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Abstract. Adaptive Fireworks Algorithm (AFWA) is an effective algorithm for
solving optimization problems. However, AFWA is easy to fall into local optimal
solutions prematurely and it also provides a slow convergence rate. In order to
improve these problems, the purpose of this paper is to apply two-master
sub-population (TMS) and new selection strategy to AFWA with the goal of
further boosting performance and achieving global optimization. Our simulation
compares the proposed algorithm (TMSFWA) with the FWA-Based algorithms
and other swarm intelligence algorithms. The results show that the proposed
algorithm achieves better overall performance on the standard test functions.
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1 Introduction

Fireworks Algorithm (FWA) [1] is a new group of intelligent algorithms developed in
recent years based on the natural phenomenon of simulating fireworks sparking, and
can solve some optimization problems effectively. Compared with other intelligent
algorithms such as particle swarm optimization and genetic algorithm, the FWA
algorithm adopts a new type of explosive search mechanism, which is explosive. In
addition, to calculate the explosion amplitude and the number of explosive sparks
through the interaction mechanism between fireworks.

However, many researchers quickly find that traditional FWA has some disad-
vantages in solving optimization problems, the main disadvantages include slow
convergence speed and low accuracy, thus, many improved algorithms have been
proposed. So far, research on the FWA has concentrated on improving the operators.
One of the most important improvements of the FWA, the enhanced fireworks algo-
rithm (EFWA) [2], the operators of the conventional FWA were thoroughly analyzed
and revised. Based on the EFWA, an adaptive fireworks algorithm (AFWA) [3] was
proposed, which was the first attempt to control the explosion amplitude without preset
parameter by detecting the results of the search process. In [4], a dynamic search
fireworks algorithm (dynFWA) was proposed in which divided the fireworks into core
firework and non-core fireworks according to the fitness value and adaptive adjustment
of explosion amplitude for the core firework. In addition, since the FWA was proposed,
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it has been applied to many areas [5], including digital filters design [6], nonnegative
matrix factorization [7], spam detection [8], etc.

Aforementioned AFWA variants can improve the performance of FWA to some
extent. However, inhibition of premature convergence and solution accuracy improve-
ment is still a challenge issue for further research on AFWA.

In order to improve the above problems, in this paper, the searching range of
AFWA is expanded by searching the mutual cooperation between the two groups of
master sub-populations, to accelerate the convergence rate and improve the search
ability of the algorithm. In addition, a new selection strategy is proposed to keep the
diversity of the population. Based on this, an improved fireworks optimization algo-
rithm (TMSFWA) is proposed to improve the convergence speed and precision.

The paper is organized as follows. In Sect. 2, the adaptive fireworks algorithm is
introduced. The TMSFWA algorithm is presented in Sect. 3. The simulation experi-
ments and results analysis are given in details in Sect. 4. Finally, the conclusion
summarizes in final part.

2 Adaptive Fireworks Algorithm

The TMSFWA is based on the AFWA because its ideal is very simple and it works
stably. In this section, we will briefly introduce the framework and the operators of the
AFWA for further discussion.

In AFWA, there are two important components: the explosion operator (the sparks
generated by the explosion) and the selection strategy.

2.1 Explosion Operator

Each firework explodes and generates a certain number of explosion sparks within a
certain range (explosion amplitude). The numbers of explosion sparks (Eq. (1)) cal-
culated according to the qualities of the fireworks.

For each firework Xi, its explosion sparks’ number is calculated as follows:

Si ¼ m� ymax � f ðXiÞþ e
PN
i¼1

ðymax � f ðXiÞÞþ e

ð1Þ

where ymax = max(f(Xi)), m is a constant to control the number of explosion sparks, and
e is the machine epsilon to avoid Si is equal to 0.

In AFWA, the calculation of the amplitude of the normal fireworks and the optimal
firework (the value of the objective function is smallest) are different. The normal
fireworks’ explosion amplitudes are calculated just as in the previous versions of FWA:

Ai ¼ A� f ðXiÞ � ymin þ e
PN
i¼1

ðf ðXiÞ � yminÞþ e

ð2Þ
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where ymin = minf(Xi)), A is a constant to control the explosion amplitude, and e is the
machine epsilon to avoid Ai is equal to 0.

But for the optimal firework, its explosion amplitude is adjusted according to the
search results in the last generation:

Aiðtþ 1Þ ¼ UB� LB t ¼ 0 or f ðsiÞ\ f ðxÞ
0:5� ðk� jjsi � s�jj1 þAiðtÞÞ otherwise

�
ð3Þ

where UB and LB stand for the upper bound and lower bound of the search space
respectively, s1…sn denote all sparks generated in generation t, s* denotes the best
spark and x stands for fireworks in generation t, and the parameter k is suggested to be
fixed value of 1.3 empirically.

2.2 Selection Strategy

In AFWA, it applies a selection method, which is referred to as elitism-random
selection method. In this selection process, the optima of the set will be selected first.
Then, the other individuals are selected randomly.

3 The Proposed Algorithm (TMSFWA)

The proposed algorithm (TMSFWA) is a simple and easy to implement AFWA based
on two-master sub-populations and new selection strategy.

3.1 Two-Master Sub-population

The realization of the two-master sub-populations’ idea is: in a random initialization of a
group of fireworks, it is divided into two independent sub-populations, one is the master
sub-population, and the other is the assistant sub-population. The definitions are as follows.

Definition 1. Master sub-population is the optimal firework in the current fireworks
population.

Definition 2. Assistant sub-population is the fireworks except the optimal in the
current fireworks population.

For the assistant sub-populations are iteratively searched by the AFWA, but dis-
placement operation of the master sub-population is calculated by two methods. Dis-
placement operation of a master sub-population is calculated as the AFWA (Eq. (4)).
As we known, the position of the master sub-population is the best information in the
population, therefore, the other master sub-population is added into the AFWA, and its
displacement operation is calculated by Eq. (5).

Dxki ¼ xki þ randð0;AiÞ ð4Þ

Dxki ¼ xki � randð0;AiÞ ð5Þ

where rand(0, Ai) represents a uniform random number within the amplitude Ai.
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At the end of each iteration, the fitness values corresponding to the optimal posi-
tions of the two master sub-populations are compared, and the optimal fireworks are
retained. The two master sub-populations complement each other and co-evolve to
fully extend the search range and mine the useful information in the search domain to
reduce the risk of the AFWA falling into the local optimal.

The Algorithm 1 is proposed to generate the explosion sparks with two-master
sub-population.

3.2 New Selection Strategy

In AFWA, it applies a selection method, which is referred to as elitism-random
selection method. In this selection process, the optima of the set will be selected firstly.
Then, the other individuals are selected randomly. Obviously, this method cannot
ensure the diversity of the population. Based on this, this paper proposes a new
selection strategy: elitism-tournament selection strategy.

The same as AFWA, elitism-tournament selection also requires that the current best
location is always kept for the next iterations. And then, two individuals were randomly
selected from the remaining individuals in the population. Each time the individual
with the best fitness is placed in the next generation group, the next generation was
obtained by repeating N−1 times [9].

From the above, we know that the elitism-tournament selection not only main-
taining the competitive advantage, but also considering the diversity of the population.
This method can maintain the diversity of the population, reflect the better global
searching ability.
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4 Experiments

4.1 Experiment Settings

Similar to AFWA, the number of fireworks in TMSFWA is set to 5, and the number of
mutation sparks is also set to 5, the maximum number of sparks is set to 200 each
generation.

In the experiment, the function of each algorithm is repeated 51 times, and the final
results after the 300000 function evaluations are presented. In order to verify the
performance of the algorithm proposed in this paper, we use the CEC2013 test set [10],
including 28 different types of test functions. All experimental test functions dimen-
sions are set to 30, d = 30.

Finally, we use Matlab R2014a software on a PC with a 3.2 GHz CPU (Intel Core
i5-3470), and 4 GB RAM, and Windows 7 (64 bit).

4.2 Simulation Results and Analysis

Comparison of TMSFWA with FWA-Based algorithms. To assess the performance
of TMSFWA, TMSFWA is compared with EFWA, dynFWA and AFWA, and EFWA
parameters set in accordance with [2], AFWA parameters set in accordance with [3],
dynFWA parameters set in accordance with [4].

For each test problems, each algorithm runs 51 times, all experimental test func-
tions dimensions are set as 30, and their mean errors and total number of rank 1 are
reported in Table 1. The best results among the comparisons are shown in bold. It can
be seen that the proposed TMSFWA clearly outperforms among EFWA, AFWA and
dynFWA on the test functions.

To clear show the advantages of TMSFWA, the convergence curves of mean
objective function value which have great difference in evolution speed are plotted in
Fig. 1. Evidently, TMSFWA has better solution accuracy, convergence rate and
robustness than all the competitors on majority of cases.

Comparison of TMSFWA with other swarm intelligence algorithms. In order to
measure the relative performance of the TMSFWA, a comparison among the
TMSFWA and other swarm intelligence algorithms is conducted on the CEC 2013
single objective benchmark suite. The algorithms compared here are described as
follows.

• Artificial bee colony (ABC) [11]: A powerful swarm intelligence algorithm. The
results were reported in [12].

• Standard particle swarm optimization (SPSO2011) [13]: The most recent standard
version of the famous swarm intelligence algorithm PSO. The results were reported
in [5].

• Differential evolution (DE) [14]: One of the best evolutionary algorithms for
optimization. The results were reported in [15].
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• Covariance matrix adaptation evolution strategy (CMA-ES) [16]: A developed
evolutionary algorithm. The results are based on the code from (https://www.lri.fr/
*hansen/purecmaes.m) using default settings.

The above four algorithms are using the default settings. The comparison results
of among ABC, DE, CMA-ES, SPSO2011, and TMSFWA are presented in Table 2,
where ‘Mean error’ is the mean error of best fitness value. The best results among

Table 1. Mean errors and total number of rank 1 achieved by EFWA, AFWA, dynFWA and
TMSFWA.

Functions EFWA AFWA dynFWA TMSFWA
Mean error Mean error Mean error Mean error

f1 7.82E−02 00E+00 00E+00 00E+00
f2 5.43E+05 8.93E+05 7.87E+05 2.33E+05
f3 1.26E+08 1.26E+08 1.57E+08 6.86E+07
f4 1.09E+00 1.15E+01 1.28E+01 00E+00
f5 7.9E−02 6.04E−04 5.42E−04 00E+00
f6 3.49E+01 2.99E+01 3.15E+01 1.2E+01
f7 1.33E+02 9.19E+01 1.03E+02 7.7E+01
f8 2.10E+01 2.09E+01 2.09E+01 2.09E+01
f9 3.19E+01 2.48E+01 2.56E+01 1.99E+01
f10 8.29E−01 4.73E−02 4.20E−02 3.00E−02
f11 4.22E+02 1.05E+02 1.07E+02 8.45E+01
f12 6.33E+02 1.52E+02 1.56E+02 1.22E+02
f13 4.51E+02 2.36E+02 2.44E+02 1.95E+02
f14 4.16E+03 2.97E+03 2.95E+03 2.53E+03
f15 4.13E+03 3.81E+03 3.9E+03 3.77E+03
f16 5.92E−01 4.97E−01 4.77E−01 2.9E−01
f17 3.10E+02 1.45E+02 1.48E+02 1.19E+02
f18 1.75E+02 1.75E+02 1.89E+02 1.68E+02
f19 1.23E+01 6.92E+00 6.87E+00 5.68E+00
f20 1.46E+01 1.30E+01 1.30E+01 1.25E+01
f21 3.24E+02 3.16E+02 2.92E+02 2.97E+2
f22 5.75E+03 3.45E+03 3.41E+03 2.82E+03
f23 5.74E+03 4.70E+03 4.85E+03 4.6E+03
f24 3.37E+02 2.70E+02 2.72E+02 2.54E+02
f25 3.56E+02 2.99E+02 2.97E+02 2.84E+02
f26 3.21E+02 2.73E+02 2.62E+02 2.35E+02
f27 1.28E+03 9.72E+02 9.92E+02 8.6E+02
f28 4.34E+02 4.37E+02 3.40E+02 3.1E+02

Total number of rank 1
0 1 1 28
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Fig. 1. Convergence curves of the TMSFWA, the AFWA, the EFWA and the dynFWA.

76 X. Li et al.



the comparisons are shown in bold. ABC beats other algorithms on 12 functions
(some differences are not significant), which is the most, but performs poorly on
other functions. CMA-ES performs extremely well on unimodal functions, but suf-
fers from premature convergence on some complex functions. From the Table 3, the
TMSFWA ranked the top three (25/28) more than the other four algorithms, and in
terms of average ranking, the TMSFWA performs the best among these 5 algorithms
on this benchmark suite due to its stability. DE and ABC take the second place and
the third place respectively. The performances of CMA-ES and the SPSO2011 are
comparable.

Table 2. Mean errors achieved by ABC, DE, CMA-ES, SPSO2011 and TMSFWA.

ABC DE CMA-ES SPSO2011 TMSFWA

f1 0.00E+00 1.89E−03 0.00E+00 0.00E+00 0.00E+00
f2 6.20E+06 5.52E+04 0.00E+00 3.38E+05 2.33E+05
f3 5.74E+08 2.16E+06 1.41E+01 2.88E+08 6.86E+07
f4 8.75E+04 1.32E−01 0.00E+00 3.86E+04 0.00E+00
f5 0.00E+00 2.48E−03 0.00E+00 5.42E−04 0.00E+00
f6 1.46E+01 7.82E+00 7.82E−02 3.79E+01 1.2E+01
f7 1.25E+02 4.89E+01 1.91E+01 8.79E+01 7.7E+01
f8 2.09E+01 2.09E+01 2.14E+01 2.09E+01 2.09E+01
f9 3.01E+01 1.59E+01 4.81E+01 2.88E+01 1.99E+01
f10 2.27E−01 3.42E−02 1.78E−02 3.40E−01 3.00E−02
f11 00E+00 7.88E+01 4.00E+02 1.05E+02 8.45E+01
f12 3.19E+02 8.14E+01 9.42E+02 1.04E+02 1.22E+02
f13 3.29E+02 1.61E+02 1.08E+03 1.94E+02 1.95E+02
f14 3.58E−01 2.38E+03 4.94E+03 3.99E+03 2.53E+03
f15 3.88E+03 5.19E+03 5.02E+03 3.81E+03 3.77E+03
f16 1.07E+00 1.97E+00 5.42E−02 1.31E+00 2.9E−01
f17 3.04E+01 9.29E+01 7.44E+02 1.16E+02 1.19E+02
f18 3.04E+02 2.34E+02 5.17E+02 1.21E+02 1.68E+02
f19 2.62E−01 4.51E+00 3.54E+00 9.51E+00 5.68E+00
f20 1.44E+01 1.43E+01 1.49E+01 1.35E+01 1.25E+01
f21 1.65E+02 3.20E+02 3.44E+02 3.09E+02 2.97E+02
f22 2.41E+01 1.72E+03 7.97E+03 4.30E+03 2.82E+03
f23 4.95E+03 5.28E+03 6.95E+03 4.83E+03 4.6E+03
f24 2.90E+02 2.47E+02 6.62E+02 2.67E+02 2.54E+02
f25 3.06E+02 2.89E+02 4.41E+02 2.99E+02 2.84E+02
f26 2.01E+02 2.52E+02 3.29E+02 2.86E+02 2.35E+02
f27 4.16E+02 7.64E+02 5.39E+02 1.00E+03 8.6E+02
f28 2.58E+02 4.02E+02 4.78E+03 4.01E+02 3.1E+02
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5 Conclusions

TMSFWA was developed by applying two-master sub-population and a new selection
strategy to AFWA. We apply the CEC2013 standard functions to examine and compare
the proposed algorithm TMSFWA with ABC, DE, SPSO2011, CMA-ES, AFWA,
EFWA and dynFWA. The results clearly indicate that TMSFWA can perform signif-
icantly better than other seven algorithms in terms of solution accuracy. Overall, the
research demonstrates that TMSFWA performed the best for solution accuracy.
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