
The Choice of Code Review Process: A Survey
on the State of the Practice

Tobias Baum(B) , Hendrik Leßmann, and Kurt Schneider

FG Software Engineering, Leibniz Universität Hannover, Hannover, Germany
{tobias.baum,hendrik.lessmann,kurt.schneider}@inf.uni-hannover.de

Abstract. Code review has been known to be an effective quality assur-
ance technique for decades. In the last years, industrial code review
practices were observed to converge towards “change-based/modern code
review”, but with a lot of variation in the details of the processes. Recent
research also proposed hypotheses on factors that influence the choice of
process. However, all current research in this area is based on small and
largely non-random samples of cases. Therefore, we set out to assess the
current state of the practice and to test some of these hypotheses with
a survey among commercial software development teams. We received
responses from 240 teams. They support many of the stated hypothe-
ses, e.g., that change-based code review is the dominating style of code
review in the industry, and that teams doing change-based code review
have a lower risk that review use fades away. However, other hypotheses
could not be confirmed, mainly that the balance of effects a team tries to
reach with code reviews acts as a mediator in determining the details of
the review process. Apart from these findings, we contribute the survey
data set as a foundation for future research.

Keywords: Code reviews · Code inspections and walkthroughs ·
Change-based code review · Modern code review · Empirical software
engineering

1 Introduction

Code review is a well-established method of software quality assurance. Several
researchers noted that, in recent years, change-based review1 has become the
dominant style of code review in practice [8,24]. The main characteristic of
change-based review is the use of code changes performed in a unit of work, e.g.,
a user story, to determine the scope of the review. This is often combined with
the replacement of management intervention through conventions or rules for
many decisions [8], making a review planning phase [22] largely obsolete.

However, recent quantitative information on the use of different review
practices in the industry is largely missing. Furthermore, it is important for

1 Also called “modern code review”, “differential code review” or “patch review” in
other publications.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 111–127, 2017.
https://doi.org/10.1007/978-3-319-69926-4_9

http://orcid.org/0000-0003-3623-5349

112 T. Baum et al.

researchers trying to improve development processes to know what mechanisms
influence process choices in practice. Although previous research has put for-
ward hypotheses on the benefits of change-based code review and reasons for
the choice of a review process, these have not yet been verified on a larger sam-
ple. Consequently, the purpose of this article is to test hypotheses on industrial
code review use and the use of change-based code review in particular and to
provide further empirical data on current review practices.

Specifically, we selected three research questions based on hypotheses put
forward in our and others’ earlier research, all relating to how review processes
are shaped in the industry and why they are shaped that way:

RQ1 How prevalent is change-based review in the industry? (based on [8,24])
RQ2 Does the chance that code review remains in use increase if code review is

embedded into the process (and its supporting tools) so that it does not
require a conscious decision to do a review? (based on [9])

RQ3 Are the intended and acceptable levels of review effects a mediator in
determining the code review process? (based on [9])

To answer these questions, we conducted an online survey among commer-
cial software development teams. We will further concretize the questions and
derive testable sub-hypotheses in Sects. 4.1, 4.2 and 4.3. In addition to answer-
ing the research questions, we give some descriptive statistics from the survey
and we note some findings on review process characteristics and the use of read-
ing techniques in Sects. 4.4 and 4.5. A secondary contribution of the study is
the questionnaire instrument used to assess a team’s review process, which we
publish along with the full survey data for reuse in future research [7].

2 Related Work

As described in the previous section, the hypotheses we test in the current arti-
cle stem from earlier research, mainly the summary of converging code review
practices by Rigby and Bird [24] and the Grounded Theory study on code review
use by parts of the current article’s authors and others (Baum et al. [8,9]).

The most recent academic survey on the state of review practices we are
aware of was published by Ciolkowski, Laitenberger, and Biffl in 2003 [13], with
partial results also published in a technical report [21]. This survey targeted not
only code review, but also reviews in other lifecycle phases. Its authors found a
share of 28% of the 226 respondents using code reviews. We will discuss some
similarities and differences between their and our survey in Sect. 6.

Bacchelli and Bird [2] surveyed expectations regarding code review at
Microsoft and found a set of intended effects similar to the ones we are using. A
recent survey on software testing practices by Winter et al. [30] briefly touches
upon reviews and notes that 52% of the respondents often or always perform
reviews for source code.

The Choice of Code Review Process 113

Looking beyond the academic literature, there are some more recent surveys
that contain information on code review practices. A whitepaper written in 2010
by Forrester Consulting [15] for Klocwork, a company selling a code review tool,
notes that 25% of the 159 survey respondents use a review process that we would
describe as “regular, change-based code review” [8].

A survey performed in 2015 by Smartbear [26], another company selling code
review software, contains information on code review practices and perceptions
on code quality from about 600 respondents. Like the Forrester study, it contains
very little information on the sampling method and possible biases. It states that
63% of their respondents are doing tool-based code review.

Compared to the small number of surveys, there is a lot more qualitative and
case study research on code review practices and we can just name a few here.
Baker [3] gave an early description of a change-based code review process in the
industry and Bernhart et al. [11] describe its use (under the term “continuous
differential code review”) in airport operations software. Other small-scale stud-
ies of code review and inspection practices in the industry have been performed
by Harjumaa et al. [17] and by Kollanus and Koskinen [19].

A survey by Bosu and Carver studied the impact of code review on peer
impression in open source projects [12]. Peer review practices in open source
software development have been studied intensively in the last decade, with
further contributions for example by Asundi and Jayant [1], Rigby and Storey
[25], Wang et al. [29], Thongtanunam et al. [28] and Baysal et al. [10].

3 Methodology

Our goal was to reach out to a large number of commercial software development
teams. We used (online) survey research as our main vehicle. In the following,
we describe details of the planning, execution, and analysis of the survey.

3.1 Participant Selection

Our research questions deal with the code review practices and context of com-
mercial software development teams. Consequently, our target population con-
sists of all commercial software development teams.

As there is no repository of all software development teams, a controlled ran-
dom sampling of participants was not possible. Instead, we relied on a number
of communication channels to reach possible participants: We directly contacted
32 people belonging to the target population from our personal networks. We
further asked 23 people outside the target population from our networks to adver-
tise the survey. We posted the survey invitation to several online communities,
on Twitter, Xing, and Facebook; and also advertised the survey at a German
software engineering conference. Finally, we posted the invitation on some mail-
ing lists. Probably the most important single channel was a post on the mailing
list of the German software craftsmanship communities (“Softwerkskammer”),
reaching out to roughly 1400 people. When selecting channels, we took care

114 T. Baum et al.

to avoid introducing bias on the type of review process used. Specifically, we
decided against sampling GitHub users, and we turned down an offer to spread
our invitation to a mailing list of former participants of a series of review courses.
In Sect. 5, we discuss the remaining risk of sampling bias.

Since we were not able to exactly control who was answering the survey, we
included a filter question at the start of the survey and excluded participants not
working in a commercial software development team. Our intended granularity
of sampling was teams. As our survey was conducted anonymously, we could not
tell whether two respondents come from the same or different teams. We told
survey participants that we only want one response per team and asked them
to only forward the invitation to people in other teams or companies. When
inviting participants directly, we took care to only invite one person per company.
Nevertheless, there is a risk that the sample includes several respondents from
the same team.

3.2 Questionnaire Creation and Pilot Tests

Most parts of the survey were created based on existing qualitative empirical
research, mainly the classification scheme for change-based code review processes
by Baum et al. [8] and the collection of contextual factors influencing review
process choices by the same authors [9].

The process of survey creation followed established guidelines [18,27]. To ease
answering and analyzing the survey, we mainly used multiple choice and numeri-
cal questions. Many questions contained an “Other” option to allow participants
to specify missing options in free-text. The instrument was self-contained and
it included all relevant information, for example by giving a definition of code
review (from [8]) when asking for the use of code review in the team.

Based on our sampling strategy, we expected the main share of participants
to come from Germany and a mix of other countries for the remaining share.
Therefore, we decided to create a German as well as an English version of the
survey, following the rationale that it is better to have a consistent, pre-tested
translation instead of demanding translation effort from each participant.

Following guidelines for survey research [27], we tried to reuse questions from
existing surveys, but only a limited number of questions from the first version
of the HELENA survey [20] could be reused after some adjustments.

To ensure that the survey questions were comprehensible and valid with
respect to the study constructs, we iteratively tested and refined the question-
naire. Initial testing of the research and survey questions was performed among
the authors of this article. We used a checklist distilled from existing guidelines
to check each survey question. This was followed by 6 rounds of pre-tests, 4 of
these with members of the target population and 2 with members of our lab.
During each pre-test, a participant completed the survey, followed by a discussion
about possible problems and misunderstandings. For two of these pre-tests, we
had detailed knowledge about the process used by the team and could, therefore,
compare answers to our expectations. The final survey also allowed the partici-
pants to enter feedback on the survey, which we checked for possible problems.

The Choice of Code Review Process 115

The review process classification scheme [8] we used as a foundation consists
of 20 process facets, and we identified 16 potentially relevant contextual fac-
tors in our previous research [9]. It became evident early during questionnaire
creation that even if we restricted the survey to these two groups of questions,
it would become too long for the intended audience. Therefore, we limited the
questionnaire to a subset of the contextual factors and split the remaining ques-
tions into a main part and an optional extension part. Answering the main part
took around 15 min and answering the extension part additional 8 min in our
pre-tests. The exact number of questions differed depending on the answers of a
respondent, e.g., it was shorter for teams that have never used code reviews.

3.3 Data Collection and Instrument

We started data collection on February 22nd, 2017, and closed the survey on
March 20th, 2017. Invitations were sent out gradually during the first weeks.
The questionnaire was implemented using LimeSurvey, hosted by our university.

The survey questions can be roughly classified into four groups: (1) Demo-
graphics or filter questions (e.g., on the country, role of the participant or the
use of reviews), (2) questions on the context of the review process (e.g., product,
development process, team characteristics,. . .) (3) questions on the used review
process (based on [8]) and (4) ranking questions to assess the relative impor-
tance of intended and unintended review effects. The full instrument can be
found in our online material [7]. Most parts of the survey were confirmatory or
descriptive, but it also contained some exploratory parts, mainly on the non-use
of reviews. In the current article, we focus on the former.

We offered respondents the chance to leave an email address if they were
interested in the results of the survey. All participants that did this have been
informed about preliminary results some weeks after the survey closed.

3.4 Data Analysis

Our data analysis constitutes a mix of descriptive and inferential statistics. We
will describe the detailed analyses for the research questions in the respective
subsections of Sect. 4.

Multiple-choice questions that contained an “other” option with free-text
answers were coded for analysis. The free-text answers were either converted to
new categories or classified as belonging to one of the existing categories.

All but the filter questions were optional, to avoid forcing participants to
answer. We handled the resulting missing data by “pairwise deletion” (also called
“available case analysis”), i.e., we excluded participants only from those analyses
where data was missing for at least one of the needed questions. Consequently,
the total number of respondents taken into account differs between analyses.

Most statistical tests performed during analysis checked for a dependence
between two dichotomous variables. Unless otherwise noted, these 2× 2 contin-
gency tables were checked using Fisher’s exact test and statistical significance

116 T. Baum et al.

was tested at the 5% level. We perform Bonferroni correction when there are
multiple tests for a research question (i.e., for RQ3), but not between research
questions. When we give confidence intervals for proportions, they will be 95%
confidence intervals calculated using the Clopper-Pearson method. All percent-
ages will be presented rounded to the nearest integer.

The raw data of the survey, descriptive statistics for all questions, and the
source code used for data analysis is available in the study’s online material [7].

4 Results

In total, 240 respondents from the target population answered the survey.2 130
participants went on to answer the extension part after finishing the main part.
Due to our sampling method, we are not able to give a response rate, but we
will describe some characteristics of the sample in the following.

The respondents are working in 19 different countries. The majority of
respondents, 170 (76%), is from Germany. 33 respondents (15%) work in other
European countries, 11 (5%) in Asia (including the Middle East) and 11 (5%) in
Northern America.3 We distributed the survey invitation through various chan-
nels and asked the respondents how they heard about the survey. 19 respondents
(10%) were invited directly by one of the researchers, 30 (16%) were indirectly
invited by other people, 104 (55%) heard about the survey on a mailing list, 24
(13%) in an online forum and 13 (7%) named some other channel. When asked
about their role, 154 respondents (67%) said they mainly work as a developer,
50 (22%) work as architects, 14 (6%) as managers and 11 (5%) gave other roles.

The target population of this survey is teams in commercial software develop-
ment. Quite unsurprisingly, the large majority (94%, 215 teams) of the respond-
ing teams works on closed source software. The remaining share (14 teams) said
their team mainly works on an open source project. The teams work in compa-
nies of vastly differing sizes, from less than 10 to more than 10,000 employees;
Fig. 1 shows the detailed distribution of company sizes. 68% (148 of 217) of the
participants work in collocated (as opposed to distributed) teams.

We asked teams whether they are currently using code reviews. Teams not
using code reviews were subdivided further: Have they never used reviews before,
and if so have they never thought about it or did they explicitly decide against
review use? Or did they stop using reviews in the past, and if so was this an
explicit decision or did the review use “fade away” (i.e., end without an explicit
decision, just becoming less and less frequent over time)? Figure 2 shows the
results: With a share of 78% (186 teams), the majority of teams is currently

2 More precisely, 240 respondents answered at least the questions about being part
of the target population and about their team’s review use, which were the only
obligatory questions in the survey.

3 The remaining 15 did not answer this question. Unless otherwise noted, we only
include respondents that answered the respective questions in our analyses; conse-
quently, the total sum of respondents will differ between analyses.

The Choice of Code Review Process 117

0 10 20 30 40

1 to 10

11 to 25

26 to 50

51 to 100

101 to 250

251 to 500

501 to 1000

1001 to 10000

10001 or more

14

24

19

24

42

33

23

27

19

respondent count

Fig. 1. Company sizes (number of employees)

using code reviews.4 38 teams (16%) have never used code reviews so far, 8 of
them because there was an explicit decision against their use. In 16 teams (7%),
the use of code reviews ended, but in only one of those teams this was an explicit
decision. For teams that currently use code reviews, we asked how much time
ago they started using them. The results are shown in Fig. 3.

0 50 100 150 200

explicitly terminate

fade away

currently in use

explicitly no start

never thought about it

1

15

186

8

30

respondent count

Fig. 2. Use of reviews

4.1 The Dominance of Change-Based Code Review (RQ1)

A number of recent articles postulate that code review based on code
changes/patches is dominating in industrial as well as open-source practice
[8,24]. In this section, we provide quantitative empirical support for this claim
(RQ1) and study the prevalence of several more specific review styles.

To answer RQ1, we asked our participants how the review scope is deter-
mined: Based on changes, based on architectural properties of the software
(whole module/package/class) or in some other way (with free text for further
details). With a share of 90% (146/163; confidence interval 84–94%) of the teams
doing code reviews, a change-based review scope is indeed dominating.
4 This number is likely biased, see Sect. 5.

118 T. Baum et al.

0 20 40 60 80

less than 1 year

1 to 5 years

more than 5 years

47

87

23

respondent count

Fig. 3. Time that code review is in use

Table 1. Frequency of use of different styles of code review

Style Used approximation of definition
using survey constructs

Frequency of use

Review based on
code-changes

scope = changes 90% (146/163)

Regular,
change-based
code review [8]

scope = changes and trigger = rules 60% (96/160)

Contemporary
code review [24]

scope = changes and
publicness = pre-commit and
unit-of-work ≤ user-story

46% (61/133)

Pull-based
software
development [16]

scope = changes and trigger = rules
and publicness = pre-commit and
interaction = no-meeting

22% (29/134)

Approximating
Inspection [14]

interaction = meeting and
communication = oral + stored and
temporal-arrangement = parallel
and trigger = explicit

2% (3/141)

In the recent literature on code review and related work practices, there
are slightly differing definitions and descriptions of sub-styles of change-based
code review. Table 1 shows the frequency of use for “modern/contemporary code
review” [24], “regular, change-based review” [8] and “pull-based software devel-
opment” [16]. As not all of these sub-styles are concisely defined in the respective
publications, the table also shows how the definitions/descriptions were approxi-
mated in terms of constructs used in the survey. We will not discuss every detail
of the table, but want to note that most of the teams that do not fall under
Rigby and Bird’s description of contemporary code review do so because they
do not use pre-commit reviews (pre-commit: 46%, 61 teams; post-commit: 54%,
72 teams). There is only one respondent whose team uses a review scope that is
larger than a user story/requirement.

We did not focus on Fagan-style Inspection [14] in our survey and therefore
cannot completely tell whether a team uses a fully-fledged Inspection process

The Choice of Code Review Process 119

to review code. To estimate an upper bound on the number of teams doing
Inspection, we combined a number of necessary conditions that we would expect
to hold for those teams (see Table 1). Only 2% (3/141; confidence interval 0–6%)
of the teams have a process that approximates Inspection in that way.

Because much existing research on modern/change-based code review is
based on open-source development or agile teams, we also checked whether there
is a difference in the use of change-based review between open-source and closed-
source products and between agile and classic development processes. We did
not find a statistically significant difference in either case.

4.2 Change-Based Code Review and the Fading of Review Use
(RQ2)

This section mainly deals with Baum et al.’s hypothesis “Code review is most
likely to remain in use if it is embedded into the process (and its supporting
tools) so that it does not require a conscious decision to do a review.” [9]. More
specifically, we tested a subset of this hypothesis:

H2 The risk that code review use fades away depends on the mechanism that
is used to determine that a review shall take place: This risk is lower when
rules or conventions are used instead of ad-hoc decisions.

To test this hypothesis, we compare two sub-samples: Teams currently doing
code reviews, and teams where review use faded away. We also asked how it was
decided whether a review should take place: By fixed rules or conventions, or
ad-hoc on a case-by-case basis. For the ad-hoc triggers, we further distinguished
triggering by the reviewer, the author or a manager. There was the possibility
for respondents to select “other” and enter a free-text description.

Of 12 teams where review use faded away, 3 used rules or conventions and the
remaining 9 used ad-hoc decisions. For the 162 teams currently doing reviews, the
relation was 103 with rules/conventions compared to 59 without. Put differently,
the risk to be in the “fade away” subsample increases from 2.8% with rule triggers
to 13.2% with ad-hoc triggers, a risk ratio of 4.7. The exact Fisher test of the
corresponding 2× 2 contingency table results in a p-value of 0.01237, therefore
the difference is statistically significant at the 5% level. Table 2 shows the detailed
numbers for the different review triggers. An interesting side-note is that having
managers trigger reviews seems to be especially prone to discontinuation.

Another possible explanation for the higher share of teams with ad-hoc trig-
gers in the “fade away” subsample is a generation effect: Teams that introduced
reviews more recently could use rule triggers more often. Therefore, we com-
pared teams that have used reviews for less than a year with those that used
them for two years or more. Of 45 teams with brief review use, 25 use rules. For
teams with long review use, the share is 49 of 75. This higher share of rule-use
for longer review use supports H2 and opposes the stated generation effect.

120 T. Baum et al.

Table 2. Review triggers vs. review continuation

Trigger Reviews in use Review use faded away

Manager 7 3 (30%)

Reviewer 14 2 (13%)

Author 38 4 (10%)

Rules/conventions 103 3 (3%)

4.3 Rankings of Review Effects as a Mediator in Determining
the Review Process (RQ3)

In this section, we deal with another of Baum et al.’s [9] hypotheses: “The
intended and acceptable levels of review effects are a mediator in determining
the code review process.” (H3) More specifically, Baum et al. state that “Many
process variants are expected to promote certain effects, and often also to impair
others. . . . Consequently, the chosen review process is heavily influenced by the
combination of intended effects. Some effects are seen as more important than
others, while others are seen as secondary or not pursued at all. This is used to
perform trade-offs while designing the review process.” [9] Intended review effects
are for example “better code quality”, “finding defects” and “learning of the
reviewer”. Unintended effects are “[increased] staff effort”, “increased cycle time”
and “offending the author/social problems”. Following H3, we would expect to
find that the relative ranking of review effects influences the chosen variant for
some of the review process facets, that the team’s context influences the relative
ranking of review effects, and that this indirect effect is in most cases stronger
than the direct influence of context on review process facets.

Based on the addendum to Baum et al.’s article [6], we systematically checked
each of the listed combinations of review effect and process facet.5 For intended
review effects, none of the checked interactions were statistically significant, even
at the 10% level and without Bonferroni correction. For the relative ranking of
undesired effects, some of the predicted effects had p-values smaller than 0.05:

– When “increased staff effort” is most unintended this makes a “very small
review scope” (i.e., more overhead due to a higher number of small reviews)
less likely: Risk ratio = 2.2; p = 0.034. The detailed contingency table can be
found in Table 3.

– When “increased staff effort” is most unintended this makes “pull or mixed
reviewer to review assignment” more likely: Risk ratio = 1.6; p = 0.037. The
detailed contingency table can be found in Table 4.

– When “increased cycle time” is most unintended this makes “review meet-
ings” less likely: Risk ratio = 2.8; p = 0.006. The detailed contingency table
can be found in Table 5.

5 I.e. we did not check every possible combination, but only those where the prior
research gave reason to expect an influence.

The Choice of Code Review Process 121

Table 3. Contingency table: staff effort most undesired vs. small review scope

Small review
scope

Medium to large
review scope (≥Task)

Total

Increased staff effort most
undesired

5 19 24

Something else most
undesired

36 43 103

Total 41 62 103

Table 4. Contingency table: staff effort most undesired vs. review assignment

Push
assignment

Pull or mixed
assignment

Total

Increased staff effort most
undesired

12 20 32

Something else most
undesired

52 34 86

Total 64 54 118

Table 5. Contingency table: increased cycle time most undesired vs. review meetings

Meetings No meetings Total

Increased cycle time most undesired 6 40 46

Something else most undesired 27 46 73

Total 33 86 119

Those three interactions are also those with the highest risk ratio (i.e., effect
size). Even though they have p-values smaller than 0.05, none of them is sta-
tistically significant after Bonferroni correction. A complete list of all tested
interactions can be found in the study’s online material [7].

Summing up, only 3 of 30 cases give some support for the expected relation-
ship. Therefore, there is little evidence that the intended and acceptable levels
of review effects influence the code review process, except in some narrow areas.
Consequently, they cannot be mediators, and we cannot support hypothesis H3.

4.4 Further Convergence in Review Practices?

Apart from their description of a change-based review process that we referred
to in Sect. 4.1, Rigby and Bird consolidated three further convergent review
practices, cited in the following. In this section, we analyze to what degree these
practices can also be observed in the survey’s sample.

“Contemporary review usually involves two reviewers. However, the number
of reviewers is not fixed and can vary to accommodate other factors, such as

122 T. Baum et al.

the complexity of a change.” [24]: Our results support the finding that the usual
number of reviewers is low, indeed our numbers are even lower than Rigby and
Bird’s.6 The average usual number of reviewers in our sample is 1.57, the median
is 1 reviewer. With regard to the accommodation of other factors when deter-
mining the number of reviewers, 51% of the teams (47 of 92) named at least one
rule that they use to adjust the number of reviewers in certain situations. The
most commonly used rule is to decrease the number of reviewers or to skip code
review completely when the code change was implemented using pair program-
ming: Such a rule is used in 36% of the teams.

“Contemporary reviewers prefers [sic] discussion and fixing code over report-
ing defects.” [24]: Fig. 4 shows how the surveyed teams usually interact during a
review. Depending on how many of the teams discuss code during review meet-
ings, between 55% and 81% of the teams have a review process that includes
discussion of the code. Regarding fixing the code, 54% (84 of 157) of the respon-
dents indicate that reviewers sometimes or often fix code during a review. This
pragmatic attitude towards the classic boundaries of code review also shows up
when 76% (69 of 91) of the respondents state that the reviewer executes the
code for testing during review at least occasionally.

0 20 40 60 80

asynchronous discussion

meeting with author

meeting without author

on demand

89

41

2

26

respondent count

Fig. 4. Interaction during reviews

“Tool supported review provides the benefits of traceability, when compared
to email based review, and can record implicit measures, when compared to tra-
ditional inspection. The rise in adoption of review tools provides an indicator
of success.” [24]: In our sample, 59% of the teams (96 of 163) use at least one
specialized review tool. 33% (33 of 163) use only general software development
tools, like ticket system and version control system, for review. 13 respondents
indicated no tool use.7 The ability of specialized review tools to record implicit
measures might be one of their benefits, but it is seldom used in practice. Only
5% (4 of 88) of the teams systematically analyze review metrics.

6 The numbers are not fully comparable: Rigby and Bird looked at the actual number
of reviewers in a large sample of reviews, whereas we asked our participants for the
usual number of reviewers in a review.

7 A weakness in the used questionnaire is that there was no explicit “We do not use any
tool” choice available. Therefore, the distinction between non-response and non-use
of tools cannot be reliably made.

The Choice of Code Review Process 123

4.5 Some Notes on the Use of Reading Techniques

Research on Inspection has resulted in a number of different “reading techniques”
to guide the reviewer during review [4]. We looked at the spread of some read-
ing techniques in the survey, albeit not in much detail, and will describe the
corresponding results in the following.

It is sometimes claimed that “checklist-based reading” is the prevalent read-
ing technique in practice. Our results do not support this claim: Only 23% (22
of 94) of the respondents state that they use a checklist during reviews.

Another family of reading techniques uses different roles/perspectives to
focus the reviewers (e.g., perspective-based reading [5]). 7% (6 of 90) of the
respondents state that they explicitly assign distinct roles to the different review-
ers. 72% (63 of 88) use neither checklists nor roles.

5 Limitations

This section discusses the addressed and unaddressed threats to validity.
The primary threat to internal validity in this study is sampling bias, given

that we distributed the survey over various channels and could not control who
answered. Consequently, our participants likely differ systematically from the
population of all developers, and they do so not only in their geographical dis-
tribution: They are probably more interested in code reviews and/or in process
improvement or software quality in general. People who introduced code reviews
just recently are probably more interested in learning more about them, which
could explain the high share of participants that introduced reviews less than a
year ago. The tendency to have participants with a higher than average quality
orientation was probably further amplified by using the software craftsmanship
mailing list to advertise the survey. Due to this bias, the share of teams using
code review that we observed in the survey should be regarded as an upper
limit rather than as an estimate of the real proportion. Apart from this bias,
we actively tried to avoid favoring certain types of code review processes in the
sample.

A general problem of online surveys is that there is little control over the
quality of responses. We included filter questions to check whether participants
belong to the target population. We also screened free-text answers for obviously
nonsensical responses. These checks, and the fact that there was no financial
reward and therefore little incentive to participate without giving honest answers
make us believe that this threat is under control. Another threat with long online
surveys is survey fatigue. As 209 of 240 participants reached the end of the main
part, there is no indication of major fatigue effects.

The survey was anonymous, and most of the questions did not touch upon
sensitive topics. However, the results of some questions might be influenced by
social desirability bias, e.g., by stating that the team is using reviews just because
it is desirable to do. Again, this might have influenced the descriptive parts but
we do not see a major influence on the confirmatory parts of the current article.

124 T. Baum et al.

An important input for the testing of H3 was the ranking of intended and
unintended review effects. We used LimeSurvey’s ranking widget for these ques-
tions, and we observed some usability problems with it that might have increased
noise in the results or lowered the response rate.

To reduce the threat of participants misunderstanding a question, we spent
approximately four months carefully designing the survey during which we per-
formed several rounds of quality control and pre-testing. Furthermore, our ques-
tions were based on a qualitative study, which increases our confidence in their
ecological validity. To further reduce threats to construct validity, we used ran-
domization where appropriate, and we provided definitions for key terms.

Although the total sample contains 240 respondents, some of our conclu-
sions might be affected by threats due to a small sample size. The test of H3
demanded the comparison of many imbalanced and therefore small sub-samples.
Consequently, the power of these statistical tests was largely low.

A weakness of our method of data collection, i.e., of cross-sectional obser-
vational studies, is that they cannot be used to distinguish between correlation
and causation. Therefore we cannot reliably exclude other explanations for H2.

The coding of free-text answers might be affected by subjectivity. For most
questions, the proportion of free-text “other” answers was low. Exceptions were
generally easy to code, e.g., country or review tool. An unexpectedly high number
of free-text answers was given for the review trigger question: We regard “a
review has to be performed for every task/story” as a special kind of rule, but
many participants selected “other” instead of “rule” in this case. Details on how
the free-text answers were coded can be found in the study’s online material [7].

6 Conclusion

To conclude, we relate our findings to other studies and outline future work.
Comparing our results to those of Ciolkowski et al. [13], the raw numbers

indicate a large increase in the use of code reviews in the last 15 years. We already
noted that the proportion observed in our survey is probably biased, but even
when taking the much smaller number from Winter et al. [30] as a comparison,
there was a significant increase. The systematic use of review metrics, on the
other hand, seems to have decreased, as has the use of review meetings. We
cannot reliably decide whether this is really due to a change in practices or due
to differences between the studies.

By answering our first research question, we provided quantitative evidence
that change-based review is indeed dominating in practice and that there is still a
lot of variation in the details. Many researchers have begun to study and improve
change-based code review, and our results should encourage them further.

By strengthening the evidence that using rules or conventions to trigger code
reviews helps to keep code review use from fading away, we provide a partial
explanation for the dominance observed in RQ1. As a more abstract consequence
for future software engineering research, we believe this finding strengthens the
case for software engineering techniques that not only work in isolation but are

The Choice of Code Review Process 125

also able to “survive” in the environment of a software development team. The
low number of teams using perspective-based reading or a similar technique for
code review could be an example for such a mismatch: There is little use in
perspectives when there is only one reviewer.

Due to the low statistical power and multiple threats, the analysis of RQ3
is problematic. Assuming that our non-finding is not caused by flaws in the
data collection and analysis, we see two explanations: (1) There is an effect,
but we checked the wrong sub-hypotheses, or (2) the intended effects determine
a team’s review process only to a small degree. The second explanation is in
line with Ciolkowski, Laitenberger, and Biffl’s conclusion that many companies
use reviews unsystematically [13]. It would also mean that satisficing [23] and
orientation along experiences from peers and processes used by review tools are
even more important than noted by Baum et al. [9]. There remains a lot of
research to be done, both to find out which process variants are best in a given
situation, and to find ways to bring these results into practical use.

Finally, we hope that by making the questionnaire and the survey data avail-
able [7], independent researchers can profit and build upon our efforts.

Acknowledgments. The authors would like to thank all pre-testers and all partic-
ipants of the survey for the time and effort they donated. We would further like to
thank Philipp Diebold and Paul Clarke for providing questions from their surveys for
reuse.

References

1. Asundi, J., Jayant, R.: Patch review processes in open source software development
communities: a comparative case study. In: 40th Annual Hawaii International Con-
ference on System Sciences, HICSS 2007, p. 166c. IEEE (2007)

2. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the 2013 International Conference on Software Engi-
neering, pp. 712–721. IEEE (2013)

3. Baker Jr., R.A.: Code reviews enhance software quality. In: Proceedings of the 19th
International Conference on Software Engineering, pp. 570–571. ACM (1997)

4. Basili, V., Caldiera, G., Lanubile, F., Shull, F.: Studies on reading techniques. In:
Proceedings of the Twenty-First Annual Software Engineering Workshop, vol. 96,
p. 002 (1996)

5. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumg̊ard, S.,
Zelkowitz, M.V.: The empirical investigation of perspective-based reading. Empir-
ical Softw. Eng. 1(2), 133–164 (1996)

6. Baum, T.: Detailed table with review effects (team level) and their connections
to contextual factors and process variants for “factors influencing code review
processes in industry” (2016). http://dx.doi.org/10.6084/m9.figshare.5104111

7. Baum, T., Leßmann, H., Schneider, K.: Online material for survey on code review
use. http://dx.doi.org/10.6084/m9.figshare.5104249

8. Baum, T., Liskin, O., Niklas, K., Schneider, K.: A faceted classification scheme
for change-based industrial code review processes. In: 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE, Vienna
(2016)

http://dx.doi.org/10.6084/m9.figshare.5104111
http://dx.doi.org/10.6084/m9.figshare.5104249

126 T. Baum et al.

9. Baum, T., Liskin, O., Niklas, K., Schneider, K.: Factors influencing code review
processes in industry. In: Proceedings of the ACM SIGSOFT 24th International
Symposium on the Foundations of Software Engineering. ACM, Seattle (2016)

10. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: Investigating technical
and non-technical factors influencing modern code review. Empirical Softw. Eng.
21, 932–959 (2016)

11. Bernhart, M., Strobl, S., Mauczka, A., Grechenig, T.: Applying continuous code
reviews in airport operations software. In: 2012 12th International Conference on
Quality Software (QSIC), pp. 214–219. IEEE (2012)

12. Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation:
a survey. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 133–142. IEEE (2013)

13. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software reviews: the state of the prac-
tice. IEEE Softw. 20(6), 46–51 (2003)

14. Fagan, M.E.: Design and code inspections to reduce errors in program development.
IBM Syst. J. 15(3), 182–211 (1976)

15. Forrester Research Inc.: The value and importance of code reviews, March 2010.
http://embedded-computing.com/white-papers/white-paper-value-importance-
code-reviews/. Accessed 13 June 2017

16. Gousios, G., Pinzger, M., Deursen, A.V.: An exploratory study of the pull-based
software development model. In: Proceedings of the 36th International Conference
on Software Engineering, pp. 345–355. ACM, Hyderabad (2014)

17. Harjumaa, L., Tervonen, I., Huttunen, A.: Peer reviews in real life-motivators and
demotivators. In: Fifth International Conference on Quality Software (QSIC 2005).
IEEE (2005)

18. Jacob, R., Heinz, A., Décieux, J.P.: Umfrage: Einführung in die Methoden der
Umfrageforschung. Walter de Gruyter (2013)

19. Kollanus, S., Koskinen, J.: Software inspections in practice: six case studies. In:
Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 377–382.
Springer, Heidelberg (2006). doi:10.1007/11767718 31

20. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere,
K., Linssen, O., Hanser, E., Prause, C.R.: Hybrid software and system development
in practice: waterfall, scrum, and beyond. In: ICSSP 2017 (2017)

21. Laitenberger, O., Vegas, S., Ciolkowski, M.: The state of the practice of review and
review technologies in Germany. Tech. report 011.02, Virtual Softw. Eng. Compe-
tence Center (VISEK) (2002)

22. Laitenberger, O., DeBaud, J.M.: An encompassing life cycle centric survey of soft-
ware inspection. J. Syst. Softw. 50(1), 5–31 (2000)

23. March, J.G., Simon, H.A.: Organizations. Wiley, London (1958)
24. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pp. 202–212. ACM, Saint Petersburg (2013)

25. Rigby, P.C., Storey, M.A.: Understanding broadcast based peer review on open
source software projects. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 541–550. ACM (2011)

26. SmartBear: The state of code quality 2016. https://smartbear.com/resources/
ebooks/state-of-code-quality-2016/. Accessed 13 June 2017

27. Sudman, S., Bradburn, N.M.: Asking Questions: A Practical Guide to Question-
naire Design. Jossey-Bass Publishers, San Francisco (1982)

http://embedded-computing.com/white-papers/white-paper-value-importance-code-reviews/
http://embedded-computing.com/white-papers/white-paper-value-importance-code-reviews/
http://dx.doi.org/10.1007/11767718_31
https://smartbear.com/resources/ebooks/state-of-code-quality-2016/
https://smartbear.com/resources/ebooks/state-of-code-quality-2016/

The Choice of Code Review Process 127

28. Thongtanunam, P., McIntosh, S., Hassan, A.E., Iida, H.: Investigating code review
practices in defective files: an empirical study of the QT system. In: Proceedings of
the 12th Working Conference on Mining Software Repositories, MSR 2015 (2015)

29. Wang, J., Shih, P.C., Wu, Y., Carroll, J.M.: Comparative case studies of open
source software peer review practices. Inf. Softw. Technol. 67, 1–12 (2015)

30. Winter, M., Vosseberg, K., Spillner, A.: Umfrage 2016 “Softwaretest in Praxis und
Forschung”. dpunkt.verlag (2016)

	The Choice of Code Review Process: A Survey on the State of the Practice
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Participant Selection
	3.2 Questionnaire Creation and Pilot Tests
	3.3 Data Collection and Instrument
	3.4 Data Analysis

	4 Results
	4.1 The Dominance of Change-Based Code Review (RQ1)
	4.2 Change-Based Code Review and the Fading of Review Use (RQ2)
	4.3 Rankings of Review Effects as a Mediator in Determining the Review Process (RQ3)
	4.4 Further Convergence in Review Practices?
	4.5 Some Notes on the Use of Reading Techniques

	5 Limitations
	6 Conclusion
	References

