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Abstract. We propose the new parallel algorithm of local support vec-
tor regression (local SVR), called kSVR for effectively dealing with large
datasets. The learning strategy of kSVR performs the regression task
with two main steps. The first one is to partition the training data into
k clusters, followed which the second one is to learn the SVR model from
each cluster to predict the data locally in the parallel way on multi-core
computers. The kSVR algorithm is faster than the standard SVR for the
non-linear regression of large datasets while maintaining the high cor-
rectness in the prediction. The numerical test results on datasets from
UCI repository showed that our proposed kSVR is efficient compared to
the standard SVR.

Keywords: Support vector regression (SVR) · Local support vector
regression (local SVR) · Large datasets

1 Introduction

Support vector machines (SVM) proposed by [1] and kernel-based methods have
shown practical relevance for classification, regression and novelty detection.
Successful applications are reported for face identification, text categorization
and bioinformatics [2]. Nevertheless, the SVM learning is accomplished through a
quadratic programming (QP), so that the computational cost of a SVM approach
is at least square of the number of training datapoints making SVM impractical
to handle large datasets. There is a need to scale-up SVM learning algorithms
to deal with massive datasets.

In this paper, we propose the new parallel algorithm of local support vector
regression (local SVR), called kSVR for effectively dealing with the non-linear
regression of large datasets. Instead of building a global SVR model, as done
by the classical algorithm is very difficult to deal with large datasets, the kSVR
algorithm is to learn in the parallel way an ensemble of local ones that are easily
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trained by the standard SVR algorithms. The kSVR algorithm performs the
training task with two main steps. The first one is to use kmeans algorithm [3]
to partition the training dataset into k clusters. The idea is to reduce the data
size for training local non-linear SVR models at the second step. The algorithm
learns k non-linear SVR models in the parallel way on multi-core computers
in which a SVR model is trained in each cluster to predict the data locally.
The numerical test results on datasets from UCI repository [4] showed that our
proposal is efficient compared to the standard SVR in terms of training time and
prediction correctness. The kSVR algorithm is faster than the standard SVR in
the non-linear regression of large datasets while maintaining the high prediction
correctness.

The paper is organized as follows. Section 2 briefly introduces the SVR algo-
rithm. Section 3 presents our proposed parallel algorithm of local SVR for the
non-linear regression of large datasets. Section 4 shows the experimental results.
Section 5 discusses about related works. We then conclude in Sect. 6.

2 Support Vector Regression

Given a training dataset with m datapoints xi (i = 1, . . . ,m) in the n-
dimensional input space Rn, having corresponding targets yi ∈ R, support vector
regression (SVR) proposed by [1] tries to find the best hyperplane (denoted by
the normal vector w ∈ Rn and the scalar b ∈ R) that has at most ε devia-
tion from the target value yi. The SVR pursues this goal with the quadratic
programming (1).

min (1/2)
m∑

i=1

m∑

j=1

(αi − αi
∗)(αj − αj

∗)K〈xi, xj〉 −
m∑

i=1

(αi − αi
∗)yi + ε

m∑

i=1

(αi + αi
∗)

s.t.

⎧
⎪⎨

⎪⎩

m∑

i=1

(αi − αi
∗) = 0

0 ≤ αi, αi
∗ ≤ C ∀i = 1, 2, ..., m

(1)

where C is a positive constant used to tune the margin and the error and a linear
kernel function K〈xi, xj〉 = 〈xi � xj〉.

The support vectors (for which αi, αi
∗ > 0) are given by the solution of the

quadratic programming (1), and then, the predictive hyperplane and the scalar
b are determined by these support vectors. The prediction of a new datapoint x
based on the SVR model is as follows:

predict(x, SV R model) =
�SV∑

i=1

(αi − αi
∗)K〈x, xi〉 − b (2)

Variations on SVR algorithms use different prediction functions [5]. It only
needs replacing the usual linear kernel function K〈xi, xj〉 = 〈xi � xj〉 with other
popular non-linear kernel functions, including:
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+ε

−ε

w.x−b = 0

Fig. 1. Linear support vector regression

– a polynomial function of degree d : K〈xi, xj〉 = (〈xi � xj〉 + 1)d

– a RBF (Radial Basis Function): K〈xi, xj〉 = e−γ‖xi−xj‖2

The SVR models are most accurate and practical relevance for many suc-
cessful applications reported in [2].

3 Parallel Algorithm of Local Support Vector Regression

The study in [6] illustrated that the computational cost requirements of the
SVR solutions in (1) are at least O(m2) (where m is the number of training
datapoints), making standard SVM intractable for large datasets. Learning a
global SVR model on the full massive dataset is challenge due to the very high
computational cost.

Training dataset D

Partition D into k clusters with kmeans

D1 D2 Dk

c1, lsvr1 = SVR(D1,θ ,ε) c2, lsvr2 = SVR(D2,θ ,ε) ck, lsvrk = SVR(Dk,θ ,ε)

...

...

Fig. 2. Training k local SVR models (kSVR)
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Learning k Local SVR Models

Our proposed kSVR algorithm learns an ensemble of local SVR models that
are easily trained by the standard SVR algorithm. As illustrated in Fig. 2, the
kSVR handles the regression task with two main steps. The first one uses kmeans
algorithm [3] to partition the full training set into k clusters, and then the second
one trains an ensemble of local SVR models in which a non-linear SVR is learnt
from each cluster to predict the data locally. We consider a simplest regression
task given a target variable y and a predictor (variable) x. Figure 3 shows the
comparison between a global SVR model (left part) and 3 local SVR models
(right part) for this regression task, using a non-linear RBF kernel function with
γ = 10, a positive constant C = 105 (i.e. the hyper-parameters θ = {γ,C}) and
a tolerance ε = 0.05.

Since the cluster size is smaller than the full training data size, the standard
SVR can easily perform the training task on the data cluster. Furthermore,
the kSVR learns independently k local models from k clusters. This is easily
parallelized to take into account the benefits of high performance computing,
e.g. multi-core computers or grids. The simplest development of the parallel
kSVR algorithm is based on the shared memory multiprocessing programming
model OpenMP [7] on multi-core computers. The parallel training of kSVR is
described in Algorithm 1.
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Fig. 3. Global SVR model (left part) versus 3 local SVR models (right part)

Performance Analysis

The performance analysis starts with the algorithmic complexity of building k
local SVR models with the parallel kSVR algorithm. The full dataset with m
datapoints is partitioned into k balanced clusters (the cluster size is about m

k ).
The training complexity of a local SVR is O((m

k )2). Therefore, the algorithmic
complexity of parallel training k local SVR models on a P -core processor is
O( k

P (m
k )2) = O(m2

kP ). This complexity analysis illustrates that parallel learning
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k local SVR models in the kSVR algorithm 1 is kP times faster than building a
global SVR model (the complexity is at least O(m2)).

The performance analysis in terms of the generalization capacity of such
kSVR models is illustrated in [8–11]. The parameter k is used in the kSVR to
give a trade-off between the generalization capacity and the computational cost.
This point can be understood as follows:

– If k is large then the kSVR algorithm reduces significant training time. And
then, the size of a cluster is small; The locality is extremely with a very low
capacity.

– If k is small then the kSVR algorithm reduces insignificant training time.
However, the size of a cluster is large; It improves the capacity.

It leads to set k so that the cluster size is a large enough (e.g. 200 proposed
by [9]).

Algorithm 1. Parallel training algorithm of k local support vector
regression

input :
training dataset D
number of local models k
tolerance ε
hyper-parameter γ of RBF kernel function
positive constant C for tuning margin and errors

output:
k local SVR models

1 begin
2 /*kmeans performs in the parallel way the data clustering on dataset D;*/
3 creating k clusters denoted by D1, D2, . . . , Dk and
4 their corresponding centers c1, c2, . . . , ck
5 #pragma omp parallel for schedule(dynamic)
6 for i ← 1 to k do
7 /*learning local support vector regression model from Di;*/
8 lsvri = svr(Di, γ, C, ε)

9 end
10 return kSVR-model = {(c1, lsvr1), (c2, lsvr2), . . . , (ck, lsvrk)}
11 end

1 It must be noted that the complexity of the kSVR approach does not include the
kmeans clustering used to partition the full dataset. But this step requires insignifi-
cant time compared with the quadratic programming solution.
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Prediction of a New Datapoint x Using k Local SVR Models

The kSVR-model = {(c1, lsvr1), (c2, lsvr2), . . . , (ck, lsvrk)} is used to predict the
target value of a new datapoint x as follows. The first step is to find the closest
cluster based on the distance between x and the cluster centers:

cNN = arg min
c

distance(x, c) (3)

And then, the target value of x is predicted by the local SVR model lsvrNN

(corresponding to cNN ):

predict(x, kSV R model) = predict(x, lsvrNN ) (4)

4 Evaluation

We are interested in the performance of the new parallel algorithm of local
SVR (denoted by kSVR) for data regression. We have implemented the kSVR
algorithm in C/C++, OpenMP [7], using the highly efficient standard library
SVM, LibSVM [12]. Our evaluation of the performance is reported in terms of
training time and prediction correctness. We are interested in the comparison
the regression results obtained by our proposed kSVR with LibSVM.

All experiments are run on machine Linux Fedora 20, Intel(R) Core i7-4790
CPU, 3.6 GHz, 4 cores and 32 GB main memory.

Datasets

Experiments are conducted with the 5 datasets from UCI repository [4]. Table 1
presents the description of datasets. The evaluation protocols are illustrated in
the last column of Table 1. Datasets are already divided in training set (Trn)
and test set (Tst). We used the training data to build the SVR models. Then,
we predicted the test set using the resulting models.

Tuning Parameters

We propose to use RBF kernel type in kSVR and SVR models because it is
general and efficient [13]. The cross-validation protocol (2-fold) is used to tune
the regression tolerance ε, the hyper-parameter γ of RBF kernel (RBF kernel of
two individuals xi, xj , K[i, j] = exp(−γ‖xi − xj‖2)) and the cost C (a trade-
off between the margin size and the errors) to obtain a good correctness. For
two largest datasets (Buzz in social media Twitter, YearPredictionMSD), we
used a subset randomly sampling about 5% training dataset for tuning hyper-
parameters due to the expensive computational cost. Furthermore, our kSVR
uses the parameter k local models (number of clusters). We propose to set k
so that each cluster consists of about 200 individuals. The idea gives a trade-
off between the generalization capacity [10] and the computational cost. Table 2
presents the hyper-parameters of kSVR and SVR in the regression.
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Table 1. Description of datasets

ID Datasets #Datapoints #Dimensions Target domain Evaluation
protocol

1 Appliances energy
prediction

19 735 27 [10.0, 1080.0] 13 500 Trn -
6 235 Tst

2 Facebook comment
volume

40 949 53 [0.0, 1 305.0] 27 500 Trn -
13 449 Tst

3 BlogFeedback 60 021 280 [0.0, 1424.0] 52 397 Trn -
7 624 Tst

4 Buzz in social media
(Twitter)

583 250 77 [0.0, 75 724.5] 400 000 Trn -
183 250 Tst

5 YearPredictionMSD 515 345 90 [1 922, 2 011] 400 000 Trn -
115 345 Tst

Table 2. Hyper-parameters of kSVR and SVR

ID Datasets γ C ε k

1 Appliances energy prediction 0.02 100 000 0.1 30

2 Facebook comment volume 0.001 100 000 0.1 300

3 BlogFeedback 0.4 100 000 0.05 500

4 Buzz in social media (Twitter) 0.1 100 000 0.1 4 000

5 YearPredictionMSD 0.01 100 000 0.1 1 500

Regression Results

The regression results of LibSVM and kSVR on the datasets are given in Table 3,
Figs. 4, 5 and 6.

As it was expected, our kSVR algorithm outperforms LibSVM in terms of
training time. The average of kSVR and LibSVM training time are 8.45 min and

Table 3. Regression results in terms of mean absolute error (MAE) and training time
(minutes)

ID Datasets Mean absolute error (MAE) Training time (min)

LibSVM kSVR LibSVM kSVR

1 Appliances energy prediction 47.81 47.94 2.55 0.05

2 Facebook comment volume 8.97 8.59 27.91 0.1

3 BlogFeedback 9.85 6.40 53.78 3.86

4 Buzz in social media (Twitter) 235.25 46.73 5 193.59 31.94

5 YearPredictionMSD 8.18 7.86 2 477.91 6.33

6 Average 62.01 23.50 1 551.15 8.45
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Fig. 4. Comparison of training time (minutes) for small datasets

1551.15 min, respectively. It means that our kSVR is 183.5 times faster than
LibSVM.

For 3 first small datasets, the training speed improvements of kSVR versus
LibSVM is 21.10 times. With two large datasets (Buzz in social media - Twit-
ter and YearPredictionMSD), the learning time improvements of kSVR against
LibSVM is more significant (about 200.44 times).

In terms of prediction correctness (mean absolute error - MAE), the error
average made by kSVR and LibSVM are 23.50 and 62.01, respectively. The
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Fig. 6. Comparison of prediction results

comparison of prediction correctness, dataset by dataset, shows that kSVR is
beaten only once (with Appliances energy prediction dataset) by LibSVM (4
wins, 1 defeat). It illustrates that our kSVR is more accurate than LibSVM for
the prediction.

kSVR improves not only the training time, but also the prediction correctness
when dealing with large datasets. The regression results allow to believe that our
proposed kSVR is efficient for handling these data volumes.
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5 Discussion on Related Works

Our proposal is related to large-scale SVM learning algorithms. The improve-
ments of SVM training on very large datasets include effective heuristic methods
in the decomposition of the original quadratic programming into series of small
problems [6,12,14,15]. Recent works [16,17] proposed the stochastic gradient
descent methods for dealing with large scale linear SVM solvers. The parallel
and distributed algorithms [18–20] for the linear classification improve learn-
ing performance for large datasets by dividing the problem into sub-problems
that execute on large numbers of networked PCs, grid computing, multi-core
computers.

The review paper [21] provides a comprehensive survey on large-scale linear
support vector classification. LIBLINEAR [22] and its extension [23] uses the
Newton method for the primal-form of SVM and the coordinate descent app-
roach for the dual-form SVM to deal with very large linear classification and
regression. The parallel algorithms of logistic regression and linear SVM using
Spark [24] are proposed in [25]. The distributed Newton algorithm of logistic
regression [26] is implemented in the Message Passing Interface (MPI). The par-
allel dual coordinate descent method for linear classification [27] is implemented
in multi-core environments using OpenMP. The incremental and decremental
algorithms [28] aim at training linear classification of large data that cannot fit
in memory. These algorithms are proposed to efficiently deal large-scale linear
classification tasks in a very-high-dimensional input space. But the computa-
tional cost of a non-linear SVM approach is still impractical. The work in [29]
tries to automatically determine which kernel classifiers perform strictly better
than linear for a given data set.

Our proposal is in some aspects related to local SVM learning algorithms.
The first approach is to classify data in hierarchical strategy. This kind of training
algorithm performs the classification task with two main steps. The first one is to
cluster the full dataset into homogeneous groups (clusters) and then the second
one is to learn the local supervised classification models from clusters. The paper
[30] proposed to use the expectation-maximization (EM) clustering algorithm
[31] for partitioning the training set into k joint clusters (the EM clustering
algorithm makes a soft assignment based on the posterior probabilities [32]); for
each cluster, a neural network (NN) is learnt to classify the individuals in the
cluster. The parallel mixture of SVMs algorithm proposed by [33] constructs
local SVM models instead of NN ones in [30]. CSVM [34] uses kmeans algorithm
[3] to partition the full dataset into k disjoint clusters; then the algorithm learns
weighted local linear SVMs from clusters. More recent kSVM [35], krSVM [36]
(random ensemble of kSVM), tSVM [11] propose to parallely train the local non-
linear SVMs instead of weighting linear ones of CSVM. DTSVM [37,38] uses
the decision tree algorithm [39,40] to split the full dataset into disjoint regions
(tree leaves) and then the algorithm builds the local SVMs for classifying the
individuals in tree leaves. These algorithms aim at speeding up the learning time.

The second approach is to learn local supervised models from k nearest neigh-
bors (kNN) of a new testing individual. First local learning algorithm of Bottou
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and Vapnik [9] find kNN of a test individual; train a neural network with only
these k neighborhoods and apply the resulting network to the test individual.
k-local hyperplane and convex distance nearest neighbor algorithms are also pro-
posed in [41]. More recent local SVM algorithms aim to use the different methods
for kNN retrieval; including SVM-kNN [42] trying different metrics, ALH [43]
using the weighted distance and features, FaLK-SVM [44] speeding up the kNN
retrieval with the cover tree [45].

A theoretical analysis for such local algorithms discussed in [8] introduces
the trade-off between the capacity of learning system and the number of avail-
able individuals. The size of the neighborhoods is used as an additional free
parameters to control generalisation capacity against locality of local learning
algorithms.

6 Conclusion and Future Works

We presented the new parallel algorithm of local SVR that achieves high perfor-
mances for the non-linear regression of large datasets. The training task of kSVR
is to partition the full training dataset into k clusters. This step is to reduce data
size in training local SVR. And then it easily learns k non-linear SVR models
in the parallel way on multi-core computers in which a SVR model is trained in
each cluster to predict the data locally. The numerical test results on datasets
from UCI repository showed that our proposed kSVR is efficient in terms of
training time and prediction correctness compared to the standard LibSVM. An
example of its effectiveness is given with the non-linear regression of YearPre-
dictionMSD dataset (having 400000 datapoints, 90 dimensions) in 6.33 min and
7.86 mean absolute error obtained on the prediction of the testset.

In the near future, we intend to provide more empirical test on large bench-
marks and comparisons with other algorithms. A promising avenue for future
research aims at improving the prediction correctness and automatically tuning
hyperparameters of kSVR.
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