
Metamorphic Malware Detection by PE
Analysis with the Longest Common Sequence

Thanh Nguyen Vu1(&), Toan Tan Nguyen1, Hieu Phan Trung1,
Thao Do Duy1, Ke Hoang Van1, and Tuan Dinh Le2

1 University of Information Technology, Vietnam National University,
HCM City, Ho Chi Minh City, Vietnam

{nguyenvt,toannt,hieupt}@uit.edu.vn,

{13520797,13520376}@gm.uit.edu.vn
2 Long An University of Economics and Industry,

Tan An, Long An Province, Vietnam
le.tuan@daihoclongan.edu.vn

Abstract. Metamorphic malware detection is one of the most challenging tasks
of antivirus software because of the difference in signatures of new variants from
preceding one [1]. This paper proposes the method for the metamorphic mal-
ware detection by Portable Executable (PE) Analysis with the Longest Common
Sequence (LCS). The proposed method contains the following phase: The raw
feature extraction obtains valuable features like the information of Windows PE
files which are PE header information, dependencies imports and API call
functions, the code segments inside each of Windows PE file. Next, these
segments are used for generating the detectors, which are later used to determine
affinities with code segments of executable files by the longest common
sequence algorithm. Finally, header, imports, API call information and affinities
are combine into vectors as input for classifiers are used for classification after a
dimensionality reduction. The experimental results showed that the proposed
method can achieve up to 87.1% precision, 63.3% recall for benign and 92.6%
precision, 93.7% for average malware.

Keywords: Malware detection � Data mining � Longest common sequence �
Neural network

1 Introduction

The battle against computer threats is an endless game. In recent years, the considerable
developments in mobile, wearable and IoT devices attract a lot of cybercriminals.
However, the prevalent PC usages for important tasks in enterprise, finance and
banking always keep them the main target for malware creators with the largest number
of Windows malware samples. And .EXE (extension for PE files) is still the most
dangerous extension [2]. Therefore, this paper focuses on problem how to detect the
metamorphic malware on PE files.

Computer security experts have applied wide range of methods from traditional
signature-based recognition, non-signature based malware detection techniques like

© Springer International Publishing AG 2017
T.K. Dang et al. (Eds.): FDSE 2017, LNCS 10646, pp. 262–272, 2017.
https://doi.org/10.1007/978-3-319-70004-5_18



heuristic analysis, behavior analysis or a combination of both for malware detection.
The prior work showed that non-signature based malware detection techniques are not
affective because of high false positive rate and high processing costs [3]. Most of
common Anti-Virus products utilize signature based detection schemes that provide
low false positive rate and have acceptable cost. However, their limitation is that they
are unable to detect zero-day malware while the numbers of malware sample increases
sharply years by years [2].

In the non-signature based schemes, the two main approaches for malware analysis
are static and dynamic analysis approaches. In the static analysis approach, code and
structure of a program is examined without running the program whereas in the
dynamic analysis approach, the program can run in sandbox (a simulating
environment).

This paper proposed a static malware detection system using data mining tech-
niques. The raw extracting step acquires valuable features of PE files: PE header
information, DLL imports, API call functions and code segments. Afterward, these
segments are used for generating the detectors, which are later used to determine
affinities with code segments of executable files. Finally, header, imports, API call
information and affinities are combine into input for classifiers are used for classifi-
cation after a dimensionality reduction.

2 Related Work

In 2001, Shultz et al. proposed the method using data mining (DM) techniques for
detecting new malicious executable files [3]. Three different types of features were
extracted from the executables, i.e. the list of DLLs used by the binary, the list of DLL
function calls, and number of different system calls used within each DLL.

A similar approach was used by Kolter et al. [4], in which they used n-gram
analysis and data mining approaches to detect malicious executable files in the wild.
The authors used a hex dump utility to convert each executable file to hexadecimal
code in an ASCII format and to produce n-gram features by combining four-byte
sequence into a single term. Information gain was selected to get the valued features
which are input to several classifiers.

In [5], Zhenlong Yuan et al. used a combination of static and dynamic analysis in
feature extraction for Android OS. The two static phases were to retrieve the required
permission and the sensitive API call while the dynamic phase provided dynamic
behaviors. The extracted features were used for the deep learning model constructed by
Deep Belief Networks.

Chao et al. [6] made used of artificial immune system to build a set of detectors
which are malicious estimation units. Then executable files converted into affinity
vectors before coming as input for different classifiers. Their result showed a positive
performance in virus detection.

Unlike the previous works, in this paper, we propose the malware detection method
which includes the extraction of DLL imports, DLL function calls from [3] and
building set of detectors from [6] to robust malware detection system effectiveness.

Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence 263



3 The Proposed Malware Detection Method

Our malware detection system is based on the information extraction from the .EXE
files which are formatted by PE format structure. The information is then selected and
extracted to use for classification. The proposed method has two phases: the training
and the testing as shown in Fig. 1.

In the training phase, firstly, the raw feature extraction obtains the useful features
such as the information of Windows PE files which are PE header information,
dependencies imports and API call functions, the code segments inside each of Win-
dows PE file. Next, these segments are used for generating the detectors, which are
later used to determine affinities with code segments of executable files by the longest
common sequence algorithm. Finally, header, imports, API call information and
affinities are combine into vectors as input for classifiers are used for classification after
dimensional reduction. In the testing phase, set of detector and classifier model
obtained from the training phase are used for detecting and classifying which classes
executable files is belong to.

Fig. 1. Overall malware detection model

264 T.N. Vu et al.



3.1 The Portable Executable Format Structure

The Portable Executable (PE) format is the file format for executable files, object code,
DLLs and others used in 32-bit and 64-bit versions of Windows OS. The PE format is
the data structure which encapsulates the information necessary for the Windows OS
loader to manage the wrapped executable code. On NT OSs, the PE format is used for
EXE, DLL and other file types. The PE file header consists of the MS DOS stub, the PE
the file signature, the COFF (Common Object File Format) header, and the optional
header. It contains the important information of the file such as the number of sections,
the size of the stack and the heap, etc. The section table has the section information
such as their name, offset and size, etc. These sections contain the actual data such as
code, initialized data, exports, imports and resources [7]. Feature extraction makes use
of a tool to exploit executable files based on this format.

3.2 Feature Extraction

As the overall model shown in the previous section, the .EXE files are extracted into
four information groups: PE header, DLLs import, API calls, and Code Sequences (in
Assembly Code) by using the official utility named dumpbin from Microsoft Corp [8].

PE header. The PE file header consists of a MS DOS stub, a PE file signature, a COFF
header, and an optional header. The COFF header contains different information such
as machine type, number of sections, time stamp, file pointer to symbol table, number
of symbols, characteristics, etc. The optional header contains linker version, size of
code, size of initialized/uninitialized data, OS version, image version, subsystem ver-
sion, etc. They are used as numeric features. In our dataset, 62 figures were selected
after removing those figures which cause missing values.

DLLs import. Most of executable files on Windows OS must import dynamic link
library (DLL) for executing command in lower layer. Each DLL has a group of certain
functions related to each other. Therefore, obtaining the import of an executable pro-
vides an overview of its functionalities. For instance, the WS2_32.DLL contains the
Windows Sockets API used by most Internet and network applications to handle
network connections so an executable import this DLL could run some network
activities. Similarly, the spyware which steals sensitive information and sends to its
author server must import network-related DLLs directly or indirectly to complete its
mission. In [3], Schultz et al. have used the conjunction of DLL names, with a similar
functionality, as binary features. Their experimental results showed that this feature
helps to attain reasonable detection accuracy. However, Shafiq’s experimental studies
have showed that using them as individual binary features can describe more infor-
mation, and hence can be more helpful in detecting malicious PE files [9]. In our
approach, we have 96 DLLs after removing the low frequency DLLs as binary features.
15 of them are listed in Table 1 with the frequency in our dataset.

API calls. Each of DLL provides several APIs for using the executables. For example,
Kernel32.dll exports WriteFile function which is used for writing data to the specified
file or input/output device; User32.dll offers IsWindow function is used to determine
whether the specified window handle identifies an existing window. Like DLLs import,

Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence 265



the calls to these functions also infer their intention of the executable call to. In our
pre-analysis, there were more than 3000 APIs called in the full dataset. The APIs were
later reduced by removing the low frequency APIs before being investigated on the
official API descriptions of Microsoft Developer Network (MSDN) website [10] to
decide whether to keep or remove from the set. The criterion for removal are common
and non-malicious related activities are:

Allocate memory: this is almost essential for every program.
Pure multimedia creating: Set a menu, draw a line, an eclipse, rectangle and fill
color, change font color, play a sound, convert color palette, show icon, images, etc.
Error and exception throw: these activities almost report bug and crash for Win-
dows log and Windows trouble shooter.

The criteria for retaining are:

File-related activities: Create a specific file in sensitive folders; Delete, break,
override system files or application files; Edit, append, encrypt files; Traverse file
directory and find target files, etc.
Process-related activities: load insert dll into other process and create a new thread
to duplicate itself; Create new processes to execute its code; Create threads to search
and terminate other process, end task etc.
Memory-related activities: Forbid memory allocation and reclaim memory space;
Point the interrupt vector address to the initial address of the its code, etc.
Registry manipulation activities: Create/Read/Edit/Delete to the specified registry
key, search registry key, Open/Close a handle to specified registry key, etc.

Table 1. Top 15 DLLs by frequency

Name Frequency Description

KERNEL32.DLL 8940 WINDOWS NT BASE API CLIENT DLL
USER32.DLL 7317 MULTI-USER WINDOWS USER API CLIENT
ADVAPI32.DLL 3926 ADVANCED WINDOWS 32 BASE API
GDI32.DLL 1939 WIN32 GDI CORE COMPONENT
WINMM.DLL 1700 MCI API DLL
MSVCRT.DLL 1590 MICROSOFT (R) C RUNTIME LIBRARY
OLE32.DLL 1545 MICROSOFT OLE FOR WINDOWS
OLEAUT32.DLL 1077 MICROSOFT OLE AUTOMATION
MSVFW32.DLL 977 MICROSOFT VIDEO FOR WINDOWS DLL
WS2_32.DLL 956 WINDOWS SOCKET 2.0 32-BIT DLL
RPCRT4.DLL 846 REMOTE PROCEDURE CALL RUNTIME
SHLWAPI.DLL 772 SHELL LIGHT-WEIGHT UTILITY LIBRARY
MSACM32.DLL 675 MICROSOFT ACM AUDIO FILTER
HAL.DLL 672 HARDWARE ABSTRACTION LAYER DLL
SHELL32.DLL 648 WINDOWS SHELL COMMON DLL

266 T.N. Vu et al.



Network-related activities: Open or listen on specific port, obtain mail client profile,
creates an HTTP request handle, create/send mail slot, retrieves header information
associated with an HTTP request, open proxy handle, etc.
Collecting data activities: get data from SQL server, get geography, file attribute,
retrieve handle to the display monitor, read the console, get OS version, get
machine OEM information, get dialog info, etc.
String manipulation activities: find, replace, convert, encode, parse string could be
relating to code/file/resource/config injection, alteration.
Tracking I/O and others: track the mouse event, monitors keystrokes, privilege
access, reboot system, minimize a window, broadcast/send message, create
mutex/atom variable, get/set environment string, get/set timer, etc.

All function from third party DLLs (non-Microsoft integrated) with high-mid fre-
quency are also kept. Finally, we got 2029 API calls as binary features.

Find Detectors. The PE format structure showed that there may contain code sections
or other resources. With the support of the tool dumpbin, we extracted the code section
as the code sequence in assembly (Fig. 2 A Code Sequence) so that the code sequence
is represented for an executable file.

Like the concept detectors in [6], our detectors are used for calculating the affinities
with code sequences. The overall procedure to get detectors is shown in the Fig. 3
below.

As the Fig. 3, each malware family is extracted to the local detector set. Each set
was then merged into one united set using the benign threshold. Any detector matched
more than threshold number of benign files (benign code sequences) would be elim-
inated (matching standard describes in next section). The find-local-detectors step is
shown in Fig. 4. This step applies on executables of each malware family to find the
local detector for that family. In this step, the two consecutive executables of a family
are used to find the longest common subsequence (LCS) by using the LCS algorithm.
After obtaining all LCSs for that family, a similar procedure is applied on the new
LCSs to create next generation LCSs. The procedure re-occurs while the number of a
new generation LCSs is still higher than the pre-define threshold. When the procedure
stops, the latest generation LCSs becomes the local detectors for that family.

Fig. 2. A code sequence

Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence 267



Code Sequence Affinities with Detectors and Matching Standard.
Code sequence affinity is the similarity metrics with a detector of that code sequence.
There are several sequence metrics such as Levenshtein distance, Jaro-Winkler distance
for different purposes. In our case, we decided to use a custom metrics:

aff ðsequence; detectorÞ ¼ lengthðLCS sequence; detectorð ÞÞ
lengthðdetectorÞ ð1Þ

Matching Standard is a criterion to remove a detector from detectors set when that
detector is considered as too common in benign set. A detector and a benign sequence
are matched when their affinity is larger than a preset matched threshold.

aff benign; detectorð Þ�matchThreshold , match detector; benignð Þ ð2Þ

3.3 Feature Selection

After all features are extracted, PE header, DLLs import, API calls, and Code
Sequences affinities are aggregated in order respectively into one vector per .EXE file.
Then, the low variance feature selection applies on the train set to remove all columns
which are significantly low variance like same value for all rows. This low variance

Fig. 3. Build final detector process

268 T.N. Vu et al.



feature selection applied on train set are used on correspond test set for the
synchronization.

3.4 Classification

After all features are extracted and selected as shown in Fig. 1, they are separated by
using classifiers. In this study, we used 3 classifiers: Gaussian Naïve Bayes (NB),
Support Vector Machine (SVM) and Multilayer Perception with Rectified Linear Unit
activation function (ReLU).

4 Experiment

4.1 Dataset

In this section, we described the datasets used in our study. We collected a lot of benign
executable files from installed folders of applications of legitimate software from

Fig. 4. Find local detectors process

Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence 269



different categories. They are all verified by VirusTotal.com [11]. We also collected 5
malware families from virusshare.com and MALICIA Set in [12]. Because of the
obscured techniques and the anti-reverse techniques in some executable files, the tool
dumpbin was unable to exploit information in that executables. Therefore, we cleaned
and finally got dataset as Table 2.

4.2 Evaluation Criteria

Because the objective of the malware detection system is to detect the new variants of
well-known malware families, we evaluated on multi-classification to families, as
shown on Table 2. Because of the sharp skew between families, this
multi-classification uses precision, recall as evaluation metrics, which are defined as
following:

– Precision is the fraction of relevant instances among the retrieved instances,

Precision ¼ true positive
true positive þ false positive

– Recall is the fraction of relevant instances that have been retrieved over total
relevant instances,

Recall ¼ true positive
true positive þ false negative

(true positive: hit, false positive: false alarm, false negative: miss)

Another metric is F-score, which is the harmonic mean of precision and recall,
could be useful for comparing models when one of those model is just higher than the
other in either precision or recall.

F � score ¼ 2:
Precision:Recall

Precision þ Recall

Besides, in a malware detection system, benign false alarm (categorize malwares as
benign binaries) is very hazardous so benign precision is also considered as an
important metric (higher benign precision is better).

Table 2. Dataset summary

Name Amount Source

Locker 330 virusshare.com
Mediyes 1640
Winwebsec 4400 MALICIA set
Zbot 2100
Zeroaccess 920
Benign 300 Authentic sources

270 T.N. Vu et al.

http://virusshare.com


4.3 Experimental Results

After running stratified 5-fold cross validation with matching threshold is 0.95,
match-benign threshold is 0.8, generate-detector threshold is 0.6, low-variance
threshold is 0 (features having same value all rows are removed); we tabulated our
results for this study, as shown in Table 3. Avg. Malware is the average of figures of all
malware families and other figures are the average of 5 results from 5 folds.

Overall, MLP achieves better results when comparing to the SVM and the NB in
both benign precision and F-score for benign and average malware, respectively. We
also observe that SVM has the lower performance than the others, only 0.4 precision,
0.013 F-score for benign, respectively. This may be because the model is not native
multiclassification classifier. Besides, low number of samples of classes like benign
(300) made them difficult to be converged to the high results as majority classes such as
Winwebsec (4400), Zbot (2100), etc. Thus, most of the Winwebsec, Zbot result metrics
are higher than 0.95 whereas these figures for Benign, Locker are just between 0.5 and
0.8. Also, the best model belonged to MLP with 2 hidden layers, which generally has
better results in both benign file and malware than other classifiers, with 87.1% pre-
cision, 73.3% F-score for benign and 93% F-score for average malware. In addition, the
best model also accomplishes the best figures of the table with 99.9% F-score, 100%
recall for Winwebsec family – the largest family of the dataset.

Table 3. Summary of experimental result

Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence 271



In MLP, the number of node in each hidden layer was 2/3 of (number of feature
+1), with random weights, learning rate was 0.001 and momentum was 0.5. For the
SVM, the best result come with RBF kernel, one-vs-one strategy and C = 1.0,
gamma = 1/(number of feature).

5 Conclusion

This paper proposed the combinational model of statistics and code sequence similarity
algorithms which determines whether a new executable file is a metamorphic malware
of a known family or benign. It can be used for new malware variant detection while
most of new malwares are created based on known families nowadays. The experi-
mental results showed that the proposed method can achieve better performance in the
certain condition with MLP classifier.

However, the limitation of the proposed method is that several parameters of this
method are not calculated automatically. The future works will investigate the dynamic
features extracted automatically in sandbox; adding more families to widen detection
ability, more samples to improve the balance of the data set and replacing LCS with
better solution in finding detectors.

References

1. Symantec Corporation: Detecting Complex Viruses. https://www.symantec.com/connect/
articles/detecting-complex-viruses. Accessed 10 June 2017

2. AV-TEST Institute: The AV-TEST Security Report, Magdeburg (2016)
3. Schultz, M.G., Eleazar, E., Erez, Z., Salvatore, S.J.: Data mining methods for detection of

new malicious executables. In: IEEE Symposium Security and Privacy, S&P 2001,
Proceedings, pp. 38–49 (2001)

4. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.
J. Mach. Learn. Res. 7, 2721–2744 (2006)

5. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection
using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)

6. Rui, C., Tan, Y.: A virus detection system based on artificial immune system. In:
Computational Intelligence and Security – CIS 2009, vol. 1, pp. 6–10 (2009)

7. Microsoft Corporation: Microsoft Portable Executable and Common Object File Format
Specification, Microsoft Corporation (2017)

8. Microsoft Corporation: DUMPBIN Reference. https://msdn.microsoft.com/en-us/library/
c1h23y6c.aspx. Accessed 10 June 2017

9. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: mining structural information
to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009). doi:10.1007/978-3-642-
04342-0_7

10. Microsoft Corporation: Desktop App Technologies, Microsoft Corporation. https://msdn.
microsoft.com/library/windows/desktop/bg126469.aspx. Accessed 10 June 2017

11. Total, Virus: VirusTotal-Free online virus, malware and URL scanner (2017)
12. Antonio, N., Zubair, R.M., Juan, C.: The MALICIA dataset: identification and analysis of

drive-by download operations. Int. J. Inf. Secur. 14(1), 15–33 (2015)

272 T.N. Vu et al.

https://www.symantec.com/connect/articles/detecting-complex-viruses
https://www.symantec.com/connect/articles/detecting-complex-viruses
https://msdn.microsoft.com/en-us/library/c1h23y6c.aspx
https://msdn.microsoft.com/en-us/library/c1h23y6c.aspx
http://dx.doi.org/10.1007/978-3-642-04342-0_7
http://dx.doi.org/10.1007/978-3-642-04342-0_7
https://msdn.microsoft.com/library/windows/desktop/bg126469.aspx
https://msdn.microsoft.com/library/windows/desktop/bg126469.aspx

	Metamorphic Malware Detection by PE Analysis with the Longest Common Sequence
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Malware Detection Method
	3.1 The Portable Executable Format Structure
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Classification

	4 Experiment
	4.1 Dataset
	4.2 Evaluation Criteria
	4.3 Experimental Results

	5 Conclusion
	References


