
MACC: An OpenACC Transpiler
for Automatic Multi-GPU Use

Kazuaki Matsumura1,2(B), Mitsuhisa Sato3,4, Taisuke Boku4, Artur Podobas1,
and Satoshi Matsuoka1,2

1 Tokyo Institute of Technology, Tokyo, Japan
{matsumura.k.ak,podobas.a.aa,matsu}@m.titech.ac.jp
2 AIST-Tokyo Tech Real World Big-Data Computation

Open Innovation Laboratory, Tokyo, Japan
3 RIKEN Advanced Institute for Computational Science, Kobe, Japan

msato@riken.jp
4 University of Tsukuba, Tsukuba, Japan

taisuke@cs.tsukuba.ac.jp

Abstract. Graphics Processing Units (GPUs) perform the majority of
computations in state-of-the-art supercomputers. Programming these
GPUs is often assisted using a programming model such as (amongst
others) the directive-driven OpenACC. Unfortunately, OpenACC (and
other similar models) are incapable of automatically targeting and dis-
tributing work across several GPUs, which decreases productivity and
forces needless manual labor upon programmers. We propose a method
that enables OpenACC applications to target multi-GPU. Workload dis-
tribution, data transfer and inter-GPU communication (including mod-
ern GPU-to-GPU links) are automatically and transparently handled by
our compiler with no user intervention and no changes to the program
code. Our method leverages existing OpenMP and OpenACC backends,
ensuring easy integration into existing HPC infrastructure. Empirically
we quantify performance gains and losses in our data coherence method
compared to similar approaches, and also show that our approach can
compete with the performance of hand-written MPI code.

Keywords: Programming language · Compiler · Multi-GPU

1 Introduction

Graphics Processors Units (GPUs) are the workhorse of modern, state-of-the-
art, supercomputers. Each node in a supercomputer node often consists of sev-
eral GPUs, each carrying its own distributed memory and each being capable
of executing asynchronously to one another. Due to GPU’s high performance
and compute-to-power ratio (FLOPs/Watt), modern supercomputers such as
TSUBAME3.0 [1], DGX SATURNV [2] and the upcoming SUMMIT [3] include
multiple GPUs per supercomputing node.

Programming GPUs has historically been done through low-level program-
ming languages (often derivatives or dialects of C) such as CUDA [4] and
c© The Author(s) 2018
R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 109–127, 2018.
https://doi.org/10.1007/978-3-319-69953-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_7&domain=pdf

110 K. Matsumura et al.

OpenCL [5]. Here the programmer is responsible for both creating the program
code, and — in cases where multiple GPUs are involved — orchestrating the
concurrent execution of multiple GPUs; an often non-trivial task.

A better (and arguably more portable) way is to use compiler directives to
indicate sources of potential parallelism in the application. A compiler can then
use these directives to abstract the complex architectural details away from the
programmer and instead automatically generated device-specific program code.
One example of such directive-driven approach is OpenACC [6] and OpenMP [7].

While models such as OpenACC increase productivity through raised pro-
gramming abstraction, they are currently limited in targeting only a single GPU
device. The user is still responsible for manually orchestrating the multi-GPU
execution.

We propose a method to enable OpenACC-annotated applications to exploit
multiple GPUs. We implemented a source-to-source compiler (transpiler) that
analyzes and optimizes OpenACC applications. Our transpiler is transparent
to the user— kernel scheduling, data-movement and inter-GPU communication
(including the recent GPU-to-GPU links) are automatically done.

Our contributions in short:

(1) A transpiler that extends the OpenACC programming model to allow appli-
cations to seamlessly use multiple GPUs.

(2) A novel communication algorithm that preserves data coherency across
GPUs by extracting source-code information.

(3) An empirical evaluation of above contributions using well-known HPC
benchmark, positioning the performance against hand-written MPI code and
the recent Unified Memory abstraction layer.

The remaining of this paper is organized as follows. Section 2 discusses related
work. Section 3 provides an overview of OpenACC. Section 4 describes our pro-
posed method. Section 5 describes our experimental methodology. In Sect. 6, we
evaluate our transpiler. Finally, Sect. 7 concludes this paper.

2 Related Work

NVIDIA provides Unified Memory [8], which allows multiple NVIDIA GPUs
to share the global address space between each other. Unified Memory recently
supports coherence through the NVLink interconnect [9], and allows GPUs to
effortlessly communicate between each other. Unlike Unified Memory, which is
very architecture dependent, our approach is more general and oblivious of which
accelerator is being targeted as long as compilers’ OpenACC backend supports
it. Moreover, our method is able to accelerate GPU-to-GPU communications
using GPU interconnects. We also see performance benefits using our method
as compared to Unified Memory in Sect. 6.

Komada et al. [10] used a compiler to distribute OpenACC fairly across GPUs
and execute them in parallel. Their approach is to divide loop iterations into
chunks of equal size and also keep these chunks coherent across different GPUs.

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 111

Their coherence mechanism is similar to that of Unified Memory, except that the
chunk size can be changed manually by the user and the chunks are prepared for
each array. Unlike Komada et al., we focus on identifying where communication
needs to happen between GPUs through data-flow analysis inside the transpiler.

Rameshekar et al. [11] propose to execute parts of application (written in
C) on multiple GPUs by analyzing loops using the polyhedral model. The poly-
hedral compilation precisely detects necessary communication between GPUs
using superpositions of fine regions and a buffer management. However, their
approach is only applicable to loops with affine iteration and array accesses. We
(unlike Rameshekar et al.) build and extend upon OpenACC, which allows us to
have more information regarding the sources of parallelism, increasing generality
as long as the application uses OpenACC. However, we complement their study
and show how the polyhedral compilation can enhance our method in certain
cases.

HYDRA [12] is a compiler system for distributed environments that use a
single GPU per node. We both share a similar system of determining commu-
nication patterns between GPUs. Unlike HYDRA, which takes as input simple
directives and generates a distributed application, our method leverages Ope-
nACC and OpenMP and hence focuses parallelism within a single “shared” node.
The output of our transpiler uses both OpenACC and OpenMP, and thus can
further use existing OpenACC and OpenMP profiling tools to further improve
performance. In evaluation, we compare hand-written MPI code with our tran-
spiled code.

Scogland et al. [13] combine a well-designed task-based runtime with
directive-driven model to facilitate efficient work-sharing in heterogeneous sys-
tems. They provide new directives that help to identify data dependency. We
consider extending our work to leverage existing task-based runtime systems to
perform the load-balancing.

Xu et al. [14] present new directives to extend OpenACC to support multiple
accelerators. The proposal is based on an evaluation using the hybrid model of
OpenACC and OpenMP.

Accelerate [15] is a purely-functional domain-specific language for array pro-
cessing. Accelerate has a potential to utilize multi-GPU [16].

Also, programming models targeting accelerator clusters are proposed [17,18].
These models provide explicit functions to distribute computations over multiple
accelerators.

3 Overview of OpenACC

Introduced in 2011, OpenACC aims to bridge accelerator programmability gaps
by leveraging compiler directives. Rather than programming with vendor-specific
languages, the programmers instead focus on exposing available parallelism in
his/her source-code. A compiler uses these directives to automatically generate
device-specific application code.

112 K. Matsumura et al.

3.1 Execution Model

Programmers are responsible for specifying which regions of the OpenACC appli-
cation are offloaded onto accelerators. A programmer, when using OpenACC to
parallelize the application, must enclose regions to-be accelerated on the device
using the parallel and kernels construct. Each construct is specified by its
directive.

A region enclosed by the parallel construct is called a parallel region
and will be executed on an accelerator. Controlling the granularity of loops
found within the parallel region is done using the loop construct. The loop
construct allows various controls of computation, including collective opera-
tions (by reduction clause), loop-carried dependency (by independent or seq
clause), coarse-grained parallelism (called gang), fine-grained parallelism (called
worker), and SIMD-level parallelism (called vector). These granularities repre-
sent the naturally forms of parallelism found in modern accelerators.

A nested loop executed parallely on an accelerator is called kernel. A region
enclosed by the kernels construct will treat each of the subsequent loops in the
region as accelerator kernels.

3.2 Memory Model

Prior to execution, accelerators with local memory (often called device memory)
must receive the data they operate on from the host. Similarly, when accelerators
finish computing using some data as the result, that data must be transferred
back to the host.

OpenACC allows data on the device to be explicitly controlled using the data
construct. Any region enclosed by the data construct will place specified data
on-to the accelerator and insert proper transfers between host and accelerator
according to specified clauses. Although OpenACC can automatically deduce
where to place data, using the data clause is often encouraged for the prevention
of incomplete or inefficient data transfers. A present clause of the data construct
indicates that the data already is defined in the region, to prevent duplicated
data transfers.

OpenACC defines the update directive that allows programmers to change
data shared between host and accelerator. In the case of update, the OpenACC
runtime system can reflect the recent changes to the variable on both the accel-
erator and the host.

3.3 A Motivational Example

We show an example which utilizes multi-GPU. In OpenACC, several efforts are
required even to distribute a simple kernel over multiple GPUs.

OpenACC Single-GPU Example. We illustrate the needless and error-prone
(manual) effort of re-purposing an OpenACC application into targeting multi-
GPUs using a simple vector-multiplication example, seen in Fig. 1(a). For clarity

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 113

Fig. 1. Two examples illustrating the difference in OpenACC code that targets (a)
single-GPU use, and (b) multi-GPU use through mixed OpenMP/OpenACC

purposes, we leave out non-trivial optimizations such as deducing (and minimiz-
ing) inter-GPU communication and coherence; such optimizations further com-
plicate the manual re-targeting process (which is automatically handled by our
proposed transpiler).

Figure 1(a) shows OpenACC directives in for a simple vector-multiplication.
The programmer — knowing that the loop is inherently parallel — annotates the
region with a kernels construct and also informs the compiler that he expects
the host’s memory to be updated after the loop has finished (copyout). The
compiler will use these directives to offload the parallelized loop onto a single
device.

OpenACC Multi-GPU Example. OpenACC only provides functionality for
exposing parallelism onto a single accelerator. To use multiple GPUs, the pro-
grammer must manually orchestrate the execution, distribution and data trans-
fers between the GPUs. This includes ensuring that data are coherent between
the GPUs that work on similar sets of data.

Figure 1(b) shows the earlier vector multiplication example but with man-
ual augmentation for multi-GPU execution. Here we use OpenMP (a related
directive-driven model) to launch a team of threads and have each thread com-
putation which subset of the loop’s iteration-space it should execute. Finally,
each thread encounters the OpenACC directives, which each launch the kernel
onto the earlier (acc set device num()) specified accelerator.

We can see that there is significant effort of code rewriting between Fig. 1(a)
and (b), which further motivates the need for our work. Furthermore, in case of
real applications, data dependencies between multiple OpenACC kernels must
be considered.

114 K. Matsumura et al.

4 MACC: A OpenACC Transpiler for Multi-GPU Use

We present MACC — a transpiler that eliminates the effort of using OpenACC in
multi-GPU environments. Our transpiler allows OpenACC (which traditionally
targets a single GPU) to run on multiple GPUs without changing the source
code. Our approach is to source-to-source transform the OpenACC application
into post source-code that exploits both OpenACC and OpenMP.

The operations performed by MACC can be condensed down to three steps:

(1) The source code is parsed and OpenACC directive understood and abbre-
viated notation (e.g. "parallel loop", "kernels copy(..)") flattened.
Tightly-nested (which has just one loop inside except for the innermost) or
loop-directive-specified loops within a kernels construct are transformed
to use an OpenACC parallel construct (and loop directives with the
reduction clause if any collective operation is found and the independent
clause if our basic checker statically finds no loop-carried dependency
between iterations).

(2) Array reference expressions are extracted using our data-flow analysis
(described in Subsect. 4.3) and code to dynamically find data dependencies
at runtime are constructed.

(3) MACC outputs post source-code, which effectively is hybrid OpenMP and
OpenACC version of the original code but capable of multi-GPU execution
(described in Subsect. 4.4).

The final output can then be compiled with any compiler supporting Ope-
nACC and OpenMP. Our compiler pass is generic and thus untied to any specific
compiler backend. Host-to/from-GPU and GPU-to-GPU communication in the
post source-code are automatically generated based on our communication algo-
rithm to resolve data dependencies, leveraging shared host memory and GPU
interconnects (described in Subsect. 4.2).

We have deliberately chosen to have the transpiled source-code use a hybrid
OpenACC and OpenMP approach. There are no formal requirements behind
using OpenMP and our methodology can be extended to use less abstract mod-
els such as POSIX Threads. However, by leveraging OpenMP we can more easily
use existing infrastructure (such as) to debug or analyze the performance. Fur-
thermore, future work of ours includes code multi-versioning to enable hybrid
execution of single-/multi-GPU and general purpose processor accelerators; it is
here we expect our design decision to bear fruit as OpenMP traditionally (prior
to the 4.0 accelerator directives) target general purpose processors.

4.1 Execution on Multi-GPU Environments

Since OpenACC primarily target loop-level parallelism of the outermost loop, we
need to make sure to avoid data dependencies on the memory accesses happening
between processors executing the parallelized loop.

In MACC, we divide and distribute the outermost loop of OpenACC kernels
equally for each GPU. We only enable multiple GPUs when all writes in the

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 115

kernel are affine with respect to the loop counters and the write-section does
not intersect with the write-section of other GPUs; we fall back on single GPU
execution if the state condition does not hold. Switching between single- and
multi-GPU execution occurs at runtime. Also, the number of GPUs used can
dynamically be decided and changed, leaving room for autotuners.

4.2 Generating Host-to/from-GPU and GPU-to-GPU
Communcation Patterns

Understanding what data-regions a GPU will work on is crucial when paralleliz-
ing loop constructs to execute over multiple GPUs. A too optimistic approach
can fail to fully include all data, leading to incorrect execution; a too pessimistic
approach will on the other hand lead to unnecessary transfer and maintenance
overheads.

Algorithm 1. Generate copyin
1: Create DIRTY
2: for each gpu i ∈ GPUs do
3: Communicate specified array from Host to GPU i
4: DIRTY[i].valid ← false
5: end for

Identifying the data-regions needed for the GPUs is difficult because the
order of kernel executions is dynamically decided. Therefore, we replicate Host-
to-GPU communications according to data constructs (copyin) for all GPUs
(Algorithm 1).

When multiple GPUs are used, it is important to resolve the data depen-
dencies between the GPUs because each GPU is (often) a discrete device with
its own distributed memory. We have adopted Kwon et al. [19] ’s method (from
distributed-memory programming) to identify the necessary communication ac-
ross GPUs. Our implementation calculates the section of the read (called USE)
and the write (called DEF) for each combination of parallel regions, GPUs and
data (arrays). We apply data-flow analysis (described in Subsect. 4.3) to derive
necessary information.

Before each execution of parallel regions, we compute the necessary commu-
nication among GPUs based on the superpositions of the calculated sections;
after that, we update the section (called DIRTY) for each combination of GPUs
and data/arrays. Here, we call the section whose master is a GPU, as DIRTY.
Algorithm 2 describes this process.

All sections contain an upper- and a lower-bound. Communication between
GPUs is performed either through host memory (CPU-to-GPU) or — if sup-
ported — using the interconnected (GPU-to-GPU or P2P). MACC also removes
any duplicated transfers in order to reduce the amount of communication needed.

116 K. Matsumura et al.

Algorithm 2. Generate communications before an execution of a parallel region
1: for each gpu i ∈ GPUs do
2: if DIRTY[i] ∩ DEF[i] = ∅ or ∃ d ∈ (DEF \ DEF[i]); DIRTY[i] ∩ d �= ∅ then
3: Communiate DIRTY[i] from GPU i to Host and all other GPUs
4: DIRTY[i] ← ∅
5: else if P2P IS ENABLED then
6: for each gpu j ∈ GPUs; j �= i do
7: COMM[j] ← DIRTY[i] ∩ USE[j]
8: Communicate COMM[j] from GPU i to GPU j
9: end for

10: else
11: for each gpu j ∈ GPUs; j �= i do
12: COMM[j] ← DIRTY[i] ∩ USE[j]
13: end for
14: GHs ← BIND(COMM) /* Optimize GPU-to-Host communication */
15: Communicate GHs from GPU i to Host
16: if ∃ gh ∈ GHs; DIRTY[i] ⊂ gh then
17: DIRTY[i].valid ← false
18: end if
19: for each gpu j ∈ GPUs; j �= i do
20: Communiate COMM[j] from Host to GPU j
21: end for
22: end if
23: DIRTY[i] ← DIRTY[i] ∪ DEF[i]
24: end for

Algorithm 3. Generate copyout
1: for each gpu i ∈ GPUs do
2: Communicate DIRTY[i] from GPU i to Host
3: end for
4: Delete DIRTY

Algorithm 4. Generate update of GPU-to-Host
1: US ← the update section
2: for each gpu i ∈ GPUs do
3: Communicate DIRTY[i] ∩ US from GPU i to Host
4: end for

When encountering GPU-to-Host communication of the data constructs
(copyout), only the data constructs that fail meeting coherence are transferred.
Hence, each GPU will execute a copyout transfer of its own DIRTY section
(Algorithm 3).

When encountering a update directive for Host-to-GPU communication, the
host will update all GPUs with the new data. If update directive for a GPU-
to-Host communication is encountered, only the sections overlapping the DIRTY-
section (Algorithm 4) will be transferred.

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 117

4.3 Data-Flow Analysis

MACC uses data-flow analysis to identify USE and DEF sections of parallel
regions. Data-flow analysis is invoked on every parallel region to extract array
references/indices for read and write accesses. Array references are composed
of constants and loop iterator variables, as well as variables defined outside the
parallel region. Note that MACC only synthesize the code for automatically
analyzing the USE and DEF sections; the actual analysis is performed at runtime
during execution before every parallel region.

During data-flow analysis, we collect array references/indices as well as
extracting variables that are defined or overwritten in the parallel region. We
iteratively analyze the parallel region to account for all paths of the control-flow
graph as long as the collected array references/indices change (so-called Iterative
Data-Flow Analysis [20]).

In MACC, we do these through the following two steps:

(1) We transform source-code into static single assignment form (SSA [20]).
(2) Array indices are collected and all variables (except the loop counter) are

extracted.

A variable represented by an expression using the variable itself and other
values, is considered to have indefinite value. A section that is calculated using a
non-affine index, when regarding variables other than loop counters as constants,
or indefinite value will force the section to pessimistically contain the whole tar-
get array. For indices that are affine we can compute the sections by substi-
tuting upper- and lower-limits of the affected loop counters into them owing to
convexity.

In the final generated post source-code we execute the parallel region on
multi-GPU when:

(1) all write accesses for each array are affine and definite,
(2) the outermost loop of the kernel in the parallel region is dividable (which

statically-or-dynamically has an affine range and statically has no loop-
carried dependency), and

(3) the write-sections are not duplicated among GPUs.

Single-GPU execution is invoked if above conditions do not hold.

4.4 Output Formats

In MACC, each OpenACC directive will be transformed to use a combination of
OpenMP and OpenACC. To realize the communication generation (described in
Subsect. 4.2), we wrap the existing OpenACC communication routines around
our own. These wrapper maintains the DIRTY section for each the {GPU:Array}
combinations and also generates the communications. We use and link-against
vendor-supplied libraries (in this case NVIDIA CUDA libraries) only when P2P
(GPU-to-GPU) communication is available.

118 K. Matsumura et al.

The data construct and update directive are converted into corresponding
concurrent versions using OpenMP’s parallel construct, seen in Fig. 2(a) and
(b) respectively. When transforming data-constructs, MACC will always append
appropriate present clause to parallel sections within data construct in order
to specify that the data are already on the GPUs.

Figure 2(c) shows how we transpile OpenACC’s parallel constructs. We
start by identifying the loop ranges by calculating USE and DEF sections. Once
we know the loop ranges, we spawn one OpenMP thread for each GPU device.
Each thread then continues to generate the needed communication based on
the algorithm described in Subsect. 4.2; a barrier is inserted to synchronize all
threads before entering the compute part. Finally, the parallel region is executed
by all the threads and the GPU they orchestrate.

If the parallel region satisfies the conditions described in Subsect. 4.3, the
outermost loop is divided and the execution is distributed to each GPU. An
actual example of the transpilating is shown in Fig. 3. At section calculations,

Fig. 2. This mapping illustrating how MACC transpiles each directive including con-
struct (left) into combined OpenMP/OpenACC code (right)

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 119

Fig. 3. This actual example showing how OpenACC kernel is transpiled and where
MACC inserts section calculation, communication and parallel region

120 K. Matsumura et al.

the last result is used as long as all component values are not changed from the
last calculation. Since variables defined outside the parallel region are shared
among threads, our multi-GPU execution can overwrite them. As an exception,
variables used as loop counters are duplicated on every thread by private clauses
of OpenMP. Reductions are firstly calculated for each GPU by OpenACC, then
the overall results are computed among threads by OpenMP’s reduction clause.

4.5 Polyhedral Extension

It is important for transpilers (such as the one we present) to easily be integrated
into existing tool-chains, frameworks and compilations techniques.

To show this, we show that MACC can be complemented with other tech-
niques to further the performance benefits. One such extension we support is
the polyhedral compilation, here materialized using PLUTO [21].

By using PLUTO prior to MACC invocation, we can automatically split
OpenACC kernels through loop fission, and thus extract the parallelism that
MACC can exploit over multiple GPUs by just appending the directive of the
kernels construct.

5 Experimental Methodology

5.1 Implementation

MACC was implemented as a prototype coupled with the Omni [22] compiler’s
C frontend/backend using XcodeML [23]. Currently, MACC only support Ope-
nACC applications written using the C language (and not, for example, FOR-
TRAN). This is a minor limitation (and resolving it is more of an engineering
effort), since the methods and techniques introduced in this paper is general
enough to not be tied to any specific programming language.

MACC also requires that arrays copied to GPU devices are contiguous, as
multidimensional arrays are converted into singledimensional arrays. The size of
coarse-grain parallelism gang specified in input is divided for each GPU equally,
and other parallelisms (worker, vector) are kept.

We evaluated the three versions of MACC: baseline which conducts GPU-
to-GPU communications through shared host memory, MACC with NVIDIA
Unified Memory (UM) which entrusts data coherency to UM, and MACC with
P2P. We also leveraged PLUTO together with MACC where applicable (for one
of the benchmarks). We compared transpiled code against the original version
of the benchmark, and also against MPI + ACC versions that we prepared by
appending OpenACC directives to the official MPI code.

Each benchmark was executed 10 times and we used the average to represent
the performance. We report performance with respect to computational perfor-
mance or execution time (OP/s, FLOP/s or seconds depending on benchmark)
as well as speedup over the original version (speedup = toriginal/tmulti−GPU).

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 121

5.2 Topology Options

MACC allows the user to specify a topology mapping, which dictates what
OpenMP thread handles what GPU device. Such information can be crucial
in system with non-homogeneous links between the GPU devices.

While not the primary focus of the present study, we found that by re-
assigning the thread-to-GPU mapping on P2P-enabled GPUs (NVIDIA’s to be
precise), we can get a performance increase. The topology mapping is conveyed
to MACC through an environmental variable.

5.3 Environment

We evaluated the performance using a single node on the new TSUBAME3.0
supercomputer at the Global Scientific Information and Computing Center
(GSIC), Tokyo Institute of Technology. A node in the TSUBAME3.0 super-
computer contains 4 NVIDIA P100 GPUs [24]. The GPUs are interconnected in
an all-to-all fashion using NVLink technology; note, however, that the links are
heterogeneous and different: two of the links (GPU0 ↔ GPU2, GPU1 ↔ GPU3) have
80 GB/s bidirectional bandwidth and the remaining links have 40 GB/s bidirec-
tional bandwidth. Each TSUBAME 3 node also contain two CPUs (Intel Xeon
E5-2680v4) with a total of 28 general-purpose x86-64 cores. Table 1 provides
more detailed system information.

For all experiments, we used PGI Compiler version 17.10 and NVIDIA CUDA
version 9.0. Inside MACC we have OpenMP threads each orchestrate individual
GPU; more specifically, the mapping is as follows: {thread0, GPU0}, {thread1,
GPU2}, {thread2, GPU1}, {thread3, GPU3}. Our mapping follows the heteroge-
neous links of the GPU interconnect.

PGI Compiler supports UM only for dynamically allocated memory. We
implemented an extension in MACC to force static allocations to be dynam-
ically allocated.

Table 1. Specifications of TSUBAME3.0

CPU Intel Xeon E5-2680 V4 (Broadwell-EP, 14 core, 2.4GHz) × 2

CPU memory 256 GiB

GPU NVIDIA Tesla P100 for NVLink-Optimized Servers × 4

GPU memory 16 GB HBM2@732 GB/s / GPU

OS SUSE Linux Enterprise Server 12 SP1

Compiler PGI Compiler 17.10

Compiler option -O4 -fastsse -ta=tesla,cuda9.0 -acc -mp

-Munsafe par align -Mmovnt -mcmodel=medium

CUDA CUDA 9.0

122 K. Matsumura et al.

5.4 Benchmarks

We selected four benchmarks to evaluate our transpiler.
Himeno Benchmark [25] is a benchmark which solves a 3-D Poisson’s equa-

tion by Jacobi method. We created an OpenACC version of this benchmark by
adding directives to the official code. In the baseline OpenACC version of code,
the calculation part and the substitution part are executed on an accelerator,
and they are repeated for certain time-steps. Each part consists of three loops,
and they are tightly nested and have no loop-carried dependency between the
iteration. The baseline code collapses three-nested loops into single loops. The
loop has SIMD parallelism vector (the size is 256), and coarse-grain parallelism
gang and fine-grain parallelism worker are not specified (their size is decided by
compiler’s runtime). In multi-GPU execution by MACC, halo communications
between GPUs are inserted for each execution of the calculation part. As the
problem size, we chose Large (i × j × k) = (256 × 256 × 512).

NAS Parallel Benchmarks CG (NPB-CG) [26] is a benchmark which calcu-
lates the minimum eigenvalue of a sparse symmetric positive matrix. We used an
OpenACC version of this benchmark, created by Xu et al. [27]. In the baseline
program, sparse matrix multiplications (SpMV) and eigenvalue calculations are
offloaded to an accelerator and they are repeated for certain times. The SpMV
execution applies gang to the iteration over each row, and applies both worker
and vector to the inner loop over each non-zero element of the row. The gang
size is equal to the row size of the matrix, worker size 4, and vector size 32.
In multi-GPU execution by MACC, a communication of the row size from each
GPU to all other GPUs are generated for each execution of SpVM. We chose
the problem Class C (rowsize = 150, 000) for the evaluation.

For comparison, we prepared hand-coded MPI code (MPI+ACC) of Himeno
Benchmark and NPB-CG by adding OpenACC directives to the official MPI
code in same parallelization style as above. Regarding only NPB-CG, the official
code is written by Fortran and the number of process is limited to N2.

The Scalable Heterogeneous Computing Benchmark Suite MD (SHOC-MD)
[28] is a benchmark which performs an N-body computation (the Lennard-Jones
potential from molecular dynamics) using a neighbor-list algorithm. In evalua-
tion, the N-body computation against 73,728 atoms is performed 512 times in
double precision. There is no data dependency between the 512 computations.
We obtained SHOC-MD’s OpenACC source-code from the official repository.
The source-code has one OpenACC kernel which is just enclosed by the kernels
construct to execute one-time N-body computation.

PolyBench/ACC [29] is a polyhedral benchmark suite targeting accelerators.
We chose the covariance code (COVAR) from PolyBench/ACC to test MACC’s
polyhedral extension. We used the OpenACC source-code of the official repos-
itory. In evaluation, a large covariance matrix (16, 384 × 16, 384) is calculated.
The one compute-bound kernel is originally not parallelizable by MACC due to
a symmetric-matrix creation while calculating covariances.

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 123

6 Results

The performance with respect to the number of GPUs is seen in Fig. 4. Overall,
we see that our transpiler do provide the means to increase the performance of
the application by multi-GPU. However, depending on the application charac-
teristics, different behaviors are observed.

Using MACC, we measured the performance of two data coherence imple-
mentations: our own described in Sect. 4 (with and without P2P support), and
using NVIDIA Unified Memory (UM). Despite the fact that UM internally use
P2P, we find that our implementation without P2P outperforms it in all but one
case; enabling P2P in our implementation always executes faster than UM.

We also find that for applications whose data patterns require plenty inter-
GPU communication (e.g. NPB-CG and in-parts the Himeno benchmark),
enabling the P2P acceleration inside MACC can have significant performance
increases. For applications that MACC’s transform is inadequate, we show that
we can leverage other optimization techniques (the polyhedral compilation in
case of this evaluation) to overcome bottlenecks otherwise hard to deal with.
Finally, we also find that MACC can automatically generate multi-GPU code
that is performance comparable to handwritten MPI+OpenACC code.

The remaining section continues to in-detail provide the analysis on a per-
benchmark basis.

Himeno Benchmark. The speedup for the Himeno benchmark is shown in
Fig. 4 (a). Using only the MACC compiler yields an average speedup of 2.55×
with four GPUs activated without P2P; further performance can be reached
by allowing MACC to exploit the P2P communication between GPUs, which
can yield an up-to 32.1% performance increase (3.36× speedup) on average.
Using UM yields performance similar to MACC without the P2P addition. One
MPI version (N × 1 × 1) which divides the i, j and k dimension by N , 1 and 1
respectively as with baseline MACC, and another MPI version (2×2×1) which is
minimizing communications between processes yield slightly lower performance
(−12.6% and −1.6% respectively) compared to baseline MACC.

NPB-CG. Performance results for the NPB-CG is shown in Fig. 4(b). We see
that MACC (with and without P2P) scales with the given GPUs, yielding a
2.16× and 1.54× performance speedup respectively. MACC with P2P enabled
scales stably better (19.9%, 34.9% and 40.9% when using 2 ∼ 4 GPUs respec-
tively). Direct data transfer between MPI processes incurs a large 72.9% over-
head when using 4 GPUs, which limits scalability; the average increase in perfor-
mance experienced by the MPI version is 1.09×. Note that our version that use
UM experience a loss of application performance (negative scaling) when increas-
ing the number of GPUs. We found that UM thashes the memory (by thrashes
we mean that it frequent causes page faults and page migrations), which leads
to large performance losses.

124 K. Matsumura et al.

1 2 3 4

ORIGINAL
MACC (UM)
MACC
MACC (+ P2P)
MPI + ACC (N x 1 x 1)
MPI + ACC (2 x 2 x 1)

(a) Himeno Benchmark

GPUs

G
F

L
O

P
S

0
10

0
30

0
50

0
70

0

0
0.

5
1

1.
5

2
2.

5
3

3.
5

S
P

E
E

D
U

P

1 2 3 4

ORIGINAL
MACC (UM)
MACC
MACC (+ P2P)
MPI + ACC

(b) NPB−CG

GPUs

G
o

p
/s

0
20

40
60

80
10

0

0
0.

5
1

1.
5

2
2.

5

S
P

E
E

D
U

P

1 2 3 4

ORIGINAL
MACC (UM)
MACC
MACC (+ P2P)

(c) SHOC−MD

GPUs

T
F

L
O

P
S

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

0
1

2
3

4
5

S
P

E
E

D
U

P

ORIGINAL
MACC (UM)
MACC (+ P2P)
MACC (+ P2P + PLUTO)
MACC (+ P2P + PLUTO + HAND−OPT)

1 2 3 4

ORIGINAL
MACC (UM)
MACC (+ P2P)
MACC (+ P2P + PLUTO)
MACC (+ P2P + PLUTO + HAND−OPT)

(d) PolyBench/ACC COVAR

GPUs

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

0
20

60
10

0
14

0

0
0.

5
1

1.
5

2
2.

5

S
P

E
E

D
U

P

Fig. 4. This result with respect to number of GPUs displaying computational perfor-
mance or execution time as well as speedup against original version

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 125

SHOC-MD. Performance results for the SHOC-MD benchmark is shown in
Fig. 4(c). Unlike the other benchmarks, SHOC-MD do not benefit from P2P
communication, since the application is inherently parallel. The cause for the
observed superlinearity when moving from one to two GPUs (2.78× speedup on
average) is not known (and it is kept even if we manually set the parallelism sizes
prior to transpiling). The UM version again thrashes memory, which significantly
reduced application scalability.

PolyBench/ACC COVAR. The result for the COVER benchmark is shown
in Fig. 4(d). By our proposed method, the benchmark does not scale at all
due to the most computation is done by a single GPU. On the other hand,
by combining MACC with PLUTO, the symmetric-matrix creation (SC) and
the covariance calculation (CC) are separated. This allows the application to
exploit multiple GPUs on the CC. However, the SC becomes executed sequen-
tially due to both MACC’s and PGI Compiler’s inability to resolve the loop-
carried dependency, which drastically reduces the performance. We overcome
this problem by manually adding a single directive of loop construct to make
sure the SC loop parallelizable (HAND-OPT in Fig. 4(d)). This manual opti-
mization can be automated by a direct operation of the polyhedral model (we
consider this future work). The HAND-OPT code (SC is still performed on
single-GPU though) reaches a performance of 2.20× speedup on average. Using
UM drastically reduces performance— again due to memory thrashing.

7 Conclusion

In this paper, we proposed MACC — an OpenACC transpiler to automatically
use multiple GPUs. We described and revealed how our transpiler performs the
transformations, how data are kept coherent and how multiple GPUs are used.
We showed that our proposed framework can transparently use or easily be
integrated into existing infrastructure by leveraging architecture-specific P2P
support (NVLink), external polyhedral compiler passes (PLUTO), and Unified
Memory— an alternative to our custom data coherence protocol.

We evaluated our implementation with respect to four, well-know and impor-
tant benchmarks. We quantified the performance of our transpiler. We found
that our custom data coherence protocol outperforms that of Unified Memory
and that using P2P communication can drastically improve scalability. We also
illustrated a case where our transpiler can use external compilation strategies to
overcome bottlenecks otherwise impossible to overcome. Finally, we also showed
that for some applications we can compete with handwritten MPI code.

In the future, we plan to continue developing the transpiler to include more
optimizations and evaluate more benchmarks. Moreover, we do plan to support
a more variety of accelerators, such as FPGAs or many-core accelerators (Xeon
Phis).

126 K. Matsumura et al.

Acknowledgements. This work was supported by JST-CREST under Grant Num-
ber JPMJCR1303 and JPMJCR1687, and JSPS KAKENHI under Grant Number
JP16F16764.

References

1. Global Scientific Information and Computing Center, Tokyo Institute of Technol-
ogy. TSUBAME. http://www.gsic.titech.ac.jp/en/tsubame

2. NVIDIA: DGX SATURNV Supercomputer for AI and Deep Learning. https://
www.cscs.ch/computers/piz-daint/

3. Oak Ridge Leadership Computing Facility. Summit. https://www.olcf.ornl.gov/
summit/

4. NVIDIA: About CUDA. https://developer.nvidia.com/about-cuda
5. The Khronos Group Inc.: OpenCL Overview. https://jp.khronos.org/opencl/
6. OpenACC-standard.org. OpenACC. https://www.openacc.org/
7. The OpenMP ARB: The OpenMP API specification for parallel programming.

http://www.openmp.org
8. Unified Memory in CUDA 6: NVIDIA. https://devblogs.nvidia.com/parallelforall/

unified-memory-in-cuda-6/
9. NVIDIA NVLink High-Speed Interconnect. NVIDIA. http://www.nvidia.com/

object/nvlink.html
10. Komoda, T., Miwa, S., Nakamura, H., Maruyama, N.: Integrating multi-GPU exe-

cution in an OpenACC compiler. In: The 42nd International Conference on Parallel
Processing (ICPP) (2013)

11. Ramashekar, T., Bondhugula, U.: Automatic data allocation and buffer manage-
ment for multi-GPU machines. ACM Trans. Architect. Code Optim. (TACO) 10(4)
(2013)

12. Sakdhnagool, P., Sabne, A., Eigenmann, R.: HYDRA: extending shared address
programming for accelerator clusters. In: Shen, X., Mueller, F., Tuck, J. (eds.)
LCPC 2015. LNCS, vol. 9519, pp. 140–155. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29778-1 9

13. Scogland, T.R.W., Feng, W.-C., Rountree, B., de Supinski, B.R.: CoreTSAR: core
task-size adapting runtime. IEEE Trans. Parallel Distrib. Syst. (TPDS) 26(11),
2970–2983 (2015)

14. Xu, R., Tian, X., Chandrasekaran, S., Chapman, B.: Multi-GPU support on single
node using directive-based programming model. In: Scientific Programming (2015)

15. Chakravarty, M.M.T., Keller, G., Lee, S., McDonel, T.L., Grover, V.: Accelerating
haskell array codes with multicore GPUs. In: The Sixth Workshop on Declarative
Aspects of Multicore Programming (DAMP) (2011)

16. Svensson, B.J., Vollmer, M., Holk, E., McDonell, T.L., Newton, R.R.: Converting
data-parallelism to task-parallelism by rewrites. In: 4th ACM SIGPLAN Workshop
on Functional High-Performance Computing (FHPC) (2015)

17. Nakao, M., Murai, H., Shimosaka, T., Tabuchi, A., Hanawa, T., Kodama, Y.,
Boku, T., Sato, M.: XcalableACC: extension of XcalableMP PGAS language using
OpenACC for accelerator clusters. In: 2014 First Workshop on Accelerator Pro-
gramming using Directives (WACCPD) (2014)

18. Kim, J., Lee, S., Vetter, J.S.: An OpenACC-based unified programming model
for multi-accelerator systems. In: The 20th ACM symposium on Principles and
Practice of Parallel Programming (PPoPP) (2015)

http://www.gsic.titech.ac.jp/en/tsubame
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/piz-daint/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://developer.nvidia.com/about-cuda
https://jp.khronos.org/opencl/
https://www.openacc.org/
http://www.openmp.org
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://www.nvidia.com/object/nvlink.html
http://www.nvidia.com/object/nvlink.html
https://doi.org/10.1007/978-3-319-29778-1_9
https://doi.org/10.1007/978-3-319-29778-1_9

MACC: An OpenACC Transpiler for Automatic Multi-GPU Use 127

19. Kwon, O., Jubair, F., Min, S.-J., Bae, H., Eigenmann, R., Midkiff, S.P.: Automatic
scaling of OpenMP beyond shared memory. In: Rajopadhye, S., Mills Strout, M.
(eds.) LCPC 2011. LNCS, vol. 7146, pp. 1–15. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36036-7 1

20. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley, Reading (2006)

21. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: ACM SIGPLAN Pro-
gramming Languages Design and Implementation (PLDI) (2008). http://pluto-
compiler.sourceforge.net

22. Omni Compiler Project: Omni Compiler. http://omni-compiler.org
23. Omni Compiler Project: XcodeML. http://omni-compiler.org/xcodeml.html
24. NVIDIA: Tesla P100 Most Advanced Data Center Accelerator. http://www.nvidia.

com/object/tesla-p100.html
25. ACCC: RIKEN. Himeno benchmark. http://accc.riken.jp/en/supercom/hime

nobmt/
26. NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. https://

www.nas.nasa.gov/publications/npb.html
27. Xu, R., Tian, X., Chandrasekaran, S., Yan, Y., Chapman, B.: NAS paral-

lel benchmarks for GPGPUs using a directive-based programming model. In:
Brodman, J., Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967, pp. 67–81. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17473-0 5. https://github.com/
uhhpctools/openacc-npb

28. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K.,
Tipparaju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) bench-
mark suite. In: Third Workshop on General-Purpose Computation on Graph-
ics Processing Units (GPGPU-3) (2010). https://github.com/vetter/shoc/tree/
openacc

29. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: Proceedings of Innovative Parallel
Computing (InPar) (2012). https://cavazos-lab.github.io/PolyBench-ACC/

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-36036-7_1
https://doi.org/10.1007/978-3-642-36036-7_1
http://pluto-compiler.sourceforge.net
http://pluto-compiler.sourceforge.net
http://omni-compiler.org
http://omni-compiler.org/xcodeml.html
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
http://accc.riken.jp/en/supercom/himenobmt/
http://accc.riken.jp/en/supercom/himenobmt/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1007/978-3-319-17473-0_5
https://github.com/uhhpctools/openacc-npb
https://github.com/uhhpctools/openacc-npb
https://github.com/vetter/shoc/tree/openacc
https://github.com/vetter/shoc/tree/openacc
https://cavazos-lab.github.io/PolyBench-ACC/
http://creativecommons.org/licenses/by/4.0/

	MACC: An OpenACC Transpiler for Automatic Multi-GPU Use
	1 Introduction
	2 Related Work
	3 Overview of OpenACC
	3.1 Execution Model
	3.2 Memory Model
	3.3 A Motivational Example

	4 MACC: A OpenACC Transpiler for Multi-GPU Use
	4.1 Execution on Multi-GPU Environments
	4.2 Generating Host-to/from-GPU and GPU-to-GPU Communcation Patterns
	4.3 Data-Flow Analysis
	4.4 Output Formats
	4.5 Polyhedral Extension

	5 Experimental Methodology
	5.1 Implementation
	5.2 Topology Options
	5.3 Environment
	5.4 Benchmarks

	6 Results
	7 Conclusion
	References

