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Chapter 1
Pharmacokinetic Aspects of  
Regional Tumor Therapy

Martin Czejka and Marie Kathrin Kitzmüller

1.1  Introduction

The aim of a safe and efficient drug therapy is to direct the agent 
as near as possible to its target where it generates its maximum 
pharmacological effect while keeping side effects at a minimum.

Contrary to effects of a drug on the organism (pharmacol-
ogy), the organism itself exerts an effect on the fate of a drug in 
man in a time-dependent manner. This pharmacokinetic fate 
comprises absorption, distribution, metabolism, and complete 
elimination from the body (ADME).

Although these processes are rather complex and determined 
by various endogenous and exogenous factors, pharmacokinetic 
parameters for each single drug are available. Table 1.1 gives an 
overview for the most relevant parameters for clinical 
evaluation.
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The concentration of a drug in the target organ can be 
increased by using special applications such as regional drug 
administration. By changing the actual physiological conditions 
of the target organ (for instance by occlusion of a blood vessel), 
regional administration increases the absorption rate of the che-
motherapeutic agent from the blood into tumor tissue. As a 
consequence, blood flow is decreased through the affected 
organ, and tissue-extraction rate is accelerated or increased.

So regional administration combined with a temporary 
occlusion of the supplying vessels is a valuable therapeutic 
option, especially for the chemotherapeutic treatment of liver 
tumors and liver metastases, respectively.

1.2  Hepatic Blood Flow (Qhep)

The perfusion of the liver is a main factor of the regional admin-
istration. Hepatic blood flow is the sum of portal vein (1050 mL/
min) and common hepatic artery (300 mL/min) blood flow. 
Therefore Q

hep
 is about 1500 mL/min (≈ 90 L/h).

Table 1.1 Clinical relevant pharmacokinetic parameters [1]

PK 
parameter Dimension Relevance

t
1/2

zp Time Transfer from blood to deep 
compartment

t
1/2

el Time Elimination half-life from the 
body

C
max

Concentration/volume Peak concentration in blood or 
tissue

t
max

Time Time to reach C
max

AUC Concentration/
volume × time

Area under concentration–time 
curve

Cl
tot

Volume/time Total body clearance
V

d
Volume Volume of distribution
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1.3  Hepatic Extraction Rate (Ehep)

E
hep

 is calculated as follows by the arterial and venous drug 
concentration during liver passage.

Ehep
arterial venous

arterial
freedrug fr

conc conc

conc
Cl conc=

-
= ´ eeedrug

E
hep

 ranges from 0.0 (=no extraction) to 1.0 (=complete 
extraction). An E

hep
 of 0.8 indicates the elimination and metabo-

lism of 80% of the drug entering the liver leaving 20% of the 
administered drug to exit the liver through the liver veins.

1.4  Hepatic Clearance (Clhep)

Cl
hep

 is defined as the volume of blood passing through the liver 
that is cleared from a compound per time. Hepatic clearance is 
based on the whole-body clearance minus the renal clearance 
and the mostly quantitative not relevant non-hepatic, non-renal 
clearance by other organs (e.g., the skin or lung). Cl

hep
 depends 

on the blood flow through the liver, the liver cell mass, and the 
activity of drug-metabolizing enzymes. It is the product of E

hep
 

and the blood flow through the organ (Q
hep

).

Clhep hep hep= ´Q E

Considering the hepatic extraction of a drug, its tissue pene-
tration does not only depend on physiological conditions (as 
already mentioned) but also on the physicochemical properties 
of the molecule as well. Besides the drug there are some other 
factors with impact on the hepatic clearance (see Table 1.2).
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Despite their chemical heterogeneity, a number of different 
cytostatic agents can be used for regional intra-arterial treatment 
(see Table 1.3). The most important assumption for the drug is 
a so-called first-pass metabolism or first-pass effect. Per defini-
tion first-pass effect is the sum of all processes (distribution and 
metabolism) occurring during the first liver passage of a drug 
before the drug reaches systemic blood circulation and becomes 
available in the whole body. New investigational approaches 

Table 1.2 Factors that have an influence on E
hep

 of a drug

Parameter Mechanism

Blood flow Distribution rate
Tissue uptake Absorption mechanism (diffusion, active transport)
Protein binding Intravascular depot
Liver diseases Altered vascularization, dysproteinemia
Cytostatic Physicochemical properties (lipophilicity, pk value, 

ionization)
Metabolism (phase I and II)

Occlusion 
method

Means and duration of occlusion, amount of particles

Table 1.3 Pharmacokinetic parameters (after i.v. administration) of cyto-
static agents that are suitable for intra-arterial administration due to their 
first-pass effect [4–7]

Drug V
d
 [L] Cl

tot
 [L/min] t

1/2
 [h] Metabolism

Doxorubicin ≈1500 1.2 30 Liver
Epirubicin ≈2000 1.2 35 Liver
5-fluorouracil 16 2.0 0.3 Ana-, catabolism
Irinotecan 200–400 0.5 15 Liver
Mitomycin C ≈50 1.1 0.6 Blood metabolites
Pt-agents 30 (UF*) 0.04 150 Blood metabonates
Gemcitabine 85 0.8–1.5 0.5–1.5 Liver, leucocytes
Carmustine 250 ≈4.2 1.5 Metabonates
Paclitaxel 800 2200 50 Liver

*UF ultrafiltrate
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represent the combination of HAI irinotecan plus 5-fluorouracil, 
oxaliplatin, and intravenous cetuximab or bevacizumab [2, 3].

By comparing the intra-arterial/intravenous AUC ratio, che-
moembolization leads to a therapeutic advantage (TA), calcu-
lated as follows:

TA

AUC

AUC
AUC

AUC

i a

i v

hep

blood

hep

blood

=
. .

. .

In comparison to i.v. administration, decreasing hepatic per-
fusion results in a higher regional distribution rate.

RA
Cltot

hep hep

= +
´ -( )

1
1Q E

Regional application combines decreasing side effects and 
higher levels of toxicity (increased apoptosis rate) [8]. The RA 
gets more intense the faster the cytostatic distributes into the 
tissue and the higher its extraction rate from the body.

1.5  Pharmacokinetic Data Using Degradable 
Starch Microspheres (DSM)

A successful embolization can be characterized by comparing 
the main pharmacokinetic parameters with data obtained after 
conventional administration. AUC

last
 and C

max
 are the most suit-

able values for calculating the shift of the drug’s concentration 
from the blood to the tissue.
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Depending on the chemotherapeutic agent, the administra-
tion of DSM leads to a decrease of systemic circulation from 20 
to 60%. It is the most important requirement that the chemo-
therapeutic does not bind to DSM or red blood cells [9].

So far most of the studies concerning pharmacokinetic data 
of cytostatic agents after the embolization of the common 
hepatic artery used DSM. The findings in Table 1.4 from sev-
eral studies show between 19 and 98% reductions in plasma 
drug concentrations. The reduced systemic drug exposure may 
be seen as an increased first-pass extraction during the pro-
longed time of the drug in the occluded target area. The higher 

Table 1.4 Mean reduction of plasma AUC in patients with HCC using 
DSM

Drug Tumor type
AUC 
decrease (%)N References

Mitomycin C Primary and 
secondary 
liver cancer

33 87 [10, 13–17]

Doxorubicin Primary and 
secondary 
liver cancer

19 5 [18, 19]

Carmustine (BCNU) Primary and 
secondary 
liver cancer

62 5 [11]

Fotemustine Primary and 
secondary 
liver cancer

53 4 [20]

5-FU Primary and 
secondary 
liver cancer

38 8 [21]

Floxuridine Colorectal liver 
metastasis

34 3 [16]

Cisplatinum Colorectal liver 
metastasis

38 4 [22]

Cisplatinum and 
sodium 
thiosulfate

Head and neck 
cancer

98 6 [23]
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first- pass extraction of the drug in the target compartment will 
lead to a lower dose of drug reaching the systemic circulation 
and subsequently to fewer side effects [10, 11]. Besides the 
chemotherapeutics given in Table 1.4, one of the most cur-
rently irinotecan is administered intra-arterial after chemoem-
bolization as well [12]. Irinotecan (CPT-11) is a pro-drug and 
needs to be activated in the body. The drug shows poor affinity 
to the responsible enzyme (human carboxy esterase), therefore 
only small amounts of the pharmacologic active metabolite 
SN-38 are formed (about 10% of the parent compound). This 
activation can be improved by regional administration to the 
liver leading to higher amounts of SN-38 in the blood and 
tissue.

Numerous investigations characterized the combination of 
mitomycin C (MMC) with different amount of DSM. The AUC 
ratio is relatively consistent from 0.55 to 0.80 as can be seen in 
Table 1.5. Administration of 60 mg DSM did not show any 
effect, obviously this amount was too low for any occlusion of 
blood vessels.

More data about the distribution of other cytostatic agents 
into tumor and healthy tissue using DSM in animals and patients 
are in Tables 1.6 and 1.7. Table 1.6 gives an overview of experi-
mental findings in animals.

Table 1.5 Average AUC ratio, measured as peripheral plasma AUC of 
MMC with and without DSM in patients with HCC

DSM [mg] MMC (mg/m2) N AUC ratio 95% CI References

360 15 36 0.74 0.62–0.87 [10]
360 10 6 0.70 0.55–0.88 [13, 15]
900 5–10 11 0.61 0.47–0.80 [13, 15]
540 3 7 0.73 0.62–0.86 [15]
900 9 10 0.55 n.s. [14]
360 10 3 0.80 n.s. [16]
450–900 18 14 0.55 n.s. [17]
 60 20 7 No effect n.s. [24]

n.s. not specified
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Table 1.7 presents data of human biopsy samples indicating 
that DSM leads to an increased uptake of drug into tumor tissue. 
Intra-arterial application of DSM and a cytotoxic drug leads to 
an increased drug concentration in the tumor compartment as 
well as DSM-induced increase of tumor versus normal tissue 
drug concentration ratio.

1.6  Further Chemoembolization Tools

Besides DSM other materials for chemoembolization have been 
developed recently. In transarterial chemoembolization (TACE) 
DSM, polyvinyl alcohol polymers, Gelfoam, and gelatin-based 
microspheres (Embosphere) are used to keep systemic circulation 
of a chemotherapeutic at a minimum. Polyvinyl alcohol polymers 
and superadsorbent polymer microspheres (SAP, HepaSphere®, 
QuadraSphere®) can be loaded with a compound to become drug-
eluting beads (DEB, DEBDOX, DEBIRI). In the following 

Table 1.6 Ratio of cytostatic drugs in tumor and healthy liver tissue (with 
and without DSM) in vivo (rat, rabbit)

Species Tumor type Drug

Tumor/liver ratioa

References
Without 
DSM

With 
DSM

Rabbit Liver 5-FU 0.63 3.59 [25]
Rat Liver 5-FU 0.38 2.25 [26]
Rat Liver Doxorubicin 1.3 8.3 [27]
Rabbit Liver Doxorubicin 0.25 1.24 [28]
Rabbit Liver Doxorubicin 0.4 1.01 [29]
Rat Liver Tauromustine 0.47 2.16 [30]
Rabbit Liver Carboplatin 0.94 6.81 [31]
Rat Lung Carboplatin 1.19 2.11 [32]
Rat Liver Docetaxel 0.67 1.38 [33]
aSubstance-dependent measurements, intervals from 15 to 480 min
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Tables 1.8, 1.9, 1.10, and 1.11, various agents used for chemoem-
bolization and their effect on maximum plasma concentrations of 
antineoplastic drugs as well as corresponding tumor concentra-
tions and tumor/liver ratios in animals and patients are listed.

Combination of DSM or other occlusion agents and chemo-
therapy i.a. reduced systemic exposure to chemotherapy in ani-
mals and patients manifested not only in pharmacokinetic 
parameters but also in reduced hematological toxicity [10]. 
Comparative pharmacokinetic studies between various occlu-
sion agents still need to be investigated in further studies. In 
conclusion, chemoembolization with DSM and other agents is a 
valuable therapeutic option in palliative and neo-adjuvant medi-
cine as evident in the following chapters.

HAI administration of superparamagnetic nanoparticles 
makes it possible to visualize the distribution mechanism from 

Table 1.8 Effects of different permanent embolization materials on maxi-
mum plasma concentrations in animals

Drug Species Material
Tumor 
type

Reduction 
of C

max
 in 

plasma References

Carboplatin Rabbit Embosphere Liver 84% after 
30 min

[35]

Rabbit DEBDOX Liver 82% after 
20 min

[36]

Doxorubicin Rabbit QuadraSphere Liver 54% after 
10 min

[37]

Irinotecan
SN-38

Sheep DEBIRI Lung 80% after 
10 min

No effect

[38]

Irinotecan
SN-38

Rabbit DEBIRI Liver 48% from 
10 to 
60 min

34% after 
2 h

[39]
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Table 1.9 Effects of different permanent embolization materials on con-
centration in tumor tissue and on tumor/liver ratios in animals

Drug and 
embolization 
material

Tumor 
type Species

Mean tumor 
concentration Tumor/liver ratio

References
i.a. 
[μg/g]

i.a. with 
embolization 
[μg/g] i.a.

i.a. with 
embolization

Carboplatin
5 mg/kg
(Embosphere)

Liver Rabbit 4.01 20.33 1 2.5 [35]

Doxorubicin
11.25 mg
(DEBDOX)

Liver Rabbit 58 239.5 n.s. n.s. [36]

Doxorubicin
5 mg
(DEBDOX)

Liver Rabbit n.s. 26.1 n.s. 17.8–16.1 [40]

Doxorubicin
4 mg
(QuadraSphere)

Liver Rabbit 153.4 196.5 n.s. n.s. [37]

Irinotecan
12 mg
(DEBIRI)
SN-38

Liver Rabbit 0.497
0.062

0.872
0.351

n.s. n.s. [39]

n.s. not specified

Table 1.10 Effects of different permanent embolization materials on maxi-
mum plasma concentrations in patients

Drug Material Tumor type
Mean AUC 
reduction References

Doxorubicin
25–100 mg/m2

DEBDOX Untreated large/
multifocal HCC 
patients

57% after 
0–7 days 
(compared to 
conventional 
TACE)

[41]

Doxorubicin
25–75 mg/m2

Drug-eluting 
SAP- 
microspheres

Unresectable HCC 
patients

58% after 0–3 h 
(compared to 
conventional 
TACE)

[42]

Oxaliplatin
25–100 mg

HepaSphere Colorectal liver 
metastasis and 
intrahepatic 
cholangiocarcinoma 
patients

45% after 
0–7 days 
(compared to 
FOLFOX)

[43]
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the blood to the liver by magnetic resonance imaging. Besides, 
these particles are capable of drug targeting as a drug carrier 
[45]. The role of Kupffer cells in drug distribution into the liver 
has been discussed recently [46].

Another alternative chemotherapy strategy comprises HAI 
plus chemoembolization plus administration of liposomal drug 
preparations. This has been investigated for paclitaxel [47] and 
fluorouracil [26] in tumor-bearing rats.

The advantage of transarterial chemoembolization (TACE) 
combined with drug-eluting beads (DEB) versus conventional 
TACE treatment has been discussed to show a lower associated 
toxicity, due to reduced systemic drug circulation [48].
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