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Abstract. Recommender systems have been successfully applied to many appli‐
cation areas to predict users’ preference. However, these systems face the explo‐
ration-exploitation dilemma when making a recommendation, since they need to
exploit items which raise users’ interest and explore new items to improve satis‐
faction simultaneously. In this paper, we deal with this dilemma through Multi-
Armed Bandit (MAB) approaches, especially for large-scale recommender
systems that have vast or infinite items. We propose two large-scale bandit
approaches under the situations that there is no available priori information. The
continuous exploration in our approaches can address the cold start problem in
recommender systems. Furthermore, our context-free approaches are based on
users’ click behavior without the dependence on priori information. We theoret‐
ically prove that our approaches can converge to optimal item recommendations
in the long run. Experimental results indicate that our approaches are able to
provide more accurate recommendations than some classic bandit approaches in
terms of click-through rates, with less calculation time.
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1 Introduction

The primary target of recommender systems is to propose one or several items to users
in which they might be interested. The books, articles or music provided by the recom‐
mender systems are items [1, 2]. Recommender systems need to focus on items that raise
users’ interest and explore new items to improve users’ satisfaction at the same time.
That creates an exploration-exploitation dilemma, which is the core point of Multi-
Armed Bandit (MAB) problems [3]. Exploration means learning new items’ payoff for
a particular user by recommending new items. Exploitation means recommending the
best items based on the payoffs observed so far. The payoff of a recommendation is
widely measured by Click-Though Rate (CTR) [4]. Then the goal of recommendations
is to maximize the CTR over all users.

Contextual bandit approaches are already studied in many fields of recommender
systems [5]. In large-scale recommender systems, there are large or infinite number of
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contexts, as a sequence, the increasing recommenders based on contexts fail to ensure
effective and efficient recommendations. There are several context-aware bandit
approaches can be applied in large-scale recommender systems [6, 7].

However, there exist some recommender systems that the priori information about
the items and users is unknown, the cold start problem appears when the system has no
priori information in practice [8, 9]. Under this situation, recommendation has to be
inferred from user feedbacks. As a result, contrary to the contextual case, our work
focuses on context-free case. Some of the existing context-free bandit approaches fail
to make full use of user feedback or do not apply to large-scale problems. We attempt
to design cost-effective approaches without dependence on priori information for large-
scale recommender systems. Each item corresponds to an action (referred to as the arm
in a bandit framework) in our work.

We propose two context-free bandit approaches which try to address all of the above
mentioned challenges in large-scale recommender systems. The recommendation is
made only based on the payoff estimations without dependence on any priori informa‐
tion. The cold start issue is addressed by continuously exploration. Our approaches are
proved to converge to optimal item recommendations in the long run. Experiments are
made on Yahoo! Front Page Today Module user click log dataset. Our approaches are
able to achieve higher CTRs than some existing bandit approaches, such as EXP3 and
UCB1, with less calculation time.

The rest of the paper is organized as follows. Section 2 presents some related works.
In Sect. 3, we introduce our approaches, discuss the influence of key parameters and
prove the convergence. Section 4 presents experimental evaluation. Conclusion is made
in Sect. 5.

2 Related Work

Recommender systems have been successfully applied to many application areas to
predict users’ preference. Two main categories of recommendation algorithms are
filtering-based and reinforcement learning methods [8]. In this paper, we focus on rein‐
forcement learning methods. Reinforcement learning methods, such as MAB and
Markov Decision Processes (MDPs) [10], are widely used in recommender systems.
MDP-based approaches model the last k choices of a user as the state and the available
items as the action set to maximize the long-run payoff. However, MDP-based
approaches suffer very slow convergence rates in large-scale recommender systems [11].

MAB-based approaches make recommendations by balancing between exploration
and exploitation, such as ε-greedy [12], softmax [13], EXP3 [14] and UCB1 [3]. Among
these context-free approaches, ε-greedy is the simplest approach, but the performance
of ε-greedy is still always competitive. Softmax makes recommendations according to
a probability distribution based on user feedbacks. As a complicated variant of softmax,
the main idea of EXP3 is to divide the payoff of an item by its chosen probability. UCB1
always recommends the item with the highest upper confidence index. However, UCB1
needs to sweep all items during the initial period, which may be inappropriate for large-
scale recommender systems. Contexts are considered, aiming at improving the
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effectiveness of recommendations further. Generally, contexts represent the situations
of the user when a recommendation is made, such as time, gender, and search query [15,
16]. The LinUCB algorithm is proposed to solve news article recommendation problems
[17]. The Naive III and Linear Bayes approaches define a user-group by a set of features
that individual users may have in common [7]. A MAB-based clustering approach
constructs an item-cluster tree for recommender systems [6].

3 Our Approaches

In this section, we present two context-free bandit approaches for large-scale problems.
The first approach is based on the Chosen Number of Action with Minimal Estimation,
namely CNAME. Then we introduce an asynchronous CNAME approach, namely Asy-
CNAME.

3.1 CNAME Approach

Some of the existing context-free bandit approaches fail to make full use of user feed‐
back, such as ε-greedy, or do not apply to large-scale problems, such as UCB1. There‐
fore, the CNAME approach is proposed to address these two issues. The key idea of
CNAME is how to use user feedbacks sufficiently. Both the estimated payoff and the
chosen number of an action are utilized to update exploration probability. The CNAME
approach is presented in Algorithm 1.
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The CNAME starts by setting the parameter w (Line 1). The parameter w affects the
speed at which the exploration probability is changed. After initializing the estimation
and the chosen number of each action k (Line 3–4), it iteratively chooses an action to
play (referred to recommend an item in recommender systems) based on the exploration
probability (Line 7–10). Finally, the CNAME updates the number of chosen and esti‐
mation at time step t (Line 12–13). The exploration probability p is adjusted according
to the chosen number of action with minimal estimated payoff, defined by mt.

The CNAME approach has three points. Firstly, the influence of mt on exploration
increases with decreasing w, and vice versa. Thus, the parameter w can change the effect
of user feedbacks on exploration probability. Secondly, the increasing of mt means action
with the lowest estimated payoff is chosen. Such action can be the least contribution to
the entire payoff. As mt increases, the exploration probability will be reduced. That
means the chosen probability of greedy action (action with the highest estimation) will
be increased, which can help to improve the actual gain of entire payoff. Thirdly, the
CNAME algorithm explores continuously to help to learn the payoffs of new items.

3.2 Asynchronous CNAME Approach

Aiming at ensuring the effective and efficient recommendations for large-scale recom‐
mender systems, the CNAME approach should be updated in an asynchronous manner.

814 Q. Zhou et al.



The Asy-CNAME approach is presented in Algorithm 2. Different from the
CNAME, the Asy-CNAME clusters a sequence of N samples of the action into a single
batch (Line 8–13) and updates the exploration probability after each batch ends (Line
15–17), where the terminal time step T = MN (Line 6–7). Note that at the end of each
batch, the estimated expected payoff of some of the actions may not have improved at
all. Therefore, a smoothing mechanism is needed (Line 17), to avoid being overcom‐
mitted to the new estimate of different actions.

For the CNAME approach, the exploration probability is updated after an action is
chosen each time. This may lead to a recommendation that is too susceptible to user’s
recent behavior. Thus the Asy-CNAME approach updates exploration probability in
batches. Asynchronous manner weakens the impact of the user’s short-term behavior to
a certain extent, which plays a role in improving the CTR. On the other hand, the Asy-
CNAME approach reduces the implementation complexity by asynchronous manner,
which can help to decrease the calculation time.

3.3 Convergence of Our Approaches

Based on the above description of our approaches, we prove that proposed approaches
are able to converge to the optimum in the long run.

A K-armed bandit problem is defined by random variables Xi,n for 1 ≤ i ≤ K and
n ≥ 1. Each i represents an action (referred to the arm of a bandit) and K is the number
of actions and n refers to the number of trials. Successive trials of action i yield rewards
Xi,1, Xi,2…which are independent and identically distributed according to an unknown
law with unknown expectation 𝜇i. Note that given 𝜇1,… ,𝜇K, we define the action i with

𝜇i = 𝜇∗ as an optimal action. In what follows, we write X
∗

n
 and N∗

n
 instead of Xi,n and

Nn(i), where i is the optimal action. Here

Xi,n =
1
n

n∑

t=1

Xi,t

The CNAME and Asy-CNAME are algorithms that choose the next action based on
the sequence of past trials and obtained payoffs. Let Nn(i) be the number of times action
i has been chosen by the CNAME and Asy-CNAME during the first n trials. Of course,
we always have

∑K

i=1
Nn(i) = n

Let

𝜀t =
w

w + m2
t

, x0 =
1

2K

n∑

t=1

𝜀t and n >
2
w

The probability that action i is chosen at trial n is
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Where Δi=𝜇
∗−𝜇i. Then we have
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Let NR

n
(i) be the number of plays in which action i was chosen at random in the first

n trials. By using the Chernoff-Hoeffding bound, we get
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In the last line we dropped the conditioning because each action is chosen at random
independently of the previous choices of the algorithm. Since

E[NR

n
(i)] =

1
K

n∑

t=1

𝜀t and Var
[
NR

n
(i)
]
=

n∑

t=1

𝜀t

K

(
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)
≤

1
K
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by the Bernstein’s inequality we get

P
{

NR

n
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}
≤ e

−
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5 (4)

Finally it remains to lower bound x0
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Then, using (1)–(4) and the above lower bound on x0 we obtain
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For all K ≥ 1 and for all reward distributions with support in [0, 1], the probability
that the CNAME and Asy-CNAME algorithms choose a suboptimal action i is at most

1
K

+
wn − 2

Kw
e
−

wn − 2
10Kw +

4
Δ2

i

e
−

Δ2
i
(wn − 2)
4Kw

For n → ∞ and K large enough the above bound is 0. It means the CNAME and Asy-
CNAME algorithms are able to converge to the optimal action in large-scale MAB
problems. This concludes the proof.

4 Experimental Evaluation

In this section, we discuss the influence of key parameter w, learning rate 𝛼 and different
update manners in our approaches. We provide the reference ranges of parameter w and
learning rate 𝛼 through simulation on a randomly generated dataset. Then we compare
the performance of our approaches with other bandit approaches on Yahoo! Front Page
Today Module user click log dataset.
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4.1 Randomly Generated Dataset

The goal of this simulation is to minimize the regret [18], which is the loss between the
optimal expected total payoff and the expected total payoff gained through our
approaches. Eventually, the smaller value of regret implies the better performance.

The subject is a set of tasks with 100 randomly generated K-armed bandit problems.
The actual value of each task 𝝁 = [𝜇1,… ,𝜇K] is a Gaussian distribution with a mean of
0 and a variance of 1. The reward for each action i is subject to a Gaussian distribution
with a mean of 𝜇i and a variance of 1.

Experimental Evaluation about Key Parameters. Under the above experimental
conditions, we take different values of the parameter w and learning rate 𝛼, and record
the average regrets of 100 random tasks, where the number of actions K = 1000, batch
N = 10 and terminal time step T = 2000.

In Fig. 1, with the increasing values of w, the difference between the CNAME and
Asy-CNAME approaches on the average regret is reduced. When parameter w is in the
interval [0.01, 0.1], the average regret is relatively low, as shown in Fig. 1. Thus, we
use interval [0.01, 0.1] as the reference range of w. Figure 2 shows that the average regret
of the Asy-CNAME approach is lower than the CNAME approach when 𝛼 > 0.3. The
Asy-CNAME approach performs best when 𝛼 = 0.6.
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Fig. 1. The average regret obtained by the CNAME algorithm and the Asy-CNAME algorithm
respectively with different values of parameter w when 𝛼 = 0.8
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Fig. 2. The average regret obtained by the CNAME algorithm and Asy-CNAME algorithm with
different values of learning rate 𝛼 when w = 0.1

Experimental Evaluation about Different Update Manners. The purpose of this part
is to compare influence of different update manners in large-scale MAB problems. We
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compare the CNAME and Asy-CNAME with K = 100, 1000, 5000, 10000 respec‐
tively, where 𝛼 = 0.8, w = 0.1, N = 10 and T = 1000. The experiment results are
presented in Fig. 3.

(a) K=100 (b) K=1000 (c) K=5000 (d) K=10000
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Fig. 3. The average regret obtained by the CNAME algorithm and the Asy-CNAME algorithm
respectively with different values of K

In Fig. 3, the average regrets of both approaches increase with the increasing values
of K. Figure 3 shows that the convergence rate of CNAME is faster than Asy-CNAME
and the average regret of CNAME is lower than Asy-CNAME at the beginning. The
final average regrets obtained by Asy-CNAME are lower than those of CNAME when
K is large enough (K > 100). Since the exploration probability of CNAME is updated
synchronously, the CNAME prefers greedy action at the beginning. The Asy-CNAME
spends more time learning new actions by exploration since it updates asynchronously.
Learning news actions can help to improve payoff in the long run.

4.2 Yahoo! Front Page Today Module User Click Log Dataset

This dataset contains a fraction of user click log for news articles displayed in the
Featured Tab of the Today Module on Yahoo! Front Page1. This dataset includes 15
days of data from October 2 to 16, 2011 and raw features. There are 28,041,015 user
visits to the Today Module on Yahoo!’s Front Page.

In this part, we make recommendations for large-scale recommender systems,
through MAB-based approaches. The Random approach randomly chooses an item each
time. This can be seen as the benchmark for other approaches. Although we focus on
the context-free situations, our approaches can be applied to context-aware situations
directly. So in addition to context-free approaches, we compare our approaches with a
context-aware approach named Naive III. The performances of approaches are evaluated
through CTR as shown in Table 1. In Table 1, the best results are highlighted respectively
in boldface.

1 https://webscope.sandbox.yahoo.com.
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Table 1. Performance comparison in CTR and calculation time on the Yahoo! Front Page Today
Module user click log dataset.

Algorithm Lines Time (min) on 1.4 × 107 lines
2.0 × 105 3.6 × 106 7.2 × 106 1.06 × 107 1.4 × 107

Random 0.036 0.034 0.034 0.034 0.034 15.017
ε-greedy 0.046 0.065 0.065 0.066 0.067 21.167
Softmax 0.040 0.041 0.041 0.041 0.041 23.533
UCB1 0.037 0.049 0.052 0.055 0.056 27.133
EXP3 0.039 0.040 0.040 0.040 0.040 23.250
Naive III 0.047 0.066 0.067 0.068 0.069 50.267
CNAME 0.043 0.067 0.069 0.070 0.071 23.033
Asy-CNAME 0.044 0.068 0.069 0.070 0.072 21.017

In terms of CTR, it can be calculated from the data in Table 1 that the CNAME
approach achieves a 6%–109% performance gain over other context-free approaches,
including the Random, ε-greedy, softmax, EXP3 and UCB1. Over the first 200,000 rows,
the Naive III yields the highest CTR. After that, the CTRs of CNAME and Asy-CNAME
are even higher than those of Naive III approach. In the comparison of time, the Random
approach consumes the least calculation time as the benchmark. The Asy-CNAME takes
the second least calculation time. The CNAME approach consumes similar time with
other context-free approaches, such as softmax and EXP3, while obtaining higher CTR.
The context-free Asy-CNAME approach just needs about 21 min to obtain the CTR over
the first 14,000,000 rows on Yahoo! dataset, while the context-aware Naive III approach
consumes about 50 min to get CTR over the same rows. On the other side, as context-
free approaches, the CNAME and Asy-CNAME can be applied to different recom‐
mender systems easily. In a summary, the CNAME and Asy-CNAME approaches
achieve higher CTR with comparable calculation time. Thus, the CNAME and Asy-
CNAME approaches are cost-effective for large-scale recommender systems.

5 Conclusion

In this paper, we study recommender systems based on large-scale MAB problems. The
CNAME and the Asy-CNAME approaches make good recommendations without
dependence on priori information. The cold start problem is addressed by continuous
exploration in our approaches.

Theoretical result shows that our approaches are able to converge to the optimal
recommendations in the long run. The reference range of key parameters are given
through our simulation. Besides, the performance of our approaches and other MAB-
based recommendation approaches is compared on Yahoo! Front Page Today Module
user click log dataset. Experimental results show that our approaches outperform other
algorithms in terms of CTR. The CNAME and Asy-CNAME approaches are cost-effec‐
tive for large-scale recommender systems. Although our approaches achieve significant
result, a possible improvement can be made by using contexts rationally if there are
available priori information.
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