
Agile Quality Requirements Management Best Practices
Portfolio: A Situational Method Engineering Approach

Lidia López1(✉), Woubshet Behutiye2, Pertti Karhapää2, Jolita Ralyté3, Xavier Franch1,
and Markku Oivo2

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{llopez,franch}@essi.upc.edu

2 University of Oulu, Oulu, Finland
{woubshet.behutiye,pertti.karhapaa,markku.oivo}@oulu.fi

3 University of Geneva, Geneva, Switzerland
jolita.ralyte@unige.ch

Abstract. Management of Quality Requirements (QRs) is determinant for the
success of software projects. However, this management is currently under-
considered in software projects and in particular, in agile methods. Although agile
processes are focused on the functional aspects of the software, some agile prac‐
tices can be beneficial for the management of QRs. For example, the collaboration
and interaction of people can help in the QR elicitation by reducing vagueness of
requirements through communication. In this paper, we present the initial findings
of our research investigating what industrial practices, from the agile methods,
can be used for better management of QRs in agile software development. We
use Situational Method Engineering to identify, complement and classify a port‐
folio of best practices for QR management in agile environments. In this regard,
we present the methodological approach that we are applying for the definition
of these guidelines and the requirements that will lead us to compile a portfolio
of agile QR management best practices. The proposed requirements correspond
to the whole software life cycle starting in the elicitation and finalizing in the
deployment phases.

Keywords: Quality requirement · Non-functional requirement · Agile
development · Situational Method Engineering

1 Introduction

Agile methods are becoming increasingly popular in the software industry [1–3].
Customer satisfaction through early and continuous delivery of valuable software,
adaptability to late requirements changes, short and iterative development cycles are
some principles of agile software development (ASD) methods [4]. Another important
aspect of software development that has attracted a lot of attention is software quality,
mainly represented by the quality requirements (QRs; also referred to as non-functional
requirements –NFRs) of the product [5]. However, it has been documented that the
management of QRs in software development in general [5] and in ASD in particular
[6] is problematic, e.g. important QRs might be neglected in ASD [7].

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 548–555, 2017.
https://doi.org/10.1007/978-3-319-69926-4_45



One aspect of ASD is that agile principles put emphasis on communication and
linking of people [4]. The closer collaboration between people within a development
team, e.g. requirements engineers and testers, helps in generating an understanding of
the requirements so that development can progress and testing can be conducted properly
despite lower quality of the requirements and lack of documentation [8]. Agile practices
can also help the QR elicitation by reducing vagueness of requirements through commu‐
nication [9], QRs in particular, since defining good, verifiable, and complete QRs is quite
difficult.

Improving the management of QRs in agile projects is the ultimate goal of the Q-
Rapids (Quality-aware Rapid Software Development) project1. In order to achieve this
goal, we aim at defining a set of guidelines for integrating QR management into the ASD
life cycle. There are several methods, techniques and models that can be applied for
managing QRs, making difficult the definition of a unique method to be applied in any
organization. In the context of ASD, Qumer and Henderson-Sellers applied Situational
Method Engineering (SME) to create a software development method combining agile
and formal practices in a large software development organization [10]. Following the
same approach, in this paper we propose using SME to identify, complement, and clas‐
sify a portfolio of best industrial practices in order to define a method for QR manage‐
ment in agile environments.

The rest of the paper is organized as follows. Section 2 introduces the research
approach followed, including the background necessary to apply SME. The construction
of the method is based in the software development process detailed in Sect. 3.
Section 4 includes the definition of the method requirements, and Sect. 5 includes an
example of the guidelines associated to the QRs prioritization. Finally, Sect. 6 concludes
the presentation of the work included in this paper and discusses our future work.

2 Situational Method Engineering

2.1 Background

In this work we apply the assembly-based Situational Method Engineering (SME)
approach [11] as underpinning theory for capitalizing best practices in the domain of
QR management in ASD, and for reusing them in the construction of situation-specific
methods. Following this approach, the knowledge of such methods has to be formalized
in terms of reusable method chunks. A method chunk describes the method process (i.e.,
the guidelines) and its related products (i.e., the concepts and artefacts used/transformed/
created by applying the guidelines). It also specifies the situation in which it can be
applied (i.e., the required input artefacts) and the intention (i.e., the engineering goal)
to be reached. The method chunks are used as building blocks for constructing a situa‐
tion-specific method, which can be a project-specific method or even a configurable
method family including several method chunk variants for each method step. In both
cases, the approach consists of defining method requirements and then selecting and
assembling method chunks satisfying these requirements. Method requirements (also

1 http://q-rapids.eu/.

Agile Quality Requirements Management Best Practices Portfolio 549

http://q-rapids.eu/


called requirements map) are specified as a desired process model by using the Map
process modeling formalism [12], which allows to express methods in terms of inten‐
tions and strategies to reach the intentions. The variability and flexibility of a method is
reached by defining several strategies for achieving an intention.

The sources for engineering method chunks can be various: existing methods, stand‐
ards, templates, and best practices. Depending on their formalization and level of detail,
the creation of method chunks consist in reengineering the existing method knowledge
or defining it from scratch.

2.2 Application

The assembly-based SME approach has been applied in various software and informa‐
tion systems engineering domains. For instance, Ralyté et al. reengineered the RESCUE
Requirements Process into a modular method (a collection of method chunks organized
into a multi-level process map) allowing to assess the quality of the method, to identify
omissions and weaknesses, and to reason about its improvements [13]. This case also
demonstrated the effectiveness of the SME approach for modelling large-scale engi‐
neering processes. In a different domain, López et al. presented the OSSAP method [14],
applying assembly-based SME approach to construct a method for OSS adoption busi‐
ness processes. The OSSAP chunks correspond to the different ways of adopting OSS
and the pieces of processes to be adopted by the organization, depending on the way
they want to be involved with the OSS community producing the OSS.

3 Software Development Process in Agile Projects

In this section, we present the analysis of the software development process employed
in four use cases (UCs) of the Q-Rapids project. The results are based on preliminary
findings of case studies conducted to understand the software development processes
and QR management practices adopted in selected projects of the Q-Rapids industrial
partners. The Q-Rapids industrial partners are representatives of small, medium, and
large sized companies from three different countries (Finland, France and Poland), all
produce software in different domains (telecommunications, secure solutions, modeling
and ad-hoc solutions). Qualitative analysis was done on the 12 semi-structured inter‐
views conducted in the UCs to get an understanding of the development processes.

Our findings reveal that all of the UCs adopt variants of Scrum tailored to their
specific context of development. The UCs operate in predefined release cycles that range
from two weeks to six months. The sprint cycle varied from one to four weeks. Medium
and large companies are characterized by complex backlog structure and multiple teams.
The smaller companies utilized a single backlog and consist of a small sized team.
Additionally, the ASD maturity level applied in the UCs also varied. We observed both
similarities and differences in the practices, roles and tools utilized in the UCs.

During initial stages of the development process, the UCs elicit requirements (both
functional requirements and QRs) mainly based on customer needs. At this stage, high
level features are elicited together with the customer. Features that bring more value to

550 L. López et al.



the customer are prioritized. However, the level of customer involvement, as well as the
practices and roles involved in the process, varies among the UCs. For instance, two
UCs from small and medium sized companies mainly utilize the customer for eliciting
requirements. The other two UCs from medium and large sized companies consider
additional factors such as product roadmaps, the status of the market and problems of
potential customer segments. Roles involved in higher level requirements elicitation
included product owners, product and technical managers, sales team, and usability
experts. Product and technical managers made requirements prioritization decision in
UCs of medium and large companies. On the other hand, smaller companies relied on
the product owners’ decisions for requirements elicitation and prioritization. Elicitation
of the higher-level features considered both functional requirements and QRs.

The higher level features are refined and specified into lower level features or user
stories and tasks. In medium and large organizations, higher level features were refined
in several steps due to the product size. On the other hand, in smaller companies, the
number of refinement steps were fewer.

Communication happens throughout the development process in all of the UCs.
Face-to-face communication serves as the main source of communication in small sized
companies. In such cases, face-to-face communication facilitates the development
process, as the developers are close to each other and usually in the same room. Addi‐
tionally, there was less emphasis on the documentation practices. However, in medium
and large sized companies, documentation and shared tools serve as sources of commu‐
nication. Face-to-face communication was adopted only at lower (local) level.

Fig. 1. Aggregated view of the development processes in the UCs

Agile Quality Requirements Management Best Practices Portfolio 551



All UCs employ continuous integration in their development process. Nightly builds,
integration tests, and acceptance tests are applied in the verification and validation
process. The testing practices also varied with the size of the companies. Figure 1 depicts
the generic view of the development process adopted in the UCs.

4 QR Management Method Requirements

The analysis of the software development process of the UCs, described in the previous
section, uncovered that they do not use a predefined existing method for QR manage‐
ment. The organizations use and combine different methods and techniques in different
ways for setting their own agile oriented development process. The aim of this work is
setting up a portfolio of best practices organizing and complementing these techniques
to improve QR management in the context of ASD processes.

Due to this diversity of methods and techniques, we are developing this portfolio
applying SME, concretely creating a new method constructed from scratch [15]. In order
to identify the needed guidelines, we applied a process-driven strategy to elicit the
method requirements, which is more relevant in the case of a new method construction
[16]. In order to specify the requirements for the method, we need to (1) identify the set
of intentions related to the QR management in the current processes, and (2) identify
the possible strategies for fulfilling these intentions.

During the UCs analysis, we collected the initial set of intentions to be fulfilled by
the new method: Elicit, Specify, Communicate, and Verify and Validate QRs. These
intentions correspond to the underlying goals for each activity of the generic develop‐
ment process depicted in Fig. 1: meetings discussing market roadmap and customer
needs for elicitation, backlogs and whiteboards for specification and communication,
and testing for verification and validation. Then, we complemented the set of intentions
identifying the different strategies to fulfill them. The intentions are represented as nodes
and strategies as edges in the requirements map shown in Fig. 2.

Fig. 2. QR management method requirements map

552 L. López et al.



Most of the strategies included in the requirements map are still generic, except for
the strategies to fulfill the Specify QR intention. The Q-Rapids UC providers (see
Sect. 3), pointed out that we can find different levels of requirements in ASD processes,
from high-level requirements (coming from the elicitation activity) to lower-level
requirements (defined in later stages), which are the refined requirements that can be
translated to user stories, features or tasks to be communicated to the development team.
Therefore, refinement is the strategy to specify new lower-level requirements. Prioriti‐
zation is really important in agile environments, requirements need to be arranged by
priority to be fully specified before they are communicated to the development teams.

5 Example: Chunks for QR Prioritization

In this section, we describe the possible strategies for fulfilling the Prioritize QRs inten‐
tion. From the analysis of the UC processes, we identified the following two situations:
the prioritization by urgency (issue-driven) and prioritization based on value (value-
driven). The prioritization by urgency occurs when some blocking situation arises during
the software development process that affects the expected workflow. For example, if
there is a specific problem/issue in the development of a critical feature, the development
team should reprioritize the work focusing on fixing this situation. On the other hand,
when no critical situations should be handled, the organization can prioritize their
requirements with no specific problem to solve.

For the value-driven strategy, we identified an existing method chunk included in
[17] for cost-value requirements prioritization. This value-driven prioritization chunk
proposes having two criteria for evaluating requirements: relative value and relative
cost, which are used for ranking the requirements. Figure 3 reproduces the process map
for this chunk.

Fig. 3. Cost-value requirements prioritization approach chunk [17]

Agile Quality Requirements Management Best Practices Portfolio 553



We did not find any existing method for the Issue-driven prioritization, so we
envisage that we are going to create one. It could be based on the idea of identifying the
features related to the issue, and then the dependencies for this feature, the features would
be ranked depending on the dependency to the critical issue to solve.

According to SME process, we refined the strategy named “by prioritization” into
two: Value-driven prioritization and Issue-driven prioritization.

6 Conclusions and Future Work

Organizations do not use a predefined existing method for QR management. In this paper
we present the initial findings of our research investigating what industrial practices,
from the agile methods, can be used for better management of QRs in agile software
development.

In this paper, we present how we are using Situational Method Engineering (SME)
to identify, complement and classify a portfolio of best practices for agile QR manage‐
ment. SME is used to construct methods that can be customized to fulfill the organization
needs. The first results reported in this paper correspond to the initial set of intentions
that are leading our method requirements elicitation. The guidelines should include best
practices to fulfill four different intentions: QR elicitation, specification, communication,
and verification and validation, and the three strategies for fulfilling the specification
intention: by refinement, documentation and prioritization. So far, we identified two
concrete strategies for the prioritization: the prioritization by urgency (issue-driven) and
prioritization based on value (value-driven), and the paper includes the method chunk
corresponding to the value-driven strategy.

We are in the initial stages of identification of different strategies to achieve identified
intentions. Our future work is to select current strategies and create new ones to produce
a complete set of chunks that will shape our best practices portfolio.

Acknowledgments. This work is a result of the Q-Rapids project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agreement
N° 732253.

References

1. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of Scrum practices within a global company.
In: IEEE International Conference on Global Software Engineering, ICGSE 2008, pp. 222–
226

2. Hamed, A.M.M., Abushama, H.: Popular agile approaches in software development: review
and analysis. In: 2013 International Conference on Computing, Electrical and Electronics
Engineering (ICCEEE), pp. 160–166 (2013)

3. Matharu, G.S., Mishra, A., Singh, H., Upadhyay, P.: Empirical study of agile software
development methodologies: a comparative analysis. ACM SIGSOFT Softw. Eng. Notes
40(1), 1–6 (2015)

4. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)

554 L. López et al.



5. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of the
Conference on the Future of Software Engineering, pp. 35–46 (2000)

6. Schön, E.M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a
systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017)

7. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inform. Syst. J. 20(5), 449–480 (2010)

8. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking requirements and testing
in practice. In: 16th IEEE International Requirements Engineering, RE 2008, pp. 265–270
(2008)

9. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915–929 (2015)

10. Qumer, A., Henderson-Sellers, B.: Construction of an agile software product-enhancement
process by using an Agile Software Solution Framework (ASSF) and situational method
engineering. In: Annual International Computer Software and Applications Conference
(COMPSAC), pp. 539–542 (2007)

11. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich, K.R.,
Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283. Springer,
Heidelberg (2001). doi:10.1007/3-540-45341-5_18

12. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling. Requir.
Eng. J. 4(4), 169–187 (1999)

13. Ralyté, J., Maiden, N., Rolland, C., Deneckère, R.: Applying modular method engineering to
validate and extend the RESCUE requirements process. In: Delcambre, L., Kop, C., Mayr,
H.C., Mylopoulos, J., Pastor, O. (eds.) ER 2005. LNCS, vol. 3716, pp. 209–224. Springer,
Heidelberg (2005). doi:10.1007/11568322_14

14. López, L., Costal, D., Ralyté, J., Franch, X., Méndez, L., Annosi, M.C.: OSSAP – a situational
method for defining open source software adoption processes. In: Nurcan, S., Soffer, P., Bajec,
M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 524–539. Springer, Cham (2016). doi:
10.1007/978-3-319-39696-5_32

15. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art review. J.
Univ. Comput. Sci. 16(3), 424–478 (2010)

16. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method
engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003). doi:10.1007/3-540-45017-3_9

17. Kornyshova, E., Deneckère, R., Rolland, C.: Method families concept: application to
decision-making methods. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E.,
Schmidt, R., Bider, I. (eds.) BPMDS/EMMSAD -2011. LNBIP, vol. 81, pp. 413–427.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21759-3_30

Agile Quality Requirements Management Best Practices Portfolio 555

http://dx.doi.org/10.1007/3-540-45341-5_18
http://dx.doi.org/10.1007/11568322_14
http://dx.doi.org/10.1007/978-3-319-39696-5_32
http://dx.doi.org/10.1007/3-540-45017-3_9
http://dx.doi.org/10.1007/978-3-642-21759-3_30

	Agile Quality Requirements Management Best Practices Portfolio: A Situational Method Engineering App ...
	Abstract
	1 Introduction
	2 Situational Method Engineering
	2.1 Background
	2.2 Application

	3 Software Development Process in Agile Projects
	4 QR Management Method Requirements
	5 Example: Chunks for QR Prioritization
	6 Conclusions and Future Work
	Acknowledgments
	References




