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Abstract. To ensure the dependability and safety of spaceflight devices,
rigorous standards are defined. Among others, one requirement from the
European Cooperation for Space Standardization (ECSS) standards is
100% test coverage at software unit level. Different stakeholders need to
have a good knowledge of the implications of such a requirement to avoid
risks for the project that this requirement might entail. In this paper, we
study if such a 100% test coverage requirement is a reasonable one. For
this, we interviewed the industrial developers who ran a project that had
the sole goal of achieving 100% unit test coverage in a spaceflight soft-
ware. We discuss costs, benefits, risks, effects on quality, interplay with
surrounding conditions, and project management implications. We dis-
till lessons learned with which we hope to support other developers and
decision makers when considering a 100% unit test coverage requirement.

Keywords: Validation and verification · Software quality · Unit
testing · Test coverage · Expert interviews · Spaceflight · Software
criticality · Process requirements

1 Introduction

Software has become key to spacecrafts. It is the devices’ brain that, among other
things, maintains altitude and orbit, reads and analyzes sensor data, and controls
the hardware. In particular, software is key to detect, isolate, and recover from
unexpected situations and failures and, eventually, software ensures communi-
cation with ground stations. Due to the special environment, once deployed, a
spacecraft has to ‘survive’ autonomously. Maintenance of its hardware is—if at
all possible—impractical.

More fatal than crashing software is software that performs in the wrong
way, as it may give commands that destroy a device or the whole spacecraft.
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For instance, recently, the Hitomi telescope was erroneously commanded by its
software to start spinning faster and faster until it disintegrated [22]. A software
problem caused the recent crash of the Schiaparelli lander, which prematurely
released its parachute several hundred kilometers above ground: Contradicting
calculations of sensor data made the navigation software erroneously assume the
lander had already touched Mars’ surface [20]. Another software problem hit the
Mars rover Spirit 18 Sols1 after landing. The rover was caught in the rebooting
cycle as it could not read a full fixed-memory block. The rover successfully passed
a 10-Sol test concerning exactly this kind of problem prior to landing, yet, the
memory bank was full at Sol 18, and the rover could only be put back into
operation by using some ‘backdoors’ in the system [1]. Hence, software failures in
space devices can be costly. Malfunctioning spacecrafts, moreover, may seriously
threaten human life or the environment, e.g., remnants of space probes orbiting
Earth endanger other satellites2, uncontrolled reentry might endanger whole
regions, e.g., ROSAT’s uncontrolled reentry [18], and so forth. Software of a
space device has to be dependable (i.e., reliable, available, and maintainable)
and safe. To ensure high dependability and safety, space software and systems
are developed under a strict quality and product assurance regime according to
an extensive system of standards [19].

Context. The standards of the European Cooperation for Space Standardization
(ECSS) are a coherent and comprehensive collection of standards addressing all
areas of spaceflight. At the highest level, the ECSS standards are divided into
management, engineering, and product assurance (quality) branches, and fur-
ther subdivided into so-called areas. Each standard comprises a large number of
requirements prescribing what is to be achieved. The standards ECSS-E-ST-40C
(Software Engineering; [6]) and ECSS-Q-ST-80C (Software Product Assurance;
[8]) address the development and product assurance of software for space appli-
cations. One of the standards’ requirements for highly-critical software is that
“100% code branch coverage at unit testing level” must be achieved. However,
ECSS prescribes 100% for classes3 A and B only [6], but leaves coverage for
classes C and D open to negotiation. Achieving a high—or even a full—coverage

1 A Sol is a day on Mars, which is 24 h 37 min, while a day on Earth is 23 h 56min.
The time unit Sol is used to run Mars operations and to not have the demand of
continuously converting time.

2 Estimates mention more than 500,000 pieces of junk, so-called ‘space debris’, orbiting
Earth at high speeds of dozens of km/s [17]. Due to their extreme speeds, the kinetic
energy of even small particles of only a few millimeters can cause impact craters of
several dozen centimeters on the spacecraft, and lead to fatal and catastrophic effects
like disintegration of the target.

3 The ECSS standards define four levels for criticality from A to D (ECSS-Q-ST-30C
[7]). For instance, criticality class A comprises catastrophic events, e.g., loss of life,
launch site facilities, or the entire spacecraft. Class B is for the risk of losing the
ability to perform the mission (loss of mission), and Class C for a major mission
degradation. The LCT system, which is the subject of this paper (see Sect. 2) is
classified as B (system), and its software as C.
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is demanding, though. Adopting Tom Cargill’s 90/90 rule [4] to unit testing,
one could state: The first 90% of the unit test code accounts for the first 90% of
the development time. The remaining 10% of the unit test code accounts for the
other 90% of the development time. So, what happens, if contracting bodies ask
for a 100% unit test coverage?

Contribution. In this paper, we report lessons learned from a space software
project that had the goal of reaching a test coverage of 100% using unit tests for
the flight software of a laser communication device (LCT). While the project very
closely reached the goal of 100% test coverage (>99.5%), the effort turned out to
be tremendous. Two developers spent two years developing the unit tests for a
software of about 25,000 lines of code. Using semi-structured expert interviews,
we studied how the project incrementally increased the test coverage to achieve
the 100%-goal. We present lessons learned to stimulate a critical discussion about
cost, benefits, and reasonableness of the 100% test coverage requirement.

Outline. The remainder of the paper is organized as follows: Sect. 2 provides
the background of the project reviewed. Section 3 presents the research design,
before we present our findings in Sect. 4. Section 5 discusses related work. Finally,
Sect. 6 concludes the paper.

2 Background

The ‘information society’ relies on data and data exchange; and the amount
is increasing year-by-year. More than 100 communication satellites in service
build the communication backbone providing communication, bringing internet
to remote locations, and broadcasting tens of thousands of television and radio
programs worldwide.

The Copernicus program of the European Commission aims to establish a
European capacity for earth observation by providing atmosphere, maritime,
land, climate, emergency and security services. Several Sentinel satellites are the
program’s heart and produce large amounts of data. For instance, Sentinel-2A
orbits Earth at an altitude of 786 km, delivering optical images on 13 spectral
channels at a depth of 12 Bit per channel at resolutions of up to 10 m. A typical
image is a tile of 100 km2, or approx. 500 MB. A setup of two Sentinel satellites
generates up to 1.6 TB of compressed raw image data per day, or 160 MBit/s con-
tinuously. Having access to imagery as quickly as possible is crucial for a number
of Copernicus applications. However, earth’s curvature prevents continuous radio
communication with ground stations in Europe (broken line-of-sight) [9].

Laser Communication. To overcome this limitation, Sentinel satellites use the
European Data Relay System (EDRS). EDRS features geostationary satellites
at 36,000 km altitude that have a permanent link to European ground stations
(Fig. 1). EDRS and Sentinel satellites carry novel Laser Communication Ter-
minal (LCT) devices to establish laser links among one another to overcome
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Fig. 1. Sentinel and AlphaSat satellite link, and relay to Earth (source: Tesat Space-
com GmbH).

Fig. 2. The Laser Communication Terminal (source: Tesat Spacecom GmbH).

bandwidth limitations and to reduce off-line windows (Fig. 2). LCT devices allow
for data transfer rates of up to 1.8 GBit/s. For this, the LCT laser has to hit
a target of 200 m in diameter from a distance of 45,000 km, which corresponds
to a moving 2-Euro coin from a 6.8 Km distance. Besides ‘housekeeping’ activi-
ties, the LCT software is primarily responsible for laser-targeting and controlling
the hardware, e.g., power management or controlling the coolant system for the
laser. Using software allows for precise targeting of the laser and, moreover,
the software allows for compensating degrading hardware, and failure detection,
isolation and recovery (FDIR).



Lessons Learned from a Space Software Project 355

The LCT Device. LCT plays a key role for the Sentinel and EDRS satellites, and
for the Copernicus program as a whole. Due to the criticality, software quality
is crucial and, therefore, quality assurance is a vital part of the system’s devel-
opment. Development of the LCT device itself stretched over several projects
and lasted longer than a decade, resulting in several changes of key personnel.
Furthermore, the LCT project involves several stakeholders: The LCT devices
are developed by Tesat Spacecom GmbH, which was contracted by the national
space agency, the German Aerospace Center (DLR) that also defined the quality
requirements. Those requirements are, basically, grounded in ECSS standards,
yet differ in some aspects, and, in particular, are tailored to project character-
istics according to different technical, programmatic and risk criteria [19]. The
Sentinel 2 and EDRS-A satellites that host the LCTs are manufactured by Air-
bus DS on behalf of the European Space Agency (ESA), which applies mostly
unmodified ECSS.

Within the conglomerate of partners involved and standards to implement,
the ECSS standards received a major revision (Issue B to Issue C ) while the
LCT devices were produced. The new revision makes test coverage a first-class-
citizen. Even though LCT was rigorously quality assured4, the manufacturer did
not yet collect test coverage data. This led to a situation in which test coverage
was unknown while contracting agencies insisted on the new 100% test coverage
requirement and proving its fulfillment. To overcome this situation, an agreement
among the involved parties was made to initiate a separate project, which had
the goal of increasing test coverage to 100% before the launch of the satellite.

3 Research Design

This section describes our research design, starting with describing the research
objective and the research questions in Sect. 3.1. Section 3.2 describes the data
collection procedures, including the interview instrument and the subjects selec-
tion. The analysis procedures are described in Sect. 3.3, and we discuss threats
to validity in Sect. 3.4.

3.1 Research Objective and Questions

The overall objective of this study is to shed light on what a 100% coverage-
requirement entails. We aim to study whether 100% test coverage is a reason-
able requirement, what experienced practitioners “normally” consider good/high
quality, and what benefits practitioners see in going beyond “normal” coverage

4 The product assurance process performed so far includes several parties and pro-
cedures. The device manufacturer’s product assurance reports to and is supervised
by the customer’s product assurance (cf. [19]). Further involved on satellite-level are
the customer’s and the prime contractor’s product assurance. At the technical level
V&V activities include, inter alia, static analyses, verification controls’ and reviews.
At device level, separate test teams carry out software tests in isolation and as part
of the integrated device prior to shipment for full integration and system testing.
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and towards 100%. We collect information about the practitioners’ perception of
the requirement’s effects on costs, benefits, risks, its interplay with surrounding
conditions, and project management implications. Hence, the overall research
question investigates:

RQ: Is 100% test coverage a reasonable requirement?

3.2 Implementation

The study was conducted as semi-structured interview with experts in a 2-day
workshop. We talked to all interviewees separately.

Interview Instrument. Table 1 shows the guideline of the semi-structured inter-
view. The table shows the eight top-level ‘entry’ questions and (selected) detailed
questions. In total, the guideline comprises a maximum of 66 questions in eight
categories to ensure all relevant topics are addressed in every interview. In the
interview, the participants were asked the entry question of the respective cat-
egory to start the conversation. The interviewers traced the guideline and only
asked follow-up questions from the question pools if information was not pro-
vided or if responses required clarification.

Interview Subjects. This paper reports on the interviews with the project’s core
personnel, i.e., the two developers and the project manager. For the developers,
it was their first space project. The project manager already had a few years
of experience in the space domain. All interviewees previously worked in other
embedded software domains, mostly automotive software. They all look back on
an industrial development experience of 10–25 years, working primarily with the
languages C and C++ (C is the predominant language in space projects).

Interview Procedure. Before the interviews, we informed interviewees about the
interview and its purpose, and asked them to prepare themselves. Participation
was voluntary; no test development team member opted out. The interviews were
conducted individually and face-to-face at the company’s site and took between
60–90 min. One researcher preceded the interview using the guideline. The sec-
ond one made short notes and only asked clarifying or follow-up questions. Each
interview was audio recorded. Finally, all participants were summoned for a
wrap-up session to clarify possibly remaining open points, ask things we might
have missed, and to provide room for further discussion.

Project Performance Data. Complementing the qualitative data collected in the
interview, we had access to project performance data, notably, the test coverage
statistics. These data sets were included in our analysis to complement and to
help interpret the qualitative data.
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Table 1. Summary of the interview guideline, including (selected) detailed questions
used to drive the interview.
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3.3 Analysis Procedures

To qualitatively analyze the interview data, both researchers performed an initial
review to plan the transcription and to revise the data analysis plan. A secretary
was appointed to transcribe the interviews, which was performed interactively
with regular consultations and quality assurance on (tentative) results. Based
on the transcripts, we qualitatively analyzed the data to extract the required
information and to answer the research questions. Project performance data
amended the analysis5.

3.4 Validity Considerations

The lessons learned are based on the experts’ opinions expressed during the inter-
views. Although the experts are experienced industrial developers, we still convey
opinions related to one particular project only. The interviews were conducted
during the final week of the project. One of the interviewers was also the cus-
tomer’s appointed software quality manager during the project. While this situa-
tion possibly affected interviewees’ responses (see also disadvantages of interviews
as stated in [23]), it has to be noted that the project was conducted primarily on
demand from the prime/satellite customer. To improve the objectivity of the inter-
view, an external researcher, who was not involved in the project, was called in.
Due to this interview setup, the participants could speak rather freely. The inter-
views were conducted in the participants’ mother tongue (German), and quotes
presented in this paper were translated to English from the German interview
transcripts afterward. We tried to preserve as many intricacies of the responses as
possible, yet, there is the risk that a few subtleties have been lost during transla-
tion. The interviewees were given the opportunity to review the completed paper,
and encouraged to provide clarifications and comments.

4 Results

In this section, we analyze quantitative project performance data (Sect. 4.1)
and condense lessons learned based on qualitative findings from interviews in
Sect. 4.2.

4.1 Quantitative Data

The project tracked test-coverage progress on a daily basis. This resulted in
approx. 400 data points covering approx. 700 days. The actual project duration
was longer than two years because of the necessary management activities (ramp-
up times, creation of documents, reviews, delivery and acceptance, etc.). Figure 3
plots the percentage of code covered. The curve is quite linear for the most part
of the project. However, it bends when it reaches approximately 90% of coverage.
This indicates that the last few percent of coverage require significantly more
effort.
5 Due to the sensitivity of the data, we only present excerpts and anonymized results.
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Fig. 3. Statement and branch coverage over time.

Figure 3 also compares statement coverage to branch coverage. Branch cover-
age was not monitored in the first place. The data shows that—by its nature—
it tends to be a bit lower than statement coverage if not monitored. At the
same time, however, it is not far out. Once monitored, branch coverage can
be improved in conjunction with statement coverage without much additional
effort. This changed upon reaching approx. 90% of coverage, when branch cover-
age started to fall behind, until it again catches up when getting closer to 100%.
As stated in the interviews: “In the beginning, coverage increased quite linearly.
Of course, there were some disturbances [e.g., Christmas]. But the last few per-
cent were really difficult.” The unit test development project found between 20
to 30 issues that could have been interpreted as actual errors. Less than three of
these errors detected were considered having a potentially serious impact on the
device’s functionality. The project caused a development effort of four person
years plus support staff for about 25,000 lines of code (LoC).

4.2 Lessons Learned

This study aimed at collecting experience from a project in which a test coverage
of 100% should have been achieved in order to meet requirements defined by an
external standard. From the qualitative analysis of the interviews conducted, we
extract the following lessons learned.

100% Coverage Is Unusual but Achievable. To start the interviews, we
asked participants if they ever faced a similar requirement before. Prior to this
project, all participants worked for different companies. Yet, all of them faced
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“such a requirement for the first time, and for the first time it was stated that
explicitly.” Furthermore, neither have they faced “such a high coverage ratio”
before nor did they have to realize it “in this way, as a follow-up project.” In
their previous experience, coverage “was not directly being looked at”, and “was
an issue only in the area of [complex electronics, i.e.,] ASIC and FPGA”.

Asked what they consider a ‘normal’ coverage, the participants had difficul-
ties in naming a precise number, as “it depends on what one wants to achieve”.
As a general reference, the participants mentioned it “may be around 80% [. . .
because] the effort per percentage point of coverage, typically increases dramati-
cally towards the end of a project.” Yet, one participant stated that, in general,
referring to all static and dynamic verification techniques available, “when you
have reached more than 90%, you are doing well.” This raises the discussion,
what ‘good’ coverage is after all; because over the last decades, the threshold for
what constitutes a ‘good’ coverage ratio may have risen: “With reasonable effort,
I would say 90% is a lot. In this project here, everything went smooth until we
reached 95% and then it became difficult, because you start to deal with the code
that is difficult to reach. [. . . ] My experience in early years was that 85% was
excellent.”

Nevertheless, participants basically agreed that a 100% coverage can be
achieved. Nitpicking, the project reached “only” a coverage of 99.9% and one
participant stated: “100%—you can say good-bye to that—but 100 minus epsilon
is probably possible.”, but another one disagreed: “100%, and I really mean 100
dot zero percent, is definitely achievable.” In fact, true 100% or 100%-epsilon, is
probably an academic question, as from a practical perspective other problems
are more relevant.

100% Coverage Is Sometimes Necessary. One participant considers 100%
as “a necessary, but not a sufficient condition for quality”. He explained that
coverage “should be 100%” because otherwise there is the “risk of fair-weather
tests [. . . , i.e.,] that potentially the most complex, hardest to understand, or most
difficult to reach functionality is left untested.” If less was the target, developers
might “pick the 80% most beautiful tests that they can wangle most easily, [. . . and
think that as they] satisfied the metric, now everything is fine.” The remaining
20%, “what harm can it do?”. But if “the remaining 20% are full of bugs”, then
the other 80% are useless.

However, all participants were in agreement that “for criticality class A, i.e.,
loss of human live or catastrophic consequences, I would demand 100%”. Also “a
high financial loss” was seen as justification. But for criticality class B—“i.e.,
loss of mission, that is an economic loss” or for “a smaller satellite that just
orbits some place where nobody cares”, participants agreed that “less may be
potentially fine.” One participant, however, mentioned that “one should always
target 100%. The reason is: if I aim at less than 100%, what do I leave out? How
do I justify not testing something?”
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100% Coverage Brings in New Risks. All participants agree that the 100%
coverage requirement introduces risks to a project. In particular, the participants
saw a risk to the schedule, i.e., that they might “lock jaws in some problem and
let the project slip out of control already at its beginning.” A development team
needs to be aware of and have a strategy to cope with this risk. Moreover, they
all agreed that a fixed and high coverage ratio imposes a financial risk as it is
difficult to say in advance what and how many “hard nuts” are in the project. If
developers “postponed the difficult things”, the real difficulties will start at some
point. This point may be somewhere between 80% and 95% (so-called Pareto
Principle6) and the 100% coverage requirement is likely beyond this point. In
the studied project, two developers required two years to achieve 100% coverage
for about 25,000 lines of code. A customer demanding this should know that “it
will cost a lot. It is going to be expensive”.

Don’t Optimize for the 100%-Metric. On the one hand, a clear point was
made: “100%: it sounds really good. But I think those who demand it, do not
know what they are asking for.” On the other hand, participants mentioned
several risks of setting a 100%-requirement. Therefore, it is necessary that all
stakeholders understand the implications of such a requirement. As mentioned
before, the higher the coverage, the more expensive. The question is, however,
whether this relationship is linear. The project curve in Fig. 3, which is extracted
from the project performance data, is fairly linear and just bends at about 90%.
The remaining 10%, however, do not account for about 80% of project effort.
Consequently, the Pareto principle only applies very roughly here. This is in
contrast to a quick analysis we did in preparation of the test coverage project. On
the basis of test coverage data from a randomly chosen open source project, we
found that to ‘organically grown’ unit tests (i.e., without using coverage metrics)
the Pareto principle seems to fit better. While more rigorous verification of this
observation is needed, it seems that the use of metrics effected the relationship
between effort for developing tests and coverage. The use of metrics seems to be
responsible for the linear relationship for most of the project duration. While
using coverage measurements during the project made good (linear) progress
possible, optimizing for a metric might have hidden downsides (see Sect. 5).

In the same vain as ‘standard’ discussions on metrics, 100% coverage is also
just a metric, and focusing too much on it could mean that one “loses track of
the actual goal; which is to increase the quality.” Instead, testers might know
best where to find bugs and how to use their “available resources so that he will
find all errors.” A misunderstood metric can create a sense of false security: “I
just want to say that I think it is bad to say: Now we have 80% unit tests, now
it’s fine.” A high coverage is not a guarantee of good quality.

6 This is also called the “Pareto principle”; according to Joseph M. Juran who proposed
the 80/20-rule, which roughly says that the first 80% are easy to achieve while the
remaining 20% are not.
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Develop a Proper Strategy to Maximize Coverage. Monitoring using
metrics is important and a prerequisite to achieve a high coverage. However,
aiming at high coverage also requires an appropriate development approach.
When production code is developed, testing must already be planned to avoid
problems that the participants faced in the project: “Testability is a goal that one
actually has to code into the code. It does not come automatically, along the way,
or for free. It is a goal that one must prescribe.” Furthermore, when setting a test
coverage requirement, customers should be careful that a plain 100% coverage
may be too undifferentiated: “What can be tested very well with unit tests is
business logic [e.g., a PI controller7] because it abstracts from the hardware and
the operating system, and because it can be reused. Here unit tests make a lot of
sense” and are “economically reasonable”. “The hardware [. . . ] and the operating
system, and all the things at those lower layers are hard to test, and require a lot
of effort, and they are not really what unit tests are intended for. You leave these
things out, and the resulting percentage is what is economically reasonable.” So,
if there is “10% hardware-specific stuff, [. . . ] 90% are good tests.”

This includes that a test strategy has to pay attention to the different sys-
tem parts. Hence, the participants also argued for considering a combination of
different V&V techniques: unit tests are not an end in itself, but should be con-
sidered in the scope of the whole V&V ecosystem, where they complement each
other. For example, “reading from or writing to a register, [. . . ] these are things
[. . . ] on a different level. They will certainly be caught by integration tests,” and
“there were integration tests that covered large areas”, so unit tests do not find
many errors (see Sect. 4.1). Instead, “unit tests were done to ensure certification
of the software.” One may also consider the metric results of other static and
dynamic “verification techniques that have a notion of coverage”. In this regard,
the role of unit tests was also critically discussed by the participants: test-driven
development leads to a high coverage (“we certainly would have had 90%”) but
does not lead to 100%. It is “not relevant whether or not you really reached
100%, but that interfaces were covered”.

Eventually, even though a strategy needs to be in place to achieve a high
coverage, our participants ended up with a fairly pragmatic approach: Do easy
things first. One participant noted that “it is normal: first one does the things
that can be easily done.” It allows the team “to get into a decent flow, [. . . ] to
carve out some lead initially, to be able to crack the hard nuts at the end.” If, at
some later point, the project should “slip out of control”, it could be easier for
negotiations if good progress has been made so far. Nonetheless—also regarding
the ‘special’ setup of the studied project—the findings from the interview, again,
confirm the saying: You can’t test quality into a product. It has to be built in
right from the start. The participants noted that unit testing cannot “be done
after the code freeze [. . . when] not a single bit is allowed to be changed.” Testing

7 A proportional-integral (PI) controller is a control loop feedback mechanism that
continuously computes the difference between an expected and an actual value for a
variable (e.g., temperature, electrical current flow, angles,...) and applies a correction
based on proportional, integral, and derivative terms.
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“has to happen in parallel, or [. . . as] test after coding. [. . . ] It all depends on
when one starts with the tests.” An extreme target value of 100% must be set
early on and reflected in the quality assurance approach, or, otherwise, it may
cause serious trouble.

100% Coverage Is Not a Sufficient Condition for Good Quality. The
participants concluded that “100% coverage is not a sufficient condition for
good quality.” In fact, it might “have a slight impact on quality” because in
the “extreme case, one can achieve 100% coverage by just’running all code’ but
without doing a single test.” One just “claims that one tested something” but
only shows that “the functions did not crash”. It does not necessarily mean that
“the software/the functions really do what they are supposed to.” Hence, coverage
is “a start, [. . . but] one may not forget, there is also test depth. Test depth is
difficult to measure.”

5 Related Work

According to Bennet and Wennberg [3], bug-fixing cost increases by magnitudes
in later system lifecycle stages. In particular for space systems, however, bug-
fixing cost could mean the system’s cost in total, as a software failure might
cause a complete system loss, e.g., as recently happened to ESA’s Schiaparelli
lander [20].

Therefore, rigorous software quality assurance as part of the overall prod-
uct assurance is crucial. Hence, and as also found in our interviews, a 100%-
coverage can be a reasonable requirement. However, the implications need to be
considered as well, especially concerning the efficiency and effectiveness of the
instrument (i.e., unit test) on the project’s operation. For instance, Gokhale and
Mullen empirically investigated the marginal value of increased testing [12]. In
their tests, they observed an asymptotic convergence of test coverage towards
100%. The marginal coverage as a function of the number of tests decreases
logarithmically, reaching almost zero at about 1,000 tests. Approximately linear
growth of coverage ends between 50% and 80% of coverage. However, Arthur
Lowell stated ironically that “20% of the code has 80% of the errors. Find them,
fix them!” [2]. If he is right, then just a few percent of uncovered code might
still contain many (critical) errors (see also [5]). And, eventually, Mockus et al.
[16] found that, on the one hand, cost increases dramatically if achieving higher
coverage rates, but on the other hand, reduction of field issues increases lin-
early. They conclude that, for most projects, (economically) optimal coverage
rates are below 100%. However, it has to be mentioned that, to the best of our
knowledge, test coverage and its economic implications to the space domain has
not yet been investigated in detail as most of the papers listed above are con-
cerned with ‘normal’ software-intensive systems. For instance, although Mockus
et al. [16] might be right, in the space domain, even one ‘field issue’ might lead
to a complete system loss. Referring to the Schiaparelli lander [20], there is no
bug-fixing strategy; the probe is just gone.
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Practitioners also have to be careful to not be trapped in ‘chasing the rabbit’.
In particular, Marick [14] describes the misuse of coverage metrics, e.g., in the
problematic different perception of developers, managers, and product testers,
and their respective constraints and requirements. He makes a clear statement
that coverage (tools) should enhance thought, not replace it. On the other hand,
Martin [15] demands a high coverage to be a goal of any professional development
team. Yet, he is often criticized for this opinion, since people argue that a high
coverage does not necessarily lead to meaningful tests. In this regard, the 2016
Software Testing Technology Report by Vector Software [21] makes a strong
statement that one of the most misunderstood issues with code coverage is its
relevance to software quality. Authors conclude that a 100% code coverage should
not be the goal of software testing, rather than the result of complete testing—a
statement that we also found in our interviews.

Regarding the strategy to achieve a high coverage, our study revealed a fairly
pragmatic approach. This comes as no surprise, as recent research illustrated a
significantly different perspective on software testing [11]. That is, even though
using the same terminology, industry and academia quite often put emphasis
on different ‘things’. On the other hand, empirical evidence on particular meth-
ods/approaches is rare. For example, Fucci et al. [10] found no difference in apply-
ing test-first or test-last approaches. Only thing that counts is the granularity
(and quality) of the work packages and requirements specifications. Further-
more, even though driven by standards, quite often, safety-related requirements
are implemented and assured in a mixed approach. For instance, Ingibergsson
et al. [13] found a discrepancy between method- and development-level imple-
mentation of standards to adhere to quality requirements in the field of
autonomous robotics—providing further support for [11]. Also, our interview
participants emphasized the importance of combining different testing tech-
niques, and that an improved combination of different verification and validation
approaches (including e.g., static analyses), would be wiser than a fairly ‘acad-
emic’ (not to say ‘bureaucratic’) 100% coverage requirement; maybe even more
efficient.

The paper at hand thus adds to the body of knowledge by studying high
test coverage ratios in the domain of software and system development for space
systems. This paper adds an experience report and lessons learned from a space
project and shows a still present need to study (economic) reasonableness of a
100% coverage goal.

6 Conclusion

Space systems are critical systems that require substantial quality assurance
during development. If errors occur, such systems might be completely lost.
However, what is substantial quality assurance? According to the ECSS stan-
dards, software for space systems shall have 100% test coverage (for criticality
classes A and B). Is this a reasonable goal? In order to answer this question, we
studied a project performed in which a software system’s test suite was to be
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improved towards meeting a 100% unit test coverage goal. Eventually, the team
managed to achieve >99.5% test coverage (statement and branch coverage), yet,
it became obvious that the effort required to implement such a comprehensive
test suite was tremendous. Therefore, we wanted to reflect on the project and
we wanted to study if the 100%-goal is a reasonable one.

This paper presents the findings of an interview study performed at Tesat
Spacecom in the final phase of the LCT project (Sect. 2). Our leading question,
“Is 100% test coverage a reasonable requirement?” was studied from different
perspectives, e.g., need for 100% coverage, break-even points, and strategies to
achieve this goal. The interviews provided numerous of valuable insights from
which we condensed a set of lessons learned. There is some justification for
setting 100% coverage as a requirement. However, a plain 100% requirement
may be too undifferentiated, and one should really understand the effects and
possible alternatives (which might find possible errors more cost-efficiently). In
a nutshell, our interviews resulted in the following key lessons:

– 100% coverage is unusual but achievable
– 100% coverage is sometimes necessary
– 100% coverage brings in new risks
– Don’t optimize for the 100%-metric
– Develop a proper strategy to maximize coverage
– 100% coverage is not a sufficient condition for good quality

Our findings include that there seems to be a break-even point between 80% and
95%, and everything beyond this points is increasingly costly and could introduce
new project risks—which confirms findings reported so far in literature (Sect. 5).
However, the interview revealed that, still, 100% coverage can be a reasonable
quality requirement; even though a 100% requirement is not a good indicator
for the software quality as such. Especially for dependable systems, the decision
to test less also includes a decision of what not to test, i.e., which parts of the
system to exclude from the tests. Feedback from an author of the test coverage
requirements in ECSS standard was: Only the idea that some statements may
never have been exercised at all by any test should be a source of anxiety.
Yet, such a rule should not be taken and applied too literally, and be discussed
carefully.

Furthermore, we found the participants arguing that 100% should not become
a ‘formal’ goal only, which leads to a situation in which just a metric is optimized.
100% coverage should always be the result of good testing but it makes few sense
as a goal in itself. So how should the issue be treated on the contractual and
standards level? As a customer, one wants to have 100% unit test coverage but
achieving it by a formal demand (requirement) does not guarantee quality.

Moreover, the test depth and applying different V&V techniques should be
considered. Nonetheless, all participants agreed that lifting the unit test coverage
to 100% ex-post has to be criticized (time, effort, no options to change the
software due to already performed certification). If a high coverage must be
achieved in a project, the respective approach needs to be defined upfront and
implemented continuously.
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Finally, regarding the question whether or not the ECSS goal of 100% test
coverage is reasonable: if there is only a small chance to avoid an extreme risk
from materializing, it should be seized. However, when resources are limited, one
has to make the decision whether effort should be spent on increasing the unit
test coverage ratio, or to better put emphasis on other V&V activities. Hence,
the answer to the question whether 100% is a reasonable requirement still is: “It
depends”.

Limitations. As stated in Sect. 3.4, our interview only covers one particular
project, which was in the special situation that the high degree of test coverage
had to be achieved ex-post. Furthermore, we only interviewed one project team.
Hence, our findings are grounded in a few developers’ opinions and, therefore, are
hard to generalize. Also, in the project studied, 100% coverage was not required
from the beginning. That is, it remains unclear if the lessons learned would be
the same if a project starts with such a requirement right from the beginning.
Finally, further implications on the system as such were not in the scope of this
study.

Future Work. As part of the future work, we plan to include the remaining
interviews conducted with project support personnel into the evaluation. Fur-
thermore, since the interviews revealed numerous interesting findings not directly
aligned with the major research question, future work will put more emphasis
on the other parts of the interviews. We also want to investigate links between
techniques like “defensive programming” and their effect on coverage, and as a
justification for not achieving 100% coverage. Finally, even though we already
collected and presented some qualitative data (Sect. 4.1), we also plan to include
more quantitative data into the study to gather further insights. We might still
be able to obtain and to take into consideration some data that has high corre-
lation with hard-to-test modules, like complexity, nesting depth, fan-in, fan-out,
etc.
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