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Abstract. Grammatical evolution (GE) is one of the evolutionary com-
putations, which evolves genotype to map phenotype by using the
Backus-Naur Form (BNF) syntax. GE has been widely employed to rep-
resent syntactic structure of a function or a program in order to sat-
isfy the design objective. As the GE decoding process parses the geno-
type chromosome into array or list structures with left-order traversal,
encoding process could change gene codons or orders after genetic oper-
ations. For improving this issue, this paper proposes a novel GE algo-
rithm using tree representation learning (GETRL) and presents three
contributions to the original GE, genetic algorithm (GA) and genetic
programming (GP). Firstly, GETRL uses a tree-based structure to rep-
resent the functions and programs for practical problems. To be differ-
ent from the traditional GA, GETRL adopts a genotype-to-phenotype
encoding process, which transforms the genes structures for tree tra-
versal. Secondly, a pointer allocation mechanism is introduced in this
method, which allows the GETRL to pursue the genetic operations like
typical GAs. To compare with the typical GP, however GETRL still
generates a tree structure, our method adopts a phenotype-to-genotype
decoding process, which allows the genetic operations be able to be apply
into tree-based structure. Thirdly, due to each codon in GE has different
expression meaning, genetic operations are quite different from GAs, in
which all codons have the same meaning. In this study, we also suggest a
multi-chromosome system and apply it into GETRL, which can prevent
from overriding the codons for different objectives.

Keywords: Grammatical evolution · Tree representation · Multiple
chromosomes · Pointer allocation · Genotype-phenotype map

1 Introduction

Genetic algorithm (GA) is one of the most popular algorithms in evolution-
ary computation [1,4,14], which has been considerably applied to optimization,
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adaptation and learning problems. However, some problems e.g., symbolic regres-
sion, syntactic problems and automatic generation program, are still hard to be
solved for GAs to represent schema information. Therefore, genetic programming
(GP) was proposed by Koza [5]. GP evolves a population of computer programs
by using Lisp language to automatically solve problems without requiring the
user to know or specify the form or structure of the solution in advance. Despite
the advantages, GP also has several limitations. Recombination problem is the
well-known one which limits its applicability and performance. First, sub-tree
crossover in GP sometimes generated the invalid individual which was trans-
lated into incorrect function or program. Second, sub-tree crossover also had a
tendency for parse trees to grow larger and larger, which would cause program
size bloat.

Grammatical evolution (GE) is another tree-based evolutionary algorithm,
which was presented by [2,8,10,12,13,15]. The main features of GE are to present
an evolutionary process, map genotype to phenotype in a genetic algorithm app-
roach, and translate rules using the Backus-Naur Form (BNF) syntax. There-
fore, GE is very attractive in two folds: (1) The use of the translations rule can
avoid the generation of the invalid phenotype. (2) The genotype-to-phenotype
mapping can capture important schema information. In past few years, many
works about the GE representations empirically measured the locality of GE,
and identified that standard GE has low locality and compromises search effec-
tiveness [3,9,11,16]. To enhance GE representations, several studies have suffi-
ciently investigated grammar-guided GP and tree-based GE [6,9]. Murphy et al.
[7] examined the behavior of tree-adjunct grammars to grammatical evolution.
Whigham et al. [17] investigated the application of context-free grammar genetic
programming. However, several limitations have revealed during the evolution-
ary process, such as, the genetic operators in GE overriding the original meaning
of each codon in chromosome and violating the better partial structures of the
phenotypes.

For these issues, this paper proposes a novel GE-based algorithm using tree
representation learning (GETRL) and presents three contributions to the orig-
inal GE and GP. First, GETRL uses a tree-based structure to represent the
functions and programs for practical problems. To be different from the tradi-
tional GA, GETRL adopts a genotype-to-phenotype encoding process, which
transforms the linear gene structures into tree traversal. In contrast to the orig-
inal GE, which caused the overriding of codons when reading codons in array
sequence with leftmost derivation, GETRL can represent translation process in
advance to assign the codons as nodes of tree structure following the level-order
traversal. Second, we introduce a pointer allocation mechanism to learn tree
structures. During the translation process of genotype-to-phenotype mapping, a
pointer is employed to map tree structure from the genotype chromosome. The
pointer can link the nodes in virtually continuous address, which are distributed
discretely in the linear genotype chromosome. When the sequence of chromosome
is changed by genetic operators, the pointer remembers the address of the right
position and finds the exact nodes in the parse tree. To compare with the typical
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GP, the non-terminal nodes are labeled and linked to the corresponding codons
in chromosome, which allows the GETRL to pursue the genetic operations by
using the pointers. Third, we also introduce a multi-chromosomes system into
GETRL, which can improve the strategy of genetic operators (e.g., crossover and
mutation). Due to there are different kinds of nonterminals in BNF grammar def-
inition, this paper uses multi-chromosomes each sub-chromosome is assigned to
individual nonterminals to represent different objectives. Furthermore, the multi-
chromosomes system can also prevent from overriding the codons for different
objectives.

In Sect. 2, we describe the GETRL. In Sect. 3, we present the experiments,
results and discussions. In Sect. 4, we conclude and summarize the paper.

2 Method

2.1 Tree Representation

The original GE used the binary strings to define individuals in genotype (Fig. 1).
GE adopted a genotype-to-phenotype process, where individuals were denoted as
integer-form using the grammar as shown in Table 1. From the leftmost unused
integer number, the genotype was referred to gi for i = 0 to n, and translation
of genotype was started from symbol <expr> (see Fig. 2). We assumed that
the leftmost untranslated symbol in the phenotype is α and the number of the
substitution rules for α is sα. When the remainder ri was calculated from gi mod
sα, and the symbol α was replaced with the (ri + 1)-th symbol in the candidate
rule list. Following this translation rules, We can obtain the phenotype “1/x−x”
from the genotype “6214331513” according to pre-order walk traverse as shown
in Fig. 2.

6 2 1 4

110 010 001 100

Fig. 1. Mapping from binary genotype to integer genotype.

Table 1. Translation rule in simple example

Rule Candidate rule list Rule no.

(A) <expr> ::= <expr><op><expr> | <var> (0) | (1)

(B) <op> ::= + | - | * | / (0) | (1) | (2) | (3)

(C) <var> ::= 1 | x (0) | (1)
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Fig. 2. Pre-order walk traverse of symbols from genotype.

2.2 Pointer Allocation Mechanism

Our proposal introduced a pointer allocation mechanism to map the tree struc-
ture from the chromosomes as shown in Fig. 3. The codons of <expr> are assigned
into the tree structure following the linear-order walk traverse. The pointer p is
firstly allocated to the header of chromosome e as follows:

p = e[0] (1)

and
p → left = e[1], (2)

p → right = e[2] (3)

where e[ ] denotes the <expr> array. The p points the root of binary tree, and
p.left and p.right points the left node and right node, respectively. As a tree is
a self-referential data structure, the linear genotype structure can be allocated
as a linked lists as follows:

p = p → left, (4)

p = p → right. (5)

Fig. 3. Pointer allocation mechanism for tree structure.
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2.3 Multiple Chromosome System

For different kinds of nonterminals, arrays e[ ], o[ ] and v[ ] denote <expr>
array, <op> array and <var> array, which were allocated to each sub-chromosome
(Fig. 4). According to Table 1, our proposal separated the nonterminals into the
recursive nonterminals and non-recursive nonterminals. <expr> is the recursive
nonterminal, and <op> and <var> are the non-recursive nonterminals.

Due to recursive nonterminals were recursively replaced by themselves as
shown in translation rule (A0), this type of rule is called recursive rule.
When pointer p was allocated to any e[i], allocation strategy for <expr> ::=
<expr><op><expr> could be defined as follows. The <expr> in the root is rep-
resented as

p = e[i], (6)

and the two <expr> in the both sides are represented as

p → left = e[2 ∗ i + 1], (7)

p → right = e[2 ∗ i + 2]. (8)

Here, <op> in rule (A0) is non-recursive nonterminal, and is replaced by non-
recursive nonterminals alone i.e. rule (A1). Due to non-recursive nonterminals
would be translated into phenotype by terminals, this type of rule is called non-
recursive rule. When pointer p was allocated to any e[i], allocation strategy for
<op> in <expr> ::= <expr><op><expr> and <expr> ::= <var> could be defined
as follows:

p → op = o[i] (9)

and
p → var = v[i]. (10)

Fig. 4. Pointer allocation mechanism in multi-chromosome.

3 Experiment

3.1 Problems Setting

In the experiments, we used three kinds of symbolic regression and Santa Fe Ant
Trail problem to compare the performance and effectiveness of GETRL with that
of original GE and GE using multi-chromosome (GEMC). Parameter setting for
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Table 2. Parameter settings

Parameter Values

Maximum generations 500

Population size 200

Selection Tournament selection

Tournament size 5

Number of elites 5

Crossover Uniform crossover

Crossover rate (CR) 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

Mutation rate (MR) 0.03, 0.05, 0.1

GE, GEMC and GETRL was shown in Table 2 and the fitness was based on root
mean square error. In order to obtain the most approximative target function,
we examined respective methods for 50 runs, and selected the best parameter
for illustrating the results and discussions.

Symbolic Regression. The grammar used for symbolic regression is given as
follow:

N = {expr, op, var, num, char},

T = {+, -, *, /, ^ , 1, x, y},

S = {expr},

and three kinds of symbolic regression are listed bellow.
Ex. 1:

f1(x) = x + x2 + x3 + x4.

Ex. 2:
f2(x) = x4 − 2x3 + 3x2 − 4x + 5.

Ex. 3:
f3(x, y) = (x − y)5.

Santa Fe Ant Trail Problem (Ex. 4). The grammar of Santa Fe Ant Trail
problem [8] is given as follow:

N = {code, op},

T = {if, else, food ahead, turn left,

turn right, move},

S = {code},

and the fitness is calculated by Eq. (11),

f = F − Fmax (11)

where Fmax = 89 denotes all the pieces of food, and F denotes the obtained
pieces of food.
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3.2 Results

Ex. 1. Ex.1 presented the standard quartic symbolic regression problem, which
is widely used as the benchmark. However, either of these three methods can
find the appropriate function to the target function, GETRL showed a better
convergence than GE and GEMC around the 10th–50th generation (Fig. 5(a)).

Ex. 2. Ex.2 presented another quartic symbolic regression problem. Ex.2 used
the same BNF syntax as Ex.1, but the expression is more complicated than
Ex. 1. In Ex.2 (Fig. 5(b)), GETRL also showed a better convergence than GE
and GEMC from the 10th generation. The convergence speed of GETRL to find
the appropriate function to the target function around the 100th generation is
also much faster than GE and GEMC, in which the appropriate function can be
found to the target function around the 200th generation. Due to the proposed
pointer allocation strategy, GETRL outperformed GE and GEMC in preventing
the invalid individuals, especially at the beginning of search.

Ex. 3. Ex.3 presented a symbolic problem with two variables. However, GETRL
showed a worse convergence than GE and GEMC at the beginning, GETRL
became much superior than GE and GEMC from the 20th generation, and got
the appropriate function around 480th generation (Fig. 5(c)). Accounting for
its pointer allocation strategy, GETRAL allowed the offspring to remain the
effective schemata and showed a dramatically performance than GE and GEMC.

Ex. 4. Figure 5(d) showed the comparison of GE, GEMC and GETRL in Santa
Fe Ant Trail problem. GETRL outperformed GE around the 10th generation,
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and outperformed GEMC around the 100th generation. The pointer allocation
strategy in GETRL contributed to this problem into two folds. One is the effec-
tiveness of remaining the schemata from parents. The other one is the utility of
preventing to read invalid genes, which can lead it to producing more efficient
program than GE and GEMC.

3.3 Discussion

Symbolic Regression. Figure 6 showed the effectiveness of GETRL comparing
with GE and GEMC. First, we subtracted average number of <expr> using in
each generation from the previous generation. We estimated the difference of the
average number between two generations, and the smaller change of this value
indicated the more similarity of offspring inherited from the parents. The differ-
ence in each generation of Ex.1, Ex.2 and Ex.3 were represented in Figs. 6(a), (b)
and (c), respectively. Second, we also investigated individuals to read the invalid
genes resulting death. The number of dead individuals in each generation of Ex.1,
Ex.2 and Ex.3 were represented in Fig. 6(d), (e) and (f). Due to the pointer allo-
cation mechanism, GETRL was able to outperform GE and GEMC in inheriting
better schemata from parents and preventing invalid individuals in offspring.
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Fig. 6. Symbolic regression problem. (a), (b) and (c): difference of average <expr>
number in Ex.1, Ex.2 and Ex.3; (d), (e) and (f): amount of dead individuals in Ex.1,
Ex.2 and Ex.3.

Santa Fe Ant Trail Problem. As shown in Fig. 7, average amount of foods
eaten was calculated for 50 runs. The maximum values and minimum values in
these 50 runs were extracted, which denoted foods eaten by using the best program
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Fig. 7. Amount of foods eaten in Santa Fe Ant Trail problem.

and the worst program generated from GE, GEMC, and GETRL, respectively. As
GETRL obtained best results in either of the maximum, minimum and average
amount of foods eaten, the pointer allocation mechanism in GETRL could lead
to the production of a more superior program than GE and GEMC.

4 Conclusion

This paper described an improved algorithm of grammatical evolution using tree
representation learning (GETRL). GETRL presented a novel approach to the
GE, which adopted pointer allocation mechanism and multiple chromosomes
system. The pointer allocation mechanism was helpful for recording the posi-
tion of individual genes in the chromosome and mapping the tree structure from
genotype instead of list or array structure. The multiple chromosomes system
was used for enhancing the effectiveness of GETRL, and better preserving the
partial structures of solutions when genetic operators were applied. We com-
pared the performance of GETRL with that of the original GE and GE using
multi-chromosomes for the symbolic regression problems and Santa Fe Ant Trail
problem. Due to GETRL perfectly resolved the poor search properties, which are
resulted from the agnostic link between the linear representation in GE and the
derivation tree of phenotype, our method showed faster convergence in finding
the appropriate solutions.

For future work, there remained two limitations to be addressed. First, how-
ever the point allocation mechanism can prevent reading of invalid genes. As the
tree structure is a fixed binary tree, it is easy to cause the pointer index out of
range. Next, the recursive rules of BNF syntax design must contain two recur-
sive nonterminals such as <expr><op><exper> or <code><code>, for fitting to
binary tree structure. Therefore, we plan to propose a self-adaptive pointers and
memory allocation strategy with two operations malloc and free. According to
any grammar, the memory can be dynamically allocated by malloc to generate
a dynamic tree structure. After genetic operations, the unused memory can be
deallocated by free to prevent from out of range.
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