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Abstract. We propose a novel iterative algorithm for nonnegative
matrix factorization with the alpha-divergence. The proposed algorithm
is based on the coordinate descent and the Newton method. We show
that the proposed algorithm has the global convergence property in the
sense that the sequence of solutions has at least one convergent sub-
sequence and the limit of any convergent subsequence is a stationary
point of the corresponding optimization problem. We also show through
numerical experiments that the proposed algorithm is much faster than
the multiplicative update rule.
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1 Introduction

Nonnegative Matrix Factorization (NMF) [1–3] is a mathematical operation that
decomposes a given nonnegative matrix X into two nonnegative matrices W and
H such that X ≈ WH. NMF has found many applications in various fields such
as image processing, acoustic signal processing, data analysis and text mining
because it can find nonnegative basis for a given set of nonnegative data.

NMF is formulated as a constrained optimization problem in which an error
between X and WH has to be minimized under the nonnegativity constraints on
W and H. Multiplicative update rules [3] are widely used as simple and easy-to-
implement methods for solving the NMF optimization problems. This approach
can be easily applied to a wide class of error measures [4–6], and the obtained
update rules have the global convergence property [7,8]. However, they are often
slow. Hence many studies have been done to develop faster algorithms for solving
the NMF optimization problems (see, for example, [9,10] and references therein).

In this paper, we focus our attention on NMF with the alpha-divergence [11].
The alpha-divergence includes Pearson divergence, Hellinger divergence, and chi-
square divergence as its special cases [12], and has been frequently used for NMF
(see [13] and references therein). As a simple and fast method for solving the
optimization problem for NMF with the alpha-divergence, we propose a novel
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iterative algorithm based on the coordinate descent and the Newton method.
We show that the proposed algorithm has the global convergence property
[7,14–16] in the sense that the sequence of solutions has at least one convergent
subsequence and the limit of any convergent subsequence is a stationary point
of the corresponding optimization problem. We also show through numerical
experiments that the proposed algorithm is much faster than the multiplicative
update rule.

Notation: R denotes the set of real numbers. R+ and R++ denote the set
of nonnegative and positive real numbers, respectively. For any subset S of R,
SI×J denotes the set of all I ×J matrices such that each entry belongs to S. For
example, RI×J

+ is the set of all I × J real nonnegative matrices. N denotes the
set of natural numbers or the set of positive integers. 0I×J and 1I×J denote the
I × J matrix of all zeros and all ones, respectively. For two matrices A = (Aij)
and B = (Bij) with the same size, the inequality A ≥ B means that Aij ≥ Bij

for all i and j, and (AB)ij denotes the (i, j)-th entry of the matrix AB, that
is, (AB)ij =

∑
k AikBkj .

2 Alpha-Divergence Based Nonnegative Matrix
Factorization

2.1 Optimization Problem

Suppose we are given an M × N nonnegative matrix X = (Xij). The alpha-
divergence based NMF is formulated as the constrained optimization problem:

minimize Dα(X ‖WHT)
subject to W ∈ R

M×K
+ , H ∈ R

N×K
+

(1)

where

Dα(X ‖WHT) =
1

α(1 − α)

M∑

i=1

N∑

j=1

[

αXij + (1 − α)(WHT)ij

− Xα
ij(WHT)1−α

ij

]

(α �= 0, 1). (2)

When α > 1, the right-hand side of (2) is not defined for all nonnegative matrices
W and H. A simple way to make the problem well-defined is to modify (1) as
follows:

minimize Dα(X ‖WHT)
subject to W ∈ [ε,∞)M×K , H ∈ [ε,∞)N×K (3)

where ε is a positive constant, which is usually set to a small number so that (3)
is close to (1). In what follows, we consider (3) instead of (1).

Note that sparse factor matrices can never be obtained from the modified
optimization problem (3). However, if we replace all ε in the obtained solution



Newton-Type Algorithm for NMF with Alpha-Divergence 337

with zero, the resulting factor matrices are expected to be sparse because local
optimal solutions of (3) are often located at the boundary of the feasible region.
In addition, if ε is sufficiently small, it is expected that the pair of the resulting
factor matrices is close to the original local optimal solution.

When α < 0 and X has a zero entry, the right-hand of (2) is not determined.
We thus impose throughout this paper the following assumption on X.

Assumption 1. All entries of X are positive.

2.2 Properties of the Objective Function

The partial derivatives of Dα(X ‖WHT) with respect to Wik and Hjk are
given by

∂Dα

∂Wik
=

1
α

⎛

⎝
∑

j

Hjk −
∑

j

Xα
ijHjk(WHT)−α

ij

⎞

⎠ ,

∂Dα

∂Hjk
=

1
α

(
∑

i

Wik −
∑

i

Xα
ijWik(WHT)−α

ij

)

,

and the second and third partial derivatives are given by

∂2Dα

∂W 2
ik

=
∑

j

Xα
ijH

2
jk(WHT)−α−1

ij ,

∂2Dα

∂H2
jk

=
∑

i

Xα
ijW

2
ik(WHT)−α−1

ij ,

∂3Dα

∂W 3
ik

= −(α + 1)
∑

j

Xα
ijH

3
jk(WHT)−α−2

ij ,

∂3Dα

∂H3
jk

= −(α + 1)
∑

i

Xα
ijW

3
ik(WHT)−α−2

ij .

Under Assumption 1, the second partial derivatives are positive for all α (�= 0, 1)
and all pairs of positive matrices W and H. Therefore, if we fix all entries of
W and H except Wik (Hjk, resp.) to constants not less than ε then we obtain a
function of Wik (Hjk, resp.) which is strictly convex on [ε,∞). In what follows, we
express these functions as fik(Wik) and gjk(Hjk). Then f ′

ik(Wik) and g′
jk(Hjk)

are monotone increasing functions, and convex if α ≤ −1 and concave otherwise.
It is easy to see that the objective function of (3) has the following property.

Lemma 1. For any α ∈ R \ {0, 1}, ε ∈ R++, X ∈ R
M×N
++ , W ∗ ∈ [ε,∞)M×K

and H∗ ∈ [ε,∞)N×K , the level set

{(W ,H) ∈ [ε,∞)M×K × [ε,∞)N×K |Dα(X ‖WHT) ≤ Dα(X ‖W ∗(H∗)T)}
is bounded.
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2.3 Optimality Conditions

Let Fε = [ε,∞)M×K × [ε,∞)N×K be the feasible region of the problem (3). If
(W ,H) ∈ Fε is a local optimal solution of (3), it must satisfy the following
conditions:

∀i, k,
∂Dα

∂Wik

{
≥ 0, if Wik = ε,

= 0, if Wik > ε,
(4)

∀j, k,
∂Dα

∂Hjk

{
≥ 0, if Hjk = ε,

= 0, if Hjk > ε.
(5)

A point (W ,H) ∈ Fε satisfying (4) and (5) is called a stationary point of (3).

3 Proposed Algorithm

The algorithm proposed here for solving the problem (3) is based on the coor-
dinate descent and the Newton method. Let the current values of W and H
be W c ∈ [ε,∞)M×K and Hc ∈ [ε,∞)N×K , respectively. We want to minimize
the value of the objective function by updating only one variable, say Wik. This
problem is formulated as

minimize fik(Wik)
subject to Wik ≥ ε

(6)

where fik(Wik) is the function obtained from Dα(X ‖WHT) by fixing all vari-
ables except Wik to the current values. Because fik(Wik) is strictly convex as
stated in the previous section, (6) is a convex optimization problem. Therefore,
if f ′

ik(W c
ik) = 0 then W c

ik is the optimal solution of (6). However, we cannot
obtain the optimal solution in a closed form in general. So we apply the Newton
method to obtain an approximate solution of f ′

ik(Wik) = 0, which is given by

W n
ik = W c

ik − f ′
ik(W c

ik)
f ′′

ik(W c
ik)

.

If f ′
ik(W n

ik) = 0 then W n
ik is the minimum point of fik(Wik), and hence W new

ik =
max{ε,W n

ik} is the optimal solution of (6). If f ′
ik(W n

ik)f ′
ik(W c

ik) > 0 then fik(Wik)
decreases monotonically as the value of Wik varies from W c

ik to W n
ik. Hence,

letting W new
ik = max{ε,W n

ik}, we have fik(W new
ik ) < fik(W c

ik). On the other hand,
in the case where f ′

ik(W n
ik)f ′

ik(W c
ik) < 0, it can occur that fik(W n

ik) > fik(W c
ik)

(see Fig. 1). In order to avoid this situation, we use a linear interpolation of the
curve Y = f ′

ik(Wik). We first draw a line

Y − f ′
ik(W c

ik) =
f ′

ik(W c
ik) − f ′

ik(W n
ik)

W c
ik − W n

ik

(Wik − W c
ik).

on Wik-Y plane, which passes through the points (W c
ik, f ′(W c

ik)) and
(W n

ik, f ′(W n
ik)) (see the red line in Fig. 1). We then find the point at which the
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Fig. 1. Update rule for Wik when f ′
ik(W

c
ik)f

′
ik(W

n
ik) < 0. (Color figure online)

line intersects the Wik-axis, and let the Wik-coordinate of the point be a new
approximate solution W i

ik of f ′
ik(Wik) = 0, that is,

W i
ik = W c

ik − W n
ik − W c

ik

f ′
ik(W n

ik) − f ′
ik(W c

ik)
f ′

ik(W c
ik).

Furthermore, if W i
ik is less than ε, we replace it with ε. Then we have

f ′
ik(W i

ik)f ′
ik(W c

ik) > 0 and fik(W i
ik) < fik(W c

ik).
Figure 2 shows the proposed update rule for Wik, which is based on the idea

described above but slightly modified so that a better solution can be obtained.
The problem of minimizing the value of the objective function by updating

only Hjk is formulated as

minimize gjk(Hjk)
subject to Hjk ≥ ε

(7)
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Algorithm 1. Update rule for Wik

Require: X ∈ R
M×N
++ , W ∈ [ ∞)M×K , H ∈ [ ∞)N×K , α ∈ R \ {0, 1}, ∈ R++,

i ∈ {1, 2, . . . , M}, k ∈ {1, 2, . . . , K}
Ensure: W new

ik ∈ [ ∞)
1: If fik(Wik) = 0 then set W new

ik ← Wik and go to Step 5. Otherwise set

W n
ik ← Wik − fik(Wik)

fik(Wik)
.

2: If W n
ik then set W n

ik ← .
3: If fik(W n

ik)fik(Wik) ≥ 0 then set W new
ik ← W n

ik and go to Step 5. Otherwise set

W new
ik ← Wik − W n

ik − Wik

fik(W n
ik) − fik(Wik)

fik(Wik).

4: If W new
ik then set W new

ik ← .
5: Return W new

ik .

Fig. 2. Update rule for Wik.

Algorithm 2. Update rule for Hjk.

Require: X ∈ R
M×N
++ , W ∈ [ ∞)M×K , H ∈ [ ∞)N×K , α ∈ R \ {0, 1}, ∈ R++,

j ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . , K}
Ensure: Hnew

jk ∈ [ ∞)
1: If gjk(Hik) = 0 then set Hnew

jk ← Hjk and go to Step 5. Otherwise set

Hn
jk ← Hjk − gjk(Hjk)

gjk(Hjk)
.

2: If Hn
jk then set Hn

jk ← .
3: If gjk(Hn

jk)gik(Hjk) ≥ 0 then set Hnew
jk ← Hn

jk and go to Step 5. Otherwise set

Hnew
jk ← Hjk − Hn

jk − Hjk

gjk(Hn
jk) − gjk(Hjk)

gjk(Hjk).

4: If Hnew
jk then set Hnew

jk ← .
5: Return Hnew

jk .

Fig. 3. Update rule for Hjk.

where gjk(Hjk) is the function obtained from Dα(X ‖WHT) by fixing all vari-
ables except Hjk to the current values. Using the same idea as above, we can
derive an update rule for Hjk as shown in Fig. 3.

It is clear from the derivation of Algorithms 1 and 2 that the following two
lemmas hold true.

Lemma 2. If Wik is not the optimal solution of the subproblem (6) then W new
ik

obtained by Algorithm 1 satisfies fik(W new
ik ) < fik(Wik). Similarly, if Hjk is not
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the optimal solution of the subproblem (7) then Hnew
jk obtained by Algorithm 2

satisfies gjk(Hnew
jk ) < gjk(Hjk).

Lemma 3. Suppose that X ∈ R
M×N
++ , α ∈ R \ {0, 1} and ε ∈ R++ are fixed.

Then W new
ik , the output of Algorithm 1, depends continuously on W and H for

any i and k. Similarly, Hnew
jk , the output of Algorithm 2, depends continuously

on W and H for any j and k.

Furthermore, using Zangwill’s global convergence theorem [16], we obtain the
following theorem.

Theorem 1. Given X ∈ R
M×N
++ , K ∈ N, α ∈ R\{0, 1}, ε ∈ R++, and an initial

solution (W (0),H(0)) ∈ Fε, we apply the update rules described by Algorithms 1
and 2 to MK + NK variables in a fixed cyclic order. Let (W (l),H(l)) ∈ Fε be
the solution after l rounds of updates. Then the sequence {W (l),H(l)}∞

l=0 has at
least one convergent subsequence and the limit of any convergent subsequence
is a stationary point of the problem (3).

Proof. Let us express the relation between (W (l),H(l)) and (W (l+1),H(l+1))
by using a mapping A : Fε → Fε as follows:

(W (l+1),H(l+1)) = A(W (l),H(l)).

In view of Zangwill’s global convergence theorem [16], it suffices to show that
the following statements hold true.

1. (Boundedness) For any initial solution (W (0),H(0)) ∈ Fε, the sequence
{(W (l),H(l))}∞

l=0 belongs to a compact subset of Fε.
2. (Monotoneness) The objective function Dα(X ‖WHT) satisfies

(W ,H) �∈ Sε ⇒ Dα(X ‖W ′(H ′)T) < Dα(X ‖WHT)

(W ,H) ∈ Sε ⇒ Dα(X ‖W ′(H ′)T) ≤ Dα(X ‖WHT)

where Sε is the set of stationary points of (3) and (W ′,H ′) = A(W ,H).
3. (Continuity) The mapping A is continuous in Fε \ Sε.

The monotoneness follows from Lemma 2. The boundedness follows from
Lemmas 1 and 2. The continuity follows from Lemma 3. �

By Theorem 1, we can immediately obtain an algorithm that stops within a
finite number of rounds by relaxing the optimality condition given by (4) and
(5), as shown in Reference [7]. The resulting algorithm is shown in Fig. 4.

Theorem 2. For any input, Algorithm 3 stops within a finite number of rounds.
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Algorithm 3. Newton-Type Algorithm for Solving (3)

Require: X ∈ R
M×N
++ , K ∈ N, α ∈ R \ {0, 1}, 1, δ2 ∈ R++, δ3 ∈ [0, δ1)

Ensure: W ∈ [ ∞)M×K , H ∈ [ ∞)N×K

1: Choose W ∈ [ ∞)M×K and H ∈ [ ∞)N×K .
2: Update MK + NK variables one by one in a fixed order by using Algorithms 1

and 2. However, Wik is not updated if the following inequality holds:

∂Dα
∂Wik

≥ −δ3, if Wik =
∂Dα
∂Wik

≤ δ3, if Wik

Similarly, Hjk is not updated if the following inequality holds:

⎧
⎨

⎩

∂Dα
∂Hjk

≥ −δ3, if Hjk =

∂Dα
∂Hjk

≤ δ3, if Hjk

3: If the following conditions are satisfied then return W and H, and stop. Otherwise
go to Step 2.

∀i, j,

∂Dα
∂Wik

≥ −δ1, if Wik ∈ [ + δ2],
∂Dα
∂Wik

≤ δ1, if Wik + δ2,

∀j, k,

⎧
⎨

⎩

∂Dα
∂Hjk

≥ −δ1, if Hjk ∈ [ + δ2],

∂Dα
∂Hjk

≤ δ1, if Hjk + δ2.

Fig. 4. Newton-type algorithm for solving (3).

4 Numerical Experiments

In order to evaluate the efficiency of the proposed algorithm, we applied it to
a randomly generated matrix X and compared the results with those obtained
using the multiplicative update rule [6,8] described by

W new
ik ← max

⎛

⎝ε,Wik

(∑N
j=1 XijHjk/(WHT)ij

∑N
j=1 Hjk

) 1
α

⎞

⎠

and the same stopping condition. Although some other methods have been pro-
posed (see [13] for example), we do not consider them because the global con-
vergence is not guaranteed.

In all experiments, X was set to the same 40 × 20 matrix of which each
entry was drawn from an independent uniform distribution on the interval [0, 1].
The value of K was set to 5. The values of the parameters in Algorithm 3 were
set to ε = 10−6, δ1 = 10−4, δ2 = 10−6, u = 1.0 and δ3 = 0.5 × δ1. The value
of the parameter α in the alpha-divergence was set to −1.5, 0.5 and 2.5. For
each value of α, the multiplicative update rules and the proposed algorithms
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Table 1. The number of rounds of the multiplicative update (MU) rule and Algorithm 3
for solving (3).

α Method Average Minimum Maximum

−1.5 MU 16, 409.8 2, 018 40, 000

Algorithm 3 275.5 143 458

0.5 MU 22, 863.5 6, 284 35, 183

Algorithm 3 499.6 251 821

2.5 MU 25, 873.9 12, 517 40, 000

Algorithm 3 706.4 343 1, 283

Table 2. Computation time (in second) of the multiplicative update (MU) rule and
Algorithm 3 for solving (3).

α Method Average Minimum Maximum

−1.5 MU 28.965 3.562 70.593

Algorithm 3 1.406 0.672 2.297

0.5 MU 81.072 22.266 124.704

Algorithm 3 3.739 1.859 6.109

2.5 MU 45.679 22.094 70.640

Algorithm 3 3.508 1.703 6.094

were run for 10 times with 10 different initial solutions, which were generated
in the same way as X but all entries less than ε were replaced with ε so that
the initial solution belongs to the feasible region of the optimization problem.
The maximum number of rounds was set to 40, 000, that is, if the solution does
not satisfy the stopping condition within 40, 000 rounds then the algorithm was
forcedly stopped. All algorithms were implemented in C language, compiled with
gcc 5.3.0 and tested on a PC with Intel Core i5-4590 and 8 GB RAM.

The results are shown in Tables 1 and 2. It is easily seen from those tables
that the proposed algorithm is much faster than the multiplicative update rule.

5 Conclusion

We have proposed a novel iterative algorithm, which is based on the coordi-
nate descent and the Newton method, for NMF with the alpha-divergence. The
proposed algorithm not only has the global convergence property like the multi-
plicative update rule but also is much faster than the multiplicative update rule,
as shown in the experimental results in the previous section. Further experiments
with various real data should be performed in the near future to evaluate the
efficiency of the proposed algorithm.
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