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Abstract. Accurately detecting road and its boundary on the images is
an essential task for vision-based autonomous driving systems. However,
prevailing methods either only detect road or add an extra processing
stage to detect road boundary. In this work, we introduce a deep neural
network, called Road and road Boundary detection Network (RBNet),
that can detect both road and road boundary in a single process. In
specific, we first investigate the contextual relationship between the road
structure and its boundary arrangement and then model them with a
Bayesian network. By implementing the Bayesian model, the RBNet can
learn to simultaneously estimate the probabilities of a pixel on the image
belonging to the road and road boundary. Comprehensive evaluations
are carried out based on the well-known road benchmark, which can
demonstrate the compelling performance of the proposed method.

Keywords: Deep learning · Deep convolutional neural network · Road
detection · Boundary detection

1 Introduction

Detecting road and its boundaries is the basis for the autonomous vehicles to
navigate routes and avoid obstacles. Despite that various sensors are mounted on
the vehicle to help the system perceive the environment, visual sensors, such as
video cameras, can provide informative cues at a lower cost. Using the monocular
colour image captured by the cameras, the goal of road and road boundary
detection is to identify whether the pixels belong to the road areas and road
boundaries.

To detect road areas, segmentation techniques like [1] are usually introduced
to tackle the problem. Using either traditional classifiers [2,3] or deep neural net-
works [4,5], the category of each pixel can be estimated. However, these methods
are not aware of the existence of the road boundaries. As for the boundaries,
they are not simply the edge of the detected road areas. In general, the road
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boundaries can be defined as the marks that split the road and non-road areas,
such as the curb stones between vehicle and pedestrian paths and the white
lines between the road and parking areas. Detecting road boundaries is chal-
lenging because they have various forms. Some studies [6,7] attempt to identify
the road boundary using a trained classifier while others [8,9] simply refine the
contours without knowing their locations. Few studies attempt to consider both
road detection and road boundary detection in a unified framework.

In this paper, we summarise the road and road boundary using a Bayesian
network and propose the RBNet to tackle the corresponding detection task.
A critical observation of our study is that although the road boundaries have
diversified appearance, they do contain abundant structural information which
is helpful to define the road areas. As a result, we conclude that there exists a
contextual connection between the road areas and the road boundaries, which
can be formulated as a graphical probabilistic model. Following the concluded
model, RBNet is introduced to detect both road and road boundaries in a single
step. The training procedure of the RBNet can be formulated as a multi-task
learning problem and we share the visual features across different tasks. After
properly training the RBNet, we evaluate the effectiveness of the proposed net-
work on the widely-used KITTI road benchmark [10] and report the performance
on its official website1. Favourable performance can be achieved by the proposed
method against other competitive algorithms. Statistical results also verify the
existence of the contextual relationship between road boundaries and road areas
in the road scene.

2 Related Work

The vision-based road and road boundary detection methods can be divided
into two groups: model- based and learning-based. Model-based methods tend
to build a shape model or appearance model to describe the road. For shape
model, the boundaries of the road are commonly represented by curves like Bezier
Splines [11] and Cubic Splines [12]. Then random sample consensus (RANSAC)
is usually used to find the fittest parameters for the curves. For appearance
model, as an example, [13] describes the road as a linear combination of different
color planes and the color distribution of each pixel is used to decide whether it
belongs to the road. These model-based methods are accurate when similar road
pattern appears, but they would be vulnerable to the complicated road scenes.
Different from model-based approaches, learning-based methods mainly adopt a
trained classifier to distinguish the road areas from non-road areas [3].

With the recent development of deep learning techniques, convolutional
neural networks (CNNs) have achieved record-breaking performance in image
segmentation-related tasks. With deep CNN, road areas can be effectively seg-
mented from the images [4,14]. The major obstacle in improving the perfor-
mance of CNN-based segmentation methods is that high-level semantic features
are too coarse to define the contours or the boundaries of an instance. To relieve
1 http://www.cvlibs.net/datasets/kitti/eval road.php.

http://www.cvlibs.net/datasets/kitti/eval_road.php


RBNet: A Deep Neural Network for Unified Road and Road Boundary 679

the boundary issue, fully convolutional neural network (FCN) [15] fuses results
from low-level feature maps. A similar work [4] facilitates precise localization by
following the architecture of “U-net” [16], which consists of a contracting net-
work to capture contexts and a symmetric expanding network to enrich details.
Such architectures are helpful for obtaining spatial details but are still weak
on boundaries. In another group of studies, the boundaries of the segments are
refined using conditional random fields (CRFs) in a post-processing step. CRF-
based methods integrate score maps generated by CNN with pairwise features
[17], whose inference can be efficiently carried out by high-dimensional filter-
ing [8]. CRF-based methods are advantageous for refining contours but they
are not aware of the existence of the boundaries. More closely related studies
tend to detect the object boundaries to refine the segmentation. For example,
LRR [18] distinguishes boundaries with masking operations and uses Laplacian
reconstruction to improve accuracy. [6] first detects obstacle boundaries with
CNN and then obtains the road areas by using a graph-cut algorithm. Although
these studies are active in identifying boundaries, the contextual relationship
between the detected boundaries and the segmentation results is not sufficiently
studied. With the consideration of this context, the label noise problem [24] can
also be avoided to some extents.

3 Road and Road Boundary Detection Network

In this section, we first summarise the road and road boundary detection tasks
using the unified Bayesian network model which tends to formulate the rela-
tionship among road, road boundaries and the input image in the same proba-
bilistic graph. Following the structure of Bayesian network, we then introduce
a deep neural network, called RBNet, to simultaneously detect road and road
boundaries.

3.1 The Bayesian Network Model

Tackling the road and road boundary detection separately would be time-
consuming and requires carefully designed algorithms to fuse the results for
better performance. To relieve this issue, we attempt to simultaneously detect
the road areas and road boundaries by formulating them in the unified model. In
specific, we find that the identification of road areas is not only influenced by the
local appearance but also affected by the road boundaries. For example, if a pixel
on the image is enclosed by the road boundaries, it can be considered as the road
areas as well, regardless of its visual appearance. However, the road boundaries
can not be directly defined based on the edges of the road areas because these
areas may not always relate to the road boundaries. As an example, the edges of
the road areas may be around the image border instead of actual road bound-
aries. Therefore, it is more adequate to define the road boundaries only based on
the visual appearance. Accordingly, we summarise the relationships among road
areas, road boundaries and input image as a Bayesian network, whose detailed
structure is illustrated in Fig. 1.
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Fig. 1. The Bayesian network for road and road boundary detection. In this model,
road area, road boundary, and the image are three nodes in the graph. The directed
arrows represent the dependencies among the nodes.

Formally, we consider the road, road boundary and input image as three
nodes in the Bayesian network. Meanwhile, we refer the road detection and the
road boundary detection as the pixel-wise classification. Suppose rx,y denotes the
labeling of the pixel at (x, y) with respect to road areas on the input image I.
Then segmenting road areas aims at acquiring an assignment R = {rx,y} which
allocates 1 to in-road pixels and 0 to the rest. Similarly, suppose bx,y denotes
the labeling of a pixel at (x, y) which takes 1 if the pixel belongs to the road
boundaries and 0 otherwise. We refer B = {bx,y} as the classification results
for road boundaries on the whole image. According to the graph illustrated in
Fig. 1, the joint probability of R, B, and I is given as:

P (R, B, I) = P (R|B, I)P (B|I)P (I) (1)
Therefore, the road detection and the road boundary detection can be solved by

estimating by estimating P (B) and P (R). According to the Eq. 1, we have:

P (B) =
∑

R∈{−,+},I∈{−,+}
P (R, B, I) (2)

P (R) =
∑

B∈{−,+},I∈{−,+}
P (R, B, I) (3)

Let I+ represent that there exists road in the image and I− represent the opposite.
Suppose we are working on the urban road images, we can assume that there is always
a road in the camera’s view and thus consider the probability of P (I+) as always being
1. As a result, the P (B) can be computed by:

P (B) = P (B|I+) (4)

As for the road detection task, it requires the computation of marginal probability
P (R). Based on Eq. 3, we have:

P (R) = P (R|B−, I+)P (B−|I+) + P (R|B+, I+)P (B+|I+) (5)

where B+ is denoted as the collection of pixels which are identified as road boundaries
and B− is the counterpart. Accordingly, B = {B+, B−}.
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3.2 The Deep Neural Network for Road and Road Boundary
Detection

As mentioned above, the road and road boundary detection can be delivered by infer-
ring P (B) and P (R) based on Eqs. 4 and 5 respectively. However, empirically estimat-
ing the probabilities would be unreliable and arduous because the dependencies in the
Bayesian network could be ambiguous due to environmental noises and complex road
scenarios. To obtain a faithful estimation for the probabilities, we employ the deep
neural network, RBNet, to learn the dependencies statistically.

In order to properly implement RBNet, we first decompose the task of inferring
graphical model of Bayesian network into several independent sub-tasks and then intro-
duce the corresponding task-specific sub-networks to solve them. As a result, the train-
ing procedure can be formulated as a multi-task learning problem. In the following
sections, we denote l as the loss function for each pixel.

Road Detection. The road detection task can be achieved by inferring P (R)
based on Eq. 5. The inference requires the sum of P (R|B+, I+)P (B+|I+) and
P (R|B−, I+)P (B−|I+). Computing P (R|B−, I+) and P (R|B+, I+) is simple and
straight forward. On one hand, the P (R|B−, I+) stands for the probability of each
pixel in the image that belongs to the road area when no boundary is detected, which
can be interpreted as the common segmentation task. On the other hand, the estimation
of P (R|B+, I+) can be regarded as the prediction of road areas only based on the road
boundary detection results. However, for example, computing P (R|B+, I+)P (B+|I+)
should not be regarded as element-wise multiplication between the P (R|B+, I+) and
P (B+|I+), because a road boundary pixel may have effects on the road pixels in a
larger image region. To properly infer P (R), we rewrite the Eq. 5 in the following form:

P (R) = P (R|B−, I+) +
(
P (R|B+, I+) − P (R|B−, I+)

)
P (B+|I+) (6)

given the fact that P (b+x,y|I+) + P (b−
x,y|I+) = 1 for b+x,y ∈ B+ and b−

x,y ∈ B−. Con-
sequently, inferring P (R) can be achieved by computing the addition of two terms on
the right side of Eq. 6.

For computing the term P (R|B−, I+), it can be obtained via the segmentation
results directly. We introduce a subnetwork in RBNet to compute the term, whose
overall training loss can be defined as:

L1(θ1) =
∑

x,y

l(r∗
x,y, rx,y(θ1)) (7)

where r∗
x,y represents the ground-truth at the location (x, y) for road detection and

rx,y(θ) denotes the output of the network parameterized by θ at the same location.
The second term on the right side of the Eq. 6 can be viewed as a residual of the

P (R|B−, I+) when computing the P (R). We name it as the contextual residual. The
form of this contextual residual suggests that it can be computed based on the road
boundary detection results, P (B+|I+). Using the road labels as well, the training loss
of the sub-network that predicts the contextual residual can be defined as:

L2(θ2) =
∑

x,y

l
(
r∗
x,y, rx,y

(
θ2, B

+(θ3)
)

+ rx,y(θ1)
)

(8)

where the B+(θ3) represents the P (B+|I+) estimated in the sub-network for road
boundary detection task parameterised by θ2. The symbol θ3 denotes the parameters
of the sub-network for computing contextual residual.
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Road Boundary Detection. Based on Eq. 4, P (B) can be directly inferred from
P (B|I+). Suppose the ground-truths of road boundaries is given by {b∗

x,y}, the loss to
train the network:

L3(θ3) =
∑

x,y

l(b∗
x,y, bx,y(θ3)) (9)

where bx,y(θ3) represents the estimation of the road boundaries for a pixel located
at (x, y) using the sub-network parameterised by θ3. We manually labeled the road
boundaries as supervision information based on the ground-truths for road area detec-
tion task.

Multi-task Learning. Overall, we formulate the training procedure of the RBNet
as a multi-task learning problem. Let Θ denote all the parameters of RBNet and thus
Θ = {θ1, θ2, θ3}. The general training loss of RBNet is defined as:

Loss(Θ) = μ1L1(θ1) + μ2L2(θ2) + μ3L3(θ3) (10)

where μi represents the loss weight for the corresponding task. As a result, training
RBNet can be viewed as minimising the overall loss function with respect to the Θ.
Furthermore, in order to train the RBNet in an end-to-end manner, we make the CNN
feature sharable for each task, which means that the subset of Θ for computing the
visual features are shared among θ1, θ2 and θ3. Sharing features could also bring other
advantages. For instance, both abstract semantics and fine spatial details could be
maintained to ensure good performance.

Implementation Details. Figure 2 shows the detailed architecture of the proposed
RBNet. As illustrated, the process of RBNet involves several steps. In the first step, we
use a pre-trained deep convolutional neural network (DCNN) model to extract visual
features, which usually have five convolution blocks. Afterward, we adopt hypercolumn-
like architecture, whose details can be found at [19], to fuse and interpret features

Fig. 2. Detailed architecture of RBNet. The blue cubes represent convolution layers.
The symbols k, c, and s below the cubes respectively represent the kernel sizes, the
channel numbers, and the strides for the corresponding convolution operations.
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extracted from different depths. Following this are three task-specific networks, includ-
ing road boundary detection network, semantic segmentation network, and the contex-
tual residual network.

Specifically, considering the powerful expression power and efficiency, we adopt the
use of ResNet50 [20] network as the pre-trained DCNN model. The features from conv2,
conv3, conv4 and conv5 blocks are connected to the hypercolumn, followed by two
fully convolution layers. Subsequently, three task-specific sub-networks are employed
to fulfill the goal of multi-task learning described by Eq. 10. In the boundary detection
network and road detection network, we use convolution layers with small kernels to
tackle the corresponding tasks. To capture structural contexts in a broader region, we
use larger kernels for the convolution layer in predicting the contextual residual. In our
implementation, the loss function l is defined as multinomial logistic loss function.

4 Experiment

4.1 Setup

In this section, we comprehensively evaluate the effectiveness of the RBNet and also
compare it with other competing algorithms. Since the detection of road boundary
benefits road detection based on the summarised Bayesian network, we major eval-
uate the performance on road detection benchmark. To best unfold and assess the
performance of the proposed approach, we conduct the evaluation on the KITTI road
benchmark [10], where the results of evaluated methods can be made publicly accessi-
ble on the official website2. KITTI road detection benchmark divides the images into
three sets, which are urban marked (UM), urban multiple marked lanes (UMM) and
urban unmarked (UU). There are in total 289 images for training and 290 images for
testing.

Evaluation Metrics. We follow the evaluation metrics as discussed in [21] in KITTI
road benchmark. The metrics include maximum F1-measure (MaxF), average precision
(AP), precision rate (PRE), recall rate (REC), false positive rate (FPR), and false
negative rate (FNR). The four latter measures are computed at the working point of
MaxF. According to KITTI’s evaluation system, all the results are transformed into
birds-eye view space for evaluation.

Training. While training RBNet, we randomly flip and crop the training images and
add small disturbance to RGB channels of input data. The input images are resized
into a uniform size of 300 × 900. While training the RBNet, the loss weights μ1, μ2,
μ3 in Eq. 10 are set as 1, 1, and 0.1 respectively. We use 100k training epochs and the
learning rate is decayed from 0.01 using “poly” policy. The hardware used for all the
computation is a cluster node (8 cores @ 3.50 GHz, 32 ,GB RAM) accelerated with a
GPU card (NVIDIA Tesla K20c 5 GB). The overall processing time of RBNet is 0.18
second per frame.

2 http://www.cvlibs.net/datasets/kitti/eval road.php.

http://www.cvlibs.net/datasets/kitti/eval_road.php
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Boundary Refinement. To demonstrate the effects of detecting road boundary, we
use the detected boundaries to refine the detected road areas by eliminating potential
false positives. Specifically, we first find the left and right boundaries of the road based
on the boundary detection results and then refine the confidence score of each pixel
according to their relative locations to the identified boundaries. Outside pixels could
be viewed as false results. If better road detection results are obtained, the contextual
relationship between road and road boundaries can be proved.

4.2 Results

In this section, we thoroughly compare the performance of the RBNet for general road
detection with other state-of-the-art methods on the KITTI road benchmark. The
compared algorithms include Up Conv [4], DDN [5], FTP [12], FCN LC [22], SPRAY
[23], and StixelNet [6]. MaxF and AP are mainly used for comparison.

Table 1 shows the results of the evaluation on different categories of tasks in the
KITTI benchmark. The MaxF and AP scores of UM road, UMM road, and UU road in
KITTI benchmark are presented in the table. The effectiveness of the proposed method
has been demonstrated since our method achieves the highest scores on both MaxF for
each category.

Table 1. Performance for the per-category result. “UM”, “UMM” and “UU” represent
the detection task for urban marked road, urban multiple marked lane, and urban
unmarked road respectively. The “Lane” represents the ego-lane detection task based
on the “UM”. Bold fonts refer to the best performance.

Methods UM UMM UU Lane

MaxF AP MaxF AP MaxF AP MaxF AP

StixelNet [6] 85.33 % 72.14 % 92.98 % 92.89 % 86.06 % 72.05 % - -

SPRAY [23] 88.14% 91.24% 89.69% 93.84% 82.71% 87.19% 83.42% 86.84%

FCN LC [22] 89.36 % 78.80 % 93.26 % 87.15 % 86.27% 75.37 % - -

FTP [12] 91.20% 90.60 % 91.85 % 87.98 % 89.62% 88.93% - -

DDN [5] 93.65 % 88.55 % 94.17 % 92.70 % 91.76 % 86.26 % - -

Up Conv [4] 92.20 % 88.85 % 95.52 % 92.86 % 92.65 % 89.20 % 89.88% 87.52%

RBNet 94.77 % 91.23 % 96.06 % 93.49% 93.21 % 89.18% 90.54% 82.03%

Table 2. Overall performance for KITTI’s benchmark based on all the “UM”, “UMM”
and “UU” test sets. Best scores are presented in bold.

Methods MaxF AP PRE REC FPR FNR

StixelNet [6] 89.12 % 81.23 % 85.80 % 92.71 % 8.45 % 7.29%

SPRAY [23] 87.09 % 91.12 % 87.10 % 87.08 % 7.10 % 12.92 %

FCN LC [22] 90.79 % 85.83 % 90.87 % 90.72 % 5.02 % 9.28 %

FTP [12] 91.61 % 90.96 % 91.04 % 92.20 % 5.00 % 7.80 %

DDN [5] 93.43 % 89.67 % 95.09 % 91.82 % 2.61% 8.18 %

Up Conv [4] 93.83 % 90.47 % 94.00 % 93.67 % 3.29 % 6.33 %

RBNet 94.97 % 91.49 % 94.94 % 95.01 % 2.79 % 4.99 %
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By combining the results of all the “UM”, “UMM” and “UU” road, overall perfor-
mance of the evaluated algorithms are illustrated in the Table 2. In this measurement,
the proposed RBNet has also outperformed other algorithms in many criteria, including
MaxF, AP and so on, which proves both the correctness of the summarised Bayesian
network and the robustness of the RBNet in general road detection. Some qualitative
results on KITTI benchmark are illustrated in the Fig. 3.

(a)

(b)

(c)

(d)

Fig. 3. Qualitative results on KITTI road detection benchmark. The results are from:
(a) UM; (b) UMM; (c) UU; and (d) Lane. The detected road boundaries and the
segmented road areas are shown in yellow color and green color respectively. (Color
figure online)

5 Conclusion

In this work, we formulate the road detection and road boundary detection problem
into a unified Bayesian network model based on the contextual relationship between
road boundaries and road areas in an image. We then propose the RBNet to estimate
the probabilities of the Bayesian network. The RBNet can detect road boundaries and
road areas in a single processing step. The empirical study on KITTI benchmark proves
the effectiveness and validity of RBNet. For the future research, we will accelerate the
processing speed to meet real-time demand.
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