
Large-Margin Supervised Hashing

Xiaopeng Zhang, Hui Zhang, Yong Chen(B), and Xianglong Liu

State Key Lab of Software Development Environment,
Beihang University, Beijing, China

{zxpjustin,hzhang}@buaa.edu.cn, {chenyong,xlliu}@nlsde.buaa.edu.cn

Abstract. Learning to hash embeds objects (e.g. images/documents)
into a binary space with the semantic similarities preserved from the orig-
inal space, which definitely benefits large-scale tough tasks such as image
retrieval. By leveraging semantic labels, supervised hashing methods usu-
ally achieve better performance than unsupervised ones in real-world
scenarios. However, most existing supervised methods do not sufficiently
encourage inter-class separability and intra-class compactness which is
quite crucial in discriminative hashcodes. In this paper, we propose a
novel hashing method called Large-Margin Supervised Hashing (LMSH)
based on a non-linear classification framework. Specifically, LMSH intro-
duces the angular decision margin which could adjust inter-class separa-
bility and intra-class compactness through a hyper-parameter for more
discriminative codes. Extensive experiments on three public datasets are
conducted to demonstrate the LMSH’s superior performance to some
state-of-the-arts in image retrieval tasks.

Keywords: Large-margin · Supervised hashing · Non-linear classifica-
tion framework

1 Introduction

Recently, hashing techniques, as a most popular candidate for approximate near-
est neighbor search, have been widely used for lots of practical problems, such as
speech recognition, information retrieval, computer vision, and nature language
processing. More specifically, learning to hash can transform images, documents
and videos to compact binary representations while simultaneously preserving
the similarities of the original data with hamming distances. Hashing represen-
tations have two manifest advantages: (1) binary hash codes need less storage
space; (2) search can be performed in sublinear time by computing Hamming
distance (XOR operation) or in near O(1) time with hash tables.

Generally speaking, current hashing methods can be divided into two groups:
the unsupervised methods and the supervised methods. The methods which do
not rely on labeled data are classified into unsupervised hashing methods, such
as LSH [6], SpH [23], DGH [12], ITQ [7], BSH [20], BS [18], CH [17], SGH [8],
MVCH [19] and SSH [21]. The other category is supervised hashing methods
which usually attain higher retrieval accuracy, since the label information has
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part I, LNCS 10634, pp. 259–269, 2017.
https://doi.org/10.1007/978-3-319-70087-8_28

260 X. Zhang et al.

been taken full advantage of, such as BRE [10], KSH [13], FashHash [5], LFH [24],
SDH [22], TSH [11], COSDISH [9], MH [16], and RMTHL [2].

We are mainly concerned about supervised hashing methods. Because of the
difficulty of discrete optimization problem, most supervised hashing methods
solve a relaxed continuous optimization problem by dropping the discrete con-
straints. However, these methods can’t ignore the quantization error of mapping
continuous data to binary space. To solve this problem, some methods try to
directly solve the discrete optimization problem [9,12,22], and they both make
progress and meet some specific problems. Meanwhile, this paper present an
another new idea, which is easy to accomplish, to reduce the quantization error.

We propose a novel supervised approach called Large-Margin Supervised
Hashing (LMSH) based on a non-linear classification framework. Notably, our
LMSH combines a large angular decision margin which both improves the clas-
sification generalization and leads to less quantization error. In brief, our contri-
butions can be summarized as below:

– A novel supervised hashing method is presented with the perspective of large
angular decision margin, which owns a clear geometric interpretation and
encourages the inter-class separability and intra-class compactness for more
discriminative codes.

– The large angular decision margin proposed is a new tool to reduce the quan-
tization error in hashing task. And the size of the angular decision margin can
be flexibly adjusted with a preset constant m, which is a trade-off parameter
between efficiency and efficacy.

– The proposed LMSH is evaluated on three large image benchmarks and
exhibits superior retrieval performance to many state-of-the-art hashing
methods.

2 Preliminary

Supposed that we have N samples X = {xi}N
i=1 where each sample xi is a M -

dimensional vector. The corresponding ground truth labels are represented as
Y = {yi}N

i=1, and each yi is a C-dimensional vector for sample xi, where C
expresses the number of label classes and yci = 1 if xi belongs to class c and 0
otherwise. The goal of hashing methods is to learn hash functions transforming
X into a binary code B = {bi}N

i=1 ∈ {−1, 1}K×N which would preserve the
sematic similarities. The vector bi, which denotes the ith column of B, is the
K-bits binary codes for sample xi.

Inspired by SDH [22], we firstly consider the hashing code learning in the
framework of linear classification to take advantage of the supervised informa-
tion. We assume that good binary codes also benefit the classification task. For
the ith sample, we employ the following multi-class classification formulation:

ŷi = WTbi = [wT
1 bi, · · ·,wT

Cbi]T, (1)

where wc ∈ R
K×1(c = 1, · · ·, C) is the classification vector for class c, and

ŷ ∈ R
C×1 is the predicted classes vector regarding to bi, of which the maximum

Large-Margin Supervised Hashing 261

item denotes the assigned class of xi. The difference between ŷi and the true label
vector yi is expected to be as small as possible. Therefore, we should optimize
the following problem with �2 loss function:

min
B,W

N∑

i=1

‖yi − WTbi‖2 + λ‖W‖2, s.t. bi ∈ {−1, 1}K , (2)

where ‖ · ‖ represents Frobenius norm for matrices and �2 norm for vectors, and
λ is a non-negative hyper-parameter to avoid overfitting.

Then we can solve problem (2) by updating W and B alternately until
convergence as follows.

W-Step. With B fixed, we rewrite the optimization problem (2) as:

min
W

‖Y − WTB‖2 + λ‖W‖2. (3)

Then we can easily update W by the following equation:

W = (BBT + 2λI)−1BYT, (4)

where I is an identity matrix.

B-Step. Optimizing B with W fixed is still NP hard and difficult to solve
directly owing to the discrete constraints. Following most existing schemes, we
update B through two stages. Firstly, we relax B to a real matrix V ∈ R

K×N :

min
V

‖Y − WTV‖2, (5)

and then optimize V in the real space:

V = (WWT)−1WY. (6)

Secondly, a simple rounding technique can be performed to project the real
valued V to the binary matrix B: B = sgn(V), where sgn(·) is the sign function,
which outputs 1 for positive numbers and -1 otherwise (0 is rounding threshold).

In summary, we can carry out W-Step and B-Step alternately until the con-
vergence is reached. However, the performance obtained is unsatisfactory, which
would be ascribed to much quantization error.

As shown in Fig. 1(a), even though each points are classified correctly by a
perfect classifier, we will possibly obtain fault codes. The intrinsical reason for
this error is that we can’t guarantee the consistency of the classification boundary
and the rounding threshold. However, if the decision boundary is turned into a
wide decision margin as Fig. 1(b), the quantization error will be reduced.

3 The Proposed Method: LMSH

Angular Decision Margin: To obtain a large decision margin, we intro-
duce a stronger classification criterion. Inspired by [15], we replace wT

c b with

262 X. Zhang et al.

Fig. 1. Examples to show the effect of the large decision margin in 1-D space. Points
with same color are in the same class. The default rounding threshold is x = 0.

‖wc‖‖b‖ cos(mθc), where m is a positive integer, and wc and b are the column
vectors of W and B in problem (3) respectively, and c is the class index. The θc

is the angle between wc and b.
To describe our intuition, a simple example is provided where all points

belong to class 1 or class 2. Suppose b is the hash code of a sample x labeled
by class 1. The original algorithm just needs to force wT

1 b > wT
2 b in order to

classify b correctly. However, to make a larger decision margin, we require:

‖w1‖‖b‖ cos(mθ1) > ‖w2‖‖b‖ cos(θ2)
(
0 ≤ θ1 ≤ π

m

)
, (7)

where m is a positive integer. Since cos(·) is a monotone decreasing function on
[0, π] and m ≥ 1, ‖w1‖‖b‖ cos(θ1) ≥ ‖w1‖‖b‖ cos(mθ1) always holds on [0, π

m].
If the Eq. (7) held, wT

1 b > wT
2 b would be bound to hold, too. Therefore the

Eq. (7) is a stronger requirement to classify b correctly, resulting in a larger
decision margin between class 1 and class 2.

Fig. 2. The geometric difference between the original algorithm and the large-margin
extensions. The red points belong to class 1, and the greens belong to class 2. The
points above and below the rounding threshold will get different hash codes. (Color
figure online)

For the above example, we can also provide a geometric interpretation. In
this part, the b is relaxed as v ∈ R

K in order to describe the classification
process in real space. We mainly discuss the ‖w1‖ = ‖w2‖ case as shown in
Fig. 2. In this scenario, the classification results will only depend on the angle
θ′ between w and v. At the training stage, the original algorithm forces only

Large-Margin Supervised Hashing 263

one decision boundary � to divide all points in Fig. 2(a), where the point v∗,
for example, would be classified to the class 1 correctly because of θ′

1 < θ′
2,

but it would get fault bit codes, which is ascribed to the inconsistency of the
classification boundary and the rounding threshold. However, our large-margin
algorithm require mθ′

1 < θ′
2 to make the same decision. Therefore, the point

v∗ in Fig. 2(b) hasn’t been classified to class 1, which means that this case
hasn’t been converged. When our large-margin algorithm is converged as shown
in Fig. 2(c), we can classify the point v∗ correctly on account of mθ′

1 < θ′
2,

and other points are similar. Furthermore, the wide decision margin in Fig. 2(c)
contains the rounding threshold, so the point v∗ will also get true bit codes.

It’s obvious that the decision boundary in Fig. 2(a) is turned into a wide
decision margin in Fig. 2(c), which both improves the classification generalization
and leads to less quantization error. This conclusion will holds for both ‖w1‖ >
‖w2‖ and ‖w1‖ < ‖w2‖ scenarios, too.

Large-Margin Extension: Before further displaying our LMSH algorithm, we
should focus on the Eq. (7) again. Equation (7) just works with 0 ≤ θ1 ≤ π

m ,
while we need a more flexible substitute which works at least with 0 ≤ θ1 ≤ π.
Like [15], we replace the cos(mθ) with the following formulation:

ψ(θ) = (−1)k cos(mθ) − 2k, θ ∈
[kπ

m
,
(k + 1)π

m

]
, (8)

where k ∈ [0,m−1] and k is an integer. The Eq. (8) is also a monotone decreasing
function, and it is less than cos(θ) with 0 ≤ θ ≤ π when m > 1.

With the large-margin extension, the objective function in (2) is reformu-
lated as:

min
B,W

N∑

i=1

C∑

c=1

(
Yci − ‖wc‖‖bi‖ψ(θci)

)2 + λ‖W‖2,

s.t. bi ∈ {−1, 1}K , θci ∈
[kπ

m
,
(k + 1)π

m

]
,

(9)

where Yci is the (ci)th element of matrix Y , and Yci = 1 if xi belongs to class c
and 0 otherwise.

Similarly, the optimization problems (3) and (5) can be transformed as below:

min
W

LW =
N∑

i=1

C∑

c=1

((
Yci − ‖wc‖‖bi‖ψ(θci)

)2 +
λ

N
‖wc‖2

)
, (10)

min
V

LV =
N∑

i=1

C∑

c=1

(
Yci − ‖wc‖‖vi‖ψ(θ′

ci)
)2

, (11)

where vi is the ith column of V defined in problem (5). θ′
ci is the angle between

wc and vi.

264 X. Zhang et al.

4 Learning Algorithms

We can optimize our LMSH with typical gradient decent methods.

W-step. Update W with B fixed. Unfolding cos(mθ) with cos(θ) which can be
replaced with wTb

‖w‖‖b‖ , and combining Eq. (8), we define JW ci as:

JW ci = ‖wc‖‖bi‖ψ(θci) = (−1)k · ‖wc‖‖bi‖ cos(mθci) − 2k · ‖wc‖‖bi‖

= (−1)k · ‖wc‖‖bi‖
(

C0
m

(wT
c bi

‖wc‖‖bi‖
)m − C2

m

(wT
c bi

‖wc‖‖bi‖
)m−2

(
1 − (wT

c bi

‖wc‖‖bi‖
)2) + · · ·

)
− 2k · ‖wc‖‖bi‖,

(12)

where wT
c bi

‖wc‖‖bi‖ ∈
[
cos(kπ

m), cos((k+1)π
m)

]
, Cn

m = n(n−1)···(n−m+1)
m(m−1)···1 and k is an

integer that belongs to [0,m − 1]. In fact, the value of k depends on wT
c bi

‖wc‖‖bi‖ .

And ∂JWci

∂wc
can be computed via:

∂JWci

∂wc
= (−1)k ·

(
C0

m
m(wT

c bi)
m−1bi

(‖wc‖‖bi‖)m−1
− C0

m
(m − 1)(wT

c bi)
mwc

‖wc‖m+1‖bi‖m−1

− C2
m

(m − 2)(wT
c bi)

m−3bi

(‖wc‖‖bi‖)m−3
+ C2

m
(m − 3)(wT

c bi)
m−2wc

‖wc‖m−1‖bi‖m−3

+ C2
m

m(wT
c bi)

m−1bi

(‖wc‖‖bi‖)m−1
− C2

m
(m − 1)(wT

c bi)
mwc

‖wc‖m+1‖bi‖m−1
+ · · ·

)
− 2k · ‖bi‖wc

‖wc‖ .

(13)

Substituting Eq. (12) into Eq. (10), we can reformulate LW . Then ∂LW
∂wc

can
be further computed with:

∂LW
∂wc

=
N∑

i=1

(
−2 · Yci

∂JW ci

∂wc
+ 2 · JW ci

∂JW ci

∂wc
+ 2 · λ

N
wc

)
. (14)

As a result, we end up with following update rule for wc:

wc(t + 1) = wc(t) − αw · ∂LW
∂wc

. (15)

Here we use notation x(t) to denote the value of a parameter x at some iteration
t, and αw is the learning rate. We also update other columns in W iteratively
using the same rule.

B-step. Update B with W fixed. According to the Eq. (11), we can obtain
∂LV
∂vi

using a similar method as the W-step. Then we use the following rule for
updating vi:

vi(t + 1) = vi(t) − αv · ∂LV
∂vi

, (16)

Large-Margin Supervised Hashing 265

where αv is the learning rate. We also update other columns in V iteratively
using the same rule. After the V is learned in each iteration, we can gain B using
some rounding techniques. It is worth mentioning that an important criterion
in designing hash functions is that the generated hash codes should take as
much information as possible, which implies a balanced hash function that meets∑N

i=1 h(xi) = 0 for each bit [13,14]. As for our problem, the balancing criterion
is as follows:

Bki =

{
1, Vki > median(Vk∗)

−1, otherwise
, (17)

where k = 1, 2, · · ·,K and i = 1, 2, · · ·, N . Furthermore, Bki and Vki are the
(ki)th elements of B and V respectively, and median(Vk∗) denotes the median
value of the kth row of V.

Algorithm 1. Large-Margin Supervised Hashing (LMSH)
Input: Labels Y ∈ R

C×N of training data; the code length K; maximum
iteration number T ; hyper-parameter λ; learning rates αw and αv.

Output: Hash codes B ∈ {−1, 1}K×N .
1 Random initialize B; and initialize W by Eq. (4);
2 for t = 1 : T do
3 W-step: update W using Eq. (15) for each category;
4 B-step: obtain initial V by Eq. (6);
5 update V using Eq. (16) for each sample;
6 generate B by Eq. (17);

7 end
8 Return code matrix B.

Finally, we conclude our proposed algorithm named Large-Margin Supervised
Hashing (LMSH) in Algorithm 1. As we can see, Eqs. (4) and (6) should be used
for initializations, which will make the algorithm converged with fewer iterations.

Out-of-Sample Extention: Our LMSH is also a two-step method [11]: learning
hash codes B in the first step, and learning hash functions in the second step.
To encode a query sample x by K bits effectively, We choose RBF kernel hash
function as below:

h(x) = sgn(PTφ(x)), (18)

where φ(x) is a p-dimensional vector obtained by the RBF kernel mapping:
φ(x) = [exp(−‖x−x(1)‖2/σ), · · ·, exp(−‖x−x(p)‖2/σ)]T, where x(1), · · ·,x(p) are
p anchor samples randomly selected from the training matrix X, and σ is the
kernel width. The P ∈ R

p×K is a projection matrix that embeds the φ(x) into
the K-dimensional space. With learned code matrix B, we can approximately
obtain P by the following scheme:

P = (φ(X)φ(X)T)−1φ(X)BT, (19)

266 X. Zhang et al.

where φ(X) = [φ(x1), φ(x2), · · ·, φ(xN)] ∈ R
p×N . When it comes to the new

queries, we can get their hash codes by our hashing function Eq. (18).

Complexity Analysis: The total time of the training stage is O(TKN log N)
with the typical assumptions that T,K,C, p � N . For a new query x, its time
complexity is O(pM + pK).

5 Experiments

5.1 Datasets and Experimental Setups

We evaluate our method on three image databases (VOC2012, CIFAR-10, Ima-
geNet) with semantic labels. VOC2012 [4] consists of 17,125 images associated
with 20 classes, with each image containing multiple semantic labels. We repre-
sent each instance in this set by a GIST feature vector of 512-dimension. 2000
images therein are sampled for the query set and the remaining are for the train-
ing set. CIFAR-10 [1] includes 60,000 images which are manually labeled as 10
classes. Each image is represented with a 320-dimensional GIST vector. In this
dataset, 10% of the total are randomly selected as the testing set. ImageNet [3] is
an image database organized according to the WordNet hierarchy. We generate
512 GIST features for each images. In the default case, 50 categories in this set
are selected randomly, where each category involves 1100 training samples and
100 query images. In above three databases, we treat two images with at least
one common category label as neighbors.

In LMSH, we set the maximum iteration number T = 5, the smoothing
hyper-parameter λ = 1, the number of anchor points p = 2000, and the learning
rates αw = 1.0e − 8 and αv = 0.5 on all the listed datasets with different scales.
In addition, we set the angular margin parameter m = 4 by default.

We compare our LMSH with some state-of-the-art hashing methods which
include unsupervised methods: ITQ [7], SGH [8], and supervised methods:
KSH [13], SELVE [25], LFH [24], SDH [22], COSDISH [9]. For all the comparison
approaches, we use the publicly available MATLAB codes and tune the para-
meters as suggested in the corresponding papers. Furthermore, we use randomly
sampled 2,000 anchor points, in accordance with our LMSH, for SDH.

5.2 Results and Analysis

Large Margin or not? To see how much the large-margin extension will con-
tribute to the hash codes learning, we perform a comparison of our methods with
or without the large-margin extension. The comparative results, measured by the
mean average precision (MAP) [5], are shown in Table 1, where LMSH (m = 2)
and LMSH (m = 4) represents our LMSH methods with the margin parameter
set to m = 2, 4 respectively, while LMSH (m = 1) in fact denotes the paral-
lel method without the large-margin optimization. As we can see, LMSH with
m = 2, 4 clearly yield more effective hash codes than the one without the large-
margin extension (m = 1) in three different datasets, which would be due to

Large-Margin Supervised Hashing 267

the larger angular decision margin that reduces the quantization error. Partic-
ularly, the performance gaps between the methods with large-margin optimiza-
tion or not are increased with longer bits. Besides, compared to LMSH (m = 2),
LMSH (m = 4) still keeps a little advantage in most of scenes, but the gaps are
relatively small. This might be because the angular margin with m = 2 is large
enough, and it’s difficult to mine more discriminatory information for a larger
angular margin.

Table 1. Comparative mean average precision (MAP) of our methods with different
margin values. The best results are in bold, and the second-best ones are underlined.

Method VOL2012 CIFAR-10 ImageNet (50 categories)

32-bits 64-bits 96-bits 32-bits 64-bits 96-bits 32-bits 64-bits 96-bits

LMSH (m = 1) 0.5271 0.5133 0.5037 0.5344 0.4052 0.3897 0.2132 0.2152 0.1901

LMSH (m = 2) 0.5474 0.5454 0.5686 0.6447 0.6588 0.6696 0.2135 0.2443 0.2491

LMSH (m = 4) 0.5649 0.5668 0.5687 0.6478 0.6618 0.6713 0.2183 0.2386 0.2448

8 12 16 24 32 48 64 96
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of bits

M
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (M

AP
)

LMSH
COSDISH
SDH
LFH
KSH
ITQ
SELVE
SGH

(a) VOC2012

8 12 16 24 32 48 64 96

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of bits

M
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (M

AP
)

LMSH
COSDISH
SDH
LFH
KSH
ITQ
SELVE
SGH

(b) CIFAR-10

8 12 16 24 32 48 64 96
0

0.05

0.1

0.15

0.2

0.25

Number of bits

M
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (M

AP
)

LMSH
COSDISH
SDH
LFH
KSH
ITQ
SELVE
SGH

(c) ImageNet

Fig. 3. Performance comparison (MAP) of LMSH and other hashing methods.

Results in Three Datasets: We evaluate our method on three image datasets
with semantic labels. The Fig. 3(a), (b) and (c) curve the MAP values of all com-
pared methods on VOC2012, CIFAR-10 and ImageNet datasets respectively. As
can be seen clearly from Fig. 3, most supervised methods, such as KSH, LFH,
SDH and COSDISH, achieve more effective performance than the unsupervised
schemes, since the supervised information is involved for training. Thereinto,
when hash code is long enough, SDH performs excellent, but it might be lack
of stability with shorter bits. Some methods, such as LFH, obtains high perfor-
mance on the first two datasets, but poorer performances on ImageNet, which
probably are ascribed to the complexity of the ImageNet dataset. COSDISH,
the up to date method, can acquire a stable and outstanding result, but it’s
still inferior to our LMSH. Obviously, our LMSH algorithm consistently outper-
forms all the compared methods in every length of hash code. This is because
our large-margin extension significantly encourages inter-class separability and
intra-class compactness, which reduce quantization error.

268 X. Zhang et al.

Further Explorations on Large-scale DataSet: To further evaluate the
proposed LMSH in a large-scale dataset, we randomly collect more than 100,000
images from 100 different categories in the ImageNet set. Furthermore, 5,000
samples are uniformly selected for the query set. The parameter settings of all
hashing methods including our LMSH are identical to the above experiments.
The MAP values and the precision curves of topN retrieved images (at 32bits
and 64bits) are plotted in Fig. 4. Comparing Figs. 3(c) and 4(a), we can see
that the effectiveness of all hashing methods meet a significant decline, probably
because more classes lead to a more challenging task. However, the efficacy
ranking of all methods varies little. Specifically, LMSH significantly outperforms
other algorithms both in MAP and the topN precision varying code length, which
exhibits that our proposed approach also have the ability to cope with large-scale
datasets.

8 12 16 24 32 48 64 96
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of bits

M
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (M

AP
)

LMSH
COSDISH
SDH
LFH
KSH
ITQ
SELVE
SGH

(a) MAP

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

The number of retrieved samples

Pr
ec

isi
on

 @
 3

2
bi

ts

LMSH
COSDISH
SDH
LFH
KSH
ITQ
SELVE
SGH

(b) P v.s. topN (32bits)

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

The number of retrieved samples

Pr
ec

isi
on

 @
 6

4
bi

ts

LMSH
COSDISH
SDH
LFH
KSH
ITQ
SELVE
SGH

(c) P v.s. topN (64bits)

Fig. 4. Results on the large scale datasets: ImageNet (100 categories)

6 Conclusion

In this paper, we proposed an novel supervised hashing method with a large
angular decision margin whose size can be justified by a preset parameter. The
large angular decision margin can encourage the inter-class separability and lead
to less quantization error. The experimental results on public datasets demon-
strate that our proposed LMSH is an effective and competitive hashing method.

References

1. Alex, K., Hinton, G.: Learning multiple layers of features from tiny images (2009)
2. Deng, C., Liu, X., Mu, Y.: Large-scale multi-task image labeling with adaptive

relevance discovery and feature hashing. Sig. Process. 112, 137–145 (2015)
3. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale

hierarchical image database. In: CVPR, pp. 248–255 (2009)
4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The

pascal visual object classes challenge 2012 (VOC2012) results (2012). http://www.
pascal-network.org/challenges/VOC/voc2012/workshop/index.html

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

Large-Margin Supervised Hashing 269

5. Lin, G., Shen, C., Shi, Q., Hengel, A., Suter, D.: Fast supervised hashing with
decision trees for high-dimensional data. In: CVPR, pp. 1971–1978 (2014)

6. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB, pp. 518–529 (1999)

7. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning
binary codes. In: CVPR, pp. 817–824 (2011)

8. Jiang, Q., Li, W.: Scalable graph hashing with feature transformation. In: IJCAI,
pp. 2248–2254 (2015)

9. Kang, W., Li, W., Zhou, Z.: Column sampling based discrete supervised hashing.
In: AAAI, pp. 1230–1236 (2016)

10. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In:
NIPS, pp. 1042–1050 (2009)

11. Lin, G., Shen, C., Suter, D., Hengel, A.: A general two-step approach to learning-
based hashing. In: ICCV, pp. 2552–2559 (2013)

12. Liu, W., Mu, C., Kumar, S., Chang, S.: Discrete graph hashing. In: NIPS, pp.
3419–3427 (2014)

13. Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels.
In: CVPR, pp. 2074–2081 (2012)

14. Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: ICML, pp. 1–8
(2011)

15. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional
neural networks. In: ICML, pp. 507–516 (2016)

16. Liu, X., Fan, X., Deng, C., Li, Z., Su, H., Tao, D.: Multilinear hyperplane hashing.
In: CVPR, pp. 5119–5127 (2016)

17. Liu, X., He, J., Deng, C., Lang, B.: Collaborative hashing. In: CVPR, pp. 2147–
2154 (2014)

18. Liu, X., He, J., Lang, B., Chang, S.: Hash bit selection: a unified solution for
selection problems in hashing. In: CVPR, pp. 1570–1577 (2013)

19. Liu, X., Huang, L., Deng, C., Lu, J., Lang, B.: Multi-view complementary hash
tables for nearest neighbor search. In: ICCV, pp. 1107–1115 (2015)

20. Liu, X., Mu, Y., Lang, B., Chang, S.: Compact hashing for mixed image-keyword
query over multi-label images. In: ICMR, p. 18 (2012)

21. Liu, X., Mu, Y., Zhang, D., Lang, B., Li, X.: Large-scale unsupervised hashing
with shared structure learning. IEEE Trans. Cybern. 45, 1811–1822 (2015)

22. Shen, F., Shen, C., Liu, W., Shen, H.: Supervised discrete hashing. In: CVPR, pp.
37–45 (2015)

23. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760
(2008)

24. Zhang, P., Zhang, W., Li, W., Guo, M.: Supervised hashing with latent factor
models. In: SIGIR, pp. 173–182 (2014)

25. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding
approach to hashing. IEEE Trans. Image Process. 23, 3737–3750 (2014)

	Large-Margin Supervised Hashing
	1 Introduction
	2 Preliminary
	3 The Proposed Method: LMSH
	4 Learning Algorithms
	5 Experiments
	5.1 Datasets and Experimental Setups
	5.2 Results and Analysis

	6 Conclusion
	References

