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Abstract. Diversity plays an important role in successful ensemble clas-
sification. One way to diversify the base-classifiers in an ensemble classi-
fier is to diversify the data they are trained on. Sampling techniques such
as bagging have been used for this task in the past, however we argue that
since they maintain the global distribution, they do not engender diver-
sity. We instead make a principled argument for the use of k-Means clus-
tering to create diversity. When creating multiple clusterings with mul-
tiple k values, there is a risk of different clusterings discovering the same
clusters, which would then train the same base-classifiers. This would
bias the ensemble voting process. We propose a new approach that uses
the Jaccard Index to detect and remove similar clusters before training
the base-classifiers, reducing classification error by removing repeated
votes. We demonstrate the effectiveness of our proposed approach by
comparing it to three state-of-the-art ensemble algorithms on eight UCI
datasets.
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1 Introduction

By combining the predictions of multiple diverse classifiers, an ensemble of classi-
fiers can perform better than any one classifier can. We propose a novel ensemble
classifier that can more accurately classify unseen data than the current state-of-
the-art. The proposed algorithm f takes some n×m data X as input, where the
rows x ∈ X represent independently and identically distributed samples from
some universe X , each with a label y that represents the classification category
that x belongs to from some output space Y . f(X) is trained using X, learning
the underlying patterns in the data that determine what category y ∈ Y any
particular datum x will belong to. The aim of ensemble classification is then to
use f(X) to predict the label y of unseen data z ∈ Z, which comes from the
same universe X as X [9]. The columns of X represent features A that describe
the properties of each row (i.e., record) x, and it is these features that a clas-
sification algorithm uses to learn how to classify unseen data [9]. Examples of
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classification algorithms include support vector machines [28] and decision trees
[21]. By training multiple classifiers, and then combining the predictions made
by each classifier into a final overall prediction, an ensemble of classifiers can
outperform any individual classifier [8,25].

1.1 Contributions

We propose a generalized ensemble classification algorithm that uses data diver-
sity and base-classifier diversity to build a decision model with low classification
error. Our novel contributions are:

– We maximize data diversity by creating subsets of data with large differences
in distribution, using k-Means clustering for a large range of k values, k =
1, . . . ,K. We ensure that each cluster has sufficient data for training the base-
classifiers by bounding K such that if there are k clusters, there are at least
an average of k2 records in each cluster.

– During the incremental clustering process, we compare the new clusters to all
previous clusters, and remove (i.e., prune) the new cluster if it is sufficiently
similar to a previous cluster. This prevents the prediction voting process from
being biased by repetitious votes.

– When classifying a new record z, rather than inputting it into all base-
classifiers, we only input the record into the classifiers built using the K
clusters that are closest to the new record. This is done regardless of which
clusterings the K clusters came from.

After presenting related work in Sect. 2, we introduce the proposed approach
in Sect. 3, exploring each component in separate subsections. We then empirically
test the proposed algorithm in Sect. 4, before concluding the paper in Sect. 5.

2 Related Work

The notion of “diversity” when building ensemble classifiers has been researched
extensively in the past [1,6,14,24]. Despite being difficult to define precisely [6],
the overall concept is straight-forward: if all the base-classifiers in an ensemble
make the same predictions, they are also making the same mistakes, and if they
are all making the same mistakes, there is no advantage in having more than
one of them. By diversifying the predictions that the base-classifiers make, the
ensemble can perform better than the sum of its parts. There are several types
of diversity that an ensemble algorithm can achieve.

Data diversity is achieved by sampling subsets of data from an original
dataset, in a way that causes the predictions made by classifiers trained on
the subsets to differ from one another. This can be achieved by selecting either
records or features (or both) from the original dataset. Duplicating records or
features across the new sets of data is viable (such as bagging [2] or random
feature subspaces [29]), as is creating mutually-exclusive sets (such as clustering
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[22,30,32]). The manipulation of data has successfully diversified the data if the
end result is that a diversity of predictions is outputted [14].

Classifier diversity (or “structural diversity” [24] or “heterogeneous ensem-
bling” [18]) has a similar goal of diversifying the predictions that the base-
classifiers output. Classifier diversity is achieved by using different classifier
algorithms that learn from the data in different ways. By using a variety of
classifiers, each with their own advantages and disadvantages, the outputs of the
classifiers are diverse [4].

As an example, the Random Forest algorithm [3] uses bagging [2] and random
feature subspaces [10,29] to achieve data diversity. It only builds an ensemble of
decision trees though, and thus does not target classifier diversity. In this paper,
we use both types of diversity in our proposed approach. These are explored
below in Sect. 3.

3 Proposed Approach

We first provide an overview of the proposed approach in Sect. 3.1. We then
investigate each novel component of the approach one-by-one in the proceeding
subsections.

3.1 Overview

The approach can be summarized in the following steps:

– Step 1: Calculate the largest number of clusters K we can partition the
training data X into without reducing the average number of records in each
cluster below the square of the number of clusters.

– Step 2a: For k = 1, . . . ,K partition the data X using k-Means clustering.
– Step 2b: For each new cluster created, compare its similarity (in terms of

the records it contains) to all previously created clusters, using the Jaccard
Index [11]. Remove a new cluster if it is very similar to a previous cluster.

– Step 3a: For each remaining cluster, check if all the records in the cluster
have the same class label y (i.e., the cluster is homogeneous). If so, skip 3b,
and future records that are filtered to this cluster will be predicted to have
the same label that all the training records had. In effect, the cluster will
output v votes for the label y, rather than training v base-classifiers from the
homogeneous data.

– Step 3b: For each cluster not addressed by 3a, build v base-classifiers using
the data in the cluster. Examples of base-classifiers include a decision tree
[21], a support vector machine [28], a naive Bayes model [20], a discriminant
analysis model [19], a k-nearest neighbors model [31] and a randomly under-
sampled boosted model (RUSBoost) [27]. Finding the optimal set of base-
classifiers is part of future work.

– Step 4: Predict the label of new records z by filtering them into the K closest
clusters, using the base-classifiers built from those clusters to each vote on a
label, and then using the majority vote as the final prediction.

The specifics of each of these steps are explored below in the following
subsections.
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3.2 Achieving Data Diversity

To produce a diverse set of base-classifiers, we diversify the training data. Previ-
ous research supports using bagging to achieve this [5,16,26], however we argue
that the benefits of bagging are in reducing the variance of the models [2], not in
promoting diversity. Because bagging maintains the distribution of the underly-
ing data with increasing detail as the sample size increases, it does not provide a
diverse range of distributions to the base-classifiers. This problem can be avoided
by clustering the data instead, finding regions of data with many attributes in
common, and few attributes in common with other regions of data. We achieve
this using k-Means clustering [12].

We could find a single optimal value for k, and limit our ensemble of base-
classifiers to a single clustering. Instead though, we propose using a range of
values for k, and building a much larger ensemble. By using values of k ranging
from 1 to some upper bound K, we increase diversity further by finding clusters
of different sizes (and different distributions) in the training data.

3.3 Choosing K

We need an appropriate K value that gives us a large set of clusters to build
many diverse classifiers from, but also provides enough data in each cluster to
meaningfully train the base-classifiers with. We balance these two goals with the
following heuristic:

1. Let nk equal the average number of records in each cluster created from k-
Means clustering. For a number of clusters k, nk = n/k, where n is the total
number of records in the dataset.

2. We limit the maximum size of k such that nk ≥ k2. That is, each cluster has
an average number of records equal to at least the square of the number of
clusters.

3. Thus we have n/k ≥ k2. Re-arranging this formula gives us: n ≥ k3.
4. The maximum number of clusters K is therefore:

K =
⌊

3
√

n
⌋
.

5. We define the minimum k value for k-Means clustering at k = 1.
6. Our proposed ensemble classifier therefore executes k-Means clustering K

times, for k = 1, . . . ,K.

This balances the number of clusters with the size of each cluster. It is based
on a similar concept used to bound k-Means clustering when using it on its own
[12,23].

3.4 Pruning Repeated Clusters

In Sects. 3.2 and 3.3, we described how the proposed algorithm creates an increas-
ing number of clusters, from 1 to K, using k-Means clustering. This results in a
total of

∑K
i=1 i clusters, or in other words, K(K + 1)/2 clusters. This creates a
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Table 1. Average difference in classification error compared to when θ = 0.9, across
the eight datasets presented in Table 2.

θ 0.5 0.6 0.7 0.8 0.9 1.0 No pruning

Error difference
compared to 0.9

+0.056 +0.032 +0.023 +0.016 0.000 +0.007 +0.011

large set of clusters from which to then train base-classifiers from, which will in
turn be used to vote on predicted class labels.

However there is a risk in using all of these clusters to train classifiers. If
two clusters, made during different clusterings (i.e., when k = i, and then when
k = j such that i �= j), contain all the same records, then the classifiers built from
those two clusters will be very similar, maybe even identical (since there is zero
data diversity). Not only does this waste computation time, but it also means
that when voting on the final predicted label, the votes from these classifiers are
doubling up (i.e. getting two votes), biasing the ensemble towards their output.

We remove this bias using the following process: as we grow k towards K, each
cluster we create is compared to all previous clusters to check if it is sufficiently
diverse. For each new cluster c created in clustering k, we compare the records
in c (Xc) to the records of each cluster u in the set of accepted clusters U using
the Jaccard Index [11]:

J(c, u) =
Xc ∩ Xu

Xc ∪ Xu
;∀u ∈ U.

Computationally, we can calculate J(c, u) using the indexes of the records in X,
rather than comparing the contents of each x ∈ X. If there are no records in
common, J(c, u) = 0; and J(c, u) = 1 if both clusters contain precisely the same
set of records. If, for some u, J(c, u) > θ, c is not added to U . Here, θ represents
a threshold of similarity, which we empirically demonstrate is ideally placed at
θ = 0.9 in Table 1. Table 1 presents the average difference in classification error,
across the eight datasets presented in Table 2, when θ = 0.5, 0.6, 0.7, 0.8, 1.0 (and
when there is no pruning) compared to when θ = 0.9.

Table 2. Details of the eight datasets we use in our experiments, taken from the UCI
Machine Learning Repository [15].

Dataset Records Features Labels

Sonar 208 60 2

Heart 270 13 2

Bupa 345 6 2

Ionosphere 351 34 2

WBC 683 9 2

PimaDiabetes 768 8 2

Vehicle 846 18 4

Segmentation 2310 19 7



Removing Bias from Diverse Data Clusters for Ensemble Classification 145

3.5 Achieving Classifier Diversity

We then build a collection of base-classifiers from the data in each non-pruned
cluster. For our experiments in this paper, we use the following six classifiers:
a decision tree, a support vector machine, a naive Bayes model, a discriminant
analysis model, a k-nearest neighbors model and a randomly under-sampled
boosted model. This collection of classifiers is independent of the proposed
ensemble framework, and future work will involve investigating the optimal
amount and types of classifiers to use.

This diverse collection of classifiers enables the ensemble to discover cor-
relations and patterns in the data that would not be discovered if we limited
ourselves to a single classifier, such as what Random Forest does [3]. By discov-
ering different patterns with different classifiers, we diversify the errors made
by each base-classifier, which in turn reduces the final classification error (as
discussed in Sects. 1 and 2). We can see in Table 5 (presented later in Sect. 4)
that we are able to outperform Random Forest on almost all datasets.

3.6 Classifying New Records

Once the ensemble has been built and trained (Steps 1–3 in Sect. 3.1), our model
is ready to predict the label of unseen records. When inputting an unseen record
z into our ensemble classifier, we propose finding the K clusters in U whose
centroids are closest to z, and using the base-classifiers made from those K
clusters to predict the label of z.

This approach means that clusters made from different clusterings (when k
had different values) are not treated differently from clusters built from the same
clustering; if the centroids of two clusters from the same clustering are closer to
z than the centroids of two clusters from different clusterings, the closer clusters
are used. We also do not want to use the base-classifiers made from every cluster
to classify z. Many of the base-classifiers were trained on data that had very
different distributions to the distributions that z follows, and did not contain
any records that resemble z. To use those classifiers to predict z therefore makes
little sense.

4 Experiments and Results

Here we present experiments that cover both individual components of the pro-
posed algorithm, and the overall performance of the algorithm compared to the
current state-of-the-art. All experiments are performed using stratified five-fold
cross-validation, repeated ten times and aggregated. We perform our experi-
ments on eight datasets from the UCI Machine Learning Repository [15]. The
details of the datasets are presented in Table 2. We use Matlab’s implementation
of k-Means and the base-classifiers for our experiments [17]. We use the default
settings in all cases, except for the following:

– The maximum number of iterations for k-Means is increased from 100 to 500,
to ensure that centroid convergence occurs.
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– Regularization is turned off for discriminant analysis models, to prevent the
software throwing an error if a feature with zero variance is inputted.

– Kernel smoothing density estimation is used when building naive Bayes mod-
els, instead of using Gaussian distributions, to avoid the software throwing
an error if a feature with zero variance is inputted.

4.1 Assessing Cluster Size and Pruning

The first step in our proposed algorithm is to define K. We argue that 3
√

n is
an appropriate value of K, and this is supported empirically by the results seen
in Table 3. In Table 3, we compare K = 3

√
n to one smaller value ( 4

√
n) and one

larger value (
√

n) of K. Classification error is lowest when K = 3
√

n for six of
the eight datasets, and very close to lowest for the remaining two (within one
standard deviation).

As part of Step 2, we propose removing repeated clusters using the Jaccard
Index. Based on the empirical results of Table 1, we recommend setting the
similarity threshold to θ = 0.9. This removal of repeated clusters represents
a large saving in computation time, preventing v (in our experiments, v = 6)

Table 3. The classification error for three different values of K.

Dataset K = 4
√

n K = 3
√

n K =
√

n

Sonar 0.1712 0.1295 0.1481

Heart 0.1793 0.1778 0.2252

Bupa 0.2817 0.2609 0.2916

Ionosphere 0.0814 0.0797 0.0866

WBC 0.0562 0.0322 0.0301

PimaDiabetes 0.2393 0.2306 0.2521

Vehicle 0.2373 0.2352 0.2532

Segmentation 0.0515 0.0325 0.0275

Table 4. The change in classification error with and without cluster pruning.

Dataset With pruning Without pruning

Sonar 0.1295 0.1501

Heart 0.1778 0.1881

Bupa 0.2609 0.2817

Ionosphere 0.0797 0.0832

WBC 0.0322 0.0340

PimaDiabetes 0.2306 0.2432

Vehicle 0.2352 0.2454

Segmentation 0.0325 0.0269
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redundant classifiers from being trained per removed cluster. It also represents
the removal of a high number of repeated votes. The reduction in classification
error because of this removal of biased votes can be seen in Table 4. For seven of
the eight datasets, the classification error after pruning repeated clusters is lower
than or equal to the error without this pruning. On average across all datasets,
the average reduction in error is 1.1 percentage points.

4.2 Comparison with Other Ensemble Algorithms

Table 5 presents the classification error our proposed algorithm achieves on eight
datasets, compared to the classification error of three other algorithms. One of
these algorithms, Random Forest, is included as a benchmark ensemble algo-
rithm due to its reputation as a consistently high-performing algorithm [7]. The
other two algorithms represent the current state-of-the-art in ensemble classifi-
cation, with the results presented being the results the authors reported in their
respective papers: Kuncheva and Rodriguez [13]; and Zhang and Suganthan [33].
In both cases, we present the results for the highest performing version of their
proposed algorithms; the naive Bayes (NB) version of Kuncheva and Rodriguez’s
[13], and the version of Zhang and Suganthan’s that uses oblique rotation forests
with axis-parallel splits (MPRRoF-P) [33].

Out of the eight datasets, the approach proposed in this paper has the lowest
classification error in five cases. It has the second-lowest in two cases, and the
third-lowest for one dataset (Segmentation). Interestingly, as we saw in Table 4,
the Segmentation dataset is also the only dataset for which our proposed cluster
pruning does not perform well. This explains the sub-par performance compared
to the state-of-the-art for this dataset.

Table 5. The classification error results for four ensemble algorithms, including our
proposed approach.

Dataset Proposed
approach

Random
forest

Kuncheva
2014 (NB)

Zhang 2015
(MPRRoF-P)

Sonar 0.1295 0.1460 0.238 0.1923

Heart 0.1778 0.1810 0.195 0.1763

Bupa 0.2609 0.2727 0.328 N/A

Ionosphere 0.0797 0.0703 0.083 0.0530

WBC 0.0322 0.0390 0.040 0.0333

PimaDiabetes 0.2306 0.2396 0.245 0.2474

Vehicle 0.2352 0.2435 0.275 0.2219

Segmentation 0.0325 0.0200 0.036 0.0196
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5 Conclusion

Diversity is crucial for building a high-performing ensemble classifier. By per-
forming K clusterings of different sizes, and using these clusters as training
data for a diverse set of base-classifiers, the error of the ensemble classifier is
reduced. Not only that, but by first pruning repeated clusters, biased votes
can be removed from the majority voting process, further reducing classification
error. On average, pruning repeated clusters reduces classification error by 1.1%.
Looking forward, we plan to investigate what factors affect classifier diversity,
and how classifier diversity impacts the performance of ensemble classification.
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