
Effectiveness of Object Oriented Inheritance
Metrics in Software Reusability

Muhammad Ilyas1(&), Josef Küng2, and Van Quoc Phuong Huynh2

1 Department of Computer Science and IT,
University of Sargodha, Sargodha, Pakistan

m.ilyas@uos.edu.pk
2 FAW, Johannes Kepler University Linz, 4040 Linz, Austria

{Jkueng,vqphuynh}@faw.jku.at

Abstract. Inheritance is a key feature of object oriented paradigm. It is actually
the sharing of attributes and operations among classes based on a hierarchical
relationship. Software reusability is the basic concept of software engineering
that is affected by the sophistication of inheritance hierarchy so in order to
determine complexity of inheritance which in turn has impact on software
reusability; we have proposed class inheritance metrics and explained them in an
elaborative manner. In the work presented here we proposed different class
inheritance metrics, compared them with existing ones and attempted to present
an alternate solution with some extended features to find out intricacy of class
inheritance which significantly concerns with reusability.

Keywords: Hierarchy � Inheritance � Metrics � Object oriented � Reusability

1 Introduction

Software reusability is an imperative requirement for cost and time optimized software
development. Inheritance is considered as one of the most vital features of OO para-
digm which has great impact on software reusability. Intricacy of inheritance hierarchy
greatly affects the reusability as well as maintainability of system so it is important for
designers to know about the complexity of inheritance hierarchy. Inheritance metrics
actually provides information regarding complexity of inheritance that’s why we are
focusing on inheritance metrics with respect to software reusability here [13, 15].
Research work in [8] also focuses on fruitfulness of reuse as it emphasize on pattern’s
analysis like a way to assist the reuse of software knowledge by confining conceptual
models in those domains. Reuse of software through inheritance fabricates more
comprehensible, maintainable and trustworthy software [2]. Research work in [3, 6, 7]
specifies that if a system is not utilizing inheritance then that would be better in
maintainability as compared with a system utilizing inheritance.

Nevertheless, this fact is approved that deeper inheritance hierarchy leads to better
reusability and harder maintainability of the system. So designers possibly will be
liable to maintain the inheritance hierarchy trivial, dumping reusability through
inheritance for the ease of comprehension [5]. Thus it is essential to determine the
intricacy of inheritance hierarchy for the purpose of determining the discrepancies

© Springer International Publishing AG 2017
T.K. Dang et al. (Eds.): FDSE 2017, LNCS 10646, pp. 231–239, 2017.
https://doi.org/10.1007/978-3-319-70004-5_16



between the shallowness and depth of inheritance hierarchy. In this paper we consider
the inheritance metrics presented in [10] and [11] for comparison as these metrics give
information about class inheritance hierarchy and reusability in much comprehensible
way. During their study we came to know that these metrics give information about
complexity of inheritance hierarchy in terms of subclasses/children but what will be
intricacy of inheritance hierarchy w.r.t. parent classes/super classes which in turn helps
us in determining the reusability. So in order to explore this phenomenon we have
proposed our own inheritance metrics.

Rest of the paper is organized is as follows. Section 2 shows related work and
Sect. 3 presents proposed metric suite of inheritance. In Sect. 4 there are two examples
of inheritance trees and their calculations to illustrate existing and proposed metrics.
Section 5 presents results of existing and proposed inheritance metrics and Sect. 6
explains analysis of results of existing and proposed inheritance metrics. Section 7
presents conclusion and future works respectively.

2 Related Work

Software metrics have indispensable role in the field of software engineering for the
purpose of determining and approximating software quality, complexity, reusability,
cost and project exertion etc. Here we will give brief overview of OO based metrics
proposed by researchers and then we give emphasis of inheritance metrics.

In Existing Object Oriented Metrics several OO based metrics have been pro-
posed till now for the measurement and illustration of different aspects of OO paradigm
e.g. cohesion, inheritance and encapsulation etc. Metrics suite proposed in [4, 5] is one
of the best known OO metrics suite relating to inheritance, cohesion and coupling etc.
There are five metrics defined for measuring a component’s comprehension, adapt-
ability and portability with confidence intervals [14]. Another set of metrics is con-
sidered suitable for evaluating the use of the main abstractions of the OO paradigm
such as inheritance, encapsulation, information hiding or polymorphism [1]. Authors
[9] have surveyed metrics proposed for OO systems and mainly focused on product
metrics that can be applied to an advanced design. Inheritance metrics proposed in
described the inheritance of inheritance tree in OOD as Average Degree of
Understand-ability (AU) and Average Degree of Modifiability (AM) [12].

In Existing Inheritance Metrics, there are number of authors who have proposed
different inheritance metrics but here we consider inheritance metrics of [10, 11] as
these metrics give information about class inheritance hierarchy and reusability in
much comprehensible and graspable way.

In Average Inheritance Depth (AID) Metrics, it is suggested in [10] that AID
metric is the mean depth of inheritance tree and this is an extension of [4, 5]’s DIT
(Depth of Inheritance tree) metric. The AID of a class is calculated by [11] as:

AID ¼
X

Depth of each classð Þ=Number of Classes ð1Þ

232 M. Ilyas et al.



This metric AID is actually the ratio of sum of depth of each class in class
inheritance tree to the total number of classes in that inheritance tree. Different
inheritance metrics are presented in [10] as DBRM, ANDC and ANIC.

Derived Base Ratio (DBR). Metric is the ratio of the total derived classes to the total
base classes in the class inheritance Tree [10]. DBRM is calculated as follows:

DBRM ¼
XN

i¼0

TD Cið Þ=
XN

i¼0

TB Cið Þ ð2Þ

N: Total number of classes in the class inheritance tree. For rest of all equations, N
represents the same.

Average Number of Direct Child (ANDC). Metric is the ratio of the total number of
immediate child to the total number of classes in the inheritance tree [10]. ANDC
metric is calculated as follows:

ANDC ¼
XN

i¼0

TDC Cið Þ=N ð3Þ

Average Number of Indirect Child (ANIC). Metric is the ratio of the total number of
indirect child to the total number of classes in the inheritance tree [10]. ANIC metric is
calculated as follows:

ANIC ¼
XN

i¼0

TIC Cið Þ=N ð4Þ

3 Proposed Inheritance Metrics

We have proposed four inheritance metrics which will give information about com-
plexity of class inheritance hierarchy in terms of super classes/parent classes, ancestors
and descendants. These are named as Average Number of Direct Parents (ANDP)
metric, Average Number of Indirect Parents (ANIP) metric, Average Number of
Ancestor Classes (ANAC) metric and Average Number of Descendant Classes
(AND) metric. These metrics with formulas and assumptions are explained as follows.

Average Number of Direct Parents (ANDP) Metric is the ratio of the total
number of direct or immediate parents to the total number of classes in the inheritance
tree. Formula to calculate ANDP metric along with assumption is given as follows:

ANDP ¼
XN

i¼0

TDP Cið Þ=N ð5Þ

Effectiveness of Object Oriented Inheritance Metrics 233



• ANDP metric gives information about number of direct parents/direct super classes
in class inheritance tree.

• ANDP metric measures that from how many direct super classes; subclasses are
going to inherit the properties such as methods and attributes.

Average Number of Indirect Parents (ANIP) Metric is the ratio of the total
number of indirect parents to the total number of classes in the inheritance tree.
Equation 6 has the formula to calculate ANIP metric and assumption are as follows:

ANIP ¼
XN

i¼0

TIP Cið Þ=N ð6Þ

• ANIP metric gives us indication of how many indirect parents/indirect super classes
are going to affect subclasses in class inheritance tree.

• Deepness of a class in class inheritance tree shows higher degree of inheritance,
thus it can be hard to comprehend a system with many inheritance layers.

• Greater value of ANIP metric indicates that many methods might be reused.

Average Number of Ancestor Classes (ANAC) Metric is the ratio of the total
number of ancestor classes to the total number of classes in the inheritance tree. ANAC
metric is calculated with formula of Eq. 7. Later on are assumptions.

ANAC ¼
XN

i¼0

TA Cið Þ=N ð7Þ

• ANAC metric gives information about how many ancestor classes are present in
class inheritance tree.

• Greater value of ANAC of class inheritance tree gives the indication that tree has
deeper inheritance hierarchy than a class inheritance tree having low value of
ANAC.

• Class Inheritance tree having shallow inheritance hierarchy constitute lesser design
complexity, since less methods and classes are involved.

Average Number of Descendants Classes (AND) Metric is the ratio of the total
number of descendant classes to the total number of classes in the inheritance tree.
Equation 8 is showing AND metric calculation formula.

AND ¼
XN

i¼0

TD Cið Þ=N ð8Þ

234 M. Ilyas et al.



Assumptions of AND Metrics are as following:

• AND metric gives information about how many descendant classes are present in
class inheritance tree.

• Low value of AND of class inheritance tree gives the indication that tree has shallow
inheritance hierarchy than a class inheritance tree having high value of AND.

• AND metrics provides information about inheritance and inheritance plays
important role in reuse of already designed classes when designing a new class.

4 Examples for Illustration

In order to explain and illustrate these proposed inheritance metrics and to compare
them with existing ones we have taken two class inheritance trees. In these class
inheritance trees rectangular boxes represents classes and arrow symbol show rela-
tionship between these classes.

In first example (See Fig. 1) there is a simple class inheritance tree having 6 classes.
Class A is root class and then downward there are descendants of root class A. As class
B and Class C are child classes of Class A. Class D and Class E are child classes of
Class C similarly Class F is child class of Class B. It is quite obvious from Fig. 1 that
inheritance tree is simple in structure as it has little depth and breadth.

In second example (See Fig. 2) we have taken a little complex class inheritance tree
having 12 classes. Class A is root class and then downward there are descendants of
root class A. As Class B is child class of Class A. Classes C, D, E and F are child
classes of Class B. Classes H and I are child classes of class C and Class H and I are
parents of Class J. Similarly Classes D, E and F are parents of Class G and Class G is
Parent Class for Classes K and L. Figure of this 2nd class inheritance tree shows that
this inheritance tree is bit complex in structure as it has more depth and breadth as
compared to class inheritance tree of 1st example.

Fig. 1. Class inheritance tree having less
depth and breadth

Fig. 2. Class inheritance tree having more
depth and breadth

Effectiveness of Object Oriented Inheritance Metrics 235



5 Results of Existing and Proposed Metrics

In Tables 1 and 2, we have presented the calculation of existing and proposed inher-
itance metrics for class inheritance tree of example 1 and example 2 respectively. The
entire results of existing and proposed inheritance metrics for both class inheritance
trees are shown in Table 3 and also in Fig. 3 in graphical form.

Results of existing and proposed inheritance metrics values for both class inheri-
tance trees can be shown graphically as in Fig. 3 as both inheritance trees are repre-
sented here on x-axis and metric values on y-axis.

Table 1. Existing and proposed metrics calculations for inheritance tree of Fig. 1

Calculation of AID: AID is calculated using (1) as follows:
depth of class A = 1; depth of class B = 2; depth of class C = 2; depth of class D = 3; depth of
class E = 3; depth of class F = 3; AID = 14/6 = 2.33
Calculation of DBRM: DBRM is calculated using (2) as follows:
Total base classes = 3; Total derived classes = 5; DBRM = 5/3 = 1.66
Calculation of ANDC: ANDC is calculated using (3) as follows:
TDC(A) = 2; TDC(B) = 1; TDC(C) = 2; TDC (D) = 0; TDC (E) = 0; TDC(F) = 0;
ANDC = 5/6 = 0.833
Calculation of ANIC: ANIC is calculated using (4) as follows:
TIC (A) = 3; TIC (B) = 0; TIC (C) = 0; TIC (D) = 0; TIC (E) = 0; TIC (F) = 0;
ANIC = 3/6 = 0.5
Calculation of ANDP: ANDP is calculated using (5) as follows:
TDP (A) = 0; TDP(B) = 1; TDP(C) = 1; TDP(D) = 1; TDP (E) = 1; TDP (F) = 1;
ANIC = 5/6 = 0.833
Calculation of ANIP: ANIP is calculated using (6) as follows:
TIP (A) = 0; TIP (B) = 0; TIP(C) = 0; TIP (D) = 1; TIP (E) = 1; TIP (F) = 1;
ANIC = 3/6 = 0.5
Calculation of ANAC: ANAC is calculated using (7) as follows:
TA (A) = 0; TA (B) = 1; TA(C) = 1; TA (D) = 2; TA (E) = 2; TA (F) = 2; ANIC = 8/6 = 1.33
Calculation of AND: AND is calculated using (8) as follows:
TD (A) = 5; TD (B) = 1; TD(C) = 2; TD (D) = 0; TD (E) = 0; TD (F) = 0; AND = 8/6 = 1.33

Fig. 3. Graphical representation of result of existing and proposed inheritance metrics for both
class inheritance trees of Figs. 1 and 2.

236 M. Ilyas et al.



6 Analysis of Results

From above mentioned Table 3 and graph of Fig. 3, we have certain observations
regarding existing and proposed inheritance metrics with respect to reusability.

• DBRM metric value of inheritance tree of Fig. 2 is lower than that of inheritance
tree of Fig. 1, means Fig. 2 has low ratio of derived classes to base classes.

• AID Metric is concerned with depth of inheritance tree so lower AID metric value
indicates low design complexity, which leads to easy maintainability and more
understand-ability but low reusability.

• Similarly from Figs. 1, 2 and 3 and Table 3, it can be analyzed that inheritance in
Fig. 2 reuse more properties (ANDC and ANIC Metric value) means better
reusability as inheritance of Fig. 2 has high value of ANDC and ANIC metrics.

• Figure 2 has greater ANIP metric value as compared to inheritance tree of Fig. 1
means class inheritance in Fig. 2 is deeper. Deeper tree constitute greater design
complexity, as more classes are involved. We can say that higher ANIP metric
value leads to more reusability but lower maintainability and understandability.

Table 2. Existing and proposed metrics calculations for inheritance tree of Fig. 2

Calculation of AID: AID is calculated using Eq. (1) as follows:
depth of class A = 1; depth of class B = 2; depth of class C = 3;
depth of class D = 3; depth of class E = 3; depth of class F = 3;
depth of class G = 4; depth of class H = 4; depth of class I = 4;
depth of class J = 5; depth of class K = 5; depth of class L = 5; AID = 42/12 = 3.5
Calculation of DBRM: DBRM is calculated using Eq. (2) as follows:
Total base classes = 9; Total derived classes = 11; DBRM = 11/9 = 1.22
Calculation of ANDC: ANDC is calculated using Eq. (3) as follows:
TDC (A) = 1; TDC (B) = 4; TDC (C) = 2; TDC (D) = 1; TDC (E) = 1; TDC (F) = 1; TDC
(G) = 2; TDC (H) = 1; TDC (I) = 1; TDC (J) = 0; TDC (K) = 0; TDC (L) = 0;
ANDC = 14/12 = 1.16
Calculation of ANIC: ANIC is calculated using Eq. (4) as follows:
TIC (A) = 10; TIC (B) = 6; TIC (C) = 1; TIC (D) = 2; TIC (E) = 2; TIC (F) = 2; TIC (G) = 0;
TIC (H) = 0; TIC (I) = 0; TIC (J) = 0; TIC (K) = 0; TIC (L) = 0; ANIC = 23/12 = 1.91
Calculation of ANDP: ANDP is calculated using Eq. (5) as follows:
TDP (A) = 0; TDP (B) = 1; TDP(C) = 1; TDP (D) = 1; TDP (E) = 1; TDP (F) = 1; TDP
(G) = 3; TDP (H) = 1; TDP (I) = 1; TDP (J) = 2; TDP (K) = 1; TDP (L) = 1;
ANIC = 14/12 = 1.16
Calculation of ANIP: ANIP is calculated using Eq. (6) as follows:
TIP (A) = 0; TIP (B) = 0; TIP(C) = 1; TIP (D) = 1; TIP (E) = 1; TIP (F) = 1; TIP (G) = 2;
TIP (H) = 2; TIP (I) = 2; TIP (J) = 3; TIP (K) = 5; TIP (L) = 5; ANIC = 23/12 = 1.91
Calculation of ANAC: ANAC is calculated using Eq. (7) as follows:
TA (A) = 0; TA (B) = 1; TA(C) = 2; TA (D) = 2; TA (E) = 2; TA (F) = 2; TA (G) = 5; TA
(H) = 3;
TA (I) = 3; TA (J) = 5; TA (K) = 6; TA (L) = 6; ANAC = 37/12 = 3.08
Calculation of AND: AND is calculated using Eq. (8) as follows:
TD (A) = 11; TD (B) = 10; TD(C) = 3; TD (D) = 3; TD (E) = 3; TD (F) = 3; TD (G) = 2; TD
(H) = 1; TD (I) = 1; TD (J) = 0; TD (K) = 0; TD (L) = 0; AND = 37/12 = 3.08

Effectiveness of Object Oriented Inheritance Metrics 237



• Table 1 and Fig. 3 shows that ANDC and ANDP metrics values are similar. It
indicates that any of these metric can be used to find out overall depth of inheritance
of inheritance tree which will determine the reusability of that component.

• From Table 3 it can be analyzed that value of ANIC metric (Existing) and ANIP
metric (proposed) for each inheritance tree is similar. So it also gives us a facility to
use both these metrics alternatively. Same is indicated by graph given above.

• Both (proposed metrics) ANAC and AND Metric values indicate the depth of
inheritance of class inheritance tree. It can be easily analyzed that class inheritance
tree of Fig. 2 has more values of ANAC and AND Metric, which shows Fig. 2’s
tree has deeper inheritance hierarchy and more design complexity and more
reusability than class inheritance tree of Fig. 1.

7 Conclusion and Future Works

Class design plays vital role in OO system’s development and inheritance supports the
class hierarchy design. Reusability is related to depth and shallowness of inheritance
hierarchy so it is essential to determine the intricacy of inheritance hierarchy. We have
proposed different class inheritance metrics to give information about inheritance
complexity with respect to parent classes, ancestor and descendant classes.

Two of our proposed metrics ANDP and ANIP tend to provide an alternate solution
to discover intricacy of class inheritance as compared with existing inheritance metrics
ANDC and ANIC because our proposed ones provide same results in terms of super
classes so we come to know that intricacy of inheritance hierarchy is same w.r.t parent
classes as that of subclasses. We have proposed two more inheritance metrics as AND
metric and ANAC metric which can be used interchangeably according to ease and
given conditions. These inheritance metrics are involved in finding intricacy of class
inheritance hierarchy that has dominant effects on software reusability.

In future, this work can be extended for deeper and complicated inheritance trees
because class inheritance trees studied here are small as compared to inheritance trees
used usually in systems so that effect of these proposed inheritance metrics on
reusability process can be evaluated more precisely and effectively.

Table 3. Result of existing and proposed inheritance metrics for both class inheritance trees of
Figs. 1 and 2

Inheritance metrics Values for Fig. 1 Values for Fig. 2

AID(Existing) 2.33 3.5
DBRM(Existing) 1.66 1.22
ANDC(Existing) 0.833 1.16
ANIC(Existing) 0.5 1.91
ANDP(Proposed) 0.833 1.16
ANIP (Proposed) 0.5 1.91
ANAC (Proposed) 1.33 3.08
AND (Proposed) 1.33 3.08

238 M. Ilyas et al.



References

1. Abreu, F.B., Carapuça, R.: Object-oriented software engineering: measuring and controlling
the development process. In: 4th International Conference on Software Quality, USA,
October 1994

2. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators, Technical report, University of Maryland, pp. 1–24 (1995)

3. Poornima, U.S., Suma, V.: Impact of multiple inheritances on cohesion complexity in
software design. In: ICICT, Coimbatore, pp. 1–4 (2016)

4. Chidamber, S.R., Kemerer, C.F.: Towards a metric suite for object-oriented design. In:
Proceedings of the Sixth OOPSLA Conference, pp. 197–211 (1991)

5. Chidamber, S.R., Kemerer, C.F.: A metric suite for object-oriented design. IEEE Trans.
Softw. Eng. 20, 476–493 (1994)

6. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluation inheritance depth on the
maintainability of object-oriented software. Empirical Softw. Eng. 1, 109–132 (1996)

7. Harrison, R., Counsell, S.J., Nithi, R.V.: An evaluation of the MOOD set of object-oriented
software metrics. IEEE Trans. SE 24(6), 491–496 (1998)

8. Jawawi, D., Deris, S., Mamat, R.: Software reuse for mobile robot applications through
analysis patterns. IAJIT 4(3), 220–228 (2007)

9. Purao, S., Vaishnavi, V.: Product metrics for object-oriented systems. ACM Comput. Surv.
35(2), 191–221 (2003)

10. Rajnish, K., Choudhary, A.K., Agrawal, A.M.: Inheritance metrics for object-oriented
design. IJCSIT 2(6), 13–26 (2010)

11. Seller, B.H.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall PTR,
Englewood Cliffs (1996)

12. Sheldon, T.F., Jerath, K., Chung, H.: Metrics for maintainability of class inheritance
hierarchies. J. Softw. Maintenance Evol. Res. Pract. 14, 1–14 (2002)

13. Singh, S., Thapa, M., Singh, G.: Software engineering survey of reusability based on
software component. IJCSIT 2(6) (2010)

14. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring reusability of
software components. In: Software Metrics Symposium, pp. 211–223, September 2003

15. Ilyas, M., Abbas, M., Saleem, K.: A metric based approach to extract, store and deploy
software reusable components effectively. IJCSI 10, 257–264 (2013)

Effectiveness of Object Oriented Inheritance Metrics 239


	Effectiveness of Object Oriented Inheritance Metrics in Software Reusability
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Inheritance Metrics
	4 Examples for Illustration
	5 Results of Existing and Proposed Metrics
	6 Analysis of Results
	7 Conclusion and Future Works
	References


