity of the classification results. The average classification accuracy and standard
deviation of 87.88 ± 3.84 and 92.60 ± 2.55 across subjects were obtained using
512 original data and 21 time-domain features respectively.

Table 2 shows the average confusion matrix across subjects. Table 2 shows
the average confusion matrix across subjects with feature data. From Table 2,
we can found that the misclassification rates between voluntary blink group and
bite group are zero. This verifies the effectiveness of the pre-classification step.

Table 1. The average classification accuracy and standard deviation of each subject
with 5-fold cross validation.

Sub no. Original data (%) Feature data (%)

01 94.83 ± 5.99 96.33 ± 3.04

02 86.83 ± 3.30 90.67 ± 1.60

03 81.50 ± 5.15 89.17 ± 5.24

04 86.33 ± 5.16 90.17 ± 7.30

05 89.83 ± 2.73 92.33 ± 3.41

06 91.00 ± 6.49 94.00 ± 5.25

07 84.33 ± 4.22 90.50 ± 4.19

08 89.50 ± 9.51 96.00 ± 3.46

09 89.67 ± 4.66 92.00 ± 3.26

10 85.00 ± 6.77 94.83 ± 3.08

Mean 87.88 ± 3.84 92.60 ± 2.55

Table 2. Confusion matrix obtained by random forests and feature data across subjects
(%).

Single blink Double blink Long blink Single bite Double bite Long bite

Single blink 94.00 2.3 3.7 0 0 0

Double blink 2.7 95.0 2.3 0 0 0

Long blink 2.5 2.9 94.6 0 0 0

Single bite 0 0 0 90.6 6.1 3.3

Double bite 0 0 0 9.2 89.0 1.8

Long bite 0 0 0 4.3 3.3 92.4
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4 Conclusions

The method presented in this paper achieves a good recognition performance
(mean: 92.60 ± 2.55) for six kinds of facial muscle movements. Our method is
convenient and economical with only one channel located on forehead. Moreover,
the calculation speed of this method can meet the requirements of the online sys-
tem. Our future works include: (1) applying this method to the online recognition
system; (2) further improving the classification performance; (3) improving the
adaptive ability for different people.
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Abstract. Electroencephalography (EEG) has become the most signif-
icant input signal for brain computer interface (BCI) based systems.
However, it is very difficult to obtain satisfactory classification accuracy
due to traditional methods can not fully exploit multimodal informa-
tion. Herein, we propose a novel approach to modeling cognitive events
from EEG data by reducing it to a video classification problem, which
is designed to preserve the multimodal information of EEG. In addition,
optical flow is introduced to represent the variant information of EEG.
We train a deep neural network (DNN) with convolutional neural net-
work (CNN) and recurrent neural network (RNN) for the EEG classifica-
tion task by using EEG video and optical flow. The experiments demon-
strate that our approach has many advantages, such as more robustness
and more accuracy in EEG classification tasks. According to our app-
roach, we designed a mixed BCI-based rehabilitation support system to
help stroke patients perform some basic operations.

Keywords: Multimodal · EEG classification · Optical flow · Deep
learning · CNN · RNN

1 Introduction

For patients suffering from stroke, it is very meaningful to provide a communi-
cation method to deliver brain messages and commands to the external world
apart from the normal nerve-muscle output pathway. Due to natural and non-
intrusive characteristics, most BCI systems select the EEG signal as input [1].
The biggest challenge in BCI is EEG classification, aiming to translate raw
EEG signal into the commands of the human brain. This can be used to control
external equipment, such as rehabilitation devices and other devices, when the
EEG signal is decoded correctly. However, traditional EEG classification meth-
ods can not obtain satisfactory result, one of the reasons is that some useful
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 767–776, 2017.
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768 C. Tan et al.

information has been ignored. Deep learning, as a new classification platform,
has recently received increased attention from researchers [2,3]. It has been suc-
cessfully applied to many classification problems, such as image classification
[4], video classification [5] and speech recognition [6]. However, deep learning
has not been fully explored in EEG classification. Similar to the structure of
the human brain, deep learning is particularly suitable for classification prob-
lems from which it is hard to extract hand-designed features. Therefore, deep
learning has very promising prospects in the EEG classification field.

The contributions of this paper are as follows. Firstly, our approach reduces
the EEG classification problem to a video classification problem, which is
designed to utilize multimodal information. Secondly, optical flow has been intro-
duced into this field to characterize the variant of EEG signal in the temporal
dimension. Thirdly, a deep CNN-RNN network has been constructed, which is
designed for EEG videos and optical flow. Finally, a mixed BCI-based rehabili-
tation support system is built using our approach.

The rest of this paper is organized as follows. Firstly, we will review related
works in Sect. 2. Secondly, the method we proposed will be described in Sect. 3.
Third, findings of our experiments will be presented in Sect. 4. Finally, conclu-
sions and further steps will be discussed in Sect. 5.

2 Related Work

In order to improve the accuracy of EEG classification, a lot of work has been
carried out. The performance of this pattern recognition like system depends on
both the features selected and the classification algorithms employed. Tradition-
ally, a great variety of hand-designed features have been proposed such as band
powers (BP) [7], power spectral density (PSD) values [8] and so on. In recent
years, the common spatial pattern (CSP) [9] has been proved to be an expressive
feature of EEG signal. A lot of related work has been proposed such as CSSP,
WCSP and SCSSP [10]. Unlike these single modal approaches, there are many
researchers focusing on how to extract multimodal information from the EEG
signal [11,12] and how to fuse this information [13].

From hand-designed to data-driven features, deep learning has played a sig-
nificant role in diverse fields where the artificial intelligence (AI) community has
struggled for many years. Certainly, bioinformatics can also benefit from deep
learning. In recent years, many public reviews [14,15] have been proposed to
discuss deep learning applications in bioinformatics research. For example, [16]
applying deep belief networks (DBN) to the frequency components of EEG sig-
nal to classify left-hand and right-hand motor imagery skills. [17] used CNN to
decode P300 patterns, and [18] used CNN to recognize rhythm stimuli. [19] con-
ducted an emotion detection and facial expressions study with both EEG signal
and face images by RNN.
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3 Method

3.1 Preprocessing

We are only interested in certain brain activities, and these signals need to
be separated from background noise, and unnecessary artifacts must be elim-
inated. In the preprocessing phase, we first apply the Butterworth filter with
0.5-50 Hz as a bandpass filter to remove high-order noise in the signal. Then,
a denoise Autoencoder (DAE) [20] as a symmetrical neural network is used to
denoise in an unsupervised manner. It is trained to rebuild the input to con-
struct a robust feature representation. Autoencoders, like the principal compo-
nents analysis (PCA), are usually trained to perform dimension reduction tasks,
but the DAE is more useful in learning sparse representations of input. This
means that a high-dimensional original signal can be represented by using a few
representative atoms on a low-dimensional manifold, which is similar to sparse
coding.

3.2 EEG Videos and Optical Flow

Similar to speech signal, the most notable features of EEG signal reside in the
frequency dimension, which is usually studied using a spectrogram of the signal.
The feature vector formed by aggregating spectral measurements of all electrodes
is the traditional method in EEG data analysis. However, these methods clearly
ignore the locations of electrodes and the inherent information in spatial dimen-
sion. In our approach, for representing multimodal information, we propose to
preserve the spatial structure by EEG image, apply frequency filters to repre-
sent the spectral dimension, and utilize the EEG videos to account for temporal
evolutions in brain activity.

Firstly, filtering is performed by using five frequency filters (α: 8-13 Hz, β:
14-30 Hz, γ: 31-51 Hz, δ: 0.5-3 Hz, θ: 4-7 Hz) to represent different EEG signal
rhythms which correspond to different brain activity. According to the frequency
characteristics of the EEG signal, we produced five different EEG dataset by
these filters. Secondly, EEG images are generated for each EEG frame in time
dimension. We project the 3D locations of electrodes (shown in Fig. 1(a), unit
of percentage) to 2D points by azimuthal equidistant projection (AEP) which
borrows from mapping applications, and interpolate them to a 32*32 gray image.
We refer to the collection of these EEG images on the time-line as EEG video.
Compare to the EEG topographic maps used for EEG visualization, EEG images
generated by AEP can maintain the distance between electrodes more accurately,
which reflect more useful information in spatial dimension. Finally, we split each
EEG video into 12 segments and perform average operation in each segment. In
this way, each EEG video is compressed into a 12-frame short video. The frames
of a sample EEG video are shown in Fig. 1(b).

Reducing the EEG classification problem to a video classification problem
brings many benefits. The spatial structure of the electrodes has been pre-
served clearly. Many of the video classification techniques can also be applied to



770 C. Tan et al.

(a) 3D locations of electrodes (b) Frames of EEG video

Fig. 1. Frames of EEG video generated from EEG signal by project the 3D locations
of electrodes to 2D points via AEP algorithm

EEG signal. Due to the inherent structure of CNNs, it is more suited to image
and video data classification. Moreover, there are many excellent CNNs such as
AlexNet and GoogLeNet that can be used for EEG videos.

Optical flow [21] has been introduced by our approach to represent the variant
information of EEG signal. Optical flow is widely used in most video classification
method, because it can describe the obvious motion of objects in a visual scene
by calculate the motion between two image frames which are taken at times t
and t+Δt at every pixel position. Consider f(x, y, t) is the pixel of location (x, y)
at time t, it moves by distance (Δx,Δy) in next frame taken at x + Δt. These
pixels has the same value, and the following brightness constancy constraint can
be given:

f(x, y, t) = f(x + Δx, y + Δy, t + Δt) (1)

Assuming the movement to be small, take Taylor series approximation of
right-hand side and ignoring higher-order terms in the Taylor series, we can get
the following equation:

f(x + Δx, y + Δy, t + Δt) = f(x, y, t) +
∂f

∂x
Δx +

∂f

∂y
Δy +

∂f

∂t
Δt + . . . (2)

Then remove common terms and divide by Δt to get:

∂f
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Δt
+

∂f

∂y

Δy

Δt
+

∂f

∂t

Δt

Δt
=

∂f

∂x
u +

∂f

∂y
v +

∂f

∂t
= 0 (3)

where u = Δx/Δt and v = Δy/Δt. In this equation, (u, v) is the value of optical
flow at f(x, y, t) which are responding to magnitude and direction respectively.

To utilize existing implementations and networks used for frame of EEG
video, we store optical flow as an image and rescale it to a [0,255] range, and the
visualization images are shown in Fig. 2 by mapping direction to Hue value and
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Fig. 2. Visualization of optical flow extracted from EEG video

mapping magnitude to Value plane on HSV image. In this way, optical flow can
be processing using the same way as EEG image to learn the global description
of EEG videos.

3.3 Network Architecture

We constructed a deep network containing a CNN part and a RNN part for the
classification of EEG data. The architecture of our network is shown in Fig. 3.
The CNN part and the RNN part were combined through a reshaping operation.
Firstly, EEG videos and optical flow were fed into the CNN part. Secondly, a
reshaping operation merged and converted the outputs of the CNN part into
a 2-dimensional feature vector. Then, the feature vector was fed into the RNN

Fig. 3. Architecture of our deep CNN-RNN network
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part with two recurrent layers. Finally, the outputs of the RNN part were fed
into a dense layer with ReLU and a dense layer with softmax, to obtain a final
category label. In our network, we apply 4*4 kernel for convolution layers and
3*3 kernel for max pooling layers. The recurrent layers contain 128 nodes and
the full connection layer after the RNN unit contains 64 nodes.

There were two difficulties in training the network, including insufficient
dataset and vanishing gradient problem in the time dimension while training the
recurrent unit in RNN. Sufficient and balanced data are most important assumes
in deep learning to satisfy the necessity of optimizing a tremendous number of
weight parameters in neural networks. Unfortunately, this is usually not true for
EEG signal because data acquisition is complex and expensive. However, EEG
signal have a very high time resolution with current popular signal acquisition
equipment. Herein, we train the CNN part with fully sampled video and use
12 frames of short video to train the RNN part. To against vanishing gradient
problems while training the RNN part, replacing the simple perceptron hidden
units with more complex units, such as Long-Short Term Memory (LSTM) [22]
or Gated Recurrent Unit (GRU) [23] which function as memory cells, can help
significantly.

4 Experiments

We implemented a mixed BCI-based rehabilitation support system for stroke
patients with the EEG classification approach we proposed. Firstly, we obtained
the image and depth of the operating platform by Microsoft Kinect2, and then
applied a computer vision algorithm to identify targets and show them in the
software interface. Then, choices were shown flickering in different frequencies,
and the subjects utilized steady state visually evoked potential (SSVEP) to select
one of them. Movement destination can be controlled by MI when the system is
in move mode. Finally, the operation was performed by a robot arm with fingers.

With our rehabilitation support system, the subjects successfully performed
some predefined operations through brain signals. In the grasp experiment
(Fig. 4(a)), the subjects select a target, grasp it, move it to another position
and put it down. In the pour liquid experiment (Fig. 4(b)), the subjects grasp
a water cup, move it to the target position and pour it. These operations are
critical for daily life, and can enhance the capacity for independent living of
some special patients such as stroke patients.

4.1 Dataset

In the following analysis, we use the dataset collected by our system, from the MI
data, while the four health subjects chooses the move direction in our software.
The power spectral density after using five frequency filters is shown in Fig. 5.
They contain four categories (up, down, left and right imagined movements)
signals for control movement direction, which are collected in 2 s time-windows
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(a) Grasp (b) Pour liquid

Fig. 4. Mixed BCI-based rehabilitation support system for stroke patients

Fig. 5. Visualization of power spectral density on our dataset

by 1000 Hz sampling rate. Totally, we extracted dataset from 10 sessions, and
used cross validation to distinguish training sets and test sets.

In addition, we apply our approach on the dataset IIa from BCI compe-
tition IV. It contains EEG signal from nine subjects who perform four kinds
of motor imagery (right hand, left hand, foot and tongue). These signals are
recorded using 22 electrodes by 250 Hz sampling rate and band-pass filtered
between 0.5 and 100 Hz. For each subject, two sessions on different days were
recorded and thus there are a total of 576 trials.

4.2 Results

We compared our approach against various classifiers commonly used in the
field, including support vector machines (SVM), linear discriminant analysis
(LDA), CSP+LDA, Autoencoder, Conv1D. SVM, LDA are the classic meth-
ods of machine learning. CSP is the most classical hand-designed feature and
has been popular in this field for a long time. Autoencoder was introduced to
this field recently. Conv1D is an intuitive attempt to apply CNNs to EEG clas-
sification. In our experiments, respectively, we tested the performance of these
methods and our approach by applying LSTM or GRU as the basic elements of
the RNN unit. We repeated many times by using every method we mentioned
above, each time taking 9 sessions of data as training sets and 1 session of data as
a test set. The performance results are shown in Fig. 6(a) with offline training.
The experimental results show that our proposed approach can achieve more
accuracy and stability, which is obviously superior to the traditional methods.
There is no obvious difference between when we apply LSTM or GRU as the



774 C. Tan et al.

(a) Classification accurancy (%) obtained from 10-
flod cross validation

(b) Accuracy of each epoch when
training by our approach

Fig. 6. Experiment results between our CNN-RNN network and other approaches
based on the dataset collected from our rehabilitation support system.

basic element of RNN, but it can reduce training time when applying GRU as
the basic element of RNN. Moreover, it can be demonstrated that our approach
can converge quickly and stably (Fig. 6(b)).

Furthermore, Table 1 presents the performance of our approach and tradi-
tional approaches on dataset IIa from BCI competition IV. It is clear that the
our approach presented in this paper provides a significant improvement in clas-
sification accuracy over the traditional approaches. Results also suggested that
our approach can achieve better performance when using LSTM. These differ-
ences between LSTM and GRU can be due to the fact that LSTM has a more
complex structure than GRU.

Table 1. Experiment results (%) on dataset IIa from BCI competition IV, Sn is subject
n in the dataset.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg Std

SVM 78.8 51.7 83.0 61.8 54.2 39.2 83.0 82.6 66.7 66.78 15.25

CSP+LDA 78.1 44.4 81.9 59.0 39.6 50.0 80.9 68.4 77.1 64.38 15.62

Conv1D 78.8 53.1 82.6 60.4 59.0 43.8 82.6 83.3 81.2 69.42 14.45

Our approach
(LSTM)

78.8 62.5 83.0 63.5 67.7 45.8 90.3 85.8 72.6 72.22 13.17

Our approach
(GRU)

90.6 41.0 95.1 68.1 47.6 54.9 90.3 64.9 80.6 70.34 18.79

Our approach achieves superior accuracy over the traditional methods. How-
ever, due to the complexity of the network, careful design and optimization is
needed to obtain satisfactory results. Herein, the training time of our network is
much longer than other traditional methods because of two-step training strat-
egy, especially when apply LSTM as the RNN unit.
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5 Conclusions

In this paper, we propose a novel EEG classification approach, and build a mixed
BCI-based rehabilitation support system. This rehabilitation support system
can help stroke patients achieve a level of independence. The EEG classification
problem is reduced to a video classification problem by converting EEG signal to
gray-scale EEG videos. Moreover, optical flow has been introduced into this field,
which can characterize the variant of EEG signal in the temporal dimension. To
utilize the multimodal information of EEG, we project the position of electrodes
to preserve the spatial information, apply multiple frequency filters to represent
the spectral information, and utilize the time sequences information of EEG
videos and optical flow to represent temporal information. We have constructed
a deep neural network designed for these EEG videos and optical flow, and have
partially solved the problem of insufficient EEG datasets by training the network
in two steps. In future, EEG classification may be improved by state-of-the-art
approaches from image classification and video classification. Particularly, we
will apply the trained networks from image classification and video classification
by transfer learning to solve the problem of insufficient EEG dataset.

Acknowledgments. This work was supported by the National Natural Fund:
91420302 and 91520201. Thanks to the contributors of the open source software used
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Abstract. Recently, the bimodal BCI has attracted more and more attention.
Previous studies have reported that the classification performance of bimodal
system was better than that of unimodal system. Based on the fundamental
visual-tactile P300 BCI, this paper made a change on the flash pattern of visual
stimuli expecting to improve its performance by enhancing the link between
visual and tactile modalities. Two patterns were tested in this paper, which
respectively were picture-vibrate pattern (producing the visual effect of vibra-
tion) and color-change pattern (changing blue to green). The results showed that
the picture-vibrate pattern achieved higher classification accuracy and infor-
mation transfer rate than color-change pattern. The average online bit rate of
picture-vibrate pattern including the breaking time between selections, reached
12.49 bits/min, while the color-change pattern’s online bit rate reached 8.87
bits/min on average.

Keywords: Brain computer interface � P300 � Visual-tactile � Picture-vibrate
pattern � Color-change pattern

1 Introduction

Brain-computer interface (BCI) is a human-computer interaction technique, which uses
electroencephalogram (EEG) to control external device directly without the involve-
ment of peripheral nerves or muscle tissues [1, 2]. The P300 based BCI is one of the
most popular system because of its high accuracy and information transfer rate [3, 4].
P300 can be evoked by different stimulus modalities, such as visual [4–6], audio [7] or
tactile [8]. Some studies have compared these modalities’ influences on BCIs [9, 10].
Even though the tactile stimuli achieved lowest accuracy than other modalities for
healthy users [9], it outperformed for ALS patients [10]. Therefore, tactile P300 BCI is
a viable alternative for patients with visual or audio dysfunction [11].

Several tactile P300 BCIs have been tested successfully. An influential study was
conducted by Brouwer and van Erp in 2010 [8]. Six vibrators were placed evenly
around subject’s waist, and different stimulus onset asynchronies (SOA) were mea-
sured by grouping different on- and/or off-time. The result showed that the optimal
SOA was close to SOAs of visual P300 BCIs, which provided a baseline for the tactile
BCI studies. In recent years, tactile stimuli have been delivered to different parts of the
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human body, such as fingers, chest, head, et al. [12–14], and the tactile BCI system was
also used to control a wheelchair successfully [15, 16].

To further improve the performance of tactile P300 BCI, multisensory modalities
based BCI systems have also been investigated. Brouwer et al. [17] combined tactile
stimuli with visual stimuli, and found that the bimodal stimuli achieved highest clas-
sification accuracy compared to unimodal stimuli. Thurlings et al. [18] studied the
visual-tactile gaze-independent BCI system, and surveyed the effects of location-
congruency and selective attention to modality on the bimodal ERP-BCI. The result
showed that location-congruent bimodal stimuli could improve ERP-BCIs, but selec-
tive attention to modality had fewer influence on classification performance. In a recent
study, an auditory-tactile bimodal P300 BCI was investigated by Yin et al. [19], in
which the direction-congruency was also used. And the author found that the proposed
bimodal stimulation achieved higher classification accuracy and information transfer
rate than unimodal stimulation.

Driver et al. [20] pointed out that the information received from one sensory
channel can affect the original feeling obtained from another sensory channel. For
example, when the auditory stimuli were delivering, presenting the corresponding
visual stimuli would strengthen the understanding of auditory information. In this
paper, based on the fundamental visual-tactile P300 BCI system (color-change pattern)
[17], we proposed an improved visual-tactile P300 BCI system (picture-vibrate pattern)
with the aim of enhancing the link between visual and tactile modalities. The two
patterns differed only on the flash pattern of visual stimulation, while the tactile
stimulation patterns were all the same.

2 Methods and Materials

2.1 Subjects and Data Acquisition

Six healthy subjects (one female and five males, aged 22–28 years old) participated in
this study, which were pad 100 RMB and labeled as S1, S2, S3, S4, S5 and S6. All of
them had intact tactile sensation.

EEG data were recorded by a g.USBamp and a g.EEGcap (Guger Technologies,
Graz, Austria). The bandpass filter was set between 0.1 Hz–30 Hz, and the sample rate
was 256 Hz. According to the international 10-20 system, 14 electrodes were selected,
which were Fz, FC1, FC2, C3, Cz, C4, CP3, CP1, CP2, CP4, P3, Pz, P4 and Oz (see
Fig. 1). The right mastoid was used as the reference, and front electrode (FPz) was
selected as the ground electrode.

2.2 Stimuli and Procedure

In this paper, the visual and tactile stimuli were synchronous and location-congruent
[14]. The vibrotactile stimuli were delivered by g.VIBROstims which were powered by
a g.STIMbox (g.tec Medical Engineering GmbH, Schiedlberg, Austria). Five parts of
body were selected to place vibrators: left wrist, right wrist, abdomen, left ankle and
right ankle. The visual stimuli were presented on a 24in. LED monitor (see Fig. 2).
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The background was black, and the blue circles represented vibrators on corresponding
parts of body. Referencing Brouwer’s work [8, 17], the stimulus-on time was 200 ms,
and the inter-stimulus interval was 400 ms.

In the color-change pattern, the circles changed green during the stimulus-on time,
and then reverted to blue during the stimulus-off time. In the picture-vibrate pattern, to
produce the visual effect of vibration, the white rectangle moved to the right and left
respectively for 50 ms, and backed to the original position respectively for 50 ms
(see Fig. 3).

2.3 Offline and Online Protocols

In this study, offline training block and online testing block were all included (see
Fig. 4). The offline training block was consisted of three runs, when each run included

CZ

P3

C4C3

Pz

Oz

P4

FC2FC1

FPZ

A

FZ

CP5 CP1 CP2 CP6

Fig. 1. Electrodes configuration.

(1) Color-change pattern

(2) Picture-vibrate pattern

Fig. 2. The display during the online runs. The left-upper circle represents the vibrator placed on
the left wrist. The right-upper circle represents the vibrator placed on the right wrist. The middle
circle represents the vibrator placed on the abdomen. The left-lower circle represents the vibrator
placed on the left ankle. The right-lower circle represents the vibrator placed on the right ankle.
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five trial blocks. There were 10 trials per trial block, and the five stimulators were
selected randomly in each trial. In the online block, 20 trial blocks were included,
which means that the five targets were tested for four times. Besides, the online block
was an adaptive system proposed by Jin et al. [5]. The system would feedback the
classification result when the two consecutive outputs were consistent.

2.4 Feature Extraction Procedure and Classification Scheme

The EEG data was band pass filtered (0.1–30 Hz) by the Butterworth filter of 3th order,
and down-sampled from 203 Hz to 29 Hz by selecting every seventh sample. Con-
sequently, the size of the feature vector was 14 � 29 (14 represents the number of the
channels and 29 denotes the samples). Bayesian linear discriminant analysis (BLDA)
was chosen as the classifier because of its great classification performance by avoiding
over-fitting [21].

2.5 Data Analysis

To compare different paradigms’ performance, bit rate is an objective measure. Raw bit
rate (RBR) was defined by Wolpaw in 2002 [2], which was calculated via

B ¼ log2 NþP log2 Pþ 1� Pð Þ log2 1� Pð Þ= N � 1ð Þ½ �f g � T ð1Þ

Where P denotes the classification accuracy, N denotes the number of target every
trial and T denotes the completion time of the target selection task.

50ms 400ms50ms 50ms50ms

middle right middle left middle

ISI

middle

Fig. 3. The presenting sequence of picture-vibrate pattern.

One  trial (5 stimuli)

One trial block (10 trials)

One run (5 offline trials blocks or 20 online trial blocks)

One stimuli

Fig. 4. The flowchart of stimuli.
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3 Results

3.1 Offline Analysis

Figure 5 shows the averaged ERP amplitude of target across 6 participants over 14
electrodes. The R-squared value is common method to show the time energy of ERP

signal, the definition is r2 ¼
ffiffiffiffiffiffiffiffi

N1N2
p
N1 þN2

�mean X1ð Þ�mean X2ð Þ
std X1 [X2ð Þ

� �2
, where X is the features of

class, and N is the number of samples. The two patterns’ R-square values are shown in
Fig. 6.

Figure 7 shows the offline classification accuracies and raw bit rates of each par-
ticipant overlapped over 1–10 trials. Obviously, the picture-vibrate pattern achieved
better offline classification performance than color-change pattern. Figure 8 shows the
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Fig. 5. Grand averaged ERPs of targets across 6 subjects over 14 electrodes.

Fig. 6. R-squared values of ERPs from 0 to 1000 ms averaged across 6 subjects.
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single-trial accuracy of each participant. Paired sample t-test was used to show the
difference between the two patterns, and the result shown that picture-vibrate pattern
was significantly higher than color-change pattern in single-trial classification accuracy
(t ¼ �4:304; p ¼ 0:008).

Fig. 7. The mean offline classification accuracies and raw bit rates.

Fig. 8. The mean single-trial classification accuracies across 6 subjects. The red bar represents
the average value of color-change pattern, and the black bar represents the average value of
picture-change pattern. (Color figure online)
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3.2 Online Performance

Table 1 shows each participant’s online classification performance. The online clas-
sification accuracy and required trials were achieved by the classification and identi-
fication of BLDA model, and the raw bit rates were calculated by Formula (1). The
paired sample t-test showed that the picture-vibrate pattern required significantly fewer
trials than color-change pattern (t ¼ 3:25; p ¼ 0:023). The online classification accu-
racies and raw bit rates were higher for the picture-vibrate pattern, but the difference
between the two patterns were not significant (t ¼ �1:995; p ¼ 0:108; t ¼ �2:389;
p ¼ 0:062).

4 Discussion

This paper tested two visual-tactile stimulation patterns: color-change pattern and
picture-vibrate pattern. The offline and online results showed that the picture-vibrate
pattern achieved higher classification accuracy and information transfer rate than
color-change pattern.

In 2014, Thurlings et al. [18] found that bimodal system could evoke larger P300
than unimodal system measured by tAUC. This paper used R-square to represent the
energy of ERP signal (see Fig. 6). The red component represented positive potential,
and the blue component represented negative potential. It was obvious that the energy
of ERP was stronger in the picture-vibrate pattern.

With respect to the offline classification accuracy and raw bit rates (see Fig. 7), all
subjects achieved better classification performance in the picture-vibrate pattern. The
single trial accuracy of each subject was further calculated in the Fig. 8. The result of
paired samples t-test showed that the difference between the two patterns was signif-
icant (p < 0.05).

During the online block, the subject completed the test of 20 targets. From Table 1
we can see that picture-vibrate pattern obtained higher online classification accuracy

Table 1. The online classification accuracies, raw bit rates and average numbers of trials

Subjects Color-change pattern Picture-vibrate pattern
ACC (%) RBR (bit/min) AVT ACC (%) RBR (bit/min) AVT

S1 100 11.81 2.40 100 12.61 2.15
S2 100 11.81 2.40 100 12.78 2.10
S3 90 8.30 2.45 100 11.51 2.50
S4 70 4.39 2.30 100 13.14 2.00
S5 75 4.95 2.55 100 12.61 2.15
S6 100 11.96 2.35 100 12.27 2.25
AVG 89 8.87 2.41 100 12.49 2.19
STD 14 3.54 0.09 0 0.55 0.17
* ACC = classification accuracy; RBR = raw bit rate (bit/min); AVT = average
number of trials used to classify each target; AVG = average value;
STD = standard deviation.

An Improved Visual-Tactile P300 Brain Computer Interface 783



and information transfer rate, and required fewer trials to classify each target than
color-change pattern. But the result of t-test showed that only the difference of required
trials was significant (p < 0.05). Because that number of samples were fewer and the
data didn’t coincided with normal distribution law, which may cause the difference of
accuracy and bit rate were not significant (p > 0.05).

Some limitations still exist in this paper. The picture-vibrate pattern achieved
significantly better classification accuracy than color-change pattern. However, this
result may attribute to the difference of visual stimulation. That is, the stronger intensity
of visual stimulation may contribute to better classification performance of the bimodal
system. The proposal of the picture-vibrate pattern aimed to improve the performance
by strengthening the link between different modalities. Therefore, unimodal system in
the two patterns should be further conducted and compared with the bimodal system to
demonstrate its effectiveness.

5 Conclusion

Based on the previous studies of visual-tactile P300 BCI, this paper made an
improvement on the visual stimulation pattern, which used picture-vibrate pattern to
substitute traditional color-change pattern for the purpose of enhancing the link
between different modalities. The online and offline results showed that the proposed
picture-vibrate pattern achieved significantly higher classification accuracy and infor-
mation transfer rate than color-change pattern, but further studies should been con-
ducted to verify its effectiveness. In general, there are still a lot of rooms for
improvement on the bimodal BCI by changing stimulation patterns.
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Abstract. This research introduces a framework based on multimodal feature
analysis and hybrid feature selection algorithm for improving the recognition
rate of driver’s status. In order to provide rich information about physiological
conditions of human operators, a variety of physiological features are widely
extracted from time, spectral, wavelet and nonlinear domains. The redundant
and noisy parts of the original feature set could negatively influence the iden-
tification performance and occupy limited computing resource. Therefore, a new
hybrid feature selection approach is proposed to handle the high dimensionality
of feature space and improve classification precision simultaneously. Decision
Tree and Sparse Bayesian Learning were employed to generate the initial feature
subset that could be further optimized by the adaptive tabu search with Fisher
classifier. Finally, three-level driver’s stress statuses were discriminated by
using support vector machine. Our experimental results show that the proposed
algorithm has achieved satisfactory identification rate of driver’s status with
compact feature vector.

Keywords: Driver’s status detection �Multiple physiological signals analysis �
Hybrid feature selection � Tabu search

1 Introduction

Driving safety requires driver under a relaxed mind and high vigilance level. Various
types of unfit driving statuses, such as stress, drowsy, fatigue and distraction, deteri-
orate the performance of a driver and may lead to dangerous behavior even fatal traffic
accidents [1]. Recently, government and automakers pay more attention to the highly
integrated and economic solutions for in-vehicle safety assistant systems.

Researchers in the past have validated the analysis of physiological signals as an
effective approach to evaluate stress level, fatigue and emotion statuses of human
operators [2]. In literature, multiple kinds of physiological signals such as galvanic skin
response (GSR), skin temperature (ST), blood volume pulse (BVP), electrocardiogram
(ECG), respiration and electroencephalogram (EEG) have been reported for the
detection of driver’s status [3, 4]. Multi-modal features have been extracted from time,
spectral, wavelet even nonlinear analysis. However, diverse bio-signals and
multi-modal feature generation inevitably produce a high dimensional feature space.
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The redundant and noisy parts of the original feature set could negatively influence the
identification performance and occupy limited computing resource. Recently, many
hybrid strategies have been applied efficiently to solve the challenges in
high-dimensional dataset and made a good compromise between categorization per-
formance and computational efficiency. This paper attempts to propose a novel feature
selection method to eliminate the redundant and noisy part of features, shorten the
computational time of model training, and improve the performance of categorization
task.

2 Experimental Materials

First, we will introduce the driving dataset containing different driving stress conditions
which we want to classify. The signals used in this research were contributed to NIH
PhysioBank Database by Healey and Picard [5]. Totally 27 drive runs were recorded
from nine drivers while they were driving on a prescribed route. The signals were
recorded during three different driving conditions and related to low, medium and high
stress statuses. Four channels of physiological signals were analyzed: ECG with the
sampling frequency (FS) of 496 Hz, GSR recorded on the left hand and the left foot
with the FS of 31 Hz, and respiration measured through chest cavity expansion with the
FS of 31 Hz.

For each drive test, three 10-min data were selected from low, medium and high
stress driving periods respectively. The selected data is further divided into 100-sec
segments with an advance of 10 s. For each drive test, three 10-min data were selected
from low, medium and high stress driving periods respectively. The selected data is
further divided into 100-sec segments with an advance of 10 s.

3 Methods

The general process of the proposed system is illustrated in Fig. 1. This research is
mainly concentrated on feature generation and feature selection procedure to search for
the most relevant and useful feature subset from the original high-dimensional feature
space.

SBL

DT

Original
Feature 

Set
SVM

Embedded stage Wrapper stage

Relevant
Feature 
Subset

Adaptive 
TS

+ Fisher

Optimal 
Feature 
Subset

Multiple
Signals

Multi-modal
Feature

Analysis

Hybrid Feature Selection

Fig. 1. The general process of the proposed system.
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3.1 Feature Extraction

After initial preprocessing, multimodal features are extracted from the time, spectral,
wavelet and nonlinear analysis for each segment. Totally, 154 features are obtained and
the overview of all the features extracted from multiple physiological signals is listed in
Table 1.

3.2 Feature Selection

The design framework for the proposed hybrid feature selection method is also pre-
sented in Fig. 1. In the embedded stage, two approaches are employed to generate the
initial feature subset that could be further optimized by the wrapper method with
corresponding classifier in the next stage.

Embedded stage
The embedded stage is an important part for the proposed hybrid strategy which could
initially eliminate the irrelevant, redundant and ineffective feature. Here, Decision Tree
(DT) and Sparse Bayesian Learning (SBL) are employed in the embedded stage.

Table 1. Multi-modal features extracted from multiple physiological signals

Domain Features Signals

Time Statistics for raw signals: mean, standard deviation (STD),
variance, root mean square (RMS), maximum (max), minimum
(min)

ALL

Waveform features: peak number sum, magnitude sum, duration
sum and area sum

FGSR

Statistics for the first order difference sequence (FOD) and the
second order difference (SOD) sequence

HGSR

Spectral Spectral power in 0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–
0.4 Hz, and total band

Respiration

Spectral energy in 0–0.04 Hz (VLF), 0.04–0.15 Hz (LF), 0.15–
0.5 Hz (HF), total band and the ratio of them

HR

Statistic features of spectral power in 0–0.5 Hz GSR
Wavelet The mean and STD of relevant wavelet coefficients computed

from five detail signals and approximation signal, which were
generated by wavelet decomposition with db4 wavelet family

ALL

Non-linear Approximate Entropy, C0 Complexity, Sample Entropy, Hurst
Exponent, Permutation Entropy, Fractal Dimension

ALL
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Decision Tree builds classification or regression models in the form of a tree
structure, which can handle both nominal and numerical data. It breaks down a dataset
into smaller and smaller subsets while at the same time an associated decision tree is
incrementally developed. A decision tree can easily be transformed into a set of rules
by mapping from the root node to the leaf nodes one by one. Once the decision rules
have been determined, it is possible to use the rules to predict new node values based
on new or unseen data. In the literature, Decision Tree has been applied in the selection
process of features [6].

Sparse Bayesian Learning (SBL) was originally proposed as a machine learning
algorithm by Tipping. The solution of SBL has a strong sparseness, since the para-
metric Gaussian distribution is used as the prior distribution of the solution in SBL. The
sparse solution obtained by SBL can greatly reduce the redundancy and complexity of
the model. Zhang et al. recommended a sparse Bayesian method for selecting the
important P300 features from EEG in the application of brain-computer interfaces [7].

Wrapper stage
Another indispensable part of the hybrid strategy is the wrapper stage, where adaptive
Tabu search algorithm combined with Fisher classifier is utilized. TS algorithm was
proposed by Glover to solve combinational optimization problem. Recently, Tabu
search algorithm has obtained promising results on feature selection tasks especially
when the search space is noisy with numerous local optima [8].

The detailed process for the Tabu search algorithm is introduced below. The
algorithm starts with an initial solution generated by one of the embedded methods.
Then it is during the phase of initialization including initializing tabu list, constructing
objective function, deciding the aspiration criterion and setting termination condition.
This is followed by treating initial solution as the current best solution and evaluating
its cost value. Next is the key step of TS. Setting the current solution as the starting
point, the neighborhood and candidate list are generated via replacing one feature from
the current solution in each iteration. The neighborhood optimal solution is found
according to the principle that the chosen solution has the minimum of cost value from
candidate list. The current best solution and the new starting point are replaced with the
neighborhood optimal solution if the minimum is smaller than the cost value of the
current best solution, otherwise the new starting point is regarded from the candidate
list that doesn’t belong to tabu list. Start the next iteration cycle from the new starting
point if termination condition isn’t satisfied after updating tabu list, otherwise finish the
search and return the best solution.
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Several crucial factors in Tabu search algorithm should be carefully determined as
shown in Fig. 2.
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(1) Initial solution
Here, initial solution has been obtained by Decision Tree (DT) and Sparse
Bayesian Learning (SBL) methods instead of the random manner, since the
embedded methods can eliminate the irrelevant and redundant features effectively.

(2) Search strategy
Usually, intensification search strategy (ISS) and diversification search strategy
(DSS) could be used to establish candidate list. ISS can intensify and achieve
more sufficient search in the neighborhood of current best solution. While DSS
has more possibilities to realize global optimization since DSS helps to escape
from local optimum by changing the search direction. To combine the merits of
both approaches, an adaptive search strategy based on intensification and diver-
sification search strategy (ASS-ID) is adopted to optimize search result.

(3) Tabu length
Tabu length defines the iterations in which the solutions can’t be selected unless
aspiration criterion is met. Usually, stable tabu length runs more effectively while
it tends to fall into cycle dilemma which indicates the algorithm can’t escape from
local optimal plight based on the current tabu length. In this case, tabu length can
be regarded as a dynamical variable, here change rule is set according to search
performance and the nature of problem.

(4) Objective function and proportionally coefficient
Two items have been considered into the objective function as shown in Eq. 1,
where rate and num reflect classification performance and the number of selected
features respectively. rate is the sum-of-squares of error1, error2 and error3,
which indicate the wrong identification rate for each stress level. Additionally,
proportionally coefficient K is defined as the ratio of k1/k2, where k1 and k2 are the
weight coefficients of classification rate and feature number.

Cost ¼ k1 � rateþ k2 � num ð1Þ

rate ¼ error21 þ error22 þ error23 ð2Þ

K ¼ k1=k2 ð3Þ

(5) Neighborhood
Neighborhood could be gained by randomly inverting d features from N original
features when d ¼ D2, which can include N!= N � dð Þ!� d!½ � possible solutions.
Then candidate list is acquired via abstracting part of solutions from
neighborhood.

3.3 Classification

We have two links to the classifier. The first link lies in TS algorithm, which incor-
porates Fisher classifier to assess the identification capacity of the generated feature set.
The second link lies in the last procedure of the identification task, which uses SVM
with linear kernel as the final classifier. Totally, fourteen sets of drive data are utilized,
one set of data is randomly conscripted as the test set, and the remaining 13 sets of data
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are used as the training set. 14-fold cross validation is performed and the mean results
of 14 times cross validation is regarded as the final result.

4 Results

4.1 Determination of Several Crucial Factors for Hybrid Algorithm

We show the results using different initial solution, search strategies and tabu length in
Fig. 3 and compare the results of TS algorithm based on different Euclidean distance
and different proportionality coefficient in Fig. 4.

The search results for different initial solutions generated by SBL, DT and random
manner are presented in Fig. 3a. Hybrid algorithms excelled TS with random initial
solution in search results. Furthermore, the result of DT-TS was distinctly superior to
those of SBL-TS and random manner in both accuracy and convergence rate.

The search results using three kinds of search strategies are illustrated in Fig. 3b.
ASS-ID inherited the advantages of ISS and DSS. The speed of accuracy was rising
gently, which was similar to ISS. Furthermore, obvious promotion appeared at some
iteration steps (such as the 23rd iteration), which indicated the algorithm jumped out of
local optimal plight thanks to the characteristic of DSS. In conclusion, an effective
improvement on the quality of search result could be achieved by ASS-ID.

Additionally, both the classification accuracy and convergence rate using adaptive
tabu length presented some improvements compared to those with stable tabu length
(Fig. 3c).

Figure 4 illustrates the results of TS algorithm based on different Euclidean dis-
tance and different proportionality coefficient. First, we discuss the choice of propor-
tionality coefficient. Figure 4a, b and c show the trend of identification accuracy
in iterations while the feature reduction rate is illustrated in Fig. 4d, e, and f. K = 50,
100 and 200 should be discarded according to the change trend of accuracy, and
K = infinity was also unsuitable for application with the consideration of feature
reduction. The acceptable accuracy was obtained under proportionally coefficient
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Fig. 3. Determination of crucial factors for hybrid feature selection method. (a) Results for
different kinds of initial solution. (b) Results of TS for three kinds of search strategies, i.e., ISS,
DSS and ASS-ID. (c) Results of TS based on stable and adaptive tabu length.
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K = 500 and 1000 and finally K = 500 was chosen for adoption because its results
were slightly superior to that of K = 1000.

Furthermore, we discuss the selection for appropriate neighborhood D (i.e.,
Euclidean distance d ¼ D2). A moderate scale of candidate list is helpful to reduce the
calculation amount and find a better solution faster. Moreover, this finite search in the
solution space does not have a bad effect on the quality of the solution from a global
perspective. Here, the candidate list contained 80 solutions, which was a subset of the
neighborhood space. When D ¼ ffiffiffi

2
p

and D ¼ ffiffiffi

3
p

, the scale of neighborhood was so
large that could produce many possibilities of solutions while only a small part of them
which belong to candidate list were searched and used. That is to say, large amount of
solutions in neighborhood were never searched and used by our proposed algorithm.
While choosing which part of the neighborhood space for further searching brought
about another problem, i.e., the randomness and instability of solutions. This was the
main limitation of bigger Euclidean distance. In conclusion, neighborhood solution
space generated by D = 1 was more appropriate for Tabu search algorithm especially
when original feature dimension was high.
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Fig. 4. Results of algorithm based on different Euclidean distance and different proportionality
coefficient
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4.2 Comparison of Different Feature Selection Methods

Table 2 makes a comparison for the classification performance tested on the original
full feature set and the selected feature set using different feature selection techniques.
In single embedded mode, the cost value presented an obvious reduction although the
identification precision using single SBL approach was a little lower than that using
original feature set. In single wrapper mode, the identification precision on basic TS is
improved but no so significant. Additionally, the effect of feature reduction was not as
obvious as that of single embedded method. The results of the hybrid mode were the
best. As for the proposed DT-TS algorithm, not only the identification precision but
also the feature reduction rate were superior to those of the above five situations.

5 Discussions and Conclusions

An effective driver’s status detection system with multi-modal physiological feature
generation and hybrid feature selection algorithm has been developed and tested in this
research. The main contribution of this paper is to improve the recognition rate of
driver’s status under different driving stress conditions using optimal physiological
sensors and feature sets. Several explanations for the obtained results are listed as
follows.

In order to provide rich information about the physiological conditions of human
operators, multimodal feature generation is proposed. The larger the number of features
adopted, the larger the possibility of searching for an optimal feature subset.

Compared with single feature selection method, the hybrid approach can improve
the identification rate of drive stress using more economic feature set and make a good
compromise between the operation efficiency and effectiveness. There are possible
reasons for its superiority. The first reason is that the approaches in the embedded stage
initially eliminate the irrelevant, redundant and ineffective features which could greatly
reduce the computational complexity and enhance the feasibility for the successive
wrapper method. The second reason is that in the wrapper stage the Tabu search with
adaptive search strategy, variable tabu length and optimized objective function makes it
more capable to find the better solution and escape from local optimal plight.

Table 2. Results for different methods in feature selection process

Methods Sensitivity Specificity Precision Feature number Cost value

Raw All features 0.878 0.939 0.892 154 18.14
Embedded SBL 0.866 0.933 0.883 28 6.12

DT 0.871 0.935 0.896 27 5.47
Wrapper TS 0.879 0.940 0.893 51 7.4
Hybrid SBL-TS 0.897 0.948 0.901 24 4.44

DT-TS 0.905 0.949 0.914 15 3.07
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Future work can be carried out from the following aspects. First, the combination of
other algorithms for feature selection can be employed, such as the incorporation of
different filter, embedded and wrapper methods. Second, in the wrapper stage, the
combination of global search methods (genetic algorithm, neural network) and local
search algorithms (simulated annealing, Hill climbing) could be explored in depth.
Third, other physiological signals like EEG, BVP, EMG and EOG can be researched.

Acknowledgement. This work is partly supported by National Natural Science Foundation of
China (Nos. 61201124, 51407078) and Fundamental Research Funds for the Central Universities
(222201717006, WH1414022).
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Abstract. When humans fall asleep, they go through five sleep stages,
i.e. wakefulness, stages of non-rapid eye movement consisting of N1, N2
and N3, and rapid eye movement (REM). Monitoring the proportion and
distribution of sleep stages can help to diagnose sleep disorder and mea-
sure sleep quality. Traditional process of sleep scoring by well-trained
experts is quite subjective and time-consuming. Automatic sleep stag-
ing analysis has demonstrated a lot of usefulness and attracted increas-
ing attentions. With the massively growing size of accessible data and
the rapid development of computational power, Deep Learning (DL)
has achieved significant improvement in a lot of areas. In this work,
an intelligent system for sleep stage classification is developed by using
polysomnographic (PSG) data including electroencephalogram (EEG),
electrooculogram (EOG) and electromyogram (EMG) based on a DL
architecture. In our method, the Convolutional Neural Network (CNN)
is employed as the feature detector, which is combined with a Hidden
Markov Model (HMM) for its strengths of dealing with temporal data.
Experiment results have shown a performance improvement compared to
those methods with hand-crafted features or unsupervised feature learn-
ing by Deep Brief Learning (DBN).

Keywords: Sleep stage ·Machine Learning (ML) · Classification · Deep
Learning (DL) · Convolutional Neural Network (CNN) · Hidden Markov
Model (HMM)

1 Introduction

When humans fall asleep at night, they can typically pass through several
sleep transitions or sleep stages that consist of wakefulness (W), stages of
non-rapid eye movement that are divided into 4 stages of N1-N4 based on
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 796–802, 2017.
https://doi.org/10.1007/978-3-319-70096-0_81



Deep Learning Method for Sleep Stage Classification 797

Rechtschaffen & Kales rules [1] or 3 stages by combining N3 and N4 into one
stage based on Academy of Sleep Medicine (AASM) [2], and Rapid Eye Move-
ment (REM). Monitoring the proportion and distribution of sleep stages can help
to diagnose sleep disorder and measure sleep quality [3]. Sleep stages can be clas-
sified by measuring electrophysiological signals such as Electroencephalogram
(EEG), Electrocardiogram (ECG), Electrooculogram (EOG) and Electromyo-
gram (EMG), etc. Deeper sleep pattern is in general marked by the appearance
of a slow wave (delta) on EEG, which is followed by an increase in the amplitude
value. When the deepest stages is reached, however, the amplitude is decreased.
The similar phenomena can be observed in EMG signals. As for EOG signals,
the fluctuation of amplitude occurs typically when sleep stages getting deeper
and the peak of amplitude change takes place when the REM is reached where
the activity of eye movement will happen. Traditionally, sleep stages are man-
ually evaluated and monitored by well-trained experts. It is, however, a subjec-
tive process and a tedious task requiring much time and effort of physician [4].
With the rapid development of Artificial Intelligence (AI), intelligent systems for
automatic stage scoring and sleep quality monitoring have attracted increasing
attentions and efforts from scholars.

With the massively growing size of accessible data and the rapid devel-
opment of computational power, Deep Learning (DL) has achieved significant
improvement in many areas, e.g. natural language processing, object recognition,
speech recognition, handwriting recognition, biomedical signal processing, etc.,
in comparison with other state-of-the-art machine learning methods. Recently,
researchers start to apply deep learning in sleep studies [4–8]. When evaluating
sleep stages based on polysomnographic (PSG) data by using machine learning
technologies, due to the complexity of multi-modal sleep data, feature extraction
is quite difficult, and moreover, the size of the feature space may grow to quite
large, which makes feature selection ultimately necessary. Deep learning is able
to automatically learn feature representation from raw data with various deep
architectures in either unsupervised or supervised fashions. In [5], deep belief
networks (DBNs) were employed for unsupervised feature learning from hand-
craft features or raw sleep data, which gave a higher classification accuracies
compared to fine-tuned hand-crafted features with a Gaussian observation hid-
den Markov model (GOHMM). It has been demonstrated that deep learning can
model data with complex structures and address the variant problem caused by
various subjects in sleep data [9,10].

In this work, an automatic system for sleep stage scoring is developed by
taking advantages of powerful DL technologies. The PSG data including EEG,
EOG and EMG are used for sleep stage classification. A deep feed-forward Neural
Network, Convolutional Neural Network (CNN) is employed to learn the charac-
teristics of the high-order correlation among the visible data and corresponding
labels as a feature detector, which eliminates the need of hand-crafted feature
extraction and selection. The CNN is then combined with a Hidden Markov
Model (HMM) for its strengths of dealing with temporal data bearing sequen-
tial nature for sleep stage classification.
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The remainder of the paper is organized as follows. In Sect. 2, the proposed
system for classifying sleep stages is presented. The experimental results obtained
through model evaluation are summarized in Sect. 3, followed with concluding
remarks provided in Sect. 4.

2 Prediction Model

Sleep staging is evaluated based on different types of PSG signals that are
collected from various subjects, either healthy people or patients with differ-
ent disorders, which leads to complex data characteristics and variant problem.
The success of classification is heavily dependent on effective feature engineering
when traditional shallow learning algorithms are employed. To address this in
our method, we take advantages of powerful deep learning technologies as fea-
ture detectors, which eliminates the need of hand-crafted feature extraction and
selection.

Deep learning, developed since 2006 [11], refers to a class of machine learn-
ing techniques and architectures, in which many layers of non-linear information
processing stages are exploited in hierarchical architectures for feature repre-
sentation learning and pattern classification or recognition [12]. Compared to
shallow models like Support Vector Machines (SVM), deep learning networks
represent multi-layer neural networks with deeper structures, in which the data
are processed at and in between of the multiple layers. Such networks are the-
oretically capable of implementing any non-linear functions for modeling the
relationship between the inputs and outputs. The strength of DL networks lies
in their abilities to identify structures in the lower-level data representations
and use them to clean, cluster and provide much more organized features as
input for the learning at the higher levels of data abstraction. In recent years
with drastically increased chip processing abilities, e.g. GPU units, significantly
lowered cost of computing hardware, and recent advances in research of machine
learning and signal/information processing, DL techniques have gain increasing
attention and popularity [12]. The DL can adjust the structure and its depth
to fit and accommodate the complexity of various predictive problems at hand,
which have been successfully applied in various areas, e.g. visual object recog-
nition, image processing, speech recognition, phonetic recognition, voice search,
speech and image feature coding, semantic utterance classification, hand-writing
recognition, natural language processing, information retrieval, etc. [12].

Depending on the applications, DL techniques can be broadly categorized
into 3 architectures: generative deep architectures associated with unsupervised
feature learning, discriminative deep architectures for discrimination purpose
in pattern classification by characterizing the posterior distributions of classes
conditioned on the visible data, and hybrid deep architectures with the goal of
discrimination assisted with outcomes of generative architectures [12]. Convolu-
tional Neural Network (CNN) is one of the most popular deep learning methods
for discriminative deep architectures. A CNN can be seen as a feed-forward
neural network, in which each module consists of a convolutional layer and a
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pooling layer that subsamples the output of the convolutional layer and reduces
the data rate from the layer below. The weight sharing in the convolutional
layer, together with appropriately chosen pooling schemes, endows the CNN
with some invariance properties (e.g., translation invariance), which, commonly
used in computer vision and image recognition, have been found highly effective.

In our method, sleep stage classes are automatically evaluated by combining
a CNN and a HMM. Figure 1 shows the flowchart of the whole system. The
CNN is employed as a feature detector to characterize the high-order correlation
properties of the PSG data for sleep staging analysis. Considering the sequential
nature of sleep data, the CNN is combined with the Hidden Markov Model
(HMM) for its strengths of dealing with temporal data, in which the output
from the last fully-connected layer of the CNN are fed into HMM to yield final
labels in sleep stage classification.

Fig. 1. Flowchart of the learning model in the system.

3 Experiments

To evaluate the effectiveness of the proposed method, the experiment was car-
ried out on the benchmark dataset used in [5]. The dataset, which can be down-
loaded in PhysioNet [13], was provided by St. Vincent’s University Hospital and
University College Dublin. The dataset consists of 25 acquisitions from subjects
with suspected sleep disordered breathing, which is described in Table 1. Five
sleep stages, i.e. wakefulness, N1, N2, N3, and REM, were evaluated by a sleep
expert. Their composition is illustrated in Fig. 2.

The data were preprocessed as described in [5], which can be concluded as:

1. processed by notch filtering at 50 Hz for canceling out power line disturbances;
2. filtered with a band-pass filter of 0.3 to 32 Hz for EEG and EOG, and 10 to

32 Hz for EMG;
3. down-sampled to 64 Hz;
4. removing each epoch before and after a sleep stage switch from the training

set to avoid possible subsections of mislabeled data within one epoch;
5. normalized with zero mean and unit standard deviation.

One EEG channel of C3-A2, two EOG channels and one EMG channel were
used in our experiment. Each sample was stored in a 4 × 64 matrix that was
reshaped with a dimension of 16×16 as input of the CNN. There are two stacks of
convolutional and sub-sampling layer in the CNN model. The first convolutional
layer has 6 feature maps and a kernel size of 5× 5, and the second convolutional



800 L. Cen et al.

Table 1. Description of the database.

Proportion (%)

No. acquisitions 25

Gender 21 males

4 females

Average age 50

Average height (cm) 173

Average weight (kg) 95

PSG data 2 EEG channels (C3-A2 and C4-A1)

2 EOG channels

1 EMG channel using 10 − 20 electrode
placements system

Sampling rate (Hz) 128 Hz for EEG

64 Hz for EOG and EMG

Average recording time (hours) 6.9

Fig. 2. Data proportion of sleep stages in the dataset.

layer doubles the feature maps to 12 while using the same kernel size. The scale
sizes in the 2 sub-sampling layers are both 2.

A leave-one-out cross-validation was conducted, in which each time one acqui-
sition was selected from the 25 acquisition for testing and the other acquisitions
were for model training. The average classification accuracy across wakefulness,
N1, N2, N3, and REM is 69.78%. Compared to the results having an average
accuracy of 67.4% achieved by employing the DBN to learn features from raw
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PSG data and the HMM as the classifier in [5], the developed DL based model
can achieve more accurate classification outcome. If using 28 handmade fea-
tures carefully extracted according to the characteristics of stages in both time
and frequency domain, the average accuracy with a Gaussian observation hid-
den Markov model (GOHMM) is only 63.9% [5], which is, as shown in Fig. 3,
much lower than those based on feature representation learned by using the DL
methods.

Fig. 3. Comparison among different models.

4 Conclusions

This work intends to explore sleep stage scoring by using the deep learning
architecture, in which sleep stages are classified into wakefulness, N1, N2, N3
of non-Rapid Eye Movement (non-REM), and REM by developing a learn-
ing model based on Convolutional Neural Network (CNN) and Hidden Markov
Model (HMM) with polysomnographic (PSG) data including electroencephalo-
gram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals. The
CNN is employed to characterize the high-order correlation properties of the PSG
data, which is combined with the Hidden Markov Model (HMM) for its strengths
of dealing with temporal data in sleep stage classification. It has been shown from
the experimental results that classification performance can be improved com-
pared to those achieved by using hand-crafted features or features learned with
Deep Brief Networks (DBN).
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Abstract. High-performance feature engineering and classification
algorithms are significantly important for motor imagery (MI) related
brain-computer interface (BCI) applications. In this research, we offer a
new composite kernel support vector machine (CKSVM) based method
to extract significant common spatial pattern (CSP) feature components
from multiple temporal-frequency segments in a data-driven manner.
Furthermore, we firstly introduce a multiple kernel discriminant analysis
(MKDA) method for MI EEG classification. The experimental results on
BCI competition IV data set 2b clearly showed the effectiveness of our
method outperforming other similar approaches in the literature.

Keywords: Brain computer interface · Motor imagery · Composite ker-
nel support vector machine · Multiple kernel discriminant analysis

1 Introduction

A brain computer interface (BCI) system supplies a new communication path
between the brain and other external devices [1]. It translates human inten-
tions into instructions to control an outer machine by analyzing and classifying
different brain states. One of the most widely analyzed brain state is event-
related desynchronization/synchronization (ERD/ERS) which can be typically
measured by electroencephalogram (EEG) [2]. ERD/ERS phenomenon always
appears when people do motor imagery (MI) tasks. Generally, the study of MI
EEG related BCI can be well treated as a pattern recognition problem and var-
ious methods were proposed for MI EEG feature extraction and classification.

Firstly, for the issue of feature engineering, common spatial pattern (CSP)
[3] has proven to be a very useful method and has been frequently adopted in
MI EEG feature extraction. However, the performance of CSP algorithm mainly
depends on the frequency band-pass filtering of the EEG signals, the selection
of the temporal window for analysis and the subset of CSP filters used [4]. It is
widely known that using subject-specific parameters such as discriminative fre-
quency sub-band(s), temporal window of maximum separability can enhance the
performance of a BCI system. In recent years, three kinds of methods have been
mainly proposed to solve the problem of frequency band selection. The first one
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 803–810, 2017.
https://doi.org/10.1007/978-3-319-70096-0_82
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is simultaneous optimization of spectral filters within the CSP [5]. The second
one is searching the optimal frequency band based on evolutionary algorithm [6].
The third one is selection of significant features from multiple frequency bands
[2,7]. Moreover, several algorithms have been proposed to select the optimal
temporal window for feature extraction automatically [4].

Secondly, for the classification problem, because of its fine classification per-
formance and simplicity, linear discriminant analysis (LDA) has been most fre-
quently adopted as a linear classification algorithm in the BCI field. As may
be seen from BCI literature, kernel methods such as support vector machine
(SVM) can sometimes achieve better results than linear methods [8]. Kernel
discriminant analysis (KDA) [8] was proposed to extend LDA to the non-linear
case, further equipped with efficient implementation by Cai et al. [9], KDA has
been a competitive non-linear classification algorithm. It is well known that in
kernel methods, the choice of kernel function is extremely important, since it
completely defines the embedding of the data samples in the feature space. In
practical applications, the “optimal” embedding is always analyzed as following:
given multiple kernels capturing different views of the problem, how to learn an
“optimal” combination of them [10].

In this paper, to further improve the effect or performance of feature
extraction and classification for MI EEG based BCI. We propose a compos-
ite kernel learning method and a multiple kernel learning method for fea-
ture selection and feature classification, respectively. The main contributions
of our work are twofold as follows: (1) As an extension of optimal filter band
selection methods [2,7], We propose a novel composite kernel support vector
machine (CKSVM) based method to select significant CSP features from mul-
tiple temporal-frequency segments. (2) We firstly introduce a multiple kernel
discriminant analysis (MKDA) method for MI EEG classification.

2 Materials and Methods

2.1 EEG Data Set Description

In this study, BCI competition IV data set 2b was used to evaluate the per-
formance of our method. This data set consists of EEG data from 9 subjects
and EEG signals were recorded from 3 electrodes (C3, Cz, and C4). Each sub-
ject provides 5 sessions of EEG recording. All of these sessions include no less
than 120 trials and two classes of motor imageries, namely left hand and right
hand. The EEG signals were band-pass filtered between 0.5 Hz and 100 Hz and
sampled at 250 Hz. To compare with the first placed winner of the competition
under the same condition, we used the same session(s) for training and testing
for each subject. Since continuous classification output is required for evaluation,
the class labels are evaluated on sliding windows. The EEG signals between 3 s
and 7.5 s after the beginning of the trials are extracted for training. Class label
is evaluated on each sliding window of length 4.5 s after the beginning of each
trial. Moreover, the moving step of the sliding window is 25 samples.
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2.2 Proposed Method

Feature Extraction and Selection. At first, we decompose the raw EEG
signals into multiple time-frequency segments. For BCI competition IV data set
2b, totally 16 band-pass filters of uniform bandwidth 4 Hz are adopted to cover
the frequency components from 6 to 40 Hz, and the overlap between two neigh-
boring sub-bands is 2 Hz. Time segmentation uses rectangular time windows,
and length of each time segment is set to 2 s. Moreover, the overlap between
each other is 0.5s, therefore totally 6 time segments are obtained.

Within each decomposed component, which is one T -segment of one f -band,
traditional CSP algorithm is used on the training data. It is important to remark
that in this study we use only one pair of spatial filters since only 3 channels
are available. For the spatial filtered EEG signal, band power is then computed
as feature. As a result, the feature vector of each temporal-frequency segment is
two-dimensional. Two dimensional features of all segments are then concatenated
to form a D(D = 2 × 16 × 6 = 192) dimensional feature vector. In this research,
each temporal-frequency segment is mapped into a Hilbert space individually.
Composite kernels are then utilized to determine the relevance of each temporal-
frequency segment to discriminate tasks, by using the SVM parameters of each
segment. Let feature vector fi,l represents features from temporal-frequency seg-
ment l for trial i where 1 ≤ l ≤ 96. Each feature vector is mapped to a Hilbert
space through a transformation ϕ(·) provided:

〈ϕl(fi,l), ϕl(fj,l)〉 = kl(fi,l, fj,l) (1)

where 〈·〉 is an inner product operator and kl(·, ·) denotes a Mercer’s kernel
function. Note that j denotes trial j. We have used linear kernel in this study
which is defined as:

kl(fi,l, fj,l) = fi,lT · fj,l (2)

Stacking all the feature vectors from different segments (totally 16 × 6 = 96
segments) in a single feature vector for trial i, we have

ϕ(fi) =
[
ϕT
1 (fi,1) · · · ϕT

96(fi,96)
]T

(3)

The inner product between these feature vectors is then given as:

〈ϕ(fi), ϕ(fj)〉 =
96∑

l=1

kl(fi,l, fj,l) (4)

The resulting kernel obtained after summation is known as composite kernel.
The composite kernel SVM learning machine [11] for the training samples is
given by the following optimization problem:

max
α

− 1
2

∑

i,j

αiαjyiyj

96∑

l=1

kl(fi,l, fj,l) +
∑

i

αi

s.t.

{ ∑

i

αiyi = 0

0 ≤ αi ≤ C

(5)
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where C is a SVM regularization parameter and y denotes the class label, in this
work C is set to 1 empirically. After learning parameters of SVM, the quadratic
norm of each temporal-frequency segment can be computed as:

‖hl‖2 = αTKlα (6)

where Kl is the kernel matrix obtained in terms of the inner product of training
vectors of segment l. Temporal-frequency segments are ranked on the basis of
their quadratic norm. Higher is the value of quadratic norm, more is the relevancy
of that segment to motor imagery tasks. Therefore, the features of segments with
high values of quadratic normal form are selected.

Feature Classification. Based on the selected features of training set, we
design our classifier for classification. As a non-linear extension of LDA, KDA is a
classifier, in a similar way to LDA, seeks directions that improve class separation.
However, KDA considers the problem in the feature space � induced by some
nonlinear mapping φ : �NF → �, where NF is the dimension of feature vector.
The objective function of KDA to find the optimal projective vector vopt is as
follows:

vopt = arg max
vTSφ

Bv

vTSφ
Wv

(7)

where v ∈ �. Sφ
B and Sφ

W are the between-class and within-class scatter matrices
in �, i.e.

Sφ
B =

S∑

k=1

Mk(μ(k)
φ − μφ)(μ(k)

φ − μφ)
T

(8)

and

Sφ
W =

S∑

k=1

(
Mk∑

i=1

(
φ(x(k)

i ) − μ
(k)
φ

)(
φ(x(k)

i ) − μ
(k)
φ

)T
)

(9)

S is the number of classes, μ
(k)
φ and μφ are the mean of of the k-th class and

the golbal mean, respectively, in the feature space, and Mk is the number of
feature vectors in the k-th class. It can be proved that the above maximization
problem can be solved by kernel trick. For a chosen mapping function φ, an
inner product 〈·〉 can be defined on �, which makes for the so-called reproducing
kernel Hilbert space (RKHS) 〈ϕ(x), ϕ(y)〉 = k(x,y), where k(x,y) is a positive
semi-define kernel function. Then from the theory of RKHS, we know that any
solution vopt ∈ � must lie in the span of all training samples in �. There exist
coefficients βi such that

vopt =
M∑

i=1

βiφ(xi) (10)

where M is the number of total training samples. Let βopt = [β1, β2, · · · , βM ],
then the maximization problem in Eq. (7) corresponds to the following eigenvalue
decomposition problem

KVKβ = λKKβ (11)
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where K is the kernel matrix Ki,j = k(xi,xj), and V is defined as

Vi,j=
{

1/Mk, if xi and xj both belongs to the k-th class
0, otherwise (12)

Each eigenvector βopt gives the projection of a new testing sample x̃ onto v in
the feature space. For x̃ we have

〈v, φ(x̃)〉 =
M∑

i=1

βik(xi, x̃) (13)

Finally, x̃ is classified on the basis of the Euclidean distance to the projected
mean for each class

l̃ = arg max
k

∥
∥
∥〈v, φ(x̃)〉 −

〈
v, μ

(k)
φ

〉∥
∥
∥ (14)

As we can see that KDA uses kernel function for non-linear mapping and the
choice of kernel function is critically important, since it completely determines
the embedding of the data in the feature space. Ideally, this embedding should be
learnt from training data. In this study, we propose a multiple kernel discriminant
analysis (MKDA) method. For M samples in the training set, our goal is to learn
the optimal kernel weight ε for a linear combination of linear kernel and gaussian
kernel as follows:

kopt(x,y) = ε(xTy) + (1 − ε) exp(−‖x − y‖2
/

2δ2) (15)

Note that when only linear kernel is selected, MKDA degenerates into LDA.
Besides, MKDA with single gaussian kernel becomes KDA. We choose these two
kernel functions to capturing different “views” of linear and non-linear and to
learn a “optimal combination of them”. In this study, δ is set to 10 for gaussian
kernel. For the choice of ε, we define optimality in terms of Fisher’s linear dis-
criminant analysis (FDA), that is, the learnt kernel weight ε is optimal, if the
ratio of the projected between-class distance to inter-class distance is maximised.

3 Results and Discussion

Since the kappa coefficient was used as a performance measure in the BCI com-
petition IV, it is used in this part of the experiment to measure the maximum
kappa value evaluated on the testing data. The performance of our proposed
method is compared with some other famous methods OSTP, DCSP, FBCSP
and results of the 1st, 2nd, 3rd and 4th placed submissions for the competition.
Note that the results of OSTP, DCSP and FBCSP are presented in [4]. Table 1
shows the performance comparison of the proposed method with other competi-
tors. From Table 1 we observe that our method outperforms all other algorithms
in terms of the average kappa value including the 1st placed winner of the compe-
tition though there is no significant difference (p=0.76) in the statistical analysis,
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Table 1. Performance comparison of the proposed method,OSTP, DCSP, FBCSP and
top four methods in the BCI competition in terms of kappa value. SD means standard
deviation and the maximum kappa value is marked in boldface.

Subject Our OSTP DCSP FBCSP 1st 2nd 3rd 4th

1 0.4875 0.431 0.419 0.356 0.40 0.42 0.19 0.23

2 0.2429 0.207 0.236 0.171 0.21 0.21 0.12 0.31

3 0.1938 0.238 0.194 0.169 0.22 0.14 0.12 0.07

4 0.925 0.944 0.938 0.963 0.95 0.94 0.77 0.91

5 0.8687 0.844 0.850 0.850 0.86 0.71 0.57 0.24

6 0.625 0.594 0.613 0.594 0.61 0.62 0.49 0.42

7 0.5062 0.581 0.556 0.556 0.56 0.61 0.38 0.41

8 0.8062 0.863 0.838 0.856 0.85 0.84 0.85 0.74

9 0.7875 0.663 0.681 0.750 0.74 0.78 0.61 0.53

Average 0.6048 0.5961 0.5917 0.585 0.6 0.5856 0.4556 0.4289

SD 0.2669 0.2658 0.2673 0.2982 0.2762 0.2767 0.2725 0.2639

p-value - 0.69 0.44 0.35 0.76 0.45 0.0029 0.031
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Fig. 1. Distribution of significant temporal-frequency segments for subject 1. Fre-
quency bands indicated as 1,2,· · · ,16 correspond to filter subbands 6–10 Hz, 8–
12 Hz,· · · , 36–40 Hz, respectively. Time segments indicated as 1,2,· · · ,6 correspond to
the temporal windows 0–2 s, 0.5–2.5 s,· · · ,2.5–4.5 s, respectively. Different colors corre-
spond to different values of quadratic normal.

paired T -test. Moreover, our approach outperforms the 3rd and 4rd placed sub-
missions of the competition significantly (p<0.05). Figure 1 depicts the distribu-
tion of significant temporal-frequency segments for subject 1. It can be seen that
the segments with high values of quadratic normal are mainly located in sensory
motor rhythms, (i.e., μ-rhythms 8–13 Hz and β-rhythms 14–30 Hz). In addition,
CKSVM allows a measure of the relevance of each segment to a particular task.
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Fig. 2. Classification accuracy comparisons between LDA, KDA and MKDA.

Only the relevant and informative segments are selected for classification. We
believe that decomposing a multi-channel EEG into multiple time-frequency seg-
ments for more precise analysis helps to improve the classification accuracy. In
this study, we sort the values of quadratic normal in descend order and choose
the first ϑ corresponding temporal-frequency segments for analysis. Note that
the parameter ϑ is determined by the average classification accuracy of 5×5-fold
cross validation on the training set, that is, the ϑ with the highest accuracy is
selected. As described above, the optimal kernel weight ε is determined by the
value of FDA. In this work, we set ε ∈ {0, 0.002, 0.004, · · · 0.998, 1} and select
the optimal one. In order to evaluate the effectiveness of MKDA, we also used
LDA (ε = 1) and KDA (ε = 0) for classification, and the classification accuracies
for all subjects are depicted in Fig. 2. From Fig. 2 we can see that MKDA gives
an equal or better result than LDA and KDA for each subject and yields higher
overall result over LDA and KDA.

4 Conclusions

In this paper, we have proposed to select discriminative temporal-frequency fea-
tures by CKSVM in a data-driven manner. Furthermore, to improve the classi-
fication accuracy, we introduce multiple kernel into KDA for MI EEG classifica-
tion. The experiment results on BCI competition IV data set 2b show that our
proposed method outperforms the state-of-the-art approaches, which are also
devoted to optimizing feature selection and classification for MI EEG in BCI.
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Abstract. The electroencephalogram (EEG) is the most widely used
input for brain computer interfaces (BCIs), and common spatial pattern
(CSP) is frequently used to spatially filter it to increase its signal-to-noise
ratio. However, CSP is a supervised filter, which needs some subject-
specific calibration data to design. This is time-consuming and not user-
friendly. A promising approach for shortening or even completely elimi-
nating this calibration session is transfer learning, which leverages rele-
vant data or knowledge from other subjects or tasks. This paper reviews
three existing approaches for incorporating transfer learning into CSP,
and also proposes a new transfer learning enhanced CSP approach.
Experiments on motor imagery classification demonstrate their effective-
ness. Particularly, our proposed approach achieves the best performance
when the number of target domain calibration samples is small.

Keywords: Brain computer interface · Common spatial pattern · Motor
imagery · Transfer learning

1 Introduction

Brain computer interfaces (BCIs) [10,19] provide a direct communication path-
way for a user to interact with a computer or external device by using his/her
brain signals, which include electroencephalogram (EEG), magnetoencephalo-
gram (MEG), functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), electrocorticography (ECoG), and so on. EEG-
based BCIs have attracted great attention because they have little risk (no need
for surgery), are convenience to use, and offer high temporal resolution. They
have been used for robotics, speller, games, and medical applications [6,14].

However, there are still many challenges for wide-spread real-world appli-
cations of EEG-based BCIs [10,13]. One of them is related to the EEG sig-
nal quality. EEG signals can be easily contaminated by various artifacts and
noise, including muscle movements, eye blinks, heartbeats, environmental elec-
tromagnetic fields, etc. Common approaches to clean EEG signals including time-
domain filtering and spatial filtering. Common spatial pattern (CSP) filtering
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 811–821, 2017.
https://doi.org/10.1007/978-3-319-70096-0_83
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[3,17,21,26] is one of the most popular and effective spatial filters for EEG to
increase its signal-to-noise ratio.

CSP performs supervised filtering, which requires some subject-specific cali-
bration data to design. This is time-consuming and not user-friendly. A promising
approach for shortening or even completely eliminating this calibration session
is transfer learning (TL) [15], which has already been extensively used to handle
individual differences and non-stationarity in EEG-based BCI [8,18,20,22–25].
TL leverages relevant data or knowledge from other subjects or tasks to reduce
the calibration effort for a new subject or task. Traditionally, EEG signal process-
ing (e.g., CSP filtering) and classification (e.g., TL) are performed sequentially
and independently. However, recent research has shown that TL may be used to
directly enhance CSP for better filtering performance [4,9,12].

This paper focuses on TL enhanced CSPs. Its main contributions are:

1. We group existing TL enhanced CSPs into two categories and give a com-
prehensive review of them. To our knowledge, this is the first review in this
direction.

2. We propose a novel TL enhanced CSP approach, and demonstrate its perfor-
mance against existing approaches on EEG-based motor imagery classifica-
tion.

The rest of this paper is organized as follows: Sect. 2 introduces CSP and
TL, and gives an overview of existing approaches for incorporating TL into
CSP. Section 3 proposes a new instance-based TL approach to enhance CSP.
Section 4 compares the performance of all these approaches. Finally, Sect. 5 draws
conclusions and points out several future research directions.

2 Existing TL Enhanced CSP Filters

This section briefly introduces CSP and TL, and reviews three existing
approaches for integrating them.

2.1 Common Spatial Pattern (CSP)

Let X ∈ R
C×T be an EEG epoch, where C is the number of channels and T the

number of time samples. For simplicity, only binary classification is considered
in this paper.

CSP [3,17,21] separates a multivariate signal into additive subcomponents
which have maximum differences in variance between the two classes. Specifically,
CSP finds a filter matrix to maximize the variance for one class while minimizing
it for the other:

W0 = arg max
W

tr(WT Σ̄0W )
tr(WT Σ̄1W )

(1)

where W0 ∈ R
C×F is the filter matrix consisting of F filters, tr(·) is the trace

of a matrix, Σ̄0 and Σ̄1 are the mean covariance matrices of epochs in Classes 0
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and 1, respectively. The solution W0 is the concatenation of the F eigenvectors
associated with the F largest eigenvalues of the matrix Σ̄−1

1 Σ̄0.
In practice, we often construct a CSP filter matrix W∗ = [W0,W1] ∈ R

C×2F ,
where

W1 = arg max
W

tr(WT Σ̄1W )
tr(WT Σ̄0W )

(2)

i.e., W1 maximizes the variance for Class 1 while minimizing it for Class 0. Similar
to W0, W1 is the concatenation of the F eigenvectors associated with the F
largest eigenvalues of the matrix Σ̄−1

0 Σ̄1. Since Σ̄−1
1 Σ̄0 and Σ̄−1

0 Σ̄1 have the same
eigenvectors, and the eigenvalues of Σ̄−1

1 Σ̄0 are the inverses of the eigenvalues
of Σ̄−1

0 Σ̄1, W1 actually consists of the F eigenvectors associated with the F
smallest eigenvalues of the matrix Σ̄−1

1 Σ̄0. So, only one eigen-decomposition of
the matrix Σ̄−1

1 Σ̄0 (or Σ̄−1
0 Σ̄1) is needed in computing W∗.

Once W∗ is obtained, CSP projects an EEG epoch X ∈ R
C×T to X ′ ∈ R

2F×T

by:

X ′ = WT
∗ X (3)

Usually 2F < C, so CSP can increase the signal-to-noise ratio and reduce the
dimensionality simultaneously.

After CSP filtering, the logarithmic variance feature vector is then calculated
as [4]:

x = log
(

diag(X ′X ′T )
tr(X ′X ′T )

)
(4)

where diag(·) returns the diagonal elements of a matrix. x can be used as the
input to a classifier, e.g., linear discriminant analysis (LDA).

2.2 Transfer Learning (TL)

TL has been extensively used in BCIs to reduce their calibration effort [8,18,20,
23,24]. Some basic concepts of TL are introduced in this subsection.

A domain [11,15] D in TL consists of a feature space X and a marginal
probability distribution P (x), i.e., D = {X , P (x)}, where x ∈ X . Two domains
Ds and Dt are different if Xs �= Xt, and/or Ps(x) �= Pt(x).

A task [11,15] T in TL consists of a label space Y and a conditional prob-
ability distribution Q(y|x). Two tasks Ts and Tt are different if Ys �= Yt, or
Qs(y|x) �= Qt(y|x).

Given a source domain Ds with n labeled samples, and a target domain Dt

with ml labeled samples and mu unlabeled samples, TL learns a target prediction
function f : x �→ y with low expected error on Dt, under the assumptions
Xs �= Xt, Ys �= Yt, Ps(x) �= Pt(x), and/or Qs(y|x) �= Qt(y|x).

For example, in EEG-based motor imagery classification studied in this
paper, a source domain consists of EEG epochs from an existing subject, and
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the target domain consists of EEG epochs from a new subject. When there are
Z source domains {Dz

s}z=1,...,Z , we can perform TL for each of them separately
and then aggregate the Z classifiers, or treat the combination of the Z source
domains as a single source domain.

2.3 Incorporating TL into CSP: Covariance Matrix-Based
Approaches

Since covariance matrices are used in CSP, whereas the target domain does not
have enough labeled samples to reliably estimate them, a direction to incorporate
TL into CSP is to utilize the source domain covariance matrices to enhance the
estimation of the target domain ones.

Kang et al. [9] proposed a subject-to-subject transfer approach, which empha-
sizes the covariance matrices of source subjects who are more similar to the target
subject. They computed the dissimilarity between the target subject and each
source subject by Kullback-Leibler (KL) divergence between their data distrib-
utions, and then used the inverses of these dissimilarities as weights to combine
the source domain covariance matrices.

Let pz
s be the EEG data distribution in the zth source domain Dz

s , which is
assumed to be C-dimensional Gaussian with zero mean and covariance matrix
Σz

s , i.e., pz
s ∼ N(0, Σz

s ). Let pt be the data distribution in the target domain
Dt, which is C-dimensional Gaussian with zero mean and covariance matrix Σt,
i.e., pt ∼ N(0, Σt). The KL divergence between pz

s and pt is computed as [9]:

KL(pz
s , pt) =

1
2

{
log

(
|Σt|
|Σz

s |

)
+ tr[Σ−1

t Σz
s ] − C

}
, z = 1, ..., Z (5)

where | · | is the matrix determinant.
Then, the TL-enhanced covariance matrix for the target subject is computed

as:

Σ̃t = (1 − λ)Σt + λ

Z∑
z=1

αzΣ
z
s (6)

where λ is an adjustable parameter to balance the information from the target
subject and source subjects, and

αz =
1
γ

· 1
KL(pz

s , pt)
(7)

in which γ =
∑Z

z=1
1

KL(pz
s ,pt)

is a normalization factor.
Lotte and Guan [12] proposed a similar approach for incorporating TL into

CSP, based on the covariance matrices:

Σ̃t = (1 − λ)Σt +
λ

|St(Ω)|
∑

z∈St(Ω)

Σz
s (8)
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where Ω is the set of subjects whose data have been recorded previously, St(Ω)
is a subset of subjects from Ω, |St(Ω)| is the number of subjects in St(Ω), and
λ ∈ [0, 1] is defined by

λ =

⎧⎪⎨
⎪⎩

1, targetAcc ≤ randAcc

0, targetAcc ≥ selectedAcc
selectedAcc−targetAcc

1−randAcc , otherwise
(9)

in which targetAcc is the leave-one-out validation accuracy on the target domain
labeled samples when the classifier is trained by using only the target domain
labeled samples, selectedAcc is the accuracy on the target domain labeled sam-
ples when the classifier is trained by using only the labeled samples from the
selected source subjects in St(Ω), and randAcc is the classification accuracy at
the chance level (e.g., 50% for binary classification). The algorithm for deter-
mining St(Ω) can be found in [12].

2.4 Incorporating TL into CSP: A Model-Based Approach

Instead of learning a single set of CSP filters by aggregating information from
the target subject and all (or a subset of) source subjects, as introduced in the
previous subsection, Dalhoumi et al. [4] proposed an approach to design a set
of CSP filters for each source subject, train a classifier for each source subject
according to the extracted features, and then aggregate all these source classifiers
to obtain the target classifier.

Let W z and fz be the CSP filter matrix and classifier trained for the zth
source subject, respectively, and {(Xj , yj)}j=1,...,m be the labeled target domain
data. We first filter each Xj by W z, extract the corresponding feature vector xz

j

using (4), and then feed xz
j into model fz to obtain its classification fz(xz

j ). The
final classifier is:

f(x) =
Z∑

z=1

wzfz(x) (10)

where the weights w∗ = (w1, ..., wZ) are determined by solving the following
constrained minimization problem:

w∗ = arg min
w

m∑
j=1

�

(
Z∑

z=1

wzfz(xz
j ), yj

)
(11)

s.t.

Z∑
z=1

wz = 1

wz ≥ 0, z = 1, ..., Z

where �
(∑Z

z=1 wzfz(xz
j ), yj

)
is the loss between

∑Z
z=1 wzfz(xz

j ) and yj .
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Dalhoumi et al. [4] also constructed another CSP filter matrix and the cor-
responding classifier using the target domain data only, and compared its leave-
one-out validation performance with that of f(x) to determine which one should
be used as the preferred classifier. Because the goal of this paper is to compare
different TL enhanced CSP approaches, we always use f(x).

3 Incorporating TL into CSP: Instance-Based
Approaches

This section introduces our proposed approach for incorporating TL into CSP.
It’s an instance-based approach, meaning that the source domain labeled samples
are combined with the target domain labeled samples in a certain way to design
the CSP.

The simplest instance-base approach is to directly combine the labeled sam-
ples from the target domain and all source domains. However, this is usually
not optimal because it completely ignores the individual difference: some source
domain samples may be more similar to the target domain samples, so they
should be given more consideration.

So, a better approach is to re-weight the source domain samples according
to their similarity to the target domain samples, and then use them in the
CSP. The main problem is how to optimally re-weight the source samples. We
adopt the approach proposed by Huang et al. [7], which is a generic method for
correcting sample collection bias and has not been used for CSP and BCIs. It
assigns different weights to the source domain samples to minimize the Maximum
Mean Discrepancy [2] between the source and target domains after mapping
onto a reproducing kernel Hilbert space. More specifically, it solves the following
constrained minimization problem:

min
β

∥∥∥∥∥∥
1
n

n∑
j=1

βjφ(xj
s) − 1

m

m∑
j=1

φ(xj
t )

∥∥∥∥∥∥
2

H

(12)

s.t. 0 ≤ βj ≤ b, j = 1, ..., n∣∣∣∣∣∣
n∑

j=1

βj − n

∣∣∣∣∣∣ ≤ nε

where xj
s is the jth source domain sample, xj

t is the jth target domain sample,
φ(x) is a feature mapping onto a reproducing kernel Hilbert space H, β =
(β1, ..., βn) is the weight vector for the source domain samples, n is the number
of source domain samples, m is the number of target domain samples, and b and
ε are adjustable parameters.

The source domain samples are then re-weighted by β and combined with
the target domain samples to design a CSP filter matrix.
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4 Experiment and Results

This section presents a comparative study of the above TL-enhanced CSP algo-
rithms.

4.1 Dataset and Preprocessing

We used Dataset 2a from BCI competition IV1, which consists of EEG data from
9 subjects. Every subject was instructed to perform four different motor imagery
tasks, namely the imagination of movement of the left hand, right hand, both
feet, and tongue. A training session and a test session were recorded on different
days for each subject and each session is comprised of 288 epochs (72 for each of
the four classes). The signals were recorded using 22 EEG channels and 3 EOG
channels at 250 Hz and bandpass filtered between 0.5 Hz and 100 Hz.

Only the 22 EEG channels were used in our study. We further processed
them using the Matlab EEGLAB toolbox [5]. They were first down-sampled to
125 Hz. Next a bandpass filter of 8–30 Hz was applied as movement imagination
is known to suppress idle rhythms in this frequency band contra-laterally [16]. As
we consider binary classification in this paper, only EEG signals corresponding
to the left and right hand motor imageries were used. More specifically, EEG
epochs between 1.5 and 3.5 s after the appearance of left or right hand motor
imagery cues were used.

4.2 Algorithms

We compared the performance of the following seven CSP algorithms:

1. Baseline 1 (BL1), which uses only the small amount of target domain labeled
samples to design the CSP filters and the LDA classifier, and applies them
to target domain unlabeled samples. That’s, BL1 does not use any source
domain samples.

2. Baseline 2 (BL2): which combines all source domain samples to design the
CSP filters and the LDA classifier, and applies them to target domain unla-
beled samples. That’s, BL2 does not use any target domain labeled samples.

3. Baseline 3 (BL3), which directly combines all source domain samples and
target domain labeled samples, designs the CSP filters and the LDA classifier,
and applies them to target domain unlabeled samples.

4. Covariance matrix-based approach 1 (CM1), which is the approach proposed
by Kang et al. [9], as introduced in Sect. 2.3. λ = 0.5 was used in our study.

5. Covariance matrix-based approach 2 (CM2), which is the approach proposed
by Lotte and Guan [12], as introduced in Sect. 2.3.

6. Model-based approach (MA), which is the approach introduced in Sect. 2.4.

1 http://www.bbci.de/competition/iv/.

http://www.bbci.de/competition/iv/
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7. Instance-based approach (IA), which is our proposed algorithm: it first solves
the constrained optimization problem in (12) for the weights of the source
domain samples, then combines target domain labeled samples and the
weighted source domain samples to train CSP filters and the LDA classifier,
and next applies them to target domain unlabeled samples.

There were 9 subjects in our dataset. Each time we picked one as our target
subject, and the remaining 8 as the source subjects. For the target subject, we
randomly reserved 40 epochs (20 epochs per class) as the training data pool,
and used the remaining 104 epochs as our test data. We started with zero target
domain training data, trained different CSP filters using the above 7 algorithms,
and evaluated their performances on the test dataset. We then sequentially added
2 labeled epochs (1 labeled epoch per class) from the reserved training data pool
to the target domain training dataset till all 40 epochs were added. Each time
we trained different CSP filters using the above 7 algorithms and evaluated their
performances on the test dataset. We repeated this process 30 times to obtain
statistically meaningful results.

4.3 Results

The performances of the 7 algorithms are shown in Fig. 1, where the first 9
subfigures show the performances on the individual subjects. Observe that some
subjects, e.g., Subjects 2 and 5, were more difficult to deal with than others,
and there was no approach that always outperformed others; however, when m,
the number of target domain labeled epochs, was small, our proposed algorithm
(IA) achieved the best performance for 5 out of the 9 subjects.

The last subfigure of Fig. 1 shows the average performance across the 9 sub-
jects. Observe that:

1. When m was small, all other methods outperformed BL1. Particularly, when
m = 0, BL1 cannot build a model because it used only subject-specific cal-
ibration data, but all other algorithms can, because they can use data from
the source subjects. This suggests that all TL-enhanced CSP algorithms are
advantageous when the target domain has very limited labeled epochs.

2. BL2 outperformed BL1 and BL3 when m was small, but as m increased, all
other algorithms outperformed BL2. This suggests that there is large individ-
ual difference among the subjects, so incorporating target domain samples is
necessary and beneficial.

3. Generally, all TL-enhanced CSP algorithms outperformed the three baselines,
suggesting the effectiveness of TL. Particularly, our proposed algorithm (IA)
achieved the best performance when m was small. This is favorable, as we
always want to achieve the best calibration performance with the smallest
number of subject-specific calibration samples.
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Fig. 1. Classification accuracies of the 7 CSP approaches, when the number of target
domain labeled samples increases.

5 Conclusions

CSP is a popular spatial filtering approach to increase the signal-to-noise ratio
of EEG signals. However, it is a supervised approach, which needs some subject-
specific calibration data to design. This is time-consuming and not user-friendly.
A promising approach for shortening or even completely eliminating this cali-
bration session is TL, which leverages relevant data or knowledge from other
subjects or tasks. This paper reviewed three existing approaches for incorporat-
ing TL into CSP, and also proposed a new TL enhanced CSP approach. Exper-
iments on motor imagery classification demonstrated the effectiveness of these
approaches. Particularly, our proposed approach achieved the best performance
when the number of target domain calibration epochs is small.

The following directions will be considered in our future research:

1. Use the Riemannian mean instead of the Euclidean mean in estimating the
mean class covariance matrices in CSP [1]. As the covariance matrix of each
epoch is semi-positive definite, they are located on a Riemannian manifold
instead of in an Euclidean space. So, the Riemannian means may be more
reasonable than the Euclidean means in CSP.
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2. Use also TL enhanced classifiers, e.g., weighted domain adaptation [20,24].
3. Extend the TL enhanced CSPs from classification to regression, using a fuzzy

set based approach similar to the one proposed in [21].
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Abstract. Deep learning, including convolutional neural networks
(CNNs), has started finding applications in brain-computer interfaces
(BCIs). However, so far most such approaches focused on BCI classi-
fication problems. This paper extends EEGNet, a 3-layer CNN model
for BCI classification, to BCI regression, and also utilizes a novel spec-
tral meta-learner for regression (SMLR) approach to aggregate multiple
EEGNets for improved performance. Our model uses the power spectral
density (PSD) of EEG signals as the input. Compared with raw EEG
inputs, the PSD inputs can reduce the computational cost significantly,
yet achieve much better regression performance. Experiments on driver
drowsiness estimation from EEG signals demonstrate the outstanding
performance of our approach.

Keywords: Brain-computer interface · Convolutional neural network ·
Drowsiness estimation · EEG · Spectral meta-learner for regression

1 Introduction

Drowsy driving is one of the most important causes of traffic accidents, following
only to alcohol, speeding, and inattention [28]. As a result, it is very important
to monitor the driver’s drowsiness level and take actions accordingly. There have
been many different approaches [1,6,22,29] for doing so, which can be roughly
categorized into two groups:

1. Contactless detection approaches, which do not require the driver to physically
wear any sensors. Their main advantage is the convenience to use. Contactless
detection approaches can be further classified into two categories:
(a) Computer vision based detection approaches, which can be applied to

either the driver or the vehicle.
When applied to the driver, a typical practice is to place some cameras
behind the windshield, which capture the driver’s head in realtime. From
the video we can compute the eye blink frequency [12,21], the percentage
of eye closure (PERCLOS) [11,31], the eye movement [15,16], the head
pose [12,27], etc., which are indicators of drowsiness. The main drawback

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 822–832, 2017.
https://doi.org/10.1007/978-3-319-70096-0_84
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of these approaches is that they can be easily affected by the lighting
condition.
When applied to the vehicle, usually some cameras are used to capture
the relative position of the vehicle in the lane. From lane departure events
we can estimate the driver drowsiness [6,15,29]. The main drawback of
this approach is that it can also be easily affected by lighting and weather,
and it may not work when the lane markers are unclear or missing.

(b) Driver-vehicle interaction based detection approaches, which use various
sensors to measure the driving patterns, e.g., speeding, tailgating, abrupt
braking, inappropriate steering wheel adjustments, etc. [23,29], to infer if
the driver is drowsy.

2. Contact sensor based detection approaches, which require the driver to phys-
ically wear some sensors to measure his/her physiological signals, e.g., elec-
troencephalogram (EEG) [26,34–36], electrocardiography [20,26], electromyo-
graphy [2,19], respiration [30,32], galvanic skin response [5,15], etc. Theoret-
ically, physiological signals are more accurate and reliable drowsiness indica-
tors, as they originate directly from the human body. Their main disadvan-
tages include: (1) the driver’s body movements may introduce artifacts and
noise to the physiological signals, and hence reduce the detection accuracy;
and, (2) the driver may feel uncomfortable to wear such body sensors.

This paper focuses on the contact sensor based detection approaches. More
specifically, we consider EEG-based driver drowsiness detection. The main reason
is that EEG signals, which directly measure the brain state, have the potential
to predict the drowsiness before it reaches a dangerous level. Hence, compared
with other approaches, there is ample time to alert the driver to avoid accidents.

There has been research on using deep learning [17,18] for driver drowsiness
classification. This paper considers regression instead of classification. It makes
the following three contributions:

1. It extends EEGNet [24], a convolutional neural network (CNN) originally
designed for classification problems in brain-computer interface (BCI), to
regression problems.

2. It uses spectral meta-learner for regression (SMLR) [37], an unsupervised
ensemble regression approach, to aggregate multiple EEGNet regression mod-
els for improved performance.

3. Instead of using raw EEG signals as the input to EEGNet, it uses their power
spectral density (PSD) at certain frequencies as the input, which significantly
saves the computational cost, and also improves the regression performance.

The remainder of this paper is organized as follows: Sect. 2 introduces our
proposed EEGNet-PSD-SMLR approach. Section 3 presents the details of a
drowsy driving experiment in a virtual reality (VR) environment, and the per-
formance comparison of EEGNet-PSD-SMLR with several other approaches.
Finally, Sect. 4 draws conclusions and points out a future research direction.
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2 The EEGNet-PSD-SMLR Model

This section introduces our proposed EEGNet-PSD-SMLR model for driver
drowsiness estimation.

2.1 EEGNet for Regression

The CNN regression model used in this paper is modified from the EEGNet
classification model [24], which has demonstrated outstanding performance in
four different BCI applications, i.e., P300 visual-evoked potential, error-related
negativity, movement-related cortical potential, and the sensory motor rhythm.

Denote an EEG epoch as x ∈ R
C×T , where C is the number of channels and

T is the number of time samples (or features) per channel. The EEGNet classifi-
cation and regression architectures are given in Table 1, where N is the number
of classes in classification. Observe that the two architectures are identical for
the first three layers; the only difference occurs at the fourth layer. The EEG-
Net classification architecture uses softmax regression for classification, whereas
the EEGNet regression architecture uses a dense layer followed by an activation
layer for regression. We have tested different activation functions (ReLU, sig-
moid, tanh, and linear), and found linear activation gave the best results. So,
linear activation was adopted in this paper.

Table 1. EEGNet architectures for classification and regression.

Layer Input size Operation Output size Number of parameters

1 C × T 16×Conv1D(C,1) 16× 1× T 16C + 16

16× 1× T BatchNorm 16× 1× T 32

16× 1× T Reshape 1× 16× T

1× 16× T Dropout(0.25) 1× 16× T

2 1× 16× T 4×Conv2D(2,32) 4× 16× T 4× 2× 32 + 4 = 260

4× 16× T BatchNorm 4× 16× T 8

4× 16× T Maxpool2d(2,4) 4× 8× T/4

4× 8× T/4 Dropout(0.25) 4× 8× T/4

3 4× 8× T/4 4×Conv2D(8,4) 4× 8× T/4 4× 4× 8× 4 + 4 = 516

4× 8× T/4 BatchNorm 4× 8× T/4 8

4× 8× T/4 Maxpool2d(2,4) 4× 4× T/16

4× 4× T/16 Dropout(0.25) 4× 4× T/16

4 (Class.) 4× 4× T/16 Softmax Regression N TN +N

4 (Regr.) 4× 4× T/16 Dense 1 T or T + 1

1 Activation 1 1

Total Classification 16C +N(T + 1) + 840

Regression 16C + T + 841
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2.2 SMLR for EEGNet Regression Model Aggregation

It’s well-known that neural network models can be easily trapped at local min-
ima. Since the EEGNet regression model is compact and can be trained quickly,
we can use ensemble learning to increase its robustness. More specifically, we
train 10 different EEGNet regression models by bootstrapping, and then use
SMLR [37] to aggregate them.

Consider a regression problem with a continuous value input space X and
a continuous value output space Y. Assume there are n unlabeled samples,
{xj}n

j=1, with unknown true outputs {yj}n
j=1, and m base regression models,

{fi}m
i=1. The ith regression model’s prediction for xj is fi(xj). The goal of SMLR

is to accurately estimate yj by optimally combining {fi(xj)}m
i=1. As shown in

Algorithm 1, SMLR consists of two steps: (1) estimate the accuracy of each base
regression model; (2) select and combine the strong base regression models.

Algorithm 1: The SMLR algorithm [37].
Input: n unlabeled samples, {xj}n

j=1;
m base regression models, {fi}m

i=1.
Output: The n estimated outputs, {f(xj)}n

j=1.
Apply each fi to {xj}n

j=1 to obtain the estimates {fi(xj)}n
j=1 and assemble

them into a vector fi(x);
Compute the covariance matrix Q ∈ R

m×m of {fi(x)}m
i=1;

Compute the first leading eigenvector, µ0, of Q;
Perform k-means clustering (k = 3) on the absolute values of the elements of µ0;
Identify S, the subset of the strong regression models, as those belong to the
cluster with the maximum centroid;

Return f(xj) =
∑

i∈S µ0,ifi(xj)∑
i∈S µ0,i

, j = 1, ..., n.

3 Experiment and Results

3.1 Dataset

The experiment setup used in this paper was identical to that in [34,37]. Six-
teen healthy subjects with normal or corrected-to-normal vision were recruited
to participant in a sustained-attention driving experiment [7,8], which consisted
of a real vehicle mounted on a motion platform with six degrees of freedom
immersed in a 360-degree VR scene. Each subject performed the experiment
for about 60–90 min in the afternoon when the circadian rhythm of sleepiness
reached its peak. To induce drowsiness during driving, the VR scene simulated
monotonous driving at 100 km/h on a straight and empty highway. During the
experiment, random lane-departure events were introduced every 5–10 s, and
participants were instructed to steer the vehicle to compensate for them imme-
diately. Their response time was recorded and later converted to a drowsiness
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index (see the next subsection), as research has shown that it has strong corre-
lation with fatigue [21]. Participants’ scalp EEG signals were recorded using a
500 Hz 32-channel Neuroscan system (30-channel EEGs plus 2-channel earlobes).

3.2 Preprocessing

The 16 subjects had different lengths of experiment, because the disturbances
were presented randomly every 5–10 s. Data from one subject was not recorded
correctly, so we used only 15 subjects. To ensure a fair comparison, we used the
first 3,600 s data for each subject.

We defined a function [34,37] to map the response time τ to a drowsiness
index y ∈ [0, 1]:

y = max
{

0,
1 − e−(τ−τ0)

1 + e−(τ−τ0)

}
(1)

τ0 = 1 was used in this paper, as in [34,37]. The drowsiness indices were then
smoothed using a 90-second square moving-average window to reduce variations.
This does not reduce the sensitivity of the drowsiness index because previous
research showed that the cycle lengths of drowsiness fluctuations are longer than
four minutes [25].

We used EEGLAB [10] for EEG signal preprocessing. A 1–50 Hz band-pass
filter was applied to remove high-frequency muscle artifacts, line-noise contam-
ination and direct current drift. Next the EEG data were downsampled from
500 Hz to 250 Hz and re-referenced to averaged earlobes.

We tried to predict the drowsiness index for each subject every 3 s. All 30
EEG channels were used in feature extraction. We epoched 30-second EEG
signals right before each sample point, computed the power spectral density
(PSD) in the theta and alpha bands (4–12 Hz) for each channel using Welch’s
method [33], and converted them into dBs. Each channel had 67 such PSD points
at different frequencies. Some channels may have dBs significantly larger than
others, which degraded the regression performance. So we removed channels
which had at least one dB larger than 20, and normalized the dBs of all remain-
ing channels to mean zero and standard deviation one. Assume the number of
remaining channels is C ′ (usually C ′ is about 30). Then, the input matrix to our
EEGNet regression model has dimensionality C ′ × 67.

3.3 Algorithms

We used data from 14 subjects to build a regression model for the 15th subject,
simulating the scenario that we already collected data from 14 subjects and
need to use their data to help estimate the drowsiness level for a new driver.
We repeated this process 15 times so that each subject had a chance to be the
“new” driver.

We compared the performance of the following five algorithms:
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1. Ridge regression based on principal component features (RR), which is the
baseline. This method was first used in [34]. It combined data from all existing
14 subjects and extracted average PSDs in the theta band as features. Similar
to the case in Sect. 3.2, some channels may have extremely large average
PSDs, which were removed (using a 20 dB threshold) for better regression
performance. We then normalized the dBs of each remaining channel to mean
zero and standard deviation one, and extracted a few (usually around 10)
leading principal components, which accounted for 95% of the variance. The
projections of the dBs onto these principal components were then used as our
features. At last we built a ridge regression model for the 15th subject.

2. RR based on principal component features and SMLR (RR-SMLR). This is the
method proposed in [37]. We built 14 RR models, each one using only one
source subject’s data as the training dataset. Feature extraction was the same
as in RR. After obtaining 14 models trained on different datasets, we used
SMLR to aggregate them for the target subject.

3. EEGNet regression model using band-passed EEG inputs (EEGNet), which
used the EEGNet regression architecture described in Sect. 2.1. EEG signals,
after 1–50 Hz band-pass filtering, were used as input. So, the input dimen-
sionality was 30× 7500 (the second dimensionality was 7500 because we used
30-second EEG signals for estimation, and the sampling rate was 250 Hz).

4. EEGNet regression model using the PSD features (EEGNet-PSD). The EEGNet
regression architecture was identical to the one in EEGNet, but the C ′ × 67
PSD features described in Sect. 3.2 were used as its input.

5. EEGNet-PSD with SMLR (EEGNet-PSD-SMLR), which was the above EEGNet-
PSD model combined with SMLR ensemble learning, as described in Sect. 2.2.

Each algorithm was repeated 10 times so that statistical meaningful results can
be obtained. The performance measures were the root mean square error (RMSE)
and the correlation coefficient (CC), as in [34,37].

3.4 Results and Discussions

The experimental results are shown in Fig. 1 and Table 2. Observe that:

1. EEGNet, which used band-passed EEG signals as the input, had the worst
RMSE and CC for most subjects and also on average. This is because the
input feature had very large dimensionality (T = 7500 in Table 1), so there
were about 8820 parameters in this model. On the contrary, there were only
1200 × 14 = 12800 training samples, which may not be enough to fully opti-
mize these parameters.

2. EEGNet-PSD, which had about 67 PSD points in each channel, achieved better
RMSE and CC than both RR and EEGNet for most subjects. This demonstrates
that the PSD features are better than the band-passed EEG temporal fea-
tures. Because of the much smaller dimensionality, training time of EEGNet-
PSD was also reduced significantly compared with EEGNet.



828 Y. Cui and D. Wu

3. EEGNet-PSD-SMLR, which is an ensemble of multiple EEGNet-PSD aggregated
by the SMLR, achieved comparable performance with RR-SMLR, which was
our best approach on this driving dataset. On average its RMSE was 1.99%
smaller than EEGNet-PSD, and its CC was 2.65% larger than EEGNet-PSD.
This suggests that SMLR can indeed improve the learning performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
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(a)
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Fig. 1. (a) RMSEs and (b) CCs of the five approaches on the 15 subjects. The last
group in each subfigure shows the average performance across the 15 subjects.

Table 2. Average performances of the five algorithms on the 15 subjects.

RR RR-SMLR EEGNet EEGNet-PSD EEGNet-PSD-SMLR

RMSE 0.2587 0.2371 0.3208 0.2394 0.2347

CC 0.5994 0.6446 0.3499 0.6215 0.6379

We also performed a two-way Analysis of Variance (ANOVA) for the five
algorithms to check if the RMSE and CC differences among them were statisti-
cally significant, by setting the subjects as a random effect. The results are shown
in Table 3, which shows that there were statistically significant differences (at
5% level) for both RMSEs and CCs.
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Table 3. p-values of two-way ANOVA tests for the five algorithms.

RMSE CC

p < .0001 < .0001

Then, non-parametric multiple comparison tests based on Dunn’s proce-
dure [13,14] were used to determine if the difference between any pair of algo-
rithms was statistically significant, with a p-value correction using the False
Discovery Rate method [4]. The p-values are shown in Table 4, where the statis-
tically significant ones are marked in bold. Observe that the RMSE differences
and the CC differences between EEGNet-PSD-SMLR and RR/EEGNet were statis-
tically significant, but the differences between EEGNet-PSD-SMLR and EEGNet-
PSD/RR-SMLR were not.

Table 4. p-values of non-parametric multiple comparisons for the five algorithms.

RR RR-SMLR EEGNet EEGNet-PSD

RMSE RR-SMLR .0040

EEGNet .0000 .0000

EEGNet-PSD .0087 .3757 .0000

EEGNet-PSD-SMLR .0007 .3239 .0000 .2416

CC RR-SMLR .0015

EEGNet .0000 .0000

EEGNet-PSD .0731 .0767 .0000

EEGNet-PSD-SMLR .0055 .3226 .0000 .1550

4 Conclusions

This paper focused on the much under-studied regression problems in BCI, par-
ticularly, driver drowsiness estimation from EEGs. It has extended EEGNet,
a 3-layer CNN model for BCI classification, to BCI regression, and also uti-
lized SMLR to aggregate multiple EEGNets for improved performance. Another
novelty of our model is that it uses the PSD of EEG signals as the input,
instead of raw EEG signals. In this way it can reduce the computational
cost significantly, yet achieve much better regression performance. Experiments
showed that EEGNet-PSD-SMLR achieved comparable performance with our
best regression model proposed recently.

Recently Riemannian geometry features have demonstrated outstanding per-
formance in several BCI classification applications [3,9]. Our latest research [38]
has also showed that Riemannian geometry features can outperform the tra-
ditional powerband features in an EEG-based BCI regression problem. Our
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future research will investigate Riemannian geometry features in the EEGNet
and SMLR framework.
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Abstract. In recent years, the rapid development of neuroimaging tech-
nology has been providing many powerful tools for cognitive neuro-
science research. Among them, the functional magnetic resonance imag-
ing (fMRI), which has high spatial resolution, acceptable temporal res-
olution, simple calibration, and short preparation time, has been widely
used in brain research. Compared with the electroencephalogram (EEG),
real-time fMRI-based brain computer interface (rtfMRI-BCI) not only
can perform decoding analysis across the whole brain to control exter-
nal devices, but also allows a subject to voluntarily self-regulate spe-
cific brain regions. This paper reviews the basic architecture of rtfMRI-
BCI, the emerging machine learning based data analysis approaches (also
known as multi-voxel pattern analysis), and the applications and recent
advances of rtfMRI-BCI.

Keywords: Brain Computer Interface · Functional Magnetic Resonance
Imaging · Machine learning · Multi-voxel pattern analysis

1 Introduction

A brain computer interface (BCI) uses neurophysiological signals from the brain,
e.g., electrocorticography (ECoG), electroencephalogram (EEG), and functional
magnetic resonance imaging (fMRI), to control external devices or computers
[3]. Among these signals, fMRI non-invasively measures the task-induced blood-
oxygen-level-dependent (BOLD) changes related to brain neuronal activities.
Unlike EEG, fMRI has excellent spatial resolution and whole brain coverage, so
it can accurately locate activation areas in the brain.

This paper reviews the basic architecture of real-time fMRI-based BCI
(rtfMRI-BCI), an emerging machine learning based data analysis approach (also
known as multi-voxel pattern analysis), and the applications and recent advances
of rtfMRI-BCI.

2 The Architecture of rtfMRI-BCI

Different from conventional fMRI, in which image analysis can only be per-
formed after all scans are finished, rtfMRI-based BCI allows the simultaneous
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 833–842, 2017.
https://doi.org/10.1007/978-3-319-70096-0_85
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acquisition, analysis and visualization of whole brain images. A typical closed-
loop rtfMRI-BCI system consists of four components: image acquisition, image
preprocessing, image analysis, and feedback.

1. Image acquisition: According to some pre-defined scanning parameters, a
MRI scanner uses an echo planar imaging sequence to stimulate brain MRI
echo signals and then records them. An image reconstruction workstation
then assembles these signals into three-dimensional images.

2. Image preprocessing: fMRI images need to be preprocessed to improve their
quality before further analyses can be performed. This usually involves the
following steps:
(a) Slice timing correction: An fMRI image consists of multiple slices that

are sampled sequentially at different time instances, so the same region
from different slices are shifted in time relative to each other. Slice timing
correction interpolates the slices so that they can be viewed as being
sampled at exactly the same time [36], as shown in Fig. 1.

(b) Realignment: Any head motion of the subject can contaminate the neigh-
boring voxels. A common practice for motion correction is to treat the
brain as a rigid body, and then calculate its translation and rotation
relative to a reference image [13].

(c) Coregistration: fMRI images typically have low spatial resolution and
do not include enough anatomical details, so they are usually registered
to a high resolution structural MRI image of the same subject before
presentation [45].

(d) Normalization: Group analysis requires the voxels from the same brain
location of different subjects are comparable. Normalization is used to
register a subject’s anatomical structure to a standardized stereotaxic
space defined by a template, such as the Montreal Neurological Institute
or Talairach brain [2].

(e) Spatial smoothing: This is usually performed by convolving the functional
image with a Gaussian kernel. Smoothing can suppress random noise,
and hence increase the signal-to-noise ratio. However, it also reduces the
actual spatial resolution and blurs the details, so generally it is not used
in machine learning based fMRI analysis.

3. Image analysis: This step locates the real-time activation areas within the
brain and then performs univariate or multivariate analysis. Typical tasks
include statistical analysis of a specific region of interest (ROI) to determine
its activation level, and online classification of brain states to find the sub-
ject’s intention.
Univariate analysis measures brain activities from thousands of locations
repeatedly, and then analyzes each location individually to understand how
a particular perceptual or cognitive state is encoded [18]. If the response at
a certain location in the brain is different between two states, then the voxel
strength at that location can be used to decode the state. Therefore, univari-
ate analysis uses statistical analysis to identify the voxels that are significantly
correlated to a specific task, and hence the regions that are significantly acti-
vated in the brain, which are called ROIs or functional areas.



Real-Time fMRI-based Brain Computer Interface: A Review 835

While the majority of work in rtfMRI-BCI is done through conventional uni-
variate analysis, there is a growing interest in machine learning based multi-
variate analysis, particularly, in the emerging field of brain state classification,
i.e., decoding the brain state to determine the intention of the subject. This
typically includes feature extraction, feature selection/dimensionality reduc-
tion, and classification.
(a) Feature extraction: The resting-state fMRI is commonly used to diagnose

mental diseases. In addition to calculating regional attributes such as the
amplitude of low-frequency fluctuations [48] and regional homogeneity
[49], functional connections between different regions can also be calcu-
lated, and the connection matrix can be used to compute its network
properties [50]. For the task-based fMRI, in addition to calculating the
functional connections between different regions, the voxel intensities at
different times can also be used as features in pattern analysis, and the
resulting method is called multi-voxel pattern analysis (MVPA).

(b) Feature selection/dimensionality reduction: Feature selection selects the
most useful features from a feature set and discards the rest, so it also
results in dimensionality reduction. It is an important data preprocessing
process that can alleviate the curse of dimensionality and simplify the sub-
sequent learning tasks. Dimensionality reduction maps the original high-
dimensional feature space to a low-dimensional subspace using amathemat-
ical transformation. The new features are linear or nonlinear combinations
of the original features, and are usually more informative [25].

(c) Classification: Simple linear classifiers, such as correlation-based classifier
[15,39], neural networks without hidden layers [28], linear discriminant
analysis [7,16,17,27], linear support vector machine (SVM) [9,20,24], and
Gaussian naive Bayes classifiers [24], are frequently used in MVPA. They
compute a weighted sum of the voxel intensities and pass it to a decision
function to classify the brain state. Nonlinear classifiers, such as nonlin-
ear SVM [10,24] and multi-layer neural networks [14], have also been used
in MVPA. Compared with linear classifiers, nonlinear ones can capture
more complex mappings between features and the brain states. Though
theoretically nonlinear classifiers can implement more complex mappings,
there is no guarantee that they can significantly outperform linear clas-
sifiers in MVPA [9]. This may be because nonlinear classifiers generally
need a large amount of training data to achieve their best performance,
which may not be easily available in neuroimaging. Additionally, by using
a simple linear classifier one can visualize and explain which voxels are
more important in decision making, but it is much more difficult to do so
for a nonlinear classifier. As a result, the linear SVM classifier is frequently
used in fMRI research.

4. Feedback: This step feeds the online analysis results back to the subject in
real-time, so that the subject can voluntarily self-regulate his/her cognitive
function or state. It also presents task-related stimuli to the subject.
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Fig. 1. Illustration of slice timing correction. Adopted from [36].

3 Applications of rtfMRI-BCI

The applications of rtfMRI in BCI can be roughly partitioned into two categories:
(1) neurofeedback, in which a subject can voluntarily self-regulate his/her brain
activity in a specific region through the feedback of the activation level there;
and, (2) brain state decoding, which analyzes the subject’s fMRI data to deter-
mine his/her intention, which can be then used to control an external device or
computer.

3.1 Neurofeedback

Because fMRI has high spatial resolution and can image the entire brain, rtfMRI-
BCI can extract the activation levels of specific anatomical locations (ROIs)
as feedback. Among the various feedback modalities (auditory, visual, verbal,
olfactory, and tactile), visual feedback has been the most popular one. The form
of visual feedback also changes with the purpose of the experiment. deCharms
et al. [8] introduced a flame-like feedback in a pain-related study, as shown in
Fig. 2(a), where the intensity of the flame increases with the intensity of the
signal. Sitaram et al. [6] described a thermometer feedback, where red and blue
colors are used to indicate whether the signal is above or below a baseline, as
shown in Fig. 2(b). Weiskopf et al. [43] used the differential feedback intensity
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curve as feedback, where an upward arrow indicates an activity enhancement,
as shown in Fig. 2(c).

The seminal rtfMRI-BCI work by deCharms et al. [8] on chronic pain is
worth special mentioning here. The purpose was to find out whether adjusting
the activity on the rostral part of the anterior cingulate cortex (rACC) can affect
the perception of pain. Their study showed that the pain introduced by noxious
stimulus may be perceived differently if the subject intentionally induces an
increase or inhibition in the BOLD level of rACC. Through rtfMRI-based neu-
rofeedback, subsequent experiments have been able to voluntarily adjust the
level of activity in many other brain regions, including the anterior cingulate
cortex [44], the insula [6], the motor area [47], the amygdala [29], the inferior
frontal gyrus [30], and the parahippocampal place area [42]. After enough train-
ing, a subject can even voluntarily adjust the corresponding brain region without
neurofeedback, and this ability can last for some time after the training.

(a) (b) (c)

Fig. 2. Three different forms of visual feedback. (a) flame, adopted from [8]; (b) ther-
mometer, adopted from [6]; (c) intensity curve, adopted from [43].

These research results suggest that rtfMRI-BCI provides a new approach in
neuroscience for studying brain plasticity and functional reorganization through
sustained training of specific brain regions [34]. One potential application of
neurofeedback is clinical rehabilitation, e.g., reducing the effects of abnormal
brain activities, overcoming stroke-induced dyskinesia and Parkinson, relieving
chronic pain, and treating depression and other neurological problems such as
psychosis, social phobia and addiction [5,31–33,40,41].

3.2 Brian State Decoding

Another main application of rtfMRI-BCI is similar to “brain reading”, which
classifies a subject’s brain state to determine his/her intention. Its implemen-
tation can be divided into two categories: (1) pattern matching based on task-
specific ROIs, and (2) machine learning based brain state classification.

Pattern matching was used by Yoo et al. [46] in 2004 to perform BCI-based
spatial navigation, in which a subject’s brain signal was classified into four states
so that they can control the computer to navigate through a maze. [4,23,26,35,
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37] reported similar work. In all these studies the number of classifiable brain
states did not exceed four.

In 2007, Sorger et al. [38] used pattern matching to distinguish among 27
brain states, and implemented the world’s first rtfMRI-BCI based spelling sys-
tem. In this system, a subject can independently alter three aspects of the BOLD
signal:

1. The location of the signal source, by performing three different mental tasks
(motor imagery, mental calculation, and inner speech).

2. Delay of the mental task start time (0 s, 10 s, and 20 s).
3. The duration of the mental task, which in turn determines the duration of

the brain signal (10 s, 20 s, and 30 s).

The combination of these aspects resulted in 27 unique brain responses, which
can be assigned to 27 characters, as shown in Fig. 3.

Fig. 3. Letter coding scheme. Adopted from [38].

The spelling system required very little pre-training to help patients in
locked-in syndrome to communicate in real time. Its main disadvantage is that
the information transfer rate was very low (on average 50 s per letter).

In summary, pattern matching based on task-specific ROIs needs very little
pre-training and preparation to implement a BCI system, but generally has low
transfer efficiency. Machine learning based brain state classification, also known
as MVPA, is expected to improve it. Its main advantages include: (1) it does not
require a priori assumptions about the functional positioning and individual
performance strategies, and (2) it can significantly improve the sensitivity of
human neuroimaging analysis by considering the full spatial pattern of brain
activities that are measured at many locations.

The application of MVPA to offline fMRI data analysis originated from
Haxby et al.’s work [15] in 2001. Since then, cognitive neuroscience research
has witnessed a rapidly growing interest on brain state classification using fMRI
and experimental designs.

In 2007, LaConte et al. [21] performed online classification of the left and right
index finger movement using SVM, which verified the feasibility of using machine
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learning to implement a BCI system. They first trained a SVM classifier on offline
fMRI data, then applied it to online fMRI images to predict the brain state,
and next updated the computer-presented stimulus accordingly. This study also
showed that machine learning based stimulus feedback can respond to changes
in the brain state much earlier than the time-to-peak limitation of the BOLD
response, i.e., the former has higher sensitivity. In 2009 Eklund et al. [12] used
a neural network to classify three activities (left hand movement, right hand
movement, and resting) from rtfMRI, and then controlled the balance of a virtual
reality inverted pendulum. In 2011, Hollmann et al. [19] used relevance vector
machine to predict a person’s decision in the game. In 2013, Andersson et al. [1]
used SVM to classify visuospatial attentions based on the fMRI data collected by
an ultrahigh field MRI scanner (7 Tesla). Four subjects succeeded in navigating
a robot with virtually no training. Compared with methods based on the local
activation of ROIs, MVPA has significantly higher information transfer rate.

4 Future Developments and Ethical Considerations

In BCIs, EEG has excellent temporal resolution but poor spatial resolution,
whereas fMRI has high spatial resolution and low temporal resolution. Recent
advances in sensing hardware have enabled the simultaneous acquisition of EEG
and fMRI signals, but sophisticated signal processing and machine learning
approaches are still needed to optimally integrate these two modalities to achieve
both high temporal resolution and high spatial resolution [11,22,51]. Then, brain
stimulation techniques like the transcranial magnetic stimulation (TMS) can be
better used to treat brain disorders.

The rapid development of BCIs also raises ethical concerns. Both structural
and functional brain signals are related to mental states and traits, which could
potentially be used to reveal sensitive private information [18]. So, ethics and
regulations are also very important to the healthy development of BCIs.

5 Conclusions

This paper has introduced the architecture of rtfMRI based BCI, which includes
image acquisition, image preprocessing, image analysis, and feedback. Among
them, image preprocessing and analysis are the most important components.
Though there have been lots of algorithms for offline fMRI data processing and
analysis, how to modify and optimize them for online real-time tasks still calls
for more research.

We also reviewed the applications of rtfMRI in BCI, which can be divided
into two directions: neuralfeedback and brain state decoding. Both can be of
great significance to clinical rehabilitation and cognitive neuroscience research.
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Abstract. Bidding strategy is an issue of fundamental importance to
Demand Side Platform (DSP) in real-time bidding (RTB). Bidding
strategies employed by the Demand Siders may have significant impacts
on their own benefits. In this paper, we design a dynamic bidding strategy
based on probabilistic feedback, called PFDBS, which is different from
previous work that is mainly focused on fixed strategies or continuous
feedback strategies. Our dynamic bidding strategy is more in accordance
with environment of Internet advertising to solve the instability prob-
lem. If evaluated valid, we will retain the current strategy, otherwise,
we present an approach to amend strategy combined with previous feed-
back. The experiments on real-world RTB dataset demonstrate that our
method has the best performance on Key Performance Indicator (KPI)
compared to other popular strategies, meanwhile, the consumption trend
of overall budget is the most consistent with real market situation.

Keywords: Display advertising · Probabilistic feedback · Dynamic bid-
ding strategy

1 Introduction

Recently, the online advertising has flourished and becomes the main source
of revenue for many publishers. Unlike the sponsored ad, display advertising
changes the pre-allocated style of advertising market to the per-impression man-
ner [1]. As a new paradigm of display advertising, RTB regenerates the original
advertising ecological chain, and enables selling and purchasing ad placement
between advertisers and publishers programmatically [2].

The process of RTB is given in Fig. 1. A user visiting a web page will trigger
an ad impression request. Ad exchange (Adx) will send this request to DSP along
with features of user and page. Then DSP calculate a price for advertiser and
sent back to Adx for auction. Typically, Adx will host a second-price auction to
select the winner. The advertiser who sent the highest bidding price will win the
auction and pay the second highest bidding price (called payprice). Then, the
winner’s ad will be sent to the webpage [3].

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 845–853, 2017.
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Fig. 1. RTB auction flow

DSP plays an important role on behalf of advertisers in the RTB. Calculating
a bid is one of the most important problems for DSP which directly affects
advertiser’s KPI. KPI usually refers to CTR, CVR and so on. In the early stages,
constant bidding and random bidding are widely used. In constant bidding, DSP
bid a constant value for all request whereas arbitrarily choose a bid within a given
range for the later. Both two strategies are irrelevant to CTR or CVR, which
causes ample difficulty in optimising advertiser’s KPI. Under charging model of
cost-per-click (CPC) or cost-per-action (CPA) with limited budget of advertiser,
most bidding strategies turn to rely on CTR (CVR) predictor [4]. Thus, high
CTR (CVR) will cause high bidding price (e.g. ecpc = ctr ∗ cpc). Zhang et
al. analyze the relationship between bid and winning probability [5], and then
propose a non-linear bidding strategy [6]. They continue to design a feedback
control model by using proportion integration differentiation (PID) in Ref. [7].
In Ref. [8], Wu et al. focus on the payprice prediction by using censored model.
In Ref. [9], they combine CTR prediction model to censored winning price model
and therefore transform the bid strategy into a knapsack problem [10].

In this paper, we propose a model of dynamic bidding strategy based on
probabilistic feedback. Our model, which we call PFDBS, mainly consists of
three phases: (1) Basic Model: We establish a fundamental bidding model based
on CTR. (2) Strategy Evaluation: We develop a deviation rate to evaluate the
validation of current strategy. (3) Strategy Emendation: We give an approach to
amend current strategy combined with previous feedback when necessary.

Organization. In Sect. 2, we introduce our PFDBS model, further formulate
the deviation rate and the amendatory function. In Sect. 3, experiments with
real world datasets are performed to assess the effectiveness of the proposed
method. We finally conclude the paper in Sect. 4.
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2 Modeling

2.1 Problem Definition

In [11], Andrei Broder defines that the core problem of computational adver-
tising is finding the best match between a given user in a given context and
a suitable ad. Every DSP tries to optimize the following return on investment
(ROI) problem for each advertiser:

max
∑

revenue(ai, ui, ci)∑
pi

where a, u, c, p refer to advertisement, user, context of webpage and cost respec-
tively. For each request, DSP will receive a bid request which can be represented
by a high dimensional feature vector x = (x1, x2, · · ·, xm), including the infor-
mation of user, publisher and advertiser. In CTR-based bidding strategies, DSP
will firstly estimate a CTR for the triple (ai, ui, ci) by using machine learning
(e.g. Logistic Regression)[12] and then calculate a bid according to CTR. We
denote b1(i), b2(i), · · ·, bm(i) as the bids submitted by other DSPs, while bid(i)
as our DSP’s at the ith auction. The cost and revenue for our advertiser at the
ith auction is given by Eq. (1) according to the Vickrey auction:

costi =

{
b1(i) if bid(i) > b1(i)
0 if bid(i) < b1(i)

, revenuei =

{
ctri if bid(i) > b1(i)
0 if bid(i) < b1(i)

(1)

Due to the limited budget of advertiser, the optimal ROI could be defined
as follow:

arg maxbidi

∑
revenuei

Subject to
∑

costi ≤ Budget
(2)

The Eq. (2) reveals that the excessive high bid at per auction will lead to the
rapid budget consumption, while low bid will have little chance of impression.
Both of current static and dynamic strategies have drawbacks.

(1) The parameters in static strategy are usually trained offline and will not be
changed online. This is not fit for the changing bid situation.

(2) Current feedback control always changes the model according to the bid
result which ignores the occasionalism.

Thus, in this paper we propose a dynamic bidding strategy based on proba-
bilistic feedback (PFDBS). The details will be presented in next section.

2.2 Dynamic Bidding Strategy Based on Probabilistic Feedback

Deviation Rate. For every request, we should decide whether we need to change
current strategy according to previous results of auction. We adopt p as the
probability to change the model. The deviation rate p(N) is defined in Eq. (3),
N is the number of consecutive winning/failures.

p(N) = 1 − aN , 0 ≤ a ≤ 1, (3)
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where a = 0 refers to continuous feedback model while a = 1 means static model.
As Eq. (4), for each auction, the probability of adjustment is p(N) while 1−p(N)
is the probability of maintaining strategy. f (·) is the amendatory function.

bi(ctr) =

{
f(bi−1(ctr)) if random() < p(N)
bi−1(ctr) otherwise

(4)

Notice p(N) is monotonically increasing and lim
N→∞

p(N) = 1, which means

that if we always win/lose the auction, we should prefer to change current
strategy.

Amendatory Function. Once we decide to change the model, we define an
amendatory function f (·) in Eq. (5). According to the mechanism of auction,
we could attain the payprice once we win the impression otherwise go for nothing.

f (·) =

⎧
⎨

⎩
bi−1(ctr) ∗

(

e
− 1

|Δi−1|
∑

δi∈Δi
δj

)

, if win

λ ∗ bi−1(ctr), if lose
(5)

δ is the relative error between bid and payprice, Δ = {δ1, · · ·, δN}. λ is a constant
greater than 1 which is used to drastically increase the bid to get the impression
chance. If the bid calculated by current strategy is higher than market price,
we should lower the strategy to save the budget. Since linear factor will cause
zero or negative value, we choose exponential model as the negative signal. The
whole bidding process under the limited budget is shown in Algorithm 1. After
DSP submit a bid, we should update all parameters in each auction. Table 1
illustrates the details of update method.

Table 1. Parameters Update Function paramUpdate(N, Δ, flag, bid, payprice)

flagi−1 = 1 flagi−1 = 0

bidi ≥ paypricei

flagi ← 1
Ni ← Ni−1 + 1
Δi ← Δi ∪ {δi}

Budget ← Budget − paypricei

flagi ← 1
Ni ← 1
Δi ← δi

Budget ← Budget − paypricei

bidi < paypricei

flagi ← 0
Ni ← 1
Δi ← ∅

flagi ← 0
Ni ← Ni−1 + 1

Δi ← ∅
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Algorithm 1. Dynamic Bidding Strategy Based on Probabilistic Feedback
1: Initialize N0 ← 0,Δ ← ∅, β0 ← 1, f lag0 ← −1, Budget
2: while Budget > 0 do
3: p ← random(0, 1)
4: if p ≤ 1 − aNi−1 then
5: if flagi−1 = 1 then

6: βi ← βi−1 ∗
(

e
− 1

|Δi−1|
∑

δj∈Δi−1
δj

)

7: else
8: βi ← βi−1 ∗ λ
9: end if

10: end if
11: bidi ← b(ctr, βi)
12: i ← i + 1
13: paramUpdate(Ni−1,Δi−1, f lagi−1, bidi, paypricei)
14: end while

3 Experiments

Dataset. We use iPinYou dataset [13] for the experiments. Each data instance
can be represented by (x , y), x is a feature vector while y is the label for click
or not. We train a CTR model by using Logistic Regression (LR)[14]. For a new
request, we calculate a bid based on predicted CTR.

Baseline and Evaluation. Four methods below were chosen to compare with
our model. Table 2 lists the details. We design two situations for advertisers:
under unlimited budget, we simulate N impression requests; under limited bud-
get, we conduct the experiments until the budget is consumed. Finally, we ana-
lyze the impressions, clicks and ecpc for every situation.

We run five strategies above on the prepared dataset. For every setting, we
calculate the competitive ratio mentioned in [9] as below:

CR =
evalmethod

evalbaseline
∗ 100% (6)

Table 2. Bidding Strategies Description

Strategy #Description

CBSH Always bid with a high const price
CBSL Always bid with a low const price
RBS Bid with a const price in a given range
LBS Linear bid mentioned in [4]
PFDBS Proposed dynamic bidding strategy based on probabilistic feedback
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Fig. 4. ecpc comparison under different limited budget

Under the unlimited budget, we choose CBSL as the baseline while PFDBS
under the limited budget.

Results with unlimited budget. Figure 2 shows the CR of impression and
click for each advertisers during N auctions. The results indicate that CBSH
receive highest KPI in most advertiser while the second is PFDBS. Although
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CBSH is much higher than PFDBS, it suffer in the ecpc measures in Fig. 3. In
total, we can conclude that PFDBS gets highest ROI (∝ 1

ecpc ).

Results with limited budget. Figure 4 illustrates the CR of ecpc for each
strategy under (1/2)budget and (1/4)budget. Each ecpc of other strategies is
several times to that of PFDBS. Thus, we can also conclude that PFDBS per-
forms best under limited budget.

(a) Advertiser (1458) (b) Advertiser (3358)

(c) Advertiser (3386) (d) Advertiser (3427)

(e) Advertiser (3476)

Fig. 5. Trend of total consumption for each advertiser



852 Y. Wu et al.

Consumption Trend. In Fig. 5, we calculate the total consumption for every
strategy compared with true market price. We could find that CBSH cost too
quickly while the total cost of CBSL is too low to win the auction. The con-
sumption of PFDBS is closest to the true cost.

All results reveal that PFDBS we proposed perform best among chosen bid-
ding strategies. CBSH could get more KPI than PFDBS meanwhile it cost too
much. CBSL has little chance to win the auction due to low bidding price. The
performance of RBS is too unstable to be controlled. In addition, the PFDBS
better accommodate Internet advertising market according to the analysis of the
total consumption trend.

4 Conclusion

In this paper, we develop a dynamic bidding strategy based on probabilistic feed-
back, called PFDBS, to optimize the ROI. We first design an evaluation function
to decide whether current strategy should be amended, further propose amenda-
tory function to get better bidding price. The experiments demonstrate that our
strategy perform best on KPI and ecpc compared to mainstream methods.

For further work, we are interested in integrating distribution of payprice
into amendatory function to optimize the proposed strategy. Furthermore, we
intend to explore CTR independent bidding models.

References

1. Wang, J., Yuan, S.: Real-time bidding: A new frontier of computational advertising
research. In: 8th ACM International Conference on Web Search and Data Mining,
pp. 415–416 (2015)

2. Google.: The arrival of real-time bidding and what it means for media buyers.
Google (2011)

3. Yuan, Y., Wang, F.Y., Li, J.J., Qin, R.: A survey on real time bidding advertis-
ing. In: IEEE International Conference on Service Operations and Logistics, and
Informatics, pp. 418–423 (2014)

4. Perlich, C., Dalessandro, B., Hook, R., Stitelman, O., Raeder, T., Provost, F.: Bid
optimizing and inventory scoring in targeted online advertising. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 804–812
(2012)

5. Li, X., Guan, D.: Programmatic buying bidding strategies with win rate and win-
ning price estimation in real time mobile advertising. In: Tseng, V.S., Ho, T.B.,
Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol.
8443, pp. 447–460. Springer, Cham (2014). doi:10.1007/978-3-319-06608-0 37

6. Zhang, W.N., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1077–1086 (2014)

7. Zhang, W.N., Rong, Y.F., Wang, J., Zhu, T.C., Wang, X.F.: Feedback control of
real-time display advertising. In: ACM International Conference on Web Search
and Data Mining, pp. 407–416 (2016)

http://dx.doi.org/10.1007/978-3-319-06608-0_37


PFDBS in Display Advertising 853

8. Wu, C.H., Yeh, M.Y., Chen, M.S.: Predicting winning price in real time bidding
with censored data. In: The ACM SIGKDD International Conference, pp. 1305–
1314 (2015)

9. Lin, C.C., Chuang, K.T., Wu, C.H., Chen, M.S.: Combining powers of two pre-
dictors in optimizing real-time bidding strategy under constrained budget. In:
ACM International on Conference on Information and Knowledge Management,
pp. 2143–2148 (2016)

10. Kellerer, H., Pferschy, U., Pisinger, D.: Introduction to NP-Completeness of knap-
sack problems. Knapsack problems, pp. 483–493. Springer, Heidelberg (2004)

11. Broder, A.: Computational advertising. In: 9th ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 992–992 (2008)

12. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

13. Zhang, W.N., Yuan, S., Wang, J., Shen, X.H.: Real-time bidding benchmarking
with ipinyou dataset. Comput. Sci. (2014)

14. Han, J.W., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann, San Francisco (2006)



Dempster-Shafer Fusion of Semi-supervised
Learning Methods for Predicting Defaults

in Social Lending

Aleum Kim(&) and Sung-Bae Cho

Department of Computer Science, Yonsei University, Seoul 03722, South Korea
{aleum_kim,sbcho}@yonsei.ac.kr

Abstract. In social lending, it is hard to know whether borrowers will repay
well or not. Most researchers use supervised learning for default prediction, but
labeling data by hand is time-consuming. Moreover, labeling results of
semi-supervised learning methods are not the same each other. In this paper, we
propose a fusion method of label propagation and transductive SVM based on
Dempster-Shafer theory for precisely labeling unlabeled data to improve the
performance. We remove few unlabeled data with lower reliabilities in labeling
results and fusion of the two results based on Dempster-Shafer theory. We have
conducted experiments with supervised learning method trained with labeled
unlabeled data. As a result, the proposed method produced the best accuracies,
6.15% higher than the result trained with labeled data only, and 1.3% higher
than the conventional methods.

Keywords: Social lending � Semi-supervised learning � Label propagation �
Transductive SVM � Dempster-Shafer fusion

1 Introduction

Social lending is a growing service providing the platform for getting a loan or investing
on the loan between individuals. In the case of lenders, it is important to determine
whether the borrowers will be in default or not. This problem is called “default pre-
diction,” or “risk evaluation”. Default prediction in social lending is more important than
traditional financial institutes, because lenders directly face credit risk [1].

Lending Club is the biggest social lending platform in U.S. that opened loan status
with various information. Table 1 shows the statistics of loan status. These loans were
started in 2015 and the paper is based on data download January 2017 [2]. 73.8% of
data are unlabeled. A quarter of the entire data can be used for learning with supervised
methods. Higher performance can be achieved by making unlabeled instances labeled.

Semi-supervised learning is training with small amount of labeled set and large
amount of unlabeled set. The methods have labeling algorithm during training phase.
Labeling results are different according to the methods. We propose a method of
incorporating labeling results of two semi-supervised learning methods to increase the
correct labeled instances.
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In this paper, we propose a fusion method of labeling results for predicting defaults
in social lending. Label propagation and transductive SVM(TSVM) are used because
of their independency. After training the algorithm, we remove the instances with lower
class probabilities and the remained instances are fused by Dempster-Shafer theory.
Finally, a decision tree model is trained with the train set added from the proposed
method.

2 Related Works

2.1 Semi-supervised Learning

Semi-supervised learning constructs a better classifier using the data with a large
amount of unlabeled data along with the labeled data. According to Zhu,
semi-supervised learning methods can be divided into five categories [3]. There are
generative model, self-training, co-training, some methods to avoid changes in the
dense region, and graph-based methods. On the other hand, Triguero categorized
generative models as semi-supervised clustering methods, self-training and co-training
as self-labeled techniques [4]. In Chepelle’s work, self-training and co-training are
corporate into different categories such as wrapper methods and others are generative
and discriminative model [5]. This paper focuses on semi-supervised learning based on
discriminative model. As mentioned, it can be divided into a graph-based model and a
semi-supervised SVM according to the approaches. As a result, we chose label prop-
agation and TSVM in two completely different approaches to further enhance the
effectiveness of Dempster-Shafer theory.

2.2 Default Prediction in Social Lending

Recently, social lending services are growing. Also, various research for default pre-
diction are studied. Table 2 shows the latest research on default prediction in social
lending.

Various machine learning techniques were conducted to assess credit risk in
“Lending Club” and random forest achieved the best accuracy [6]. Byanjankar used
loan data set of Bondora located in UK, but only labeled set was used [7]. Guo

Table 1. Values of class in the social lending dataset.

Value Status Type Ratio

Current In progress Unlabeled 73.8%
Default
In Grace Period
Late (16–30 days)
Late (31–120 days)
Charged off Complete Labeled 26.2%
Fully Paid
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developed an investment decision making method with credit risk assessment [8]. An
approaches of Cinca is called profit scoring using an internal rate of return [9].

However, most studies only use supervised learning with labeled set. As social
lending data has large amount of unlabeled, just using labeled data is not enough.
Adding the unlabeled data will improve the accuracy even further. In this paper, the
proposed method uses almost 330,000 data, 4 times larger than the conventional
methods.

3 The Proposed Method

Figure 1 shows the overall process of the proposed method. The main idea is to
Dempster-Shafer fusion of labeling results on label propagation and TSVM. Also, we
consider class probabilities and remove data whose probabilities are lower than a
specified threshold. Therefore, the predicted labels are more accurate and precise.

Practically, since various semi-supervised learning methods have been developed,
the labeling results are not the same by methods. It can be solved by fusing labeling
results to make labeling accurate and precise. Dempseter-Shafer fusion incorporates
two probabilities to consider all available cases.

3.1 Label Propagation

Label propagation is a typical graph based semi-supervised learning, designed to
maximize the consistency of predictions using graph Laplacian [10]. It considers the
similarity between near data points and the proximity from labeled set to unlabeled set.
The algorithm is suitable for abundant unlabeled set like social lending dataset. Before
labeling unlabeled set, we train label propagation as shown in Fig. 2.

First, we initialize learning parameters, and make fully connected graph by each
data as one node. The weight of the edge between two nodes is calculated by inverse
Euclidean distance as follows.

wij ¼ exp �
PD

d¼1ðxdi � xdj Þ2
r2

 !
ð1Þ

Table 2. Previous research for default prediction in social lending

Year Author Method Data source Data size

2015 M. Malekipirbazari [6] Random forest Lending club 68,000
2015 A. Byanjankar [7] Neural network Bondora 16,037
2016 Y. Guo [8] Logistic regression Lending club 2,016,

Prosper 4,128
2016 C.S.-Cinca [9] Decision tree Lending club 40,901
Proposed method Decision tree Lending club 3,32,844
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where wij is the weight of the edge between nodes i and j, xd is d-dimensional data and
r is value specified by the user. T is a probability transition matrix and is calculated by
normalizing the row as follows.

Tij ¼ wijPlþ u
k¼1 wkj

ð2Þ

where Tij is transition matrix value from the ith node to the jth node and l; u are the size
of the labeled and unlabeled sets. Y is a class probability matrix, calculated as follows.

Fig. 1. The overall process of the proposed method

Input: transition matrix 𝑇 class probability 𝑌
repeat𝑌 = 𝑌 −1𝑇
Row-normalize 𝑌
Clamp 𝑌 of labeled data.

until 𝑌 converges.

Output: 𝑌
Fig. 2. Learning algorithm of label propagation
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yi;c ¼
1 if i\l and Ci ¼ c
0 if i\l and Ci 6¼ c

random otherwise

8
<

: ð3Þ

where yi;c is a class probability value of class c for the ith data, C is a set of classes, and
Ci is a class of the ith data.

3.2 Transductive SVM

TSVM is a SVM method that uses transductive inference [11]. It learns only the labeled
data first, and gradually uses the unlabeled data to maximize the margins. Figure 3
shows the learning algorithm of TSVM. In this paper, we use Platt scaling to converse
the distances between data and support vectors into reliability.

3.3 Dempster-Shafer Fusion

In order to apply the Dempster-Shafer theory [12], Frame of Discernment (FOD) was
set to 1 for successful repayment, and 0 for repayment failure. Belief (Bel) is the
reliability of each model. The fusion rule as follows.

m1 � m2 1ð Þ ¼ m1 1ð Þm2 1ð Þ
1� m1 1ð Þm2 0ð Þ � m1 0ð Þm2 1ð Þ ð4Þ

M ({1,0}) = 0 because the data point must belong to one class. Finally, assign a
label as follows.

Input: labeled data , unlabeled data , converging parame-

ters ,  ∗, numbers of unlabeled data to be assigned to posi-
tive class +. 
Train SVM with  and classify . 
The + data with the highest value are assigned to the posi-
tive class and remaining data are assigned to negative class. 
repeat 
   Train SVM with  and . Then, classify . 
   Calculate slack value . 

repeat 
     Exchange classes of two data. 

Train SVM with  and . Then, classify . 
until no different class data with slack value < 0. 

until ( −∗ ∗) and ( +∗ ∗)
Calculate distances  between each  and support vector. 

Output: the Platt scaled . 

Fig. 3. Learning algorithm of TSVM

858 A. Kim and S.-B. Cho



L ¼ 1; m1 � m2 1ð Þ[m1 � m2 0ð Þ
0; m1 � m2 0ð Þ[m1 � m2 1ð Þ

�
ð5Þ

4 Experiment and Result

4.1 Social Lending Dataset

In the experiment, we used the real social lending data set in the Lending Club. It contains
various information about the loan, the borrower’s demographies, and credit history
information. The number of columns is 110. Loan information consists of loan status,
interest rate, repayment period, etc. The Borrower’s information includes career,
homeownership, and so on. The borrower’s credit information is the majority and con-
sists of the number of defaults, the default period, and the number of normal accounts.
Some properties have been added since January 1, 2015 because they were added or
removed previously. Table 3 shows the distribution of class values and description.

It is a binary classification problem divided into repayment success (“Fully Paid”)
as class 1, and failure (“Charged Off”) as class 0. However, repayment in progress is
almost 70% and this can be unlabeled data. Using supervised learning as in the pre-
vious study, only 30% of the data is available for the training model. We have con-
ducted experiments using loans created at 2015 for training and 2016 for testing, and
filtering threshold is 0.85. Table 4 describes the list of features.

4.2 Experiment of Results

We have conducted experiments to show the improvement of performance by using
unlabeled data. Table 5 shows the confusion matrix of the proposed method of pre-
dicting class 1 more accurately than class 0. Table 6 shows the number of added
instances to train set of decision tree. Figure 4 shows the accuracies and F1-score.
Performances are improved in spite of fewer data than the conventional method.

Table 3. Class values and description

Value Count Description

Current 294,703 Loan is up to date on all outstanding payments
Charged off 27,501 Loan for which there is no longer a reasonable expectation

of further payments
Default 22 Loan has not been current for 121 days or more
Fully Paid 82,850 Loan has been fully repaid
In Grace Period 4,087 Loan is past due but within the 15-day grace period
Late (16–30 days) 2,111 Loan has not been current for 16 to 30 days
Late (31–120 days) 9,829 Loan has not been current for 31 to 120 days
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Table 4. Features used in the experiment

Name Description

DTI A ratio calculated using monthly debt payments on the total debt
obligations

Term The number of payments on the loan
Total open Total open to buy on revolving bankcards
Average balance Average current balance of all accounts
Ratio of total high credit Total high credit/credit limit
Mortgage account Number of mortgage accounts
Bankcard utilization Ratio of total current balance to high credit/credit limit
Bankcard percentage Percentage of bankcard accounts >75% of limit
Total balance Total current balance of all accounts
Annual Income The self-reported annual income
Revolving utilization Revolving line utilization rate
Home ownership
mortgage

The home ownership status by mortgage

Home ownership rent The home ownership status by rent
Ration of bankcard high
credit

Total bankcard high credit/credit limit

Verification Indicates if income was verified by LC, not
Loan amount The amount of the loan applied for by the borrower
Installment The monthly payment owed by the borrower

Table 5. Confusion matrix of proposed method

Actual class
Fully paid Charged off Precision

Predicted class Fully paid 24,546 3,674 86.9%
Charged off 253 133 34.5%
Recall 98.9% 3.5% 86.28%

Table 6. The number of labeled and unlabeled data in train set for decision tree

Model Number of labeled data Number of unlabeled data

Proposed method 110,351 222,493
Label propagation 110,351 310,752
TSVM 110,351 310,752
Simple Averaging 110,351 310,752
Labeled only 110,351 0
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5 Conclusion

In this paper, we have proposed a prediction method of default in social lending by
increasing train set with Dempster-Shafer fusion of two labeling results. The experi-
ments were based on the ratio of labeled and unlabeled instances. As the result, we
confirm the feasibility of the proposed method in default prediction of social lending.
We obtained comparative results, better than the model trained with labeled instances
only and other existing methods. In the future, we need to validate the performance by
comparing to various comparative methods. Also, we need to apply to state-of-art
semi-supervised learning methods, and instead of decision tree we will use deep
learning methods for the better performance.
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Abstract. We apply the statistical technique of graphical lasso for
inverse covariance estimation of asset price returns in Markowitz portfo-
lio optimisation. Graphical lasso induces sparsity in the inverse covari-
ance matrix, thereby capturing conditional independences between dif-
ferent assets. We show empirical results that not only the resulting min-
imum risk portfolio is robust, in that the variation in expected returns is
reduced when a fraction of the data is assumed missing, but also enables
the construction of a financial network in which groups of assets belong-
ing to the same financial sector are linked.

Keywords: Portfolio optimization · Graphical lasso · Financial net-
work · Graphical model · Covariance estimation

1 Introduction

Portfolio optimisation and its variants have been of interest in empirical finance
for decades, following the pioneering work of Markowitz [17]. This mean-variance
optimisation problem defines a Pareto optimal frontier in the space of expected
returns and the corresponding risks (variances) of a portfolio under the assump-
tion that returns on the assets follow a multivariate Gaussian density. The for-
mulation of such a model, under assumptions of no short selling, is given as
follows:

minimize
w

wTΣ w

subject to
i=N∑

i=1

wi = 1

wi ≥ 0

wT m ≥ ρ

(1)

where, w represents the portfolio weights [w1, w2 ... wN ]T , m and Σ the para-
meters of the Gaussian distributed asset returns, and ρ, the expected returns.
Solving the above quadratic programming problem at different values of ρ yields
the well known efficient frontier.

c© Springer International Publishing AG 2017
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In practice, however, m and Σ are not known and have to be estimated from
data with the maximum likelihood estimates of

m̂ =
1
T

T∑

t=1

xt (2)

Σ̂ =
1
T

T∑

t=1

(xt − m) (xt − m)T (3)

being the common choice. Here, T is the time window of data and xt ∈ RN

represents returns on the assets at time t.
In finance, these estimates from data are known to suffer robustness issues

[4,14,18]. Financial data consists of occasional outliers to which maximum likeli-
hood estimates are notoriously sensitive. Further, to estimate covariance matri-
ces reliably we need a long enough window (T ) of data, though due to non-
stationarity in the markets, we may choose a small window. This (particularly
when T and N are of similar values) can lead to the covariance matrix Σ being
singular and non-invertible. The consequence of poor estimation of parameters
is that the resulting portfolio can be unstable and produce poor out-of-sample
performance, with extreme weights that are liable to have large changes over
time [4]. In many cases these portfolios perform worse than a 1/N naive port-
folio [8]. These issues are often addressed by regularisation, of which shrinkage
estimation is a classic tool (e.g. [14]). Brodie et al. address this issue by regu-
larisation using the l1 (or lasso) penalty in an index tracking setting, deriving
stable portfolios which are also sparse. Takeda et al. [19] use a combination of l1
and l2 regularisers to simultaneously induce sparsity and improve out-of-sample
performance.

Estimation of covariance matrices with some desirable structure imposed on
them falls under the field of structured matrix approximation (e.g. [7,16]). In
the financial domain, Fan et al. [10] involve 3-factor model in the estimation of
a covariance matrix. They find the factor model improves the estimation of the
precision matrix, but affects errors in the estimation of the covariance matrix
less. In this setting, Friedman et al. [11], introduced the graphical lasso (glasso)
as a way of inducing structure into covariance matrices. Specifically, they argued
that a sparse inverse covariance matrix of Gaussian distributed data captures
conditional independences between the variables. From this algorithm, a well-
conditioned covariance matrix and a sparse precision matrix are produced even
when T is approaching N . From this sparse precision matrix, a network can be
extracted, with a zero in the matrix indicating a conditional independence and
a non-zero value indicating a relationship. We make use of the well-conditioned
covariance matrix and the precision matrix in this paper.

To start, we assume the asset returns follow a multivariate Gaussian distri-
bution. A multivariate Gaussian distribution can be written as

f(x,m, Σ) =
1

(2π)
N
2 |Σ| 1

2
exp(−1

2
(x − m)TΣ−1(x − m)). (4)
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Suppose we have T measurements of N assets, denoted as X = (x1 . . .xN )T where
each x is a T dimensional vector. The log-likelihood this set of measurements
belongs to a Gaussian distribution with Σ and m is

log L(m, Σ|X) = −TN

2
log(2π)− 1

2
log |Σ|− 1

2

T∑

t=1

(xt−m)TΣ−1(xt−m). (5)

Substituting the maximum likelihood covariance estimators from (2) and (3) and
discarding the constant gives

log L(m, Σ|X) = log |Θ| − tr(Σ̂Θ) (6)

where Θ = Σ−1.

Input : Empirical Covariance Matrix ̂Σ
Convergence Tuning Parameter t
Regularisation Parameter λ

Output: Covariance Matrix W
W = ̂Σ + λI;

while ave (|Wprev − W |) > t ave(|offdiag( ̂Σ)|) do
for i=1...p do

// Partition the matrix into all but the ith row and column

and the ith row and column without the ith value

W11 ← W[1...p �= i][1...p �= i];
w12 ← W[1...p �= i];

s12 ← ̂Σ[1...p �= i];

// Run coordinate descent to calculate β̂

while norm(β̂prev − β̂) > t do
for j=1...p do

β̂prev ← β̂;
V ← W11;
u ← s12;

β̂j ← St(uj−
∑

k �=j Vkj β̂k,λ)

Vjj
;

end

end
Wprev ← W ;
// Update W

W[1...p �= i] ← W11.β̂;

end

end

offdiag(M) = offdiagonal elements of matrix M
St(x, t) = sign(x)(|x| − t)+
|M | = absolute values of M
ave(M) = average of M
norm(M) = L2 norm of M

Fig. 1. Pseudo-code for the Graphical Lasso
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Following Banerjee et al. [2], we add a L1 penalty term to impose sparsity
on the precision matrix:

log det Θ − tr(Σ̂Θ) − λ ||Θ||1 (7)

with λ as a regularising parameter.
Friedman et al. [11] propose the glasso to maximise this function using block

coordinate gradient descent. Pseudo-code for the glasso algorithm is shown in
Fig. 1.

We are not alone in looking for applications for the glasso. Goto et al. [12] use
the glasso to construct a sparse precision matrix for portfolio hedging. Exploiting
the sparsity allows for lower turnover in the portfolio hedging and gives a more
predictable out-of-sample risk and return. Awoye [1] uses the glasso to estimate
a covariance matrix for mean-variance portfolio optimisation, and compares its
performance to existing covariance estimators with various constraints. Their
portfolios designed using the glasso perform well when compared to other esti-
mators, achieving a lower realised risk. We hope to exploit the lowered risk and
increased robustness the glasso provides.

We are also not the first to construct networks on financial data. Mantegna
[15] constructed a network from stock prices using a correlation matrix. Defin-
ing a distance metric using correlation coefficients, they construct a minimum
spanning tree from the companies used to construct the Dow Jones Industrial
Average. Companies in similar sectors are clustered in this minimum spanning
tree. Boginski et al. [5] also use a correlation matrix to create a network. Using
a threshold on the correlation coefficient to decide whether two companies are
linked, they build a graph. They find the produced graph follows a power law
rule when the threshold is set at a large enough value, and look at how varying
the threshold changes the clusters in the graph. Huang et al. [13] follow a similar
path, instead concentrating on the Chinese stock market. They use their network
to classify the stocks and to test the stability of the market. We also wish to see
how our constructed network can classify companies.

2 Methods and Data

In this work, instead of the general Markowitz frontier, we focus on the minimum
variance portfolio, unconstrained by the expected return (i.e. one corner of the
frontier curve). This allows us to negate the errors from mean estimation in
constructing our portfolios.

minimize
w

wTΣw

subject to
i=N∑

i=1

wi = 1

wi ≥ 0

(8)

The covariance (Σ) is estimated using the empirical covariance and the glasso,
with the convergence threshold (t) set to 0.001 and the regularisation parameter
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(λ) varied with the dataset, due to the differences in the means and variances
of the datasets (monthly returns will in general have larger absolute values than
daily returns). We use an implementation of the glasso written using Cython [3],
and CVXPY [9] to solve the optimisation problem.

Two datasets are used to test our methods, with different sizes and time
periods. The first is taken from Center for Research in Security Prices (CRSP)
database from the 30th November 1982 until the 31st December 1990. We use
the monthly percentage returns. Any assets with incomplete data are removed,
leaving us with 92 observations from 26 companies. The company sectors are
shown in Table 1. We set λ to 0.01 for this dataset. Our second dataset is the
S&P500 daily percentage returns from 2nd January 2003 until 25th January
2007. Again, assets with incomplete data are removed, leaving us with 1259
observations from 409 companies. We set λ to 0.0002 for this dataset. Both are
split into 2 equally sized sets, a training set to calculate the optimal portfolio
from and a test set to evaluate the out of sample performance.

Table 1. Number of companies in each sector from the CRSP database. The colouring
and number represents the sector they belong to in Fig. 6

Sector Number of Companies Colour Number

Agriculture 1 Brown 1

Communications 2 Cyan 2

Cyclical Consumer
Goods & Services

5 Green 3

Energy 2 Red 4

Financials 2 Light Green 5

Industrials 1 Navy Blue 6

Insurance 2 Purple 7

Non-Cyclical
Consumer Goods &
Services

1 Grey 8

Technology 9 Yellow 9

Utilities 1 Orange 10

To test the robustness of the covariance estimation, we remove a number of
samples randomly from the training data and calculate the mean and covariance
from this corrupted data set. For the CRSP data we remove 4, and for the
S&P500 data we remove 60, due to the much larger size of this dataset. We
then solve the unconstrained risk minimization problem to get a set of portfolio
weights. These weights are used to calculate a mean risk and return from the
unseen data. This is run 25 times, although similar results are obtained when the
number of runs is set to 10, 15 and 20. We can then compare how the corruption
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of the data affects the risks and returns of the portfolios produced on both seen
and unseen data.

Following this we construct a network from the sparse precision matrix pro-
duced by the glasso. Focusing on the CRSP data due to the smaller number of
companies, λ is set to 0.005. A link between companies implies their stocks are
correlated in some way. Increasing the value of λ increases the sparsity of the
precision matrix and will result in fewer links.

3 Results

In this section we test the portfolios constructed using the glasso covariance
against those constructed using the empirical covariance and explore why they
perform differently. Firstly we look at the CRSP data.

Figure 2 shows boxplots of the risk and return for the risk minimized portfo-
lios using the CRSP data. We can see the portfolios produced using the glasso

(a) (b)

Fig. 2. Variation in risks (a) and returns (b) of portfolios on monthly returns of 26
companies using the empirical and glasso covariance. 4 samples are randomly removed
each time (11.5% of the data) for 25 runs. The top row is the training set and the
bottom row the test set. The portfolios produced using the glasso covariance have a
slightly smaller variance and fewer outliers in their training risks and returns, and a
much smaller variance in their test risks and returns.



Robust Portfolio Risk Minimization Using the Graphical Lasso 869

covariance have a comparable or slightly smaller variance and fewer outliers in
their risk and returns on the training set, and a much smaller variance in their
test set than those produced with the empirical covariance.

(a) (b)

Fig. 3. Variation in risks (a) and returns (b) of portfolios on unseen daily returns of
S&P500 comapanies. 60 samples (9.5% of the data) are removed each time. Again we
can see the reduction in variance the glasso covariance provides

Figure 3 shows boxplots of the risks and returns for the S&P500 data. Again,
we can see the significant reduction in variance of the risks and returns from using
the glasso covariance. Due to room constraints, we do not show the training set
boxplots, although these are similar to the results on the training set of CRSP
data.

The results in Fig. 2 are generated using a λ of 0.01. What happens if we
change our choice of λ? Fig. 4 shows the portfolio weights chosen as we vary
lambda. As λ is increased, the portfolio weights become more evenly distributed
throughout the companies. We would expect this to reduce the variance of risks
and returns of the portfolios produced.

Now we explore relationships between the CRSP companies and how this
affects our risk minimized portfolios. Figure 5 shows the generated network. Com-
panies are tagged according to the sector the company belongs to. Sector colours
and numbers are shown in Table 1. There is a general trend towards companies
in the same sector being linked and unrelated companies being unlinked. Note in
particular how 2 out of the 3 companies with no links are also the only members
of their sector.

Relating this back to the optimal portfolios, we colour the nodes according to
the weight put upon the company in Fig. 6. The darker the node, the larger the
weight upon it. We can see that companies linked together have lower weights
than those not linked. This should reduce the risk by diversifying the portfolio
and avoiding companies who have correlated stocks.
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Fig. 4. Weights produced by the minimum risk unconstrained optimisation using
empirical and glasso covariance. As we increase the regularization parameter for the
graphical lasso, the weights tend to spread out to a 1/n portfolio.

Fig. 5. Links between companies produced by the graphical lasso with λ set to 0.005.
Companies are tagged according to the sector that they belong to - the number at the
start of the label and the node colour indicate this (Colours and numbers are shown in
Table 1). Note how companies in the same sectors are linked, particularly the cluster
of technology companies.



Robust Portfolio Risk Minimization Using the Graphical Lasso 871

Fig. 6. Links between companies produced by the graphical lasso. The darker the node,
the larger the weight on that company in the portfolio. The companies who are linked
are lighter than those without links. This provides diversification away from correlated
stocks and so should reduce the risk of the portfolio.

4 Conclusion

In this paper we have shown that using the graphical lasso to estimate covari-
ance matrices can improve the robustness of portfolio optimization. The port-
folios constructed using the graphical lasso have a lower variance of risks and
returns than those constructed using the empirical covariance, particularly in
their unseen data. We demonstrate this by removing data from the training
set and comparing the risks and returns of the portfolios produced with both
monthly and daily data. Finally we construct a network using the precision
matrix estimated by the glasso to explore relationships between companies and
how this affects the choice of assets to buy, with the minimum risk portfolios
preferring to reduce their purchases of correlated stocks.
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Abstract. Non-negative matrix factorization (NMF) is an effective
dimensionality reduction technique that extracts useful latent spaces
from positive value data matrices. Constraining the factors to be pos-
itive values, and via additional regularizations, sparse representations,
sometimes interpretable as part-based representations have been derived
in a wide range of applications. Here we propose a model suitable for the
analysis of multi-variate financial time series data in which the variation
in data is explained by latent subspace factors and contributions from a
set of observed macro-economic variables. The macro-economic variables
being external inputs, the model is termed XNMF (eXogenous inputs
NMF). We derive a multiplicative update algorithm to learn the factor-
ization, empirically demonstrate that it converges to useful solutions on
real data and prove that it is theoretically guaranteed to monotonically
reduce the objective function. On share prices from the FTSE 100 index
time series, we show that the proposed model is effective in clustering
stocks in similar trading sectors together via the latent representations
learned.

Keywords: Non-negative matrix factorisation · Computational
finance · Dimensionality reduction

1 Introduction

Many modern problems in machine learning are posed in high dimensions, due
to the ease with which we can now acquire and archive data. However, useful
information we wish to extract about a problem domain might be expected to
be characterised by fewer features. Hence dimensionality reduction is a useful
tool in identifying the latent subspaces of interest. By working in a smaller
subspace we hope to reduce the noise, compress the data and, potentially, enable
classification or regression machines to generalise better. Non-negative matrix
factorization (NMF) is an increasingly popular choice of linear dimensionality
reduction in large part because it is often capable of producing a sparse and
parts based representation of the data.
c© Springer International Publishing AG 2017
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https://doi.org/10.1007/978-3-319-70096-0_89



874 S. Squires et al.

In standard NMF we consider an input matrix with m dimensions and n
samples: V ∈ R

m×n. The aim is to find a lower-dimensional representation of
the data by factorizing V into two matrices W and H such that V ≈ WH,
where W ∈ R

m×r and H ∈ R
r×n. Generally r � m and r � n so that NMF

creates a new representation of the data in a significantly reduced subspace.
Financial systems are inherently complex, driven by the objectives of market

players, along with monetary and fiscal policies of governments. Pure time series
analysis has been applied extensively to asset returns [1–3], exchange rates [4]
and derivatives [5,6]. NMF has been applied to financial data in several ways,
such as identifying underlying trends in stock market data [7]. Also sparse-
semi-NMF approaches to portfolio diversification have been used to minimise
risk [8,9]. The appeal of NMF in this context is that returns on assets, expressed
as ratios of their market prices, are positive. Factorizing multivariate asset return
data into low rank factors can potentially discover low dimensional represen-
tations that are determined by sectors of assets that are likely to show simi-
lar responses. However, statistical signal analysis methods usually do not take
into account exogenous information from macro-economic variables (referred to
in this paper as macro-variables) that have significant contributions to market
movements.

In this paper, we propose a matrix factorization method that includes known
exogenous variables as additional components of subspace modelling. We expect
such factorizations to potentially uncover sector-specific drivers from among a
wide range of macro-variables available. Specifically, our model represents the
variation in any asset as consisting of contributions from sector-specific compo-
nents and selected macro-variables. Hence the main novel contributions in this
paper are the specification of such a factorization model and a learning algorithm
for it. We empirically demonstrate the effective performance of our approach on
share price data from FTSE 100 companies and theoretically prove that the
XNMF algorithm is guaranteed to monotonically reduce the objective function.

This paper is structured as follows: in Sect. 2 we present our model including
the underlying mathematics and the proof of monotonic reduction of the objec-
tive function; in Sect. 3 we discuss the real and synthetic data we used; in Sect. 4
we display our results; and in Sect. 5 we conclude and summarize our results.

2 Model and Learning Algorithm

Our aim is to find a combined representation of the share price data using the
share price itself with the addition of external macro-variables. We can utilise
standard NMF methods to find representations such that V ≈ W1H1 and,
separately, V ≈ W2H2 where W1 ∈ R

m×r1 , H1 ∈ R
r1×n and H2 ∈ R

r2×n

are all matrices to be found. The macro-variables are recorded in W2 ∈ R
m×r2

and are fixed quantities. Here m represents the number of time points, r1 is a
parameter to select, r2 is the number of macro-variables and n is the number of
stocks.



XNMF for Financial Data 875

There are many approaches to perform NMF, a simple method is to utilise
the multiplicative update technique of Lee and Seung [10] which gives updates
for W and H of

W ← W �
[
VHT

]
[
WHHT

] , H ← H �
[
WTV

]
[
WTWH

] (1)

where � is the Hadamard product and []
[] denotes element-wise division. These

updates push the matrices towards a minimum of the objective function ||V −
WH||2Fro. In our combined representation we want to find matrices W1, H1 and
H2 that satisfy V ≈ W1H1 + W2H2 which requires us to minimise

f =
1
2
||V − W1H1 − W2H2||2Fro. (2)

As minimising Eq. (2) with respect to W1, H1 and H2 together is non-
convex we hold two of the matrices constant whilst updating the third using
multiplicative updates. Each individual problem is then convex, although the
overall problem remains non-convex and there is no guarantee of reaching an
optimal solution. Multiplicative updates are a type of scaled gradient descent
therefore we need to find ∇W1f , ∇H1f and ∇H2f . First we multiply out Eq. (2)
and get:

f =
1
2
tr

[
(V − W1H1 − W2H2)T (V − W1H1 − W2H2)

]

=
1
2
tr

[
VTV − VTW1H1 − VTW2H2−

HT
1 W

T
1 V + HT

1 W
T
1 W1H1 + HT

1 W
T
1 W2H2−

HT
2 W

T
2 V + HT

2 W
T
2 W1H1 + HT

2 W
T
2 W2H2

]
. (3)

We then differentiate Eq. 3 with respect to W1, H1 and H2 respectively to
give three equations:

∇W1f = (W1H1HT
1 + W2H2HT

1 − VHT
1 ), (4)

∇H1f = (WT
1 W1H1 + WT

1 W2H2 − WT
1 V) (5)

and
∇H2f = (WT

2 W2H2 + WT
2 W1H1 − WT

2 V). (6)

We apply multiplicative updates to W1, H1 and H2 by:

W1 ← W1 �
[
VHT

1

]
[
W1H1HT

1 + W2H2HT
1

] , (7)
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H1 ← H1 �
[
WT

1 V
]

[
WT

1 W1H1 + WT
1 W2H2

] (8)

and

H2 ← H2 �
[
WT

2 V
]

[
WT

2 W2H2 + WT
2 W1H1

] (9)

where � is the Hadamard product and []
[] indicates element-wise division. We

will discuss how changes to W1 reduces the objective function noting that the
same argument also applies to changes in H1 and H2. As we want to follow
the gradient down towards a minimum, if ∇W1f < 0 then we want to increase
W1. This is equivalent to VHT

1 > W1H1HT
1 + W2H2HT

1 , and, as shown in
Eq. (7), W1 is increased. Conversely if ∇W1f > 0 then we need W1 to decrease,
which the multiplicative update does because W1H1HT

1 + W2H2HT
1 > VHT

1 .
The final eventuality, that ∇W1f = 0, implies we have found a minimum of W1

and so want to keep W1 the same. Our multiplicative update multiplies W1 by
one, fulfilling our requirement. We should note that if ∇W1f = 0 we are not
necessarily at a minimum of the objective function as the other two matrices
may still change which might change the situation of W1 such that ∇W1f is no
longer zero.

While this argument shows that the updates move in the correct direc-
tion, that is no guarantee of a monotonic reduction of the objective function
as we could overshoot the minimum. However, part of the value of multiplica-
tive updates is that Lee and Seung proved that they do produce a monotonic
reduction [11].

We prove that our algorithm monotonically reduces Eq. (2) by extending the
proof of Lee and Seung [11] to cover the XNMF objective function using the
same notation they did. Definition 1 and lemma 1 from their paper remain the
same but we change the K(ht) diagonal matrix of lemma 2 to

Ka,b(ht
(1)) = δa,b(WT

1 W1ht
1 + WT

1 W2h2)a/ht
(1)a (10)

which changes only the K(ht
(1)) term of G(h1,ht

1). We then prove that G(h1,ht
1)

is an auxiliary function of the altered F (h1):

F (h1) =
1
2

(v − W1h1 − W2h2)
T (v − W1h1 − W2h2) (11)

which requires the proof that Ma,b(ht
1) = ht

(1)a(K(ht
1) −WT

1 W1)a,bht
(1)b is pos-

itive semidefinite:

νTMν

=
∑

a,b

νaMa,bνb

=
∑

a,b

[
ht
(1)a

((
WT

1 W1h
t
1 +W1W2h2

)
a
/ht

(1)a

)

a,b
ht
(1)bν

2
a − νaht

(1)a(W
T
1 W1)a,bh

t
(1)bνb

]
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=
∑

a,b

[
(WT

1 W1)a,bh
t
(1)aht

(1)bν
2
a − νaht

(1)a(W
T
1 W1)a,bh

t
(1)bνb + (WT

1 W2)a,bh
t
(2)bh

t
(1)aν2

a

]

=
∑

a,b

[
(WT

1 W1)a,bh
t
(1)aht

(1)b

(1
2

ν2
a +

1

2
ν2
b − νaνb

)
+ (WT

1 W2)a,bh
t
(2)bh

t
(1)aν2

a

]

=
∑

a,b

[
(WT

1 W1)a,bh
t
(1)aht

(1)b

(
νa − νb)

2 + (WT
1 W2)a,bh

t
(2)bh

t
(1)aν2

a

]

≥ 0. (12)

Our proof is then the same as Lee and Seung except, due to the different
K(ht), we end with:

ht+1
(1)a =ht

(1)a

(WT
1 v)a

(WT
1 W1h1 + WT

1 W2h2)a
. (13)

which proves that our algorithm will monotonically reduce the objective function
for H1. Equivalent proofs are trivially shown for W1 and H2.

3 Data

We demonstrate the effectiveness of our model and learning algorithm empiri-
cally using daily data from FTSE 100 companies taken over a twenty year period.
To deal with non-stationarity that may exist over such a long period in time, we
also split the data into four equal sections in time and show results on all four
separately.

Table 1. Macro-variables used in this study

Macro-variable Frequency Macro-variable Frequency

Gross domestic product Quarterly Unemployment Monthly

Interest rate Monthly Inflation index rate Monthly

Imports goods & services Quarterly Exports Monthly

Oil imports Monthly Gross national income Quarterly

M1 money supply Monthly Productivity Quarterly

GBP/USD Daily Contribution to CPI Monthly

Balance of payments Monthly Oil investment Daily

Government gross reserve Monthly

In Table 1 we show the macro-variables used in this study. The choice of
which macro-variables to use is somewhat arbitrary, there are many potential
macro-variables, and they can be changed. To compensate for the differences
in frequency between the share data (recorded on work days) and the macro-
variable data we have linearly interpolated between all the macro-variable data
so that the dimensionality (the number of time points) are equal.
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4 Results

We first confirm empirically that our algorithm achieves the desired goal, the
reduction in the error until it reaches a minimum. In Fig. 1(a) we show how the
error changes with iteration for different values of r for the three different algo-
rithms. We will use the same terminology throughout: NMF results are from the
algorithm which minimised ||V − W1H1||2Fro, XNMF (exogenous inputs NMF)
is for the minimisation of ||V−W1H1 −W2H2||2Fro and EX (exogenous inputs
alone) is for the minimisation of ||V−W2H2||2Fro. The blue dashed lines are for
different values of r for NMF and the solid black lines for different values of r1
for XNMF.
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Fig. 1. (a) The extended multiplicative update algorithm reduces the error monoton-
ically with iteration until a plateau is reached. The multiple blue dashed (NMF) and
solid black (XNMF) lines are for different sizes of the subspace, r. Generally the XNMF
algorithm requires more iterations to approach a minimum than the NMF algorithm,
but reaches a lower final error. (b) The final errors for different sizes of the subspace, r,
for NMF (blue dashed lines with crosses), XNMF (solid black line) and XNMF using
a W2 with random values (red dotted with circles). At all values of r that were imple-
mented XNMF produces smaller errors than NMF or the randomised XNMF. As r
is increased the difference between the errors produced by the algorithms reduces as
the capacity of the NMF model increases and begins to overfit the data. (Color figure
online)

The EX algorithm (red dotted line) produces a poor approximation as it con-
tains no information from the actual stocks themselves. The results of particular
note are those of the XNMF algorithm which works as we expect it to, we see a
fall in the objective function with iteration until it approaches a minimum where
the error plateaus. The XNMF algorithm takes more iterations than the NMF
algorithm to approach a minimum which might be expected as we have three
matrices to optimise rather than two. In addition, the third matrix may make
the objective function more non-convex than with just two matrices to optimise.
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In Fig. 1(b) we show the final errors from performing normal NMF (blue
dashed line with crosses) and XNMF (solid black line) for different sizes of
the subspace, r. At low values of r the model does not have enough subspace
dimensions (columns of W1) to effectively fit the data and so the errors are high.
The additional macro-variables here make a significant difference to the quality
of the fit. As r increases the benefit of the additional information decreases as the
increased capacity of the W1H1 part of the model means that a good fit to the
data is possible without any additional information. As r increases it is likely
that the model is overfitting the data, so any use of NMF requires a sensible
choice of r to be made [12]. We also include a version of XNMF (red dotted
line with circles) called XNMF Random where the W2 matrix is composed of
random numbers. The NMF and XNMF Random plots are hard to distinguish
demonstrating that the XNMF method is extracting real information from the
external data, and not just reducing the error by increasing the size of the
parameter space.
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Fig. 2. (a) A representation of how much clusters diverge with time. K-means clustering
was applied to non-dimensionality reduced data (dark blue bars), dimensional reduction
using NMF (light blue bars) and dimensional reduction using XNMF (yellow bars) for
four times periods and for a combination of the four periods. The clusters produced
from data with no dimensional reduction diverge the most, with application of NMF the
divergence is reduced and with XNMF we see the smallest divergence, the clusters tend
to hold together better through time. (b) Boxplots of the same results demonstrating
the improvement of XNMF over NMF. (Color figure online)

A particular appeal of NMF is noise suppression, by reducing the noise we
might expect to be able to extract more real features from the data. A key result
demonstrated with gene expression data is that the reduction in noise achieved by
matrix factorization leads to stable clustering and biologically relevant inference
about genes [13,14]. In financial data we are often interested in how stocks and
shares move together through time, a balanced portfolio would not contain lots
of shares which are likely to fall in the same period. If we can effectively cluster
the shares we can then build a more resilient portfolio.
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We can cluster stock data into groups using a range of techniques including
the popular K-means clustering. We are then interested in the quality of the
clustering in the future, clusters that hold together better would be desirable.
While NMF is not a clustering technique we can use the dimensionality reduction
to create a new sub-space in which we apply clustering.

We performed K-means clustering on three versions of the data: (a) no dimen-
sionality reduction; (b) dimensionality reduced using NMF; (c) dimensionality
reduced using XNMF. A measure of the similarity of a cluster is the average dis-
tance to the cluster centre using the non-dimensionality reduced data. We are
interested in the change in the average distance to the cluster centre as this gives
us a measure of how similar the cluster is at different time points. In general, we
would expect an increase in distance as clusters will tend to diverge with time.
If we see a smaller increase using the dimensionality reduced versions, it shows
that the NMF techniques are allowing us to produce clusters which generalise
better.

In Fig. 2 we see the results of this forward prediction of clustering. First the
data was split in half into a “training” set, the first half of the data in time, and
a “testing” set, the second half of the data. The training data was then cluster-
ing into seven cluster centres using, respectively: the raw data, V; H1 from NMF;
and H1 from XNMF. We chose the size of the subspace, r, using a combination
of domain knowledge about numbers of sectors in the data, and automatic tech-
niques to assess subspace size [12]. The y-axis shows the ratio of the average dis-
tances from each data-point to its cluster centre between the testing data and the
training data. A smaller value means the cluster stayed closer together. We see a
clear trend, the raw data performs the worst whilst XNMF gives the best perfor-
mance, and NMF gives a result in between the other two.

5 Conclusion

In this paper we introduce a matrix factorization model suitable for multi-variate
financial time series that includes known exogenous macro-variables. We use real
FTSE 100 stock data to show that the multiplicative update factorization algo-
rithm of XNMF produces lower errors than standard NMF and that stock clus-
ters formed with the addition of exogenous data stay tighter bound through time.
We also prove theoretically that the algorithm is guaranteed to monotonically
reduce the objective function.
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Abstract. In financial applications, stock-market trend prediction has
long been a popular subject. In this research, we develop a new predic-
tive model to improve the accuracy by enhancing the denoising process
which includes a training set selection based on four K-nearest neigh-
bour (KNN) classifiers to generate a more representative training set
and a denoising autoencoder-based deep architecture as kernel predictor.
Considering the good agreement between closing price trends and daily
extreme price movements, we forecast extreme price movements as an
indirect channel for realising accurate price-trend prediction. The exper-
imental results demonstrate the effectiveness of the proposed method in
terms of its accuracy compared with traditional machine-learning mod-
els in four principal Chinese stock indexes and nine leading individual
stocks from nine different major industry sectors.

Keywords: K-nearest neighbour · Denoising autoencoder · Stock-trend
prediction

1 Introduction

The ability to precisely forecast the direction of stock movements can assist
investors to make economically sound decisions by minimizing investment risks
and maximizing financial profits. Some articles divide trend predictions to mul-
tiple types. For example, Bara et al. [1] divided stock trends into five types,
namely sharp decrease, decrease, normal, increase and sharp increase. However,
most of articles are interested in binary classification [2–4] as binary classifica-
tion task is fundamental for stock trend predictions and can more directly help
investors find trading signals.

Both textual and numerical information can be involved to form dataset
in binary classification task [5,6]. The efficient market hypothesis assumed
that stock prices quickly adjust to new information as soon as possible [7].
Since stock price movement incorporates all visible and potential influences,
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 882–892, 2017.
https://doi.org/10.1007/978-3-319-70096-0_90
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there is an interesting question regarding whether we should use only the tech-
nical indicators calculated with basic prices to increase the accuracy of stock-
trend forecasting. Technical analysis for stock trend prediction has gained great
achievements [8,9], but there still exists several challenges among which a notable
one is how to treat with the dataset formed by the technical indicators. Kara et
al. [10] directly used 10 normalised classic technical indicators as input for an
artificial neural network (ANN). Patel et al. [11] changed technical indicators
into 1 (oversold) or −1 (overbought) by their financial senses. When observing
the dataset formed by technical indicators, we find out that even the same set of
indicators could represent completely opposite labels which greatly affects the
accuracy of trend predictions. To solve this problem, we constructed a KNN-
based data selection process to generate a new training set, where a group of
similarity value features corresponds to one label.

The challenge to conduct stock-market trend predictions lies that stock prices
are complicated and dynamic time series streams including noise, uncertainty,
volatility and hidden relationships [12]. As a consequence, another important
task in such studies is to effectively learn elemental feature information from com-
plex and heterogeneous time series streams. Many machine-learning-based mod-
els have been shown to be suitable for time-series forecasting, such as artificial
neural network (ANN) [13] or support vector machine (SVM) [14]. By using non-
linear activation functions and multiple connected layers architecture, the ANN
model can abstract different features from initial indicators [15]. The objective of
SVM is to find a hyper plane to maximize the margin of separation between pos-
itive and negative examples [11]. Compared to current shallow machine learning
algorithms, deep-learning-based methods attempt to model high-level abstrac-
tions in data using multiple processing layers with complex structures, resulting
in better representations from input examples [16]. In this study, a deep-learning
method based on denoising autoencoder (DA) that extracts the robust features
is proposed with respect to the complex stock series streams.

Previous researches usually directly forecast the closing price trends [5,11,17].
Different from other research, we attempted to first predict the direction of the
next day’s highest and lowest price movements in order to accurately determine
the closing price trends because the direction in which values undergo extreme
movements can also convey valuable information that may indicate the turning
point of a stock’s trend [18]. In addition, the lower volatility of daily extreme
prices guarantees a higher accuracy [19] which makes using predicted extreme
prices trends to indirectly predict closing trend possible.

The rest of this paper is organised as follows. In Sect. 2, we present the related
works in the field of stock market prediction. In Sect. 3, we interpret explicitly
the proposed model. Then, in Sect. 4, we analyse the experimental results, and
in Sect. 5, we present our conclusion and discuss the direction of future work.

2 Related Work

In general, stock market prediction can be divided into two categories, i.e., fun-
damental analysis and technical analysis. The fundamental analysis is more
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interested in long-term predictions by analysing the intrinsic stock value [20].
The technical analysis methods mainly concentrate on short-term predictions
by using historical trading data. They assume that the historical price variation
would probably repeat itself and aim to predict stock market by seeking some
existing patterns with various models [11].

Almost all machine-learning models have been employed in previous works.
Ballings et al. [15] compared performance among seven different models, such
as random forest, logistic regression (LG), SVM. The results indicated that ran-
dom forest performed best. Qiu et al. [9] applied an optimised ANN model to
predict the Japanese stock market index Nikkei225 with considerable accuracy.
Yeh et al. [21] showed that SVM models with multiple kernels can have good
performance for stock forecasting. There are also other methods such as fuzzy
sets [22] and decision trees [23].

With the development of deep learning, the use of deep architectures has
become another powerful solution to predict stock trends because of their supe-
rior predictive properties and robustness to over-fitting problems [24]. Akita et
al. [25] demonstrated the performance of long short-term memory (LSTM) on
real-world data provided by ten companies from the Tokyo Stock Exchange. Zeng
et al. [26] proved that convolutional neural network (CNN) performs better than
the traditional Bollinger bands. Rather et al. [27] merged two linear models and
a non-linear model (recurrent neural network (RNN)) and confirmed that the
hybrid prediction model outperformed the RNN. Different from the principles of
these models, stacked denosing autoencoder (SDA) can extract the principal and
robust components of the training set and easily form deep networks to improve
the accuracy [28]. So we applied SDA in our denosing enhancement predictive
model.

3 Methodology

In this study, the proposed stock-trend prediction model is composed of two
distinct major steps (Fig. 1). First, we used a data preparation layer to form
two training sets with different labels (train Label-High, train Label-Low) and
four KNN-classifiers to eliminate noisy data in each training set. Secondly, we
used two new training sets to train two SDA networks separately and a loop to
search the best parameters. Best models with minimum cross-validation error
are saved to predict the Label-Low and Label-High of the validation set and test
set. By using the verification of the validation Label-Close, we can determine the
relation between the predicted Label-Low, predicted Label-High and our target
label. Afterwards, we can predict the Label-Close of the test set by using the
predicted test Label-High, predicted test Label-Low and this relation.

3.1 Data Preparation

The original stock historical data is composed of four basic prices (open, highest,
closing and lowest), with which we calculated 10 technical indicators [10] as
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Fig. 1. Global prediction process

features of the dataset and three corresponding label sets defined by changes in
the lowest, highest and closing prices. For example, the Label-Close is defined
as up (1) if Ct+1 ≥ Ct or down (0) if Ct+1 < Ct where Ct represents the closing
price at time t (Eq. 1). Same method of definition is used to generate Label-
High and Label-Low. Due to the difference of magnitude among the technical
indicators, We also used the normalisation method to transform each technical
indicator between 0 and 1 (Eq. 2). Then, we separated the entire dataset and
three label sets into a training set, validation set and test set with percentages of
90%, 5% and 5% respectively. Finally, we formed two training sets whose labels
are train Label-Low and train Label-High respectively.

Label-Close =
{

1 if Ct+1 ≥ Ct

0 if Ct+1 < Ct
(1)

Xnormalised =
X − Xmin

Xmax − Xmin
(2)

For each training set, we combined two KNN classifiers to pick out a purer
training set. The first KNN classifier divided the training set into a RightDataSet
and WrongDataSet by using a similarity metric such as the Euclidean distance
to determine whether its label is coherent with the major label of its nearest
k neighbours. The coherent ones were assigned into RightDataSet. We applied
second KNN classifier to the first WrongDataSet to avoid the over-eliminating
problem. The two RightDataSets are grouped as a new training set. We car-
ried out the identical process for another training set. The algorithm of a KNN
classifier is shown in Algorithm 1.

3.2 Stacked Denoising Autoencoder-Based Predictor

The SDA is a deep network formed by several denosing autoencoders (DAs) in
series, where the output code of a DA serves as the input of the next DA. The
training process composes two steps: pretraining and fine-tuning.

During the pretraining process (Fig. 2), each hidden layer of the SDA is
trained successively as one DA. To train each DA layer, we first mapped the
initial input x into x̃ by means of a binary masking noise mapping x̃ ∼ qD (x̃|x)
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Algorithm 1. A KNN Classifier.
Require: KNN Classifier Parameter k
Ensure: RightDataSet, WrongDataSet
1: init RightDataSet = WrongDataSet = [ ], Distances = [ ]
2: for all inX ∈ TrainingSet do
3: newTrainingSet ← (TrainingSet − inX)
4: for inY ∈ newTrainingSet do

5: d (inX, inY ) =
√∑

(inXi − inYi)
2, Distances ← Distances + d(inX, inY )

6: end for
7: DistancesDescendSorted[: k] ← Distances
8: inXPreLabel ← major label of DistancesDescendSorted[: k]
9: if inXRealLabel = inXPreLabel then

10: RightDataSet ← (RightDataSet + inX)
11: else
12: WightDataSet ← (WightDataSet + inX)
13: end if
14: end for

which means turning x’s elements to 0 with a binomial distribution. Whenever a
training example x is presented, a different corrupted version x̃ of it is generated
according to qD (x̃|x). The rest process is like the basic autoencoder including
a coding function (Eq. 3) and a decoding function (Eq. 4). Compared with the
original autoencoder, DAs still exhibit the same reconstruction loss between a
clean input x and its reconstruction form z, but the reconstruction version z is
acquired from a corrupted x. This forces the coding function fθ and decoding
function gθ′ to be sufficient to offset the effect of noise.

y = fθ (x̃) = s (Wx̃ + b) (3)

z = gθ′ (y) (4)

Parameters θ and θ
′
are trained by stochastic gradient descent (SGD) to min-

imize the reconstruction error over a training set. With the sigmoid activation
function and normalised dataset, we used the cross entropy loss as the recon-
struction cost function (Eq. 5) [28]. All of the optimised hidden layer weights are
used as the initial neural network weights for fine-tuning training.

Cost = LH (x, z) =
∑

j

[xj log (zj) + (1 − xj log (1 − zj))] (5)

Fine-tuning is a supervised learning, and here, we added a logistic regression
layer on the output code of the last hidden layer, after which we used a SGD to
train the entire network as a multilayer perception (MLP) whose hidden layers’
weights are shared with each DA. The cost function of fine-tuning is a cross-
entropy function between the real label y and the predicted label ỹ.

With the trained-prediction model, we could have the predicted Label-Low
and Label-High of each validation set. The combination of results can form four
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Fig. 2. Stacked DAs. After training a first-level DA, its learnt function fθ is used on
a clean input (left) to produce the input of the next layer. The next DA is trained in
the same manner to learn a second-level encoder fθ

(2). The procedure can be repeated
in this way (right).

situations, namely [1,1], [0,1], [1,0] and [0,0]. Each situation corresponds to an
up Label-Close (1) or a down Label-Close (0). We took the majority as the
predicted Label-Close of this situation. In this manner, we obtained the relation
of each situation to Label-Close. Afterwards, using the predicted test Label-Low
and predicted test Label-High of the test set, we were able to predict the test
Label-Close of the test set.

4 Experience and Results

4.1 DataSets and Evaluation Metrics

To prove the effectiveness of our proposed method, we considered four Chinese
stock indices and nine individual stocks of nine industries (Table 1). The selection
of the individual stocks is mainly based on market value, industry influence and
trading activity. We downloaded all of the data using the tushare package of
python. All datasets are sufficiently recent to prove that our method is useful
and powerful for the current Chinese stock market. We use direction accuracy
and Fβ-Measure as our evaluation metrics which are defined in Eqs. 6 and 7.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Fβ-Measure =

(
β2 + 1

)
PR

β2P + R
(7)

TP , FP , TN and FN represent respectively the true positive, false positive,
true negative and false negative. P means precision positive rate and R means
recall positive rate as defined in [11]. As the forecast up trends usually indicate
investors to buy stock, a higher precision rate can contribute to gather more
profits and avoid risks, here we use β = 0.5 to assign more weight for precision
rate.
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Table 1. Details of four Chinese stock indexes

Code Index name Num of samples Period

SH000001 Shanghai Composite
Index

4218 1999/07/26-2016/12/23

SZ399001 Shenzhen Component
Index

2948 2005/01/04-2017/02/23

SH000300 CSI 300 Index 2910 2005/01/04-2016/12/23

SZ399005 Small and Medium
Enterprise Index

2104 2006/01/24-2017/02/23

Code Stock name Industry Period

SH600030 CITIC Securities Com. Securities 2006/01/04-2017/01/31

SH600221 Hainan Airlines Transportation 2002/01/04-2016/12/23

SH600519 Kweichow Moutai
Com.

Liquor making 2005/01/04-2017/01/31

SH600886 SDIC Huajing Power
Holdings Com.

Energy 2005/01/04-2017/01/31

SH600887 Inner Mongolia Yili
Industrial Group

Food & beverage 2006/01/04-2017/01/31

SH601668 CSCE Construction
Corp.

Infrastructure 2009/07/29-2017/01/31

SZ000002 China Vanke Group Real estate 2006/01/04-2017/01/31

SH600000 Shanghai Pudong
Development Bank

Banking 2002/01/04-2016/12/23

SZ600690 Haier Group Home appliances 2006/01/04-2017/01/31

4.2 Benchmark Models

The first set of comparison experiments was aimed at proving that the KNN-
based data selection process could contribute to denoise the original training
set. Here, we used two hidden layers SDA as kernel predictor and tested the
performance with and without the data selection layer.

The second set of comparison experiments is to prove the effect of the denois-
ing autoencoder on our prediction process. Here, we compared the performance
between SVM with a RBF kernel, LG, one hidden layer ANN, one hidden layer
SDA and two hidden layers SDA with our complete process in both the stock
index and individual stock in China.

Our third set of comparison experiments is directly predicting closing price
trend with normalised 10 technical indicators as input for an ANN (ANN-
DC) [10] or 10 trend deterministic data with random forest as kernel predictor
(TDD-RF-DC) [11].
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4.3 Results and Discussion

In the presentation of experimental results, to prevent confusion, we use SDA-
I as abbreviation for one hidden layer SDA and SDA-II for two hidden layers
SDA. To prove the effect of the KNN-based denoising data selection process, we
compared the performance of our proposed approach with and without the KNN-
based data selection process. In addition, we also compared accuracy between
using just one KNN classifer and two KNN classifiers for each training set. We
used SDA-II as kernel predictor and as shown in Fig. 3, we find that the improve-
ment is obviously positive with KNN-based data selection layer, in particular,
performance with two KNN classifiers was better than one KNN classifier. So in
the rest experiments, two KNN classifiers are applied for each training set.

0.5

0.55

0.6

0.65
Two KNN Classifiers

One KNN Classifier

Without KNN classifier

Fig. 3. Comparison between with and without KNN Classsifiers

Secondly, using our complete prediction approach with KNN-based data
selection layer, we used SVM, ANN or LG as predictor to compare the per-
formance of SDA family methods (SDA-I, SDA-II). The first advantage of using
SDA family methods is the masking noise mapping which contributes to improve
the robustness of the prediction models. Besides, the SDA family methods can
easily form deep architecture to find out the potential relation between the tech-
nical indicators and the stock trends more efficiently. As shown in Table 2, we
can see that the family of SDA methods has a better performance than tradi-
tional machine-learning methods (LG, SVM, ANN) both for the stock index and
individual stock. The unit for all numbers in the results table is %. In particu-
lar, the difference between SDA-I and the one-hidden layer ANN lies only in the
characteristics of the hidden layer, while the same approach with the SDA-I can
realise a much better performance than ANN.

Table 2. Five models comparison results

Prediction models SVM LG ANN SDA-I SDA-II

Stock index 61.59 61.9 61.6 63.04 62.82

Individual stock 57.09 58.52 60.38 61.9 63.21

Finally, Table 3 shows the comparison results with directly predicting clos-
ing price trends. ANN-DC means directly predicting closing price trends with
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normalised 10 technical indicators as input for an one-hidden layer ANN [10].
TDD-RF-DC means changing 10 technical indicators into 1 or −1 by their finan-
cial sense and using these trend deterministic data as input for a random forest
predictor [11]. K-LH-SDA-I&II are our proposed approaches which are more
effective compared with directly predicting closing price change.

Table 3. Stock index & individual stock comparison experiments

Method ANN-DC TDD-RF-DC K-LH-SDA-I K-LH-SDA-II

Evaluation
metric

Acc F-Measure Acc F-Measure Acc F-Measure Acc F-Measure

SH000001 54.5 59.95 52.61 57.67 63.51 66.39 63.03 65.85

SZ399001 49.66 55.22 56.55 59.12 61.22 61.22 60.54 60.67

SH000300 51.72 57.25 50.34 53.17 65.52 66.95 64.83 66.12

SZ399005 50.48 56.03 56.19 57.76 61.9 62.31 61.9 62.31

Index
average

51.59 57.11 53.92 56.93 63.04 66.22 62.58 63.74

SH600030 53.79 55.32 57.58 56.47 63.64 61.86 63.64 62.01

SH600221 55.43 60.85 57.71 61.95 60.57 64.15 66.29 68.38

SH600887 53.08 58.57 63.08 64.84 58.46 61.48 63.08 64.84

SH600519 50.35 55.90 54.55 55.41 57.34 58.08 57.34 57.89

SH600690 48.82 54.39 55.91 56.76 61.42 60.56 61.42 60.51

SH600886 54.74 60.19 61.31 64.37 65.69 67.37 67.15 68.97

SH601668 56.04 61.45 57.14 61.84 67.74 69.11 62.64 65.4

SZ000002 50 55.56 64.29 64.22 62.7 62.8 64.29 64.64

SH600000 54.55 60 56.25 60.28 60.23 63.18 63.07 65.32

Stock
average

52.98 58.03 58.65 60.68 61.98 63.17 63.21 64.22

5 Conclusions and Future Work

In this paper, we proposed a model to forecast the stock market trends as defined
by the changes of closing price. Our original motivation comes from the noisy
characteristics of stock data. We develop a denoising enhancement predictive
model by applying SDA-based deep architecture and a new KNN-based training
data denosing process. Inspired by the importance of extreme values when pre-
dicting stock trends, we decided to forecast the highest and lowest price changes
as an indirect way of predicting trends of closing price. We used three sets of
experiments for comparison to prove the effectiveness of stock prediction perfor-
mance of our denoising enhancement predictive approach. In addition, we offer
the opportunity of using the highest and lowest prices to indirectly predicting
closing price trends in Chinese stock market.
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In future work, with the exception of noisy characteristics, stock data are also
a type of time-series data, and it may be useful to involve the RNN or LSTM
model throughout the entire process. Further, studies into the stock prediction
focus on realising profits, so we can develop a trading strategy based on our
method and use the profit as an evaluation metric.
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Science Foundation of China (No. 61332018).
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Abstract. This paper makes a ten-quarter projection for Spanish cen-
tral government debt (SCGD). Several Eurozone member states had been
in debt crisis since 2008, including Spain. During the crisis, Spanish cen-
tral government debt increased quickly. According to the data provided
by the Bank of Spain, the SCGD reached to ¤969.5523 billion in Decem-
ber 2016, and debt-to-GDP ratio was more than 100% in 2016. It is
important to conduct a projection for SCGD so that the government
can make better fiscal policies and preparation for risks in future. In this
paper, we use a 3-layer feed-forward neuronet to conduct a projection for
SCGD. We use weights and structure determination (WASD) algorithm
to build such a neuronet model and train the neuronet with Spanish
central government debt data from December 1994 to December 2016.
Finally, three different trends of SCGD are shown via experiments: quick
increasing trend, increasing trend and decreasing trend.

Keywords: Central government debt · Debt crisis · Ten-quarter pro-
jection · WASD algorithm

1 Introduction

Government debt, also known as national debt and sovereign debt, is the debt
owned by government. Central government debt, which is the most important
part of general government debt, is the debt owned by central government.

Spain has a population of 46 million, which is the fourth largest economy in
the Euro area (following Germany, France and Italy). Under the influence of the
world financial crisis in 2007−2008, debt crisis broke out in several European
countries including Spain [1–3]. That crisis had significant adverse economic
effects and labour market effects, with unemployment rate in Spain reaching to
27% [4]. Spanish central government debt (SCGD) also increased quickly. Before
the fourth quarter of 2007, SCGD was stable and increased very slowly. SCGD
increased much quicker after the end of 2007. As the SCGD data provided by the
Bank of Spain show, in the fourth quarter of 2007, SCGD was only ¤318.8691
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 893–902, 2017.
https://doi.org/10.1007/978-3-319-70096-0_91
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billion; but, in the fourth quarter of 2016, SCGD reached to ¤969.5523 billion,
more than three times as many as that of nine years ago. Spain entered the crisis
period with a relatively modest public debt of 36.2% of GDP; but, in 2014, the
debt-to-GDP ratio was more than 100%.

Nowadays, government debt has become the most pressing and difficult policy
challenge that western governments have to face. Many scholars have researched
Spain or European sovereign debt crisis. Klaus and Lucio pointed out that
sovereign debt crisis is a complex problem, and internal devaluation policies
imposed in Greece, Ireland, Italy, Portugal and Spain are ineffective [5]. Mario
and Carsten examined the European sovereign debt crisis focussing on Spain,
and presented empirical evidence indicating that German and Spanish govern-
ment bond yields are cointegrated [4]. Trabelsi analyzed the recent development
in the Eurozone, mainly the PIIGS (Portugal, Ireland, Italy, Greece and Spain)
countries’ financial crisis (including debt crisis) and the threats the Eurozone
risks, and proposed some solutions for the crisis [6].

With the rapid growth of central government debt in Spain, predicting the
trend of SCGD becomes important for government’s policies making. In this
paper, we introduce the weights and structure determination (WASD) neuronet
to project the Spanish central government debt (SCGD). We have used this
kind of neuronet to project the United States public debt [7], and obtained
satisfactory projection results. We get the quarterly SCGD data from December
1994 to December 2016 provided by the Bank of Spain. The neuronet is trained
and validated with these data; then, we conduct a ten-quarter projection of
SCGD using such neuronet models.

2 Structure and Training of WASD Neuronet

In this section, we build a 3-layer feed-forward neuronet; then, we use weights
and structure determination (WASD) algorithm to determine the neuronet’s
connecting weights and structure.

2.1 Neuronet Structure

A 3-layer feed-forward neuronet is built for SCGD projection, which is shown in
Fig. 1. The neuronet includes input layer, hidden layer and output layer. In the
hidden layer, there are N neurons activated by a group of Chebyshev polynomials
φj(·) (with j = 1, 2, · · · , N) [8,9]. The input layer or the output layer each has
one neuron, which is activated by linear identity function. We set the connecting
weights from the input layer to the hidden layer to be 1, and the connecting
weights from the hidden layer to the output layer to be wj (with j = 1, 2, · · · , N)
which should be adjusted. Furthermore, the thresholds of all neurons are set to
be 0. These settings mentioned above considerably decrease the complexity of
neuronet and computation.

Then, we use WASD algorithm to determine the structure of neuronet. The
weights and structure determination (WASD) algorithm can determine the con-
necting weights from the hidden layer to the output layer, and obtain the optimal
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Fig. 1. Structure of 3-layer feed-forward WASD neuronet, which has input layer, hidden
layer and output layer.

structure. For more details of the WASD algorithm, please refer to authors’ pre-
vious works [10–14].

2.2 Normalization from [12/1994, 12/2016] to [−1, α]

We get the SCGD data from the Bank of Spain, who officially provides the
quarterly SCGD data from December 1994 to December 2016, so we can guar-
antee the accuracy of SCGD data. In this paper, originally and initially, the
input of the neuronet is a date (e.g., 12/1994), the output is an SCGD datum
in billion Euros (e.g., 209.3340). In order to make it convenient to normalize the
input data, we change the format of date. We use the total number of months
from 0 A.D. to the corresponding time as the input; for example, 23940 corre-
sponds to 12/1994 because there are 23940 months from 0 A.D. to 12/1994, and
24204 corresponds to 12/2016. Therefore, the domain [12/1994, 12/2016] is con-
verted to [23940, 24204]. Because the neurons in the hidden layer are activated by
Chebyshev polynomials of class 1, the input domain should be [−1, 1]. Therefore,
we normalized [23940, 24204] to [−1, α], with normalization factor α ∈ (−1, 0).
Using the normalized data, we can train WASD neuronet.

2.3 WASD Neuronet Training and Validating

As mentioned in the previous subsection, the dates interval [12/1994, 12/2016]
is normalized to interval [−1, α]. The performance of neuronet is related to the
normalization factor α ∈ (−1, 0). With different values of α, we obtain different
projection performances. Specifically, we use {(ti, γi)|Qi=1} as the training set of
sample pairs, where ti ∈ R denotes the ith input, γi ∈ R denotes the ith target
output, and Q denotes the total number of sample pairs in the training set. In
this paper, there are totally 86 sample pairs corresponding to 86 quarters from
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December 1994 to March 2016. We define the mean square error (MSE) [12] as
follows:

EN =
1
Q

Q∑

i=1

⎛

⎝γi −
N∑

j=1

wjφj(ti)

⎞

⎠
2

, (1)

where EN denotes the mean square error with the hidden layer’s neurons number
being N . By changing the number N of neurons in the hidden layer gradually, we
obtain the relationship between N and MSE. As we know, the number of neurons
in the hidden layer plays an important role in the neuronet’s performance. Too
many neurons in the hidden layer may cause over-fitting, while too few neurons
cause under-fitting. Thus, we use the WASD algorithm to determine the optimal
N by finding the corresponding N with the minimum MSE value. The optimal
structure of neuronet can thus be determined.

Based on the well-trained neuronet models, we use additional 3 sample pairs
to validate the neuronet models’ projection performance. Note that sample pairs
in interval [12/1994, 03/2016] are used to train the neuronet (i.e., 86 sample
pairs), while sample pairs in interval [06/2016, 12/2016] are used to validate the
performance (i.e., 3 sample pairs), which are also be normalized to the interval
[−1, α]. The validation error ε is defined as follows:

ε =
1
M

M∑

m=1

∣∣∣∣
ym − γm

γm

∣∣∣∣ , (2)

where M denotes the number of validate sample pairs (i.e., M = 3 in this paper),
ym denotes the neuronet output with the mth sample input, and γm denotes the
mth target output. We find again that different normalization factor α leads to
different validation error ε. The relationship between them is shown in Fig. 2.
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3 Projection Results

In the previous section, we train the neuronet successfully and validate the
projection ability of the well-trained neuronet. We also obtain the relationship
between the normalization factor and the validation error. As Fig. 2 shows, dif-
ferent values of α correspond to different validation errors. Smaller validation
error means better projection result, or to say, more possible situation. We mark
the global minimum point and several local minimum points in Fig. 2. Note that
the global minimum point usually means the most possible situation, and the
local minimum points also have relatively high possibilities. In this section, we
choose the global minimum point and four local minimum points to analyze their
projection results, and we list these points in Table 1.

Table 1. Validation errors of global minimum point and local minimum points

Value of α −0.786 −0.839 −0.902 −0.928 −0.992

Validation error ε 0.0147 0.0153 0.0156 0.0163 0.0452

3.1 Projection Results via Global Minimum Point

Global minimum point here has normalization factor α corresponding to the
minimum validation error in global range. As is shown in Fig. 2 and Table 1,
α = −0.786 corresponds to the global minimum point with the validation error
ε = 0.0147, which usually means the most possible situation. We conduct a ten-
quarter projection from March 2017 to June 2019. The projection results with
α = −0.786 are shown in Fig. 3, and listed in Table 2. Specifically, in Fig. 3, the
neuronet output data are very close to the real historical SCGD data before
December 2016, which indicates the good performance of the neuronet. As the
neuronet projects, SCGD has a quick increase in the ten quarters following the
end of 2016, and the growth rate also increases. Moreover, Table 2 lists the
detailed SCGD data in quarterly manner. In this table, we can see that SCGD
exceeds ¤1000 billion for the first time in March 2017, and reach ¤3268.7426
billion in June 2019. The SCGD surges to a record high in June 2019, and triples
within ten quarters.

We find that there was also a quick increase in the end of 2007. In 2012,
Spain sank into debt crisis with a quick increase of SCGD. In December 2014,
Spain’s debt-to-GDP ratio exceeded 100%. Moreover, Spain’s GDP has grown
slowly in recent quarters, so this projection result shows an increase of SCGD
and indicates that Spain may face a risk of debt crisis.

3.2 Projection Results via Local Minimum Points

Local minimum points have smaller validation errors than points around them.
Similar to global minimum point, local minimum points are worth being dis-
cussed and analyzed. The validation errors of local minimum points may be a
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Fig. 3. Projection result of SCGD via WASD neuronet with global minimum point
α = −0.786.

Table 2. Projected data of SCGD corresponding to Fig. 3

Date (month/year) 03/2017 06/2017 09/2017 12/2017 03/2018

SCGD (billion Euros) 1000.9648 1038.8157 1098.1584 1187.9370 1319.6588

Date (month/year) 06/2018 09/2018 12/2018 03/2019 06/2019

SCGD (billion Euros) 1507.9560 1771.2369 2132.4639 2620.0196 3268.7426

little larger than that of global minimum point, which means that the situations
of local minimum points also have high probabilities. So, we use four local mini-
mum points α = −0.839, −0.902, −0.928 and −0.992 to analyze their projection
results. The projection results are shown in Fig. 4.

As Fig. 4(a) shows, SCGD increases in the next ten quarters, which is similar
to global minimum point, but the growth rate corresponding to α = −0.839 is
smaller. After ten quarters, in June 2019, SCGD reaches to ¤1533.5036 billion.
Besides, there is an increasing trend in Fig. 4(b) as well with α = −0.902. In
June 2019, SCGD reaches to ¤1563.7275 billion. This situation is quite similar
to the situation in Fig. 4(a). Their growth rates are almost the same, and their
SCGD data are very close. As for Fig. 4(c), there is also an increasing trend, but,
compared with the previous situations, SCGD grows very slowly in Fig. 4(c).
SCGD remains at a steady level in the first five quarters, and then increases to
¤1128.8017 billion in June 2019. However, the trend in Fig. 4(d) with α = −0.992
is quite different from other trends. The SCGD decreases in the next ten quarters,
and finally reaches to ¤417.2324 billion in June 2019.
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(a) Using α = −0.839
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(b) Using α = −0.902
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(c) Using α = −0.928
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(d) Using α = −0.992

Fig. 4. Different projection results of SCGD via WASD neuronet using different local
minimum point values of α.

3.3 Projection Results Analysis

We choose five normalization factor points including one global minimum point
and four local minimum points, which have smaller validation error values than
others. Noticeably, most of results except Fig. 4(d) project that the SCGD
increases, and the trend of global minimum point increases quicker than other
increasing trends, so we can divide all the five situations into three trends: quick
increasing trend (with α = −0.786), increasing trend (with α = −0.839, −0.902
or −0.928) and decreasing trend (with α = −0.992).

In the quick increasing trend, the SCGD data increases from ¤1000.9648
billion in March 2017 to ¤3268.7426 billion in June 2019. According to the his-
torical SCGD data, we know that SCGD tripled in seven years and six months
(from ¤315.4733 billion in March 2008 to ¤938.7676 billion in September 2015)
mainly because of Spain’s housing bubble, banking crisis and local government
debt problem. Note that, in Fig. 5, we show the historical SCGD data from
December 2003 to September 2010, which include the period of debt crisis (start-
ing from December 2007) in 2008 and 2009. As shown in the figure, before the
debt crisis broke out, there was a marked decrease in SCGD, and then there
was a rapid increase. Compared with that situation, the quick increasing trend
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Fig. 5. Historical SCGD data from December 2003 to September 2010 including period
of debt crisis (starting from December 2007) in 2008 and 2009.

predicted from now on does not have a decrease before the increase, which fol-
lows from the dissimilarity that the possibility of debt crisis is minor. Besides,
in the increasing trend, the growth rate of SCGD is slower than the situation
of quick increasing trend, especially in Fig. 4(c) with α = −0.928. In Fig. 4(a)
and Fig. 4(b), the growth rates of SCGD are similar to the recent years’ (from
March 2008 to December 2015) growth rate. As for trend in Fig. 4(c), we notice
that, since March 2016, SCGD has increased more slower than before: SCGD
was ¤962.0809 billion in March 2016, and ¤969.5523 billion in December 2016.

According to our analysis above, we could conclude that the increasing trend
fits the current situation, which indicates that the SCGD will be increasing
but under control. Finally, consider again the decreasing trend. From historical
SCGD data, we find that SCGD decreased for many times; for example, SCGD
decreased from ¤331.6199 billion in September 2006 to ¤326.3689 billion in
December 2006; and, from June 2007 to March 2008, SCGD had a decrease
for four consecutive quarters. Ten consecutive quarters’ decrease has never hap-
pened in the mentioned history, and the trend may appear possibly because of
polynomial characteristics, or indicating some emergencies ahead. In summary,
more projection results show that SCGD follows the increasing trend. Besides,
according to Spain’s current economic situation and economic aid from the Euro-
pean Union, we incline to the increasing trend; or to say, we believe that SCGD
may increase in the next ten quarters, but may not increase quickly. The other
two trends also have possibilities: SCGD may increase quickly or decrease in
next ten quarters. Spanish government should also prepare for these potential
trends.
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4 Conclusion

In this paper, we have conducted a ten-quarter projection for Spanish central
government debt via a 3-layer feed-forward neuronet, with the WASD algorithm
used for determining the connecting weights and structure of the neuronet. We
have trained the neuronet with history SCGD data from December 1994 to
March 2016. The projection results have been divided into three trends: quick
increasing trend, increasing trend and decreasing trend. Projection results of the
global minimum point have shown that the SCGD may increase quickly in the
next ten quarters; results of three local minimum points have shown that the
SCGD may increase gently; and results of one local minimum point have shown
that the SCGD may decrease. Besides, according to our further analysis of the
projection results, we may conclude from the dissimilarity that Spain would not
have a debt crisis for the coming nearly 10 quarters. However, kindly note that
all theories and models may be essentially approximate, erroneous, and even
wrong. In addition to the above, based on this paper, we (including interested
readers) may carry out more and further work such as comparing WASD method
with other methods in SCGD projection and making accurate projection on the
dates of future potential debt crisis.
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Abstract. Stock trend prediction has been of great interest for both
investment benefits and research purposes. Unlike image processing or
natural language processing, where the amount of data could easily reach
a million order of magnitude, the application of artificial intelligent mod-
els is however limited in the domain of stock prediction because of insuf-
ficient amount of stock price data. This article seeks to ameliorate the
stock prediction task from a different angle and provides a novel method
to enlarge the training data by firstly clustering different stocks according
to their retracement probability density function, and then combine all
the day-wise information of the same stock cluster as enlarged training
data, which is then fed into a recurrent neural network to make stock
trend prediction. Experimental results show that this data augmenta-
tion technique suits for deep learning methods and notably improves the
stock trend prediction task.

Keywords: Stock price predication · Self-organising map · Retracement

1 Introduction

For the past decades, stock prediction has been a popular topic in financial
world, especially in emerging market because of their phenomenal economic
growth. Meanwhile, this task is considered challenging due to the high volatil-
ity and complexity of stock markets [7]. With the astonishing advancement in
artificial intelligence (AI) in recent years, researchers have successfully achieved
better prediction performance by applying various AI models. Apart from typ-
ical machine learning models such as support vector machine (SVM) and ran-
dom forest [26], Barak et al. [3] and Atsalakis et al. [2] present their forecasting
models for stock markets on the basis of the ANFIS (Adaptive Neural Fuzzy
Inference System), meanwhile ANN (artificial neural networks) based models
are also widely applied for price trend prediction [4,19].

Regardless of all the great progress, what seems to prevent AI models from
performing even better is the data insufficiency. Due to the background of stock

c© Springer International Publishing AG 2017
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market, a one-year-long stock price time series barely consists of 250 daily price
information, let alone the newly listed stocks that has really limited amount of
data. Hence, AI models could hopefully achieve better results if greater data
volume is provided. In fact, the test error is more likely to be smaller with more
training data (Vapnik’s theroem [23]), suggesting a better generalisation ability.

One solution might be to perform clustering on stocks and increase the train-
ing data from other stocks that have similar temporal patterns. As for periodic
pattern detection, various methods exist from basic works [20] to Gaussian based
functions [11]. Besides, graphical dimension reduction techniques such as princi-
pal component analysis (PCA) [6,22] and self-organising map (SOM) [8,15,17]
are especially preferred for their visual interpretability. The contribution of this
paper is two-folders: (1)This is the first time to study stock-wise clustering for
data augmentation purpose in the field of stock price prediction. (2)We aim
to fill this gap by presenting an advanced SOM based clustering method with
stock retracement chosen as a novel similarity criterion, after which GRU neural
network is applied on the augmented data for price trend prediction.

The rest of this paper is organised as follows. Related works will be presented
in Sect. 2. Section 3 will introduce the major steps that constitute the proposed
methodology for stock trend prediction. The experimental study will be discussed
in Sect. 4, while the last section serves as conclusion and future works.

2 Related Works

In order to deal with the lack of data, researchers have made an effort to extract
predictive information from external world. Gálvez and Gravano [9] explored tex-
tual information in online message board as complementary features for stock
price prediction, Jiang et al. [14] studied the announcement content of the stock
during the suspension period that offered feasible suggestions for prediction task.
Besides, Nader et al. [18] established a stock prediction system on the basis of
social media with intelligent financial web-mining method. In this case, natural
language processing techniques such as feature word extraction and text repre-
sentation are required [18], and deep learning methods such as recurrent neural
network [1,16] are also preferred to enhance the task performance.

On the other hand, starting from the price time series itself, researchers
tend to extract more useful predictive information. Numerous feature selection
methods are used for improving technical analysis on stock data. Tsai and Hsiao
[22] compared PCA, decision tree and genetic algorithms, all of which are used
for performing feature selection from technical indicators (TI), while Wei et al.
[25] applied fuzzy inference system to extract rules from TI. Besides, Chandar
et al. [4] performed wavelet transformation so as to preprocess the stock data.

Various day-wise temporal clustering methods are also applied in this field so
that prediction systems could learn from clearer representative patterns. Hada-
vandi et al. [10] and Hsu [13] used self-organising map (SOM) to divide stock
data into several sub-groups and the prediction is done by means of each clus-
ter’s test data. Fu et al. [8] took one step further and investigated the patterns
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learned by SOM from stock price time series and was able to show the discov-
ered frequently appeared patterns. Similarly, Wei et al. also applied subtractive
clustering to perform day-wise data clustering [25].

3 Methodology

In this research, the stock trend prediction process is composed of three major
steps (as shown in Fig. 1). First, the retracement probability density function
is chosen as similarity criterion and is computed for each stock in the data
ensemble. Second, based on this similarity, un unsupervised stock-wise clustering
is performed by using self-organising map (SOM) neural network. Third, one
certain stock is chosen as prediction target and is split into training data and
test data, where the former is enlarged by combining other stocks’ information
from the same cluster and is then fed into gated recurrent unit (GRU) neural
network prediction model, which is finally evaluated on the original test set.

Fig. 1. The Overall Prediction Process

3.1 Similarity Criterion

Since increasing the training data from time dimension is simply not practical
as mentioned before, it would be reasonable to consider space dimension: seek
for “similar” stocks and take usage of their price time series. In this case, a
wise criterion of similarity should be explored at first. Stocks are intuitively
clustered into different sectors for they are engaged in similar industries, such as
energy, online education sector and so on. This naive cluster, however, does not
necessarily imply similar temporal behaviors of stock price time series.

Faced with trend prediction task, we found it reasonable to take stock price
reversal phenomenon as the similarity criterion for stock-wise clustering. In this
case, Wei and Huang [24] provides normalised retracement as a way of quanti-
fying the stock price reversal phenomenon, which is proved to help discover an
exotic long term pattern among stocks:

retrace(i) =
Ptop(i) − Pmin(i + 1)

Ptop(i) − Pmin(i)
. (1)
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Pmin(i) is the i-th local minima of the stock price time series in a time
interval, and Ptop(i) is the maximum price between two adjacent local minimum
i and i+1. The retracement probability density function (PDF) is thus computed
for each stock as the similarity criterion for the next clustering method (see Fig. 2
as an example).

(a) Binarised retracement PDF of
stock 600227.SH

(b) Binarised retracement PDF of
stock 600196.SH

Fig. 2. Retracement probability density function (PDF) of 2 example stocks, where all
retracement values are binarised into 13 bins for each stock.

3.2 SOM Based Clustering

First introduced by Kohonen [15] as an unsupervised clustering and dimension
reduction technique, self-organising map (SOM) has its advantage of stability
and flexibility. Mangiameli et al. suggests that SOM achieves better performance
in accuracy and robustness when dealing with chaotic data [17]. A typical SOM
is composed of two layers: the input layer and Kohonen layer. The latter consists
of a 2D lattice of “nodes”, each of which is fully connected to the input layer and
has a specific topological position (x, y coordinate in the lattice) with a vector
of weights of the same dimension as the input vectors. The training process of
SOM neural network is described as follows:

Step 1: Initialisation of weight vectors Wi, neighborhood functions hi,j , neigh-
borhood radius R0, and learning rate L0.

Step 2: Take stock retracement PDF as input vectors.
Step 3: Calculate the best matching unit (BMU), which is given by:

BMU = argmini(||X − Wi||) (2)

Step 4: For all nodes within the neighborhood of BMU, update weights Wi.

Wi(t + 1) = Wi(t) + Lthi,BMU (X − Wi) (3)

where t is the number of iteration, Lt is the learning rate for iteration t.
Step 5: Update learning rate Lt, neighborhood functions hi,j , and radius Rt

as follows:
Rt = R0 exp

t

β
(4)
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where β denotes a time constant value.
Step 5: Repeat step 2-4 until stopping condition is reached.
Step 6: Return clustered stock based on their projection on Kohonen layer.

3.3 GRU Based Prediction

In this paper, recurrent neural network is applied for its appropriateness to
address time series problems. Since basic RNN is rarely satisfying due to the
vanishing gradient problem, long-short term memory (LSTM) architecture was
first introduced in 1997 [12], and the gated recurrent unit (GRU), as a variation
of LSTM, was recently proposed by Cho et al. [5] in 2014, both of which are
able to capture dependencies of proper time scales. The latter gets especially
popularised for its lighter architecture along with promising performance [21].
GRU neural networks are based on the following equations:

zt = σ(Uzxt + Wzst−1) (5)

rt = σ(Urxt + Wrst−1) (6)

ht = tanh(Uhxt + Wh(st−1 ∗ rt)) (7)

st = (1 − zt) ∗ st−1 + zt ∗ ht (8)

yt = Wy ∗ st (9)

where: xt ∈ Rn is the input at time t. st ∈ Rm is the hidden state at time t.
yt ∈ Rp is the output at time t. rt ∈ Rm corresponds to the reset gate that
combines the current input with the previous memory. zt ∈ Rm corresponds to
the update gate that decides how much of the previous memory to keep around.

In this study, one certain stock is chosen as prediction target, its training data
is firstly augmented by combining other stocks data that are clustered together
with target stock. At each time step, the input for GRU neural network is a
1-dimensinal vector containing stock’s daily trading information for time t.

4 Experimental Results

4.1 Data Collection

Chinese stock market is known as emerging market, where many stocks have a
shorter period of existence and hence price information is insufficient to guar-
antee the performance of intelligent models, which suits exactly our study case.
In order to compare the proposed clustering method with the naive sector clus-
ter, we chose 7 different sectors (1.CRM:Chemical raw material, 2.GA:General
aviation, 3.MI:Medical instruments, 4.MP:Mobile payment, 5.NE:New energy,
6.OE:Online education, 7.RI:Railway infrastructure) in Shanghai stock exchange
(SH) (see Table 1) containing 126 stocks, with complete daily trading informa-
tion (including close, open, highest, lowest price and trading volume) starting
from 15 August 2013 to 03 August 2016 (incomplete stocks are filtered).
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Table 1. Data collection from SH Stock Exchange

Sector number 1 2 3 4 5 6 7

Sector name CRM GA MI MP NE OE RI

Number of stocks 22 9 9 8 54 11 17

As the aforementioned criterion of clustering method, the probability distrib-
ution function (PDF) of retracement for each stock is then computed, where the
PDF is represented using a d-dimensional vector. The most appropriate value of
d is selected as 13 by comparing the silhouette analysis results.

4.2 Silhouette Analysis of SOM Based Clustering

As a method of interpretation and validation of consistency within clusters of
data, the silhouette analysis is conducted in this study as follows. Note that a
specified number of cluster, which equals to 7, is firstly assigned for SOM in
order to make clear comparison with naive cluster approach with 7 sectors.

(a) Clustered by sectors (Naive approach)

(b) Clustered by SOM (Proposed approach)

Fig. 3. Silhouette analysis on stock-wise clustering

We see an average silhouette score (the dotted red line in left of Fig. 3(a))
inferior to 0 indicating that stocks of the same sector have poorly in common
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in terms of price reversals, which is also visually demonstrated by the clustered
data on the right, while Fig. 3(b) clearly shows that SOM is effective enough
to cluster similar stocks based on retracement PDF criterion, not only with a
higher average silhouette score but with each cluster nearly equally sized as well.

4.3 Visualisation of Unsupervised SOM Based Clustering

We now perform unsupervised clustering as described in Sect. 3 and visualise
the clustered stocks by mapping them onto the Kohonen layer as is shown in
Fig. 4. There are 30 × 20 nodes so that most stocks could be well separated and
not stacked together in one node. The colours of each node is generated using
the first 3 features of its weight vector that is normalised into a [0, 1] interval as
RGB channels, while numbers correspond to the market code of stocks.

Fig. 4. SOM Clustering of 126 Stocks with coloured visualisation

Since each node of SOM learns to resemble stocks’ PDF vector, it is rea-
sonable to regard one colour block as a cluster. Hence, the author chose several
stocks from different colour blocks as prediction target, where its data is firstly
separated into training set and test set, and the training set is then enlarged by
combining all other stock data from the same colour block.

4.4 Performing GRU Based Trend Prediction

Next day trend prediction is then made by GRU neural network, where an exam-
ple learning curve is shown in Fig. 5. Daily trading information of the previous
5 days are used to predict the next day’s close price trend.

First, it is clear that SOM based cluster method produced the smallest vali-
dation loss. Secondly, by observing the accuracy where minimum loss is reached,
we see that our method gives the best accuracy of 0.591, while the naive app-
roach gives 0.515, even worse than prediction on the original data set that gives
0.550. Similar analysis is done for several other stocks of different clusters and
results are shown in Table 2.
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Fig. 5. Model accuracy and loss during training process for stock 601111.SH

Table 2. Prediction by GRU and SVM models

Stock code Evaluation metric Without data
augmentation

With data augmentation

Naive approach SOM approach

SVM GRU SVM GRU SVM GRU

600316.SH Accuracy 0.556 0.573 0.554 0.554 0.614 0.602

F1 score 0.620 0.560 0.649 0.634 0.684 0.675

601111.SH Accuracy 0.538 0.555 0.561 0.479 0.526 0.591

F1 score 0.500 0.536 0.534 0.548 0.506 0.612

600804.SH Accuracy 0.526 0.538 0.521 0.591 0.526 0.624

F1 score 0.497 0.463 0.554 0.646 0.515 0.663

Another machine learning method SVM is introduced in order to make com-
parison with GRU neural network. The result shows that GRU neural network
is not always better than SVM. However, the performances of both predictors
are notably enhanced by the proposed approach. In contrast, the naive app-
roach may result in worse prediction performance. Apart from improvement of
accuracy, we could observe that the f1 score is especially enhanced. Since this
score indicates in general the capability of detecting positive samples, namely
the upward price trend in our case, our approach thus implies a better potential
to make higher profits.

The result of SOM based prediction approach is somehow expected because
we intend to cluster stocks with similar price reversal phenomenon so that by
doing data augmentation, the model learns better temporal patterns. However,
it is surprising that the naive approach, which simply combines stocks from the
same sector, could also enhance the F1 score sometimes, although not as well
as the proposed approach. One possible explanation could be that companies in
the same sector do not have complete competitive relationships. Except for price
reversal, there might be something else they have in common which enhanced
the prediction by this naive data augmentation technique.
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5 Conclusion and Future Work

In this paper, we show that the proposed data augmentation technique is useful
for solving the problem of insufficient data that widely exists in stock mar-
ket. The experimental result indicates that the proposed SOM based clustering
method according to stock retracement PDF is able to enlarge the training data
in a reasonable way. This technique suits for deep learning models such as RNN,
and could notably improve the F1 score for price trend prediction, thus indicat-
ing a better ability to detect upward trend and make higher profits.

In future work, in order to enhance the prediction performance, it might be
helpful to take preprocessing method and feature selection methods into con-
sideration so as to filter noise and select more predictive information. Besides,
doing technical analysis with additional index might also be of interest.
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3. Barak, S., Dahooie, J.H., Tichỳ, T.: Wrapper ANFIS-ICA method to do stock
market timing and feature selection on the basis of japanese candlestick. Expert
Syst. Appl. 42(23), 9221–9235 (2015)

4. Chandar, S.K., Sumathi, M., Sivanandam, S.: Prediction of stock market price
using hybrid of wavelet transform and artificial neural network. Indian J. Sci.
Technol. 9(8) (2016)
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Abstract. A data mining process we name Deep Candlestick Mining
(DCM) is developed using Randomised Decision Trees, Long Short Term
Memory Recurrent Neural Networks and k-means++, and is shown
to discover candlestick patterns significantly outperforming traditional
ones. A test for the predictive ability of novel versus traditional candle-
stick patterns is devised using all significant candlestick patterns within
the traditional or deep mined categories. The deep mined candlestick
system demonstrates a remarkable ability to outperform the traditional
system by 75.2% and 92.6% on the German Bund 10-year futures con-
tract and EURUSD hourly data.

Keywords: Machine learning · LSTMs · RNNs · Decision trees ·
Clustering · Factor mining · OHLC Data · Candlestick patterns

1 Introduction

The ability to predict the movement of financial markets has been a longstand-
ing aim of academics and industry practitioners, using a variety of techniques
from technical analysis (TA) to machine learning (ML) and pattern recogni-
tion methodologies. Japanese candlesticks are one of the oldest forms of pattern
recognition techniques used to attempt to predict markets. They were first pro-
posed by Munehisa Homma around 1750 for charting the price behaviour of rice
markets. Candlestick charts visualise an asset’s price by aggregating period spe-
cific bars (e.g. 1 hour bars) consisting of open, high, low and close (OHLC) price
levels, and frequently sequential patterns are used as a tool to predict future
market direction. Many industry practitioners believe candlestick patterns are
an effective predictive tool, though there is much debate in the academic world
as to their effectiveness [1–3].

In this paper a process referred to as Deep Candlestick Mining (DCM) is
proposed as a means to discover (rather than assess the value of, as in [4])
asset-specific predictive candlestick patterns using ML techniques (Randomised
Decision Trees (RDT) [5], Long Short Term Memory Recurrent Neural Networks
(LSTM RNNs) [6] and k-means++ [7]). DCM-based prediction is shown to sub-
stantially outperform the use of traditional candlestick patterns on hourly data
for the German 10-year futures contract (FGBL) and EURUSD markets.

c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part II, LNCS 10635, pp. 913–921, 2017.
https://doi.org/10.1007/978-3-319-70096-0_93
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2 Background

2.1 Literature Review

There have been a number of past academic studies focusing on the power of
candlestick patterns, reporting varying results. Most studies conclude there is
little or no value in using candlestick patterns to predict future directional price
movements as will be outlined below.

On the negative side, Marshall, Young and Rose (2005) [1] find that can-
dlestick Open, High, Low, Close (OHLC) levels contain no useful information
in the case of the Dow Jones Industrial Average. Further negative findings are
reported by Horton (2009) [2] and by Fock, Klein, and Zwergel (2005) [3]. The
latter applied candlestick charting techniques to both the DAX and the FGBL
futures contract—interestingly this study presents positive findings on FGBL,
but only by using the proposed deep mining process.

On the positive side significant directional prediction power is found in can-
dlestick charting by Xie et al. (2012) [8] on US equity returns. Notably Lu (2014)
[4] finds evidence of statistically significant candlestick patterns, three of which
are novel, found using a simple “four-price-level” approach (although the rules
were defined by Lu and not data mined as here). The results presented here show
further evidence, through an exhaustive mining process, that novel candlestick
patterns can be an effective tool to predict future directional price movement.

2.2 Machine Learning Models Used

Factor Importance Mining. The importance of a factor to its target is
analysed using Randomised Decision Trees (RDT) [9]. To produce a ranked
dictionary of factors (with most important at the top) the RDT uses the Gini
impurity metric to measure the frequency of incorrect classification if a classifi-
cation were to be randomly allocated; higher values indicate a greater correlation
between the factor and its target.

Directional Prediction. A Long Short Term Memory Recurrent Neural Net-
work (LSTM RNN) is used as the directional prediction model taking factors
influenced from the factor importance mining step as input. The LSTM RNN is
trained using RPROP [10], a first-order optimisation algorithm that uses only
the sign of the partial derivative, ignoring magnitude, and acts independently on
each weight. RPROP is beneficial in data-intensive applications as it provides a
computationally cheap and fast-converging locally adaptive method for binary
classification (here, into price movements predicted to be up or down).

Candlestick Mining. K-means++ is used to cluster the LSTM RNN test
set factors. K-means++ is a data mining clustering algorithm which improves
on k-means by providing an approximate solution to the NP-hard problem of
selecting initial cluster centroids. We will later analyse these clusters to find out
what directionally predicting OHLC patterns they represent.
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2.3 Dataset Usage

Eleven years of hourly data are used, as shown in Fig. 1. The LSTM RNN is
trained using five years of data. A dataset of two years is then used to assess the
LSTM RNN’s performance. This performance is then analysed and the factors
used clustered to extract meaning—this is where the deep candlestick mining
occurs. A further dataset of two years is used to select those candlestick patterns
most effective in prediction. A final two years of data is used as an out of sample
test set to assess the effectiveness of the developed candlestick prediction system.

Fig. 1. Dataset usage

2.4 Performance Metrics

Directional accuracy and Normalised Percentage Better than Random (NPBR)
are used as evaluation metrics in this study. The former is simply the proportion
of correct predictions whereas NPBR (also known as the Kappa Statistic [11]), as
used by us previously [13], is more appropriate in trending markets, where there
would be a tendency to overpredict the majority class. NPBR, which ranges
from −100% to 100%, heavily penalises such overprediction and would assign a
value of 0%—equivalent to random chance—to the case in which all instances
were assigned to the majority class.

3 Methodology

3.1 OHLC Factor Mining

All possible combinations of ratios and differences of one hour OHLC data are
calculated given L lags. Randomised Decision Trees are then used to rank the
importance of each factor to a target (in this case the future close price direc-
tional change), deriving the importance value from the Gini metric. The top
N factors are selected by inspection of the Gini metric curve. As can be seen
in Fig. 2 the Gini metric curve noticeably flattens for FGBL beyond N = 100,
though this is not the case for EURUSD. N should ideally be optimised for each
asset when selecting a factor universe. However to keep a consistent approach
in demonstrating the Deep Candlestick Mining process we chose to use a con-
stant N = 100 here with no further optimization; the results presented below
are therefore a general indication of the process’s utility.
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Fig. 2. Three-Lag importance mining curve: FGBL (left) and EURUSD (right)

Using the top N factor universe a further filtering is then applied focusing
on correlation of factor-to-target (ft) and factor-to-factor (ff ). Factors that pass
the tests |corrft| ≤ c1 and |corrff | ≥ c2 make the optimal factor universe, with
c1 and c2 being optimised on Dataset 1 (see Fig. 1).

3.2 Close-Price Directional Prediction

The optimal factors are then standardised and used as inputs to the LSTM RNN
with targets of −1 (down) and +1 (up). The network architecture used 8 hidden
LSTM units with a weight decay factor of 2%. Other architecture configurations
were tested but results were found to be robust to reasonable variations of these
quantities. It was decided not to optimise the network parameters to avoid the
risk of overfitting. As with the decision in Sect. 3.1 to use a constant N = 100,
results can therefore be viewed as a performance indicator where there is scope
to improve the process.

3.3 Clustering

The LSTM RNN factors which were used to perform the directional prediction
(Dataset 2) are now clustered using k-means++, where k is selected by max-
imising the Silhouette Coefficient [14]. An initial (parent) clustering revealed an
interesting split in the data structure at k = 2, which was verified as real by plot-
ting the magnitude of each factor dimension and verifying the clusters had very
different structure. This clustering was then re-clustered into child clusters with
the aim of revealing more interesting candlestick patterns. The optimal parent
and child clustering configuration was found at k = 2,6 and k = 2,9 for FGBL
and EURUSD respectfully. Other clustering techniques and k -selection criteria
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Fig. 3. Three-Lag silhouette coefficients: FGBL (left) and EURUSD (right)

could have been used; however the optimal selection of a clustering algorithm
and associated selection criteria is outside the scope of this paper.

3.4 Candlestick Mining

For each cluster we look at: (1) the LSTM RNN’s NPBR; (2) the direction the
cluster represents. The latter is done by indexing each candidate in a cluster
and computing an up-movement ratio (defined as proportion of up movements
at t+1). It is important to confirm the LSTM RNN predicts the same direction
the cluster is representing. If the LSTM RNN’s NPBR is greater than 0%, the
percentage of up movements deviates from 50% (indicating a directional bias)
and the LSTM RNN’s majority prediction direction agrees with the direction the
cluster represents, then the cluster is valid. Clusters are then further validated
by for each member identifying the OHLC patterns it corresponds to, in order
to ensure the clustering did indeed group together patterns of similar shape; in
all instances this was found to be the case. The mined candlestick patterns will
be the centroids of the clusters. These patterns are essentially what the LSTM
RNN would have ‘seen’ if it had been looking at OHLC data as a human might
look at a candlestick chart when a prediction was made.

4 Results

4.1 Traditional Candlestick Patterns

To assess the power of the deep mined candlestick patterns against an
appropriate baseline an assessment of 100 bull (predicting up) and bear
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(predicting down) traditional candlestick patterns (50 candlestick types)1 were
tested on FGBL and EURUSD hourly data (Dataset 3). Significance levels were
calculated using a binomial distribution (as in [12]), where the null hypoth-
esis was “candlesticks are no better than guessing,” which translates to 50%
directional accuracy. Significant candlesticks (see Table 1) are patterns with a
directional predictive power significant at 10% or better.

Table 1. Significant traditional candlestick patterns

Candlestick pattern Asset Number of
candlesticks

N Accuracy Type Significance
level

Advanced block FGBL 3 83 54.21% Bear ∗
3 Outside FGBL 3 74 54.05% Bull ∗
3 Inside FGBL 3 20 55.00% Bear ∗∗
Harami FGBL 2 104 52.88% Bear ∗
Harami EURUSD 2 238 57.14% Bull ∗
Inverted hammer EURUSD 1 76 55.26% Bull ∗
Matching low EURUSD 2 221 55.20% Bull ∗∗
Advanced block EURUSD 3 130 53.80% Bear ∗
( ∗: significant at 10%; ∗∗: significant at 5%; ∗ ∗ ∗: significant at 1% )

It should be noted from the above that only four patterns were significant at
the 5% and 10% levels and no pattern was significant at the 1% level. Hence while
there is some predictive ability in traditional candlestick patterns it appears not
to be widespread, in line with the negative results of the majority of academic
studies into candlestick charting.

4.2 Deep Mined Candlestick Patterns

Deep mined candlestick patterns are dataset-specific, being mined from the
dataset the LSTM RNN predicted on. For FGBL eight candlesticks were found
to be significant at 10% or better; for EURUSD this number was five. The sig-
nificant patterns for both datasets are listed in Table 2.

Interestingly there were two significant candlestick patterns on EURUSD at
the 1% level, while in contrast no patterns were found to be significant at this
1 2 Crows; 3 Black Crows; 3 Inside; 3 Line Strike; 3 Outside; 3 Stars in South; 3

White Soldiers; Abandoned Baby; Advance Block; Belt Hold; Break Away; Clos-
ing Marubozu; Conceal Baby Swell; Counter Attack; Dark Cloud Cover; Down Side
Gap 3 Methods; Downside Gap 2 Crows; Engulfing; Evening Star; Gap Side White;
Hammer; Hanging Man; Harami; High Wave; Hikkake; Hikkake Mod; Homing
Pigeon; Identical 3 Crows; In Neck; Inverted Hammer; Ladder Bottom; Long Line;
Marubozu; Mat Hold; Matching Low; Morning Star; Piercing; Rise Fall 3 Methods;
Separating Lines; Shooting Star; Short Line; Spinning Top; Stalled Pattern; Stick
Sandwich; Takuri; Tasuki Gap; Thrusting; Tri Star; Unique 3 River.
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Table 2. Significant deep mined patterns

Candlestick pattern Asset Number of
candlesticks

N Accuracy Type Significance
level

Pattern 0,2 FGBL 2 565 53.09% Bull ∗
Pattern 3,1 FGBL 2 83 61.44% Bear ∗∗
Pattern 1,0 FGBL 3 30 60.00% Bull ∗
Pattern 0,6 FGBL 3 92 59.78% Bear ∗∗
Pattern 5,6 FGBL 2 178 58.43% Bear ∗∗
Pattern 2,1 FGBL 2 563 55.06% Bear ∗∗
Pattern 5,2 FGBL 2 150 55.33% Bear ∗
Pattern 4,1 FGBL 2 408 53.19% Bear ∗
Pattern 1,1 EURUSD 4 312 58.01% Bull ∗ ∗ ∗
Pattern 1,3 EURUSD 4 47 57.44% Bull ∗
Pattern 1,7 EURUSD 4 156 58.33% Bull ∗∗
Pattern 1,0 EURUSD 3 73 62.64% Bull ∗
Pattern 1,6 EURUSD 2 470 57.02% Bear ∗ ∗ ∗
( ∗: significant at 10%; ∗∗: significant at 5%; ∗ ∗ ∗: significant at 1% )

level for traditional patterns. Moreover the significant deep mined candlesticks
have an average accuracy of 57.04% and 57.7% on FGBL and EURUSD respec-
tively, while the average accuracy for the significant traditional patterns was in
comparison 54.04% on FGBL and 55.35% on EURUSD, showing the deep mined
patterns outperformed the traditional patterns by 3% and 2.35% respectively.

Figures 4 and 5 show examples of novel patterns discovered by the deep
candlestick mining (DCM) process. It is notable that clusters 0,2 and 2,1 in
Fig. 4 (FGBL) look very similar to the bullish and bearish Engulfing candlestick
pattern in reverse. Deep mined candlestick pattern 0,2 (leftmost) is in fact a
traditional candlestick pattern called Bearish Harami which was identified as
being significant when the traditional candlestick patterns were analysed. This
is an important point as it shows the deep mining process can both find new
candlestick patterns and identify significant traditional ones.

Fig. 4. FGBL candlestick patterns: 0,2; 2,1; 3,1; 4,1; 5,2; 5,6; 0,6; 1,0
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Fig. 5. EURUSD candlestick patterns: 1,1; 1,3; 1,7; 1,6; 1,0

Candlestick patterns for EURUSD (examples in Fig. 5) appear on average
to require more lags to be significant, implying a greater level of information
content is required to make correct predictions. For EURUSD there were no
discovered correspondences between mined and significant traditional patterns.

4.3 Traditional Vs. Deep Mined Candlestick System

Often a practitioner will use multiple candlestick patterns for making decisions.
A comparison in this spirit between traditional and deep mined candlesticks was
carried out by using all the patterns available in either category. Dataset 4 was
used to assess the predictive power of both systems, in terms of NPBR. As can be
seen in Table 3 the DCM system outperformed the traditional system by 75.2%
and 92.6% on FGBL and EURUSD respectively.

Table 3. Traditional prediction system vs. deep mined prediction system

Asset Number of
traditional
patterns

Traditional
NPBR

Number of
deep mined
patterns

Deep mined
NPBR

FGBL 4 3.48% 8 6.10%

EURUSD 4 6.52% 5 12.56%

5 Discussion

The deep candlestick mining (DCM) process introduced here has been shown to
be remarkably effective at discovering statistically significant OHLC patterns.
This is not in conflict with the many academic studies which claim candlestick
patterns have no, or limited, predictive power [1–3] because the patterns the
DCM process discovers are largely novel (though for FGBL some interesting
correspondences with traditional candlestick patterns were discovered). DCM-
derived patterns outperformed the best-discovered traditional patterns by 75.2%
and 92.6% on FGBL and EURUSD respectively in relation to their ability to
forecast directional movement better than random. The DCM process has many
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parts that could be further optimised to produce potentially better results. It
would be expected these optimisations would be both asset and time period
granularity (daily, hourly, minute, etc.) dependent. The results here are therefore
only an early indication of the promise of deep candlestick mining.
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