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Abstract This paper deals with the analysis of fuzzy models and fuzzy approaches
for efficiently solving transportation and vehicle routing problems (VRP) with
constrains on vehicle’s capacity. Authors focused their research on VRP for marine
bunkering tankers and planning and optimisation of tanker’s routes in conditions of
uncertain fuel demands at nodes. Triangular fuzzy numbers are proposed for
modelling uncertain demands and the optimization problem is considered as
multi-criteria problem with (a) minimizing total length of planned routes, (b) sat-
isfying all orders at nodes (ships, ports), (c) maximizing total sales volume of
unloaded fuel, (d) minimizing fleet size. Two alternative fuzzy approaches for
efficiently solving such marine VRP are discussed. The first alternative deals with
the development of a multi-stage iterative heuristic procedure and the second
alternative concerns the development of a fuzzy decision-making system for the
current evaluation of satisfaction values for uncertain order realizations.
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1 Introduction

Transportation by ships plays a significant role in international trade and passenger
traffic between countries within marine regions as Mediterranean Sea, Black Sea
etc. as well as between continents. For some countries with long shorelines, nav-
igable rivers or with multiple islands, transportation by ships also plays an
important role in regional or local trade [1, 16, 26]. Nowadays, among such tra-
ditional marine cargo as coal, oil, cement etc., natural gas is an important cargo in
marine shipping taking into account that liquefaction ports transform gas into liq-
uefied natural gas [12]. The most important and complex problems for all kinds of
marine transportation are the routing and scheduling of vessels in marine envi-
ronment, which is fuzzy and uncertain because of strong disturbances and different
influences of weather, distance and others. Some special characteristics of ship
routing and scheduling problems are [1, 12, 36, 42, 44]:

• a fleet is mostly heterogeneous, ships may have various deadweights and
loading capacities, cruise speed and special constructions for different kind of
cargoes (tankers, bulkers, dry-ships etc.);

• sometimes the distance between two ports is an uncertain value (parameter) and
in some cases it is necessary to change destination while at sea to cope with
increasing travel times between departure and arrival ports;

• the weather may have strong impact on ships during long trips, speed and
travelling time usually depend on wind, current and wave influences;

• loading and unloading processes at the ports usually depend on specific working
time windows and cost penalties are to be calculated as a function of the relation
between opening and closing of cargo processing at a port on one side and the
arrival time of a ship on the other side.

Maritime transportation planning problems can be classified [1] with respect to
the corresponding planning horizon into strategic, tactical and operational problems
and according to the up-dated classification for modes of ship’s operations they can
be divided into the three different categories: liner, tramp and industrial operations,
but there are no clear bounds between the abovementioned categories.

Taking into account uncertain sea environment it is necessary to use efficient
methods for mathematical formalization of marine transportation problems. In
particular, for mathematical formalization of various processes and systems in
uncertainty it is beneficial to use the theory of fuzzy sets, developed by Zadeh [48].
Specialists have a great interest in such intelligent approaches in terms of practical
applications of its mathematical methods in different fields: business process
management [2, 4–6, 8, 23], engineering [14], economics [7, 9,], finances [10, 30],
decision-making [3, 11, 20, 31–33, 46, 47], medical and technical diagnostics,
transport logistics [18, 22, 24], etc. There are multiple fundamental theoretical
contributions to the development of fuzzy sets and fuzzy logic theory and their
applications for solving optimization problems made by scientists all over the world
[9, 19, 25, 29, 34, 38–40, 49, 50]. For example, the solution of a classical
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transportation problem with uncertain information about transportation cost of
cargo unit was proposed by Arnold Kaufmann (France) and Jaime Gil-Aluja
(Spain) in [15]. This solution is based on the simplex method of linear optimization
and implementation of triangular fuzzy numbers for decreasing uncertainty. This
proposed fuzzy approach [15] can be successfully applied to solve marine trans-
portation problems under uncertainty.

In this article we focus on a real-world problem which deals with planning and
optimization of a bunkering tanker routing problem in conditions when a priori
orders in nodes are uncertain.

2 Problem Statement

The routing problem for bunkering tankers is one of the most important and
complicated VRP in marine transportation [7, 15, 16]. Bunkering tankers should
provide bunkering operations (transportation and unloading) for various ships to be
served. These serviced ships can be located in different geographically distributed
marine ports and open sea points. Marine practice shows that very often the
information about fuel demands of serviced ships is uncertain. Usually the
ship-owner sends an approximate order to the bunkering company. For example,
the ship-owner sends an order for fuel supply using such uncertain terms as “ap-
proximately A”, “about B”, “between C and D”, “at least R”, “not less than S”, “not
more than K” and so on. It is possible to represent such kind of orders as fuzzy
demands, for example, as fuzzy numbers with triangular membership function [2,
20, 21, 43]. The classical VRP [28, 37], taking into account the restricted fuel
capacity Cap of each tanker, can be transformed to [13, 17, 37, 41, 42] a capacitated
vehicle routing problem (CVRP) under uncertainty. Solving such CVRPFD (CVRP
in the conditions of fuzzy demands) deals with (a) minimization of both total length
of planned tanker routes and (b) used fleet size of tankers, (c) satisfaction of orders
in all destinations and (d) maximization of total value of unloaded fuel. So we will
consider a CVRPFD as bi- or multi-criteria optimization problem under uncertainty.
Two alternative fuzzy approaches will be considered for solving marine CVRPFD.

3 First Alternative Fuzzy Approach Based on Iterative
Heuristic Algorithm

3.1 Mathematical Model for Solving CVRPFD

A first suggested fuzzy multi-criteria approach for solving CVRPFD, where fuzzy
demands at nodes are presented by fuzzy numbers dj̃ with triangular membership
functions dj̃ = dj, dĵ, dj̄

� �
, j = 1 . . .N, is based on a mixed integer linear mathematical
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programming model. The first compromise solution can be interactively modified to
meet the decision makers’ requirements with respect to different criteria [39, 40, 42].
Indices i,j = 0,1,…,N are for the depot and different ports, and k = 1,…,K are for
routes. The objective function of the considered CVRP is to minimize the total travel
distance:

min ∑
N

i= 0
∑
N

j= 0
∑
K

k=1
cij xijk ð1Þ

and the capacity Cap of each tanker should be sufficient to meet the fuzzy demands
D̃k = ∑N

j= 1 dj̃yjk, k = 1, . . . , N of all ports on the k-th planned route:

∑
N

j= 1
dj̃yjk ≤Cap, k = 1, . . . , N ð2Þ

where cij is the distance from i-th port to j-th port, i, j = 0, . . . , N,

xijk =
1 if j follows i on route k
0 else

�
,

yjk =
1 if port j belongs to route k
0 else

�
,

ujk ≥ 0 is the sequence no. of port j on route k
Each port j belongs to exactly one of the routes except port 0 with the depot

∑
K

k=1
yjk = 1, j = 1, . . . , N. ð3Þ

Each port j on the route must be entered exactly once on the trip

∑
N

i= 0
xijk = yjk, j = 0, . . . , N, k = 1, . . . , K. ð4Þ

Each port i on the route must be exited exactly once on the trip

∑
N

j= 0
xijk = yik, i = 0, . . . , N, k = 1, . . . , K. ð5Þ

No port can follow itself on the route
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xiik = 0, i = 0, . . . , N, k = 1, . . . , K. ð6Þ

Sub-routes are forbidden

ujk ≥ uik + 1− 1− xijk
� �

N, i = 0, . . . , N, j = 1, . . . , N, j≠ i. ð7Þ

Each trip starts in the depot

u0k = 1, k= 1, . . . , N. ð8Þ

To model fuzzy demands it is suggested to consider the possibility that the actual
demand of all ships on one route is less or equal to the capacity Cap of the tanker. If
the demand is not known exactly, it is possible to find a solution for which the
possibility to serve the demand is required at least [10] to a certain degree α∈ 0, 1½ �.

The decision maker has to determine α in advance. Considering a fuzzy number
as a method of representing uncertainty in a given quantity by defining a possibility
distribution for the quantity is analyzed in [13, 41, 42]

Pos ∑
N

j= 1
dj̃yik ≤Cap

 !
≥ α, k = 1, . . . , N; α∈ 0, 1½ �. ð9Þ

An even stronger condition is to determine a certain degree of necessity β that
the demand on the route can be served

Nec ∑
N

j= 1
dj̃yik ≤Cap

 !
≥ β, k = 1, . . . , N; β∈ 0, 1½ �. ð10Þ

The requirements (9) and (10) for capacity can be transformed as follows

Pos Cap− ∑
N

j= 1
dj̃yik ≥ 0

 !
≥ α, k = 1, . . . , N; α∈ 0, 1½ �, ð11Þ

Nec Cap− ∑
N

j= 1
dj̃yik ≥ 0

 !
≥ β, k = 1, . . . , N; β∈ 0, 1½ �. ð12Þ

and for triangular fuzzy numbers dj̃ = dj, dĵ, dj̄
� �

the fuzzy number

Cap− ∑N
j= 1 dj̃yik

� �
can be presented also as triangular fuzzy number as follows

Cap− ∑
N

j= 1
dj̃yik = Cap− ∑

N

j= 1
dj̄yik, Cap− ∑

N

j= 1
dĵyik, Cap− ∑

N

j= 1
djyik

 !
. ð13Þ
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The mathematical models for possibility Pos Serve D̃k
� �

and necessity
Nec Serve D̃k

� �
that the capacity Cap of the tanker is sufficient to serve all demands

D̃k on k-th route are

Pos Serve D̃k
� �

=

1, Cap≥ ∑
N

j= 1
dĵyjk

Cap− ∑N
j= 1 djyjk

∑N
j= 1 ðdĵ −djÞ yjk

, ∑
N

j= 1
djyjk <Cap≤ ∑

N

j= 1
dĵyjk

0, Cap< ∑
N

j= 1
djyjk

8>>>>>>>><
>>>>>>>>:

, ð14Þ

Nec Serve D̃k
� �

=

1, Cap≥ ∑
N

j= 1
djyjk

Cap− ∑N
j= 1 dĵyjk

∑N
j=1 ðdj − dĵÞ yjk

, ∑
N

j= 1
dĵyjk <Cap≤ ∑

N

j= 1
djyjk

0, Cap < ∑
N

j=1
dĵyjk

8>>>>>>>><
>>>>>>>>:

. ð15Þ

According to [42] the following relation applies

Pos Serve D̃k
� �

<1⇒Nec Serve D̃k
� �

=0 ð16Þ

and it is more demanding to request the necessity to be greater than 0 than to
request the possibility to be less or equal to 1.

For α>0 we can model the following constraints as crisp equivalents for the
fuzzy constraint (2):

Pos Serve D̃k
� �

≥ α⇔ ∑
N

j= 1
α dĵ + 1− αð Þdj
� �

yjk ≤Cap, k= 1, . . . , K, α∈ 0, 1ð � ð17Þ

and for β>0, respectively:

Nec Serve D̃k
� �

< β⇔ ∑
N

j= 1
βdj + 1− βð Þdĵ
� �

yjk ≤Cap, k= 1, . . . , K, β∈ 0, 1ð � ð18Þ

To solve this fuzzy mathematical programming model, it is suggested to
determine the optimal solutions with respect to a given degree of possibility α or
even stronger a given degree of necessity β that the capacity Cap is sufficient to
meet the total demand D̃k of the served ships on each of the K routes.
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3.2 Multi-criteria Optimization for CVRPFD Based
on Fuzzy Approach

A bunkering company usually wants to serve all the demands and sell as much fuel
as possible. Sales are restricted by the demands and by the capacity of the tanker for
a route. A solution is preferable if the amount of the demand served is high. To
maximize sales in this considered fuzzy context means to determine and maximize
a fuzzy set which depends on the fuzzy demand, the route and the capacity of the
tanker.

The fuzzy set sales S̃k on route k can be calculated as the minimum of demand
D̃k and the capacity of the tanker. The membership results as

μS̃kðx) =
μD̃k

ðx), x <Cap
Pos S̃k ≥Cap

� �
, x =Cap.

0, x >Cap

8<
: ð19Þ

It is suggested to use the following defuzzyfication method [40–42, 44] to
determine the crisp approximation D S̃k for the sales on the k-th route

D S̃k =
1
3

min ∑
N

j= 1
djyjk, Cap

( )
+min ∑

N

j= 1
dĵyjk, Cap

( )
+min ∑

N

j= 1
dj̄yjk, Cap

( ) !

ð20Þ

Let ∑K
k=1 S̃k be a fuzzy set of the total sales (depended on all K routes) with

corresponding membership function

μ∑ S̃k
ðz) = sup

∑K
k=1 xk = z

min
K

k=1
μS̃k xkð Þ

n o
. ð21Þ

and ∑K
k=1 D S̃k is a crisp approximation of total sales ∑K

k=1 S̃k.
The fuzzy multi-criteria approach for mathematical formalization of such kind of

corresponding optimization problems for tankers CVRP and trucks CVRP are
presented in [41, 42]. The multi-criteria model in a fuzzy context has to be con-
sidered in more detail. It is based on the minimization of total length of planned
tanker’s routes

min Z1ðx, y, uÞ = ∑
N

i= 0
∑
N

j= 0
∑
K

k=1
cijxijk ð22Þ
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and the maximization of total value of unloaded cargo (fuel) on all routes

max Z2ðx, y, uÞ= ∑
K

k=1
, min ̃ ∑

N

j= 1
dj̃yjk, Cap

( )
, ð23Þ

according to constraints (3)–(8), fuzzy relations (11), (12) and their crisp equiva-
lents (17), (18), where x, y and u stand for the vectors of variables in the considered
model and operator mıñð Þ means the extended minimum of the two fuzzy sets D̃k

and Cap⇔C a ̃p = Cap, Cap, Capð Þ. For this model we assume that the number of
vehicles is not restricted, the fleet of vehicles is homogeneous and each single
demand is less than the capacity of the vehicle Cap.

For finding the optimal solution of CVRPFD (22), (23), (11), (12), (3)–(8) the
modified iterative method developed in [12, 13] is used.

Step 1. The optimization criterion is (22) and simultaneously criterion (23) can
be transformed to constraint

∑
N

j= 1
djyjk ≤Cap, k= 1, . . . , K, ð24Þ

that means that at least the lower bound of the fuzzy demand ∑K
k=1 ∑

N
j= 1 djyjk is

served. The individual optimum of Z1 (the minimal total distance)
Z1 x1, y1, u1ð Þ=Z1* can be determined by the solution algorithm and corresponding
optimal parameters are x1ijk, y

1
jk and u1jk, where i, j = 0,…,N; k = 1,…,K.

Step 2. The value Z2ðx1, y1, u1Þ=Z2
* should be calculated using (23) taking into

account that

Z2 x1, y1, u1
� �

≥ ∑
K

k=1
∑
N

j= 1
djyjk. ð25Þ

Step 3. Transform the second criterion (23) using the crisp approximation D S̃k
(20) to the following form

max Z2 x, y, uð Þ = ∑
K

k=1
D S̃k ≥Z2ðx1, y1, u1Þ. ð26Þ

To determine the individual optimum of Z2 and fuzzy efficient solution it is
necessary to consider all alternative solutions x2, y2, u2ð Þ and choose best solutions
with the fulfilment of condition

min Z1 x2, y2, u2
� �

≤Z1 x1, y1, u1
� �

. ð27Þ

In this case optimal solutions according to criterion (23) will satisfy constraint
(18) for the strongest condition: β=1 and, practically, a fuzzy efficient individual
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optimum Z2 can be found solving model (1) with constraints (3)–(8) and with
constraint (2) modified as follows

∑
N

j= 1
dj̄yjk ≤Cap, k = 1, . . . , K. ð28Þ

As a result, the optimal solution is x2, y2, z2ð Þ for which Z2 x2, y2, z2ð Þ=Z2* and
Z1 x2, y2, u2ð Þ=Z1

*.
Step 4. Consider goal functions (22) and (23) as fuzzy sets and define their

membership functions μZ1ðxÞ, μZ2ðxÞ using individual optimal values Z1*, Z2* and
pessimistic solutions Z1

*, Z2
*:

μZ1ðxÞ=
1, Z1ðx, y, uÞ≤Z1*

Z1
* −Z

1ðx,y,uÞ
Z1

* −Z
1* , Z1* <Z1ðx, y, uÞ<Z1

*

0, Z1ðx, y, uÞ≥Z1
*

8><
>: , ð29Þ

μZ2ðxÞ=
1, Z2ðx, y, uÞ≥Z2*

Z2ðx,y, uÞ−Z2
*

Z2*
−Z2

*

, Z2
* < Z2ðx, y, uÞ<Z2*

0, Z2ðx, y, uÞ≤Z2
*

8><
>: . ð30Þ

Step 5. Set the first compromise model in the following way

max λ ð31Þ

subject to

Z1
* − Z1*� �

λ+ ∑
N

i= 0
∑
N

j= 0
∑
K

k=1
cijxijk ≤Z1

*, ð32Þ

Z2
* −Z2*� �

λ+ ∑
K

k=1
D S̃k ≥Z2

*, ð33Þ

λ∈ 0, 1½ � ð34Þ

and constraints (3)–(8).
Step 6. An equivalent linear model is given by constraints (31), (32), (34), (3)–

(8) and substituting the following linear constraints for the nonlinear constraint (33)

Z2
* −Z2*� �

λ+ ∑
K

k=1

g
k
+ gk̂ + gk̄

� �
3

≥Z2
*, ð35Þ
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g
k
≤ ∑

N

j= 1
djyjk, k = 1, . . . , K, ð36Þ

gk̂ ≤ ∑
N

j= 1
dĵyjk, k = 1, . . . , K, ð37Þ

gk̄ ≤ ∑
N

j= 1
dj̄yjk, k = 1, . . . , K, ð38Þ

0≤ g
k
, gk̂, gk̄ ≤Cap, k= 1, . . . , K. ð39Þ

Step 7. To solve the linear optimization model of CVRPFD in Step 6 with (31),
(32), (34), (3)–(8) and (35)–(39) it is necessary to determine:

(a) all nodes (ports, served ships or destination points) on every route k, k = 1,…,
K and the set of completed routes;

(b) the length Lk of each route k (total distance), k = 1,…,K;
(c) the calculated values of sales D S̃k for the realization of each route k, k = 1,…,

K;
(d) the total length (distance) Ltotal = ∑K

k=1 Lk = Z1 for the realization of all plan-
ned routes;

(e) total sales ∑K
k=1 D S̃k =Z2 for the realization of all planned routes.

Step 8. Solve the local TSP (Travelling Salesperson Problem) separately for the
nodes of each preliminary planned route k, k = 1,…,K. So the length for each route
is minimized with fixed values of sales by using any well-known TSP exact
algorithms, TSP heuristics [27, 44] or evolutionary optimization algorithms [35]
(genetic algorithm, bio-geography optimization algorithm, etc.) depending on the
number of nodes at a route. As a result, the optimal or nearly optimal length Lopt

k of
each route k of the corresponding TSP is ascertained.

Step 9. The total optimal length for the realization of all optimized routes is
Lopt
total = ∑K

k=1 L
opt
k = Zopt

1 .
Step 10. If Lopt

total < Ltotal then the sequence and consequences of port’s visits for
tankers have to be changed according to the optimization process in Step 8, pro-
viding additional minimization of total length of all planned routes, else for
Lopt
total = Ltotal, no change is required.

3.3 Discussion of Modelling Results with Additional Route
Optimization

Using the above-considered optimization models and the presented iterative algo-
rithm, all routes and sales for the same input data as in the example published in
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[41] are determined. The CVRPFD (Fig. 1) consists of 75 ports, which are situated
at locations characterized by their corresponding coordinates in the plane

xj, yj
� �

, j = 1, . . . , 75 and with Deport 0 with coordinates (40, 40). The tanker fleet

is homogeneous with capacity Cap = 160 of each tanker and fuzzy demands are
identical to those in [41].

The modelling results after the first seven steps of the suggested iterative
algorithm are presented in Table 1. The number of planned routes is 10.

The total distance

Ltotal = ∑
K

k=1
Lk = Z1

and total sales

∑
K

k=1
D S̃k =Z2

1
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Fig. 1 Location of ports and depot
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are calculated based on the modelling data from each planned route, including
length Lk, fuzzy demands D̃k = Dk, dk̂, D̄k

� �
and sales D S̃k, k = 1, . . . , N for each

route (Table 2).
All modelling results are obtained for α=1 and different values of β. The

resulting values after the first seven steps of the suggested iterative algorithm for
CVRPFD are

Ltotal = 876.36≈876,

∑
N

k=1
D S̃k = 1339.67≈1340.

Table 1 Modelling results for routes 1–10

Route no. Port sequence Remaining fuel Cap− ∑ dĩ
� �

Route 1 0-16-3-44-32-9-39-12-0 (−5,24,53)
Route 2 0-75-45-29-48-30-2-6-0 (−8,19,46)
Route 3 0-52-27-13-54-19-53-38-58-0 (−12,14,40)
Route 4 0-26-7-8-46-34-4-0 (18,35,52)
Route 5 0-5-47-36-69-71-60-70-20-37-15-57-0 (−15,15,45)
Route 6 0-67-17-40-51-0 (56,65,74)
Route 7 0-68-74-21-28-62-1-73-33-0 (−12,14,40)
Route 8 0-63-23-56-43-41-42-64-22-61-0 (−9,18,45)
Route 9 0-35-14-59-66-65-11-0 (−3,12,27)
Route 10 0-72-10-31-25-55-18-50-24-49-0 (−9,20,49)

Table 2 Characteristics of the routes 1–10

Route no. Length Lk Fuzzy demands D̃k Sales D S̃k
Dk D̂k D̄k

Route 1 70.23 107 136 165 134.333
Route 2 57.91 114 141 168 138.333
Route 3 94.4 120 146 172 142.0
Route 4 44.38 108 125 142 125.0
Route 5 118.03 115 145 175 140.0
Route 6 46.37 86 95 104 95.0
Route 7 80.92 120 146 172 142.0
Route 8 126.82 115 142 169 139.0
Route 9 97.32 133 148 163 147.0
Route 10 139.98 111 140 169 137.0
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Then for continuing the decision making process with the goal to find the best
solution it is necessary to realize the TSP-improvement by Steps 8–10.

Using a 2-opt heuristic [27, 44] the same node sequences for routes 1,2,3,4,5,6,9
result. But routes 7, 8 and 10 are improved in this case (Table 3).

The lengths of the improved routes are

Lopt
7 = 80.63, Lopt

8 = 126.02, Lopt
10 = 135.48

and total optimized distance for all routes is

Lopt
total = 870.77

taking into account that

D S̃7 = 142, D S̃8 = 139, D S̃10 = 137,

∑
N

k=1
D S̃k = 1339.67= const.

Analyzing all modelling results it can be seen that after 2-opt TSP- improvement
(Steps 8,9) (Fig. 2)

Lopt
7 <L7, Lopt

8 < L8, L
opt
10 < L10

and the above-mentioned condition of Step 10

Lopt
total < Ltotal

is satisfied. Finally, it is necessary to choose the optimized routes (Table 3) for the
practical realization of CVRPFD taking into account that

ΔLopt
total = Ltotal −Lopt

total ≈ 5.59> 0.

This value illustrates the improved result compared to the modelling
results in [14].

Table 3 Final versions of
improved routes after
TSP-optimization on the steps
8–10 of the proposed iterative
algorithm

Route No. Port sequence Length Lopt
k

Route 7 0-68-74-21-28-62-73-1-33-0 80.63
Route 8 0-63-23-56-41-43-42-64-22-61-0 126.02
Route 10 0-72-10-31-55-25-50-18-24-49-0 135.48
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4 Second Alternative Fuzzy Approach Based
on Evaluation of Satisfaction Value

4.1 Description of Conflict Situation in Route Planning

For implementation of the second alternative fuzzy approach it is suggested to form
the intelligent model and planning algorithm for CVRPFD in the following way.

First of all, it is necessary to form mathematical models of fuzzy demands

q
∼
j = q

j
, qĵ, qj̄

� �
, j = 1 . . .N at nodes by the expert evaluation method. Three

examples of demands q
∼
j = q

j
, qĵ, qj̄

� �
, j = 1 . . .N are represented by fuzzy sets A

∼
, B
∼

and C
∼
and shown in Fig. 3, where fuzzy set A

∼
is a model of fuzzy demand of type

“not less than 150 ”, fuzzy set B
∼
is a model of fuzzy demand of type “not more than

500”, fuzzy set C
∼
is a model of fuzzy demand of type “about 350” or “between 250

and 450”, μX
∼
qð Þ is a membership function, X

∼
= A

∼
, B
∼
, C
∼

n o
.
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Fig. 2 Final CVRPFD solution after additional TSP-optimization
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In the next step it is necessary to solve the Traveling Salesperson Problem for the
total number of nodes N using one of the heuristic algorithms [27, 45], such as
sweep-algorithm, tabu search algorithm, genetic algorithm, bio-geography opti-
mization algorithm, simulated anneling, ant colony optimization algorithm or
others. For example, Clarke and Write savings algorithm is based on calculating
value sij for each pair of nodes (i,j):

sij = L0i + L0j −Lij, i = 1 . . .N; j = 1 . . .N; i≠ jð Þ, ð40Þ

The result of TSP solving depends on the number of nodes and on the selected
heuristic. For example, for 35 nodes 12, 13, 14, . . . , 45, 46f g with coordinates,
presented in Fig. 1 [41], and central depot with coordinates (x0 = 40, y0 = 40) TSP
solutions are:

(a) for Clarke and Write saving algorithm:

½0− 42− 41− 43− 23− 24− 18− 25− 31− 38− 14− 19− 35− 13− 15− 20− 37− 36− 21− 28− 22−
33− 16− 44− 32− 39− 40− 12− 17− 26− 46− 34− 27− 29− 45− 30− 0�

and the total length of this Hamiltonian circuit is 386,98;

(b) for sweep algorithm:

½0− 38− 14− 35− 19− 46− 34− 13− 27− 15− 20− 45− 29− 37− 36− 30− 21− 28− 22− 42− 43−
41− 33− 23− 16− 24− 44− 18− 17− 32− 40− 25− 39− 12− 31− 26− 0�

and the total length of this Hamiltonian circuit is 486,80;

Fig. 3 Fuzzy models of uncertain demands
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(c) for ant colony algorithm:

½0− 26− 17− 12− 40− 32− 44− 16− 33− 30− 29− 45− 27− 13− 15− 20− 37− 36− 21− 28− 22−
42− 41− 43− 23− 24− 18− 25− 39− 31− 38− 14− 19− 35− 46− 34− 0�

and the total length of this Hamiltonian circuit is 343,74.

The procedure of route planning is based on the used TSP-solution (Hamiltonian
circuit) which was created at the previous step. It is necessary to find nodes which
should be included in the corresponding route taking into account possibilities for
service of each node with fuzzy demands and constraint tanker capacity.

Figure 4 shows the route planning procedure for 1-st node’s demand q
∼
1, Fig. 5

that for 2-nd node’s demand q
∼
2 and Fig. 6 applies for 3-rd node’s demand q

∼
3,

where

Fig. 4 Procedure of route planning (for 1-st node in TSP-solution)

Fig. 5 Procedure of route planning (for 2-nd node in TSP-solution)
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ΔQ
∼
0 = ΔQ0,ΔQ̂0,ΔQ̄0

� �
is the initial value (Fig. 4) of cargo capacity of a

tanker, which is presented as crisp number D in the style of triangular fuzzy number
D
∼
=ΔD

∼ 0 = D,D, Dð Þ;
ΔQ

∼
1 = ΔQ1,ΔQ̂1,ΔQ̄1

� �
is remaining cargo capacity on tanker (Fig. 5) after

including 1-st node to the route, ΔQ
∼
1 =ΔQ

∼
0 −Q

∼
1;

ΔQ
∼
2 = ΔQ2,ΔQ̂2,ΔQ̄2

� �
is remaining cargo capacity (Fig. 6) on tanker after

including 2-nd node to the route, ΔQ
∼
2 =ΔQ

∼
1 −Q

∼
2;

ΔQ
∼
3 = ΔQ3,ΔQ̂3,ΔQ̄3

� �
is remaining cargo on tanker after including 3-rd node

to the route, ΔQ
∼
3 =ΔQ

∼
2 − q

∼
3.

All first three nodes (Figs. 4, 5, and 6), a sequence of which was taken from TSP
solution, are included in the planning route because fuzzy values of remaining
cargo on the tanker are higher than the fuzzy values of corresponding demands
(Steps 1, 2, 3).

The conflict situation always appears during the route planning process for
CVRP on the corresponding step and it is necessary to make a decision about
including or excluding the corresponding “conflict” node in the route.

Let’s denote, that the conflict situation for the (j +1)-th port-applicant appears on

condition that the highest value qj̄ + 1 of the fuzzy demand q
∼
j + 1 = q

j+ 1
, qĵ + 1,

�
qj̄ + 1Þ is higher than the lowest value D− ∑j

s = 1 qs̄
� �

of the fuzzy remaining tan-

ker’s cargo quantity ΔQ
∼
j = D− ∑j

s = 1 qs̄, D − ∑j
s = 1 qŝ, D− ∑j

s = 1 qs

� �
, or in other

words, in the situation when

q
j+ 1

< D − ∑
j

s = 1
qs̄

� �
.

Figure 7 shows the conflict situation during route planning procedure for 4-th
node (Step 4). During the planning procedure for the current route (Figs. 4, 5 and

6), fuzzy values of remaining tanker’s cargo ΔQj = D− ∑j
s = 1 qs̄, D− ∑j

s = 1 q
⌢

s,
�

D− ∑j
s = 1 qsÞ step by step (Steps 1, 2, 3) shift to the left. Triangular fuzzy number

Δ
∼
Qj is crossed with a triangular fuzzy number q

∼
j + 1 (Fig. 7, j = 3) on the 4-th Step

or placed to the left of it (as for fuzzy demand qj+ 1
′ = underlineq4′ of (j + 1)-th

node, shown in Fig. 7 by dashed lines).
In the last case of intersection of fuzzy sets ΔQ

∼
j and q

∼
j + 1, the possibility degree

of demand implementation decreases with increasing degree of shifting triangular
fuzzy number ΔQ

∼
j to the left.
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4.2 Fuzzy Decision-Making Based on Satisfaction Value

It is propose to make a decision about including considered port Pj+ 1 in the current
route (using developed fuzzy knowledge-based system—FKBS) based on the
condition [16, 17]

λj+1 ≥ λ*, ð41Þ

where λ* is a desired satisfaction (preference) value; λj+1 is a current value of
satisfaction level. Such satisfaction level λj+1 can be calculated at each serviced
port Pj

� �
as possible level of the satisfaction of required order for the next serviced

port Pj+ 1
� �

with its fuzzy demand q
∼
j + 1.

The developed decision-making algorithm based on fuzzy logic [16, 17] can be
presented in the following way:

λj+1 =FKBS FRB x
∼ 1, x∼ 2, x3
� �h i

. ð42Þ

Fig. 7 The conflict situation in route planning procedure for 4-th node in TSP-solution

Fig. 6 Procedure of route planning (for 3-rd node in TSP-solution)
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In (42) we used the following notations:

• FKBS is a fuzzy knowledge–based system;
• FRB is a fuzzy rule base with the following structure of fuzzy rules. For

example,

“IF (input signal x
∼
1 is Low) AND (input signal x

∼
2 is Middle) AND (input signal

x3 is High) THEN (output signal λj is High)”;

• λj+1 is a value of satisfaction level for each alternative decision-making;
• x

∼
1 = qj̃+1 ̸ΔQ ̃i is the ration of fuzzy demands of the next j+1ð Þ-th port qj̃+1 to

the fuzzy value of the remaining tanker cargo ΔQĩ;
• x

∼
2 =ΔQ ̃i ̸Qi—ration of fuzzy numbers ΔQ̃i to tanker capacity Qi;

• x3 =L1 ̸L2 is the ration of length L1 to L2 of two alternative routes R1 and R2 (R1

is the route with 1st level of search of the next route candidate port and R2 is the
route of the 2nd level of search);

• ΔQ̃i = Qi − ∑k
j=1 qj̄, Qi − ∑k

j=1 qĵ, Qi − ∑k
j=1 qj

� �
is a fuzzy value of the

remaining tanker cargo, where k is the number of served ships on the i-th route
before the current decision; Low,Middle,Highf g is a set of the corresponding
linguistic terms for input x

∼
1, x

∼
2, x

∼
3 and output λj+1 signals.

The characterized surface

Surf x1, x3ð Þ, x2 = const,

of the fuzzy rule base FRB (42) for fixed input signal x2 =Middle is presented in
Fig. 8.

If the condition (41) is correct for the 4-st node (Fig. 7), then this node will be
included in the current planning route. Next node in the TSP-solution will be a first
node in the next planning route and so on.

After planning all routes according to the proposed second fuzzy approach it is
necessary to realize an additional optimization procedure by solving TSP for each
separate route Rs, s = 1 . . . rð Þ that provides the minimization of the length of each
separate route, as well as the total length of all routes LΣs, s = 1 . . . rð Þ.

The final solution of the CVRPFD can be implemented for the practical real-
ization of the respective bunkering program for r tankers.

Modelling results [16, 17] confirm the efficiency of the proposed fuzzy approach
based on FKBS application as second alternative for solving CVRPFD.
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5 Conclusions

The suggested theoretical approach, based on the fuzzy multi-criteria models and
iterative multistage algorithm, allows to receive in a fuzzy context optimal solutions
for the CVRPFD. Modelling results confirm the efficiency of the suggested
multi-objective optimization approach as first alternative. Using FKBS is the base
for the second alternative for efficiently solving CVRPFD. Nevertheless, successful
implementation of the second fuzzy approach significantly depends on the choice of
the desired satisfaction value λ*. In future research work it is appropriate to extend
the proposed models and algorithm for CVRPFD by solving time-windows
problem.
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