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Abstract When the sensors and signals that enable connected and autonomous
vehicle (CAV) technology are combined with vehicle electrification, new vehicle
control strategies that improve fuel economy (FE) are possible through perception,
planning, and a control request issued to the vehicle plant. In this chapter, each
CAV technology that could contribute to planning is introduced and discussed.
Next, the techniques for modeling and validating a vehicle plant and running
controller are discussed. Then, three planning-based control strategies are devel-
oped: (1) an Optimal Energy Management Strategy (Optimal EMS),
(2) Eco-Driving strategies, and (3) an Optimal EMS combined with Eco-Driving
strategies. Each of these planning-based control strategies is evaluated using a
validated model of a 2010 Toyota Prius in Autonomie so that engine power, battery
state of charge, and FE results can be compared. The results indicate that a
40% + FE improvement is possible when an Optimal EMS is combined with
Eco-Driving for city drive cycles. Overall, as more vehicles incorporate CAV
technologies and electrification, these FE improvements will be easier to achieve
and will have a greater impact on transportation sustainability.

1 Introduction

Modern vehicles are incorporating electrification to evolve from conventional
vehicles (CVs) to hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles
(PHEVs), and fully electric vehicles (EVs) [1, 2]. At the same time, rapid advances
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in computational technology have provided vehicles with the ability to perceive
their environment by use of sensor technologies and computer systems [3].
Combined, these two trends provide new possibilities for improving fuel economy
(FE) from vehicle control.

Connected and Autonomous Vehicle Technology

Connected and autonomous vehicle (CAV) technology can be realized using sensors
and signals currently available, but can be made more efficient and reliable using
near-future sensors and signals. Currently available CAV technology includes
camera systems (CS), radio detection and ranging (RaDAR), light detection and
ranging (LiDAR), the global positioning system (GPS), and drive cycle databases.
Near-future CAV technology includes an advanced global navigation satellite sys-
tems (GNSS), vehicle-to-vehicle communication (V2V), vehicle-to-infrastructure
communication (V2I), and vehicle-to-everything communication (V2X). Each of
these sensors and signals is discussed in Sect. 2 and each contributes to the new
trend of vehicle sensing which can be leveraged in electrified vehicles to
improve FE.

Lithium-Ion Vehicle Electrification

Vehicle electrification has facilitated new vehicle configurations, architectures, and
control strategies. Additionally, lithium-ion vehicle batteries have provided
improved battery capacity allowing increased vehicle powertrain operational free-
dom [4]. Hybrid vehicles such as HEVs and PHEVs provide the most freedom in
vehicle powertrain control due to the two sources of propulsive power that can be
used.

New Possibilities for Improving Fuel Economy

When CAV technology is combined with lithium-ion vehicle electrification, new
FE improvement control strategies are possible. CAV technology enables vehicle
environment perception, also known as a worldview, and consequently a prediction
of future vehicle operation. This vehicle operation prediction can be leveraged by a
planning algorithm to compute a vehicle control strategy to improve FE. This
control strategy is issued as a request to the vehicle running controller, which
implements the control request without violating operational constraints in the
vehicle plant. The energy consumption from the vehicle can then be measured.
A systems-level viewpoint of this process is shown in Fig. 1.

Fig. 1 A systems-level viewpoint presenting the subsystems required for advanced control
strategies enabled by connected and autonomous technology
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Improved vehicle powertrain operation, referred to as an Optimal Energy
Management Strategy (Optimal EMS), is achieved by increasing the efficiency of
the vehicle powertrain without modification of the drive cycle. Improved vehicle
operation, referred to as Eco-Driving, is achieved by decreasing the energy output
of the vehicle through modification of the drive cycle. Both of these strategies are
enabled by CAV technologies, and their FE improvements are significant due to the
powertrain flexibility of electrified vehicles.

2 Perception Enabled by Connected and Autonomous
Vehicle Technology

CAV technologies such as CS, RaDAR, LiDAR, GPS, GNSS, drive cycle data-
bases, V2V, V2I, and V2X enable perception of the vehicle environment, or
worldview, which can be leveraged to predict vehicle routes, vehicle speeds, energy
use, and driver behavior, thus enabling the FE improvement techniques of an
Optimal EMS and Eco-Driving.

Currently available CAV technology that could be used to implement an
Optimal EMS and Eco-Driving is shown in Fig. 2 and discussed in Table 1.
Near-future CAV technology that could be used to implement an Optimal EMS and
Eco-Driving is shown in Fig. 3 and discussed in Table 2. Utilization of only cur-
rently available CAV technology to improve FE through an Optimal EMS and/or
Eco-Driving is a frequently debated topic in the literature, and ongoing efforts are
an active subject of research [5]. But, the literature is consistent in the view that
when near-future CAV technology is available, significant FE improvements
through an Optimal EMS and Eco-Driving will be feasible. Note that the
Optimal EMS and Eco-Driving FE impacts shown in Tables 1 and 2 are highly
dependent on the vehicle type, architecture, and the drive cycle.

Fig. 2 Vehicle implementation of currently available CAV technologies: a CS, b LiDAR [6], and
c GPS [7]
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2.1 Camera Systems

CS were one of the first steps taken to increase vehicle environment awareness,
enabling monitoring of other, less aware vehicles. CS can interpret immediate
vehicle surroundings to provide a localized prediction of vehicle speed. They can
recognize other vehicle locations [8], obstructions [9], traffic signs [10], and traffic
signals [11], thus determining the driving vehicle’s likely speeds in the next few
seconds. This information can be used to increase FE through Eco-Driving [12, 13]
and using an Optimal EMS. CS are currently in use by modern vehicles most
commonly for backup assistance (shown in Fig. 2a), collision safety [14–17], and
adaptive cruise control [18] which becomes more accurate and reliable when
combined with RaDAR or LiDAR (as shown in Fig. 2b) sensors as discussed in
Sect. 2.2.

Table 1 Currently available CAV technologies and their potential usage with Eco-Driving and
Optimal EMS FE improvement techniques

CAV
technology

Eco-Driving impacts Optimal EMS impacts FE impact

Camera
systems
(CS)

Localized velocity
modification helps enable
adaptive cruise control

Localized prediction of
future velocity through
sign recognition

Small FE
improvements from
short predictions

Radio
detection
and ranging
(RaDAR)

Localized velocity
modification fully
enables adaptive cruise
control

Localized prediction of
future velocity through
object recognition

Small FE
improvements on the
highway

Light
detection
and ranging
(LiDAR)

Higher accuracy
localized velocity
modification which could
enable lane switching

Higher accuracy
localized prediction of
future velocity through
object recognition

Better FE
improvements on the
highway

Global
positioning
system
(GPS)

Velocity modification to
coincide with speed
limits along the route

Basic prediction of the
full drive cycle using
stop light and speed
limit information

Prediction
accuracy-dependent
FE improvements
along an entire route

Drive cycle
database

Velocity modifications in
historically costly
sections of the drive cycle

Route length velocity
predictions that
improve with repeated
trips

Prediction
accuracy-dependent
FE improvements
along an entire route

Fig. 3 Conceptual examples of near-future CAV technologies: a V2V, b V2I, and c V2X
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2.2 Radio/Light Detection and Ranging

RaDAR is an inexpensive means of determining additional vehicle environment
information and monitoring other, less aware vehicles. RaDAR and LiDAR provide
similar information to CS about vehicle surroundings, but they interpret the vehicle
surroundings differently. Comparing the transmitted and received radio waves
(RaDAR) or light waves (LiDAR) provides advantages such as good performance
in low visibility and disadvantages such as the inability to interpret street signs [19,
20]. The most robust localized prediction of vehicle driving speed can be obtained
with the combination of RaDAR/LiDAR and CS [21–23], leading to improved FE
increases from Eco-Driving [24, 25] and adaptive cruise control [26, 27].

2.3 Global Navigation Satellite Systems

In order to expand beyond immediate vehicle surroundings, information from
GNSS can be used. GNSS technologies allow advanced knowledge of the vehicle

Table 2 Near-future CAV technologies and their potential usage with Eco-Driving and
Optimal EMS FE improvement techniques

CAV Technology Eco-Driving impacts Optimal EMS
impacts

FE impact

Global navigation
satellite systems (GNSS)

Velocity modification
to coincide with
speed limits along the
route

Route length
velocity
predictions
that improve
with repeated
trips

Prediction
accuracy-dependent
FE improvements
along an entire route

Vehicle-to-vehicle
comm. (V2V)

Opens numerous
driving velocity
modifications and
enables cooperative
adaptive cruise
control

High accuracy
of future
velocity
prediction
along a busy
road

Large FE
improvements along
busy roads

Vehicle-to-infrastructure
comm. (V2I)

Enables velocity
modifications along
an entire route that
coordinate with
traffic signals

High accuracy
of future
velocity
prediction
near traffic
lights

Large FE
improvements near
traffic lights

Vehicle-to-everything
comm. (V2X)

Enables full velocity
modification along an
entire route while
accounting for all
drive cycle
obstructions

High accuracy
of future
velocity
prediction
along the full
route

Enables absolute
optimal FE
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route (and thus the speed limits along the route) and the current location of the
vehicle along the route. This information can be leveraged to determine vehicle
velocities that meet the speed limit but improve FE through Eco-Driving [28, 29].
Even though GNSS cannot predict traffic lights and sudden accidents, GNSS
provides sufficient information for Optimal EMS FE improvements [30, 31].

The United States’ GPS is an example of a GNSS and has already been suc-
cessfully integrated into modern vehicles, as shown in Fig. 2c, for route calcula-
tions and traffic warnings. Current GPS technology requires improvements to
identify vehicle orientation, velocity, and position in all environments [32–34], but
upcoming GNSS technologies allow improved frequency and accuracy in deter-
mining these vehicle parameters [35–37].

2.4 Drive Cycle Databases

A database of previous drive cycles can improve autonomous navigation [38] and is
particularly valuable when implementing an Optimal EMS. Polling a drive cycle
database for the same drive cycle is unique because it provides a detailed velocity
prediction for the entire drive cycle. But, for previously undriven drive cycles, there
is no drive cycle database to poll and thus alternative perception methods are
required. FE improvements can be realized by through Eco-Driving and an
Optimal EMS [30, 31, 39, 40] when a drive cycle database is used in conjunction
with the current vehicle state.

2.5 Vehicle-to-Vehicle Communications

Information gained from CS, RaDAR/LiDAR, drive cycle databases, and GNSS on
one vehicle can be communicated to other vehicles wirelessly through V2V and is
anticipated to occur over the DSRC 5.85–5.925 GHz band [41]. Direct knowledge
of other vehicle information increases prediction accuracy when used with CS,
RaDAR, and GNSS information for high FE gains from Eco-Driving [42, 43] and
an Optimal EMS [44]. A special case of Eco-Driving, which is enabled by V2V
communication, is known as “platooning” where multiple vehicles drive very close
together to minimize air drag [45].

2.6 Vehicle-to-Infrastructure Communications

Advanced communication of traffic signal state can facilitate FE-improved vehicle
drive cycles as well as powertrain control. Vehicles with advanced warnings of
traffic lights can improve FE through Eco-Driving by maintaining more consistent
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vehicle speeds and planning efficient accelerations/decelerations [46–49]. Initial
research demonstrates that significant FE improvements from an Optimal EMS are
also possible once V2I has been implemented [39, 44, 50, 51].

2.7 Vehicle-to-Everything Communications

V2X involves communication with pedestrians (V2P), mobile devices (V2D), the
cloud (V2C), and the grid (V2G). Despite being several decades away from
real-world realization, near-perfect drive cycle prediction enabled by this technol-
ogy would maximize FE gains from Eco-Driving [52–59] and an Optimal EMS.

3 Vehicle Plant and Controller Model

Real-world feasibility of perception and planning FE improvement control strate-
gies must be investigated using high-fidelity models. These models can be validated
by comparing the simulated vehicle parameters (such as engine power, battery state
of charge (SOC), fuel consumption) with real-world vehicle parameters over the
same drive cycle. When comparing the simulated FE to the real-world FE for a
variety of fixed drive cycles, it is desirable to obtain a difference of no more than
3% across all drive cycles [60, 61].

There are several options for obtaining a high-fidelity model. The Autonomie
software developed at Argonne National Labs is comprehensive and popular and
can be interfaced with MATLAB through Simulink. Alternatively, the Future
Automotive Systems Technology Simulator (FASTSim) developed by the National
Renewable Energy Lab is less comprehensive but allows for faster simulations
when considering vehicle fleets. Another option is to create a custom model using
advanced modeling software, e.g., Modelica.

The Autonomie simulation tool has demonstrated close alignment with
real-world Chevrolet Volt PHEV operation [60] and Toyota Prius HEV operation
[61], thus demonstrating the model’s effectiveness. The drawback of using
Autonomie is that the specific vehicle model parameters used in those studies are
not publically available and customers must manually override the preloaded
vehicle models. To obtain a validated vehicle model, numerous parameters such as
control logic, engine operation maps, and component efficiency maps must be
modified.

An alternative method is to develop a custom high-fidelity vehicle model using
the Modelica modeling language. Modelica is a free tool that uses a differential
algebraic equation solver to simulate real-world stimulus responses and can be used
in a wide variety of applications to develop models of desired fidelity [62–64]. This
custom simulation tool is useful because modifications for FE improvement
strategies are clear and transparent in comparison with Autonomie. The drawback
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of this simulation technique is that Modelica does not receive as much support,
resulting in program crashes and arduous troubleshooting.

The first step in the analysis of improved FE control strategies is to establish a
Baseline Energy Management Strategy (Baseline EMS) that mimics existing
vehicle operation. This Baseline EMS should be validated against physical vehicle
operation characteristics such as engine power, battery SOC, and FE over a variety
of drive cycles (city, highway, aggressive, etc.). Typically, the city-focused Urban
Dynamometer Driving Schedule (UDDS), the highway-focused Highway Fuel
Economy Test (HWFET), and the aggressive US06 drive cycles are used, while the
New York City Cycle (NYCC) can also be added. These drive cycles are shown in
Fig. 4. They are used to validate the model and investigate alternate planning
methods in Sects. 4–6. A 2012 Toyota Prius PHEV Autonomie model validation is
shown in Table 3. Because the Baseline EMS is in close agreement with physically
measured values, the model is considered validated.
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Fig. 4 Four US drive cycles frequently used by the Environmental Protection Agency (EPA)

Table 3 Simulated and measured FE and battery energy usage comparison for a 2012 Toyota
Prius PHEV model developed using Autonomie

EPA
drive
cycle

Simulated
fuel
economy
(mpg)

Measured
fuel
economy
[65]
(mpg)

Percent
diff.
(%)

Simulated
battery net
energy
(Wh)

Measured
battery net
energy [65]
(Wh)

Percent
diff.
(%)

UDDS 79.3 81.5 2.8 366.2 237.6 35.1

HWFET 86.5 88.8 2.7 582.2 549.0 5.7

US06 53.4 54.3 1.7 450.2 472.7 5.0
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4 Planning Method 1: An Optimal Energy Management
Strategy

An Optimal EMS enables FE improvements by increasing powertrain efficiency
along a fixed drive cycle. Methods used to determine the global Optimal EMS
include dynamic programming (DP) [66, 67] and Pontryagin’s Minimization
Principle (PMP), which is based on calculus of variations [68, 69]. Note that
alternate Optimal EMS exists that makes optimality trade-offs to improve robust-
ness such as stochastic dynamic programming (SDP) [70] and adaptive equivalent
consumption minimization strategy (a-ECMS) [71] as well as Optimal EMS that
makes optimality trade-offs for computation time such as optimized rule-based
control [72], equivalent consumption minimization strategy (ECMS) [73], and
model predictive control (MPC) [74]. Despite the numerous Optimal EMS
derivation strategies, DP remains the overwhelming favorite due to its ease of use,
robustness, and lack of dependence on derivatives or analytic expressions [75].

4.1 Deriving the Optimal EMS

DP finds the optimal solution using backward recursion, which avoids solutions that
are not optimal as defined by the Bellman principle of optimality [67]. For every
feasible state variable value, the optimal solution is stored. The globally optimal
control is derived using the standard DP formulation of

Dynamic Equation : Sðkþ 1Þ ¼ SðkÞþ f ðS; u;w; kÞDt ð1Þ

Cost Function : J ¼
XN�1

k¼0

f ðS; u;w; k;DtÞ ð2Þ

State Feasibility Constraints : Smin � SðkÞ� Smax k ¼ 0; . . .Nð Þ ð3Þ

Control Feasibility Constraints : umin � uðkÞ� umax ðk ¼ 0; . . .N � 1Þ ð4Þ

where S is the state, u is the control, w is the exogenous input, k is the timestep
number, Dt is the timestep length, J is the cost, and N is the final timestep number.

Depending on the problem discretization, hundreds of thousands of calculations
may be required to determine the globally optimal control through DP and typically
a low-fidelity, low computational cost vehicle model is needed. Numerous low
computational cost vehicle models have been employed in research, and thorough
descriptions of model development are available in the literature [76, 77].

To implement an Optimal EMS in a 2012 Toyota Prius PHEV, an approximate
model of a power-split PHEV is required (shown in Fig. 5). The model consists of a
force balance in the longitudinal direction to capture vehicle dynamics, a propulsion
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equation accounting for energy conversion efficiencies, a lithium-ion battery model,
a brake-specific fuel consumption engine map (typically approximated with a
response surface), and drivetrain torque and speed constraint equations all using
appropriate vehicle parameters. A comprehensive derivation of the low computa-
tional cost vehicle model is available in a previous publication from our research
group [5].

For a PHEV Optimal EMS DP derivation, the state is chosen to be the SOC, the
control is chosen to be the engine power ðPICEÞ, the exogenous input is the vehicle
(v), and the cost is chosen to be the fuel mass required ðmfuelÞ. This formulation
with the added feasibility constraints for a PHEV yields the following modified
equations:

SOCðkþ 1Þ ¼ SOCðkÞþ f ðSOC;PICE; v; kÞDt ð5Þ

Cost ¼
XN�1

k¼0

f ðSOC;PICE; v; k;DtÞ ð6Þ

SOCmin � SOCðkÞ� SOCmax ðk ¼ 0; . . .NÞ ð7Þ

PICE;min �PICEðkÞ�PICE;max ðk ¼ 0; . . .N � 1Þ ð8Þ

A timestep of Dt ¼ 1 s and a discretization of DSOC ¼ 0:02% DPICE ¼ 0:1 kW
were chosen, and the resulting control map solution is incorporated into the
high-fidelity Autonomie simulation using a 2-D lookup table Simulink block.

Note: The initial SOC value is chosen to be 23% with a charge sustaining value
of 20%. This ensures there will be a surplus of battery power to be used while also

Fig. 5 A power-split PHEV schematic showing operation in parallel mode (propulsion power
from mechanical, electric, or both) and series mode (propulsion power from the engine stored in
the battery)
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ensuring that engine power must be used for all drive cycles investigated. FE will
be improved by using all excess battery power (ending the drive cycle at 20% SOC)
while using engine power only when necessary.

4.2 Optimal EMS Results

When comparing the desired engine power of the Baseline EMS to the desired
engine power of the Optimal EMS (shown in Fig. 6), it is apparent that for each of
the drive cycles, an engine power around 20 kW is often optimally efficient.
However, an application of 20 kW of engine power is only efficient at certain
speeds, which are known to the Optimal EMS from drive cycle prediction.

When comparing the battery SOC from the Baseline EMS and the Optimal EMS
(Fig. 7), it is apparent that the Optimal EMS ends the drive cycle at the minimum
allowable value. Since the Baseline EMS does not use drive cycle end information,
it is at a significant disadvantage.

FE improvements are shown in Fig. 8 and are calculated as

FE Improvement ¼ NewFE� Baseline FE
Baseline FE

ð9Þ

An Optimal EMS provided the largest FE increase in city drive cycles (UDDS
and NYCC) which have frequent accelerations and decelerations. For aggressive

Fig. 6 A comparison of the engine power used by the Baseline EMS and the engine power used
by the Optimal EMS
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and highway drive cycles, there is less freedom in powertrain operation due to high
power demand, resulting in less dramatic FE improvements.

5 Planning Method 2: Eco-Driving

Eco-Driving enables FE improvements by modifying vehicle speed along a fixed
drive cycle. Eco-Driving can be communicated and encouraged to the driver in a
variety of ways including driver training, vehicle dashboards, smartphone appli-
cations, and pedal feedback [78] (examples shown in Fig. 9).

Fig. 7 A comparison of the battery SOC results from the Baseline EMS and the battery SOC
results from the Optimal EMS

Comparison of Baseline EMS and Optimal EMS Fuel Economy

0 10 20 30 40 50 60
Fuel Economy Improvement (%)

HWFET

US06

NYCC

UDDS

Fig. 8 A comparison of the Baseline EMS fuel economy results and the Optimal EMS fuel
economy results
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Eco-Driving can be formulated using an optimal control approach as

min : PpropðkÞ ð10Þ

subject to : time constraints ðe:g: ttotal � tmaxÞ ð11Þ

safety constraints ðe:g: v� vspeed limitÞ ð12Þ

operational constraints ðe:g: a� alimitÞ ð13Þ

However, in this formulation, it can be difficult to incorporate real-world con-
straints such as traffic lights, other vehicles, and pedestrians. Because of this dif-
ficulty, rules have been extracted from studying the results of optimal control
problems. The rules are typically generalized as eliminating full stops, maintaining
a constant speed, limiting acceleration, and smoothing the velocity profile [78–82].
Each of these rules will be examined independently by eliminating stops in the
UDDS drive cycle, maintaining a more constant speed in the NYCC drive cycle,
limiting acceleration and deceleration in the US06 drive cycle, and smoothing the
velocity in the HWFET drive cycle. The FE results will not be as drastic as when all
methods are combined, but instead will shed light on the relative importance of
each rule.

5.1 Deriving Eco-Driving Strategies

To study the effect of removed stops from drive cycles, the UDDS drive cycle was
modified by removing velocities below 15 mph while preserving the overall drive
cycle distance. This modified drive cycle is compared to the original as shown in
Fig. 10a. Note that in Fig. 10b, the acceleration magnitudes remain approximately

(a) (b)

Fig. 9 Eco-Driving achieves a FE improvement through lower energy driving which is
encouraged by driver feedback. An existing implementation of this feedback from a 2012
Chevrolet Volt dashboard is shown (a) as well as a proposed general advice image from the
literature [79] (b)
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the same except for a few reductions. The engine power also remains relatively
unaffected as shown in Fig. 10c, and the battery SOC has a similar profile but ends
at a higher value of SOC.

To study the effect of a more constant velocity, the NYCC drive cycle was
modified by increasing the speed in some sections and reducing speeds in other
sections while preserving the overall drive cycle distance. This modified drive cycle
is compared to the original in Fig. 11a. These modifications significantly affect the
acceleration, as shown in Fig. 11b, but the reductions in acceleration contribute to
the improved performance. Figure 11c shows a drastically different engine power
used by the Baseline EMS for the modified NYCC drive cycle. Engine power is
increased in some areas and decreased in other areas. Figure 11d shows that the
SOC ends at a significantly higher value, which is not ideal for a PHEV seeking to
end the drive cycle at the lowest possible value of battery SOC.

To lower the propulsive power required in aggressive driving, the acceleration
and deceleration magnitudes can be reduced. To study this effect, the US06
aggressive drive cycle was modified by limiting the acceleration magnitude to
below 1.5 m/s2 and above the deceleration rate of −1.5 m/s2 while preserving the
overall drive cycle distance, which is shown in Fig. 12b. Reducing acceleration
magnitudes has the favorable effect of reducing peak engine power (Fig. 12c).
Figure 12d shows a smoother SOC profile resulting from the reduced acceleration
magnitudes.

To study the effect of velocity smoothing, the HWFET drive cycle can be
modified by aggressively smoothing the velocity profile while preserving the
overall drive cycle distance. This modified drive cycle is compared to the original as
shown in Fig. 13a. This drive cycle modification has a drastic effect on the drive

Fig. 10 A comparison of the changes that occur along the drive cycle and in vehicle operation
when removing stop and go driving from the UDDS drive cycle
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cycle acceleration as shown in Fig. 13b. For much of the drive cycle, the accel-
eration magnitude is almost completely eliminated. When the drive cycle is
smoothed, the engine operation is also smoothed as shown in Fig. 13c, although the
overall shape of engine power remains consistent. Also, by smoothing the drive
cycle, the battery SOC remains consistent as shown in Fig. 13d.

Fig. 11 A comparison of the changes that occur along the drive cycle and in vehicle operation
when making vehicle speed more consistent along the NYCC drive cycle

Fig. 12 A comparison of the changes that occur along the drive cycle and in vehicle operation
when limiting acceleration and deceleration rates along the US06 drive cycle
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5.2 Eco-Driving Results

Figure 14 demonstrates that significant FE improvements can be realized by
eliminating stops and by reducing acceleration/deceleration magnitudes, both of
which reduce the total energy expended during the drive cycle. Driving at a more
constant speed, as demonstrated in the NYCC drive cycle, can provide moderate FE
improvements, while smoothing the velocity profile provides a small FE
improvement.

Fig. 13 A comparison of the changes that occur along the drive cycle and in vehicle operation
when smoothing the drive cycle velocity along the HWFET drive cycle

Comparison of Baseline Drive Cycle and Eco-Driving Cycle Fuel Economy

0 2 4 6 8 10 12
Fuel Economy Improvement (%)

HWFET

US06

NYCC

UDDS

Fig. 14 Fuel economy results for removing stops along the UDDS drive cycle, creating a more
constant speed along the NYCC drive cycle, limiting acceleration and deceleration rates along the
US06 drive cycle, and smoothing the velocity profile for the HWFET drive cycle
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6 Planning Method 3: Eco-Driving and an Optimal
Energy Management Strategy

Combining Eco-Driving with an Optimal EMS has received little attention in the
literature, but could result in FE increases beyond what is possible from either
strategy alone. Removing drive cycle power restrictions through Eco-Driving
provides an Optimal EMS with even greater freedom for FE improvements.

6.1 Eco-Driving and an Optimal EMS Results

For the Eco-Driving drive cycles, as with the baseline drive cycles, the
Optimal EMS most often seeks an engine power of approximately 20 kW. In the
UDDS and US06 drive cycles, significant engine power reductions are achieved,
while in the NYCC and HWFET drive cycles, significant engine power increases
are achieved as shown in Fig. 15.

Knowledge of the entire drive cycle in advance allows a final battery SOC of
20% to be achieved for all drive cycles. Since there is no adjusted FE penalty that
must be calculated for PHEVs since they are designed to end at the minimum SOC,
this provides a significant FE benefit. Note that in the highway drive cycle, there is
significantly more SOC fluctuation from only running the engine at 20 kW.

The FE improvements from Eco-Driving combined with an Optimal EMS are
significant. For the NYCC drive cycle, the regions of constant vehicle speed

Fig. 15 A comparison of the engine power used by the Baseline EMS along the Eco-Driving
drive cycle and the engine power used by the Optimal EMS along the Eco-Driving drive cycle
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provided from Eco-Driving allow the Optimal EMS to achieve high powertrain
efficiency and realize significant FE benefits. Additionally, knowledge of the drive
cycle allows perfect utilization of battery energy, which is lost from Eco-Driving
alone (Fig. 16b). A similar phenomenon is observed for the UDDS and US06 drive
cycles. Conversely, the HWFET drive cycle realized a FE benefit but at the expense
of wild battery SOC fluctuations which may impact battery life (Fig. 17).

6.2 Comparing Planning Strategies

When comparing all three vehicle control strategies enabled by connected and
autonomous lithium-ion electric vehicles, it is apparent (from Fig. 18) that the
largest FE improvements are possible when combining Eco-Driving with an

Fig. 16 Battery SOC for a UDDS, b NYCC, c US06, and d HWFET

Comparison of Baseline Drive Cycle, Baseline EMS and Eco-Driving Cycle, Optimal EMS Fuel Economy

0 10 20 30 40 50 60 70 80 90 100
Fuel Economy Improvement (%)

HWFET

US06

NYCC

UDDS

Fig. 17 Fuel economy results for various aspects of Eco-Driving combined with an Optimal EMS
along the UDDS, NYCC, US06, and HWFET drive cycles
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Optimal EMS while the next largest FE improvements are achieved using the
Optimal EMS on the baseline drive cycle. Note that the Eco-Driving FE
improvements are from individual investigation of Eco-Driving rules, and if all
rules were to be combined, the Eco-Driving FE improvement would be more
significant. Additionally, city drive cycles with velocities modified to be consistent
speeds or with stop elimination provide large FE improvements from an
Optimal EMS. Limiting acceleration and deceleration rates in aggressive drive
cycles provides double the FE improvement from an Optimal EMS. Smoothing
vehicle velocity during highway drive cycles provides a marginal FE improvement
increase from an Optimal EMS.

7 Conclusions

When CAV technologies are combined with lithium-ion electric vehicle technol-
ogy, new vehicle control strategies that improve FE are possible. In this chapter, a
review of CAV technologies, lithium-ion electric vehicle modeling techniques, and
three control strategies for improved FE were presented. The results demonstrate
that significant FE gains can be achieved through the realization of an
Optimal EMS, Eco-Driving, and from the combination of an Optimal EMS and
Eco-Driving.

0 10 20 30 40 50 60 70 80 90 100
Fuel Economy Improvement (%)

HWFET

US06

NYCC

UDDS

Comparison of Baseline and All Control Strategies

Baseline Drive Cycle, Optimal EMS
Eco-Driving Cycle, Baseline EMS
Eco-Driving Cycle, Optimal EMS

Fig. 18 FE results comparing the FE improvements from a baseline drive cycle with a
Baseline EMS to: (top bar) a baseline drive cycle with an Optimal EMS, (middle bar) an
Eco-Driving drive cycle, with a Baseline EMS, and (bottom bar) an Eco-Driving drive cycle with
an Optimal EMS
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Although there are several CAV technologies that are not currently available, it
may be possible to achieve significant portions of these FE benefits today. As more
vehicles incorporate electrification and CAV technologies, these FE improvements
will be easier to achieve, thus helping to achieve transportation sustainability.
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