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Abstract. Service robots are expected to closely interact with humans
in the near future. Their tasks often include delivering and taking
objects. Thus, handover scenarios play an important role in human-
robot-interaction. A lot of work in this field of research focuses on speed,
accuracy and predictability of the robot’s movement during object han-
dover. Those robots need to closely interact with naive users and not only
experts. In order to evaluate handover interaction performance between
human and robot a force measurement based approach was implemented
on the humanoid robot Floka. Different gestures with the second arm
were added to analyze the influence on synchronization, predictability,
and human acceptance. In this paper we present a study where users with
different levels of experience were asked to help the robot to learn new
objects. We evaluated the impact of previous knowledge with robots on
handover interactions. Disparities in timing, distance, and applied force
during handover could be observed. We present an automated annotation
pipeline for human-robot-interaction that will be used in future studies.
While the commonly used force measurement based approach proved to
be a valid starting point, our results show that naive user interaction
could benefit from better anticipation.

1 Introduction

Handing over objects is a complex task that entails collaboration and precise
synchronization in space and time. Object handovers take place everywhere in
our daily lives [25] for instance, delivering a drink or helping with the dishes.
Therefore, the ability to exchange objects with humans is mandatory for socially
accepted interaction with service robots.

Such close interactions demand a social behavior of the robot. One aspect for
collaboration is communication which helps to create joint action understanding.
It has been shown that integration of non-verbal cues like gaze and head orienta-
tion improves robot-to-human object handover [11]. Socially accepted approach
directions and distances for approaching someone to handover an object has been
analyzed by Koay et al. [15]. Integrated systems on a mobile service robot have
been studied with the result that adaptivity and complementary skills of human
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and robot allow to hand objects to one another [10,24]. Even though there was
progress in this field the robots still need improvement to transfer cognitive and
physical load from human to robot. This is especially important for non-expert
users, which is one aspect we want to show in this work.

There are multiple areas of research in the field of handover. Including gener-
ating and optimizing robotic arm trajectories, detecting and handling the object
transfer, positioning of mobile service robots, and verbal and non-verbal com-
munication during the interaction. Acceptance and predictability of robots can
be improved by generating smooth and human-like motions: Legible trajectories
during collaboration help to decrease the coordination time [9]. An approach
of synthesizing object receiving motions of humanoid robots based on a human
motion database might create legible movements but might be hard to adapt
during execution [27]. Orientations of objects during handover used by humans
were tracked and analyzed for efficient robot to human handovers [7]. Maximiz-
ing user comfort with an affordance-sensitive system that helps to align objects
before handover is perceived more human-like [1,6]. Dynamic movement prim-
itives proved to generate predictable as well as reactive trajectories [21,22]. A
notable advantage of this approach is the adaptivity of the trajectory during
execution. In a later study the others showed that timing might be even more
important than position [16]. Timing had more influence on the perceived safety
than the actual trajectories. Adaptive coordination strategies such as waiting
for the human are often a trade-off between team performance and user expe-
rience [13]. The results of Basili et al. show that approaching and handover
are smooth and dynamic actions with the different parts blending into each
other [3]. Huber et al. investigated the timing in human-human and human-
robot interaction and split handovers into three phases: reaction, manipulation,
and posthandover [14].

In the manipulation phase, the object is transferred between subjects. Hence,
the robot needs some kind of sensing when to release/grasp the object. Most
existing approaches make use of force-torque sensors in the wrist to sense when
the human applies force to the robots end-effector either by pulling on the object
or by pushing it into the hand of the robot [4,8,12]. More advanced approaches
add optical or tactile sensors in the gripper to optimize grip-force control and
contact detection [18,20]. All these approaches expect the user to actually apply
force above a certain threshold. In a pre-study Chan et al. discovered that this is
not the case for all interactions and decided to instruct the participants to pull
on the object until it is released [8]. Although this is a good approach to validate
and compare algorithms the need to get handling instructions contradicts our
anticipation of natural human-robot handover.

2 Human-Robot Handover Experiment

A handover incorporates a lot of communication to synchronize between the
interaction partners. Thus, we wanted to test in which way gestures with the
second arm of the robot help to indicate the state of the robot. As of now
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robots are either not able to move and react with the speed and acceleration of
humans or safety concerns lead to a limitation of those. Thus, humans can not
easily apply the same patterns and expectations they have from human-human-
handovers to the human-robot-case. To overcome this difficulty we designed an
experiment to test for the following hypothesis:

H1: Additional gestures with the second arm help to synchronize between human
and robot.

Approaches discussed in Sect. 1 often evaluate interaction with participants
that already have experience with robots or instruct them to test for a distinct
behavior. From fairs and events like the RoboCup@home [5] we had the impres-
sion that there might be a significant difference in interaction from users that
have no experience with robots. This led to the following second hypothesis that
we investigated in the study:

H2: Naive and (robot-)experienced users handle object handovers differently.

2.1 Experiment Procedure and Design

We chose the robot Floka [5] to study the interaction with the human in a
one factorial between-subjects interaction. The human-like torso with two arms
allowed us to design gestures that are equal to humans’ and thus should be easily
recognizable by the participants.

The goal of the user-study was to record the interactions with Floka as nat-
ural as possible. We decided to go without a tracking system that depends on
markers or sensors attached to the participants to prevent interference. The
movements were post-annotated by means of automatic extraction from an exter-
nal camera. In order to inhibit the emergence of artifacts by participants con-
centrating on the handover itself, a distractor-task was placed. The participants
were instructed to help the robot to learn the shape of new objects.

As gaze might improve turn taking during handover [17] we implemented a
turn-taking gaze scheme on Floka. The robot looked at the object while moving
towards the participant. After that it gazed into the face of the participant when
it was ready to hand/receive the object. These head movements are the same for
all the interaction runs. The robot was always rising the right arm for handover
without telling the participants before. Figure 1d shows the movements when
Floka is learning an object as distractor-task. To test for H1 we designed two
different gestures for the left arm, which was not involved in the object transfer,
to signal the state of the robot. The first one (Clow) was turning the hand in
a presenting manner below the object to signalize readiness. Figure 1b shows
that this gesture made only use of small movements to be less intrusive. The
second gesture (Chigh) depicted in Fig. 1c started with a protecting movement
of the object with the goal to signalize that the robot is not yet ready to hand
the object. The trajectory ended as well in a presenting gesture but in a more
distinct fashion. Both gestures where synchronized with the handover trajec-
tory. As control condition (Ccontrol) Floka did not move the left arm during
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the handover. The arm was kept in a neutral posture as can be seen in Fig. 1a.
Each participant was assigned randomly to one of the three conditions. In these
conditions the gesture was only activated for odd-numbered runs to allow mea-
surements of within-subject differences. The interaction consisted of nine gives
and receives.

Fig. 1. Blended pictures of Floka during the interaction. Each figure is rendered out
of three frames during the movement. Viewpoint is similar to the participant’s.

To only analyze the effects of non-verbal communication Floka did neither
speak nor respond to speech input during the study. For security reasons, the
experimenter stayed next to the external camera with a wireless emergency stop.
This e-stop was also programmed to start the experiment. For detection in the
manipulation phase we used an ATI F/T Sensor: Mini40 in the wrist to measure
forces applied to the robot similar to related work discussed in Sect. 1. The robot
is only able to detect contact after the arm trajectory finished as the trajectory
itself applies higher force on the sensor than the interaction itself.

After the interaction the participants had to answer a survey. Besides age and
gender the participants gave self-assessment on experience with technology like
computers and robots. The attitude towards robots was investigated using the
NARS [19] (α = .64) question-set. We collected information on how the robot
was perceived during the handovers with the Godspeed [2] items (α = .90). In
the conclusion of the survey the participants were asked whether they noticed
different behavior patterns during the interaction. This data was collected by
means of a freetext field.

The exact setup can be seen in Fig. 2 from the view of the external camera
(Fig. 2b). Figure 2a shows a schematic of the room-setup from top. Floka is
positioned such that the participant can freely chose a position in front of the
robot. Three objects are placed on a small table near the interaction area. The
external camera is placed on a table on the other side of the room to have a
complete view on the interaction.



Hand in Hand with Robots 591

Fig. 2. Setup of the experiment from view of the external camera and as a schematic
top view. Our robot Floka is receiving an object from one of the participants. The
other two objects are still placed on a small table next to the interaction.

In total N = 40 participants took part in our experiment with Floka. Eight
runs were not used in the following evaluation because of technical dropouts dur-
ing the recording. The remaining 32 participants (17 male and 15 female aged
between 18–53 years) were randomly assigned to the conditions with the follow-
ing distribution: 10 Ccontrol, 10 Clow, and 12 Chigh. We split the participants
in three groups based on experience on their self-assessment stated in the sur-
vey. The group of naive users only contains participants that stated they have
no experience on interaction with robots. This is the first group with 12 per-
sons. The participants that answered to this question with 4–7 form the group
of experts containing 11 persons. The remaining participants form the group of
semi-experienced with 9 participants.

For each participant the procedure was: enter the room, read and sign the
consent form on a designated table, after that they were asked to come to the
interaction area. In this area they were introduced to Floka and were instructed
for the experiment. After all nine runs they were asked to answer the survey.

2.2 Experiment Annotation

In total 725 experiment recordings were created during this study. Each recording
contains the positions of the robot’s joints, the forces applied to the force-torque-
sensors in the robot’s wrists, the timing and state of the handover control-system.
Video-streams of the robots internal face-camera and the external camera where
stored synchronously as-well. A marker on the robot helped to exactly determine
the position of the external camera in relation to the robot. This allows mapping
internal robot data like forces, torques and positions into the video as depicted
in Fig. 3.

A pipeline that loads all files and automatically annotates the recordings
was implemented in order to extract and compare positions and velocities of the
human and the robot. Convolutional Pose Machines (CPMs) [26] were used to
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Fig. 3. Visualization of the results from post-processing with help of OpenPose [26].
Each joint is visualized in a different color. The position of Floka’s hand is marked
with a green dot. Bounding boxes of possible participant hand positions are red for the
right and gray for the left hand. Accordingly, the center of hand joints is surrounded
by light red and light gray, respectively. When contact between human and robot is
detected a green circle is drawn around the hands in contact. (Color figure online)

extract the position of the human in the videos. To precisely annotate the hands,
the pose detections were enhanced with hand keypoint detection [23]. The result-
ing annotation can be seen in Fig. 3. The processing pipeline generated a log of the
positions extracted by the CPM and hand tracking as well as a video with all data
visualized for each recording. In addition, timestamps for the different phases of
the handovers were logged for approaching, contact and retraction phase. Figure 4
shows the trajectories of the robot and participants during handover.

2.3 Findings and Results

The analysis of the survey showed that in total 17 of the participants stated that
they experienced differences in the behavior of the robot in between the runs.
Although only seven were able to describe the differences correctly in the way that
the second arm did support the handover with a gesture. Some of them stated in
the free-response that movements with the gesture looked more natural. Further
analysis of the ratings from the survey, timing, and position data to confirm H1 did
not show a statistically measurable effect (p > .05). The introduced within person
condition that switched between gesture and control condition every second run
did not result in measurable differences in behavior of the participant either. This
alternation might have reduced the measurability of the overall effect of the gesture
in combination with the survey being answered after seeing both behaviors.

For some participants the high gesture looked like Floka was offering the left
hand for receiving an object. Although only it’s right hand was able to detect
and grasp objects. This led to confusion and created huge offsets in timing until
they continued to give the object into the right hand. These offsets influenced
the overall statistics.
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Fig. 4. Velocity profile of the handover runs for right-handed interaction. Floka moves
his hand towards the participant. Some participants start to move right after the robot
started. Most of them wait until it finished. Then hand the object and move back. The
colored lines represent the average for each of the three groups.

One of the analyzed aspects was the reaction time to see how well the move-
ments of the robot and participants aligned. The alignment was calculated as
the difference between the time the robot was ready and the time the person’s
hand getting close to Floka’s hand. A perfect alignment would be a 0.0 s result.
Table 1 shows that the participants took an average of 0.29 s. Meaning they gave
a little more time for the robot to finish moving. Negative differences are cases
in which the participants tried to hand the object while Floka was still execut-
ing the trajectory. Naive users show the least standard variation here as they
actively tried to align well with the system and actually helped it to fulfill the
task of learning objects most efficiently. In the analysis of recordings we could
observe the experts and semi-experienced participants testing the robot. They
actively introduced delays to see how the robot would react to them. The testing
went as far as giving the object in the hand of the robot and pulling it away as
the robot closes its hand.

Table 1. Mean and standard deviation for measured duration grouped by the experi-
ence with robots.

naive semi expert total

x [s] 0.36 -0.30 0.76 0.29
σ [s] 1.09 1.38 1.86 1.49

(a) reaction times: the time between the
robot was ready to receive or hand an ob-
ject and the participant reaching for it.

naive semi expert total

x [s] 1.60 2.68 1.27 1.77
σ [s] 2.45 3.89 1.62 2.74

(b) manipulation times: the time between
first contact between robot and human
and contact detected by the robot.
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Secondly we calculated the time needed to transfer the object. Which mainly
tests how well the force-based approach succeeds in detecting a stable hand-over.
The object was dropped in only one run and only two runs timed out after the
robot was waiting 30 s for the person to pull the object strong enough to trigger
the force threshold for releasing the object. A major problem with this approach
is that some participants, mostly naive, did not apply force at all on the first tries
and expected the robot to see that they hand the object. This was especially
happening for handing an object to the robot and happened in more cases for the
naive and semi-experienced users. When giving an object to the robot applying
pressure seems to be less intuitive than pulling when taking it from the robot.
Table 1 visualizes how experts have lower mean and standard deviation of time
when exchanging the object with Floka. They seem to be already used to trigger
force thresholds to make a robot react.

3 Conclusion

We presented a study on natural human-robot handover with the robot Floka.
Therefore, we used an implementation of wrist-force based handover detection.
There was no artificial tracking system and only minimal instructions for the
participants to observe the interaction without interference. A novel annotation
system that does not interfere with the participants was created to evaluate
human-robot interaction by making use of deep-learning techniques. This low-
cost and easy deployable system allows fully automatic annotation of human
motion without time-consuming manual annotation of video data. Furthermore,
it can replace other intrusive marker-based tracking-solutions and will be used
in future HRI-studies. We could not statistically prove that a gesture with the
second arm helps to improve the synchronization between human and robot
(H1). The effects of other phenomena appear stronger in the data and have to
be addressed beforehand. Although, participants that consciously perceived the
gesture stated in the survey that they experienced the robot more human-like
when the gesture was part of the interaction. We noticed significant differences
in behavior with varying levels of prior knowledge in regard to HRI (H2). While
naive users expect the robot to visually perceive the environment and react
accordingly, experienced users know that they need to pull and push objects for
the robot to perceive their intention. This leads to the assumption that future
implementations can not only rely on force measurements to prevent a social gap
between users of service robots. Especially with the elderly and disabled in mind,
handover of robots needs to be more adaptive to cope with the huge variance
in observed handovers and to adapt better to the human expectations. The
results of our study contributes to robots with less preconceptions on handover
interactions.

Based on these results we will continue on improving interaction experience
for inexperienced users as we believe that this is the group of users that need
supporting robots the most. One of our goals is to make use of the system we
created to post-annotate the videos without manual interference. The visual
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perception of the interaction partner appears to be crucial to naturally inter-
act during handovers and create a socially accepted robot. As robots are not
expected to move with the same speeds and thus timings as humans in the near
future because of security concerns in such close interactions, other methods
like reactive movements and gestures are needed to overcome that gap. Another
study that further investigates not only the trajectory of the end-effector that
is transferring the object but the body-language on the whole could give deeper
insides in the non-verbal communication cues. Synchronization by incorporating
a second arm, the gaze and even the base could help to clearer communicate the
internal state of the robot.
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