
Security Analysis of Administrative Role-Based
Access Control Policies with Contextual

Information

Khai Kim Quoc Dinh, Tuan Duc Tran, and Anh Truong(&)

Ho Chi Minh City University of Technology, Ho Chi Minh, Vietnam
{714039,anhtt}@hcmut.edu.vn

Abstract. In many ubiquitous systems, Role-based Access Control (RBAC) is
often used to restrict system access to authorized users. Spatial-Temporal
Role-Based Access Control (STRBAC) is an extension of RBAC with con-
textual information (such as time and space) and has been adopted in real world
applications. In a large organization, the RBAC policy may be complex and
managed by multiple collaborative administrators to satisfy the evolving needs
of the organization. Collaborative administrative actions may interact in unin-
tended ways with each other’s that may result in undesired effects to the security
requirement of the organization. Analysis of these RBAC security concerns have
been studied, especially with the Administrative Role-Based Access Control
(ARBAC97). However, the analysis of its extension with contextual informa-
tion, e.g., STRBAC, has not been considered in the literature. In this paper, we
introduce a security analysis technique for the safety of Administra-
tive STRBAC (ASTRBAC) Policies. We leverage First-Order Logic and
Symbolic Model Checking (SMT) by translating ASTRBAC policy to decidable
reachability problems. An extensive experimental evaluation confirms the cor-
rectness of our proposed solution, which supports finite ASTRBAC policies
analysis without prior knowledge about the number of users.

Keywords: Computer security � Security analysis � Access control �
Role-based access control � Spatial-temporal role-based access control

1 Introduction

Enterprise data is a valuable target for malicious users and perpetrators. As the threats
become higher nowadays, Access Control [1] is crucial to protect these sensitive
resource and information in large scale information management system against
unauthorized accesses by mediating every requests to resources and determining whe-
ther to grant or deny each individual access requests. Access Control Policy defines the
high-level rules applying to Access Control process to regulate and control who has
what kind of permissions to access which resources. Three main Access Control models
are Discretionary Access Control (DAC) [2], Mandatory Access Control (MAC) [3] and
Role-Based Access Control (RBAC) [4]. These model have been continuously devel-
oped, from DAC to MAC and RBAC in order to approach higher and higher level of
Access Control. The RBAC model, which separate responsibilities in a system where

© Springer International Publishing AG 2017
T.K. Dang et al. (Eds.): FDSE 2017, LNCS 10646, pp. 243–261, 2017.
https://doi.org/10.1007/978-3-319-70004-5_17

multiple roles are fulfilled, is more suitable for nowadays organizations. The main power
of RBAC comes from the Principle of Least Privilege and Separation of Duties, under
which no one can take advantage of their granted accesses to perform malicious
activities since no standalone individual has all permissions needed for an important
operation.

Research works [5, 6] have been devoted to expand RBAC model to support higher
level of security where the number of users and administrators keep increasing.
Administrative Role-Based Access Control (ARBAC) [7] is proposed which specifies
how RBAC policies may be changed by administrators and supports decentralized
policy administration. In reality, RBAC policies may be changed occasionally when
user changes their job or gets promoted. Thus, it needs to be modified, e.g., add or
remove some tuples in the policies, by administrators. Managing changes is a complex
task, which requires many administrators. Each administrator can make small changes
to parts of the policies that, at first look, seems harmless. However, when in effect, the
combination of all of these changes may lead to unsafe state which violates security
properties of the policies. Therefore, it is paramount to have a solid change manage-
ment solution which checks for vulnerabilities and violations in security before
applying those changes to the policies. Analysis of these vulnerabilities in Adminis-
trative Role-Based Access Control (ARBAC97) [10] have been thoroughly done [17].
Over the last few year, many research have been focused on STRBAC [8] and the
Administrative model of STRBAC [9]; however, there is no work focusing on the
security analysis of the Administrative model of STRBAC. In order to overcome these
shortcomings, in this paper, we propose a security analysis technique for STRBAC
based on First Order Logic and Symbolic Model Checking [18]. The main idea is to
adapt First Order Logic and Symbolic Model Checking to translate the security analysis
problems of ASTRBAC policy to decidable reachability problems where total users
and roles are finite but their exact number is not known in order to mechanize the
analysis. This paper is the first research on security analysis of the ASTRBAC model.
Based on the model checking proposed in [16], our research creates a framework to
help security officer aware of the existence of vulnerabilities in the policies before
applying those polices to production systems. This model can also return the group of
actions which cause the vulnerability to help security officers in detecting and modi-
fying security polices easier according to their needs and keep compliance with security
requirements of the organization.

The rest of this paper is organized as follow. In Sect. 1, we introduce the RBAC,
ARBAC and related security analysis problems. Section 2 briefly reviews the
STRBAC, ASTRBAC models and demonstrates security issues related to these mod-
els. Section 3, we describe how we design a technique to analyze the problems.
Section 4 summarizes our experiments and results, Sect. 5 is our conclusions.

2 Background

RBAC has been considered as an alternative to the well-known tradition access control
such as DAC and MAC. In general, RBAC policy is a tuple (U, R, P, UA, PA) which
consist of a set U of users, a set R of Roles, a set P of Permissions, a User-Role

244 K.K.Q. Dinh et al.

Assignment relation UA � U � R, a Role-Permission Assignment relation PA � R
P, and for simplicity, we ignore the role hierarchy (see [30] for more details). As stated
in RBAC, a user u is a member of a role r if (u, r) 2 UA; a role r is assigned permission
p if (p, r) 2 PA. Thus, a user is granted to permission p iff there exists a role r 2 R such
that (p, r) 2 PA and u is the member of r. The UA relations in RBAC keep changing
according to the growth and reduction of human resources in an organization while the
PA will be less likely to change because of the fact that the change of this part means
there is a change in organization structure and this may impact the entire system.

As RBAC expands to support hundreds of users and thousands of permissions in a
large organization, several administrators are required to maintain the security policies,
and thus, there is a high demand of both a consistent RBAC policy and an assurance
that the policy can only be modified by administrators who are authorized to do so.
The ARBAC is the most accepted administrative framework to control how RBAC
policies might change through administrative actions by assigning or revoking user
memberships into roles (URA model, a sub-model of ARBAC [7]). In URA model,
administrators can only update the relation UA using the defined administrative actions
while the relation PA keeps constant. The first administrative action is to assign users to
roles and is defined using ternary relation can_assign(A,C,r) where A (called
Administrative) and C (called Simple) are pre-conditions and r is a role (called target
role). The second administrative action is to revoke users from roles and is defined
using binary relation can_revoke(A,r) where A (called Administrative) is a
pre-condition and r is a role (called target role). A pre-condition C is defined as a finite
set of signed role, which expressed using +r or –r for r 2 R. We can say that a user u 2
U satisfied a pre-condition C (written as u ⊧ C) if for each c 2 C, u is the member of r 2
R when c is +r and u is not a member of r 2 R when c is –r.

While this restriction can limit the administrative actions, research [11] has found
that the change to RBAC policy by one administrator may interact in unintended or
malicious ways with other administrator’s actions. This problem is well-known as the
safety problem (also called the reachability problem), which the effects of these
interactions may lead to an unintended role assignment to an untrusted user, and let that
user have the ability to view or stole sensitive information or resources. In large
organizations with thousands of roles, it is hard for policy designers to understand the
ARBAC’s implications for those interactions.

In general, the safety problem is undecidable [19]. Several techniques have been
introduced in [10, 12–14, 17] to solve the safety problem in administrative RBAC. The
first research [10] uses state-transition system and logic programming but this approach
faces the state space explosion problem and thus, it can only support a small and simple
policies. The second [12] approaches the problem using model checking but its runtime
is unacceptable with large policies. The third research [13] uses bounded model
checking to check large policy but in some cases, it cannot decide whether a policy is
safe or not. The forth research [14] simplifies the state space by reducing a policy to a
smaller one that preserves the reachability of the target role, which requires limited
users, and support only one role in the administrative pre-condition of administrative
actions. The fifth research [17] has put forward to analysis and performs better than [14]
but it still cannot specify “the reason” the policy is unsafe. Recently, the research [16]

Security Analysis of Administrative Role-Based Access Control Policies 245

has improved from [17] with temporal support. To the best of our knowledge, ours is the
first tool to solve the safety problem in STRBAC model.

3 Administrative Spatial Temporal RBAC

TRBAC. In many scenarios, authorization depends on addition contextual information
such as the location of user and the time of the day. In this case, an intern of an
organization should only be authorized to access the information system of a company
only in the branch he is working and during working hours such as between 7 am to 11
am. In order to understand the authorization conditions that depend on spatial temporal
constrains, we need to introduce the model of location and time.
In [20, 21], the TRBAC model of time is usually specified by means of intervals
periodically repeating time intervals, such as day and night-time (two intervals
repeating daily), each hour per day (twenty-four intervals repeating daily), or each day
per week (seven intervals repeating weekly). Let TMax be a positive integer and a is a
non-negative integer such that a + 1 � TMAX, A time slot is a pair (a; a + 1); to ease
the readability, we will use (8am; 4pm), (4pm; 12am), and (12am; 8am) to denote time
slots (0; 1), (1; 2), and (2; 3), respectively. The set of all time slots is TSTMAX = {(a;
a + 1) | 0 � a < TMAX}. We will usually write TS in place of TSTMAX when TMAX is
clear from context and in this paper, we assume TMAX to be given so that the set TS is
fixed. A time instant is a non-negative real number. A time instant t belongs to a time
slot (a; a + 1), written as t 2 (a; a + 1), iff a � (t mod TMAX) < a + 1 where mod is
the usual modulo operator, i.e., t0 = t mod TMAX iff there exists a non-negative integer
k such that t = t0 + k � TMAX.

The location of a user proposed in [22] should be updated automatically using
position determination system (PDS). GPS is one of the most well-known methods to
get locations using satellite. Another method requires infrared sensors base station,
infrared transponders and active infrared badges that can respond to the sensors to
detect and inform user location to base station in small organizations. Other methods
use wireless signal strength information from multiple stations to estimate the locations
more accurately, which is usually found on mobile devices. In order to make RBAC
spatially capable, the authors want to express location in a convenient way that can be
interpreted by humans easily and to have a standard way of representing location in raw
format, as stored by the system. They define two levels of locations, namely Primitive
Location and Logical Location. A Primitive Location Lp is either the volume associated
with basic unit of position that is returned by the PDS, or an artificially created volume
defined by the administrator for PDSs that have high resolution. These may be created
using Constructive Solid Geometry from basic geometric shapes defined by their
coordinates. A logical location Ll is a combination of one or more logical or raw
locations joined by a [, \ and / or \ operator combined with other primitive locations
to form a logical location. In this paper, for the sake of simplicity, we will focus on
logical location and assume that the location Ll to be updated by the PDS.

An enhanced version of STRBAC is ESTRBAC [23], this model proposes new
concepts of role extent and permission extent to define the spatiotemporal access

246 K.K.Q. Dinh et al.

control policies. ESTARBAC still consists components of RBAC, namely, users, roles
and permissions but they are associated with either spatial extents or spatial temporal
extents. In ESTRBAC model, a set I of intervals is a set of all time slots that participate
in at least one spatial temporal access control policy specification (e.g., I is a subset of
TS. For simplicity, we consider I = TS in this paper, i.e., every time slots participates in
policy specifiacation). Roles and permissions can be available only at specific locations
and during specific time intervals, namely, Role Extents (RE) and Permission Extents
(PE). In this paper, we will use these RE and PE to support our analysis.

We are now ready to formalize a simplified version of the Enhanced Spatial
Temporal RBAC model based on ESTARBAC. The idea is to make RBAC policies
depend on constraints based on the notion of both location and time introduced above.

Spatial Temporal RBAC. From now on, we assume that both Ll and TMAX is given
so that the set TS of all time slots is fixed and the set UL of all user logical locations
UL � U � L is updated from the PDS. STRBAC extends RBAC by adding the Role
Extents relation RE � R � L � TS, the Permission Extends PE � P � L � TS and
replacing the user-role assignment UA with its spatial temporal user-role assignment
relation UA � U � R � L � TS. For the sake of simplicity, following [24], we
exclude role hierarchies.

An extent is a pair (l, ts) which associates spatial- temporal extent to roles or
permissions. A role r is enabled at logical location l and time instant t iff there exists a
time interval ts such that t belongs to ts and ts 2 TS and (r, l, ts) 2 RE. A user u is a
member of role r at location l and interval ts iff r is enabled at location l and interval ts
and (u; r; l, ts) 2 UA. A user u can activate role r at location l and interval ts iff u is a
member of role r within extent (l, ts) and u is at location l: (u, l) 2 UL and the current
time-slot is ts. Similarly, a permission p is enabled at location l and interval ts iff (p; l,
ts) 2 PE. A user u has permission p at location l and interval ts iff there exists role r
such that (p; r) 2 PA and p is enabled within extent (l, ts) and u is a member of r within
extent (l, ts). A user u can access permission p at location l and interval ts iff u has
permission p within extent (l, ts) and u is at location l: (u, l) 2 UL and the current
time-slot is ts. Our STRBAC policy is a tuple (U; R; P; UA; PA; L; TS; UL; RE; PE).

ASTRBAC. One of the Administrative model designed to manage the change of
STRBAC policy named ADMINESTAR [9], which allows multiple administrators to
modify the STRBAC policy while ensures they cannot abuse the system using their
powers. An administrative action consists two components, administrative policies and
administrative operation, to define which administrators are allowed to modify
ESTRBAC policy. Administrative Policies governs a set of administrative rules to
specific which administrative role is authorized to modify ESTARBAC entities of
which regular role range. From now on, we focus on the set of administrative rules.
All ESTARBAC entities together define the system state, which changes when one or
more of the entities change. Administrative Operations are the change of the system
state upon their completion only if the administrative policies allow. Administrative
Policies and Administrative Operations become more complex if their access control
has more attributes.

Security Analysis of Administrative Role-Based Access Control Policies 247

Our promoted ASTRBAC model. Our model based on ADMINESTAR [9], has
more constraints in administrative rule. In ADMINESTAR, administrator condition
only have one role so it cannot express actions that require administrator to have more
than one role. In our ASTRBAC model, administrator rule is a set of roles so that
administrative actions can describe more administrative scenario. ASTRBAC focuses
on managing data of these entities: UA, RE, PE, PA by providing actions on them.
These actions are divided into four groups depend on their target, can_assign_UA and
can_revoke_UA are designed to manage entity UA; can_assign_PA and can_re-
voke_PA are designed to manage entity PA; can_add_RE and can_delete_RE are
designed to manage entity RE; and can_add_PE and can_delete_PE are designed to
manage entity PE.

We assume that entity UL is automatically managed by PDS so there is no actions to
manage UL in this paper; that the basic entities R, P, L, and TS are finite and constant;
and that entity U is infinite. Thus, a STRBAC policy depends on the entities UA, RE,
PE, PA. If one of those entities is modified, the STRBAC status will be changed. Hence,
the administrative actions need to be examined carefully as these actions can lead the
STRBAC policies to a state in which the security requirement of the system is violated.
Such problem is well-known as the reachability problem [10, 11].

In the following, let a = (U; R; P; UA; PA; L; TS; UL; RE; PE) be a STRBAC
policy. A signed role is an expression of the form +r or –r. A role condition is a finite
set of signed roles. A signed role r in a condition C is positive when there exists a role
r such that r = + r, a condition C is negative when there exists a role r such that
r = −r. An administrative action is a tuple ({Arule, la, tsa}, {Rrule, lu, tsu}, Ud) where
tuple {Arule, la, tsa} is called admin pre-conditon, Arule is a role condition, (la, tsa) are
location and time-slot that together describe spatial temporal constraint on Arule; Tuple
{Rrule, lu, tsu} is called user pre-condition where Rrule is a role condition; (lu, tsu) are
location and time-slot that express spatial temporal constraint on Rrule that are used
together to limit the users whose extents can be modified by the administrator; the Ud
element can be an element or many elements depend on each actions. The user
pre-condition is optional while admin pre-condition is compulsory for all actions.

Pre-condition. We will discuss the way our system checks these pre-condition.
The admin pre-condition is passed if at least, one administrator satisfies tuple

{Arule, la, tsa}, the positive roles +r in Arule specify the roles administrators must
activate at location la during time slot tsa, the negative roles –r in Arule describe the roles
administrators cannot activate within the extent (la, tsa). Administrator a can activate
role r within the extent (l, ts) iff the formula 9 tscur: [(ad,l) 2 UL ^ (ad, r, l, ts) 2 UA ^
(r, l, ts) 2 RE ^ (tscur = ts)] returns true, where tscur is the current time-slot determined
by system. The following check_role_admin formula ensures the admin pre-condition
is checked, if it returns true, there exist an administrator can perform the corresponding
action, otherwise, the action is rejected since there is no administrator who can satisfy
admin pre-condition.

check role admin Arule; la; tsað Þ : 9 ad; ts ½ ad; lað Þ 2 ULð Þ ^ tscur ¼ tsað Þ^
^ðrole2AruleÞ ad; r; la; tsað Þ 2 UA ^ r; la; tsað Þ 2 REð Þ if role ¼ þ r

^ðrole2AruleÞ ad; r; la; tsað Þ 62 UA _ r; la; tsað Þ 62 REð Þ if role ¼ �r�

248 K.K.Q. Dinh et al.

The user pre-condition {Rrule, lu, tsu} limits which users whose extents can be
modified by administrators. The positive roles +r in Rrule specify the roles user must be
assigned within extent (lu, tsu), negative roles –r specify the roles users must not be
assigned within extent (lu,tsu). The User Role Assignment relation UA needs to be
checked if user u satisfies (Rrule, lu, tsu) using check_role_user formula

check role user u; Rrule; lu; tsuð Þ :
^

ðrole2 RruleÞ u; r; lu; tsuð Þ 2 UA if role ¼ þ rð Þ
^ðrole2RruleÞ u; r; lu; tsuð Þ 62 UA if role ¼ �rð Þ
If check_role_user returns true, extents (role or permission extents) of user u can be

updated, otherwise, it cannot be updated with this action. In conclusion for these
pre-condition, an action can be performed iff admin pre-condition is passed and there
exist an user can be updated (in some actions).

Administrative Actions. An STRBAC policy has 4 main sets, set UA, RE, PE and
PA. The corresponding action for these sets are listed below.

• Can_Assign_UA (Arule, la,tsa, Rrule, lu, tsu, r)
• Can_Revoke_UA (Arule, la, tsa, Rrule, lu, tsu, r)
• Can_Add_RE (Arule, la, tsa, r, l, ts)
• Can_Delete_RE (Arule, la, tsa, r, l, ts)
• Can_Assign_PA (Arule, la, tsa, rt, pt)
• Can_Revoke_PA (Arule, la, tsa, rt, pt)
• Can_Add_PE (Arule, la, tsa, p, l, ts)
• Can_Delete_PE (Arule, la, tsa, p, l, ts)

User-Assignment actions: such actions are designed to manage the actions add or
delete tuples in relation UA using role assignment and role revocation actions of users
within certain spatial-temporal extents.

• Can_Assign_UA (Arule, la, tsa, Rrule, lu, tsu, r), where {Arule, la, tsa} is admin
pre-condition, [Rrule, lu, tsu] is user pre-condition, (lu, tsu,r) is the update tuple. Arule

and Rrule can contain positive roles +r in companion within extent (lu, tsu), negative
roles is −r conflict within extent (lu, tsu). Notice that, this action can assign (lu, tsu, r)
to any users that satisfy user pre-condtion. Can_Assign_UA is enabled if admin
pre-condtion is satisfied and there exist a user u satisfy user pre-condition Rrule.

9 u check role admin Arule; la; tsað Þ
^

check role user u; Rrule;lu; tsu
� �� �

Once this rule is passed, the tuple (u, r, lu, tsu) is added to UA using UA0 ¼
UA

S
u; r; lu; tsuð Þ where u is the user need to assign new roles.

• Can_Revoke_UA (Arule, la, tsa, Rrule, lu, tsu, r) where (Arule, la, tsa) is admin
pre-condition, (lu, tsu,r) is update tuple. Rrule can contain positive roles +r in
companion within extent (lu, tsu), negative roles is −r conflict within extent (lu, tsu).
Can_Revoke_UA revoke (lu, tsu, r) from any users. Administrator need to satisfy
the admin pre-condition to enable this rule and there exist a user u satisfy user
pre-condition Rrule, this check uses formula check_role_admin(Arule, la, tsa). Once

Security Analysis of Administrative Role-Based Access Control Policies 249

this rule is passed, the tuple (u, lu, tsu, r)) is removed from UA : 9 u UA0 ¼
UAn u; r; lt; tstð Þ where u is the user need to revoke user roles.

RoleExtent actions: such actions are designed to manage the actions add or delete
tuples in relation RE using adding and deleting actions of role within certain
spatial-temporal extents. Role extents that are registered in RE can be assigned to users
in entity UA. In order to activate a role within a spatial-temporal extent, that role must
be assigned to user in UA and enable within that extent in RE.

• Can_Add_RE (Arule, la, tsa, r, l, ts) where (Arule, la, tsa) is admin pre-condition, (r,l,
ts) is the update tuple. The admin pre-condition must be checked using formula:
check_role_admin (Arule, la, tsa). Once this rule is passed, the spatial-temporal
extent of role r is added with tuple (l, ts): RE0 ¼ RE

S
r; l; tsð Þ

• Can_Delete_RE (Arule, la, tsa, r, l, ts) where (Arule, la, tsa) is admin pre-condition, (r,
l, ts) is the update tuple. The admin pre-condition must be checked to enable this
action using formula: check_role_admin (Arule, la, tsa). Once this rule is passed, the
spatial-temporal extent of role r is deleted with tuple (l, ts): RE0 ¼ REn r; l; tsð Þ

Permission-Assignment actions: such actions are designed to manage the actions add
or delete tuples in relation PA using permission assignment and permission revocation
actions of roles.

• Can_Assign_PA (Arule, la, tsa, rt, pt) where {Arule, la, tsa} is admin pre-condition, the
(rt, pt) is the update tuple. The admin pre-condition must be checked using formula:
check_role_admin (Arule, la, tsa). Once this rule is passed, the role rt and permission
pt is added PA0 ¼ PA

S
rt; ptð Þ

• Can_Revoke_PA (Arule, la, tsa, rt, pt) where (Arule, la, tsa) is admin pre-condition, (rt,
pt) is the update tuple. The admin pre-condition must be checked to enable this
action using formula: check_role_admin (Arule, la, tsa). Once this rule is passed, the
role rt and permission pt is r is deleted PA0 ¼ PAn rt; ptð Þ
PermissionExtent actions: such actions are designed to manage the actions add or

delete tuples in realtion PE using Can Add and Can Delete actions of permissions
within certain spatial-temporal extents.

• Can_Add_PE (Arule, la, tsa, p, l, ts) where {Arule, la, tsa} is admin pre-condition, (p,
l, ts) is the update tuple. The admin pre-condition must be checked using formula:
check_role_admin (Arule, la, tsa). Once this rule is passed, the permission p and its
spatial temporal is added PE0 ¼ PE

S
p; l; tsð Þ

• Can_Delete_PE (Arule, la, tsa, p, l, ts) where (Arule, la, tsa) is admin pre-condition, (p,
l, ts) is the update tuple. The admin pre-condition must be checked to enable this
action using formula: check_role_admin (Arule, la, tsa). Once this rule is passed, the
permission p and its spatial temporal is deleted PE0 ¼ PEn rt; ptð Þ
A run of an ASTRBAC system a0;uð Þ is a (possibly infinite) sequence (a0; 0)…

(ai; ti); (ai+1; ti + 1), … of states such that (ai; ti) ! (ai+1; ti+1) and ti � ti+1 for
i = 1… n − 1 with n > 1. If the run is finite, i.e. it is of the form (a0; 0) … (an; tn) for
some n � 0, we say that (an; tn) is the final state of the run.

250 K.K.Q. Dinh et al.

Even if administrators can only execute a given set of administrative actions
mentioned above, it is still very difficult to foresee all possible interleaving of actions
when many administrators perform their administrative actions together with their
effect on an initial STRBAC policy. Therefore, in some cases, an untrusted user can
gain, in some spatial temporal, a permission which that person should not gain. In order
to identify this situation, we need to solve the next analysis problem.

A reachability problem for an ASTRBAC system ða0;uÞ is identified by a tuple (u;
Cf; lf, tsf) and amounts to checking if there exists a finite run of the ASTRBAC system
whose final state (af; lf, tsf) is such that user u, location ls and timeslot tsf satisfy
condition Cf under UAf and ls, tsf satisfies Cf under REf, and ls, tsf satisfies Cf under PEf

where af = (UAf; REf; PEf).

Example 1. Consider an STRBAC policy below.

• Let U = {Alice; Bob; Peter; Shan; Mary}
• R = {Manager; Engineer; Technician; Tester; Developer}
• L = {A1 building; A2 building; A3 building}
• TS = {Morning: [8:00am – 12:00pm]; Afternoon: (12:00pm – 18:00pm); Night:

[18:00pm – 8:00am]}
• P = {Write_O1; Write_O2; Read_O2; Write_O2}
• UA = {(Alice, Manager, A1 building, Morning); (Bob, Engineer, A2 building,

Morning); (Peter, Technician, A3 Building, Afternoon); (Shan, Engineer, A1
building, Afternoon); (Mary, Engineer, A1 Building, Afternoon); (Shan, Tester, A1
building, Afternoon); (Bob, Developer, A2 building, Morning)}

• PA = {(Manger, Write_O1); (Engineer, Write_O2); (Technician, Read_O2);
(Manager; Read_O2); (Manager, Write_O2)}

• RE = {(Manager, A2 building, Morning); (Engineer, A1 building, Morning);
(Engineer, A2 building, Morning); (Manager, A1 building, Morning); (Technician,
A3 building, Afternoon); (Tester, A1 building, Afternoon); (Engineer, A1 building,
Afternoon)}

• PE = {(Read_O2, A3 building, Afternoon); (Write_O2, A2 building, Morning);
(Write_O1, A1 building, Afternoon)}

• UL = {(Alice, A1 building); (Bob, A2 building); (Shan, A1 building); (Peter, A3
building), (Mary, A1 building)}

The ASTRBAC rule contains these rule.

1. Can_Assign_PA ({Manager}, A1 building, Morning, Engineer, Write_O1)
2. Can_Assign_UA({Manager}, A1 building, Morning, {Engineer, -Technician, -

Manager}, A2 building, Afternoon, Tester)
3. Can_Add_RE ({Manager}, A1 building, Morning, Engineer, A1, Afternoon)
4. Can_Add_RE({Manager, A1 building, Morning, Tester, A2, Afternoon)
5. Can_Add_PA({Engineer}, A1 building, Morning, Tester, Read_O2)
6. Can_Assign_UA({Engineer, -Tester}, A1, Afternoon, {Engineer, -Tester}, A2

building, Morning, Tester)

In check_role_admin, consider actions (6), the admin pre-condition is tuple
({Engineer, -Tester}, A1 building, Afternoon) and pretends that our current time slots

Security Analysis of Administrative Role-Based Access Control Policies 251

tscur is Afternoon. The check_role_admin ({Engineer, -Tester}, A1 building, After-
noon) returns true because there exists admin “Mary” satisfied [((Mary, A1 building) 2
UL) ^ (tscur = Afternoon) ^ ((Mary, Engineer, A1 building, Afternoon) 2 UA) ^
((Engineer, A1 building, Afternoon) 2 RE) ^ [((Mary, Tester, A1 building, Afternoon)
62 UA _ ((Tester, A2 building, Afternoon) 62 RE)]. Since check_role_admin returns
true, user Mary can perform corresponding administrative action (6). In this example,
user Shan can activate both role Engineer and Tester within extents (A1 building,
Afternoon) but Tester is a negative role in (6) so Shan is not allowed to perform
administrative action (6). Similarly, the formula check_role_user (Bob; {Engineer, -
Tester}, A2 building, Morning) returns true since it satisfied ((Bob, Engineer, A2
building, Morning) 2 UA ^ ((Bob, Tester, A2 building, Morning) 62 UA). User Mary
can assign a new role Tester for Bob in location “A2 building” at the interval
“Morning”.

Now, we consider the reachability problems in ASTRBAC and a safety attribute
(Write_O1, A1 building, Afternoon) and our current timeslot tscur is Morning. We
assume that the initial state is a0 = (UA0, RE0, PE0, PA0). It is easy to check that user
Alice can use actions (1) and (3), because ULAlice = {Alice, A1 building} 2 UA can
satisfy administrative condition Arule(1) = {Manager, A1 building, Morning} under
RE = {Manager, A1 building, Morning}. After actions (1), our STRBAC state will
change from a0 to a1 which adds new information to PA where PA1 = PA0 [
(Engineer, Write_O1) since Alice. Similarly, Alice can use action (3) to change our
STRBAC state from a1 to a2 to adds new information to RE where RE2 = RE1 [
(Engineer, A1 building, Afternoon). In state a2, when our current timeslot change
tscur = Afternoon, user Shan can satisfy conditions [((Shan, A1 building) 2 UL) ^
(tscur = Afternoon) ^ ((Shan, Engineer, A1 building, Afternoon) 2 UA) ^ ((Engineer,
A1 building, Afternoon) 2 RE) ^ ((Write_O1, A1 building, Afternoon) 2 PE) ^
((Engineer, Write_O1) 2 PA)]. In the end, user Shan can Write_O1 in location A1
building and timeslot Afternoon, which violate our security attributes.

4 Implementation and Evaluation

The reachability problem analysis. In [30], the reachability problem analysis can be
separated into two main parts: User-Role Reachability Analysis (URRA) and
Permission-Role Reachability Analysis (PRRA). As seen in Example 1, in order to
check the reachability problem of ASTRBAC, we need to check the both of them in the
tuple (UA, RE) and (PE, PA). However, just like ASTRBAC, the tuple (PE, PA) of
STRBAC are less likely to change as mentioned in Sect. 2. In our techniques, we will
focus on implementing a tool to check the User-Role Reachability Analysis since the
Permission-Role Reachability Analysis can be implemented similarly.

Implementing the Translator. We implement our technique which will be discussed
below in a tool called ASASPSPACETIME. As in Fig. 1 this tool has two main parts, the
Translator, implemented in Python, will get the input of our ASTRBAC reachability
problem (u; C; l; ts) as reachability problem for STRBAC policies ða0;uÞ, answer our
problem with statement “reachable” or “unreachable” and show the sequence of actions

252 K.K.Q. Dinh et al.

which changed our STRBAC policies from ao to an where an can satisfy (u; C; l; ts).
The second part for analysis of ASTRBAC policies uses SMT-based model checker
named MCMT [25] to solve our problem. According to [28], we try to reduce our
reachability problems for ASTRBAC model to a (finite) sequence of constraint satis-
faction problems.

At first, we translate ASTRBAC policies to First Order Logic formula which belongs to
Bernays-Schonfinkel-Ramsey (BSR) [28] class to determine the satisfy-ability of for-
mula, which has the form 9x.8y.u(x; y), where u is a quantifier-free formula, x and
y are (disjoint and possible empty) tuples of variable. Then, we use Model Checking
Modulo Theories (MCMT) [25], which is a framework to solve reachability problems
for infinite state systems that can be represented by transition systems whose set of
states and transitions are encoded as constraints in First-Order Logic. MCMT frame-
work uses a backward reachability procedure to solve a particular class of constraint
satisfy-ability problems, called Satisfy-ability Modulo Theories (SMT) problems.
According to [26], MCMT framework is a scalable and efficient SMT solver currently
available.

Here is how we translate the ASTRBAC to First Order Logic in BSR class. We
need to translate an initial state, the administrative actions, time passing, and the goal.

Our state variable in ASTRBAC contains re, ua, loc, and at where re is a variable of
for the current role extent RE, similarly, ua for UA, loc for UL and at is current system
time.

Our initial state contains the tuple a0 = (RE, UA, UL, ts0) where ts is timeslot,
which can be translated as below.

8x; y; z; t: ua x; y; z; tð Þ , _ u;r;l;tsð Þ 2UAðx ¼ u ^ y ¼ r ^ z ¼ l ^ t ¼ tsÞ^
re y; z; tð Þ , _ r;l;tsð Þ 2RE y ¼ r; z ¼ l; t ¼ tsð Þ^

at zð Þ , z ¼ tso

Example 2. We analyze a simple example of ASTRBAC

• Let U = {Alice; Bob; Peter}
• R = {Manager; Engineer; Technician; Tester; Developer}
• L = {A1 building; A2 building}
• I = {Morning: [8:00am – 12:00 pm]; Afternoon: (12:00 pm – 18:00 pm)}
• UA = {(Alice, Manager, A1 building, Morning); (Bob, Engineer, A2 building,

Morning);}

Fig. 1. Our technique to solve the reachability problem for ASTRBAC

Security Analysis of Administrative Role-Based Access Control Policies 253

• RE = {(Engineer, A1 building, Morning: [8:00am – 12:00pm]), (Technician, A2
building, Afternoon: [12:00pm – 18:00pm])}

• UL = {(Alice, A1 building); (Bob, A2 building)}
• Current time = 8am;

The ASTRBAC rule contains these rule.

1. Can_Assign_UA({Manager}, A1 building, Morning, {Engineer}, A2 building,
Afternoon, Tester)

2. Can_Revoke_UA({Manager}, A1 building, Morning, {Engineer}, A2 building,
Afternoon, Tester)

3. Can_Add_RE ({Manager}, A1 building, Morning, Engineer, A1 building,
Afternoon)

4. Can_Delete_RE ({Manager}, A1 building, Morning, Engineer, A1 building,
Afternoon)

According the example above, the current time belongs to time slots Morning, so
our initial state will be

8x; y; z; t: ua x; y; z; tð Þ ,
ððx ¼ Alice ^ y ¼ Manager ^ z ¼ A1 building ^ t ¼ MorningÞ _ ðx ¼ Bob ^ y ¼ Engineer

^ z ¼ A2 building ^ t ¼ AfternoonÞÞ^
re y; z; tð Þ , ððy ¼ Engineer; z ¼ A1 building; t ¼ MorningÞ _ ðy ¼ Technician;

z ¼ A2 building; t ¼ AfternoonÞÞ^
at zð Þ , z ¼ Morning

Our ASTRBAC now contains 4 actions (Can_Assign_UA, Can_Revoke_UA,
Can_Add_RE, Can_Delete_RE) and a goal. We translate each of them as follow.

• Can_Assign_UA (A, la, tsa, Ru, lu, tsu, ru)

, 9ua; u; ts: at tsð Þ ^ ts ¼ tsa^
Loc ua; lað Þ^V

þ r2A re r; la;ta
� �^^�r2A:re r; la;ta

� �^V
þ r2A ua ua; r; la;ta

� �^^�r2A:ua ua; r; la;ta
� �^V

þ r2R ua u; r; lu;tu
� �^^�r2R:ua u; r; lu;tu

� �^
ð8x;y;z;t ua0 x; y; z; tð Þ , ua x; y; z; tð Þ _ ðx ¼ u ^ y ¼ ru ^ z ¼ lu ^ t ¼ tsuÞÞ^
ð8x; y; z; t re0 y; z; tð Þ , re y; z; tð ÞÞ^
ð8x;y;z;t loc0 x; zð Þ , loc x; zð ÞÞ

Example 3. According to Example 2, the Can_Assign_UA({Manager}, A1 building,
Morning, {Engineer}, A2 building, Afternoon, Tester) can be translated as

254 K.K.Q. Dinh et al.

9ua; u; ts: at tsð Þ
at tsð Þ ^ ts ¼ Morning^
Loc Manager; A1 buildingð Þ^

reðManager; A1 building,MorningÞ^
uaðua; Manager; A1 building;MorningÞ^
uaðu;Engineer; A2 building, AfternoonÞ^
ð8x;y;z;tua0 x; y; z; tð Þ , ua x; y; z; tð Þ _ ðx = u ^ y ¼ Tester ^ z ¼ A2 building ^ t ¼ AfternoonÞÞ^
ð8x; y; z;tre0 y; z; tð Þ , re y; z; tð ÞÞ^
ð8x;y;z;tloc0 x; zð Þ , loc x; zð ÞÞ

• Can_Revoke_UA (A, la, tsa, R, lu, tsu, ru)

, 9ua; u; ts: at tsð Þ ^ ts ¼ tsa^
Loc ua; lað Þ^V

þ r2A re r; la;ta
� �^^�r2A:re r; la;ta

� �^V
þ r2A ua ua; r; la;ta

� �^^�r2A:ua ua; r; la;ta
� �^V

þ r2R ua u; r; lu;tu
� �^^�r2R:ua u; r; lu;tu

� �^
ð8x; y; z ;t ua0 x; y; z; tð Þ , ua x; y; z; tð Þ ^ :ðx ¼ u ^ y ¼ ru ^ z ¼ lu ^ t ¼ tsuÞÞ^
ð8x; y; z;t re0 y; z; tð Þ , re y; z; tð ÞÞ^
ð8x; y; z;t loc0 x; zð Þ , loc x; zð ÞÞ

Example 4. According to Example 2, the Can_Revoke_UA({Manager}, A1 building,
Morning, {Engineer}, A2 building, Afternoon, Tester) can be translated as

9ua; u; ts: at tsð Þ
at tsð Þ ^ ts = Morning^
Loc Manager; A1 buildingð Þ^

reðManager;A1 building; MorningÞ^
uaðua;Manager;A1 building; MorningÞ^
uaðu;Engineer; A2 building, AfternoonÞ^
ð8x; y; z; t ua0 x; y; z; tð Þ , ua x; y; z; tð Þ ^ :ðx ¼ u ^ y ¼ Tester ^ z ¼ A2 building ^ t ¼ AfternoonÞÞ^
ð8x; y; z; t re0 y; z; tð Þ , re y; z; tð ÞÞ^
ð8x; y; z; t loc0 x; zð Þ , loc x; zð ÞÞ

• Can_Add_RE (A, la, tsa, ru, lu, tsu)

, 9ua; u; ts: at tsð Þ ^ ts ¼ tsa^
Loc ua; lað Þ^V

þ r2A re r; la;ta
� �^^�r2A:re r; la;ta

� �^V
þ r2A ua ua; r; la;ta

� �^^�r2A:ua ua; r; la;ta
� �^

ð8x; y; z; t ua0 x; y; z; tð Þ , ua x; y; z; tð Þ^
ð8x; y; z; t re0 y; z; tð Þ , re y; z; tð ÞÞ _ ðy ¼ ru ^ z ¼ lu ^ t ¼ tsuÞÞ^
ð8x; y; z; t loc0 x; zð Þ , loc x; zð ÞÞ

Example 5. According to Example 2, the Can_Add_RE ({Manager}, A1 building,
Morning, Engineer, A1 building, Afternoon) can be translated as

Security Analysis of Administrative Role-Based Access Control Policies 255

9ua; u; ts: at tsð Þ ^ ts ¼ Manager^
Loc A1 building; Morningð Þ^
reðManager; A1 building,MorningÞ^
uaðua; Manager; A1 building,MorningÞ^
ð8x; yz;t ua0 x; y; z; tð Þ , ua x; y; z; tð Þ^
ð8x; y; z; t re0 y; z; tð Þ , re y; z; tð ÞÞ _ ðy ¼ Engineer ^ z ¼ A1 building ^ t ¼ AfternoonÞÞ^
ð8x; y; z;t loc0 x; zð Þ , loc x; zð ÞÞ

• Can_Delete_RE (A, la, tsa, ru, lu, tsu)

, 9ua; u; ts: at tsð Þ ^ ts ¼ tsa^
Loc ua; lað Þ^V

þ r2A re r; la; tað Þ^^�r2A:re r; la; tað Þ^V
þ r2A ua ua; r; la; tað Þ^^�r2A:ua ua; r; la; tað Þ^

ð8x;y;z;t ua0 x; y; z; tð Þ , ua x; y; z; tð Þ^
ð8x;y;z;t re0 y; z; tð Þ , re y; z; tð ÞÞ ^ : y ¼ ru ^ z ¼ lu ^ t ¼ tsuð ÞÞ^
ð8x;y;z;t loc0 x; zð Þ , loc x; zð ÞÞ

Example 6. According to Example 2, the Can_Delete_RE ({Manager}, A1 building,
Morning, Engineer, A1 building, Afternoon) can be translated as

9ua; u; ts: at tsð Þ ^ ts ¼ Manager^
Loc A1 building; Morningð Þ^
reðManager;A1 building,MorningÞ^
uaðua; Manager;A1 building,MorningÞ^
ð8x; y; z; tua0 x; y; z; tð Þ , ua x; y; z; tð Þ^
ð8x; y; z; tre0 y; z; tð Þ , re y; z; tð ÞÞ ^ :ðy ¼ Engineer ^ z ¼ A1 building ^ t ¼ AfternoonÞÞ^
ð8x; y; z; tloc0 x; zð Þ , loc x; zð ÞÞ

• Time passing: as mentioned in Sect. 3, the following formula means that every time
the state of time change, we will move to the next time slots.

If j + 1 < Tmax, then

at ðtsÞ ^ ts ¼ ðj; jþ 1Þ^
8y; z; t:re0ðy; z; tÞ ðreðy; z; tÞ ^ 8x; y; z; t:ua0 x; y; z; tð Þðuaðx; y; z; tÞ^

8z:L0ðzÞ ðLðzÞ ^ 8t:at0ðtÞ ð t ¼ ðjþ 1; jþ 2Þð Þ

2
4

3
5

Otherwise:

at ðtsÞ ^ ts ¼ ðj; jþ 1Þ^
8y; z; t:re0ðy; z; tÞ ðreðy; z; tÞ ^ 8x; y; z; t:ua0 x; y; z; tð Þðuaðx; y; z; tÞ^

8z:L0ðzÞ ðLðzÞ ^ 8t:at0ðtÞððt ¼ ð0; 1ÞÞ

2
4

3
5

256 K.K.Q. Dinh et al.

• Goal state:

ug;rg;lg; tsg
� � ,
9u; r; l; ts: re r; l; tsð Þ ^ ua u; r; l; tsð Þ ^ u ¼ ug ^ r ¼ rg ^ l ¼ lg ^ ts ¼ tsg

Example 7. Our goal (Alice, Write_O1, A1 building, Afternoon) can be translated as

9u; r; l; ts: re r; l; tsð Þ ^ ua u; r; l; tsð Þ ^ u ¼ Alice ^ r ¼ Write O1 ^ l
¼ A1 building ^ ts ¼ Afternoon

After translating all the ASTRBAC policy to BSR, we need to do an AND operator
on all the translated formula. If the result return true, then our goal is reachable,
otherwise, it is unreachable. If the state is reachable, we know that our system is unsafe,
otherwise, it is safe.

Evaluations. We use real scenario test cases synthesized from [27], which contains
university and hospital benchmark, and are widely used in security analysis commu-
nity. For our testing, we randomly adding temporal and spatial to the test cases. Since
this is the first analysis tool of ASTRBAC model, we cannot compare it with any
previous tool. All our experiments performs on an Intel Core i7 CPU with 4 GB Ram
running Ubuntu 12.04 LTS 32 bit. We run 2 experiments with our test cases. Our first
experiments run 15 times with different goals and calculate the average time for each
test cases, the results is in Table 1. The first column shows our test case names; test
cases 1 to 6 is our simple test cases created to test this program, test cases from 7 to 12
is taken from hospitals sets, test cases from 13 to 16 were taken from university sets.
Each config contains 3 number representing max roles, max locations and max time
slots in our STRBAC. The number of actions contain the number of administrative
actions in ASTRBAC policies. We configure our experiment with maximum number of
roles, locations and time slots.

Table 1. Our first experimental results

Testcase Config Number actions Average runtime (sec)

1 Test1 3 3 3 4 7.58
2 Test2 3 3 3 5 1.53
3 Test3 3 3 3 7 318.40
4 Test4 3 3 3 4 2.48
5 Test5 3 3 3 5 4.05
6 Test6 3 3 3 6 13.14
7 AGTHos1_test 16 4 5 125 16.34
8 AGTHos2_test 16 4 5 131 87.67
9 AGTHos3_test 35 6 10 165 370.27
10 AGTHos4_test 35 6 10 283 106.29

(continued)

Security Analysis of Administrative Role-Based Access Control Policies 257

In our second experiments, we use a simple test cases without spatial temporal
constrains, set 16 for the maximum number of roles and 10 for the maximum number
of time slots. Then, we run these test with randomly added locations each time to the
test cases to get their average run time in Table 2 and Fig. 2.

After that, we create others test cases, set 16 for the maximum number of roles, set
5 for maximum number of locations. We run these test cases 5 times and add random
time slots each time to the test cases to get their average run time shows in Table 3 and
Fig. 3.

Table 2. Our second experimental results with different locations

Testcase Config Number of action Average runtime (sec)

1 AGTHos1_l3 16 3 10 129 6.93
2 AGTHos1_l6 16 6 10 132 7.35
3 AGTHos1_l9 16 9 10 135 7.45
4 AGTHos1_l12 16 12 10 138 7.7
5 AGTHos1_l15 16 15 10 141 7.83
6 AGTHos1_l18 16 18 10 144 7.83

Table 1. (continued)

Testcase Config Number actions Average runtime (sec)

11 AGTHos5_test 16 8 20 355 794.58
12 AGTHos6_test 16 8 20 398 913.67
13 AGTUniv1_test 35 4 5 146 251.47
14 AGTUniv2_test 35 4 5 188 317.48
15 AGTUniv3_test 35 6 10 209 367.51
16 AGTUniv4_test 35 6 10 246 480.78

6

6.5

7

7.5

8

l3 l6 l9 l12 l15 l18

average runtime

average runtime

Fig. 2. Our average run time with different locations

258 K.K.Q. Dinh et al.

In our first experiments, we can assume that as the number of actions in ASTRBAC
keep increasing, the runtime is affected and increased too. In our second experiments,
we can assume that the increase in the number of time slots and the location does not
affect the run time of our system. According to this result, we can conclude that more
works need to be done for our solutions to get the answer faster when the number of
actions keep increasing. We plan to improve this version in future works using some
heuristics and functions supported in MCMT.

5 Conclusion

In this paper, we propose techniques using SMT-based model checker approach to
solve the reachability problem in ASTRBAC. We also design a translation technique
for ASTRBAC policies using First Order Logic.

As future works, we plan to design and apply heuristics to reduce the state
exploration problem and speed up our approach in STRBAC by focusing only on the
actions that may lead STRBAC to an unsafe state and using some functions provided in
our SMT-based model checker such as the capability of tracking the visited states for
later use.

0
2
4
6
8

10
12

t5 t10 t15 t20 t25 t30

average runtime

average runtime

Fig. 3. Our average run time with different time slots

Table 3. Our second experimental results with different time slots

Testcase Config Number of action Average runtime (sec)

1 AGTHos1_t5 16 5 5 126 10.67
2 AGTHos1_t10 16 5 10 131 7.23
3 AGTHos1_t15 16 5 15 136 7.78
4 AGTHos1_t20 16 5 20 141 7.87
5 AGTHos1_t25 16 5 25 146 8.21
6 AGTHos1_t30 16 5 30 151 8.58

Security Analysis of Administrative Role-Based Access Control Policies 259

Acknowledgements. This research is funded by Vietnam National University HoChiMinh City
(VNU-HCM) under grant number C2017-20-17.

References

1. Samarati, P., Vimercati, S.: Access control policies, models, and mechanisms. In: FOSAD:
International School on Foundations of Security Analysis and Design, pp. 137–196 (2000)

2. National Computer Security Center (NCSC): A Guide to Understanding Discretionary
Access Control in Trusted System, Report NSCD-TG-003 Version1, 30 September 1987

3. Osborn, S.: Mandatory access control and role-based access control revisited. In:
Proceedings of the 2nd ACM Workshop on Role-Based Access Control, RBAC 1997,
pp. 31–40. ACM (1997)

4. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control models. IEEE
Comput. 29(7), 38–47 (1996)

5. Ferraiolo, K.: Role-based access control. In: 15th National Computer Security Conference,
pp. 554–563, October 1992

6. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role based access control: toward a
unified standard. In: 5th ACM Workshop Role-Based Access Control, pp. 47–63, July 2000

7. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Trans. Inform. Syst. Secur. (TISSEC) 2(1), 105–135 (1999)

8. Kumar, M., Newman, R.: STRBAC - an approach towards spatiotemporal role-based access
control. In: Proceedings of the Third IASTED International Conference on Communication
Network and Information Security CNIS, pp. 150–155 (2006)

9. Sharma, M., Sural, S., Atluri, V., Vaidya, J.: An administrative model for spatio-temporal
role based access control. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303,
pp. 375–389. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45204-8_28

10. Li, N., Tripunitara, M.: Security analysis in role-based access control. In: The Proceedings of
ACM Symposium on Access Control Models and Technologies, pp. 126–135. ACM Press
(2004)

11. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, H.: Towards formal verification of
role-based access control policies. IEEE TDSC 5(4), 242–255 (2008)

12. Gofman, M.I., Luo, R., Solomon, Ayla C., Zhang, Y., Yang, P., Stoller, Scott D.:
RBAC-PAT: a policy analysis tool for role based access control. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 46–49. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00768-2_4

13. Jayaraman, K., Tripunitara, M., Ganesh, V., Rinard, M., Chapin, S.: Mohawk:
abstraction-refinement and bound-estimation for verifying access control policies.
ACM TISSEC 15(4), 18 (2013)

14. Ferrara, A.L., Madhusudan, P., Nguyen, T.L., Parlato, G.: Vac - verifier of administrative
role-based access control policies. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol.
8559, pp. 184–191. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_12

15. Ranise, S., Truong, A., Vigano, L.: Automated analysis of RBAC policies with temporal
constraints and static role hierarchies. In: The Proceeding of the 30th ACM Symposium on
Applied Computing (SAC 2015), pp. 2177–2184. ACM (2015)

16. Ranise, S., Truong, A., Armando, A.: Scalable and precise automated analysis of
administrative temporal role-based access control. In: Proceedings of the 19th ACM
Symposium on Access Control Models and Technologies, pp. 103–114. ACM (2014)

260 K.K.Q. Dinh et al.

http://dx.doi.org/10.1007/978-3-642-45204-8_28
http://dx.doi.org/10.1007/978-3-642-00768-2_4
http://dx.doi.org/10.1007/978-3-319-08867-9_12

17. Ranise, S., Truong, A.: ASASPXL new clother for analysing ARBAC policies. In:
International Conference on Future Data and Security Engineering, FDSE (2016)

18. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14203-1_3

19. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Commun. ACM
19(8), 461–471 (1976)

20. Bertino, E., Bonatti, P., Ferrari, E.: TRBAC a temporal role based access control model.
ACM TISSEC 4(3), 191–233 (2001)

21. Joshi, J., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based access
control model. IEEE Trans. Knowl. Data Eng. 17(1), 4–23 (2005)

22. Kumar, M., Newman, R.: STRBAC - an approach towards spatio-temporal role-based access
control. In: Communication, Network, and Information Security, pp. 150–155 (2006)

23. Aich, S., Mondal, S., Sural, S., Majumdar, A.: Role based access control with
spatio-temporal context for mobile applications. Trans. Comput. Sci. IV, 177–199 (2009)

24. Uzun, E., Atluri, V., Sural, S., Vaidya, J., Parlato, G., Ferrara, A.: Analyzing temporal role
based access control models. In: SACMAT, pp. 177–186. ACM (2012)

25. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solving
termination and invariant synthesis. Logical Methods Comput. Sci. LMCS 6(4), 1–48 (2010)

26. http://research.microsoft.com/en-us/um/redmond/projects/z3
27. Ranise, S., Truong, A., Armando, A.: Scalable and precise automated analysis of

administrative temporal role-based access control, pp. 103–114 (2014)
28. Ranise, S.: Symbolic backward reachability with effectively propositional logic: applications

to security policy analysis. FMSD 42(1), 24–45 (2013)
29. Piskac, R., Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL and

substitution sets. J. Autom. Reasoning 44(4), 401–424 (2010)
30. Sasturkar, A., Yang, A., Stoller, S., Ramakrishnan, C.: Policy analysis for administrative role

based access control. In: 19th IEEE Computer Security Foundations Workshop, pp. 124–138
(2006)

Security Analysis of Administrative Role-Based Access Control Policies 261

http://dx.doi.org/10.1007/978-3-642-14203-1_3
http://dx.doi.org/10.1007/978-3-642-14203-1_3
http://research.microsoft.com/en-us/um/redmond/projects/z3

	Security Analysis of Administrative Role-Based Access Control Policies with Contextual Information
	Abstract
	1 Introduction
	2 Background
	3 Administrative Spatial Temporal RBAC
	4 Implementation and Evaluation
	5 Conclusion
	Acknowledgements
	References

