
Chapter 2

Harmful Algal Blooms and the Importance

of Understanding Their Ecology

and Oceanography

Patricia M. Glibert, Elisa Berdalet, Michele A. Burford, Grant C. Pitcher,

and Mingjiang Zhou

2.1 Introduction

Over the decades of the 1980s and 1990s, as the expansion in harmful algal blooms

(HABs) was gaining recognition (e.g., Anderson 1989; Hallegraeff 1993;

GEOHAB 1998; Smayda 2002), no longer was it sufficient to study bloom events

in isolation; many countries were facing a bewildering array of impacts caused by

species not previously known or recognized in those regions. The complexity of the

HAB problem, its causative factors, and the impacts HABs have on the environ-

ment were becoming well characterized. The benefits of collaborative, cooperative,

and comparative studies on HABs were recognized to advance the understanding of

this phenomenon and to provide scientific guidance to managers. The aim of this

chapter is to introduce several aspects of this complex phenomenon, and why an

understanding of ecology and oceanography of HAB species and their associated

events is so important. This chapter also briefly introduces the effects of global

changes in nutrients and climate that are developed more fully in subsequent

chapters [see Chap. 4, Glibert et al. (2018b), and Chap. 5, Wells and Karlson
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(2018)], as well as a number of concepts relating to the adaptive strategies of HABs

which help to explain why they are so successful in environments subject to many

anthropogenic changes.

2.2 What Are Harmful Algal Blooms?

The majority of algae in marine and freshwaters are not only beneficial but also

necessary to the functioning of aquatic ecosystems; they form the base of the food

web, and it is this microscopic life on which all aquatic life ultimately depends for

food (Glibert et al. 2005). Algae produce oxygen and also play an important role in

regulating atmospheric CO2 by sequestering it during production and transporting it

to deeper waters. Yet, a comparatively small subset of the total known microscopic

algal species can cause problems. This can occur when they accumulate in suffi-

cient numbers, when they produce toxins, or when they directly or indirectly

interfere with other organisms or alter the physical habitat indirectly, negatively

impacting the growth of others. These are known as the harmful algae, and their

associated proliferation events are referred to as HABs. HABs may be caused by the

explosive growth of a single species that rapidly dominates the water column but

may also be the result of highly toxic cells that do not accumulate in high numbers.

Therefore, in some cases, toxic conditions can also occur when the water is clear

with very low cell concentrations. The effects of HABs, detailed in the next section,

are as varied as the organisms themselves.

The causative organisms, the harmful algae, were formerly called “red tides”

because many were composed of dinoflagellates that in high densities coloured the

water red, but blooms may also be green, yellow, or brown, depending on the type

of algae present and their pigmentation (Fig. 2.1; Glibert et al. 2005). Many marine

HABs are, indeed, dinoflagellates, but other classes of algae, including

cyanobacteria, raphidophytes, and diatoms, have members that may form HABs

under some conditions. Some HABs organisms are not algae at all, that is, they do

not depend on photosynthesis for their nutrition; they obtain their nutrition exclu-

sively through grazing and particle ingestion, while many of them have the ability

to use varied sources of nutrition, mixing photosynthesis and inorganic nutrient

uptake together with grazing, depending on the environmental conditions [see

Chap. 7, Flynn et al. (2018)]. Other harmful algae that also are not technically

“algae” are the cyanobacterial HABs, CyanoHABs, some of which have the ability

to “fix” their own nitrogen (N) from the atmosphere. The term “HAB” also applies

to blooms of some nontoxic micro- or macroalgae (seaweeds), which can grow out

of control and cause major ecological impacts such as the displacement of indig-

enous species, habitat alteration, or oxygen depletion. All of these harmful causa-

tive organisms are included under the HAB species umbrella label, and thus the

term “HAB” is operational and not technical, but this distinction is irrelevant in

terms of human health and ecological and economic impacts. Moreover, with few

exceptions, there are no formal definitions of the absolute abundance of a HAB

species that determine whether it is a “bloom.”
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Fig. 2.1 Many HABs are produced by the accumulation of vividly coloured cells in surface water.

The blooms shown here are from the Philippines (panel a, photo: http://taqplayer.info/philippine-

red-tide); Florida, USA (panel b, photo: http://www.politicnote.com/army-corps-of-engineers-

battles-guacamole-thick-florida-algae/); Qingdao, China (panel c, photo: www.sailjuice.com);

Long Island, NY, USA (panel d, photo by C. Gobler); Sydney Harbour, Australia (panel e, photo:

https://bioweb.uwlax.edu/bio203/f2013/bradford_andr/habitat.htm); and a freshwater lagoon in

Uganda (panel f, photo by P. Glibert). These high biomass blooms can cause hypoxia, can

contribute to toxicity of fish and shellfish, and can cause other environmental problems
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2.3 How Are HABs Harmful?

HABs can be harmful in several fundamental ways. Many HABs produce toxins,

some of which are among the most potent toxins known. These toxins have various

vectors by which harmful effects are transferred through the food chain or to human

consumers, and there is a wide range of potency (Table 2.1). The range of toxins

produced by the common marine HABs includes brevetoxins, the cause of neuro-

toxic shellfish poisoning (NSP); saxitoxins, the cause of paralytic shellfish poison-

ing (PSP); okadaic acid (OA), the cause of diarrhetic shellfish poisoning (DSP);

domoic acid (DA), the cause of amnesic shellfish poisoning (ASP); azaspiracid, the

cause of azaspiracid shellfish poisoning (AZP); and ciguatoxins (CTX), the cause of

ciguatera fish poisoning (Landsberg 2002; Glibert et al. 2005). There are no known

antidotes for poisonings caused by HAB toxins. Although human poisoning events

are few in the developed world due to careful monitoring of seafood products, it has

been estimated that direct human poisonings in many parts of Asia from toxic algae

number in the thousands annually (Yan and Zhou 2004). In Florida, USA, when

Karenia brevis blooms occur, increases in hospitalizations have been reported due

to gastrointestinal and respiratory irritation that especially affects those that are

immune-compromised (Kirkpatrick et al. 2006). CyanoHABs also have a range of

human effects, depending on the toxin involved. Some effects are as mild as skin

rashes or irritations, while other effects include cancer, particularly liver cancer,

caused by long-term exposure to toxins such as microcystins in drinking water (c.f.,

Backer and McGillicuddy 2006; Bláha et al. 2009, and references therein).

Toxins may kill shellfish or fish directly or may have little effect on them but

may cause illness or death of people or other consumers in the food web when fish

or shellfish that have accumulated the algal toxins are eaten (Landsberg 2002). Not

all fish exposed to algal toxins die; some experience extreme illness. As an

example, acute effects of brevetoxin (from K. brevis) on fish have been reported

to include altered swimming behaviour (swimming in a spiral, twisting behaviour,

Table 2.1 Major syndromes, vectors, and human health symptoms associated with common

HABs

Illness Major vector Symptoms

Amnesic shellfish
poisoning (ASP)

Domoic acid from Pseudo-
nitzschia sp. in shellfish

Short-term memory loss, vomiting,

cramps

Diarrhetic shellfish
poisoning (DSP)

Okadaic acid from Dinophysis
sp. in shellfish

Diarrhoea, vomiting, cramping

Neurotoxic shellfish
poisoning (NSP)

Brevetoxin from Karenia sp. in
shellfish, aerosolized toxins

Nausea, diarrhoea, respiratory distress,

eye irritation

Paralytic shellfish
poisoning (PSP)

Saxitoxin from Alexandrium
sp. and other species in

shellfish

Numbness around the lips and mouth,

respiratory paralysis, death

Cyanotoxin

poisoning

Microcystins and other toxins

from cyanobacteria in water

Skin irritation, respiratory irritation,

tumour promotion, liver cancer,

liver failure
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loss of equilibrium), defecation and regurgitation, paralysis of the pectoral fin,

curvature of the caudal fin, and convulsions (Landsberg 2002). Deaths of birds

and mammals, such as dolphins, manatees, sea lions, and whales, have also been

related to HABs and their toxins and are of immense public and economic concern

when they do occur. One of the most well-documented effects of toxin transfer

through the food web is that of California sea lions that have been shown to become

intoxicated with DA resulting from Pseudo-nitzschia blooms, which accumulate in

the northern anchovy, a common prey item for the sea lions. Seizures, complica-

tions of pregnancy, and death are among the commonly observed effects in these

animals (Silvagni et al. 2005). A recent massive whale mortality event in Chile in

2015, including at least 340 primarily sei whales, has been linked to PSP toxicity

from feeding near shore (Häussermann et al. 2017).

While the most familiar impact of HABs is their intoxication of shellfish, leading

to contaminated seafood, some HAB toxins have also been shown to have adverse

effects on very early life stages of consumers, leading to increased mortalities at the

larval stage. For example, experiments conducted on embryos and larvae of freshly

spawned oysters, Crassostrea virginica and C. ariakensis, exposed to the toxic

dinoflagellate Karlodinium veneficum showed increased mortality relative to sim-

ilar embryos and larvae exposed to a control diet (Glibert et al. 2007; Stoecker et al.

2008). These experiments also demonstrated important behavioural changes in

pediveliger larvae when exposed to K. veneficum in their diet, leading them to

stop swimming and to sink. Even if such effects did not immediately result in

mortality, any change in behaviour may influence larval dispersal, reduce feeding

and growth, and likely increase the susceptibility of larvae to predation. Related

results have been documented for the HAB dinoflagellate Prorocentrum minimum.
Larvae had poorer survival and lower settling success with only P. minimum in the

diet, but survival improved when the proportion of P. minimum in their diet was

reduced (Luckenbach et al. 1993; Wikfors and Smolowitz 1995). In Australia, the

related HAB species, P. rhathymum, has been associated with mortalities of spat of

the Japanese or Pacific oyster, C. gigas (Pearce et al. 2005).
The other fundamental way in which HABs are harmful is through high biomass

accumulation that may lead to environmental damage, including hypoxia, anoxia,

and shading of submerged vegetation, each of which, in turn, can lead to a multitude

of negative environmental consequences. These are the blooms that cause visible

water discoloration (Fig. 2.1). Such high biomass blooms can cause hypoxia and

anoxia, and the global occurrences of such “dead zones” are expanding (Diaz and

Rosenberg 2008).

Many types of harmful effects occur from HABs that are not directly toxic.

Some HABs have physical structures, such as spines, that can lodge in fish gills and

can cause irritation and eventual suffocation. Some HABs have more subtle effects

on the ecosystem or effects that are more difficult to quantify in the wild. Blooms

that are known to disrupt ecosystem function but which may or may not necessarily

be toxic are considered ecosystem disruptive algal blooms (EDABs; Sunda et al.

2006). Blooms of picoplankton, such as the pelagophyte Aureococcus
anophagefferens (brown tide) and the CyanoHAB Synechococcus sp., which can
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be sustained for long periods of time once established, can have multiple negative

ecosystem effects that, in turn, may help to sustain these blooms. The positive

feedbacks of reduced grazing and/or bottom shading contribute to the availability of

nutrients for these blooms (Sunda et al. 2006). In Laguna Madre, Texas, which

experienced a nearly decade-long bloom of the EDAB species Aureoumbra
lagunensis, the density of protozoan grazers was found to be greatly reduced during
blooms, and it was suggested that a thick polysaccharide layer around the cells may

make it difficult for the protozoa to feed (Buskey and Stockwell 1993; Buskey et al.

2001). Allelopathic chemicals may also play an important role in maintaining

EDAB species (Sunda et al. 2006; Granéli et al. 2008).

In addition to ecological and human health impacts of HABs, the economic

impacts can also be very large. The overall economic impact of HABs is difficult to

determine, but the costs range from the direct expenses of public health and medical

care for those affected to losses in commercial and recreational fishing and in

tourism-related activities from water quality deterioration. Single HAB fish kill

events in Korea and shellfish kill events in China have been estimated to have cost

from $1 to $100 million and $300 million, respectively, in lost fish or shellfish in

aquaculture settings, while in Japan such events have been estimated to have

resulted in losses of fish worth more than $300 million (GEOHAB 2010; Trainer

and Yoshida 2014). Loss of revenue from shellfish harvesting area closures also

takes enormous economic toll on communities affected. For example, in 2003, it

was estimated that more than $6 million in revenue from sport fishing and tourism

due to fish kills were lost in Texas due to a bloom of a small flagellate (Prymnesium
parvum) in inland rivers and reservoirs. Yet another economic cost in some regions

is the effect of HABs on seawater reverse osmosis (SWRO) desalination plants

(e.g., Villacorte et al. 2015). In this case, the main concern is biofouling of the RO

membranes, which can cause plants to shut down, resulting in a loss of an important

utility service in regions where this is a major source of freshwater. In addition,

where recurrent HABs are documented, another economic cost of HABs is that of

sustained environmental monitoring to protect human health or industries such as

aquaculture. Monitoring is one of the most effective ways to prevent human

exposure to HAB-related toxins.

2.4 Where Do HABs Occur?

HABs are found in all parts of the world, in all types of waters. While marine HABs

are emphasized herein, the trends in freshwater HABs are equally concerning.

Several examples demonstrate the global expansion of HABs. In the Gulf of

Maine, occurrences of the PSP-causative dinoflagellate Alexandrium fundyense
and PSP toxicity were rare prior to about 1970 but have been frequent in the past

three decades. In fact, PSP occurrences have increased globally in this same time

frame (e.g., Anderson 1989; Hallegraeff 1993). PSP toxicity has increased in

proportion to the growth of the human population in Puget Sound, Washington
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State (Trainer et al. 2003). The bloom-forming dinoflagellate P. minimum is also

now documented to cover most coasts throughout the world and has been

documented to have expanded in concert with escalating eutrophication (Heil

et al. 2005; Glibert et al. 2008, 2012). Based on analyses of frustules preserved in

cores, blooms of the diatom Pseudo-nitzschia spp. in the Gulf of Mexico were also

rare prior to the 1950s, but have increased significantly in abundance and frequency

since then, concomitant with increases in nutrient loading (Parsons et al. 2002). In

Europe and Asia, there are also more blooms with more toxic effects than in

previous decades (Granéli et al. 1999). Cochlodinium (Margalefidinium)
polykrikoides is among the many species of dinoflagellates which are increasingly

adversely affecting fisheries, tourism, and economies around the world (e.g., Yuki

and Yoshimatsu 1989; Guzman et al. 1990; Kim et al. 1999, 2004; Lee 2008;

Tomas and Smayda 2008; Mulholland et al. 2009; Howard et al. 2012; Al-Azri et al.

2014). While previously most commonly observed in tropical systems (Steidinger

and Tangen 1997), C. polykrikoides is now increasingly observed in temperate

systems (e.g., Kudela et al. 2008; Mulholland et al. 2009). As such, C. polykrikoides
appears to be similar to many other harmful dinoflagellates undergoing global

expansion (e.g., Heil et al. 2005; Glibert et al. 2005, 2008; Harrison et al. 2011).

One of the areas where HAB expansion has been particularly pronounced has

been in the coastal waters of Asia, as shown, for example, in increasing observa-

tions of “red tides” in Chinese coastal waters [GEOHAB 2010; see also Chap. 14,

Furuya et al. (2018), and Chap. 15, Yu et al. (2018)]. Microalgae are not the only

HABs increasing. In 2008, a bloom of the macroalgal species Ulva prolifera
(Enteromorpha prolifera or sea lettuce) occurred at the venue of the Olympic

Games sailing competition, almost blanketing the water with filamentous scum

[Hu et al. 2010; Huo et al. 2013; see also Chap. 16, Liu and Zhou (2018)]. Blooms

of this magnitude in this region had not previously been observed. One of the

features of this species and its blooms is that it tends to float, making detection from

remote sensing (satellite imaging) feasible. It is from such approaches that the scale

of these blooms and their change over time can be estimated (Hu et al. 2010). A

10-year record of images of the region shows that prior to 2007, the area covered by

these green tides was<21 km2. In 2008 the scale of the bloom was>1900 km2, and

in 2009 it was 1600 km2 (Hu et al. 2010).

Similarly, in the past several decades, a massive expansion of dinoflagellate

blooms has occurred in the Arabian Sea and Sea of Oman (formerly Gulf of Oman)

(Parab et al. 2006; Al-Azri et al. 2007; Gomes et al. 2008; Harrison et al. 2011).

These blooms were not observed during the Joint Global Ocean Flux Study

(JGOFS) cruises of the 1990s (Gomes et al. 2008) but have expanded considerably,

consistent with climate changes and atmospheric warming (Goes et al. 2005) and

nutrient loading (Harrison et al. 2011; Goes and Gomes 2016). These recent blooms

have been dominated by the heterotrophic dinoflagellate Noctiluca scintillans
[Parab et al. 2006; Al-Azri et al. 2007; Gomes et al. 2008; Harrison et al. 2011;

see also Chap. 17, Goes et al. (2018)]. These examples represent just a sampling of

the bloom events that are occurring more often and in more places.
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2.5 Why Are HABs Expanding?

Although some of the factors contributing to regional and global expansion are

natural, such as biological species dispersal, many others are considered to be a

result of human activities. Increases in nutrient loading, changes in agriculture and

aquaculture practices, overfishing, ballast water discharge, and global climate

change may all be important in the global increase in HABs.

By far, the greatest change in the past several decades has been the rate and

composition of nutrient loading [see also Chaps. 4, 12, Glibert et al. (2018a, b)].

Population growth and development (with associated large sewage discharges) and

the production of food, both crop (with the associated expanding synthetic fertilizer

use) and animal production systems (with their associated waste), have resulted in

increased runoff from land to both fresh and marine waters. The production and

consumption of energy also result in increased atmospheric inputs from NOx

emissions, which can then lead to increased N deposition. These nutrient sources

have led to widespread coastal eutrophication throughout Europe, the USA,

and Asia.

Another significant alteration in nutrient loading to the coastal zone in some

regions comes from the increase in aquaculture activities [see also Chap. 4, Glibert

et al. (2018b)]. These industries have altered ecosystems through input of feed and

faeces, only a small percentage of which is incorporated in food biomass (Bouwman

et al. 2011, 2013a, b). China’s expansion of aquaculture has been especially great, and
the release of nutrients from aquaculture in some provinces of China exceeds 20% of

that from riverine export (Bouwman et al. 2013a). Global models of the impacts of

finfish, shellfish, and aquatic plant aquaculture (Bouwman et al. 2011, 2013b) have

estimated the alteration of nutrient cycling and particularly in the case of finfish,

where external feeding is required, have demonstrated the magnitude of increased

nutrient loads. Even mollusc production, which does not depend on exogenous

nutrients to be supported, when intensive, can become point sources of nutrients as

particulate nutrients are assimilated and excreted in faeces and pseudofaeces.

Fish and shellfish harvesting has also altered ecosystems, leading to changes in

food chains/food webs. The exploitation of natural fish stocks has, in some cases,

led to a decrease in the control of HAB species by removal of the primary grazers

through trophic cascade effects. As an example, altered food webs and trophic

interactions, through overfishing and the invasion of the predatory ctenophore

Mnemiopsis leidyi, have been suggested as possible factors leading to increased

HABs in the Black Sea (Lancelot et al. 2002).

Climate controls many of the fundamental parameters regulating algal growth,

including water temperature, nutrients, and light, and thus can be expected to result

in changes in the species composition, trophic structure, and function of marine

ecosystems [Wells et al. 2015; see also Chap. 5, Wells and Karlson (2018)].

Warmer temperatures may contribute to increased growth rates and to range

expansion of particular species. The available data, along with modelling

approaches, suggest shifts in HAB species and the timing of their outbreaks related
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to increases in mean water temperature (e.g., Tester et al. 2010; Moore et al. 2008,

2015; Glibert et al. 2014). Temperatures also affect the community of organisms

within which the HAB may live, including bacteria, viruses, competing phyto-

plankton taxa, and grazers (Wells et al. 2015 and references therein). Toxicity of

many HABs also increases with warming, but this is not the case in all HABs (Davis

et al. 2009; Fu et al. 2012, and references therein). The combination of temperature,

together with elevated pCO2 and altered nutrient ratios, appears to be especially

potent in terms of toxicity of some HABs. For some species, higher toxicity

associated with warming may be associated with slower growth rates (e.g., Ogata

et al. 1989; Lewis et al. 1993), but high growth rates are not necessary for HABs to

thrive [see Chap. 7, Flynn et al. (2018)].

Higher temperatures are promotive of increased water column stability and

increased thermal stratification. This can favour cyanobacterial species that are

buoyant because they can float to the surface (e.g., Walsby 1975; Visser et al. 2016,

and references therein). Moreover, at higher temperatures water can become less

viscous, buoyant cyanobacteria can float faster, and conversely sinking diatoms will

sink faster (e.g., O’Neil et al. 2012 and references therein).

Long-term changes in, or intensification of, climate forces such as monsoons or

interannual oscillations, such as those related to the El Ni~no-Southern Oscillation

(ENSO), or longer-term cycles, such as North Atlantic Oscillation (NAO) and the

Pacific Decadal Oscillation (PDO), can also alter conditions for HABs. In the

northern Iberian Peninsula, the abundance of the harmful dinoflagellate

Gymnodinium catenatum was high during the mid-1980s when there was a transi-

tion from downwelling-favourable conditions to upwelling-favourable conditions

following a shift in the North Atlantic Oscillation (NAO) index (Alvarez-Salgado

et al. 2003). In late 2013, and continuing through much of 2016, anomalously warm

water developed in the northeastern Pacific Ocean (e.g., Bond et al. 2015; Freeland

and Whitney 2015), a feature associated with the unusually strong El Ni~no event

and the Pacific Decadal Oscillation (PDO), and an exceptionally large bloom of

Pseudo-nitzschia developed along the USA west coast, lasting months and causing

extensive ecological and economic harm (McCabe et al. 2016).

2.6 Why the Need for Advancing Knowledge of HAB

Ecology and Oceanography?

Factors leading to the establishment of a bloom usually include environmental,

chemical, as well as physical dynamics and may also include changes in

trophodynamic interactions. In addition, various physiological adaptive strategies

may lead to disproportionate success of a particular species. For example, blooms

may result from excystment of resting cells during a restricted set of suitable

conditions, transport of cells from a source region where blooms are already

established, and enhanced growth due to unusual climatic or hydrographic

conditions.
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Once a bloom is initiated, physical processes controlling bloom transport are of

paramount importance. Coastal currents driven by wind, buoyancy, or other factors

can transport blooms hundreds or even thousands of kilometres along the coast,

often from one management area to another. Understanding the physical dynamics

underlying these transport pathways is essential to effective management and

mitigation of HAB effects. A population’s range and biomass are affected by

physical controls such as long-distance transport, accumulation of biomass in

response to water flows and swimming behaviour, and the maintenance of suitable

environmental conditions (including temperature and salinity, stratification, irradi-

ance, and nutrient supply). Thus, physical forcing, nutrient supply, and the behaviour

of organisms all interact to determine the timing, location, and ultimate biomass

achieved by a bloom, as well as its impacts.

Physical processes that are likely to influence the population dynamics of HAB

species are operative over a broad range of spatial and temporal scales. The

retentive nature of some semi-enclosed coastal systems, such as estuaries and

fjords, can produce long residence times leading to prolonged suitable periods for

cells to thrive [Cembella et al. 2005; see also Chap. 4, Glibert et al. (2018b)]. A

linkage has been demonstrated, for example, between tidally generated fronts and

the sites of massive blooms of the toxic dinoflagellate Gyrodinium aureolum
(Karenia mikimotoi) in the North Sea (Holligan 1979). The typical pattern is that

of a high surface concentration of cells at the frontal convergence, contiguous with

a subsurface chlorophyll maximum which follows the sloping interface between the

two water masses beneath the stratified side of the front. The signature of the

chlorophyll maximum, sometimes visible as a “red tide,” may be 1–30 km wide.

Chlorophyll concentrations are generally lower and much more uniform on the

well-mixed side of the front. The timing and duration of upwelling is another

physical feature that plays an important role in many blooms, as in the case of the

Benguela upwelling system, where HABs accumulate subsurface as stratification

increases during the upwelling season and move onshore as upwelling relaxes

(Kudela et al. 2005).

The importance of small-scale physical processes in HAB development is

observed in the layering of the physical, chemical, and biological environment in

stratified coastal systems. Off the French coast, for example, a thin layer of

dinoflagellates, including the HAB species Dinophysis cf. acuminata, has been

observed in the region of the thermocline (Gentien et al. 2005). The same pattern is

found for Dinophysis norvegica in the Baltic Sea, where a 1–2-m-thick layer with

up to 80,000 cells L�1 is usually situated between 20 and 25 m depth, where light is

<1% (Gisselson et al. 2002).

Studies of species responses at the ecosystem level are essential if we are to

understand the population dynamics of HABs. The specific growth rate of a species is

determined bymanymetabolic processes, including photosynthesis and nutrient uptake

and assimilation, all ofwhich are under both environmental and genetic control. The net

population growth of a species is controlled by external environmental factors, includ-

ing nutrients, physical transport, grazing, and other community interactions.

HAB species do not typically appear to have higher intrinsic growth rates than

many other phytoplanktons. Some HABs may actually have lower growth rates

18 P.M. Glibert et al.

https://doi.org/10.1007/978-3-319-70069-4_4


than non-HAB species, such as diatoms, but succeed when loss processes are also

reduced. In fact, some HABs are actually slower growing than their non-HAB

counterparts. They succeed due to the negative impact they can have on competitors

or their grazers. Interactions between HAB species and other algae may be an

important survival strategy for some HABs. For example, it has long been argued

that production of allelopathic exudates allows some harmful species to outcompete

co-occurring phytoplankton (e.g., Smayda 1998; Granéli and Johansson 2003).

Some species may even use cyst formation as a survival strategy from strong

allelochemicals produced by another HAB species (Fistarol et al. 2004). It may

well be that some of the HAB species that form thin, subsurface, or surface layers of

cells at extraordinary densities do so because this allows them to change the

ambient water chemistry and light penetration in a manner that deters grazing,

inhibits co-occurring algal species, or facilitates sexuality and gamete

encounter rate.

Reductions in grazer abundance can also play a key role in bloom development.

This might result from physical factors or behavioural strategies, which lead to

spatial separation of harmful algal species and grazers. Local reductions in grazer

abundances may be in direct response to HABs (e.g., avoidance or mortality

induced by the HABs, Granéli and Johansson 2003) or in response to the effects

of past HAB events on grazer populations. The response of zooplankton and other

grazers to toxic algae is often species-specific in terms of behavioural responses and

toxin susceptibility. Moreover, prey quality can vary, characterized in terms of lipid

and protein content and also in terms of elemental stoichiometry. The net effect of

the stoichiometric regulation of consumers together with different nutrient require-

ments of phytoplankton is that not only are grazers affected by food quality, but

they, in turn, affect food quality by altering the composition of nutrients available to

them. This process of stoichiometric interaction is seen at all levels of the food web,

leading to a complex interaction of stoichiometry and trophic cascades and poten-

tial for shifts in dominant bloom species as not only is the rate of assimilation

efficiency altered, but so too is the rate of regeneration, in turn disproportionately

promoting those species that can use the altered nutrient forms (Mitra and Flynn

2005). It is also apparent that prey quality has strong effects on the success of

mixotrophs as well (e.g., Lundgren et al. 2016; Lin et al. 2017).

A survival and growth strategy that is important to many HAB species is a

complex life cycle, or a life cycle involving resting or benthic stages, such as spores

or cysts [see also Chap. 8, Azanza et al. (2018)]. These life cycle stages provide a

recurrent seed source or inoculum for planktonic populations, and this characteris-

tic may be a critical factor in determining not only the geographic distribution of

species but possibly their eventual abundance as well.

Moving higher in the food web, zooplankton impaired by ingesting harmful

algae may be more susceptible to predation and thus may become an important

vector for transferring toxins in the pelagic food web. Alternatively, zooplankton

faecal pellets may be important sources of toxin to benthic communities. Herbi-

vorous fish can accumulate and transfer toxins and even cause mass mortalities of

the marine birds that consume them. During food web transfers, toxins may be

bioaccumulated, excreted, degraded, or structurally modified. In order to
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understand the effects of HAB species on the marine food web, both the direct and

the indirect, more subtle pathways by which toxins are transferred and transformed

and the differential susceptibility of marine organisms to these toxins must be

characterized. In some cases HABs may harm, but not kill, other members of the

food web, leaving them stressed and therefore more susceptible to other sources of

mortality, such as infection by pathogens (Burkholder and Glasgow 1997; Glibert

et al. 2002).

The above represent some well-established examples of the effects of various

processes on the distribution of harmful algae. Much has been accomplished in

understanding HAB ecology and oceanography, but there are however many

examples where the physical and/or biological processes common to particular

ecosystems are poorly characterized and understood, and therefore their influence

on HAB population dynamics and their harmful properties remain uncertain.

2.7 Conclusions and the Role of GEOHAB

In summary, the HAB problem is significant and growing worldwide and poses a

major threat to public health, to ecosystem health, as well as to fisheries and

economic development. The HAB problem and its impacts are diverse as are the

causes and underlying mechanisms controlling the blooms. Winds, tides, currents,

fronts, and other environmental features can create discrete patches or streaks of

cells at all scales. A full understanding of the many biological, chemical, and

physical processes that underlie HABs will continue to be a challenge, given the

many different species and hydrographic systems involved.

HABs are a serious and growing problem in the global coastal ocean—one that

requires the interplay of all oceanographic disciplines, as well as others such as

public health and resource management. Through recognition of the diversity of

these interactions, much progress has been made towards understanding the causes

and impacts of these events. Nevertheless, there is much work to be done to

translate such knowledge in effective management activities that will reduce the

severity of such outbreaks or their impacts on ecosystem and human health in future

years. The GlobalHAB Programme, the next generation of GEOHAB [see

Chap. 22, Berdalet et al. (2018)], will be important in advancing the science and

management of HABs on a global scale.
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Granéli E, Carlsson P, Tester P et al (1999) Effects of N:P:Si-ratios and zooplankton grazing on

phytoplankton communities in the northern Adriatic Sea. I. Nutrients, phytoplankton, bio-

mass, and polysaccharide production. Aquat Microb Ecol 18:37–54
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