
Adaptive Lp (0 < p < 1) Regularization: Oracle
Property and Applications

Yunxiao Shi1(B), Xiangnan He1, Han Wu1, Zhong-Xiao Jin2, and Wenlian Lu1

1 School of Mathematical Science, Fudan University, Shanghai, China
kentsyx@gmail.com

2 SAIC Motor Corporation Limited, No. 489, Wei Hai Road, Shanghai, China

Abstract. In this paper, we propose adaptive Lp (0 < p < 1) estimators
in sparse, high-dimensional, linear regression models when the number of
covariates depends on the sample size. Other than the case of the num-
ber of covariates is smaller than the sample size, in this paper, we prove
that under appropriate conditions, these adaptive Lp estimators possess
the oracle property in the case that the number of covariates is much
larger than the sample size. We present a series of experiments demon-
strating the remarkable performance of this estimator with adaptive Lp

regularization, in comparison with the L1 regularization, the adaptive L1

regularization, and non-adaptive Lp regularization with 0 < p < 1, and
its broad applicability in variable selection, signal recovery and shape
reconstruction.
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1 Introduction

High prediction accuracy and discovering relevant predictive variables are two
fundamental problems in statistical learning. Variable selection is particularly
important when the underlying model has a sparse representation, especially in
high-dimensional and massive data analysis. It has been argued by [1] that a
good estimator should have oracle property, namely, the estimator

– correctly selects covariates with nonzero coefficients with probability converg-
ing to one, as the sample size goes to infinity, and

– has the same asymptotic distribution as if the zero coefficients were known
in advance.

Consider the linear regression model y = Xβ + ε, where X ∈ Rn×ln is a
design matrix, β ∈ Rln is the vector of unknown coefficients, and ε ∈ Rn is the
vector of i.i.d. random variables with mean zero and finite variance σ2. Note
that ln, the length of β depends on the sample size n and may go to infinity as
n → ∞. Without loss of generality, we assume that the response vector y ∈ Rn
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and the covariates are centered so that the intercept term can be excluded. In
many situations we are to recover β from observation y such that β is of the
most sparse structure, that is, β has the fewest nonzero components. A direct
approach is to formulate this problem as minβ∈Rn ||β||0 such that y = Xβ + ε,
which can be transformed into minβ∈Rn ||y − Xβ||2 + λ||β||0, which is called
an L0 regularization problem, where ||β||0 is the number of nonzero components
of β and λ is the regularization parameter. Indeed this method can recover
sparse solutions even in situations in which ln � n, in fact, it can perfectly
recover all the sparse β obeying ||β||0 ≤ n/2. However this is of little practical
use since generally solving an L0 regularization problem usually requires an
intractable number of combinatorial searches. To conquer this difficulty, several
approximations to the L0 problem have been proposed, such as L1regularization
[2–5], the adaptive Lasso [6], the Lp (0 < p < 1) regularization [7,8] and the
adaptive Lp (0 < p < 1) regularization [9].

Among the proposed techniques above, L1 regularization (or Lasso) over-
came the huge computational cost for large problems of the L0 but may intro-
duce inconsistent estimations [6] and extra bias [10]. The adaptive Lasso and Lp

regularization solved the above problems and their oracle property were estab-
lished in both low and high dimensional scenarios [6–8,11]. Meanwhile it has
been claimed that the Lp (0 < p < 1) regularization yields more sparse solutions
than both the Lasso and the adaptive Lasso [12,13], but sometimes its sparsity
would lead to unstable estimation [9], who therefore proposed the adaptive Lp

(0 < p < 1) regularization, minβ∈Rn ||y − Xβ||2 + λ
∑ln

j=1 ωj |βj |p, and proved
its oracle property when the number of covariates is fixed.

In this paper, we continue to investigate the adaptive Lp (0 < p < 1) reg-
ularization when the number of covariates depends on the sample size and can
go to infinity as the sample size goes to infinity. We prove that under a series of
mild conditions, the adaptive Lp (0 < p < 1) estimator enjoys the oracle prop-
erty in high-dimensional settings even when ln � n, and proposed algorithms
that can efficiently solve the adaptive Lp. Finally we demonstrate the superior
performance of the adaptive Lp in variable selection, signal recovery and image
shape reconstruction by a series of numerical experiments, in comparison to the
L1 estimator, the adaptive L1 estimator and the L1/2 estimator.

2 Preliminaries

The symbol → stands for convergence in the common sense, →p for conver-
gence in probability, and →d for convergence in distribution. P(·) stands for the
probability. Xn = Op(1) stands for some stochastically bounded sequence, and
Xn = op(1) for Xn →p 0 as n → ∞. Meanwhile β0 = [β�

01,β
�
00]

� ∈ Rln , where
β01 ∈ Rkn consists of the nonzero terms of β0 and β00 ∈ Rmn are the zero ones,
note that kn + mn = ln. We center the response vector y = [y1, · · · , yn]� and
standardize the design matrix X = (xij)n×pn

so that
∑n

i=1 yi = 0,
∑n

i=1 xij =
0, 1

n

∑n
i=1 x2

ij = 1, j = 1, · · · , ln.
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Let J1n = {j | β0j �= 0} and set X�
n = [x1,x2, · · · ,xn] ∈ Rln×n,

Xn1 = [x11,x12, · · · x1n] ∈ Rkn×n, accrodingly we define Σn = 1
nX�

n Xn, Σn1 =
1
nX�

n1Xn1. We denote ρ1n and τ1n as the smallest eigenvalue of Σn and Σn1

respectively, and ρ2n, τ2n the largest eigenvalue of Σn and Σn1. We consider the
oracle property which was proposed by [1].

Definition 2.1 (Oracle Property). Let β̂�
n = [β̂�

n1, β̂
�
n0]

� be the estimator of the
true parameter β0 = [β�

01,β
�
00]

�. Then β̂n is said to possess oracle property if the
two conditions below are satisfied: (1). (Consistency) limn→∞ P(β̂n0 = 0) = 1;
(2). (Asymptotic Normality) Let s2n = σ2α�

n σ−1
n1 αn, where αn is any kn × 1

vector satisfying ‖αn‖2 ≤ 1 such that

n− 1
2 s−1

n α�
n (β̂n1 − β01) = n− 1

2 s−1
n

n∑

i=1

εiα
�
n Σ−1

n1 xi1 + op(1) →d N(0, 1). (2.1)

Let b1n = minj∈J1n
{|β0j |}, b2n = maxj∈J1n

{|β0j |}.

Definition 2.2 (Zero Consistency). The estimator β̃n is said to be zero con-
sistent if it satisfies the two conditions: (1). maxj∈J0n

|β̃nj | = op(1); (2). There
exists some constant c > 0 such that for any ε > 0 when n is sufficiently large
the following inequality holds

P( min
j∈J1n

|β̃nj | ≥ cb1n) > 1 − ε. (2.2)

where β̃nj is the marginal regression coefficient [11]. Furthermore, if for a certain
constant C > 0, the following

P(Rn max
j∈J0n

|β̃nj | > C) → 0, as n → ∞ (2.3)

where limn→∞ Rn = ∞, then β̃n is said to be zero consistent with rate Rn.

3 Methods

Now we present the conditions for the oracle property of the adaptive Lp regu-
larization. Due to the limit of space, we omit the proofs of all theorems which
will be seen in our future paper. We consider the estimator [9]

Un(β) =
n∑

i=1

ln∑

i=1

(Yi − xijβj)2 + λn

ln∑

i=1

ωnj |βj |p, (3.1)

where 0 < p < 1. Let β̄n = arg minβ Un(β) = [β̄�
n1, β̄

�
n0]

�, where β̄
�
n1 and

β̄�
n0 corresponds to the estimates of nonzero and zero coefficients of the true

parameter β0 respectively. We give the following assumptions.
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(B1) (i) {εi}n
i=1 is a sequence of i.i.d. random variables, with mean 0 and a finite

variance σ2; (ii). εi is sub-Gaussian, that is P(|εi| > x) ≤ K exp(−Cx2),
for all i ∈ N, some K > 0 and C > 0.

(B2) β̃n defined by Definition 2.4 is zero-consistent with rate Rn.
(B3) (i) There exists a constant c9 > 0 such that

∣
∣
∣n− 1

2
∑n

i=1 xijxik

∣
∣
∣ ≤ c9

for all j ∈ J0n, all k ∈ J1n and sufficiently large n; (ii). Let ξnj =
n−1E(

∑n
i=1 Yixij) = n−1

∑n
i=1(x

�
i1β01xij). There exists a ξ0 > 0, such

that minj∈J1n
|ξnj | > 2ξ0b1n > 0.

(B4) (i) λn

n → 0, λnn− p
2 Rα

nkp−2
n → ∞; (ii) log(mn) = o(1)(λnn− p

2 R−α
n )

2
2−p .

(B5) (i) There exists some constants 0 < b1 < b2 < ∞, such that b1 < b1n <
b2n < b2; (ii) limn→∞ kn exp(−Cn) → 0.

Theorem 3.3. Suppose the conditions (B1)–(B5) hold. Then β̄n is consistent
in variable selection, namely

P(β̄n0 = 0) → 1, P(β̄n1j �= 0, j ∈ J1n) → 1, as n → ∞. (3.2)

It can be seen from Theorem 3.3 that under appropriate conditions, the
adaptive Lp (0 < p < 1) correctly selects nonzero covariates with probability
converging to one. Towards the oracle property, we denote the nonzero terms as
β̄n and consider optimizing the following objective function

Ũn(β1) =
n∑

i=1

(Yi − x�
i1β1)2 + λ∗

n

kn∑

i=1

ωnj |β1j |p, (3.3)

where kn is number of nonzero terms of β̄n.
Let β̂n1 be the nonzero terms of β̂0 = arg minβŨn(β). We further give the

following conditions.

(B6) (i) There exists constants 0 < τ1 < τ2 < ∞, such that 0 < τ1 < τ1n <

τ2n < τ2; (ii) n− 1
2 max1≤i≤n x�

i1xi1.
(B7) (i) kn(1 + λ∗

n)/n → 0, (ii) λ∗
n(kn/ln

√
n)

1
2 → 0.

Therefore we have

Theorem 3.4. β̂n1 is the estimate of the true non-zero parameter β̂01. Suppose
condition (B1)–(B7) hold, then

n
1
2 s−1

n α�
n (β̂n1 − β̂01) = n

1
2 s−1

n

n∑

i=1

εiα
�
n Σ−1

n1 xi1 + op(1) →d N(0, 1).

where s2n = σ2α�
n Σ−1

n1 αn and αn is an arbitrary kn × 1 vector with ||αn||2 ≤ 1.

The assumption that β̃n is zero-consistent with rate Rn is critical in estab-
lishing the oracle property of the adaptive Lp (0 < p < 1) regularizer. [11]
points out that when ln is fixed or of the order o(

√
n), the OLS estimator
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β̃ols = (X�X)−1X�y is feasible as β̃n. But when ln > O(
√

n), the OLS esti-
mator is no longer zero-consistent. Here we follow the work of [11] but with
necessary modification, i.e., ∃b1 > 0 such that b1n > b1 > 0 to present initial
estimator. Refer to Sect. 3 of [11] for the rest of the details of discussions. For
the case ln < n, refer to [9] for details.

However,for the case ln > n, the OLS is no longer feasible as an initial
estimator. By [11] and Theorem 3.3, we perform variable selection first to obtain
the nonzero βj , which induces the following Algorithm 1.

Algorithm 1. adaptive Lp algorithm when ln > n.
input : Predictor matrix X, observation vector y
output: The adaptive Lp estimator β̂
begin

Let β̃nj =
∑n

i=1 Yixij/
∑n

i=1 x2
ij

Let ωnj = |β̃nj |−γ

while ln > n do
λ ←− λnωnj/

∑n
i=1 x2

ij

a ←−∑n
i=1 yixij/

∑n
i=1 x2

ij

for j = 1 to ln do
if λ ≥ cp|a|2−p then

βj is zero
else

βj is nonzero
end if

end for
I is the index of all nonzero βj

X ←− XI, β ←− βI,y ←− XIβI

ln ←− column number of X
n ←− row number of X

end while

end
Use Algorithm 3.1 in [9] with latest X, y as input.
Output adaptive Lp estimator β̂.

4 Results

In this section, we give three application examples of variable selection, sig-
nal recovery and image shape reconstruction respectively. We note that by
Algorithm 1 solving the adaptive Lp (0 < p < 1) is equivalent to solving a series
of adaptive L1 which is very quick on a modern computer. We take p = 1/2 in the
experiments, which was recommended by [12]. To show the performance of the
present algorithm, we compare with the L1 (Lasso), adaptive L1 and (nonadap-
tive) L1/2 regularized estimators. In practice, we use the algorithm proposed in
[6] to compute the adaptive Lasso and apply the iterative L1 algorithm in [12]
to the L1/2 regularization. The parameter λn in L1/2 is selected by using the
generalized cross-validation(GCV) method described in [1,16].
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For comparison with the adaptive L1 regularizer and the adaptive L1/2

regularizer, two-dimensional cross-validation is used and selected γ from
{0.5, 1.0, 1.5}. For fixed γ and λ, we apply Algorithm 1 to obtain a numer-
ical solution β̂ = β̂γ,λ. Note that β̂γ,λ is the minimum of L1/2 regularizer
[12], namely β̂γ,λ = (X�X + λnWD∗)−1X�y, where W is a diagonal matrix
with elements ωnj and D = diag{|β̂j |3/2}. Here D∗ of D. Meanwhile the num-
ber of nonzero components of β̂γ,λ can be approximated by (refer to [16,17])
Pγ,λ = tr(X(X�X + λWD∗)−1X�). Thus the generalized cross-validation sta-
tistic is given by GCVγ,λ = 1

ln

RSSγ,λ

(1−Pγ,λ/ln)2 ,where RSS stands for the residual sum

of squared errors:
∑n

i=1

(
yi − x�

i β
)2.Therefore we obtain the solution of adap-

tive L1/2 regularizer by the minimization problem {γ̂, λ̂} = arg minγ,λ GCVγ,λ,
that is, β̂ = β̂γ̂,λ̂. All the simulation codes are written in Python with using the
package SPAMS [15].

4.1 Variable Selection

Consider the following linear regression model mentioned in [1,12,16] y = Xβ∗+
σε, where the true values of β∗ are [3, 1.5, 0, 0, 2, 0, 0, 0]�, ε is the i.i.d. noise
following certain distribution, and σ is the strength of the noise. We first take
σ = 1 and second σ = 3 with ε following the standard normal distribution.
Finally take σ = 1 but ε follows the linear mixture of 30% standard Cauchy
distribution and 70% standard normal distribution (denoted as MIXTURE in
the result table). The correlation between each xi and xj is equal to (1/2)|i−j|.

For each type of noise, we simulate 100 datasets of n = 100 observations
respectively, and the relative model error in each dataset is defined as ||ŷ −
Xβ∗||2/||y − Xβ∗||2, where ŷ = Xβ̂, ||ŷ − Xβ∗||2 is the model error and ||y −
Xβ∗||2 is the inherent prediction error due to the noise. The results shown in
Tables 1 and 2 illustrated that adaptive L1/2 is more accurate and sparse than
the other three regularizers.

Table 1. Median value of relative model error (n = 100) (with min/max)

ε ∼ N(0, 1) ε ∼ MIXTURE

σ = 1 σ = 3 σ = 1

Lasso .2871(.1692/.4239) .3315(.2341/.4673) .2437(.1266/.3319)

Adaptive Lasso .2179(.0936/.3937) .3067(.2226/.4183) .1635(.0455/.3243)

L1/2 .2367(.1441/.4173) .3184(.2304/.4540) .1982(.0602/.3299)

Adaptive L1/2 .1896(.0823/.3947) .2941(.2215/.4191) .1527(.0454/.3240)
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Table 2. Average number of zero coefficients (n = 100) (with standard deviation)

ε ∼ N(0, 1) ε ∼ MIXTURE

σ = 1 σ = 3 σ = 1

Lasso 2.91(.92) 1.81(1.21) 2.55(1.03)

Adaptive Lasso 3.64(1.06) 2.29(1.18) 3.09(1.23)

L1/2 4.27(1.12) 2.72(1.31) 3.68(.90)

Adaptive L1/2 4.64(.86) 3.27(1.18) 4.09(1.19)

4.2 Signal Recovery

In this and the next experiment, we show the application of adaptive Lp regular-
ization in compressed sensing [2,19,20]. Consider a real-valued and finite length
signal x ∈ RN , which is represented by an orthonormal basis {ψi}N

i=1 of RN . Let
Ψ = [ψ1, · · · , ψN ]. There exists s ∈ RN such that x = Ψs =

∑N
i=1 ψisi.

Consider y = Φx + ε, where ε is a noise term which is either stochas-
tic or deterministic and Φ is the “sensing matrix”. It was shown by [19,21]
that reconstruction of x can be formulated to minimize the following L0 prob-
lem minx∈RN

∑N
i=1 Ixi 	=0 such that ||y − Φx||2 ≤ δ, where the parameter δ is

adjustable so that the true signal x can be feasible. According to the work of [2],
if x is sufficiently sparse and Φ satisfies the Restricted Isometry Property [23],
this L0 problem is equivalent to minx∈RN

∑N
i=1 |xi| such that ||y − Φx||2 ≤ δ,

an L1 regularization. Now we apply the adaptive L1/2 regularizer to solve
the original problem, that is, we consider the following minimization problem
minx∈RN

∑N
i=1 ωi|xi|1/2 such that ||y − Φx||2 ≤ δ, to reconstruct the signal.

As a numerical experiment, take x = sin(2πf1t) + cos(2πf2t) + ε with a fix
signal length N = 512, t ∈ [0, 0.1] with fixed-length step, f1 = 16 and f2 = 384.
We consider the noise ε follows the standard normal distribution with μ = 0
and σ = 0.01. Discrete cosine transform (DCT) is used to obtain the sparse
representation of x (denoted as x̂). Then we set M = 128 and sample a random
M × N matrix Φ with i.i.d. Gaussian entries. We first apply the L1, adaptive
L1, L1/2 and our adaptive L1/2 regularization to recover x̂ and then employ the
inverse discrete cosine transform (idct) to obtain the reconstructed x respectively.
We run each estimator for 100 trials.

We compare the recovery performance of both x̂ and x (denoted as x̂re and
xre respectively). For x̂re, we measure the performance in terms of “sparseness”,
by the ratio of the number of nonzero coefficients in x̂re to signal length. and for
xre we consider the relative error ||xre − x||2/||x||2. Tables 3 and 4 shows us that
though in terms of accuracy (relative error) our adaptive L1/2 performs slightly
worse than adaptive L1 but better than the others and yields the most sparse
solution.
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Table 3. Averaged sparseness of recovered x̂ (with standard deviation(SD))

Number of nonzero coefficients Sparseness

Lasso 122.3(2.1) .238(.004)

Adaptive L1 63.4(5.6) .124(.011)

L1/2 48.4(4.2) .095(.008)

Adaptive L1/2 43.2(3.4) .084(.006)

Table 4. Averaged relative error under 2-norm of recovered x (with SD)

Relative error under 2-norm

Lasso .185(.009)

Adaptive L1 .145(.007)

L1/2 .175(.008)

Adaptive L1/2 .168(.007)

4.3 Shape Reconstruction

We use the example proposed by [24] to reconstruct an image from a set of par-
allel projections, acquired along different angles. Similar patterns are commonly
seen in computed tomography (CT) data. Without prior knowledge on the sam-
ple, the number of projections that are required to reconstruct the image is of
order O(N) (in pixels). Here, we consider the case of the sparse image with the
objects that are basic shapes where only the boundary of objects have non-zero
value. These images are artificially generated but still correspond to real-life
applications including monitoring cellular material.

The sparse image we use here is of size 128 × 128 and we added Gaussian
noise with standard variance σ = 0.2 (shown in Fig. 1(a)). In reconstruction, we
stretch it into a 128×128 = 16384 dimensional vector. The reconstruction results
using the Lasso and our adaptive L1/2 with N/7 pixels and N/10 sampled are
shown in Fig. 1(a).

Both estimators recovered the original image with highly visible accuracy
with N/7 pixels sampled, while the adaptive L1/2 regularizer has a better per-
formance numerically which is demonstrated in Table 5. But when the sam-
pling ratio drops to N/10, the Lasso starts to fail (notice that the shapes break
down), while our adaptive L1/2 still gives reconstruction result with high accu-
racy (shown in Fig. 1(b)).

We use the Structural Similarity Image Metric (SSIM) [25,26] to compare
the reconstruction performance among the four estimators. The SSIM index can
be viewed as a quality measure of one of the images being compared, provided
the other image is regarded as of perfect quality and improve consistence with
human visual perception, in comparison to the traditional indices such as peak
signal-to-noise ratio (PSNR) and mean squared error (MSE) [27].
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Fig. 1.

Table 5 shows that the adaptive L1/2 regularizer has the best performance of
reconstruction in both cases that the sampling ratio is N/7 or N/10.

Table 5. Performance comparison of reconstruction results measured by SSIM among
the Lasso, adaptive L1, L1/2, adaptive L1/2.

SSIM (N/7 pixels sampled) SSIM (N/10 pixels sampled)

Lasso 0.217 0.090

Adaptive L1 0.197 0.116

L1/2 0.224 0.113

Adaptive L1/2 0.233 0.120

5 Concluding Remarks

We have conducted a study of a specific framework of the adaptive Lp (0 <
p < 1) regularization, towards better performance for the estimation of sparsity
problems. We have shown that the adaptive Lp regularized estimators possess
the oracle property when ln � n. We also proposed a fast and efficient algorithm
to solve the adaptive Lp regularization problem. Our results offer new insights
into the Lp (0 < p < 1) related methods and reveals its potential application in
diverse fields of compressed sensing.
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