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Abstract. Nowadays, while performing their investigations, researchers
often face large datasets requiring fast processing for analysis and draw-
ing adequate conclusions. Data mining, statistical methods and big data
analytics provide an impressive arsenal of tools allowing scientists to
address those tasks. However, in some cases investigators need techniques
enabling on the base of relatively simple and cheap measurements of eas-
ily accessible parameters to build useful and meaningful concepts of an
area of research.

In our paper two classes of dynamical models aimed at revealing
between-component relationships in natural systems with feedback are
presented. The idea of the both models follows from the frameworks of
theoretical biology and ecology, where pairwise interactions between the
parts of a system are regarded as background of the system’s behavior.
Both deterministic and stochastic cases are considered, that allow us to
determine the direction of pairwise relationships in deterministic case
and the direction and strength of relationships in stochastic one.

Keywords: Dynamical systems · Deterministic models · Stochastic
models · Markov chains

1 Introduction

The world of scientific research has being immersing into an extraordinary infor-
mation explosion over past decades, accompanied by the rapid growth in the use
of Internet and the number of connected computers worldwide. We see a rate
of increase in data growth that is faster than at any period throughout history.
Enterprise application and machine-generated data continue to grow exponen-
tially, challenging experts and researchers to develop new innovative techniques
to evaluate hardware and software technologies and to develop new methods of
big data study.

The problems raise during data acquisition and preliminary exploration,
when the amount of data requires us to make decisions, often in an ad hoc
manner, on importance and interpretability of data. Besides, much data today
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are not natively in structured format, have gaps and are incomplete. Hence,
data analysis, organization, retrieval, and modeling are foundational challenges.
Finally, presentation of the results and its interpretation by non-technical domain
experts is crucial to extracting actionable knowledge.

Our study is devoted to a well-known problem of revealing conditions of sta-
bility in natural systems providing long and steady development and existence
of systems. Today, there is a large amount of online big data collections com-
prising datasets taken from different branches of biology, health sciences, ecology
etc. As examples we can mention Data Centre of International Council for the
Exploration of the Sea (includes hundreds of thousands marine biology related
datasets) and PhysioNet at Massachusetts Institute of Technology, a huge col-
lection of datasets of diverse physiologic signals and open-source software for
study of such data.

The problem of homeostasis and stability in the living organisms community
or natural systems is closely related to the problem of dynamic stability. The
practical aspect of this problem is connected to the disturbance in stability of
systems, that is often accompanied, for example, by outbreaks in number or
biomass of species.

The study of stability in communities or natural systems is closely connected
to investigation of relationships that determine the dynamic features of a system,
i.e. relationships between system’s parameters having influence on the system
dynamics.

For decades systemic methods, for example, based on the Shannon index of
diversity, have been used for studying the relationships between the structure and
stability of systems. Generalizing many such approaches, Margalef [1] states that
“the ecologist sees in any measure of diversity an expression of the possibilities
of constructing feedback systems, or any sort of links, in a given assemblage
of species”. Similar ideas were therefore presented in studying the structure of
correlation pleiads, cluster analysis and other statistical techniques to establish
such relationships for investigating similar problems.

Despite different approaches to revealing between-component relationships,
in biology and ecology there is a general approach for presenting such relation-
ships on the base of the following pairwise relationships: (+,+), (−,−), (−,+),
(−, 0), (+, 0), (0, 0). In such a way they usually denote pairwise, or paired, rela-
tionships between two components of a system. This means that two components
interact each other according to the symbols presented in the corresponding rela-
tionship. E.g., (−,+) means that the first component takes benefits by interact-
ing with another, while the second suffers from the first. A quantitative measure
of effects derived by the relationships are introduced in the corresponding sec-
tions. For the multi-component systems, this set of relationships exhausts all
possible pairwise inter-component relationships categorized by the type of effect
and have been thoroughly studied in biology and ecology [2–4]. Therefore, in the
current paper the analysis of the relationships structure is based on the idea of
regarding the objects (say, living organisms in a community) as the components
of a system between which the mentioned pairwise relationships are possible.
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This allows us to present the structure of relationships in an explicit form of
relationships between the system’s components.

It should be noted, that mentioned relationships cannot be always revealed
with the help of statistical methods. For example, correlation analysis is initially
used for estimation of a relationship between two variables, but it covers only
statistical relation and cannot reveal a cause-effect relationship [5].

There are statistical methods (structural relation modeling, analysis of path
and adjacent techniques), which are devoted to revealing between-component
relationships (and other tasks as latent variables’ analysis) and can be used
for causality analysis [6–8,10]. But these methods express the relationships of
a system in the terms of regression coefficients and not in the form of paired
relationships. So interpretation of results of an analysis is occasionally difficult
(e.g. while studying the relationships between feedback system and homeostasis
in a community) and requires additional assumptions.

The models suggested in the paper tend to express the component relations
in an explicit, easy-to-understand form based on pairwise relationships. Besides,
intra-component relations are allowed. The models except the structure of rela-
tionships also reveal the dynamics of the system, deterministic for one case and
probabilistic in another, that enables to observe the changes of the system’s
states over time. These advantages determine topicality and importance of the
study presented herein.

2 Theory

Below, we present two dynamical models developed for revealing between-
component relationships on the base of observations of real natural system.

First model has a deterministic dynamic, finite number of states and discrete
time. As it is described in [11] at length, here we describe the model in short.

The second model has stochastic nature and will be describe in the paper in
details.

Both models have a common background, so we begin with its description
and later will go to specific properties of each models.

We assume that a natural system to be modelled comprises N components,
which can be denoted by A1, A2, . . ., AN . Each component has a nature intrinsic
to the system, for example, the number of animals or amount of biomass of
different species etc. It is assumed that values of each component are integer
numbers 1, 2, . . ., K, i.e. each component may be at K levels. The value 1
means a minimum amount of a component, the value K means maximum, i.e. a
component value varies from 1 to K.

The system develops in discrete time and the moments of time are denoted
t = 0, 1, . . .. So, the value of the component Ai at the moment of time t = 0, 1, . . .
are numbers Ai(0), Ai(1), . . ..

Next properties of a system are different for deterministic and stochastic
cases, so we shall describe them separately.



100 G.N. Zholtkevych et al.

2.1 Deterministic Model Revealing the Direction
of Between-Component Relationships

We begin with deterministic case discussed, as mentioned, in [11] and was named
the Discrete model of dynamical systems with feedback. For the deterministic
system its state at the moment t + 1 is fully determined by the state at the
moment t.

If the system at the moment t is in the state A1(0), A2(0), . . . , AN (0), all the
following states can be written as the trajectory, where each column is a state
at a corresponding moment of time:

⎛
⎜⎜⎜⎝

A1(0) A1(1) A1(2) . . .
A2(0) A2(1) A2(2) . . .

...
...

... . . .
AN (0) AN (1) AN (2) . . .

⎞
⎟⎟⎟⎠ . (1)

In the theory of dynamical systems [12], such a system is called a free dynam-
ical system with discrete time. The system has only finite number of states, so
there exists a positive integer T , called a period of the trajectory, for which the
conditions of periodicity hold

⎛
⎜⎜⎜⎝

A1(s)
A2(s)

...
AN (s)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A1(s + T )
A2(s + T )

...
AN (s + T )

⎞
⎟⎟⎟⎠ ,

for enough large s.
Taking into account the periodicity, we extract the minor

⎛
⎜⎜⎜⎝

A1(s) A1(s + 1) . . . A1(s + T − 1)
A2(s) A2(s + 1) . . . A2(s + T − 1)

...
...

. . .
...

AN (s) AN (s + 1) . . . AN (s + T − 1)

⎞
⎟⎟⎟⎠ (2)

from (1) presenting full description of the system’s dynamics.
Now we introduce the concept of relationships between components. Let

Ω = {−, 0,+}—three-entries set. A relationship between specified components
Ai and Aj is determined as an entry from the set Ω × Ω and denoted by
Λ(Ai, Aj) = (ω1, ω2), where ω1 ∈ Ω, ω2 ∈ Ω. If Λ(Ai, Aj) = (ω1, ω2), it means
that:

– if ω1 = {−}, then increasing the value of Aj will determine the decrease of
the value of Ai.

– if ω1 = {0}, then the Aj doesn’t influence the value of the component Ai.
– if ω1 = {+}, then large values of the Aj will raise the value of the Ai.
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The relationship Λ is antisymmetric in the following sense: Λ(Ai, Aj) =
(ω1, ω2) implies Λ(Aj , Ai) = (ω2, ω1). It is also assumed, that inner relation-
ships (self-relationship Λ(Ai, Ai)) are symmetric—(0, 0), (−,−), and (+,+) for
any Ai.

Assume that all the relationships Λ(Aj , Ai) between all pairs (Aj , Ai) of
components A1, A2, . . ., AN are given. For each Aj and each (s, u) ∈ Ω × Ω, let
Lj(s, u) = {Ai|Λ(Aj , Ai) = (s, u)} (the set of components, with which Aj has the
relationship (s, u)). We can express the relationships between the components
by the following relationships’ matrix

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 . . . AN

A1 (ω1, ω1)
A2 (ω2, ω1) (ω2, ω2)
...

...
...

. . .
AN (ωN , ω1) (ωN , ω2) . . . (ωN , ωN )

⎤
⎥⎥⎥⎥⎥⎦

. (3)

Taking into account the antisymmetric property, the entries above main diag-
onal in (3) are omitted, since they can be recovered by the lower triangular part
of matrix.

Let κ = {1, 2, . . . ,K} be the set of the states of the components and Nj(s, u)
is the number of components in the set Lj(s, u), j = 1, 2, . . . , N , (s, u) ∈ Ω × Ω.
A transition from the state (A1(t), A2(t), . . ., An(t)) to the state (A1(t + 1),
A2(t + 1), . . ., An(t + 1)) is described by N transition functions Fj , each of
which defines the mapping

κ
Nj(+,+)+Nj(+,0)+Nj(+,−)+Nj(−,+)+Nj(−,0)+Nj(−,−) �→ κ.

This mapping symbolically is expressed by the formula

Aj(t + 1) = Fj(Ak(t) ∈ Lj(+,+), Ak(t) ∈ Lj(+, 0),
Aj(t) ∈ Lk(+,−), Ak(t) ∈ Lj(−,+),
Ak(t) ∈ Lj(−, 0), Ak(t) ∈ Lj(−,−)), j = 1, 2, . . . , N,

(4)

where Ak(t) ∈ Lj(+,+), Ak(t) ∈ Lj(+, 0), . . . are the values of Ak(t) belonging
to Lj(+,+), Lj(+, 0), . . . respectively.

The transition function, introduced by equation (4), is quite natural in its
structure. Given component Aj is influenced only by those components, which
indeed influence Aj , i.e. the components from the sets Lj(+, ω) and Lj(−, ω) for
any ω ∈ Ω.

Two Types of Relationships, Intrinsic to Natural Systems. The formula
(4) presents a general form of transition of the system from the state at the
moment t to the state at t + 1.

For more detailed description of the dynamics of a natural system, numerical
experiments and procedures of system identification one needs to specify explicit
form of the mappings.
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We introduced two approaches based on the concepts of biological interac-
tions: the weight functions’ approach and the approach based on principles of
Justus von Liebich’s law.

Define the following functions on the set κ: Inc(A) = min{K,A + 1},
Dec(A) = max{1, A − 1} .

The system dynamics according to the weight functions’ approach. First we
define the type of dynamics, which takes into account the weighted sum of all
Aj(t) (including Ai(t)) for calculating the value of the component Ai at the
moment t + 1.

As we defined above, for each j (j = 1, 2, . . ., N) and each pair (s, u) ∈ Ω × Ω
there exists the set Lj(s, u) with Nj(s, u) entries. Assume that ϕ

〈s,u〉
j,1 (·), ϕ

〈s,u〉
j,2 (·),

. . ., ϕ
〈s,u〉
j,Nj(s,u)

(·) are to be the functions of interactions of those components, with
which the Aj has relationships (s, u). The functions are defined on the discrete
set κ and have the following properties:

1. ϕ
〈+,+〉
j,k (·), ϕ

〈+,0〉
j,k (·), ϕ

〈+,−〉
j,k (·) are increasing functions.

2. ϕ
〈−,+〉
j,k (·), ϕ

〈−,0〉
j,k (·), ϕ

〈−,−〉
j,k (·) are decreasing functions.

3. ϕ
〈s,u〉
j,k (1) = 0 for any (s, u) ∈ Ω × Ω.

We also introduce the numbers δj > 0 (j = 1, 2, . . . , N) which can be called
thresholds of sensitivity.

For the system’s state at the moment t, the following value is calculated

dj =
∑

Ak∈Lj(+,+) ϕ
〈+,+〉
j,k (Ak(t)) +

∑
Ak∈Lj(+,0) ϕ

〈+,0〉
j,k (Ak(t))

+
∑

Ak∈Lj(+,−) ϕ
〈+,−〉
j,k (Ak(t)) +

∑
Ak∈Lj(−,+) ϕ

〈−,+〉
j,k (Ak(t))

+
∑

Ak∈Lj(−,0) ϕ
〈−,0〉
j,k (Ak(t)) +

∑
Ak∈Lj(−,−) ϕ

〈−,−〉
j,k (Ak(t)).

(5)

The value of the component Aj(t + 1) is calculated as follows

1. if dj ≥ δj , then Aj(t + 1) = Inc(Aj(t));
2. if dj ≤ −δj , then Aj(t + 1) = Dec(Aj(t));
3. if −δj < dj < δj , then Aj(t + 1) = Aj(t).

Now, the meaning of introduced transition functions can be explained in clear
way. For example, the functions ϕ

〈−,+〉
j,k (·) (k = 1, 2, . . . , Nj(−,+)) reflects the

influence upon the component Aj by components in the set Lj(−,+), which are
related with Aj by relationship (−,+). The greater the influence (i.e. the greater
values of Ai(t) from the set Lj(−,+)), the lower the values of dj .

The influence of other components, with which Aj has other relationships, is
“weighted” in similar way. If the cumulative influence of components, interacted
with Aj and expressed by Eq. (5), exceeds the threshold δj , then the value of Aj

is changed by unit.
The threshold δj clearly influenced the dynamics of the system in the fol-

lowing way: the greater δj , the greater absolute value of the weighted sum dj
required for overcoming this δj for changing the value of Aj . So if δj is very
large, the system becomes very inert.
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The dynamics based on the Liebig’s law of the minimum. Next approach is
based on principles of Justus von Liebich’s law (Liebig’s law of the minimum)
and essentially differs from first approach, which is basically additive.

Assume that the system of relationships between A1, A2, . . ., AN is given.
For defining the system’s dynamics, let’s introduce two constant matrices, C and
C∗ of size N × N . The transition function is based on the following algorithm.

Suppose the system in state (A1(t), A2(t), . . . , AN (t)) at time t and Aj is an
arbitrary fixed component. Let i runs from 1 to N , and u means arbitrary entry
of the set Ω.

1. If for the current i the equality Λ(Aj , Ai) = (−, u) holds true, assume that

fi =

⎧⎨
⎩

−1, if Ai(t) ≥ c∗
ji,

0, if cji + 1 ≤ Aj(t) ≤ c∗
ji − 1,

1, if Aj(t) ≤ cji.

The specific value of u doesn’t matter because only the influence on Ai from
the side of Aj matters.

2. If for the current i the equality Λ(Aj , Ai) = (+, u) holds true, assume

fi =

⎧⎨
⎩

−1, if Aj(t) ≤ cji,
0, if cji + 1 ≤ Aj(t) ≤ c∗

ji − 1,
1, if Aj(t) ≥ c∗

ji.

3. If for the current i the equality Λ(Aj , Ai) = (0, u) holds true then it is
assumed that fi = 0.

After the cycle termination, the sequence f1, f2, . . ., fN is obtained. The
value Aj(t + 1) is calculated according to the following rule:

Aj(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

Dec(Aj(t)), if min
1≤i≤N

fi = −1,

Aj(t), if min
1≤i≤N

fi = 0,

Inc(Aj(t)), if min
1≤i≤N

fi = 1.

(6)

Applying this algorithm for each j = 1, 2, . . ., N , the system’s state at the
moment t + 1 is calculated.

The meaning of transition from t to t+1 can be explained clearly. Suppose, a
given component Aj has relationship (+,−) with this current component Ai (see
the algorithm). According to the relationship (+,−), large values of Ai should
decrease Aj . Indeed, according to item 1 of the algorithm, if Ai(t) ≥ c∗

ji (in other
words, when Ai(t) is “large enough”), fi = −1 and, according to (6), Aj would
decrease if Aj(t) > 1. Other cases of transition work in similar way.

The System Identification Based on the Data of Observation. When
we deal with real data, as a rule, we don’t observe their dynamics explicitly.
Often real data are unordered in time in contrast to data used for time series
modeling. So we don’t observe any dynamism described by the relationship (3),
by the trajectory (1) or the minor (2).
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Usually, the result of observation is represented by the table:

M̃ =

⎛
⎜⎜⎜⎝

C11 C12 . . . C1B

C21 C22 . . . C2B

...
...

. . .
...

CN1 CN2 . . . CNB

⎞
⎟⎟⎟⎠ , (7)

where columns correspond to cases and rows correspond to components (N com-
ponents, B cases). We emphasize unordered character of the data above, i.e. these
is no time order between the cases in the table M̃ .

Here we describe a principle allowing to reveal the system relationships of
above mentioned type on the basis of the observation table M̃ .

This algorithm determines inter- and intra-component relationships, which
are as close as possible to relationships, which form matrix (2) in some sense.

Assume that the relationships structure is given. In that case for the initial
state (A1(0), A2(0), . . ., AN (0)) and for the given sets L1(u, s), L2(u, s), . . .,
LN (u, s), u ∈ Ω, s ∈ Ω the minor (2) can be calculated. Let

P =

⎛
⎜⎜⎜⎝

1 r12 . . . r1N
r12 1 . . . r2N
...

...
. . .

...
r1N r2N . . . 1

⎞
⎟⎟⎟⎠

is to be the correlation matrix (Pearson or Spearman) between the rows of the
minor (2). Also, for the table M̃ , the correlation matrix of its rows can be
calculated:

P̃ =

⎛
⎜⎜⎜⎝

1 ρ12 . . . ρ1N
ρ12 1 . . . ρ2N
...

...
. . .

...
ρ1N ρ2N . . . 1

⎞
⎟⎟⎟⎠ .

Introduce the measure of distance between the correlation matrices P and P̃

D(P, P̃ ) =
N−1∑
i=1

N∑
j=i+1

(rij − ρij)2. (8)

Set the problem of minimization D(P, P̃ ) by all possible vectors of initial
states (A1(0), A2(0), . . ., AN (0)) and all allowable sets Lj(s, u), s ∈ Ω, u ∈ Ω
for all j

D(P, P̃ ) �→ min
(by all initial states &
by all allowable sets Lj(s, u)). (9)

The meaning of this problem can be explained in the following way. Suppose,
a process in some natural system is cyclical with the trajectory (2). There is no
possibility to observe the dynamics of this trajectory, i.e. a full length cycle. The
observations are taken from the system at random moments of time t from s
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to s + T − 1 with equal probability. When an observation is taken, the column
(A1(t), A2(t), . . ., AN (t))T from (2) is attached to the table of observations. In
other words, the columns of table of observations M are obtained from (2) by
equiprobable choice of columns.

The stated problem means the search for such relationships between compo-
nents, that the minor (2) is to be as close as possible to the table of observations
regarding the measure (8).

The following theorem proved in [11] shows that this problem is well-
grounded in probabilistic sense.

Theorem 1. If the table of observations M̃ is obtained from the minor (2) by
equiprobable choice of columns, then the Pearson correlation matrix of the obser-
vations table P̃ converges to the correlation matrix of minor P (in probability)

lim
B→∞

ρij = rij , i = 1, 2, . . . , N, j = 1, 2, . . . , N.

The same result takes place for the Spearman correlation matrix as well.

2.2 Additive Stochastic Model of Between-Component
Relationships

Our another model is also described by the set of components A1, A2, . . ., AN

taking discrete values 1, 2, . . ., K.
But, in contrast to the first one, the second model introduces into consid-

eration not only direction of relationships (in fact, for the first model we con-
sidered three direction—negative, neutral, and positive), but also a strength of
relationships.

The structure of relationships between the components A1, A2, . . ., AN is
described by the following relationships matrix

M =

⎛
⎜⎜⎜⎝

m1,1 m1,2 . . . m1,N

m2,1 m2,2 . . . m2,N

...
...

. . .
...

mN,1 mN,2 . . . mN,N

⎞
⎟⎟⎟⎠ .

Any entry mi,j reflects the strength and direction of influence of the compo-
nent Aj upon the component Ai. The direction of influence is expressed by the
sign of the value mi,j (may be −, 0,+) and the strength—by modulus of mi,j

and varies from 0 to 1. So, −1 ≤ mi,j ≤ 1 for each i, j. The influence of the
component Ai on Aj is expressed by mj,i. It is easy to see, that the relationship
between the components Ai on Aj is described by the pair (mi,j ,mj,i), which is
in some way similar to the relationship (ω1, ω2) introduced for the first model.

Now describe the dynamics of transition from the state of the system at the
moment t to the state at the next moment t + 1, i.e.

(A1(t), A2(t), . . . , AN (t)) �→ (A1(t + 1), A2(t + 1), . . . , AN (t + 1)).
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As for the weight functions’ approach, we assume, that the set of functions
ψi,j(·), (i, j = 1, 2, . . . , N) reflecting relationships between all pairs of compo-
nents, including inner relationships, are given.

All the functions ψi,j(·) have the following properties:

1. ψi,j(·) are defined on the set κ;
2. ψi,j(1) > 0;
3. ψi,j(·) are increasing functions on κ.

It should be noted that the property 2 of functions ψi,j(·) is different from
corresponding property for functions ψ

〈s,u〉
i,j (·), which requires ψ

〈s,u〉
i,j (1) = 1.

Also assume that a positive number δ playing the a role of threshold, is given.
Let the system be in the state (A1(t), A2(t), . . . , AN (t)). For each pair of

indices i, j (i = 1, 2, . . . , N , j = 1, 2, . . . , N) define the random variable ξi,j as
follows

ξi,j =
{

ψi,j(Aj(t))sign(mi,j) with probability |mi,j |
0 with probability 1 − |mi,j |.

Then we introduce the set of N random variables

di =
N∑
j=1

ξi,j , i = 1, 2, . . . , N.

Using the set (d1, d2, . . . , dN ), it’s possible to calculate the set of probabilities
(p−

i , p0i , p
+
i ) for each i as follows

p+i = P (di ≥ δ),
p0i = P (−δ ≤ di ≤ δ),
p−
i = P (di ≤ −δ),

for each i from 1 to N. This definition implies p−
i + p0i + p+i = 1.

For each i, the transition from the state at the moment t to the state at t+1
is defined by

Ai(t + 1) =

⎧⎨
⎩

Dec(Ai(t)) with probability p−
i ,

Ai(t) with probability p0i ,
Inc(Ai(t)) with probability p+i .

That is, at the moment t + 1 the value of Ai can be increased by 1, remains
the same or decreased by 1 with probabilities p−

i , p0i , p
+
i correspondingly.

Applying this rule for each i, the probabilities of transition from any appro-
priate state (A1(t), A2(t), . . . , AN (t)) can be calculated.

It can be proved, that if each row of the matrix M include both neg-
ative and positive entries, we obtain the Markov chain with KN states
A1(t), A2(t), . . . , AN (t) (Ai ∈ κ). Besides, this chain is regular, so there a unique
steady-state stochastic vector w.
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Now the reasons for the problem can be explained. We assume, that a natural
system is described by this model, and the probability of being of the system in
states converges to the entries of the vector w (as the system acts as a regular
Markov chain). Using the states A1A2, . . . , AN and the steady-state vector w,
we can calculate a weighted Pearson correlation matrix [13] between the com-
ponents.

Describe this step at length. All states of the system can be written in the
table ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 . . . AN−2 AN−1 AN

1 1 . . . 1 1 1
1 1 . . . 1 1 2
1 1 . . . 1 2 1
1 1 . . . 1 2 2
1 1 . . . 2 1 1
...

...
. . .

...
...

...
K K . . . K K K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

having KN rows and N columns.
Write out the steady-state vector of the Markov chain in the form

w = (w1, w2, . . . , wKN ),

where the entry wk corresponds to k-th state in the table (10).
Taking w as weights, calculate the weighted Pearson correlation matrix

between the columns of the table (10). Denote such the matrix by Rw.
We suppose, that the explicit dynamics of our natural system is not available.

In other words, we cannot observe time series of states, but can record a state
of the system at random moments of time. These observations are collected in
the observation table M̃ having N variables and B cases (after B observations).
Let the Pearson correlation matrix between rows of (7) is denoted by R̃.

Theorem 2. If the observation table M̃ is obtained according to the way
described above, then

R̃ → Rw(in probability if B → ∞),

where R̃ → Rw means entry-wise convergence.

Proof. Omitted for brevity sake.
Introduce the measure of proximity for the matrices R and R̃

D(Rw, R̃) =
N−1∑
i=1

N∑
j=i+1

(R̃i,j − [Rw]i,j)2. (11)

The Theorem 2 means that the sample observation matrix consistently rep-
resents a true dynamics, which is not observed explicitly. This result is used as
a base for identifications of entries of the relationships matrix M. In any inves-
tigations there is only a finite number of observations (B is finite). Therefore we
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can try to calculate transition probabilities of the Markov chain, that provide
the best approximation of a true correlation matrix by a sample matrix in the
sense of the measure (11).

According to this approach, M is obtained by resolving the following opti-
mization problem

D(Rw, R̃) �→ min by entries mi,j .

In fact, we find the relationships matrix M, which makes the modelled cor-
relation matrix as close as possible to the observe correlation matrix.

3 Case Studies

In this section we present three examples of application of developed models to
various natural and technical systems.

3.1 Factors Determining Users Activity in Social Networks

First example concerns analysis of system factors affecting activity of users of
social networks playing an important role in modern culture [14,15]. The struc-
ture of relationships between the components of the system for two states of the
Internet-forum on fantasy literature were calculated and compared. This com-
parison aimed at reveal system aspects of forum visiting in two periods. One state
can be regarded as “low-performance”, other as “high-performance” according
to number of written fanfictions (also abbreviated as fan fics, fanfics) of visi-
tors at the site dedicated to the cycle of novels of Joanne Rowling about Harry
Potter (snapetales.com). The period of first half of December 2010 is regarded
as “high-performance”, the second period of the first half of December 2014 is
called “low-performance”. For these two periods a statistically significant differ-
ence according to Student t-test (p < 0.05) in overall average number of visits
per day was also detected.

The fanfictions were divided into 4 categories according to their length—
fanfictions of small, large, and medium size; the last, fourth category includes
fanfictions not related to the novels about Harry Potter.

The following values were taken as the components of the system reflecting
the authors activity

– the number of small size fanfictions per day related to the cycle of novels
about Harry Potter (denoted by MIN);

– the number of large size fanfictions per day (MAX);
– the number of medium size fanfictions (MID);
– the number of fanfictions not related to the cycle of novels about Harry Potter,

based on another literary works (OTHER).

For the “high-performance” and “low-performance” periods, the structure of
relationships were built. We identified the models using the Pearson correlation
matrix and the approach on the base of von Liebig law, with K = 3 levels of

http://snapetales.com
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components values. The structure of relationships for both period is presented in
Figs. 1 and 2 correspondingly. The graphs in the figures present the structure of
relationships. Nodes of the graphs correspond to the components in the systems
as defined above. Edges of the graphs with embedded ovals on them present pair-
wise relationships revealed in the model. For example, Λ(MIN,MID) = (+,−),
that is presented on the graph by the corresponding oval.

Fig. 1. The structure of relationships for “high-performance” period. Rounded rec-
tangulars present the components of the system, the ovals present the relationships
between the components.

Fig. 2. The structure of relationships for “low-performance” period.

Comparing the graphs in Figs. 1 and 2 shows a system-forming role of
the component MID for the “high-performance” period, in which MID pos-
itively affected the other three components. This affect disappeared in the “low-
performance” period together with loss a stabilizing mechanism through the
relationship (+,−) between MID and MIN supporting a dynamic equilibrium
of the system.

These results are consistent with empirically established ideas about sig-
nificant positive role of fanfictions of medium size (MID) in a functioning of
social networks of this category and their close relation to short-sized fanfictions
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(MIN) representing a reaction of the most dynamic part of users. Differences in
role of OTHER correspond to significance of “offtopic” as an index of deterio-
ration in work of dedicated web-sites.

3.2 Relations Between the Anthropometric Parameters
of Adolescents with Cardiovascular Disorders

Our next case concerns the system relations of anthropometric parameters of
adolescents suffering diseases of cardiovascular system.

Anthropometry is important in school health care, in particular, for deter-
mining the factors of predisposition of adolescents to cardiovascular disorders.
At the same time, among other drawbacks of currently used anthropometric
methods they often refer to insufficient use of systematic approach, among other
things, in description of regularities in formation of body’s proportions in the
individual development of adolescents.

Here we present a demo of the application of the deterministic model devel-
oped above for this purpose, built on the material of adolescents anthropometry
with arterial hypertension and other forms of cardiovascular disorders. Body
compositions related to overweight plays an important role in development of
arterial hypertension. Taking that in account, the models for four components
were built: hip circumference, waist circumference, chest circumference, and
shoulder breadth divided by height of a subject. The Spearman correlation and
Liebig’s approach with K = 3 levels of components were used in modeling.

Comparison of these graphs revealed a different role of such anthropomet-
ric parameters as the hip circumference for the two group of adolescents under
investigation. In the group with disorders different from arterial hypertension
high values of hip circumference increase other three components. Simultane-
ously, shoulder breadth negatively affects hip circumference, that should form a
proportion of male’s future body perceiving by subconscious as harmonious on
the base on evolutionary history and recognized as such by modern physiology
and medicine—the proportions of male “triangle” directed beneath by edge. The

Fig. 3. The structure of relationships for adolescents arterial hypertension.
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Fig. 4. The structure of relationships for adolescents without arterial hypertension.

structure of relationships in the group with hypertension prevents the formation
of such a standard and associates with the accumulation of a depot fat in certain
parts of a human body: relatively high values of the hip circumference negatively
affects shoulders breadth and chest circumference, not directly affecting waist
circumference, on which shoulders breadth positively influences.

These results, regarded by authors as preliminary, do not contradict known
facts about the impact of anthropometric parameters on the risk of development
of hypertension in adolescents groups.

3.3 Factors Influencing the Efficiency of Industrial Fishery
at North Sea

Our last case concerns the issues on industrial fishery of Atlantic cod (Gadus
morhua) at North Sea. The fishery of the cod plays an important role in the
economy of several countries and provokes considerable interest to using mathe-
matical models in industrial ichthyology describing large fluctuations of catching
[18] (well-known example of this kind is collapse of the Atlantic northwest cod
fishery in 1992).

As the demo the additive stochastic model of relationships structure between
dimensional parameters of cod populations was considered. The average fish
body length (L), the difference between Upper Length Bound and Lower Length
Bound (vL), the average stomachs weight (M), and the average weight of preys
of cod (dM) were taken as components of the model. Additive stochastic models
were built according to data of International Council for the Exploration of the
Sea for two years (1984 and 1989) preceding to rapid changes of CPUE (the
catch per unit effort). We used the model with K = 4 levels of components
values. The results are shown in Table 1.

In the matrix corresponding to 1984, which precedes significant (till 1990)
decrease of catching yield, there are large (above 0.85) negative effects of high
values of vL on M and dM. That is, increasing the diversity of dimensional
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Table 1. Structure of relationships between dimensional parameters L, vL, M, and
dM of the model for years 1984 and 1989.

1984 1989

L vL M dM L vL M dM

L −0.936 −0.379 0.893 0.581 L −0.843 0.137 0.953 0.059

vL 0.325 −0.737 −0.405 0.519 vL 0.963 −0.721 −0.997 0.494

M −0.184 −0.868 0.969 −0.081 M −0.882 −0.054 0.788 0.224

dM 0.016 −0.941 0.999 −0.028 dM 0.091 0.066 0.941 −0.995

characteristics of the cod population, that improves the consumption possibilities
of forage reserve by the cod, leads to exhaustion of food resources (reducing
the number of available preys) and deterioration of preys quality (reducing the
average size of forage organisms), and results in deterioration of food supply of
the cod, that lowers the values of M and dM.

In the matrix corresponding to 1989, which precedes sharp increase of CPUE,
recorded a year later, in 1991, there exist extremely small (below 0.07) negative
effects of high values of vL on M and dM. In this case, the increasing diversity
of sizes, that enhances abilities of consumption of forage reserve, does not lead to
exhaustion and deterioration of the latter. This result of modeling explains dif-
ferences described above in the dynamics of catching in accordance with modern
concepts of industrial ichthyology.

Presented results bring hope for the possibility of developing methods of
forecasting the cod catching with use of the stochastic models, built on the base
of actual material on the size structure of the population. The data of material
can be obtained among others by remote methods with the help of low-cost
means and relatively little effort, and even from commercial reports.

4 Conclusion

In the paper we followed the established framework in model development,
appropriated for natural sciences. Typical approach in development, among oth-
ers, comprises the data selection, specification of assumptions and simplifica-
tions, selection of a mathematical modeling framework, estimation of parame-
ter values, model diagnostics, model validation, model refinements and model
application. It’s clear, that all these stages of building mathematical models for
biological systems are too complicated, but the most difficult task among them
is the model parameters’ estimation for identifying structure in the underlying
biological networks.

The models presented in the paper are created for description of biological
and ecological systems, based on pairwise relationships characterized by the
direction (positive, negative, or neutral) for the both models and by strength
varied from 0 to 1 in the stochastic model only.
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The problem of parameters estimation is a true challenging problem for both
models and requires development of special algorithms of numerical optimiza-
tion. For example, if the system has N components and the number of levels is
to be assumed K, for the first deterministic model the number of initial states is
equal to KN and the number of possible relationships’ structures is equal to 3N

2
.

For solving the stated optimization problem (9), one should built the minor (2)
with use of an initial state and a relationships’ structure, calculate correlation
matrix P and calculate the distance (8). So, the exhaustive search of both initial
states and relationships’ structures in total gives us KN3N

2
variants, that is a

huge number for even moderate N and K.
The case studies presented in the paper, considered by the authors as pre-

liminary and illustrating, offer the prospects of applications of proposed models.
The results of modeling of system aspects in anthropometry of adolescents

present the approaches to use of this simple and cheap method for identifying
the risk groups of the progress of arterial hypertension. These approaches may
be applied in school medicine and, if necessary, in extreme situations for mass
screening as well.

The study of system factors of performance of the web-site dedicated to
fiction about characters from original works about Harry Potter, due to use of
components of the system, that are invariant to the content of the web-site, may
have a broader meaning in analysis of the social networks performance.

The model of the cod population as a whole does not contradict known facts
on the role of fish size and state of a forage reserve in the population dynamics.
At the same time, these results reveal some promises and can be used in the
development of approximate methods for prediction of populations of commercial
fish with use of relatively simple and inexpensive methods of data acquisition,
even with use of commercial reports concerning the assortment of fish products.
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