
IFIN+: A Parallel Incremental Frequent
Itemsets Mining in Shared-Memory

Environment

Van Quoc Phuong Huynh1(&), Josef Küng1, Markus Jäger1,
and Tran Khanh Dang2

1 Faculty of Engineering and Natural Sciences (TNF),
Institute for Application Oriented Knowledge Processing (FAW),

Johannes Kepler University (JKU), Linz, Austria
{Vqphuynh,jkueng,mjaeger}@faw.jku.at

2 Faculty of Computer Science and Engineering,
HCMC University of Technology, HCM City, Vietnam

khanh@hcmut.edu.vn

Abstract. In an effort to increase throughput for IFIN, a frequent itemsets
mining algorithm, in this paper we introduce a solution, called IFIN+, for par-
allelizing the algorithm IFIN with shared-memory multithreads. The inspiration
for our motivation is that today commodity processors’ computational power is
enhanced with multi physical computational units; and therefore, exploiting full
advantage of this is a potential solution for improving performance in
single-machine environments. Some portions in the serial version are changed in
means which increase efficiency and computational independence for conve-
nience in designing parallel computation with Work-Pool model, be known as a
good model for load balance. We conducted experiments to evaluate IFIN+

against its serial version IFIN, the well-known algorithm FP-Growth and other
two state-of-the-art ones FIN and PrePost+. The experimental results show that
the running time of IFIN+ is the most efficient, especially in the case of mining at
different support thresholds in the same running session. Compare to its serial
version, IFIN+ performance is improved significantly.

Keywords: Incremental � Parallel � Frequent itemsets mining � Data mining �
Big Data � IPPC-Tree � IFIN � IFIN+

1 Introduction

Frequent itemsets mining can be briefly described as follows. Given a dataset of n
transactions D ¼ T1; T2; . . .; Tnf g, the dataset contains a set of m distinct items
I ¼ i1; i2; . . .; imf g, Ti�I. A k-itemset, IS, is a set of k items (1� k�m). Each itemset
IS possesses an attribute, support, which is the number of transactions containing IS.
The problem is featured by a support threshold e which is the percent of transactions in
the whole dataset D. An itemset IS is called frequent itemset iff IS.support � e � n.
The problem is to discover all frequent itemsets existing in D.

© Springer International Publishing AG 2017
T.K. Dang et al. (Eds.): FDSE 2017, LNCS 10646, pp. 121–138, 2017.
https://doi.org/10.1007/978-3-319-70004-5_9

Discovering frequent itemsets in a large dataset is an important problem in data
mining. In Big Data era, this problem as well as other mining techniques has been
being challenged by very large volume and high velocity of datasets. Fortunately,
nowadays, RAM memory has larger capacity and becomes much cheaper, and com-
modity processors’ computational power is enhanced considerably with multi physical
computational units. To take this advantage and confront with the challenge, we pro-
pose an algorithm, named IFIN+, as a solution for parallelizing our previous work IFIN
[18] (Incremental Frequent Itemsets Nodesets) algorithm with shared-memory multi-
threads. The purpose is to improve the performance IFIN by increasing the throughput
in single-machine environments. In general, IFIN algorithm encompasses four phases:
(1) IPPC-Tree (Incremental Pre-Post-Order Coding Tree) construction, (2) Frequent
2-itemsets generation, (3) Nodesets for frequent 2-itemsets generation, (4) Frequent
k-itemsets generation (k > 2). In that the first three phases take most of the mining time
and can be divided into small independent chunks of work, these three phases are
separately parallelized and synchronized at the end of each phase. These synchro-
nizations will delay the next processing step and result in longer mining time if load
balance is not guaranteed. To avoid this problem, therefore, all these three processing
phases are designed in Work-Pool model, a well-known model for load balance, in
which all workers continuously fetch and process small chunks of tasks until there are
no more tasks in the work pool. Besides, the second and third phases are changed to
increase the independence for parallelization. By that solution, the running time of
IFIN+ is improved significantly compared to its serial version IFIN.

The rest of the paper is organized as follows. In Sect. 2, some related works are
presented. Section 3 introduces the IPPC-Tree structure, some relevant algorithms and
parallel solution for loading the IPPC-Tree. The algorithm IFIN+ is mentioned in
Sect. 4 based on preliminaries in Sect. 5 and followed with experiments in Sect. 6.
Finally, conclusions are given in Sect. 7.

2 Related Works

Problem of mining frequent itemsets was started up by Agrawal and Srikant with
algorithm Apriori [1]. This algorithm generates candidate (k + 1)-itemsets from fre-
quent k-itemsets at the (k + 1)th pass and then scans dataset to check whether a can-
didate (k + 1)-itemsets is a frequent one. Many previous works were inspired by this
algorithm. Algorithm Partition [8] aim at reducing I/O cost by dividing dataset into
non-overlapping and memory-fitting partitions which are sequentially scanned in two
phases. In the first phase, local candidate itemsets are generated for each partition, and
then they are checked in the second one. DCP [9] enhances Apriori by incorporating
two dataset pruning techniques introduced in DHP [10] and using direct counting
method for storing candidate itemsets and counting their support. In general,
Apriori-like methods suffer from two drawbacks: a deluge of generated candidate
itemsets and/or I/O overhead caused of repeatedly scanning dataset. Two other
approaches, which are more efficient than Apriori-like methods, are also proposed to
solve the problem: (1) frequent pattern growth adopting divide-and-conquer with
FP-Tree structure and FP-Growth [2], and (2) vertical data format strategy in Eclat [11].

122 V.Q.P. Huynh et al.

FP-Growth and algorithms based on it such as [12, 13] are efficient solutions as unlike
Apriori, they avoid many times of scanning dataset and generation-and-test. However,
they become less efficient when datasets are sparse. While algorithms based on
FP-Growth and Apriori use a horizontal data format; Eclat and some other algorithms
[8, 14, 15] apply vertical data format, in which each item is associated a set of
transaction identifiers, Tids, containing the item. This approach avoids scanning dataset
repeatedly, but a huge memory overhead is expensed for sets of Tids when dataset
becomes large and/or dense. Recently, two remarkably efficient algorithms are intro-
duced: FIN [4] with POC-Tree and PrePost+ [5] with PPC-Tree. These two structures
are prefix trees and similar to FP-Tree, but the two mining algorithms use additional
data structures, called Nodeset and N-list respectively, to significantly improve mining
speed.

To better deal with the challenge of high volume in Big Data, in addition to the
ideas of parallel mining for existing algorithms such as [16] for Eclat, incremental
mining approaches are also considered as a potential solution. Some typical algorithms
in this approach are algorithm FELINE [3] with CATS-Tree structure and IM_WMFI
[17] for mining weighted maximal frequent itemsets from incremental datasets. These
methods are both based on the well-known FP-Tree for its efficiency.

3 IPPC Tree Construction

IPPC-Tree is a prefix tree and possesses two properties, Properties 1 and 2. IPPC-Tree
includes one root labeled “root” and a set of prefix sub trees as its children. Each node
in the sub trees contains the following attributes:

• item-name: the name of an item in a transaction that the node registered.
• support (or local support of an item): the number of transactions containing the

node’s item-name. Conversely, global support of an item, without concerning
nodes, is the number of transactions containing the item.

• pre-order and post-order: two global identities in the IPPC-Tree which are sequent
numbers generated by traversing the tree with pre and post order respectively.

Property 1: For a given IPPC-Tree, there exist no duplication nodes with the same
item in a path of nodes from the root to a leaf node.

Property 2: In a given IPPC-Tree, the support of a parent node must be greater than or
equal to the sum of all its children’s support.

IPPC-Tree is a combination of (1) the idea of flexible and local order of items in a
path from the root to a leaf node in CATS-Tree [3] and (2) the PPC-Tree [5] which
each node in PPC-Tree is identified by a pair of codes: pre-order and post-order. The
construction of the IPPC-Tree does not require a given support threshold. The tree is a
compact and information-lossless structure of the whole items of all transactions in a
given dataset D. Local order of items in a path of nodes from the root to a leaf is
flexible and can be changed to improve compression while remaining Property 2. To
guarantee this, two conditions for swapping are as follows.

IFIN+: A Parallel Incremental Frequent Itemsets Mining 123

Child Swapping: A node can be swapped with its child node if it has only one child
node, its support is equal to its child’s support, and the number of child nodes of its
child is not greater than one.

Descendant Swapping: Given a path of k nodes N1 ! N2 ! � � � ! Nkðk[2Þ, is
parent node of Nj (i < j); if every node Ni (i < k) satisfies the Child Swapping con-
dition, node N1 can be swapped with descendant node Nk .

To demonstrate the building process of an IPPC-Tree, the Fig. 1 records transaction
by transaction in Table 1 inserted into an empty IPPC-Tree. Initially, the tree has only
the root node, and transaction 1 (b, e, d, f, c) is inserted as it is in Fig. 1(a). The Fig. 1
(b) is of the tree after transaction 2 (d, c, b, g, f, h) is added. The item b in transaction 2
is merged with node b in the tree. Although transaction 2 does not contain item e, but
its common items d, f and c can be merged with the corresponding nodes. The item d is
found common, so it is merged with node d after node d is swapped1 with node e to
guarantee the Property 2. Similarly, items f and c are merged with node f and c re-
spectively; and the remaining items g and h are inserted as a child branch of node c. In
Fig. 1(c), transaction 3 (f, a, c) is processed. Common item f is found that can be
merged with node f, so node f is swapped with node b. Item c is also a common one,
but it is not able to be merged with node c as node d does not satisfy the Descendant

Fig. 1. An illustration for constructing an IPPC-Tree on example transaction dataset

Table 1. Example transaction dataset

ID Items in transactions ID Items in transactions

1 b, e, d, f, c 4 a, b, d, f, c, h
2 d, c, b, g, f, h 5 b, d, c
3 f, a, c

1 Swapping two nodes is simply exchanging one’s item name to that of the other.

124 V.Q.P. Huynh et al.

Swapping condition with node c. Then the items a and c are added as a branch from
node f. When transaction 4 (a, b, d, f, c, h) is added in Fig. 1(d), common items f, d,
b and c are merged straightforwardly with corresponding nodes f, d, b and c. The
remaining items a and h are then inserted into the sub tree having root node c. The item
h is found common with node h in the second branch. Node h and item h, therefore, are
merged together after node h is swapped with node g. The last item a is then inserted as
a new child branch from node h. Insertion of transaction 5 (b, d, c) is depicted in Fig. 1
(e). All items in transaction 5 are common, but they cannot be merged with nodes b,
d and c as node f does not guarantee the Child Swapping condition. Thus, transaction 5
is added as a new child branch of root node.

After the dataset has been processed, each node in the IPPC-Tree is attached with a
pair of sequent numbers (pre-order, post-order) by scanning the tree with pre order and
post order traversals through procedure AssignPrePostOrder. For an example, node
(4, 6) is identified by pre-order = 4 and post-order = 6, and it registers item b with
support = 3. Above are all concepts of IPPC-Tree construction; for a formal and detail
description, refer to IFIN algorithm [18].

Procedure AssignPrePostOrder (Node R)
 // PreOrder and PostOrder are initialized at 1.
1. R.pre-order PreOrder; PreOrder++;
2. For Each child node N of R Do AssignPrePostCode(N);
3. R.post-order PostOrder; PostOrder++;

As the IPPC-Tree construction is independent to the support threshold and the
global order of items in a dataset, a built IPPC-Tree from a dataset D is reusable for
different support thresholds and changed dataset D0 ¼ D� DD. To complete providing
incremental ability for the IPPC-Tree, methods of storing and loading for the tree and
item list L must be proposed, in which the data format and algorithms are their two
features. For the simplicity of storing and loading for L, this detail will not be men-
tioned here for concision. Besides item-name, support, etc., the important information
for loading a node is its parent’s information to identify where the node was in the built
tree. By utilizing the pre-order (or post-order), the global identity, the requirement is
resolved. The data format for a single node record is as follows.

<parent’s pre-order>:<pre-order>:<post-order>:<item-name>:<support>

We employ Breadth-First-Search traversal to store the IPPC-Tree. In fact, the storing
phrase can utilize other strategies such as pre order traversal, but the sequence of node
records generated by Breadth-First-Search traversal is more convenient in loading
phrase. The reason is that the records of all child nodes with the same parent node are
continuous together. By storing the data record of each single node on a line, the stored
data for the example tree in Fig. 1(e) is in right column of Table 2. The algorithm for
loading the IPPC-Tree, procedure LoadIPPCTree, is presented in Table 2.

When the dataset becomes larger with progress of additional data accumulated,
the stored data for the built tree is also bigger; and the tree loading takes most of the

IFIN+: A Parallel Incremental Frequent Itemsets Mining 125

tree construction time. Therefore, improving efficiency for procedure LoadIPPCTree
is necessary. The IPPC-Tree loading in serial version comprises three tasks for each
line of data: (1) read a line, (2) parse the line and build a corresponding node,
(3) connect the node to the tree. We realize that the second task takes approximately
75% of the total time; and fortunately the second task is performed in main memory
and not interrupted by waiting for I/O. The parallelization design for the IPPC-Tree
loading is depicted in the Fig. 2. The file of a built IPPC-Tree is divided into n chunks
of l lines and processed by k threads (k � n). The last chunk’s number of lines may be
lesser than l. Each time, a thread reads a chunk into its local buffer and sequentially
creates a node for each data line. A shared reference array FArray is maintained for all
created nodes, and connections between nodes for the IPPC-Tree will be established
after node creation stage has finished. We can see that the access address spaces of
individual threads in the FArray are different. Hence, independence between threads is
guaranteed. For tracing the parent-child relationship between nodes in connection
stage, a shared integer array, IndexIDArray, is used to map from a node’s index to its
parent node’s ID. The separation of address spaces of threads in this array is the same
as that of FArray. The parallelization is given in procedure ParallelLoadIPPCTree.

Table 2. Loading algorithm and data format for IPPC-Tree

Procedure LoadIPPCTree(File F, Root R,)
1. Load item list ; TransCount 0;
2. Load sequentially TransCount and R from F;
3. ParentNode R; NodeList ;
4. For Each line L in data file F
5. Create a node N from L;
6. parentID <parent’s pre-order>;
7. Add N into the end of NodeList;
8. While(parentID <> ParentNode.pre-order){
9. ParentNode NodeList[0];
10. Remove ParentNode from NodeList;}
11. Add N as a child of ParentNode;
12. End For

<No. Trans.>
-1:1:14:root:0
1:2:10:f:4
1:12:13:b:1
2:3:7:d:3
2:10:9:a:1
12:13:12:d:1
3:4:6:b:3
10:11:8:c:1
13:14:11:c:1
4:5:5:c:3
5:6:1:e:1
5:7:4:h:2
7:8:2:g:1
7:9:3:a:1

Fig. 2. The concept of parallelization for IPPC-Tree loading

126 V.Q.P. Huynh et al.

ParallelLoadIPPCTree(FileReader F, Root R, , ThreadCount)
1. Load item list ; TransCount 0;
2. Load sequentially TransCount and R from F;
3. Initialize FArray and IndexIDArray with length R.post-order
4. FArray[0] R; lineIndex 0;
5. For i From 1 To ThreadCount
6. Start LoadingThread(F, FArray, IndexIDArray, lineIndex);
 After all Threads finished, main execution continues.
7. parentIndex 0; parentNode FArray[parentIndex];
8. For i From 1 To FArray.length {
9. While(IndexIDArray[i] <> parentNode.pre-order){
10. parentIndex++;
11. parentNode FArray[parentIndex];}
12. FArray[i] parentNode;
13. parentNode.childList.add(FArray[i]);
14. }

LoadingThread(FileReader F, FArray, IndexIDArray, lineIndex)
1. startIndex 0; lineCount 0;
2. While(Work-Pool <>){
3. Mutually-exclusive-region {
4. startIndex lineIndex;
5. Load a chunk from F into Buffer;
6. lineCount number of loaded lines;
7. lineIndex += lineCount; }
8. For i From startIndex To (startIndex + lineCount){
9. Parse the next line in Buffer to generate a node N and

its parent ID;
10. FArray[i] N; IndexIDArray[i] (parent ID of N);
11. }
12. }

4 Preliminaries

In this subsection, some IPPC-Tree related definitions and lemmas are introduced as
preliminaries for IFIN algorithm. In addition to the IPPC-Tree, another output of
Algorithm 1 is the increasingly ordered list of items based on their frequencies
L ¼ fI1; I2; . . .; Ing. For the convenience of expressing the relative order between two
items, we denote Ii 	 Ij to indicate that Ii is in front of Ij in L 1� i\j� nð Þ. There are
two premises of traversing a tree with pre order and post order as follows:

Premise 1: Traversing a tree to process a work at each node with pre order, it must be
that (1) N1 is an ancestor of N2 or (2) N1 and N2 stay in two different branches (N1 in
the left and N2 in the right) iff the work is done at N1 before N2.

IFIN+: A Parallel Incremental Frequent Itemsets Mining 127

Premise 2: Traversing a tree to process a work at each node with post order, it must be
that (1) N1 is an ancestor of N2 or (2) N1 and N2 stay in two different branches (N1 in
the right and N2 in the left) iff the work is done at N2 before N1.

By applying a work which assigns an increasingly global number at each node on
Premises 1 and 2, two following lemmas are directly deduced.

Lemma 1: For any two different nodes N1 and N2 in the IPPC-Tree, N1 is an ancestor
of N2 iff N1.pre-order < N2.pre-order and N1.post-order > N2.post-order.

Lemma 2: For any two nodes N1 and N2 in two different branches of the IPPC-Tree,
N1 is in the left branch and N2 in the right one iff N1.pre-order < N2.pre-order and N1.
post-order < N2.post-order.

Definition 1 (Nodeset of an item): Given an IPPC-Tree, the nodeset of an item I,
denoted by NSI , is a set of all nodes in the IPPC-Tree with ascending order of pre-order
and post-order in which all the nodes register the same item I.

In caseN1 andN2 register the same item,N1 and N2 must be in two different branches
because of Property 1. By traversing the IPPC-Tree with pre order, all nodes with the
same item I, sequentially from the left-most branch to the right-most one, are added into
the end of the list of nodes reserved for the item I. Hence, according to Lemma 2, the
increasing orders of both pre-order and post-order are guaranteed. Finally, we have
nodesets for all items in L. For an instance, the nodeset for item c in the example
IPPC-Tree Fig. 1(e) will be NSc ¼ ð5; 5; 3Þ; ð11; 8; 1Þ; 14; 11; 1ð Þf g. Here, each node N
is depicted by a triplet of three numbers (N.pre-order, N.post-order, N.support).

Lemma 3: Given an item I and its nodeset is NSI ¼ N1; N2; . . .Nlf g, the support (or
global support) of item I is

Pl
i¼1 Ni:support.

Rationale: Refer to IFIN [18].

Definition 2 (Nodeset of a k-itemset, k� 2): Given two (k – 1)-itemsets P1 ¼ p1p2. . .
pk
2pk
1 with nodesets NSP1 and P2 ¼ p1p2 � � � pk
2pk with nodeset NSP2 (p1 	 p2 	 � � �
	 pk), the nodeset of k-itemset P ¼ p1p2. . .pk
2pk
1pk, NSP, is defined as follows.

NSP ¼ Dk Dk ¼ DescendantðNi; MjÞwith Ni 2 NSP1 ^Mj 2 NSp2
Dk 2NSp1 ^ Dk 2NSP2

"�����

()

Function Descendant Ni;Mj
� �

means that there has been an ancestor-descendant
relationship between Ni and Mj, and the output is the descendant node.

Lemma 4: Given a k-itemset P and its nodeset is NSP ¼ N1; N2; . . .Nlf g, the support
of the itemset P is

Pl
i¼1 Ni:support.

Proof. Refer to IFIN [18].
Given two (k – 1)-itemsets P1 ¼ p1p2. . .pk
2pk
1 and P2 ¼ p1p2. . .pk
2pk with their

nodesets NSP1 ¼ N1; N2; . . .; Nl1f g and NSP2 ¼ M1; M2; . . .; Ml2f g; at first glance,
the computational complexity of generating nodeset NSP for k-itemset P ¼ p1p2. . .pk is
O(l1 � l2). In fact this complexity can be reduced significantly to O l1þ l2ð Þ, a linear

128 V.Q.P. Huynh et al.

cost, by utilizing Lemmas 1 and 2. For each pair of nodes Ni and Mj

(1� i� l1; 1� j� l2), there are the following five cases:

1. (Ni.pre-order > Mj.pre-order) ^ (Ni.post-order > Mj.post-order): The relationship
between Ni and Mj is not an ancestor-descendant relationship, so no node is added
to NSP. Certainly, Mj also does not have this relationship with remaining nodes in
NSP1 as increasing orders of both pre-order and post-order in nodesets. Therefore,
Mjþ 1 is selected as the next node for the next comparison.

2. (Ni.pre-order > Mj.pre-order) ^ (Ni.post-order < Mj.post-order): Ni is added to
NSP as Ni is the descendant node of Mj. Consequently, Niþ 1 is selected as the next
node for the next comparison.

3. (Ni.pre-order < Mj.pre-order) ^ (Ni.post-order > Mj.post-order): Similar to the
case 2, Mj is added to NSP, and Mjþ 1 is the next node for the next comparison.

4. (Ni.pre-order < Mj.pre-order) ^ (Ni.post-order < Mj.post-order): This case is
similar to the case 1; and Niþ 1, therefore, is the next node for the next comparison.

5. Ni � Mj: This identical node Ni is added to NSP. Two new nodes Niþ 1 and Mjþ 1

are selected for next comparison.

Based on analyses above, the algorithm for generating a nodeset, the procedure
NodesetGenerator, is as follows.

Procedure NodesetGenerator(Nodeset NS1, Nodeset NS2)
1. i 1; j 1; NS;
2. While((i < NS1.size) (j < NS2.size))
3. If(NS1[i].pre-order > NS2[j].pre-order)
4. If(NS1[i].post-order > NS2[j].post-order) j++;
5. Else {NS NS NS1[i]; i++;}
6. Else If(NS1[i].pre-order < NS2[j].pre-order)
7. If(NS1[i].post-order < NS2[j].post-order) i++;
8. Else {NS NS NS2[j]; j++;}
9. Else {NS NS NS1[i]; i++; j++;}
10. End While
11. Return NS;

It is easy to see that the increasing order of nodes in NS is guaranteed as these nodes
are inserted to the end of NS in that order. Therefore, NS is also a nodeset.

Lemma 5 (Superset equivalence): Given an item I and an itemset P (I 62 P), if the
support of P is equal to the support of P [{I}, the support of A [P is equal to the
support of A[P[fIg. Here ðA\P ¼ ;Þ ^ ðI 62 AÞ.
Proof. Refer to IFIN [18].

IFIN+: A Parallel Incremental Frequent Itemsets Mining 129

5 Algorithm IFIN+

In this section, we present the algorithm IFIN+ based on its serial version IFIN and the
preliminaries introduced in the previous section. There are three running modes in
algorithm IFIN: (1) Just-Building-Tree, just build an IPPC-Tree from a dataset D;
(2) Incremental, load an IPPC-Tree from a previously stored tree Tree-D and build up
the loaded IPPC-Tree with an incremental dataset D; (3) Just-Loading-Tree, just load
an IPPC-Tree from a previously stored tree Tree-D. Each mode can be performed with
different support thresholds (lines 5–32) with only one time of constructing the
IPPC-Tree (lines 1–4). Lines 9–16 generate list of candidate 2-itemsets C2 as well as

Algorithm 2: IFIN
Input: Stored tree Tree-D, incremental dataset D,
Output: Set of frequent k-itemsets L
1. Create the root node R; ;
2. If(Tree-D <> null) LoadIPPCTree(Tree-D, R,);
3. If(D <> null) BuildIPPCTree(D, R,);
4. HasMap<itemset, support> C2 ;
5. LOOP:
6. Ask for a new support threshold or exit;
7. Filter frequent items in based on and add to L1;
8. If(C2 <>) Goto SKIP;
9. Scan Each node N in IPPC-Tree with pre order traversal
10. N.item-name;
11. For Each ancestor A of N
12. A.item-name;
13. If() C2.add(, .support + N.support);
14. Else C2.add(, .support + N.support);
15. End For
16. End Scan
17. SKIP:
18. L2’ L2; L2 ;
19. Filter frequent itemsets in C2 based on and add to L2;
20. Scan Each node N in IPPC-Tree with pre order traversal
21. N.item-name;
22. For Each ancestor A of N
23. A.item-name;
24. If() IS ;
25. Else IS ;
26. If((IS L2) (IS L2’)) nodesetIS.add(N);
27. End For
28. End Scan
29. L L L1; L L L2;
30. For Each L2
31. GenerateFrequentItemsets(, ,);
32. Goto LOOP;

130 V.Q.P. Huynh et al.

their respective supports. This task is ignored if the current running session performs
for following times of mining with other support thresholds. Lines 20–28 create the
corresponding nodeset for each frequent 2-itemsets in L2. From the second time of
mining, just new frequent 2-itemsets’ nodesets are generated. In lines 30–31, each
frequent 2-itemset in L2 will be extended by the recursive procedure GenerateFre-
quentItemsets to discover longer frequent itemsets.

The second phase, frequent 2-itemsets generation, is performed by lines 9–19.
Remaining the encoding for each 2-itemset as an ordered string of item names and set
of 2-itemsets C2 as a hash map in the parallelized second phase will cause the running
time is not improved, even worse, because of sharing and synchronization between
threads when updating 2-itemsets’ supports in C2. To overcome this, each item is
encoded with an integer which is its position in the item list L (Lj j ¼ m); and instead of
a shared hash map C2, a m� m matrix of integers Mt is reserved for tth thread. Two
elements Mt(i, j) and Mt(j, i) partially indicate support for a 2-itemset comprising two
items Ii and Ij at positions i and j in L respectively. In this phase, the work pool is the
built IPPC-Tree, and tasks in the work pool are the built tree’s direct sub-trees. When a

Algorithm 3: IFIN+

Input: Stored tree Tree-D, incremental dataset D, , ThreadCount
Output: Set of frequent k-itemsets L
1. Create the root node R; ;
2. If(Tree-D <> null) LoadIPPCTree(Tree-D, R, , ThreadCount);
3. If(D <> null) BuildIPPCTree(D, R,);
4. Scan Each node N in IPPC-Tree with pre order traversal
5. NodesetN.add(N);
6. LOOP:
7. Ask for a new support threshold or exit;
8. Filter frequent items in based on and add to L1;
9. If(<> null) Goto SKIP;
10. Initialize matrixes ;
11. childIndex 0;
12. For t From 1 To ThreadCount
13. Start ItemsetGenThread(R, childIndex,);

After all threads finished, main execution continues.
14. ;

15. SKIP:
16. L2’ L2; L2 ;
17. For each L2.add();
18. index 0;
19. For t From 1 To ThreadCount
20. Start NodesetGenThread(L2\L2’, index);

After all threads finished, main execution continues.
21. L L L1; L L L2;
22. For Each L2
23. GenerateFrequentItemsets(, ,);

24. Goto LOOP;

IFIN+: A Parallel Incremental Frequent Itemsets Mining 131

thread has no longer sub-trees to process, it calculates local supports for 2-itemsets IiIj
through Eq. (1). After threads have completed their works, aggregation and filter
operators are performed to achieve the global supports for all 2-itemsets following
Eq. (2) and to extract frequent 2-itemsets.

Local Supportt IiIj
� � ¼ Mt i; jð ÞþMt j; ið Þ; i\jð Þ ð1Þ

Support IiIj
� � ¼

X
t
Local Supportt IiIj

� �
; i\jð Þ ð2Þ

The third phase, nodesets generation for frequent 2-itemsets, is executed in lines
20–28. The same problems of sharing and synchronization in the second phase happen
as threads may concurrently update the same nodeset of a certain frequent 2-itemset.
For the purpose of independent execution between threads, nodesets for items need to
be generated in advance, and nodesets for frequent 2-itemsets are produced from two
nodesets of componential items. The work pool is now a list of frequent 2-itemsets, and
threads independently retrieve items’ nodesets and generate nodesets for frequent
2-itemsets. Base on explanations above, the algorithm IFIN+ is designed as follows.

By the same means as IFIN for generating frequent k-itemsets (k > 2), the proce-
dure GenerateFrequentItemsets searches on a space of itemsets which is

ItemsetGenThread(R, childIndex, Matrix)
1. While(childIndex < R.childList.length){
2. Mutually-exclusive-region {
3. subTree = R.childList[childIndex];
4. childIndex++;
5. }
6. Scan Each node N of subTree with pre order traversal
7. i = mapToIndex(N.item-name);
8. For Each ancestor A of N {
9. j = mapToIndex(A.item-name);
10. Matrix[i,j] = Matrix[i,j] + N.support;}
11. End Scan
12. }
13. For i From 0 To Matrix.with-1
14. For j From i+1 To Matrix.with-1
15. Matrix[i,j] = Matrix[i,j] + Matrix[j,i];

NodesetGenThread(New2Itemsets, index)
1. While(index < New2Itemsets.length){
2. Mutually-exclusive-region {
3. IJ = New2Itemsets[index]; index++;
4. }
5. Nodeset

IJ = NodesetGenerator(NodesetI, NodesetJ);
6. }

132 V.Q.P. Huynh et al.

demonstrated by a set-enumeration tree [6] constructing from the list of ordered fre-
quent items L1. An example of the search space for the dataset in Table 1 with support
threshold e ¼ 0:6 is visualized in Fig. 3. The procedure employs two pruning strategies
to greatly narrow down the search space. The first strategy is that if P is not a frequent
itemset, its supersets are not either, and the second one is the superset equivalence
introduced in Lemma 5. There are three input parameters for procedure Gener-
ateFrequentItemsets: (1) FIS is a frequent itemset which will be extended; (2) CI is a
list of candidate items used to expand the FIS with one more item; (3) Parent_FISs is
the set of frequent itemsets generated at the parent of FIS in the set-enumeration tree.
The detail procedure is as follows.

Fig. 3. Set-enumeration tree for example dataset Table 1, support threshold e ¼ 0:6

Procedure GenerateFrequentItemsets(FIS, CI, Parent_FISs)
1. nextCI ; eqItems ; extFISs ;
2. For Each item I CI
3. IS = (FIS {FIS.last_item}) {I};
4. extIS = FIS {I};
5. extIS.nodeset NodesetGenerator(FIS.nodeset,IS.nodeset);
6. If(extIS.support = FIS.support) eqItems.add(I);
7. Else If(extIS is an frequent itemset){
8. nextCI.add(I); extFISs.add(extIS); F.add(extIS);}
9. End For
10. If(eqItems <>)
11. SoS set of all subsets of eqItems, excluding ;
12. For Each IS SoS Do F.add(FIS IS);
13. If(Parent_FISs <>)
14. Production {P| P = P1 P2, P1 SoS, P2 Parent_FISs};
15. For Each IS Production Do F.add(FIS IS);
16. Parent_FISs Parent_FISs Production;
17. End If
18. Parent_FISs Parent_FISs SoS;
19. End If
20. If(Parent_FISs <>)
21. Production {P| P = P1 P2, P1 extFISs, P2 Parent_FISs};
22. F F Production;
23. End If;
24. For Each itemset IS extFISs
25. GenerateFrequentItemsets(IS, nextCI, Parent_FISs);

IFIN+: A Parallel Incremental Frequent Itemsets Mining 133

6 Experiments

All experiments were conducted on a 1.86 GHz Intel Core(MT) i3-4030U processor,
and 4 GB memory computer with Window 8.1 operating system. To evaluate the
performance, we used the Market-Basket Synthetic Data Generator [7], based on the
IBM Quest, to prepare a dataset of 1.2 million transactions. The average transaction
length and number of distinguishing items are 10 and 1000 respectively.

For emulating incremental scenario, the dataset was divided into six equal parts,
200 thousand transactions for each one. The experiments start mining on the first part
and then part by part from the second one is accumulated and mined.

The algorithm IFIN+ was compared with its original version IFIN, two
state-of-the-art algorithms FIN and PrePost+, and the well-known one FP-Growth. All
the five algorithms were implemented in Java. Experimental values of running time and
used memory are the average values from three individual ones.

Figure 4 depicts partially the running time for the three processing phases in par-
allel version IFIN+ with two threads and in the serial one IFIN. The processor possesses
two physical computational units, and we found that the performance achieved its best
with two threads in parallel version. The IFIN+’s execution time in each phase is
reduced significantly compared to its original version IFIN. The performance
improvement of loading a stored built tree (Fig. 4a) achieves its best with 6 s for
datasets of from 200 k to 1200 k transactions. More contrast in Fig. 4c, IFIN+’s exe-
cution is speeded up by two times over the original; and especially in Fig. 4b, an
approximate 8� speed-up is achieved in the phase of frequent 2-itemsets generation.
The reason for such high speed-up is that the efficient parallelization is synergized with
additional improvements in data representation.

(a) (b) (c)

0

5

10

15

20

25

30
ifin_TreeLoading
ifin+_TreeLoading

Transac ons

Se
co

nd
s

0
2
4
6
8

10
12
14
16
18

ifin_2ItemsetGen
ifin+_2ItemsetGen

Transac ons

Se
co

nd
s

0

2

4

6

8

10

12

14
ifin_NodesetGen
ifin+_NodesetGen

Transac ons

Se
co

nd
s

Fig. 4. Comparisons on the running time of partial processing phases between IFIN+ and IFIN:
(a) Loading the stored built tree, (b) Generate frequent 2-itemset, (c) Built Nodeset for each
frequent 2-itemset

134 V.Q.P. Huynh et al.

Figures 5 and 6 sequentially demonstrate the running time and peak used memory
for the five algorithms on incremental datasets at the support threshold e ¼ 0:1%. Two
running modes are performed by the IFIN and IFIN+ algorithms: Incremental (ifin_m1
and ifin+_m1) and Just-Loading-Tree (ifin_m2 and ifin+_m2).

For all algorithms, both running time and peak memory increase linearly when the
dataset is accumulated. Follow the increasing of the dataset size, while there is not
much difference in used memory of the five algorithms; the running time of IFIN and
IFIN+ become more discrepant compared with that of the remaining algorithms.

0

10

20

30

40

50

60

70

80

90

100

200k 400k 600k 800k 1000k 1200k

fpgrowth
fin
prepost+
ifin_m1
ifin_m2
ifin+_m1
ifin+_m2

Transac ons

Se
co
nd

s

Fig. 5. Running time on incremental datasets

0

10

20

30

40

50

60

70

80

90

100

0.6 0.5 0.4 0.3 0.2 0.1

fpgrowth
fin
prepost+
ifin
ifin+

Support Thresholds (%)

Se
co

n
Se

co
n

Se
co

nd
s

Fig. 7. Running time with different support
thresholds

300

500

700

900

1100

1300

1500

1700

1900

200k 400k 600k 800k 1000k 1200k

fpgrowth
fin
prepost+
ifin_m1
ifin_m2
ifin+_m1
ifin+_m2

Transactions

M
B

Fig. 6. Peak memory on incremental datasets

1200

1400

1600

1800

0.6 0.5 0.4 0.3 0.2 0.1

fpgrowth
fin
prepost+
ifin
ifin+

SupportSupport Thresholds (%)

M
B

Fig. 8. Peak memory with different support
thresholds

IFIN+: A Parallel Incremental Frequent Itemsets Mining 135

Especially the parallelized characteristics of IFIN+ demonstrate a significant
improvement, also compared to the IFIN. One of the reasons is that with the same
dataset, loading a stored built IPPC-Tree (IFIN+ and IFIN) is faster than constructing
the corresponding trees in PrePost+ and FP-Growth. In addition, parallelized charac-
teristics and structural improvement for more efficient and independent execution of
IFIN+ make its effectiveness in running time reduction. The larger the dataset is
accumulated, the more the running time difference is. While the reduction in used
memory per transaction of IFIN+ is not considerably, the processing time is reduced
remarkably although IFIN+ must compensate the execution time for generating node-
sets for items. The running time of IFIN+ is slightly less than a half the running time of
FP-Growth; and comparing to its original version IFIN, the time ratio is two third for
IFIN+.

In the Figs. 7 and 8, the running time and peak used memory are visualized for the
five algorithms mining on the dataset of 1.2 million transactions with different e values.
At e ¼ 0:6%, IFIN and IFIN+ perform two tasks: building an IPPC-Tree and mining;
but for other e values, the two algorithms only run their mining tasks since the built tree
is completely reused. Besides, according to the algorithms IFIN and IFIN+, only a
portion of its mining is performed. Consequently, with e 6¼ 0:6%, the running time of
IFIN+ and IFIN take an overwhelming advantage against that of the three remaining
algorithms. Algorithm IFIN+ has an improvement in execution time compared to IFIN,
whereas its peak used memory is worse than IFIN’s. The explanation for this result is
that IFIN+ allocates memory for nodesets of items and retains these nodesets for
following mining cycles at other support thresholds. The mining tasks of IFIN and
IFIN+ at all e values are in the same running session. Consequently, the peak used
memory in the case e ¼ 0:6% and in the cases e 6¼ 0:6% and are fairly the same. Hence,
the “worse” usage in memory of IFIN+ against IFIN is not really important.

The algorithm FP-Growth uses memory more efficient than the two algorithms FIN
and PrePost+. However, its running time is considerably longer than that of FIN and
PrePost+. Algorithm PrePost+ is more efficient than FIN in both running time and used
memory, but this dominance of PrePost+ is not significant.

7 Conclusions

In this paper, we proposed a solution, IFIN+, for parallelizing the frequent itemsets
mining algorithm IFIN. Some portions in the serial version were changed in ways that
increase efficiency and computational independence for convenience in designing
parallel computation with the load balance model, Work-Pool. Hence, computational
throughput and efficiency are increased significantly in single-machine environment.
Besides, the IFIN+ algorithm also possesses incremental property as its original version
which allows no wasting time to rebuild the IPPC-Tree when new data is added and to
re-mine when support threshold is changed.

136 V.Q.P. Huynh et al.

The aim of shared-memory based parallelized algorithm IFIN+ is to increase the
throughput for its serial version IFIN by utilizing as much as possible the computa-
tional power of commodity multi-cores processors. In fact, it is just a minor solution to
deal with the running time problem in Big Data. For a major and much preferred one, a
parallel solution for IFIN+ on distributed environment will be proposed to better
confront with the running time and memory scalability problems of Big Data. Besides,
conducting experiments on other real datasets will be also performed as our next steps.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of
20th International Conference on VLDB, pp. 487–499 (1994)

2. Han, J., Pei, J., Yin, Y.: Mining frequent itemsets without candidate generation. ACM
Sigmod Rec. 29(2), 1–12 (2000)

3. Cheung, W., Zaïane O.R.: Incremental mining of frequent patterns without candidate
generation or support constraint. In: Proceedings of the 7th International Database
Engineering and Applications Symposium, pp. 111–116. IEEE (2003)

4. Deng, Z.-H., Lv, S.-L.: Fast mining frequent itemsets using nodesets. Expert Syst. Appl. 41
(10), 4505–4512 (2014)

5. Deng, Z.-H., Lv, S.-L.: PrePost+: an efficient N-lists-based algorithm for mining frequent
itemsets via children-parent equivalence pruning. Expert Syst. Appl. 42(13), 5424–5432
(2015)

6. Rymon, R.: Search through systematic set enumeration. In: Proceedings of the 1st
International Conference Principles of Knowledge Representation and Reasoning, pp. 539–
550 (1992)

7. Market-Basket Synthetic Data Generator. https://synthdatagen.codeplex.com/
8. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association

rules in large databases. In: VLDB, pp. 432–443 (1995)
9. Perego, R., Orlando, S., Palmerini, P.: Enhancing the Apriori algorithm for frequent set

counting. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS,
vol. 2114, pp. 71–82. Springer, Heidelberg (2001). doi:10.1007/3-540-44801-2_8

10. Park, J.S., Chen, M.S., Yu, P.S.: Using a hash-based method with transaction trimming and
database scan reduction for mining association rules. IEEE Trans. Knowl. Data Eng. 9(5),
813–825 (1997)

11. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3),
372–390 (2000)

12. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees. Trans.
Knowl. Data Eng. 17(10), 1347–1362 (2005)

13. Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient mining of frequent itemsets using
ascending frequency ordered prefix-tree. DMKD J. 9(3), 249–274 (2004)

14. Shenoy, P., Haritsa, J.R., Sudarshan, S.: Turbo-charging vertical mining of large databases.
In: SIGMOD 2000, pp. 22–33 (2000)

15. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: 9th SIGKDD, pp. 326–335
(2003)

IFIN+: A Parallel Incremental Frequent Itemsets Mining 137

https://synthdatagen.codeplex.com/
http://dx.doi.org/10.1007/3-540-44801-2_8

16. Liu, J., Wu, Y., Zhou, Q., Fung, B.C.M., Chen, F., Yu, B.: Parallel eclat for opportunistic
mining of frequent itemsets. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker,
H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 401–415. Springer, Cham (2015). doi:10.1007/
978-3-319-22849-5_27

17. Yun, U., Lee, G.: Incremental mining of weighted maximal frequent itemsets from dynamic
databases. Expert Syst. Appl. 54, 304–327 (2016)

18. Huynh, V.Q.P., Küng, J., Dang, T.K.: Incremental frequent itemsets mining with IPPC tree.
In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R.
(eds.) DEXA 2017. LNCS, vol. 10438, pp. 463–477. Springer, Cham (2017). doi:10.1007/
978-3-319-64468-4_35

138 V.Q.P. Huynh et al.

http://dx.doi.org/10.1007/978-3-319-22849-5_27
http://dx.doi.org/10.1007/978-3-319-22849-5_27
http://dx.doi.org/10.1007/978-3-319-64468-4_35
http://dx.doi.org/10.1007/978-3-319-64468-4_35

	IFIN+: A Parallel Incremental Frequent Itemsets Mining in Shared-Memory Environment
	Abstract
	1 Introduction
	2 Related Works
	3 IPPC Tree Construction
	4 Preliminaries
	5 Algorithm IFIN+
	6 Experiments
	7 Conclusions
	References

