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Abstract In the context of the soft consensus model due to (Fedrizzi et al. in Journal

international journal of intelligent systems 14:63–77, 1999) [27], (Fedrizzi et al. in

New mathematics and natural computation 3:219–237, 2007) [28], (Fedrizzi et al.

in Preferences and Decisions: models and applications, studies in fuzziness and soft

computing Springer, Heidelberg, pp. 159–182, 2010) [30], we investigate the refor-

mulation of the soft dissensus measure in relation with the notion of multidistance,

recently introduced by Martín and Mayor (Information processing and management

of uncertainty in knowledge-based systems. Theory and methods, communications

in computer and information science, springer, heidelberg, pp. 703–711 2010) [43],

Martín and Mayor (Fuzzy sets and systems 167:92–100 2011) [44]. The concept of

multidistance is as an extension of the classical concept of binary distance, obtained

by means of a generalization of the triangular inequality. The new soft dissensus

measure introduced in this paper is a particular form of sum-based multidistance.

This multidistance is constructed on the basis of a binary distance defined by means

of a subadditive scaling function, whose role is that of emphasizing small distances

and attenuating large distances in preferences. We present a detailed study of the

subadditive scaling function, which is analogous but not equivalent to the one used

in the traditional form of the soft consensus model.
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1 Introduction

The notion of consensus is central to decision making models involving the aggre-

gation of individual preferences. We can distinguish essentially two complemen-

tary readings of the consensus concept. In general terms, it refers to the consensual
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preference resulting from the aggregation scheme, whether or not preference aggre-

gation is formulated as an iterative consensus reaching process. More specifically,

the notion of consensus refers to the construction of consensus (dissensus) measures,

which express the level of agreement (disagreement) present in the collective profile

of individual preferences.

In general, consensual aggregation models involve some form of explicit or im-

plicit averaging of the individual preferences. In the context of aggregation theory,

comprehensive reviews of averaging functions can be found in [2, 7, 21, 33, 34].

In our approach we are primarily interested in the class of aggregation schemes

which are based on consensus (dissensus) measures, often constructed on the basis

of some binary distance acting pairwise on the individual preferences.

In this respect, the recent literature on the use of penalty functions in aggrega-

tion [3–6, 17, 18, 20] provides a suggestive framework in which to describe the

interrelation between aggregation functions and consensus (dissensus) measures.

Further interesting investigation on the construction and applications of consen-

sus (dissensus) measures can be found in [1, 8–11, 13–16, 19, 23–26, 46, 47, 49–

53].

In the tradition of the fuzzy approach to consensus in the aggregation of individ-

ual preferences [31, 32, 35, 36, 40, 41], the soft consensus model was originally

proposed in [37–39] and later reformulated in [27–30]. The soft consensus model

is based on a dissensus measure constructed from pairwise square differences, com-

posed with a subadditive scaling function (substituting the linguistic quantifiers in

the original version of the model), whose role is that of emphasizing small (attenu-

ating large) preference differences by means of a smooth thresholding effect.

In this paper we wish to revisit the soft consensus model and investigate the for-

mulation of the soft dissensus measure in relation with the notion of multidistance,

recently introduced in [22, 42–45, 48]. The concept of multidistance is as an exten-

sion of the classical concept of binary distance, obtained by means of a generalization

of the triangular inequality.

With respect to the traditional soft consensus model, here the idea is to construct

a new multidistance dissensus measure directly from the pairwise absolute value

differences and the subadditive scaling function, keeping the traditional character

of the soft dissensus measure but avoiding the square differences in the functional

form.

The paper is organized as follows. In Sect. 2 we briefly review the soft consensus

model and the construction of the traditional soft dissensus measure. In Sect. 3 we

review the basic notions regarding multidistances and in Sect. 4 we introduce the new

multidistance dissensus measure, with a detailed study of the subadditive scaling

function. Finally, in Sect. 5 we present some concluding remarks and notes on future

research.
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2 The Soft Consensus Model

In this section we present a brief review of the traditional soft consensus model

in the formulation introduced in [27]. Our point of departure is a set of individual

fuzzy preference relations. If A = {a1,… , am} is a set of decisional alternatives and

I = {1,… , n} is a set of individuals, the fuzzy preference relation Ri of individual i
is given by its membership function Ri ∶ A × A → [0, 1] with

Ri(ak, al) = 1 if ak is definitely preferred over al
Ri(ak, al) ∈ (0.5, 1) if ak is preferred over al
Ri(ak, al) = 0.5 if ak is considered indifferent to al
Ri(ak, al) ∈ (0, 0.5) if al is preferred over ak
Ri(ak, al) = 0 if al is definitely preferred over ak,

where i = 1,… , n and k, l = 1,… ,m. Each individual fuzzy preference relation Ri
can be represented by a matrix [ri

kl], ri
kl = Ri(ak, al) which is commonly assumed to

be reciprocal, that is ri
kl + ri

lk = 1. Clearly, this implies ri
kk = 0.5 for all i = 1,… , n

and k = 1,… ,m.

The general case A = {a1,… , am} for the set of decisional alternatives is dis-

cussed in [27, 28]. Here, for the sake of simplicity, we assume that the alternatives

available are only two (m = 2), which means that each individual preference relation

Ri has only one degree of freedom, denoted by xi = ri
12.

In the framework of the soft consensus model, assuming m = 2, the degree of dis-

sensus between individuals i and j as to their preferences between the two alternatives

is measured by

Vij = g((xi − xj)2) i, j = 1,… , n (1)

where g ∶ [0, 1] → ℝ is a scaling function defined as

g(u) = 1
𝛼

ln
(

1
1 + e−𝛼(u−𝛽)

)
u ∈ [0, 1] . (2)

In the scaling function formula above, 𝛽 ∈ (0, 1) is a threshold parameter and 𝛼 ∈
(0,∞) is a free parameter which controls the polarization of the sigmoid function

g′ ∶ [0, 1] → (0, 1) given by

g′(u) = 1
1 + e𝛼(u−𝛽)

u ∈ [0, 1]. (3)

In the network representation of the soft consensus model [27], each decision

maker i = 1,… , n is represented by a pair of connected nodes, a primary node (dy-

namic) and a secondary node (static). The n primary nodes form a fully connected

subnetwork and each of them encodes the individual opinion of a single decision

maker. The n secondary nodes, on the other hand, encode the individual opinions
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originally declared by the decision makers, denoted si ∈ [0, 1], and each of them is

connected only with the associated primary node.

The iterative process of preference change corresponds to the gradient descent

optimization of a cost function W, depending on both the present and the original

network configurations. The value of W combines a measure V of the overall dis-

sensus in the present network configuration with a measure U of the overall change

from the original network configuration.

The various interactions involving node i are modulated by interaction coefficients

whose role is to quantify the strength of the interaction. The consensual interaction

between primary nodes i and j is modulated by the interaction coefficient vij ∈ (0, 1),
whereas the inertial interaction between primary node i and the associated secondary

node is modulated by the interaction coefficient ui ∈ (0, 1). In the soft consensus

model the values of these interaction coefficients are given by the derivative g′ of

the scaling function according to

vij = g′((xi − xj)2) i, j = 1,… , n (4)

vi =
n∑

j(≠i)=1
vij∕(n − 1), ui = g′((xi − si)2) i = 1,… , n. (5)

The average preference x̄i of the context of individual i is given by

x̄i =
∑n

j(≠i)=1 vij xj∑n
j(≠i)=1 vij

i = 1,… , n (6)

and represents the average preference of the remaining decision makers as seen by

decision maker i = 1, ..., n.

The construction of the cost function W that drives the dynamics of the soft con-

sensus model is as follows. The individual dissensus cost is given by

Vi(x) =
n∑

j(≠i)=1
Vij∕(n − 1) i = 1,… , n (7)

and the individual opinion changing cost is

Ui(x) = g((xi − si)2) i = 1,… , n. (8)

Summing over the various decision makers we obtain the collective dissensus

cost V and inertial cost U,

V(x) = 1
4

n∑
i=1

Vi(x), U(x) = 1
2

n∑
i=1

Ui(x) (9)
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with conventional multiplicative factors 1∕4 and 1∕2. The full cost function is then

W(x) = V(x) + U(x). (10)

The consensual network dynamics acts on the individual opinion variables xi
through the iterative process

xi ⇝ x′i = xi − 𝛾

𝜕W
𝜕xi

i = 1,… , n. (11)

Analyzing the effect of the two dynamical components V and U separately we obtain

𝜕V
𝜕xi

= vi(xi − x̄i) i = 1,… , n (12)

where the coefficients vi were defined in (5) and the average preference x̄i was defined

in (6), and therefore

x′i = (1 − 𝛾 vi)xi + 𝛾 vix̄i i = 1,… , n. (13)

On the other hand, we obtain

𝜕U
𝜕xi

= ui(xi − si) i = 1,… , n (14)

where the coefficients ui were defined in (5), and therefore

x′i = (1 − 𝛾 ui)xi + 𝛾 uisi i = 1,… , n. (15)

The full dynamics associated with the cost function W = V + U acts iteratively

according to

x′i = (1 − 𝛾 (vi + ui))xi + +𝛾 vix̄i + 𝛾 uisi i = 1,… , n (16)

and the decision maker i is in dynamical equilibrium, in the sense that x′i = xi, if the

following stability equation holds,

xi = (vix̄i + uisi)∕(vi + ui) i = 1,… , n (17)

that is, if the present opinion xi coincides with an appropriate weighted average of

the original opinion si and the average opinion value x̄i for i = 1,… , n.
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3 The Multidistance Framework

The definition of multidistance has been introduced by Martín and Mayor in [43, 44]

as an extension of the classical notion of binary distance to the case of more than

two points.

Consider a domain X ⊆ ℝ, with points in Xn
being denoted as x = (x1,… , xn).

The multidistance definition given in [44] is as follows.

Definition 1 Given a domain X ⊆ ℝ, a multidistance is a function

D ∶
⋃
n≥2

Xn → ℝ

with the following properties

(P1) D(x1,… , xn) = 0 if and only if xi = xj for all i, j = 1,… , n
(P2) D(x1,… , xn) = D(x

𝜋(1),… , x
𝜋(n)) for any permutation 𝜋 of 1,… , n

(P2) D(x1,… , xn) ≤ D(x1, y) +⋯ + D(xn, y) for all y ∈ X

for all x1,… , xn ∈ X and n ≥ 2. Note that (P1), (P2) and (P3) extend the usual dis-

tance axioms. In particular, (P3) generalizes the triangle inequality.

An important class of multidistances, the functionally expressible multidistances,

are studied in [45, 48]. Applications of multidistances to the problem of consensus

measuring can be found in [16, 22].

Starting from the results obtained in [13, 14] in [16] some connections between

m-ary adjacency relations and multidistances were highlighted. It has been shown

how m-ary adjacency relations can be modeled on the basis of OWA-based multi-

distances, and some consensus related optimization problems on m-ary adjacency

relations are equivalent to corresponding multidistance minimization problems.

In this paper, a multidistance dissensus measure is introduced as an extension

of the relationship between the dissensus measure in the traditional soft consensus

model proposed in [27] and the multidistance approach to consensus introduced in

[16]. This measure is based on a binary distance defined by means of a subadditive

function whose effect is that of emphasizing small distances and attenuating large

distances.

There are several methods to construct multidistances. As suggested in [44] given

a binary distance d(xi, xj), a multidistance may be defined on the basis of the pairwise

binary distances, multiplying their sum by a sufficiently small value 𝜆(n) depending

on n. This type of multidistance is called sum–based multidistance.

Proposition 1 (Martín and Mayor [44]) A function D ∶
⋃

n≥2 Xn → ℝ defined as

D(x1, ..., xn) = 𝜆(n)
n∑

i,j=1
d(xi, xj) n ≥ 2
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is a multidistance if and only if the coefficient 𝜆(n) satisfies 𝜆(2) = 1∕2 and

0 < 𝜆(n) ≤ 1
2(n − 1)

n ≥ 3 (18)

where x1,… , xn ∈ X.

In this paper we use the domain X = [0, 1] equipped with the classical distance

d(x, y) = |x − y| ∈ [0, 1], for x, y ∈ [0, 1], with the usual triangular inequalities |x +
y| ≤ |x| + |y| and d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z ∈ [0, 1].

Moreover, we consider the particular coefficient choice

𝜆(n) = 1
n(n − 1)

(19)

which corresponds to constructing the sum-based multidistance by averaging pair-

wise binary distances.

Consider now an increasing and subadditive function f ∶ [0, 1] → ℝ. Due to the

subadditivity of the function f , the composition of the distance d with the function

f yields a new distance denoted df (x, y) = f (d(x, y)), which satisfies the triangle in-

equality df (x, y) ≤ df (x, z) + df (y, z). This is obtained as follows,

d(x, y) ≤ d(x, z) + d(y, z) (20)

f (d(x, y)) ≤ f (d(x, z) + d(y, z)) ≤ f (d(x, z)) + f (d(y, z)) (21)

where the first inequality is due to the increasingness of f and the second inequality

is due to the subadditivity of f . Finally, we obtain

df (x, y) ≤ df (x, z) + df (y, z). (22)

We consider the construction of multidistances based on the binary distance df ,

in particular by averaging pairwise binary distances. In this way we define a multi-

distance Df ∶
⋃

n≥2[0, 1]n → ℝ as

Df (x1, ..., xn) =
1

n(n − 1)

n∑
i,j=1

df (xi, xj) . (23)

Consider for instance the case n = 3. The multidistance Df is given by

Df (x) =
1
6

3∑
i,j=1

df (xi, xj) = (24)

= 1
3

(
df (x1, x2) + df (x1, x3) + df (x2, x3)

)
=
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= 1
3

(
f (d(x1, x2)) + f (d(x1, x3)) + f (d(x2, x3))

)
.

Notice that each binary distance term is of the form

df (xi, xj) = cf (xi, xj) ⋅ d(xi, xj) (25)

where each classical binary distance d(xi, xj) is multiplied by a coefficient

cf (xi, xj) = f (d(xi, xj)∕d(xi, xj) (26)

depending on the choice of the function f .

The multidistance Df corresponds to a linear combination of the classical binary

distances d, with non negative coefficients cf . However, notice that these coefficients

do not have unit sum and therefore the multidistance Df does not correspond to a

weighted mean of of the classical binary distances d.

4 The Soft Dissensus Measure in the Multidistance
Framework

The traditional soft consensus model in group decision making [27, 28] is based on

a non linear dissensus measure whose role is that of emphasizing small distances

and attenuating large distances in the preference domain.

In this section we reformulate the soft dissensus measure as a sum-based mul-

tidistance, in the approach introduced in [12]. In the new multidistance frame-

work, the usual binary distance is composed with a non linear subadditive function

f ∶ [0, 1] → ℝ defined as

f (u) = 2
𝛼

ln
(

1 + e𝛼𝛽

1 + e−𝛼(u−𝛽)

)
𝛼 ∈ (0,∞) 𝛽 ∈ [0, 1] (27)

for all u ∈ [0, 1]. The two parameters are 𝛼 ∈ (0,∞) and 𝛽 ∈ [0, 1], but we can ex-

tend the domain of the former by defining f (u) = u for 𝛼 = 0, which in fact corre-

sponds to the asymptotic form of definition (27) at 𝛼 = 0+.

In Fig. 1 we plot the function f (u) with u ∈ [0, 1] for various choices of the pa-

rameters 𝛼, 𝛽. In each plot the diagonal line f (u) = u ∈ [0, 1] is associated with the

case 𝛼 = 0.

In the following result we determine the values of the function f at the boundaries

of its domain [0, 1], for any choice of the parameters 𝛼, 𝛽.

Proposition 2 In relation with the function f defined in (27), we obtain f (0) = 0 for
any choice of the parameters 𝛼 ∈ (0,∞) and 𝛽 ∈ [0, 1], and

∙ f (1) < 1 for all 𝛽 ∈ [0, 1∕2)
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(a) f (u) for α = 0,1,2,3,4 and β = 0 (b) f (u) for α = 0,1,2,3,4 and β = 0.25

(c) f (u) for α = 0,1,2,3,4 and β = 0.375 (d) f (u) for α = 0,1,2,3,4 and β = 0.5

(e) f (u) for α = 0,1,2,3,4 and β = 0.625 (f) f (u) for α = 0,1,2,3,4 and β = 1

Fig. 1 The function f (u) for u∈[0, 1]. Each plot is associated with a choice of the parameter 𝛽 and

shows the graph of f (u) for various choices of the parameter 𝛼
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∙ f (1) = 1 for 𝛽 = 1∕2
∙ f (1) > 1 for all 𝛽 ∈ (1∕2, 1]

for any choice of the parameter 𝛼 ∈ (0,∞). In particular, the values of f (1) for 𝛽 =
0, 1 are

f (1) = 2
𝛼

ln
(

2
1 + e−𝛼

)
, 𝛽 = 0 f (1) = 2

𝛼

ln
(
1 + e𝛼

2

)
, 𝛽 = 1 .

The limit at 𝛼 = 0+ is f (1) = 1 in both cases 𝛽 = 0, 1, whereas the limit at 𝛼 = ∞ is
f (1) = 0 for 𝛽 = 0 and f (1) = 2 for 𝛽 = 1.

Proof From definition (27) we obtain immediately that f (0) = 0 for any choice of

the parameters 𝛼, 𝛽, plus also

f (1) = 1 + 2
𝛼

ln
(

1 + e𝛼𝛽

e𝛼∕2 + e𝛼𝛽e−𝛼∕2

)
(28)

which leads immediately to f (1) = 1 for 𝛽 = 1∕2. Otherwise, writing N = 1 + e𝛼𝛽
for the numerator and D = e𝛼∕2 + e𝛼𝛽e−𝛼∕2 for the denominator of the logarithm, it

follows that

N − D = (1 − e−𝛼∕2)(e𝛼𝛽 − e𝛼∕2) . (29)

Considering the second factor in the product, we conclude that the logarithmic term

in (29) is negative (N < D) for 𝛽 ∈ [0, 1∕2) and is positive (N > D) for 𝛽 ∈ (1∕2, 1].
The asymptotic limits of f (1) with respect to the parameter 𝛼 for 𝛽 = 0, 1 can be

obtained straightforwardly by means of l’Hospital’s rule. ⊓⊔

The function f is continuous, strictly increasing and strictly concave in u ∈ [0, 1]
for any choice of the parameters 𝛼, 𝛽. Continuity is clear from definition (27) and the

other properties follow directly from the first and second derivatives of f ,

f ′(u) = 2
1 + e𝛼(u−𝛽)

f ′(u) ∈ (0, 2) (30)

f ′′(u) = − 2𝛼e𝛼(u+𝛽)

(e𝛼𝛽 + e𝛼u)2
f ′′(u) ∈ (−𝛼∕2, 0) (31)

Notice that f ′(u = 𝛽) = 1 and f ′′(u = 𝛽) = −𝛼∕2. Moreover, we can show that

f ′′(u) = −𝛼f ′(u)(2 − f ′(u))∕2 for any choice of the parameters 𝛼, 𝛽. In the case

𝛼 = 0, for any choice of 𝛽, we have the linear form f (u) = u for all u ∈ [0, 1].
Given that f is (strictly) increasing and f (0) = 0 for any choice of the parameters

𝛼, 𝛽, we have that f (u) ≥ 0 for all u ∈ [0, 1]. Moreover, we can write

f (u) = 2u + 2
𝛼

ln
(

1 + e𝛼𝛽
e𝛼u + e𝛼𝛽

)
(32)
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for all u ∈ [0, 1], where the logarithmic term is always non positive. Therefore, we

obtain 0 ≤ f (u) ≤ 2u for all u ∈ [0, 1] and any choice of the parameters 𝛼, 𝛽.

The function f is subadditive, in the sense that f (u + v) ≤ f (u) + f (v). The proof

is as follows: assuming u, v ∈ [0, 1] and u + v ≠ 0, concavity of f implies

f (u) ≥ v
u + v

f (0) + u
u + v

f (u + v) = u
u + v

f (u + v) (33)

f (v) ≥ u
u + v

f (0) + v
u + v

f (u + v) = v
u + v

f (u + v) (34)

and therefore we obtain f (u) + f (v) ≥ f (u + v) for u, v ∈ [0, 1].
The composition of the distance d with the subadditive function f yields a new

distance denoted

df (x, y) = f (d(x, y)) (35)

satisfying the triangle inequality df (x, y) ≤ df (x, z) + df (y, z) as in (20)–(22).

We define the multidistance Df by averaging pairwise binary distances df ,

Df (x) =
1

n(n − 1)

n∑
i,j=1

df (xi, xj) =
1

n(n − 1)

n∑
i,j=1

f (d(xi, xj)) . (36)

This sum–based multidistance is a natural nonlinear measure of dissensus, analogous

but not equivalent to the traditional soft dissensus measure V in (9). The new soft

dissensus measure, however, has a more appealing geometrical interpretation as a

multidistance.

Finally, recall that each term in (36) is of the form df (xi, xj) = cf (xi, xj) ⋅ d(xi, xj),
where each binary distance d(xi, xj) is multiplied by a coefficient cf (xi, xj) = f (d(xi, xj)∕
d(xi, xj) depending on the choice of the function f .

In other words, each term is of the form f (u) = (f (u)∕u) ⋅ u, where each single bi-

nary distance u is multiplied by a coefficient f (u)∕u which is decreasing with respect

to the distance u.

In Fig. 2 we plot the function f (u)∕u with various choices of the parameters 𝛼 and

𝛽. In each plot the horizontal line is associated with 𝛼 = 0 and the remaining lines

are associated with 𝛼 = 1, 2, 3, 4. In the case 𝛼 = 0 all pairwise distances have the

same weight 1∕6 and thus the multidistance corresponds to the weighted average. In

the case 𝛼 = 1, 2, 3, 4 the function f (u)∕u is monotonically decreasing with respect

to pairwise distances, in which a larger weight is assigned to a small distance and a

smaller weight is given to a large distance.

The multidistance is defined as the weighted sum of pairwise distances. In this ap-

proach, the sum-based multidistance is closely related with the disensus measure in

the soft consensus model. There is essentially a single difference: the basic pairwise

distance df (x, y) involves |x − y| and not (x − y)2, which is not a binary distance.
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(a) f (u)/u for α = 0,1,2,3,4 and β = 0 (b) f (u)/u for α = 0,1,2,3,4 and β = 0.25

(c) f (u)/u for α = 0,1,2,3,4 and β = 0.375 (d) f (u)/u for α = 0,1,2,3,4 and β = 0.5

(e) f (u)/u for α = 0,1,2,3,4 and β = 0.625 (f) f (u)/u for α = 0,1,2,3,4 and β = 1

Fig. 2 The function f (u)∕u for u∈[0, 1]. Each plot is associated with a choice of the parameter 𝛽

and shows the graph of f (u)∕u for various choices of the parameter 𝛼
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5 Conclusions

We introduce a multidistance measure of dissensus within the framework of the soft

consensus model of group decision making. The multidistance dissensus measure is

based on a fundamental binary distance df associated with a subadditive function f
over the domain X = [0, 1], with df (x, y) = f (|x − y|). This subadditive function has

the effect of emphasizing small distances and attenuating large distances, in analogy

with the subadditive scaling function g which plays a central role in the traditional

soft consensus model [27, 28, 30].
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