
Michael Felderer · Daniel Méndez Fernández
Burak Turhan · Marcos Kalinowski
Federica Sarro · Dietmar Winkler (Eds.)

 123

LN
CS

 1
06

11

18th International Conference, PROFES 2017
Innsbruck, Austria, November 29 – December 1, 2017
Proceedings

Product-Focused
Software Process Improvement

Lecture Notes in Computer Science 10611

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Michael Felderer • Daniel Méndez Fernández
Burak Turhan • Marcos Kalinowski
Federica Sarro • Dietmar Winkler (Eds.)

Product-Focused
Software Process Improvement
18th International Conference, PROFES 2017
Innsbruck, Austria, November 29 – December 1, 2017
Proceedings

123

Editors
Michael Felderer
University of Innsbruck
Innsbruck
Austria

Daniel Méndez Fernández
Technical University Munich
Garching
Germany

Burak Turhan
Brunel University London
Uxbridge
UK

Marcos Kalinowski
Pontifical Catholic University of Rio de
Rio de Janeiro
Brazil

Federica Sarro
University College London
London
UK

Dietmar Winkler
Vienna University of Technology
Vienna
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-69925-7 ISBN 978-3-319-69926-4 (eBook)
https://doi.org/10.1007/978-3-319-69926-4

Library of Congress Control Number: 2017957552

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017, corrected publication 2017, 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-3818-4442
http://orcid.org/0000-0003-0619-6027
http://orcid.org/0000-0003-1511-2163
http://orcid.org/0000-0003-1445-3425
http://orcid.org/0000-0002-9146-442X
http://orcid.org/0000-0002-4743-3124

Preface

The 18th International Conference on Product-Focused Software Process Improvement
(PROFES 2017) brought together software researchers and industrial practitioners to
Innsbruck in Austria, from November 29 to December 1, 2017. The hosting institution
was the University of Innsbruck (UIBK) in Austria. In the spirit of the PROFES
conference series, PROFES 2017 provided a premier forum for practitioners,
researchers, and educators to present and discuss experiences, ideas, innovations, as
well as concerns related to professional software process improvement motivated by
product and service quality needs.

PROFES 2017 established an international committee of well-known experts in
software quality and process improvement to peer review the scientific submissions.
This year, we received 72 submissions of which 17 were selected as full papers and ten
as short papers. The scientific contributions were strictly scrutinized by members of our
international Program Committee. Scientific papers in the PROFES conference
received three reviews each and passed through an additional quality assurance via a
fourth meta-review.

As a novelty for conferences in our field, we have committed ourselves to making
the first steps in establishing an open science policy for all accepted papers. This way,
we support increasing the accessibility, reproducibility, and replicability of the research
outcomes in PROFES. The steering principle is that all research output should be
accessible to the public and that empirical studies should be reproducible. This open
science initiative encompassed two key aspects: open access, and open data and open
source. The first was achieved by supporting authors of accepted papers in making their
preprint copies available to the public. The latter concerned papers that relied on
empirical data. In such cases, we asked the authors to – and supported them in doing
so – disclose the anonymized and curated data within the limits of existing
non-disclosure agreements to increase the reproducibility and the replicability of their
studies. To support the authors in such, often complicated, endeavors – sharing data
comes with great effort and often with legal concerns and questions – we have
established an open science chair to support the authors. Given that the open science
initiative was newly introduced to our community, the conformance to the policy was
not a mandatory prerequisite for paper acceptance, but overall the initiative was very
well perceived and can serve as a model for other (empirical) software engineering
conferences.

A further observation from this year’s PROFES conference is that certain topics
seem to manifest themselves as constantly relevant in the community, reflecting also
the needs of the industrial community. This became evident in discussions and pre-
sentations, workshops, and tutorials. The topics included (1) software process models
in general and agile software development in particular, (2) quality and quality
assurance, (3) human factors and user-centric engineering, and (4) data analytics topics.
Besides the open space events, there were three workshops and four tutorials given in

these areas, many by researchers from industry or industry-close institutions.
The tutorials in particular attracted additional participants from local industry and
fostered discussion and knowledge exchange between industry and academia.

The keynote talks this year were once again of high quality. Marcus Ciolkowski is a
principal IT consultant at QAWare in Munich, Germany, and has an excellent repu-
tation in the field of software quality management and empirical software engineering.
Barbara Weber is full professor at the Technical University of Denmark. Moreover, she
holds an associate professor position at the University of Innsbruck (Austria), where
she leads the research cluster on business processes and workflows. Her research is on,
inter alia, human and cognitive aspects of software and information systems
engineering.

We are thankful for having had the opportunity to organize PROFES 2017 in
Innsbruck. The Program Committee members and additional reviewers provided
excellent support in reviewing the papers. We are also grateful to all speakers, authors,
and session chairs for their time and effort that made PROFES 2017 a success. We are
especially thankful to our sponsors, the Economic Chamber of Tyrol, the Province
of the Tyrol, and the University of Innsbruck. We would also like to thank the PROFES
Steering Committee members for the guidance and support in the organization process.

Finally, we would like to thank everyone in the organization team as well as the
UIBK’s student and staff volunteers for making PROFES 2017 an experience that will
live in the memory of the participants for years to come.

November/December 2017 Michael Felderer
Daniel Méndez Fernández

Burak Turhan
Marcos Kalinowski

Federica Sarro
Dietmar Winkler

VI Preface

Organization

Organizing Committee

General Chair

Michael Felderer University of Innsbruck, Austria

Program Co-chairs

Daniel Mendez Technical University of Munich, Germany
Burak Turhan Brunel University London, UK

Short Paper Co-chairs

Federica Sarro University College London, UK
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro, Brazil

Workshop and Tutorial Co-chairs

Dietmar Pfahl University of Tartu, Estonia
Rudolf Ramler Software Competence Center Hagenberg, Austria

Posters and Tool Demos Co-chairs

Ayse Tosun Istanbul Technical University, Turkey
Sousuke Amasaki Okayama Prefectural University, Japan

Proceedings Chair

Dietmar Winkler Vienna University of Technology, Austria

Open Science Chair

Daniel Graziotin University of Stuttgart, Germany

Social Media and Publicity Chairs

Martin Solari Universidad ORT, Uruguay
Davide Fucci University of Hamburg, Germany
Masateru Tsunoda Kindai University, Japan

Local Organization Chairs/Web Chairs

Ilona Zaremba University of Innsbruck, Austria
Boban Celebic University of Innsbruck, Austria

Program Committee

Silvia Abrahão Universitat Politecnica de Valencia, Spain
Sousuke Amasaki Okayama Prefectural University, Japan
David Ameller Universitat Politècnica de Catalunya, Spain
Maria Teresa

Baldassarre
University of Bari, Italy

Monalessa Barcellos UFES, Brazil
Kristian Beckers Siemens, Germany
Sarah Beecham Lero - the Irish Software Engineering Research Centre,

Ireland
Stefan Biffl Vienna University of Technology, Austria
Andreas Birk SWPM, Germany
David Bowes Science and Technology Research Institute,

University of Hertfordshire, UK
Luigi Buglione Engineering IT/ETS, Italy
Andrea Burattin University of Innsbruck, Austria
Marcus Ciolkowski QAware GmbH, Germany
Steve Counsell Brunel University, UK
Maya Daneva University of Twente, The Netherlands
Jose Luis de La Vara Carlos III University of Madrid, Spain
Sergio Di Martino University of Naples Federico II, Italy
Oscar Dieste Universidad Politecnica de Madrid, Spain
Michal Dolezel MSD IT Global Innovation Center, Prague,

Czech Republic
Christof Ebert Vector, Germany
Fabian Fagerholm University of Helsinki, Finland
Davide Falessi Cal Poly, USA
Michael Felderer University of Innsbruck, Austria
Filomena Ferrucci Università di Salerno, Italy
Xavier Franch Universitat Politècnica de Catalunya, Spain
Davide Fucci University of Oulu, Finland
Vahid Garousi University of Luxembourg, Luxembourg
Carmine Gravino University of Salerno, Italy
Daniel Graziotin University of Stuttgart, Germany
Noriko Hanakawa Hannan University, Japan
Jens Heidrich Fraunhofer IESE, Germany
Yoshiki Higo Osaka University, Japan
Frank Houdek Daimler AG, Germany
Andrea Janes Free University of Bolzano, Italy
Janne Järvinen F-Secure, Finland
Andreas Jedlitschka Fraunhofer IESE, Germany
Petri Kettunen University of Helsinki, Finland
Martin Kropp University of Applied Sciences Northwestern Switzerland,

Switzerland
Marco Kuhrmann Clausthal University of Technology, Germany

VIII Organization

Jingyue Li Norwegian University of Science and Technology
(NTNU), Trondheim, Norway

Stephen MacDonell University of Otago, New Zealand
Lech Madeyski Wroclaw University of Science and Technology, Poland
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Tomi Männistö University of Helsinki, Finland
Mika Mäntylä University of Oulu, Finland
Beatriz Marín Universidad Diego Portales, Chile
Jouni Markkula University of Oulu, Finland
Kenichi Matsumoto Nara Institute of Science and Technology (NAIST), Japan
Maurizio Morisio Politecnico di Torino, Italy
Jürgen Münch Reutlingen University, Germany
Risto Nevalainen Spinet Oy, Finland
Anh Nguyen Duc NTNU, Norway
John Noll Lero, the Irish Software Engineering Research Centre,

Ireland
Renato Novais Instituto Federal da Bahia, Brazil
Markku Oivo University of Oulu, Finland
Paolo Panaroni INTECS, Italy
Oscar Pastor Lopez Universitat Politecnica de Valencia, Spain
Birgit Penzenstadler California State University Long Beach, USA
Dietmar Pfahl University of Tartu, Estonia
Rudolf Ramler Software Competence Center Hagenberg, Austria
Michele Risi University of Salerno, Italy
Daniel Rodriguez The University of Alcalá, Spain
Bruno Rossi Masaryk University, Czech Republic
Gleison Santos UNIRIO, Brazil
Giuseppe Scanniello University of Basilicata, Italy
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Kari Smolander Aalto University, Finland
Martin Solari Universidad ORT Uruguay, Uruguay
Rodrigo Spinola Unifacs, Brazil
Klaas-Jan Stol Lero, University College Cork, Ireland
Michael Stupperich Daimler, Germany
Marco Torchiano Politecnico di Torino, Italy
Ayse Tosun Istanbul Technical University, Turkey
Guilherme Travassos COPPE/UFRJ, Brazil
Rini Van Solingen Delft University of Technology, The Netherlands
Antonio Vetrò Nexa Center for Internet and Society (DAUIN, Politecnico

di Torino), Italy
Andreas Vogelsang Technische Universität Berlin, Germany
Stefan Wagner University of Stuttgart, Germany
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Hironori Washizaki Waseda University, Japan
Dietmar Winkler Vienna University of Technology, Austria

Organization IX

Contents

Agile Software Development

Is Task Board Customization Beneficial?: An Eye Tracking Study 3
Oliver Karras, Jil Klünder, and Kurt Schneider

Influence of Software Product Management Maturity on Usage of Artefacts
in Agile Software Development . 19

Gerard Wagenaar, Sietse Overbeek, Garm Lucassen,
Sjaak Brinkkemper, and Kurt Schneider

Real-Life Challenges on Agile Software Product Lines in Automotive 28
Philipp Hohl, Jürgen Münch, Kurt Schneider, and Michael Stupperich

Measuring Team Innovativeness: A Multiple Case Study of Agile
and Lean Software Developing Companies. 37

Richard Berntsson Svensson

Data Science and Analytics

What Can Be Learnt from Experienced Data Scientists? A Case Study 55
Leah Riungu-Kalliosaari, Marjo Kauppinen, and Tomi Männistö

A Virtual Study of Moving Windows for Software Effort Estimation
Using Finnish Datasets . 71

Sousuke Amasaki and Chris Lokan

A Survival Analysis of Source Files Modified by New Developers 80
Hirohisa Aman, Sousuke Amasaki, Tomoyuki Yokogawa,
and Minoru Kawahara

Top Management Support for Software Cost Estimation:
A Case Study of the Current Practice and Impacts 89

Jurka Rahikkala, Sami Hyrynsalmi, Ville Leppänen, Tommi Mikkonen,
and Johannes Holvitie

Software Engineering Processes and Frameworks

The Choice of Code Review Process: A Survey on the State of the Practice. . . 111
Tobias Baum, Hendrik Leßmann, and Kurt Schneider

http://dx.doi.org/10.1007/978-3-319-69926-4_1
http://dx.doi.org/10.1007/978-3-319-69926-4_2
http://dx.doi.org/10.1007/978-3-319-69926-4_2
http://dx.doi.org/10.1007/978-3-319-69926-4_3
http://dx.doi.org/10.1007/978-3-319-69926-4_4
http://dx.doi.org/10.1007/978-3-319-69926-4_4
http://dx.doi.org/10.1007/978-3-319-69926-4_5
http://dx.doi.org/10.1007/978-3-319-69926-4_6
http://dx.doi.org/10.1007/978-3-319-69926-4_6
http://dx.doi.org/10.1007/978-3-319-69926-4_7
http://dx.doi.org/10.1007/978-3-319-69926-4_8
http://dx.doi.org/10.1007/978-3-319-69926-4_8
http://dx.doi.org/10.1007/978-3-319-69926-4_9

Unwasted DASE: Lean Architecture Evaluation . 128
Antti-Pekka Tuovinen, Simo Mäkinen, Marko Leppänen,
Outi Sievi-Korte, Samuel Lahtinen, and Tomi Männistö

Towards a Usability Model for Software Development Process
and Practice . 137

Diego Fontdevila, Marcela Genero, and Alejandro Oliveros

More for Less: Automated Experimentation in Software-Intensive Systems. . . 146
David Issa Mattos, Jan Bosch, and Helena Holmström Olsson

Industry Relevant Qualitative Research

The Evolution of Design Pattern Grime: An Industrial Case Study 165
Daniel Feitosa, Paris Avgeriou, Apostolos Ampatzoglou,
and Elisa Yumi Nakagawa

Should I Stay or Should I Go? On Forces that Drive and Prevent
MBSE Adoption in the Embedded Systems Industry 182

Andreas Vogelsang, Tiago Amorim, Florian Pudlitz, Peter Gersing,
and Jan Philipps

How Accountability is Implemented and Understood in Research Tools:
A Systematic Mapping Study . 199

Severin Kacianka, Kristian Beckers, Florian Kelbert,
and Prachi Kumari

User and Value Centric Approaches

Differentiating Feature Realization in Software Product Development 221
Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch

A Method to Transform Automatically Extracted Product Features
into Inputs for Kano-Like Models . 237

Huishi Yin and Dietmar Pfahl

Feedback Gathering for Truck Parking Europe: A Pilot Study
with the AppEcho Feedback Tool . 255

Melanie Stade and Holger Indervoort

Software Startups

Towards Understanding Startup Product Development
as Effectual Entrepreneurial Behaviors . 265

Anh Nguven-Duc, Yngve Dahle, Martin Steinert,
and Pekka Abrahamsson

XII Contents

http://dx.doi.org/10.1007/978-3-319-69926-4_10
http://dx.doi.org/10.1007/978-3-319-69926-4_11
http://dx.doi.org/10.1007/978-3-319-69926-4_11
http://dx.doi.org/10.1007/978-3-319-69926-4_12
http://dx.doi.org/10.1007/978-3-319-69926-4_13
http://dx.doi.org/10.1007/978-3-319-69926-4_14
http://dx.doi.org/10.1007/978-3-319-69926-4_14
http://dx.doi.org/10.1007/978-3-319-69926-4_15
http://dx.doi.org/10.1007/978-3-319-69926-4_15
http://dx.doi.org/10.1007/978-3-319-69926-4_16
http://dx.doi.org/10.1007/978-3-319-69926-4_17
http://dx.doi.org/10.1007/978-3-319-69926-4_17
http://dx.doi.org/10.1007/978-3-319-69926-4_18
http://dx.doi.org/10.1007/978-3-319-69926-4_18
http://dx.doi.org/10.1007/978-3-319-69926-4_19
http://dx.doi.org/10.1007/978-3-319-69926-4_19

Little Big Team: Acquiring Human Capital in Software Startups 280
Pertti Seppänen, Kari Liukkunen, and Markku Oivo

How Do Software Startups Approach Experimentation? Empirical
Results from a Qualitative Interview Study. 297

Matthias Gutbrod, Jürgen Münch, and Matthias Tichy

Scrum

A Study of the Scrum Master’s Role . 307
John Noll, Mohammad Abdur Razzak, Julian M. Bass,
and Sarah Beecham

An Exploratory Study on Applying a Scrum Development Process
for Safety-Critical Systems . 324

Yang Wang, Jasmin Ramadani, and Stefan Wagner

Exploring the Individual Project Progress of Scrum Software Developers 341
Ezequiel Scott and Dietmar Pfahl

Software Testing

Is 100% Test Coverage a Reasonable Requirement? Lessons Learned
from a Space Software Project . 351

Christian R. Prause, Jürgen Werner, Kay Hornig, Sascha Bosecker,
and Marco Kuhrmann

Exploratory Testing of Large-Scale Systems – Testing
in the Continuous Integration and Delivery Pipeline 368

Torvald Mårtensson, Daniel Ståhl, and Jan Bosch

Process and Tool Support for Internationalization and Localization
Testing in Software Product Development . 385

Rudolf Ramler and Robert Hoschek

Workshop: HELENA 2017

2nd Workshop on Hybrid Development Approaches in Software
Systems Development . 397

Marco Kuhrmann, Philipp Diebold, Stephen MacDonell,
and Jürgen Münch

Initial Results of the HELENA Survey Conducted in Estonia
with Comparison to Results from Sweden and Worldwide 404

Ezequiel Scott, Dietmar Pfahl, Regina Hebig, Rogardt Heldal,
and Eric Knauss

Contents XIII

http://dx.doi.org/10.1007/978-3-319-69926-4_20
http://dx.doi.org/10.1007/978-3-319-69926-4_21
http://dx.doi.org/10.1007/978-3-319-69926-4_21
http://dx.doi.org/10.1007/978-3-319-69926-4_22
http://dx.doi.org/10.1007/978-3-319-69926-4_23
http://dx.doi.org/10.1007/978-3-319-69926-4_23
http://dx.doi.org/10.1007/978-3-319-69926-4_24
http://dx.doi.org/10.1007/978-3-319-69926-4_25
http://dx.doi.org/10.1007/978-3-319-69926-4_25
http://dx.doi.org/10.1007/978-3-319-69926-4_26
http://dx.doi.org/10.1007/978-3-319-69926-4_26
http://dx.doi.org/10.1007/978-3-319-69926-4_27
http://dx.doi.org/10.1007/978-3-319-69926-4_27
http://dx.doi.org/10.1007/978-3-319-69926-4_28
http://dx.doi.org/10.1007/978-3-319-69926-4_28
http://dx.doi.org/10.1007/978-3-319-69926-4_29
http://dx.doi.org/10.1007/978-3-319-69926-4_29

Hybrid Software and Systems Development in Practice: Perspectives
from Sweden and Uganda . 413

Joyce Nakatumba-Nabende, Benjamin Kanagwa, Regina Hebig,
Rogardt Heldal, and Eric Knauss

HELENA Stage 2—Danish Overview . 420
Paolo Tell, Rolf-Helge Pfeiffer, and Ulrik Pagh Schultz

HELENA Study: Reasons for Combining Agile and Traditional Software
Development Approaches in German Companies . 428

Jil Klünder, Philipp Hohl, Masud Fazal-Baqaie, Stephan Krusche,
Steffen Küpper, Oliver Linssen, and Christian R. Prause

Hybrid Software and System Development in Practice: Initial Results
from Austria. 435

Michael Felderer, Dietmar Winkler, and Stefan Biffl

HELENA Study: Initial Observations of Software Development Practices
in Argentina . 443

Nicolás Paez, Diego Fontdevila, and Alejandro Oliveros

Workshop: HuFo 2017

3rd International Workshop on Human Factors in Software Development
Processes (HuFo): Measuring System Quality . 453

Silvia Abrahao, Maria Teresa Baldassarre, Danilo Caivano,
Yvonne Dittrich, Rosa Lanzilotti, and Antonio Piccinno

Don’t Underestimate the Human Factors! Exploring Team
Communication Effects . 457

Fabian Kortum, Jil Klünder, and Kurt Schneider

Applying Extreme Engineering and Personality Factors to Improve
Software Development Under a Heavyweight Methodology 470

Mercedes Ruiz and Germán Fuentes

A Systematic Literature Review of Social Network Systems
for Older Adults . 482

Bilal Ahmad, Ita Richardson, and Sarah Beecham

Different Views on Project Success: When Communication
Is Not the Same . 497

Jil Klünder, Oliver Karras, Fabian Kortum, Mathias Casselt,
and Kurt Schneider

XIV Contents

http://dx.doi.org/10.1007/978-3-319-69926-4_30
http://dx.doi.org/10.1007/978-3-319-69926-4_30
http://dx.doi.org/10.1007/978-3-319-69926-4_31
http://dx.doi.org/10.1007/978-3-319-69926-4_32
http://dx.doi.org/10.1007/978-3-319-69926-4_32
http://dx.doi.org/10.1007/978-3-319-69926-4_33
http://dx.doi.org/10.1007/978-3-319-69926-4_33
http://dx.doi.org/10.1007/978-3-319-69926-4_34
http://dx.doi.org/10.1007/978-3-319-69926-4_34
http://dx.doi.org/10.1007/978-3-319-69926-4_35
http://dx.doi.org/10.1007/978-3-319-69926-4_35
http://dx.doi.org/10.1007/978-3-319-69926-4_36
http://dx.doi.org/10.1007/978-3-319-69926-4_36
http://dx.doi.org/10.1007/978-3-319-69926-4_37
http://dx.doi.org/10.1007/978-3-319-69926-4_37
http://dx.doi.org/10.1007/978-3-319-69926-4_38
http://dx.doi.org/10.1007/978-3-319-69926-4_38
http://dx.doi.org/10.1007/978-3-319-69926-4_39
http://dx.doi.org/10.1007/978-3-319-69926-4_39

Workshop: QuASD 2017

1st QuASD Workshop: Managing Quality in Agile and Rapid Software
Development Processes . 511

Claudia Ayala, Silverio Martínez-Fernández, and Pilar Rodríguez

Non-functional Requirements Documentation in Agile Software
Development: Challenges and Solution Proposal . 515

Woubshet Behutiye, Pertti Karhapää, Dolors Costal, Markku Oivo,
and Xavier Franch

Lessons Learned from the ProDebt Research Project on Planning
Technical Debt Strategically . 523

Marcus Ciolkowski, Liliana Guzmán, Adam Trendowicz,
and Felix Salfner

Rapid Lean UX Development Through User Feedback Revelation 535
Frank Elberzhager, Konstantin Holl, Britta Karn, and Thomas Immich

Managing Development Using Active Data Collection. 543
Michael Kläs and Frank Elberzhager

Agile Quality Requirements Management Best Practices Portfolio:
A Situational Method Engineering Approach . 548

Lidia López, Woubshet Behutiye, Pertti Karhapää, Jolita Ralyté,
Xavier Franch, and Markku Oivo

MultiRefactor: Automated Refactoring to Improve Software Quality 556
Michael Mohan and Des Greer

Transition from Plan Driven to SAFe®: Periodic Team Self-Assessment 573
Mohammad Abdur Razzak, John Noll, Ita Richardson,
Clodagh Nic Canna, and Sarah Beecham

Beneficial and Harmful Agile Practices for Product Quality 586
Sven Theobald and Philipp Diebold

Posters and Tool Demonstration Papers

Visual Programming Language for Model Checkers Based
on Google Blockly . 597

Seiji Yamashita, Masateru Tsunoda, and Tomoyuki Yokogawa

Improving Communication in Scrum Teams . 602
Marvin Wyrich, Ivan Bogicevic, and Stefan Wagner

Contents XV

http://dx.doi.org/10.1007/978-3-319-69926-4_40
http://dx.doi.org/10.1007/978-3-319-69926-4_40
http://dx.doi.org/10.1007/978-3-319-69926-4_41
http://dx.doi.org/10.1007/978-3-319-69926-4_41
http://dx.doi.org/10.1007/978-3-319-69926-4_42
http://dx.doi.org/10.1007/978-3-319-69926-4_42
http://dx.doi.org/10.1007/978-3-319-69926-4_43
http://dx.doi.org/10.1007/978-3-319-69926-4_44
http://dx.doi.org/10.1007/978-3-319-69926-4_45
http://dx.doi.org/10.1007/978-3-319-69926-4_45
http://dx.doi.org/10.1007/978-3-319-69926-4_46
http://dx.doi.org/10.1007/978-3-319-69926-4_47
http://dx.doi.org/10.1007/978-3-319-69926-4_47
http://dx.doi.org/10.1007/978-3-319-69926-4_48
http://dx.doi.org/10.1007/978-3-319-69926-4_49
http://dx.doi.org/10.1007/978-3-319-69926-4_49
http://dx.doi.org/10.1007/978-3-319-69926-4_50

Tool Support for Consistency Verification of UML Diagrams. 606
Salilthip Phuklang, Tomoyuki Yokogawa, Pattara Leelaprute,
and Kazutami Arimoto

Tutorials

Analyzing the Potential of Big Data: A Tutorial for Business
and IT Experts . 613

Andreas Jedlitschka

Automatic Requirements Reviews - Potentials, Limitations
and Practical Tool Support . 617

Henning Femmer

Need for Speed – Towards Real-Time Business . 621
Janne Järvinen and Tommi Mikkonen

From Zero to Hero: A Process Mining Tutorial. 625
Andrea Janes, Fabrizio Maria Maggi, Andrea Marrella,
and Marco Montali

Erratum to: How Accountability is Implemented and Understood in
Research Tools: A Systematic Mapping Study . E1

Severin Kacianka, Kristian Beckers, Florian Kelbert,
and Prachi Kumari

Erratum to: Should I Stay or Should I Go? On Forces that Drive
and Prevent MBSE Adoption in the Embedded Systems Industry E3

Andreas Vogelsang, Tiago Amorim, Florian Pudlitz, Peter Gersing,
and Jan Philipps

Author Index . 631

XVI Contents

http://dx.doi.org/10.1007/978-3-319-69926-4_51
http://dx.doi.org/10.1007/978-3-319-69926-4_52
http://dx.doi.org/10.1007/978-3-319-69926-4_52
http://dx.doi.org/10.1007/978-3-319-69926-4_53
http://dx.doi.org/10.1007/978-3-319-69926-4_53
http://dx.doi.org/10.1007/978-3-319-69926-4_54
http://dx.doi.org/10.1007/978-3-319-69926-4_55

Agile Software Development

Is Task Board Customization Beneficial?

An Eye Tracking Study

Oliver Karras(B), Jil Klünder, and Kurt Schneider

Software Engineering Group, Leibniz Universität Hannover,
30167 Hannover, Germany

{oliver.karras,jil.kluender,kurt.schneider}@inf.uni-hannover.de

Abstract. The task board is an essential artifact in many agile devel-
opment approaches. It provides a good overview of the project status.
Teams often customize their task boards according to the team mem-
bers’ needs. They modify the structure of boards, define colored codings
for different purposes, and introduce different card sizes. Although the
customizations are intended to improve the task board’s usability and
effectiveness, they may also complicate its comprehension and use. The
increased effort impedes the work of both the team and team externals.
Hence, task board customization is in conflict with the agile practice of
fast and easy overview for everyone.

In an eye tracking study with 30 participants, we compared an original
task board design with three customized ones to investigate which design
shortened the required time to identify a particular story card. Our find-
ings yield that only the customized task board design with modified
structures reduces the required time. The original task board design is
more beneficial than individual colored codings and changed card sizes.

According to our findings, agile teams should rethink their current
task board design. They may be better served by focusing on the original
task board design and by applying only carefully selected adjustments.
In case of customization, a task board’s structure should be adjusted
since this is the only beneficial kind of customization, that addition-
ally complies more precisely with the concept of fast and easy project
overview.

Keywords: Agile development · Task board · Customization · Eye
tracking

1 Introduction

Agile software development is a general term for a set of development approaches
which focus on social aspects. These approaches aim at increasing the developers’
productivity, delivering working software in time and minimizing the risk of
failure within software projects [27]. The core concept of agile development is
based on fundamental values which are concretized by defined principles that
are in turn fulfilled by certain practices [6].
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 3–18, 2017.
https://doi.org/10.1007/978-3-319-69926-4_1

4 O. Karras et al.

eXtreme programming (XP) [5] and Scrum [24] are the most commonly used
and combined agile approaches [3,20]. One practice of XP is the informative
workspace. According to Beck and Andres, this practice is about how to “make
your workspace about your work. An interested observer should be able to walk
into the team space and get a general idea of how the project is going within
15 s” [5, p. 39f.]. Cockburn [8] provides a similar concept of the so-called infor-
mation radiator. “An information radiator displays information in a place where
passerby can see it” [8, p. 114]. An information radiator has to fulfill two fea-
tures – representing information that changes over time, and requiring very little
effort to view the display. In total, an implementation of these two concepts must
be easy-to-use and offer a fast overview with minimal effort [22].

One implementation of both concepts is the task board [25]. It is one key
artifact of agile development [3,14] which serves a dual purpose of supporting
a team’s work organization and constituting at a glance how much work is left
[10,18]. Additionally, a task board allows communication and collaboration since
it tracks and visualizes the software development process and thus simplifies its
accessibility for everyone [17,20].

Although the original task board design of Cohn [10] provides a clear
overview, teams tend to customize their own [26]. Sharp et al. [27] analyzed
six different mature XP teams and their task boards. They identified that the
teams’ task boards were consistent in terms of usage, but not regarding a par-
ticular design. The different task board designs resulted from combinations of
various customizations like modified structures, individual colored codings and
changed card sizes. Customization itself is not serious since a task board can be
easily and flexibly adjusted due to its physical nature [13,26]. Additionally, agile
approaches involve customization by offering corresponding degrees of freedom
[20,28]. Furthermore, any adjustment of a task board by an agile team according
to its needs is plausible since the team members work with it every day [26].

However, multiple combined customizations complicated the maintenance
and comprehensibility of a task board. In particular, the increased effort impedes
the work of a team as well as team externals with a customized task board
[13,15,27]. Thus, the underlying practice of a task board as an informative
workspace for fast and easy project overview for everyone gets lost.

While the tight social and technical cohesion found in mature agile teams are
not disputed, the effect of single practices like the informative workspace is little
understood [27]. Berczuk emphasizes that “any team is best served by following
the rules of the agile method with as few adjustments as possible” [7, p. 6].
Corresponding to Pikkarainen et al. [20], adoption and change of agile practices
are aspects of future studies. Therefore, we investigated whether specific single
task board customizations contribute to a task board’s usage in comparison with
an original task board design. As an example, we focused on the identification
of a particular story card as one main task of using a task board.

We conducted an eye tracking study to compare an original task board design
corresponding to literature [10,17] with three customized ones. Each customized
task board differs exactly in one single aspect from the original one, such as

Is Task Board Customization Beneficial? 5

modified structures, individual colored codings, or changed card sizes. Each mod-
ification could contribute to achieving a better overview of a task board in order
to identify a particular story card faster. In our study, we observe whether a par-
ticular task board customization improves the work with a task board. These
results identify whether specific kinds of customization are beneficial or not for
a task board’s usage. Our findings can help agile teams to rethink their current
task board design in order to improve it.

The contribution of this paper is the insight that modified structures are
the only kind of customization that shortens time to identify a particular story
card. Individual colored codings and changed card sizes even have detrimental
effects on the performance. Agile teams should reconsider their current task
board designs. They may be better served by focusing on the original task board
design and applying carefully selected adjustments. A task board’s structure
should be adjusted since this kind of customization is beneficial and complies
with the agile practice informative workspace.

This paper is structured as follows: Sect. 2 discusses related work. We describe
the task board and its major kinds of customization in Sect. 3. In Sect. 4, we
report our eye tracking study and document its findings, which we discuss in
Sect. 5. Section 6 concludes the paper.

2 Related Work

2.1 Task Board: Key Artifact of Agile Software Development

Several researchers investigated the task board’s usage and role in the agile
software development process.

Sharp et al. [25] systematically consider the use and role of story cards and
a task board in one mature XP team. Based on story cards and the task board,
the authors analyze the team’s collaborative work by using the distributed cog-
nition framework. Thus, the information flows in, around and within the XP
team can be substantiated to answer “what if” questions regarding changes to
the story cards’ and task board’s form to illustrate consequences for the team-
work. Sharp and Robinson [26] extend the previously mentioned study on three
mature XP teams. Their results show significant similarities between the teams’
usage of story cards and task board, but not in their particular designs. After dis-
cussing the importance of a physical representation of both artifacts, the authors
highlight important aspects that need to be taken into account for technological
tool-support of agile development. In a further study, Sharp et al. [27] investigate
the role of story cards and a task board from two complementary perspectives:
a notational and a social one. Based on both perspectives, they explain that
these two physical artifacts are important key properties of successful teams.
Any attempt to replace these artifacts with technological support needs to take
into account the complex relationships between both perspectives and the arti-
facts. Petre et al. [18] consider the use of public visualizations, i.e. story cards
and task boards, in different software development teams. In a number of empir-
ical studies, the authors observe differences in the use of paper and whiteboards

6 O. Karras et al.

between traditional and agile teams. The findings are used to identify possi-
ble implications of these differences for software development in general. Liskin
et al. [15] explore the use and role of story cards and task board within a
Kanban project. Their findings reveal that despite a task board for requirements
visualization and communication some requirements are still too implicit and
caused misunderstandings. Katsma et al. [14] investigate the usage of software-
and paper-based task boards in globally distributed agile development teams.
They conclude that paper-based task boards currently offer many advantages
compared to its software-based solutions. By applying the media synchronicity
theory, Katsma et al. [14] explain the current use and future development of
software tools to support globally distributed agile development teams. Perry
[17] reports his experiences about transparency problems in agile teams due to
difficulties in the transition from a physical to electronic task board. He dis-
cusses the advantages and disadvantages of physical and electronic task boards.
Based on his observation, he concludes that both task board types have their
place in team collaboration. However, the simple power and utility of physical
task boards should not be neglected. Hajratwala [13] observes the creation and
evolution of various task boards over time in different projects. He explains the
reasons why the task boards evolved, and recommends key attributes that a task
board should have.

The previous investigations focus on both the usage and role of story cards
and task boards in agile software development. The main focus is on the general
work with a task board and its importance for agile development. Addition-
ally, different task board designs and their evolution over time are presented.
Although differences in the designs were recognized, none of the researchers con-
sidered its possible impact on work with this artifact. Our paper addresses this
topic by investigating whether task board customization is beneficial or not.

2.2 Viewers’ Consideration of Software Development Artifacts

There are already several researchers who used eye tracking to investigate a
viewer’s consideration of a respective software development artifact.

Ahrens et al. [1] conducted an eye tracking study to analyze how software
specifications are read. They identified similar patterns between paper- and
screen-based reading. The results contribute awareness by considering readers’
interests based on how they use a specification. Gross and Doerr [11] performed
an explorative eye tracking study to investigate software architects’ information
needs and expectations from a requirements specification. The results allow first
insights into the relevance of certain artifact types and their notational represen-
tations. Gross et al. [12] extended their previously mentioned eye tracking study
by analyzing information needs and expectations of usability experts. Based
on the findings, the authors introduced the idea of a view-based requirements
specification to fulfill needs of different roles in software development. Santos
et al. [23] evaluated the effect of layout guidelines for i∗ goal models on novice
stakeholders’ ability to understand and review such models. They identified no

Is Task Board Customization Beneficial? 7

statistically significant differences in success, time taken or perceived complex-
ity between tasks conducted with well and badly designed model layouts. Ali
et al. [2] applied eye tracking to the verification of requirements traceability
links. Their data analysis allowed the identification and ranking of developers’
preferred source code entities. Thus, the authors defined two weighting schemes
to recover traceability links combined with information retrieval techniques.

All previous studies apply eye tracking to analyze how specific software devel-
opment artifacts are read by persons with different functions. We follow this
approach by using eye tracking to investigate the work with a task board. Our
study specifically focuses on the impact of different task board customizations
on a task board’s usage by team externals respectively new team members.

3 Task Board: Structure and Content

The task board’s origins are the informative workspace practice of Beck and
Andres [5] as well as the concept of information radiator by Cockburn [8]. They
present first ideas of story cards pinned on a wall or whiteboard. In their books,
they offer possible implementations of these concepts.

Cohn [10] describes a first concrete task board design in his book “Agile
Estimating and Planning”. According to his definition, a task board consists of
up to seven columns to track and visualize a team’s progress in development.
The seven columns are:

1. Stories: A backlog of all story cards
2. To Do: All task cards to implement particular story cards
3. Tests Ready : Status of a story cards’ acceptance tests
4. In Process: Task cards developers have signed up for
5. To Verify : Implemented task cards that need to be verified
6. Hours: Total working hours remaining for particular story cards
7. Done: All implemented and verified task cards

Furthermore, Cohn [10] defines that a task board includes one row for each story
card. Each row contains all task cards that are related to the corresponding story
card. According to Cohn [10], the columns Tests Ready, To Verify, Hours and
Done are optional.

3.1 Task Board Customizations

Based on the previously mentioned findings in literature, we considered further
research papers about the design and content of task boards. Additionally, we
analyzed different task boards with respect to their design in online galleries of
team spaces [4,19,29]. Thus, we identified three major kinds of customization:
modified structures, individual colored codings, and changed card sizes.

Modified structures are changes regarding the amount and usage of a task
board’s rows and columns. Petre et al. [18] describe a task board as a vertical
surface for story cards. This task board has a codified structure to indicate a

8 O. Karras et al.

story card’s status. Other researchers [17,21,22] report in greater detail about
this codified structure. Pries-Heje and Pries-Heje [21] focus on a task board for
Scrum, which consists of the four columns Backlog, Task in Progress, Done, and
Done Done corresponding to their description. A similar task board structure
is mentioned by Rubart and Freykamp [22]. The columns of this task board are
named Selected Product Backlog, Tasks To Do, Work In Progress, and Done.
Perry [17] also reports that a simple task board has four columns called Story,
To Do, In Progress, and Complete.

All descriptions have in common that the task board structure consists of
the same four columns with only slightly different labels. However, none of these
researchers mentions the use of rows on a task board. We could identify two
variants for the use of rows based on our consideration of team spaces in online
galleries. The first variant uses one row for each story card, which corresponds to
Cohn’s definition [10]. The second one uses rows in specific columns like To Do
and Work In Progress to visualize the assignment of developers to story cards.
The comparison of these insights with Cohn’s original task board structure [10]
shows clear differences regarding the amount and use of a task board’s rows and
columns between theory and practice.

Individual colored codings are colored cards and markers with arbitrary
meaning which need to be memorized. Several researchers report the widespread
individual use of colored codings on task boards. Katsma et al. [14] describe
the use of different colored cards to indicate various card types, e.g. red for
bugs cards. Liskin et al. [15] mention colored markers on cards to represent
assigned developers. Sharp et al. [25–27] observe the use of colored markers
and cards as status indicators and card types in four mature XP teams. These
findings correspond to our observations of the task boards presented in the online
galleries. Even though we cannot clarify the exact meanings of the used colored
codings, we observe that their use is widely scattered.

Changed card sizes consider the size of story cards which are used to write
down user stories and display them on the task board. The size of story cards has
a wide range. Azizyan et al. [3] as well as Katsma et al. [14] report about story
cards the size of sticky notes or post-its. In contrast, Perry [17] and Sharp et al.
[27] state that a story card’s size can be up to an index card of 5 × 7 in. These
insights coincide with our observations of the online galleries. We identified the
same range of card sizes from post-its up to index cards.

3.2 Task Board Designs

In consideration of the previously described findings, we developed four task
board designs for our eye tracking study. These designs are based on a dataset
of real story cards from a completed software project. While one task board
design is similar to Cohn’s initial definition of a task board design [10], each of
the other designs takes one of the three major customizations into account.

During the design development, we took into account that all task boards
represent the same content, except for exactly one specific difference according
to the customizations. Figure 1 represents an overview of our four task board

Is Task Board Customization Beneficial? 9

designs. All task boards have four columns, labeled with Stories, Task To Do,
W.I.P (Work In Progress), and Done. These labels are adopted from the original
task board of the completed software project whose story cards were used. We
decided to change as little as possible from the original dataset. Therefore, we
retain the labels of the task board since they are similar to the previously men-
tioned ones. Furthermore, these four columns cover all three obligatory columns
corresponding to Cohn’s definition [10].

Figure 1a presents the task board with an original design which is similar to
Cohn’s definition [10]. This task board does not have Cohn’s row structure [10]
since the used dataset of real story cards did not consider this aspect. Therefore,
the story cards could not be grouped to achieve a reasonable row structure.

Figure 1b shows the task board with modified structures. We decided to use
the second variant of additional rows over specific columns since Cohn’s row
structure [10] was not applicable to the used dataset. We did not add additional
columns to change only one structural aspect. Thus, we added rows over the
columns Task To Do and W.I.P. to visualize the assignment of developers to
story cards. Each row starts with a letter that represents one developer.

(a) Task board: Original design (b) Task board: Modified structures

(c) Task board: Individual colored codings (d) Task board: Changed card sizes

Fig. 1. Task board designs. (Color figure online)

10 O. Karras et al.

Figure 1c represents the task board with individual colored codings. In accor-
dance with literature [15,25], we added colored markers on the right lower corner
of the story cards. Each of the three colors (green, orange and blue) represents
one developer and his assignment to the corresponding story card.

Figure 1d illustrates the task board with changed card sizes. We decided to
minimize the story cards to sticky note size (ca. 4×6 in.), since story cards have
originally index card size (ca. 5 × 7 in.).

All task boards have the same amount of handwritten story cards whose
content is based on the real dataset. The first three task boards (see Fig. 1a, b,
and c) contain 40 story cards of index card size. The last task board (see Fig. 1d)
contains 40 story cards of post-it note size. While the amount and general posi-
tion of the story cards are the same in each column and task board, we shuffled
the story cards before placing them on the task boards. Thus, we achieved a
random placement regarding the story cards’ content and no task board equals
exactly any other.

4 Eye Tracking Study

The aim of our eye tracking study was to understand whether task board cus-
tomization facilitates identifying a particular story card faster compared to an
original task board design. We proceeded to achieve this aim by comparing the
original task board design with each of the three task board customizations. Such
an investigation enables us to judge whether the original task board design or
the respective task board customization should be preferred. We were interested
in answering the following research question:

RQ: Does the respective task board customization facilitate identifying a par-
ticular story card faster compared to the original task board design?

To answer the research question, we tested the following hypotheses for each
of the three task board customizations:

H0: There is no speed difference in identifying a particular story card between
the original task board design and the respective task board customization.

H1: There is a speed difference in identifying a particular story card between
the original task board design and the respective task board customization.

4.1 Study Design

In this study, we performed three separate within-subjects experiments with
counterbalancing. The dependent variable was the task completion time for iden-
tifying a particular story card. The independent variable was the task board
design with two levels: the original task board design and one of the three task
board customizations. We measured the task completion time by observing the
participants with the SMI Eye Tracking Glasses1. Each experiment represents a
1 https://www.smivision.com/eye-tracking/product/eye-tracking-glasses/.

https://www.smivision.com/eye-tracking/product/eye-tracking-glasses/

Is Task Board Customization Beneficial? 11

scenario in which the participant joins an ongoing development project as a new
team member who has to work with the existing task board. We decided to focus
on the perspective of a new team member since a task board should support a
fast and easy project overview for everyone, i.e. the team and team externals
respectively new team members. If a new team member already benefits from a
customization, a whole team should also benefit from it.

We analyzed task completion times with a two-tailed paired samples t-test at
a significance level of p = 0.05. This allows us to determine whether the respec-
tive task board customization leads to a statistically significant speed difference
in identifying a particular story card compared to the original task board design.
Thus, we can identify whether a particular task board customization is beneficial
for a task board’s usage. An existing speed difference would allow us to reject
H0, while a missing one would not allow such a rejection.

4.2 Study Procedure

The eye tracking study was carried out with 30 participants consisting of 10
undergraduate and 20 graduate students of computer science. All participants
had basic knowledge about agile software development and were close to the
next step in graduation. Thus, they represent potential new team members in a
software development team, which corresponds to our target population.

All in all, the whole eye tracking study with all three experiments was carried
out within three months. Each experiment compared the original task board
design with one of the three major task board customizations. We randomly
assigned each participant to one of the three experiments. In each experiment,
we conducted 10 separate sessions each with one of the 10 assigned participants.
Each session included an introduction to the experiment with its task of consid-
ering two task boards. In this context, we explained the basic concept of a task
board. Depending on the experiment, we assigned the letter “J” (see Fig. 1b)
respectively the color “green” (see Fig. 1c) to the participant since the task
boards with modified structures respectively individual colored codings required
the assignment of a row or color to the participant. After the calibration of the
SMI Eye Tracking Glasses for the participant, we captured their examination of
the task board. We repeated the same process for the second task board design.

4.3 Analysis and Results

Table 1 shows the measured task completion times of each participant for the
particular experiment and respective task board design. The first five subjects of
each experiment (see Table 1, Group 1) received the original task board design
first and then the customized one. The other five subjects of each experiment (see
Table 1, Group 2) received the designs in reversed order. For each experiment, we
verified that the data is normally distributed by applying the Shapiro-Wilk test.
Subsequently, we performed the two-tailed paired samples t-tests at a significance
level of p = 0.05. Thus, we can determine whether an observed difference exists
due to the test conditions or by chance. Additionally, we calculate Cohen’s d

12 O. Karras et al.

which is the most common type of effect size for t-tests that indicates whether
or not the difference between two groups’ mean is large enough to have practical
relevance independently from statistical significance.

In Table 2, we present the results of our conducted two-tailed paired samples
t-tests and their effect size d.

The analysis of the first experiment yields a significant difference in the task
completion times for the original task board design (M = 15.0 s, SD = 3.6 s) and
the modified structures (M = 9.8 s, SD = 3.9 s); t(9) = −2.39, p = 0.04. Hence,
H0 can be rejected for the first experiment. Modified structures shorten time to
identify a particular story card compared to the original task board design. The
value of Cohen’s d is 0.76, which is close to the threshold of 0.8 for a large effect [9].
Hence, the identified difference has almost large practical relevance.

The t-test of the second experiment shows a significant difference between
the task completion times for the original task board design (M = 11.7 s, SD =
3.2 s) and the individual colored codings (M = 14.3 s, SD = 4.7 s); t(9) =
2.86, p = 0.02. The null hypothesis H0 can be rejected for the second experiment.

Table 1. Experiment results – task completion time [s]

Subj.
Experiment 1

Subj.
Experiment 2

Subj.
Experiment 3

Original Structures Original Codings Original Cards

G
ro

u
p

1

P1 16 10 P3 16 15 P4 10 11
P2 18 4 P14 16 22 P5 13 27
P11 16 11 P15 11 12 P24 30 36
P12 12 9 P16 10 9 P25 4 19
P13 19 4 P17 13 16 P26 19 18

G
ro

u
p

2

P6 18 10 P18 12 20 P23 22 12
P7 8 16 P19 13 16 P27 9 19
P8 12 9 P20 11 13 P28 19 28
P9 13 15 P21 5 6 P29 17 27
P10 18 10 P22 10 14 P30 12 16

Mean 15.0 9.8 Mean 11.7 14.3 Mean 15.5 21.3

SD 3.6 3.9 SD 3.2 4.7 SD 7.5 7.9

Table 2. Two-tailed paired samples t-test

Is Task Board Customization Beneficial? 13

Consequently, the original task board design allows to identify a particular story
card faster compared to the individual colored codings. Cohen’s d is 0.90 and
thus greater than the threshold of 0.8 for a large effect [9]. The determined
difference between the individual colored codings and the original task board
design has large practical relevance.

The results of the third experiment also show a significant difference in the task
completion time for the original task board design (M = 15.5 s, SD = 7.5 s) and
the changed card sizes (M = 21.3 s, SD = 7.9 s); t(9) = 2.41, p = 0.04. Conse-
quently, we can rejectH0. This leads to the insight that changed card sizes increase
the required time for identifying a particular story card compared to the original
task board. The calculated effect size d is 0.76 and thus close to the threshold of 0.8.
We identified a difference between changed card sizes and the original task board
design that has almost large practical relevance.

4.4 Interpretation

Our findings provide insights with respect to the influence of task board cus-
tomizations in comparison with an original task board design. Whereas modi-
fied structures shorten time to identify a particular story card, individual colored
codings and changed card sizes increase the required time.

The performed t-tests substantiate that there is a statistically significant dif-
ference between the respective task board customization and the original task
board design. Our results indicate that customizing a task board’s structure sup-
ports its usage. In case of customization, agile teams should focus on adjusting
the structure of a task board according to their needs. Since this customization
supports the work of new team members who are unfamiliar with the task board,
we assume that a whole team will also benefit from it. Such a customized task
board provides a fast and easy project overview for everyone, i.e. the team and
team externals respectively new team members. Thus, the task board complies
more precisely with the agile practice informative workspace.

However, according to our results, not every customization is beneficial for
a task board’s usage. Adjustments on story cards such as individual colored
codings or changed card sizes lead to an increased amount of time to identify a
particular story card. Even though these two kinds of customization do not nec-
essarily support a task board’s usage, they are extensively applied in practice by
agile teams [15,25–27]. Therefore, our findings are in conflict with the observed
widely distributed use of these customizations.

In total, we identified a statistically significant difference in each of the three
experiments. Each difference indicates that one of the two compared task board
designs (customized vs. original) allows identifying a particular story card faster.
All findings have an almost large effect size d that emphasizes their practical rel-
evance. According to our results, modified structures should be preferred com-
pared to the original task board design, which is, in turn, preferable to individual
colored codings and changed card sizes. Hence, the original task board design is
a good solution. In case of customization, however, agile teams may be better
served by adjusting their task board’s structure instead of its story cards. As an
answer to our research question, we can summarize:

14 O. Karras et al.

A: We identified that only the modified structures allow identifying a particular
story card faster compared to the original task board design. Both of the
other customizations result in an increased amount of time. Hence, adjust-
ing a task board’s structure is the only beneficial option of all investigated
customizations.

4.5 Threats to Validity

In the presented eye tracking study, we considered threats to construct, external,
internal and conclusion validity corresponding to Wohlin et al. [30].

Construct validity: We selected the content for the story cards from a com-
pleted software project. All task boards (see Fig. 1) were based on this content.
Thus, we have a mono-operation bias since we only use one dataset for the task
boards’ content. As a consequence, the constructed task boards do not convey
a comprehensive overview of the task boards’ complexity in practice. However,
we expected that the amount of 40 handwritten story cards and their different
arrangement on each task board result in sufficient realistic complexity for the
participants. Another threat to validity was the participants falsely reporting
having finished. Our experiments required the exact measuring of the task com-
pletion time. However, people are afraid of being evaluated and they are inclined
to convey the impression of being better than they really are. Therefore, this
human tendency endangered the outcome of our experiment. We counteracted
this threat by using eye tracking combined with an additional acoustical state-
ment of the participants when they identified the particular story card. Thus,
we could determine the exact task completion time of each participant beyond
doubt. The single use of eye tracking is a further threat to validity. This mono-
method bias is problematic since it only allows a restricted explanation of our
findings. However, we focused on an objective measure instead of a subjective
one since objective measures can be reproduced more easily and are thus more
reliable. The given task of identifying a particular story card caused an inter-
action of testing and treatment. The comparison of task boards with the given
task could imply to find the story card as fast as possible. Even though we did
not mention to measure task completion time, the participants could be aware
of the time as a factor. Instead of understanding the task board designs, they
could only have tried to be as fast as possible. We mitigated this threat to valid-
ity by using eye tracking. Thus, we could observe how the participants examine
the task boards and make sure that all of them took the respective design into
account.

External validity: The choice of involving almost graduated students as par-
ticipants, and the use of data from a completed software project produced a
good level of realism. At the same time, the experimental setting endangered
the external validity since the environment was different from the real world.
None of the task boards had true pragmatic value for the participants since
none of them had a genuine working task with the task board. Future evaluation

Is Task Board Customization Beneficial? 15

should be done on real industry projects with team members that truly work
with the task board.

Internal validity: In our eye tracking study, the three experiments were dis-
tributed over three months altogether. This large period of time could have an
effect on the participants’ motivation to contribute to our study. However, we
could not compare all task board designs within one experiment due to the use of
eye tracking, which is time-consuming as well as exhausting for the participants.
A single session with one participant required as much as 25 min for the compar-
ison of two task board designs. Additionally, we could mitigate possible learning
effects since all task board designs equaled one another except for exactly one
specific difference with respect to the corresponding customization.

Conclusion validity: We decided to use eye tracking to improve the reliability
of our results since an objective measuring is easier to reproduce and it is more
reliable than a subjective one. Additionally, we only selected students as partici-
pants who were close to their graduation. Hence, they form a more homogeneous
group which counteracts the threat of erroneous conclusions. Therefore, we mit-
igated the risk that the variation due to the subjects’ random heterogeneity is
larger than due to the investigated task board designs.

5 Discussion

This presented work investigates the task board as one implementation of the
agile practice informative workspace and the benefit of task board customization.

Although agile teams use task boards in a similar manner, they tend to cus-
tomize their task boards according to their needs. Combined customizations such
as modified structures, individual colored codings, and changed card sizes lead
to complexity, which impedes a task board’s maintenance and comprehensibility.
The increased effort is in conflict with a task board’s underlying agile practice
of fast and easy project overview for everyone, i.e. the team and team externals
respectively new team members. We performed an eye tracking study to analyze
whether there is a significant speed difference in the time required to identify a
particular story card between the original task board design and the respective
task board customization.

We contribute the insight that only modified structures improve a task
board’s usage. In contrast, individual colored codings and changed card sizes
did not improve performance beyond the original design.

The modified structures are the only beneficial customization. We assume
that the additional rows improve the arrangement of the story cards. Spatially
close object seems to be grouped since they are perceived as belonging to each
other. This effect is called law of proximity, which is part the Gestalt Principles
[16]. The additional rows influence the story card’s visual appearance by posi-
tion without further support. The story cards’ improved proximity simplifies a
viewer’s consideration of the task board. This finding can help agile teams to
rethink their task board in order to improve it. They may be better served by

16 O. Karras et al.

focusing on the original task board design and by only adjusting its structure
according to their needs. Thus, they can create a task board which complies
more precisely with the concept of fast and easy project overview for everyone.

In contrast, individual colored codings and changed card sizes are not ben-
eficial. The missing benefit of individual colored codings is caused by a coun-
teracting effect of combined laws of the Gestalt Principles. According to the
law of similarity, using colors for similar objects supports the visual appearance
of belonging together. At the same time, the story cards’ spatial arrangement
complies with the law of proximity. The colored markers are more difficult to
perceive since the law of proximity dominates the law of similarity. Therefore,
individual colored codings do not provide a benefit for customizing a task board.
The changed card sizes are not an improving task board customization, either.
According to our results, a viewer’s effort increases by considering and recogniz-
ing smaller story cards to identify a particular one. Smaller story cards are more
difficult to perceive and read, which complicates a task board’s clarity. Thus,
changed card sizes provide no benefit, either.

The impact of the different task board designs on the performance of a single
team is low. Even if a team member identifies 120 times a day a story card with
an average saving of 5 s per identification, his total saving would only be 10 min
per workday. The benefit of our results is the finding that the original design of a
task board by Cohn [10] with its underlying agile practices constitutes already a
good solution for a single team to be productive. Even though agile approaches
offer corresponding degrees of freedom for customization, in the worst case each
team of a company has its own specific task board design. Due to the wide
variety of customization options, the individual task boards complicate the col-
laboration across teams and the work of team externals. Thus, the collaboration
performance of multiple teams, as well as the work of team externals, can be
improved by focusing on one consistent and beneficial task board design.

All in all, we can conclude that not each kind of task board customization is
beneficial. Based on our findings, we agree with Berczuk [7]: Teams are better
served by adjusting their task boards as little as possible. As a consequence, agile
teams should rethink their current task board design with respect to the applied
customizations. The original task board design (see Fig. 1a) is already a good
solution. However, if customization is desired, teams should focus on adjusting
a task board’s structure since only this kind of customization improves the use
of a task board according to our results.

6 Conclusion

This work contributes the insight that not every kind of task board customiza-
tion is beneficial. Agile teams tend to extensively customize their task boards
according to their needs [27]. However, the use of modified structures, individual
colored codings, and changed card sizes impede work with a task board. Thus,
task board customization is in conflict with the agile practice of fast and easy
project overview for everyone, i.e. the team and team externals.

Is Task Board Customization Beneficial? 17

We performed an eye tracking study consisting of three separate experiments
comparing an original task board design with each of three identified major
task board customizations. Based on these results, we identified statistically
significant differences in all three experiments. These findings show that modified
structures such as additional rows support a task board’s usage with respect to
the used exemplary main task of identifying a particular story card. In contrast,
individual colored codings and changed card sizes do not improve performance
beyond the original design.

Our work points to the conclusion that agile teams should rethink their cur-
rent task board design. They may be better served by focusing on the original
task board design and applying carefully selected adjustments. In case of cus-
tomization, teams should adjust the task board’s structure since this is the only
beneficial kind of customization. Additionally, such a customized task board
design complies more precisely with its implemented agile practice.

Acknowledgment. This work was supported by the German Research Foundation
(DFG) under ViViReq (2017–2019). We follow ethical guidelines of the Central Ethics
Commission of our university. They regulate subject information and rights. Since
recognizable persons should not be visible on distributed video, our data is archived
internally for future reference.

References

1. Ahrens, M., Schneider, K., Kiesling, S.: How do we read specifications? Experiences
from an eye tracking study. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS,
vol. 9619, pp. 301–317. Springer, Cham (2016). doi:10.1007/978-3-319-30282-9 21

2. Ali, N., Sharafl, Z., Gueheneuc, Y.G., Antoniol, G.: An empirical study on require-
ments traceability using eye-tracking. In: 28th IEEE International Conference on
Software Maintenance. IEEE, Piscataway, NJ (2012)

3. Azizyan, G., Magarian, M.K., Kajko-Matsson, M.: Survey of agile tool usage and
needs. In: Agile Conference. IEEE, Piscataway, NJ (2011)

4. Babik, L., Sheridan, R.: Breaking down walls, building bridges, and Takin’ out the
trash, https://www.infoq.com/articles/agile-team-spaces

5. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Boston (2007)

6. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for Agile
Software Development (2001)

7. Berczuk, S.: Back to basics: the role of agile principles in success with an distributed
scrum team. In: Agile Conference. IEEE, Los Alamitos, Calif (2007)

8. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn.
Addison-Wesley, Upper Saddle River (2009)

9. Cohen, J.: A power primer. Psychol. Bull. 112(1), 155–159 (1992)
10. Cohn, M.: Agile Estimating and Planning, 12th edn. Prentice Hall PTR, Upper

Saddle River (2012)
11. Gross, A., Doerr, J.: What do software architects expect from requirements specifi-

cations? Results of initial explorative studies. In: 1st IEEE International Workshop
on the Twin Peaks of Requirements and Architecture. IEEE, Piscataway, NJ (2012)

http://dx.doi.org/10.1007/978-3-319-30282-9_21
https://www.infoq.com/articles/agile-team-spaces

18 O. Karras et al.

12. Gross, A., Doerr, J.: What you need is what you get!: The vision of view-based
requirements specifications. In: 20th IEEE International Requirements Engineering
Conference. IEEE, Piscataway, NJ (2012)

13. Hajratwala, N.: Task board evolution. In: Agile Conference. IEEE, Piscataway, NJ
(2012)

14. Katsma, C., Amrit, C., Hillegersberg, J., Sikkel, K.: Can agile software tools bring
the benefits of a task board to globally distributed teams? In: Oshri, I., Kotlarsky,
J., Willcocks, L.P. (eds.) Global Sourcing 2013. LNBIP, vol. 163, pp. 163–179.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40951-6 10

15. Liskin, O., Schneider, K., Fagerholm, F., Münch, J.: Understanding the role of
requirements artifacts in Kanban. In: 7th International Workshop on Cooperative
and Human Aspects of Software Engineering. Association for Computing Machin-
ery Inc., New York, NY (2014)

16. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge
(1999)

17. Perry, T.: Drifting toward invisibility: the transition to the electronic task board.
In: Agile Conference. IEEE, Los Alamitos, Calif (2008)

18. Petre, M., Sharp, H., Freudenberg, S.: The mystery of the writing that isn’t on
the wall: differences in public representations in traditional and agile software
development. In: 5th International Workshop on Cooperative and Human Aspects
of Software Engineering. IEEE, Piscataway, NJ (2012)

19. Pietri, W.: An XP team room. http://scissor.com/resources/teamroom/
20. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of

agile practices on communication in software development. Empir. Softw. Eng.
13(3), 303–337 (2008)

21. Pries-Heje, L., Pries-Heje, J.: Why scrum works: a case study from an agile dis-
tributed project in Denmark and India. In: Agile Conference. IEEE, Piscataway,
NJ (2011)

22. Rubart, J., Freykamp, F.: Supporting daily scrum meetings with change structure.
In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, NY.
ACM, New York (2009)

23. Santos, M., Gralha, C., Goulão, M., Araújo, J., Moreira, A., Cambeiro, J.: What is
the impact of bad layout in the understandability of social goal models? In: IEEE
24th International Requirements Engineering Conference (2016)

24. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall,
Upper Saddle River (2002)

25. Sharp, H., Robinson, H., Segal, J., Furniss, D.: The role of story cards and the wall
in XP teams: a distributed cognition perspective. In: Agile Conference. IEEE, Los
Alamitos, Calif (2006)

26. Sharp, H., Robinson, H.: Collaboration and co-ordination in mature eXtreme pro-
gramming teams. Int. J. Hum Comput Stud. 66(7), 506–518 (2008)

27. Sharp, H., Robinson, H., Petre, M.: The role of physical artefacts in agile software
development: two complementary perspectives. Interact. Comput. 21(1–2), 108–
116 (2009)

28. Sutherland, J., Downey, S., Granvik, B.: Shock therapy: a bootstrap for hyper-
productive scrum. In: Agile Conference. IEEE, Piscataway, NJ (2009)

29. Wake, B.: A gallery of team rooms and charts. http://xp.123.com/articles/
a-gallery-of-team-rooms-and-charts/

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering. Springer, Berlin (2012). doi:10.1007/
978-3-642-29044-2

http://dx.doi.org/10.1007/978-3-642-40951-6_10
http://scissor.com/resources/teamroom/
http://xp.123.com/articles/a-gallery-of-team-rooms-and-charts/
http://xp.123.com/articles/a-gallery-of-team-rooms-and-charts/
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

Influence of Software Product Management
Maturity on Usage of Artefacts in Agile

Software Development

Gerard Wagenaar1(&), Sietse Overbeek2, Garm Lucassen2,
Sjaak Brinkkemper2, and Kurt Schneider3

1 Avans University of Applied Sciences, Breda, The Netherlands
g.wagenaar@avans.nl

2 Utrecht University, Utrecht, The Netherlands
{s.j.overbeek,g.lucassen,s.brinkkemper}@uu.nl

3 Leibniz Universität Hannover, Hanover, Germany
kurt.schneider@inf.uni-hannover.de

Abstract. Context: Agile software development (ASD) uses ‘agile’ artefacts
such as user stories and product backlogs as well as ‘non-agile’ artefacts, for
instance designs and test plans. Rationales for incorporating especially non-agile
artefacts by an agile team mainly remain unknown territory. Goal: We start off
to explore influences on artefacts usage, and state our research question as: To
what extent does maturity relate to the usage of artefacts in ASD in software
product organizations? Method: In our multiple case study 14 software product
organizations were visited where software product management maturity was
rated and their artefacts usage listed. Results: We found maturity to be nega-
tively correlated with the non-agile/all artefacts ratio. In other words, the more
mature software product management is, the fewer non-agile artefacts are used
in ASD. Conclusions: This suggests that an organizational factor influences an
agile team in its artefacts usage, contradictory to the concept of self-organizing
agile teams.

Keywords: Agile � Artefacts � Maturity � Software product management

1 Introduction

Agile software development (ASD) has been introduced in the domain of product
software development [1, 2], with product software defined as: “A packaged config-
uration of software components or a software-based service, with auxiliary materials,
which is released for and traded in a specific market” [3, p. 534], where auxiliary
materials consist of software documentation, user material and the like. Product soft-
ware differs from tailor-made software in, among other aspects, the importance of
architecture [3]. The necessity of auxiliary materials and the requirement of a
future-proof architecture are indicative for the use of documentation artefacts in the
product software development lifecycle. Research in ASD has devoted attention to the
usage of artefacts, where a distinction can be made between ‘agile’ and ‘non-agile’
artefacts. Agile artefacts are artefacts which are inherent to an ASD (for instance user

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 19–27, 2017.
https://doi.org/10.1007/978-3-319-69926-4_2

stories or a backlog); all other artefacts are considered to be non-agile (for instance
architectures or designs). In agile product software development, software product
organizations (SPOs) as manufacturers of such software could be expected to use
non-agile artefacts precisely because of their needs with regard to architecture and
auxiliary materials. In this research we explore one influencing factor on the decision to
use, especially non-agile, artefacts. To this extent we assume that artefacts usage is a
quality consideration and relates to the quality of software product management
(SPM) in an SPO, where software product management is the discipline and role,
which governs a product from its inception to the market/customer delivery in order to
generate biggest possible value to the business [4]. In the Capability Maturity Model
Integration for Development (CMMI-DEV), documentation artefacts, for instance
architecture documentation and design data, are explicitly mentioned and they con-
tribute to achieving higher maturity levels [5].

To explore influencing factors we formulate our research question as: To what
extent does SPM maturity relate to the usage of artefacts in ASD?

Fourteen organizations were visited as part of a multiple case study. Our findings
show a negative correlation between SPM maturity and the usage of non-agile artefacts.
Altogether our findings contribute to a better understanding of factors that influence an
agile team in its artefacts usage, an area in which research is scarce. From a practi-
tioner’s perspective one of the principles behind the agile manifesto, “The best
architectures, requirements, and designs emerge from self-organizing teams” [6], is put
to the test if an organizational factor can be shown to relate to artefacts usage.

The remainder of this paper is organized as follows. In Sect. 2 we outline the
theoretical background with an overview of research on the usage of artefacts in ASD
(Sect. 2.1), and SPM in general and a method to establish its maturity in particular
(Sect. 2.2). In Sect. 3 we present our research method, a multiple case study, including
data collection and coding, leading to our findings. Section 4 discusses our conclu-
sions, which may be summarized as a new insight in the relation between SPM
maturity in SPOs and the usage of non-agile artefacts in ASD in SPOs.

2 Theoretical Background

2.1 Artefacts in Agile Software Development

An artefact (in ASD) is defined as a tangible deliverable produced during software
development [7]. In ASD artefacts, such as architectures, requirements, and designs,
are used as a decision of the self-organizing ASD team [6], dependent on the value it
attaches to them. ASD practitioners perceive their internal documentation as especially
important but feel that too little of it is available [8]. A decision on usage of artefacts is
in fact a decision on ‘non-agile’ artefacts, because agile artefacts already are part of an
ASD method itself. Previous research shows the dilemma of the optimal level of agile
and non-agile artefacts in ASD. Gröber [9] constructed an (agile) artefact class diagram
with artefacts and relationships between them as result of a systematic literature study
on the usage of artefacts in agile methods. Based on this research and adding findings
from three case studies Wagenaar et al. [7] developed a Scrum artefact model,

20 G. Wagenaar et al.

distinguishing product from process artefacts and Scrum from non-Scrum artefacts. In a
study on large-scale offshore software development programmes Bass [10] identified
25 artefacts on five levels of abstraction: Programme governance, Product, Release,
Sprint, and Feature.

In summary, various models show a mixture of agile and non-agile artefacts,
although based on different viewpoints varying from agile or Scrum development to
offshore software development. The models classify both agile and non-agile artefacts,
but, with one exception, do not explicitly address the distinction between the two. This
precludes, as one consequence, insight in reasons for using them.

2.2 Software Product Management Maturity

Assessing maturity of software development processes and thus contributing to their
improvement has led to several maturity models. General ones, like CMM [11], or
ISO/IEC 15504 [12] and more specialized agile models are all composed of hierar-
chical maturity levels, but are otherwise quite different in their domains, backgrounds,
structures, and contents [13]. However, because of our focus on SPM a more dedicated
model, but similar in its constitution, is available, which describes the SPM process as
consisting of four business functions: Portfolio management, Product planning, Release
planning, and Requirements management [14, 15]. Each business function is in turn
divided into focus areas. In case of the business function Requirements management,
these are: Requirements gathering, Requirements identification, and Requirements
organizing. The model has an associated method, the Situational Assessment Method
(SAM), which can be used to measure a maturity level specifically for SPM [15]. To
this extent the SAM provides a matrix with an overview of capabilities at different
levels that need to be implemented to reach a full-grown maturity. The matrix is used in
a bottom up way. Maturity is ranked per focus area, and then aggregated to SPM
maturity on a scale from 0–10.

3 Research Method

To investigate our research problem, we used a multiple case study, which is an
accustomed way to investigate phenomena in a context where events cannot be con-
trolled and where the focus is on contemporary events [16]. Data collection took place
through single-site case studies following Yin’s widely accepted guidelines for case
studies [16]. We first collected basic data on artefacts and maturity on basis of a
protocol including: (1) SPM theory and research, (2) interview instructions, and
(3) reporting guidelines. We found 14 organizations willing to participate, all using
ASD1. The organizations develop product software (1) for a broad range of domains,
from (semi-)government to software development, (2) with five to over hundred
employees (organization as a whole), and (3) for ten to several thousands of customers.

1 A description of the organizations is available at https://osf.io/dez9k/?view_only=3171388053194c
549f09b22fe4fbcfc0.

Influence of Software Product Management Maturity 21

https://osf.io/dez9k/%3fview_only%3d3171388053194c549f09b22fe4fbcfc0
https://osf.io/dez9k/%3fview_only%3d3171388053194c549f09b22fe4fbcfc0

In case a SPO produced more than one product, one of them was selected. In Sect. 3.4
we discuss threats to external validity regarding our participating organizations.

3.1 Data Collection

Data collection was the same for all organizations. Interviews were held, ranging from
one interview through one interview with two interviewees to two or more interviews
with several interviewees. Interviewees were in general product manager or owner,
although some Scrum masters were also included. Interviews lasted on average one
hour. They were semi-structured to allow interviewees to speak freely and to be able to
ask follow-up questions. The interview instructions concerned two tasks: (a) Deter-
mine SPM maturity, and (b) Describe artefacts during ASD2.

For the establishment of maturity, a description of capabilities required to achieve a
certain maturity level is already provided in the SAM [14]. For each capability the
organization being assessed has to answer the question “Have you implemented this
capability within your organization?” with either Yes or No, for example: “Can
stakeholders submit requirements directly to the central database?”.

For the listing of artefacts the interview guidelines were based on the life cycle of a
user story or a requirement, starting with the SPM’s pre-development stage (portfolio
management, product planning). Then they continued with questions about the activ-
ities in ASD, often starting with user stories in a product backlog and ending with the
production of source code. Finally, post-development activities were identified, such as
bugs, again leading to requirements. For the description of this life cycle a common
vocabulary was established by using the FLOW modelling technique [17, 18]. FLOW’s
emphasis on information and its distinction between solid and fluid information makes
it suitable for the representation of artefacts. Documented information is called solid
information if it is long term accessible, repeatedly readable, and comprehensive for
third parties. In contrast, undocumented or fluid information is information that violates
any one of the above criteria.

3.2 Coding

Data on maturity needed no further coding, because answers to questions from the
SAM directly translate to a maturity level for each focus area (see Sect. 2.2).

Data analysis for artefacts started by extracting solid information as artefacts from
the FLOW models, identifying 201 artefacts. Because of differences in SPO’s termi-
nology this initial list was subject to: (1) lexical analysis, and (2) semantic analysis [20].
In lexical analysis we removed distinctions in singular and plural forms, for instance
‘Bug report’ (listed 5 times) and ‘Bug reports’ (1 appearance). We removed adjectives,
for instance mapped both ‘Product roadmap’ and ‘Company annual roadmap’ on
‘Roadmap’, and we unified words having the same lexical roots, for instance ‘Accep-
tance criteria’ and ‘Acceptation criteria’. This reduced the number of 201 to 123

2 Interview instructions are available at https://osf.io/dez9k/?view_only=3171388053194c549f09b2
2fe4fbcfc0.

22 G. Wagenaar et al.

https://osf.io/dez9k/%3fview_only%3d3171388053194c549f09b22fe4fbcfc0
https://osf.io/dez9k/%3fview_only%3d3171388053194c549f09b22fe4fbcfc0

artefacts. In further semantic analysis we used the description of solid information in the
FLOW model to identify similarities and differences in artefacts. Based on this
description and also guided by the artefact model [7] and the artefact list [10] we further
pruned our list. For instance, ‘Application’ with description “Code implemented by
developers based on the release and sprint plan” and ‘Code’, “A (set of) implemented
and unit-tested product feature(s)”, were mapped.

Finally we excluded a number of artefacts, since not all artefacts in our findings are
artefacts directly related to ASD. Since our interviews used the pre-development stage
as starting point we identified some ‘Business Artefacts’: Business case, Business plan,
Market intelligence, Market requirement, Strategy, and Roadmap. An SPO’s strategy
certainly influences decisions with an impact on ASD, but it is not an ASD artefact.
Business artefacts are important SPM artefacts, but are neither produced nor used
directly by an agile team.

3.3 Findings

We aggregated maturity in a maturity level per business function where this maturity is
calculated as the average maturity of underlying focus areas (Table 1)3. For example,
the focus areas ‘Gathering’, ‘Identification’, and ‘Organizing’ within the business
function ‘Requirements management’, scored 7, 9, and 10 respectively for organization
A. This results in (7 + 9 + 10)/3 = 8.7 for ‘Requirements management’ for organi-
zation A. The last row shows the overall SPM maturity as the average of the four
business functions.

We found a total of eighteen artefacts, which were mentioned by at least two
organizations (Table 2). The one but last row in Table 2 lists the number of artefacts
(per organization) which were mentioned by that organization only. Since they tend to
be rather organization-specific we have aggregated them in this way.

Table 1. Maturity of SPM

SPO A B C D E F G H I J K L M N

M
at

ur
it

y

Requirements
management

8.7 4.3 5.0 7.3 4.3 5.7 7.0 5.7 4.7 5.3 4.7 4.7 4.7 10.0

Release
planning

6.3 3.8 9.0 5.8 5.3 6.5 8.5 7.2 5.3 7.5 3.7 7.3 6.0 7.2

Product
planning

5.0 3.7 5.3 6.7 6.7 8.3 10.0 6.0 7.0 6.7 5.3 4.0 8.0 5.7

Portfolio
management

5.0 5.0 7.0 8.0 8.7 8.3 8.7 7.0 7.0 4.3 5.3 4.3 5.7 7.3

Overall SPM
maturity

6.25 4.21 6.58 6.96 6.25 7.21 8.54 6.46 6.00 5.96 4.75 5.08 6.09 7.54

3 Scores per focus area are available at: https://osf.io/dez9k/?view_only=3171388053194c549f09b22
fe4fbcfc0.

Influence of Software Product Management Maturity 23

https://osf.io/dez9k/%3fview_only%3d3171388053194c549f09b22fe4fbcfc0
https://osf.io/dez9k/%3fview_only%3d3171388053194c549f09b22fe4fbcfc0

Artefacts in Table 2 are also classified in one of two categories: (1) Agile artefacts,
and (2) Non-agile artefacts, since we are especially interested in the usage of additional,
non-agile artefacts. We identified ‘Agile artefacts’ as: Product backlog, Sprint backlog,
Code, User story, Epic, Definition of done, and Estimated user stories, because those
are explicitly part of agile practices [20, 21]. Various artefacts all are non-agile arte-
facts. To be able to compare between organizations we calculated the ratio of non-agile
artefacts compared to the total number of artefacts.

Our research question was: To what extent does SPM maturity relate to the usage of
artefacts in ASD? We identified both SPM maturity (Table 1) and the usage of ASD
artefacts (Table 2). A measure of correlation dependency between two variables is the
Pearson correlation coefficient [22]. We calculated it between SPM maturity and
non-agile artefacts ratio as q(14) = −0.3576. This outcome is considered to be of a
weak to moderate strength. The answer to our research question thus is: SPM maturity
is negatively correlated with the non-agile/all artefacts ratio. In other words, the more
mature SPM is, the fewer non-agile artefacts are used in ASD.

3.4 Validity

Validity of our research depends on four criteria: Construct validity, internal and
external validity, and reliability [16]. To enhance construct validity we: (1) had
interviewees comment on results of interviews, (2) complemented viewpoints in the
interviews with more than one interviewee, and (3) followed a strict procedure in

Table 2. Artefacts per SPO

Artefact
A B C D E F G H I J K L M N

User story ν ν ν ν ν ν ν ν ν ν ν
Code ν ν ν ν ν ν ν ν ν
Sprint backlog ν ν ν ν ν ν ν ν
Epic ν ν ν ν ν ν
Product backlog ν ν ν ν ν ν
Definition of done ν ν ν ν ν
Estimated user story ν ν ν
Agile artefacts 4 6 4 4 1 6 3 3 3 2 3 1 4 4
Product requirement ν ν ν ν ν ν ν ν
Bug report ν ν ν ν ν ν
Release note ν ν ν ν ν ν
Test deliverables ν ν ν ν ν
Request for change ν ν ν ν ν
Acceptance criteria ν ν ν
Release ν ν ν
Functional design ν ν
Release plan ν ν
Technical design ν ν
User documentation ν ν
Non-agile artefacts 4 5 3 0 7 2 3 0 5 3 5 3 3 1
Organization-specific 5 2 3 2 1 2 1 0 1 0 0 6 2 0
Non-agile ratio 0.69 0.54 0.60 0.33 0.89 0.40 0.57 0.00 0.67 0.60 0.63 0.90 0.56 0.20

24 G. Wagenaar et al.

interpreting an interview, by means of the FLOW modelling technique as well as in
applying the SAM. Nevertheless, organizations were not visited by one and the same
interviewer, so interpretation may have influenced especially the listing of artefacts.
Additionally, the maturity level is based on self-assessment, which may introduce bias.
Internal validity is mainly a concern for explanatory case studies, but we did apply
pattern matching in translating solid information in the models through lexical and
semantic analysis to our artefacts listing. External validity benefits from using a
multiple case study on the basis of a common procedure. It has to be noted however,
that our results only show a weak to moderate correlation. Furthermore, we visited
SPOs, which was also reflected in our choice for measuring maturity. Generalizability
to non-SPOs is therefore limited. From our findings organizations E and L show
remarkable ratios, using (far) more non-agile artefacts than agile ones. This may be
reason to question their application of indeed an ASD method. Finally, reliability
increases because of our use of a procedure with interview instructions and the use of a
case study database.

4 Conclusions and Future Research

We rated SPM maturity for 14 organizations and listed their artefact usage. We found
evidence for SPM maturity to be negatively correlated with the non-agile/all artefacts
ratio. A possible explanation could be that a ‘mature’ SPO’ has organized its software
product management already in such a way that additional documentation during ASD
is hardly required, but further research should be carried out to prove this. Although a
causal relationship has not been proven, our evidence suggests that an organizational
factor – maturity in SPM – influences an agile team in its usage of artefacts. This would
be quite contradictory to self-organizing teams, from which the best architectures,
requirements, and designs emerge. Our research goes beyond the sole modelling of
artefacts and provides initial knowledge about factors that influence agile teams in their
artefacts usage.

Our research also strengthens empirical evidence with regard to the usage of
artefacts in ASD. Our current findings confirm both artefacts that appeared in the
artefact list [9], but not in the Scrum artefact model [7], as well as vice versa. The
relatively small yield of ‘new’ artefacts, proves an already high degree of coverage in
the research on the existence of artefacts in ASD.

Further research is necessary, not only to prove a causal relationship between
(SPM) maturity and artefacts usage, but also to identify other factors influencing agile
teams in their choice for (non-agile) artefacts. Candidates are team composition (size,
experience), project characteristics or explicit team decisions as opposed to maturity of
an organization as a whole. This would provide an answer to the question whether,
especially non-agile, artefacts emerge from an agile team or are used for reasons which
originate from outside the team. More general, how does an agile team reach a balance
between agile and non-agile artefacts?

Influence of Software Product Management Maturity 25

Acknowledgements. The authors express their gratitude to the students and organizations
involved in this research; the first author also expresses his gratitude to Avans University of
Applied Sciences for facilitating and supporting this research.

References

1. Dzamashvili Fogelström, N., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile
principles on market-driven software product development. J. Softw. Maint. Evol. Res.
Pract. 22(1), 53–80 (2010)

2. Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E.: The agile requirements refinery:
applying SCRUM principles to software product management. Inf. Softw. Tech. 53(1),
58–70 (2011)

3. Xu, L., Brinkkemper, S.: Concepts of product software. Eur. J. Inf. Syst. 16(5), 531–541
(2007)

4. Ebert, C.: The impacts of software product management. J. Syst. Softw. 80(6), 850–861
(2007)

5. CMMI Product Team: CMMI for development, version 1.3. resources.sei.cmu.edu/library/
asset-view.cfm?assetID=9661 (2010). Accessed 04 Sept 2016

6. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., et al.: Agile
Manifesto. agilemanifesto.org/principles (2001). Accessed 24 Sept 2012

7. Wagenaar, G., Helms, R., Damian, D., Brinkkemper, S.: Artefacts in agile software
development. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015.
LNCS, vol. 9459, pp. 133–148. Springer, Cham (2015). doi:10.1007/978-3-319-26844-6_10

8. Stettina, C.J., Heijstek, W.: Necessary and neglected? An empirical study of internal
documentation in agile software development teams. In: Proceedings SIGDOC, pp. 159–
166. ACM, New York (2011)

9. Gröber, M.: Investigation of the usage of artifacts in agile methods. www4.in.tum.de/
*kuhrmann/studworks/mg-thesis.pdf (2013). Accessed 23 May 2016

10. Bass, J.M.: Artefacts and agile method tailoring in large-scale offshore software development
programmes. Inf. Softw. Tech. 75, 1–16 (2016)

11. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model SM for
software, version 1.1. sei.cmu.edu/reports/93tr024.pdf (1993). Accessed 24 June 2013

12. ISO/IEC 33002:2015. iso.org/standard/54176.html (2015). Accessed 11 Aug 2016
13. Leppänen, M.: A Comparative Analysis of Agile Maturity Models. In: Pooley, R., Coady, J.,

Schneider, C., Linger, H., Barry, C., Lang, M. (eds.) Information Systems Development,
pp. 219–230. Springer, New York (2013). doi:10.1007/978-1-4614-4951-5_27

14. Bekkers, W., Brinkkemper, S., van den Bemd, L., Mijnhardt, F., Wagner, C., Van de Weerd,
I.: Evaluating the software product management maturity matrix. In: Proceedings RE,
pp. 51–60. IEEE (2012)

15. Bekkers, W., Spruit, M., Van de Weerd, I., van Vliet, R., Mahieu, A.: A situational
assessment method for software product management. In: Proceedings ECIS, paper 22
(2010)

16. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications, Thousand
Oaks (2009)

17. Stapel, K., Knauss, E., Schneider, K.: Using FLOW to improve communication of
requirements in globally distributed software projects. In: Proceedings CIRCUS, pp. 5–14.
IEEE (2009)

26 G. Wagenaar et al.

http://resources.sei.cmu.edu/library/asset-view.cfm%3fassetID%3d9661
http://resources.sei.cmu.edu/library/asset-view.cfm%3fassetID%3d9661
http://agilemanifesto.org/principles
http://dx.doi.org/10.1007/978-3-319-26844-6_10
http://www4.in.tum.de/%7ekuhrmann/studworks/mg-thesis.pdf
http://www4.in.tum.de/%7ekuhrmann/studworks/mg-thesis.pdf
http://sei.cmu.edu/reports/93tr024.pdf
http://iso.org/standard/54176.html
http://dx.doi.org/10.1007/978-1-4614-4951-5_27

18. Stapel, K., Schneider, K.: Managing knowledge on communication and information flow in
global software projects. Expert Syst. 31(3), 234–252 (2014)

19. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice Hall,
Englewood Cliffs (2008)

20. Schwaber, K., Sutherland, J.: The Scrum guide™. www.scrumguides.org/scrum-guide.html
(2016). Accessed 25 May 2017

21. Cohn, M.: User Stories Applied for Agile Software Development. Addison Wesley, Boston
(2004)

22. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29044-2

Influence of Software Product Management Maturity 27

http://www.scrumguides.org/scrum-guide.html
http://dx.doi.org/10.1007/978-3-642-29044-2

Real-Life Challenges on Agile Software Product
Lines in Automotive

Philipp Hohl1(B), Jürgen Münch2, Kurt Schneider3, and Michael Stupperich1

1 Daimler AG, Research and Development, Ulm, Germany
{philipp.hohl,michael.stupperich}@daimler.com

2 Reutlingen University, Reutlingen, Germany
juergen.muench@reutlingen-university.de

3 Leibniz Universität Hannover, Hanover, Germany
kurt.schneider@inf.uni-hannover.de

Abstract. Context: The current situation and future scenarios of the
automotive domain require a new strategy to develop high quality soft-
ware in a fast pace. In the automotive domain, it is assumed that a
combination of agile development practices and software product lines is
beneficial, in order to be capable to handle high frequency of improve-
ments. This assumption is based on the understanding that agile methods
introduce more flexibility in short development intervals. Software prod-
uct lines help to manage the high amount of variants and to improve
quality by reuse of software for long term development.

Goal: This study derives a better understanding of the expected ben-
efits for a combination. Furthermore, it identifies the automotive specific
challenges that prevent the adoption of agile methods within the soft-
ware product line.

Method: Survey based on 16 semi-structured interviews from the
automotive domain, an internal workshop with 40 participants and a
discussion round on ESE congress 2016. The results are analyzed by
means of thematic coding.

Results: Two main expected benefits of merging agile practices and
product line development are pushing the change in software develop-
ment for future proof agile automotive organizations. Challenges that
prevent agile adoption within software product lines are mainly of orga-
nizational, technical and social nature. Key challenges are related to
transforming organizational structures and culture, achieving faster soft-
ware release cycles without loss of quality, appropriate quality assurance
measures for software variants, and the collaboration with suppliers and
other disciplines such as mechanics.

Conclusion: Significant challenges are imposed by specific character-
istics of the automotive domain such as high quality requirements and
many interfaces to surrounding rigid and inflexible processes.

Keywords: Automotive · Agile software development · Software prod-
uct line

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 28–36, 2017.
https://doi.org/10.1007/978-3-319-69926-4_3

Real-Life Challenges on Agile Software Product Lines in Automotive 29

1 Introduction

The automotive domain is recently in a disruptive change. High-frequent changes
due to innovations and new technology confront the automotive domain. Sev-
eral possible future scenarios are becoming apparent. One scenario comprises
the changeover from the internal combustion engine to electric and hydrogen
fuel cell cars [1]. New competitors entering the market, pushing the traditional
car manufactures to react on the changing market situation. The situation is
further exacerbated by political agenda, e.g., german politics requests for 1 mil-
lion electric cars within 20201. The plan is now abandoned because at present
it is considered unrealistic2. Nevertheless, a lot of suppliers are very active in
this development area, encourage the traditional car manufactures to make more
effort to achieve at least the same development pace. It is seen as a necessity
to be competitive in future. Another scenario comprises self-driving, community
owned cars. This will be a further disruptive change in the domain, because
car-sharing has a direct impact on the ownership of private cars. The scenario
implies that anyone can order a car wherever and whenever it is needed. Sev-
eral challenges arise with this form of car-sharing, like challenges in high-precise
navigation and autonomous driving. The solution of these challenges will all be
addressed in software. The described scenarios are likely to exist in parallel. This
does not solely affect the entire car transportation system, but the automotive
software development as well.

The software development must consider deep integration between hardware
and software, strong focus development processes, strong supplier involvement,
and safety-critical functionality. In this context, it is challenging to develop and
distribute high-quality software at a high pace. Furthermore, the amount of
software in the car increased exponentially the last decades [2]. To handle the
increased complexity and the high amount of variations, a Software Product Line
(SPL) was and is used. The SPL helps to handle changes, coordinates the soft-
ware development worldwide and increases the software quality by reuse. How-
ever, increasing market pressure and fast changing requirements are challenging
the existing solution with SPL. Agile Software Development (ASD) methods are
a promising solution to keep pace with the market. The combination of ASD
and SPL development is assumed to be difficult [3]. Agile development uses
short development cycles and only a few Product Owners (PO), whereas SPL
comprises several POs and a scoping process that hinders short iterations. This
publication presents expected benefits and challenges for the integration of ASD
into existing automotive SPL development. In summary, our contributions are
as follows:

– Identify the expected benefits for the combination of ASD and SPL in the
automotive domain.

1 www.bundesregierung.de/Webs/Breg/DE/Themen/Energiewende/Mobilitaet/
pod-cast/ node.html.

2 http://www.elektronikpraxis.vogel.de/elektromobil/articles/608627/.

www.bundesregierung.de/Webs/Breg/DE/Themen/Energiewende/Mobilitaet/pod-cast/_node.html
www.bundesregierung.de/Webs/Breg/DE/Themen/Energiewende/Mobilitaet/pod-cast/_node.html
http://www.elektronikpraxis.vogel.de/elektromobil/articles/608627/

30 P. Hohl et al.

– Analyze the real-life challenges on Agile Software Product Lines in the auto-
motive domain.

2 Related Work

To investigate the topic and find all the related work, we conducted a literature
review to search for the Common Ground of Automotive Agile Software Product
Lines [4]. The literature review revealed that there is no approach specifically
tailored to the automotive domain handling the combination of ASD and SPLs.
As presented in the study, it is therefore necessary to take the related research
areas into account. Three major challenges for related research areas are iden-
tified, like the competitive pressure and the need to shorten development cycles
(1) [5–9], different development cycle-times for related development systems (2)
[9–11], and unclear management of software reuse and agile development (3)
[5,10,12].

3 Study Approach

The goal of this study is to gain a better understanding of the expected benefits
for a combination of ASD and SPLs. Furthermore, it identifies the automotive
specific challenges that prevent the adoption of ASD within existing SPLs.

3.1 Research Questions

RQ 01: What are the expected benefits for the combination of ASD and SPL
in the automotive domain?
RQ 02: Which real-life challenges hinder the adoption of Agile Software Product
Lines in the automotive domain?

3.2 Research Design

The research reported in this paper builds on on-going research in collaboration
with Daimler AG3. This study is based on a qualitative survey we conducted
2016 [13], the outcome of an internal expert workshop on Automotive Agile
Software Product Lines with 40 participants as well as a discussion round on the
ESE Congress 20164 in Stuttgart with 60 participants.

The interview study [13] took place between May and June 2016. The inter-
views were designed as exploratory semi-structured interviews to gain insights
into the examined topic. For the semi-structured interviews an interview guide
was implemented and tested in a pilot interview. We held an internal workshop
with automotive experts at the Daimler AG. We let the participants vote on dif-
ferent statements to confirm the findings from the interview study. Furthermore,
we presented these findings on the ESE Congress and repeated the voting.
3 www.daimler.com.
4 https://www.ese-kongress.de/.

www.daimler.com
https://www.ese-kongress.de/

Real-Life Challenges on Agile Software Product Lines in Automotive 31

3.3 Data Collection and Analysis

Research Sites and Participants. The interview participants are employ-
ees of an OEM and one automotive consultant. The interviewee selection was
based on two criteria: First, the interviewee should have a work experience of
at least two years. The length of employment varied from 3 to 20 years, with an
average working experience of 16 years. Second, the interviewee should already
use agile practices with intent on implementing a software reuse strategy or
vice versa. The following participants were selected: Two managers, five process
owners, two system architects, six software developers and one automotive con-
sultant for agile development processes. The interviews were conducted by the
primary researcher from May to June 2016. In an internal workshop, 40 partic-
ipants discussed the challenges in adopting agile practices to existing develop-
ment processes. All participants were explicitly invited and from the automo-
tive domain or related research institutes from universities. Furthermore, the
workshop searched for requirements for the combination of ASD and SPL. The
findings from the workshop were verified on the ESE Congress 2016 in Stuttgart,
within a discussion round in the automotive agile session.

Interviews. The interviews consist of 14 face-to-face interviews and one group
interview with two participants. In consent with the interviewee, the interview
was recorded and transcribed verbatim for detailed analysis. All transcribed
interviews notes were managed using the reference management program Citavi.

Analysis. The analysis used the coding concepts of Straussian Grounded The-
ory, based on the classification of Stol et al. [14]. We used the three coding phases
of Straussian Grounded Theory: open coding, axial coding, and selective coding
[14]. The interpretive process of open coding breaks down the data analytically
and generates categories and concepts. The concepts were grouped together and
related to their subcategories in the axial coding. In the selective coding the
central categories were defined.

3.4 Threat to Validity

This section treats the identified threats to the validity.

Interview and Interview Guide. The possibility of misunderstandings
between interviewees and the researcher is a threat to validity. To minimize
the threat, the study goal was explained to the participants prior to the inter-
view. Steps taken to improve the reliability of the interview guide included a
review and a pilot test.

Research Sites and Participants. It is possible that the selection of the
participants biased the outcome. For the internal workshop, it could be that the
identified challenges are only in-house challenges. We validated the outcome on
the ESE Congress 2016 to be sure that the challenges are not only in-house.

Researcher Bias. Data extraction and coding was done by Researcher 1. This
could introduce bias due to misunderstanding and misinterpretation on the
researcher side. To minimize the risk, the interviews were recorded and tran-
scribed.

32 P. Hohl et al.

4 Results

The study reveals that the combination of ASD and SPL is a desired way of
managing the software development in the future. There are several aspects why
a combination is seen as beneficial.

4.1 Research Question 1

The study reveals two areas in which the participants identified a benefit.

Customer Collaboration. All participants mentioned that it is required for
future success, to react on customer expectations faster. This ensures that
customer-oriented products or features can be rapidly launched in the market
with profit. One participant mentioned that with a rapid customer feedback
the software development will be more effective. Not accepted solutions by the
customer are identified in an early stage and could be dropped before they are
further developed. The development capacity is better and more efficiently used.
Trends in the customers behavior could be recognized and developed towards
customer satisfaction.

Improvement of Development. The main expected benefit is an improved
software development process. The development process benefits from several
improvements, which could be categorized as: Transparency (1), collaboration
within the development team (2), efficiency in development (3), flexibility (4),
software quality (5), development speed (6), cost of delay (7), and a better
verification and reuse strategy (8).

With the introduction of agile development, an agile mindset is presumed
to be introduced as well. Most interviewees mentioned that transparency (1) in
work will be resulting from the new way of collaborative working (2). With the
consequential distribution of knowledge within the software development team,
it is expected to be an open and genuine cooperation between employees (2).
The developers mentioned that work could be more effective (3) by granting
more responsibility to lower hierarchy levels. This results in less coordination for
management approval. A possible solution is the resolving of too many levels in
the hierarchy into flat hierarchies with self-organizing teams.

However, some participants are still critical about this proposed way of work-
ing. They mentioned that some developers do not want to change their working
behavior and it is not possible to force a mindset change. Furthermore, the
change need time and is not always necessary. A mixture of employees special-
ized in a specific field, and more general employees is necessary. With the right
mixture, the development could benefit from in deep knowledge and flexibility (4)
in the development. This flexibility is explicitly mentioned by the managers as
a need to react on customer needs. For developers, the customer satisfaction
is of secondary importance compared to software quality (5). They assumed
that with a combination of ASD and SPLs it will be possible to deliver high
quality software (5) at the required faster pace (6), due to increased software
reuse and shorter release cycles. They further emphasized that it is important to

Real-Life Challenges on Agile Software Product Lines in Automotive 33

bundle the competence in-house, to deliver software faster and react on chang-
ing requirements. With faster in-house communication channels, one participant
mentioned that this will be beneficial considering the cost of development and
cost of delay (7). The developers mentioned that a good reuse strategy and SPL
(8) is necessary to use parts of the software more often and save further money.
All participants emphasized that an agile development speeds up the develop-
ment to get a high quality software, whereas the existing SPL helps to ensure
that already verified software is reused within a mature reuse strategy.

4.2 Research Question 2

Real-life challenges are evaluated, in order to combine ASD and SPLs in the
automotive domain to handle agile development and software product lines. We
focus on the development process, as the process must change and adopted to
verify a smooth development in an agile way. The challenges could be categorized
into organizational challenges (1), worldwide development (2), management (3),
dependencies (4), synchronization processes (5), validation (6), release (7), and
the software development process itself (8).

Organization. All participants mentioned that coordination is a challenge for
introducing agile elements to the existing SPL. The existing hierarchy is chang-
ing slowly towards an open minded agile development. However, the existing
processes are not bad and still valid. Special milestones in the processes ver-
ify worldwide coordination and planning, like scoping, to decide which fea-
tures are relevant for implementation. By introducing agile development into
the processes, it is seen that the coordination of the software development hin-
ders a faster pace. The pace is influenced by coordination among the SPL. One
challenge is to prevent a decomposition of the SPL. With many software vari-
ants and a faster development pace, it is the risk that the common software
part becomes stunted. Therefore, it is important to consider synchronization
points between software variants, several development processes like hardware
and software, as well as supplier and in-house development.

Worldwide Distribution of the Development Team. A major challenge
is the collaboration with suppliers and a worldwide distribution of the develop-
ment team. Different cultures and different mindset are likely hindering an agile
development. In addition, the purchase department is often interfering an agile
collaboration with suppliers. This challenges are important to consider, while
setting up the development team. Furthermore, the worldwide distribution of
the development team leads to challenges in the team communication. Different
time-zones, no face-to-face conversation and mistakes in translation represent big
dangers. Furthermore, the process to maintain and scope the common software
parts requires a lot of communication between all participants. This is seen as
slowing down the development because of slow communication channels. A lot
of planning and coordination is necessary to maintain the SPL. A participant
mentioned that it is necessary that the communication is not only top-down,
but in both directions.

34 P. Hohl et al.

Management. It is mentioned that the management does not want to give up
any responsibility. With less responsibility on management level, scheduling of
the development and reporting will be challenging. It is unclear for the managers
how the agile software product line could be planned and features are scoped.
Planning although is of high importance in an automotive development.

Dependencies and Synchronization. The automotive software development
is a worldwide development with a lot of dependencies, like many included
technical systems, test and verification steps and other developments domains
like hardware and mechanical. A dynamic coordination is seen as necessity to
introduce agile development practices into SPL development. The development
process across several domains must be synchronized. Challenging is the fact,
if just parts of the organization are working in an agile way and others not.
Interfaces between those departments must be well organized and set up.

Validation and Release. Maintaining the compliance to standards while devel-
oping a lot of different software variants is seen as highly challenging. On the
one hand, the development speed is increased but on the other hand, it is nec-
essary to validate the software to maintain standards like ISO 26262 and other
restrictions given by the law. It is a challenge to scale the test framework to test
all variants within the SPL. It is unclear how far the automation of test could
help in the process. Testing strategy must be context specific and scalable. With
the use of the SPL already validated software parts could be reused. One partic-
ipant mentioned the use of composable certification to be always compliant in
all software variants. This form of certification is far from being legally allowed.
New ways of certification and releasing software must be considered to maintain
the development pace.

Software Development. One major challenge is the software development
itself. Here is a lot potential for improvement. The identified challenges in the
software development are clustered as technical issues (1), costs (2), require-
ments management (3), software architecture (4), software quality (5), safety
regulations (6) and the use of SPL and variants (7).

As mentioned by the participants, the automotive domain is a cost-driven
business. Therefore often the smallest possible hardware is selected to meet the
requirements whereas this does not mean that there is a reduction of quality or
functionality. But it leads to the unpleasant effect that in some cases, different
variants of software are compiled separately to fit on the hardware. To get such
a high modularity, it is necessary that the architecture is well chosen. One chal-
lenge is now, to maintain a good shaped architecture but have the possibility
to integrate not foreseen features into the software. Furthermore it is necessary
that all adoptions are always in relation to the selected hardware target. The
developers mentioned that a benefit of the agile development is to re-prioritize
features. The downside of this is that it is challenging to freeze the functionality
for different variants of the SPL, because of late or incomplete requirements. The
developers mentioned that it is important to analyze and prioritize the features
to prevent chaos. This is even more important when developing within a SPL.

Real-Life Challenges on Agile Software Product Lines in Automotive 35

Scoping must always be considered to check for the affected variants. All variants
must be validated to work as expected and defined by standards. The challenges
in the software development are hard to tackle, but worth to consider.

5 Discussion and Conclusion

The identified challenges in the related work, such as the difficult management
of software reuse and agile development [5,10,12] are valid for the automotive
domain as well. A major finding of the study is that the use of agile elements
in combination with software product lines require a precise analysis of depen-
dencies to surrounding processes and organizational structures. For example,
dependencies between departments and suppliers must be taken into account. It
is also important to consider processes that are necessary to meet legal require-
ments. In the automotive sector global coordination is taking place due to global
development. The currently typical form of coordination across several hierarchi-
cal levels (for example, to identify common components) is considered too slow
and difficult to combine with the agile mindset. Dependencies between depart-
ments and compliance with rigid development processes are seen as an obstacle.
It was important to all participants that the advantages of the software product
line cannot be replaced by a more agile development. Particularly with regard
to legal requirements and the verification and certification of software compo-
nents, it is necessary to reuse software parts. This is particularly important in
the automotive domain, as legal requirements require long-term certifications.

For future work, we plan to create and evaluate an Agile Software Product
Line Automotive - Model (ASPLA-Model) for the adoption of ASD in the context
of existing automotive SPL development. Next step will be deriving requirements
for the ASPLA-Model based on the challenges reported herein.

References

1. Samuelsen, S.: The automotive future belongs to fuel cells range, adaptability, and
refueling time will ultimately put hydrogen fuel cells ahead of batteries. IEEE
Spectr. 54(2), 38–43 (2017)

2. Broy, M., Krüger, I.H., Pretschner, A., Salzmann, C.: Engineering automotive soft-
ware. Proc. IEEE 95(2), 356–373 (2007)

3. Pohjalainen, P.: Bottom-up modeling for a software product line: an experience
report on agile modeling of governmental mobile networks. In: Proceedings of 15th
SPLC, pp. 323–332 (2011)

4. Hohl, P., Ghofrani, J., Münch, J., Stupperich, M., Schneider, K.: Searching for
common ground: Existing literature on automotive agile software product lines.
In: Proceedings of ICSSP 2017 (2017)

5. Babar, M.A., Ihme, T., Pikkarainen, M.: An industrial case of exploiting prod-
uct line architecturesin agile software development. In: Proceedings of 13th SPLC
(2009)

6. Farahani, F., Ramsin, R.: Methodologies for agile product line engineering: a survey
and evaluation. In: Conference on 13th SOMET (2014)

36 P. Hohl et al.

7. Noor, M.A., Rabiser, R., Grünbacher, P.: Agile product line planning: a collabo-
rative approach and a case study. J. Syst. Softw. 81(6), 68–882 (2008)

8. O’Leary, P., McCaffery, F., Thiel, S., Richardson, I.: An agile process model for
product derivation in software product line engineering. J. Softw. Evol. Process
24(5), 561–571 (2012)

9. Olsson, H.H., Bosch, J., Alahyari, H.: Towards R&D as innovation experiment sys-
tems: a framework for moving beyond agile software development. In: Proceedings
of IASTED (2013)

10. Dı́az, J., Pérez, J., Alarcón, P.P., Garbajosa, J.: Agile product line engineering-a
systematic literature review. Softw. Pract. Exp. 41(8), 921–941 (2011)

11. Eklund, U., Olsson, H.H., Strøm, N.J.: Industrial challenges of scaling agile in mass-
produced embedded systems. In: Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell,
S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP, vol. 199, pp. 30–42. Springer,
Cham (2014). doi:10.1007/978-3-319-14358-3 4

12. Ghanam, Y., Maurer, F.: Extreme product line engineering: managing variability
and traceability via executable specifications. In: Agile 2009 (2009)

13. Hohl, P., Münch, J., Schneider, K., Stupperich, M.: Forces that prevent agile adop-
tion in the automotive domain. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc,
A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol.
10027, pp. 468–476. Springer, Cham (2016). doi:10.1007/978-3-319-49094-6 32

14. Stol, K.-J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering
research. In: Proceedings of 38th ICSE (2016)

http://dx.doi.org/10.1007/978-3-319-14358-3_4
http://dx.doi.org/10.1007/978-3-319-49094-6_32

Measuring Team Innovativeness: A Multiple
Case Study of Agile and Lean Software

Developing Companies

Richard Berntsson Svensson(&)

Department of Computer Science and Engineering,
Chalmers University of Gothenburg, Gothenburg, Sweden

richard@cse.gu.se

Abstract. [Context/Background] Innovation is seen as the basis of competi-
tive economy and measuring the innovation process is important for organiza-
tions. In the literature, focus has been on innovation and innovation capabilities
on an organizational level, while few studies has been placed on innovation at
team level. Furthermore, organizations tend to focus on the measurement of
innovation to input and outputs of the innovation process and ignoring the
process in-between. [Goal] This paper explores how a team’s innovation
capability is measured, and can be measured in practice in agile and lean
software developing companies. [Method] It is based on data collected through
semi-structured interviews with 28 practitioners from 11 software developing
companies. [Results] The contribution of this study is twofold: First, it char-
acterizes which metrics are used in industry to measure a team’s innovation
capability. Second, it identifies which metrics that could be used in practice to
measure a team’s innovation capability. [Conclusions] Measuring the perfor-
mance of the innovation process is not seen as important during product plan-
ning and development.

Keywords: Innovation � Measurement � Agile � Case study � Empirical

1 Introduction

Innovation is widely seen as the basis of a competitive economy [21] and has resulted
in a multidisciplinary body of knowledge. This multidisciplinary body of knowledge
shows that an organizations competitive ability is dependent upon successful man-
agement of the innovation process [4, 8, 13]. However, for many organizations,
evaluating the innovation competence is a complex task. For an organization to opti-
mally manage the innovation process, an important challenge lies in measuring the
performance of the process.

In the innovation literature, measures of aspects of innovation management are
frequently proposed. For example, the literature stresses the importance to measure
factors such as innovation strategy, ideas, customer and market, and organizational
culture [1, 11]. However, while there has been much focus on innovation and inno-
vation capabilities on an organizational level in the literature, less focus has been
placed on a team level. Moreover, according to Adams et al. [1], many organizations

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 37–51, 2017.
https://doi.org/10.1007/978-3-319-69926-4_4

tend to focus on the measurement of innovation to inputs and outputs of the innovation
process, but ignore the process in-between.

Innovation is complex and unpredictable [18, 19], which makes measuring the
innovation process particular challenging. In particular since practitioners have prob-
lems to understand what to measure. That is, to identify the right metrics in order to
evaluate the efficiency of the innovation process [1, 7, 24]. One reason for the diffi-
culties of measuring innovation is that important factors of innovation, e.g. knowledge
and ideas, cannot be measured directly due to their intangible characteristics [14, 24].
This has led to that organizations rarely track the needed information to evaluate and
assess the innovation process in a systematic way. Adams et al. [1] point to the need for
both practitioners and academics to measure innovation, and stress the absence of
frameworks for innovation management measurements as well as that there are rela-
tively few empirical studies of innovation measurement in practice.

What are the aspects of the innovation process that can be measured in practice?
The aim of this paper is to contribute to the measurement theory and practice beyond
the focus on measuring inputs and outputs of the innovation process by investigating
the process in-between at agile software developing companies. This paper presents the
results of an empirical study that includes data collected through in-depth interviews
with 28 practitioners from 11 companies in Sweden of which six are multinational. The
study focuses on how innovation can be measured in practice, and what metrics can be
used to measure a team’s innovation capability. This exploratory study can be seen as a
study of state-of-practice in industry, but also an investigation as to what extent
state-of-the-art in research, in terms of innovation measurement metrics, has penetrated
industry practice.

The remainder of this paper is organized as follows. Section 2 presents related
work. In Sect. 3 presents the research methodology and discusses the limitations of the
study. The results are presented and discussed in Sect. 4, while Sect. 5 gives a sum-
mary of the main conclusions.

2 Related Work

The amount of literature on innovation is vast and goes back many years. However,
while there has been much focus on innovation and innovation capabilities on an
organizational level i.e. innovation processes, as well as on the individual level i.e.
entrepreneurship or corporate entrepreneurship, less focus has been placed on a team
level. The same accounts for measurement and assessment methods of innovation and
innovation capabilities. Furthermore, a majority of innovation metrics focuses on
product or process performance and are of a post-hoc character i.e. when products or
processes are put on the market or implemented. Popular performance innovation
metrics in industry are percent of revenue from new products (NPs), percent of growths
in NPs, overall profits generated by NPs [9]. Other popular metrics include number of
patents and number of ideas generated in various suggestion facilities.

Measuring climate for work group innovation is something that Anderson and West
[3] address. They present a multidimensional measure of facet-specific climate for
innovation in group called Team Climate Inventory and pinpoint that “most previous

38 R. Berntsson Svensson

measures of [innovative] climate have evaluated organizations as a whole” [3]. They
conclude that by focusing on specific aspect of climate and specific group level out-
comes the predictive accuracy is high.

Other sources provide different aspects and dimensions to innovation measurement
and assessment. One of the most comprehensive sources is Adams et al. [1] review on
innovation management measurements. Based on their review a framework of seven
areas for measurement of innovation is provided. They point to the need for both
practitioners and academics to measure innovation and stress the absence of frame-
works for innovation management measurements as well as “the relatively small
number of empirical studies on measurement in practice” [1]. Griffin and Page [16]
argue that a firm can assess failure or success of development projects by using
appropriate sets of measures with alignment to project and innovation strategies. The
framework presented by Griffin and Page [16] is relevant when products are placed on
the market i.e. post hoc measures (e.g. customer acceptance, market share goals,
competitive advantage) and provides mostly insights for innovation on the organiza-
tional (firm) level. The same measurement focus can be found in Huang et al. [17] i.e.
on firm level and on post-hoc measures. Based on their study on the measurement of
new product success in Australian small and medium sized enterprises, it is concluded
that firms should use multiple criteria when measuring new product success. The most
contributing factors to customer success were in their study found to be customer
satisfaction and customer acceptance, hence post-hoc measures.

Davila et al. [12] present another view, based on a business model for innovation
with appropriate measures based on four phases; input, process, output, and outcome.
For each of these phases they present a plethora of measures. They also define three
roles of measurement systems; plan, involving designing and monitoring strategy;
monitor, tracking of execution efforts and performance evaluation; and learn, in order
to identify new opportunities. Chiesa et al. [6] present a framework for technical
innovation audit. Their framework consisting of four core processes: (1) the identifi-
cation of new product concepts; (2) taking the innovation from concept to launch;
(3) the development of innovation in production; and (4) the development and man-
agement of technology per se. However, the focus in both [6, 12] is mostly on an
organizational (firm) level, hence team-level innovation measurement on climate,
processes and performance is not addressed explicitly.

Other literature on measurement of innovation extends the mainstream focus on
product and technology by addressing other innovation areas such as service innova-
tion, aesthetic innovation and the measurement thereof. For example, Alcaide-Marzal
and Tortajada-Esparza [2] approach innovation and the assessment thereof in industries
that are not focused on technological innovation but instead aesthetic innovation. In
their review of innovation surveys they especially investigate the occurrence of the
following aspects; goals of innovation, inputs to innovation, outputs of innovation,
innovation diffusion, and aesthetic design.

While creativity and customer requirements have been addressed in a number of
publications how to measure innovation is rather absent in software related literature.
Couger [10] uses the work environment inventory to measure the climate for creativity
in information systems focused organizations. The MINT framework [22] is, to the best
of our knowledge, the only framework that focuses on team level and measurement of

Measuring Team Innovativeness 39

innovation in Software Engineering. The MINT framework [22] consists of four major
innovation areas, (1) innovation elicitation, (2) project selection, (3) ways-of-working,
and (4) impact of innovation. Each of the four areas consists of a number of factors of
how to measure innovation.

3 Research Methodology

The purpose of this study is to gain in-depth understanding of how agile software
developing companies measure team level innovation capability, and what metrics
could be used, in practice, to measure a teams innovation capability. Innovation is both
complex and unpredictable, hence, a qualitative multiple case study approach was
chosen because it allows the researcher to understand the studied phenomenon and its
context in more depth [25]. According to Burns [5], case studies are an appropriate and
often used approach to qualitative research, in particular when the objective of the
research is the further understanding of a particular phenomenon that has not been
investigated fully, as in this study. The two research questions that provided the focus
for the empirical investigation are:

• RQ1: How do agile software developing companies measure team level innovation
capability?

• RQ2: What metrics can be used in agile software development practice to measure
team level innovation capability?

3.1 Sample Selection

The sampling strategy used was a combination of maximum variation sampling [20]
and convenience sampling [20] within our industrial collaboration network. The
researcher contacted a “gate-keeper” at each company who identified subjects that
he/she thought were the most suitable to participate in this study. Twenty-eight subjects
from 11 agile software-developing companies participated (see Table 1 for number of
subjects per company). According to the contacted “gate-keepers”, and the 28 subjects,
all 11 companies use an agile software development approach in a market-driven
software development context. The companies themselves vary in respect to size, type
of products, type of customers, and application domain, a characterization can be seen
in Table 1 (more details are not revealed for confidentiality reasons).

3.2 Data Collection

The research investigation was carried out using a semi-structured interview strategy
[23]. We decided to use interviews over doing a large survey as the concepts of
creativity, innovation, and innovation capability are treated very differently in industry,
what might be considered creativity in one company is simply adherence to innovation
in another. For this reason it was important to have a presence when gathering the data
making it possible to elaborate on what we were looking for and compensate for those
differences in naming. Moreover, due to the potential richness and diversity of the data

40 R. Berntsson Svensson

that could be collected, semi-structured interviews would best meet the objectives of
this study. Semi-structured interviews help to ensure common information on
pre-determined areas is collected, but allow the interviewer to probe deeper where
required. In addition, the interviewer had the chance to validate the questions with the
interviewee lessening changes of misunderstandings. That is, the interviewer went back
to the interviewee to validate the interviewers interpretation of the results to minimize
misinterpretations and to validate the results.

The research instrument (see Table 2) used in this study was designed with respect
to innovation, innovation capability, and innovation metrics. One interviewee and one
interviewer attended all interviews. During the interviews, the purpose of the study and
explanations of innovation were presented to the interviewee, followed by questions
about innovation, innovation capability, and metrics were discussed in detail. Several
times we had to put five to ten minutes of explanation what we were investigating, what
is innovation (the introduction of a product/feature/service, or production/delivery
method including software development processes and practices, that is new or sig-
nificantly improved with respect to its characteristics or intended uses) and innovation
capability (the overall capability/capacity encompassing the ability to absorb, adapt,
and transform ideas into new products/processes/features/systems) before the interview
subject understood and we could proceed. This was done in order to make sure that the
interviewees and we had the same understanding of the key concepts of the study. For
all interviews, varying in length from 40 to 60 min, we took records in the form of
written extensive notes in order to facilitate and improve the analysis process. Due to
confidentiality reasons, and non-disclosure agreements with all participating companies
and participants, the data (that is, the written extensive notes) cannot be disclosed.

Table 1. Company characteristics

ID Type of
customer

of
employees

Domain # of
interviews

A B2B 70 Information and
technology service

3

B B2B 3 Data migration 1
C B2B 100 Control systems 3
D B2B 24 Wireless connectivity 1
E B2B 110 Telecom 3
F B2B 850 Telecom 4
G B2B 1300 Telecom 3
H B2B 3000 Telecom 3
I B2C 5000 Telecom 4
J B2C 35 Information and

technology devices
2

K B2B 600 Control systems 1

Measuring Team Innovativeness 41

3.3 Data Analysis

In the data analysis phase, the data from the written extensive notes was analyzed using
content analysis [23] based on the interview instrument. Content analysis is a method
for analyzing and interpreting data [23]. The focus of content analysis is to gather
information and generate findings. The gathered information (content) can be any
written information and different categories containing content are constructed for
analysis. The content analysis involved marking and discussing interesting sections in
the written extensive notes. The chunks of text from the written extensive notes were
placed within the relevant sections (corresponding to a team’s innovativeness, inno-
vation capability and innovation measurements). These were numbered and relation-
ships were captured by identifying dependencies to and from each category.

Based on the results from the content analysis, three main categories of innovation
emerged, namely: (1) How ideas are created and/or found; (2) prioritization of new
ideas; and (3) innovation efforts, which includes more ‘traditional’ innovation mea-
surements such as patents and return on investment. The meaning of, and the results
related to these three categories are reported in Sect. 4.

3.4 Limitations

For this study, as for any empirical study, there are limitations to discuss and address.
The threats to description and interpretation validity and steps taken to mitigate them
are reported herein, and the generalizability of the results is discussed. The limitations
are described based on guidelines for flexible designs provided by Robson [23].

Description validity: The two main threats to description validity is the risk of partic-
ipants not freely expressing their views during the interviews and the risk of misinter-
preting what is said. To mitigate the risk of participants not freely sharing their opinions
each participant was guaranteed company internal and external anonymity. Concerning
the risk of misinterpretations, written extensive notes were taken during the interviews.
These notes were used when making transcriptions of the interviews and were sent back
to the participants to check that they correctly reflect what was said at the interviews.

Table 2. Interview instrument

Characterization Tell us about the company
Tell us about the company’s products
Tell us about your role at the company

Innovation How do you know that you and your team are innovative?
Do you measure the innovation capabilities of a team? If so, how and
what metrics are used?
According to you, what aspects of innovation capability can be
measured?
What aspects of innovation can be helpful in industry?

Final question Can you think of anything else that we have not covered that you think
we should have asked?

42 R. Berntsson Svensson

Interpretation validity: The main threat to providing a valid interpretation is that of
imposing a framework or meaning on what is happening rather than this emerging from
what is learnt during the involvement with the setting. However, this does not preclude
starting with a set of predefined categories, but these categories must be subjected to
checking of their appropriateness, with possible modification. In this study, the threat
of interpretation was managed by discussing the researcher’s final interpretation of the
interviewee’s answers with each of the 28 interviewees.

Generalizability: Considering generalizability, the results are limited to the included
case companies. However, qualitative studies rarely attempt to generalize beyond the
actual setting since it is more concerned with characterizing, explaining and under-
standing the phenomena under study. The nature of qualitative designs also makes it
impossible to replicate since identical circumstances cannot be recreated. However, the
development of a theory can help in understanding other cases and situations. The fact
that more than one participant and company acknowledge several of the discovered
results and challenges increases the possibility of transferring the results to other sit-
uations. The large number of companies and contexts also contributes to generaliz-
ability. To avoid the interaction of selection and treatment, interviewees were selected
by a gate-keeper at each company, hence the researchers did not select the subjects
themselves. Moreover, companies were selected from different geographical locations.

4 Results and Analysis

Innovation management measurement is an important discipline for practitioners. An
organizations capacity to innovate is determined by several factors, both relating to
their own internal organization as well as to their market environment. The task of
generating, and then, converting creative ideas into usable marketable products requires
high levels of inter-functional coordination and integration.

An overview of the results from the interviews is shown in Table 3. In Table 3, we
have mapped the empirical findings from each participant from each company (A-K in
Table 3) to three main categories of innovation measurements at team level based on,
how do the practitioners know if a team is innovative (‘How to know’ in Table 3), how
do the practitioners’ companies and teams measure their team’s innovation capability
today (‘Currently measuring’ in Table 3), and what metrics do the practitioners think
could be used in practice to measure a team’s innovation capability (‘Could be mea-
sured’ in Table 3). The three main categories of innovation that we identified are:
(1) How ideas are created and/or found, which includes if the ideas internally and/or
externally collected and generated; (2) prioritization of new ideas, which focus on the
prioritization of the newly generated/created/discovered ideas into actual projects; and
(3) innovation efforts, which includes more ‘traditional’ innovation measurements such
as patents and return on investment.

If a company has an ‘X’ in both the category “currently measuring” and in “Could
be measured” in Table 3, that means that one interviewee stated that they currently
measure this, while another interviewee stated that this could be measured. That is, the
interviewees from the same company had different understandings of what they

Measuring Team Innovativeness 43

currently measure. The second main category, prioritization of new ideas, was only
identified among the interviewees for what they currently measure and what they
believe could be measured. Hence, the reason for the count of “0” under How to know
in Table 3. The reason for including this category under How to know was to show
that none of the interviewees stated that prioritization of new ideas can be used to know
if a team is innovative or not. The column ‘#’ in Table 3 shows how many of the 28
participants that identified a measurement in each category. A more detailed description
of each of the categories is presented in the following sub-sections.

In Table 3, we can see that Company A can identify a team’s innovation capability
by measuring factors related to how the ideas from the team are created and found,
Company E currently measure factors in relation to how ideas and created and/or found
to identify a team’s innovation capability, while the participants from Company F
believes that metrics related to innovation effort could be used to measure a team’s
innovation capability.

Looking into how to know if a team is innovative or not, seven companies, and 18
out of 28 participants, identified factors related to how ideas are created and/or found,
six companies, and 11 participants, in the innovation effort category, while only two
companies (Companies C and H) and four participants identified both how ideas are
created and/or found and innovation efforts. That how ideas are created and/or found
was seen as a possible way to measure a team’s innovation capability is not surprising
since measuring the performance (i.e. how ell they perform an activity/task) of the
organization – regardless of which level (project/product/company) – has been iden-
tified in previous studies (e.g. [1, 2, 6, 12, 22]) as a measurement of innovation.

The following two sub-sections present and discuss one research question each,
corresponding to the research questions in Sect. 3.

Table 3. Overview of how to know if a team is innovative, what is currently measured, and
what metrics could be used to measure a team’s innovation capability

Companies #
A B C D E F G H I J K

How to know
How ideas are created and/or found X X X X X X X 18
Prioritization of new ideas 0
Innovation efforts X X X X X X 11
Currently measuring
How ideas are created and/or found X X X X 11
Prioritization of new ideas X 3
Innovation efforts X X X X X X X X 17
Could be measured
How ideas are created and/or found X X X X X X X X X X 24
Prioritization of new ideas X 2
Innovation efforts X X X X X X X X X 10

44 R. Berntsson Svensson

4.1 Measure Team Level Innovation Capability (RQ1)

Looking into how agile software developing companies currently measure a team’s
innovation capability, 18 participants from six companies stated that they currently use
number of granted patents to measure a team’s innovation capability, while four par-
ticipants from three companies mentioned number of submitted patent applications, as
illustrated in Table 4. This result is in line with the findings from Adams et al. [1] and
Crossan and Apaydin [11]. Although several interviewees from several companies
mentioned number of granted patents and number of patents applications, none of the
participants believe that patents is a good measure for a team’s innovation capability, or
that the number of patents tell the whole truth about a team’s innovation capability.

One participant from Company F explained that “number of patents could give
some indications, but it does not tell the whole truth. We have several innovations in
our products that are not patented”. Another participant (Company H) explained,
“number of granted patents and patent applications may be a decent start, but there
are many companies that come up with innovative products that are not patented”.
Besides not taking patents on new innovations, the patent process itself may be a hinder
for creativity and new innovations. One participant from Company G explained that the
patent process is a hinder for innovations. The participant further explained, “I had a
new idea that I found extremely interesting and we decided to write a patent appli-
cation. The whole process of rewriting the idea with a patent engineer made my idea so
generalized that I did not recognize it anymore. After this experience I lost my ambition
to come up with new innovative ideas”.

That Company B does not measure innovation capability by number of granted
patents or number of patent applications, nor sees it as potential metrics that could be
used to measure a team’s innovation capability (see Table 5 in Sect. 4.2) is not sur-
prising since the patent application process is both expensive and time consuming,
which was supported by the participant. Another participant shared the same view, “the
whole process of writing a patent application took so much time that I felt it is not
worth it anymore”.

Looking into Table 4, we see that three companies (E, H and I) use number of
collected ideas from key stakeholders to measure a team’s innovation capability (for
Company H and I, in combination with number of granted patents), while two com-
panies (F and G) use number of generated ideas by the team. To measure number of
generated ideas by the team, the participants from the to companies mentioned three
different ways of encouraging the teams to generate new ideas. First, encouraging the
employees to generate new innovative ideas for an internal or local innovation com-
petition. For each year, both of the companies participate in innovation competitions
and then it is possible to measure number of submitted ideas to the competition from
each team. Second, both companies mentioned that they measure number of generated
ideas by the team in general. Third, one company use the metrics of number of new
solutions to existing problems to measure a team’s innovation capability.

Company G is the only company that currently uses number of generated ideas
from third party (i.e. sub-contractors, eco-systems, and open innovation) to measure
their team’s innovation capability. In addition, Company G is the only company that

Measuring Team Innovativeness 45

Table 4. Detailed view on what is measured today

Companies #
A B C D E F G H I J K

How to know
Number of collected ideas from key stakeholders X X X 9
Number of generated ideas by the team X X 3
Number of generated ideas from/based on third
party

X X X X X X X 14

When a feature is wanted by the customer X X 3
Number of granted patents X X X X 8
Number of patents applications X X X X 8
Currently measuring
Number of collected ideas from key stakeholders X X X 4
Number of generated ideas by the team X X 4
Number of generated ideas from/based on third
party

X 1

When a feature is wanted by the customer X X 3
Return on Investment X 3
Number of granted patents X X X X X X 18
Number of patents applications X X X 4

Table 5. Detailed view of what could be measured

Companies #
A B C D E F G H I J K

Could be measured
Number of collected ideas from key stakeholders X X X 7
Number of generated ideas by the team X X X X X 7
Number of generated ideas from/based on third
party

X X X X X X X 20

When a feature is wanted by the customer X X 3
Return on Investment X 3
How much each team’s features/products sell for X X 3
Pre-release to key customers X X X 7
History of number of innovations X X X 6
History of number of generated ideas that led to
new innovations

X X X 5

‘Gut-feeling’ X X X X X X X X X X 26

46 R. Berntsson Svensson

uses more than two (they use four metrics, see Table 4) metrics today. No further
elaboration was given of why they used four metrics.

When a customer wants a released feature is used by two companies (J and K) as a
metric (how many times this happens) to measure a team’s innovation capability. One
participant from Company J explained that “it is difficult to measure before a product is
released. You are measured in comparison to your competitors – if you have a new
feature or enter the market first with something new, then you have proof for innovation”.

To our surprise, only companies (E, F, G, H, and I) from the telecom and mobile
domains, which is all of the companies in the telecom and mobile domain, are currently
using any metrics from the category ‘How ideas are created and/or found’ (see
Table 3) to measure a team’s innovation capability. One explanation may be that this
way of measuring a team’s innovation capability is domain related. However, another
more likely explanation may be related to the size of the company. The five telecom
and mobile companies are the largest companies, in terms of number of employees,
among the participating companies in this study.

One interesting finding in what is currently used to measure innovation capability is
that Company C is the only company that uses any factor from the category ‘priori-
tization of new ideas’ (see Table 3). The metric being used by Company C in the
prioritization of new ideas area is estimated return on investment, which is in line with
the popular performance innovation metrics in industry identified by Cooper et al. [9].
No further elaboration was given of how and why estimated return on investment is
used to measure a team’s innovation capability.

The results show that Companies A and B do not measure a team’s innovation
capability at all. The reason for Company A not to measure innovation was explained by
all three participants, “it is not possible to measure innovation and measurement
frameworks do not provide an overall picture of our innovation capability”. For
Company B, one participant explained, “no, we do not do this, but perhaps it is possible.
However, I think it is too complex and it will not give us an overall picture. In addition, it
takes too much time and since it will not give us a true picture, it is not worth it”. The
time aspect is important in agile software developing companies due to the short sprints
where a company should deliver a working software product within
2–4 weeks. Another possible explanation of why Company B does not measure inno-
vation capability could be that it is a small company with only three employees. The
complexity of measuring innovation capability that is described by companies A and B
is in line with the findings in McCarthy et al. [18] and Murray and Blackman [19].

In summary, to answer RQ1, the results show that seven metrics are currently used
in practice to measure a team’s innovation capability. The seven metrics that are used in
practice today are:

• Number of ideas from key stakeholders
• Number of ideas generated by the team
• Number of ideas generated from third parties
• When a feature is wanted by the customers
• Return on investment
• Number of granted patents
• Number of patent applications

Measuring Team Innovativeness 47

Currently, 6 of the 11 companies use number of granted patents to measure a team’s
innovation capability, which makes this metric the most used ones in practice. To use
number of patents to measure the innovation process is in line with previous findings
from Adams et al. [1] and Crossan and Apaydin [11]. However, none of the partici-
pants believed that number of patents are particular useful in determining a team’s
innovation capability.

4.2 What Could Be Measured (RQ2)

In analyzing research question 2, what metrics could be used in practice to determine a
team’s innovation capability, we see that the most frequently mentioned “metric” was
‘gut-feeling’, which was mentioned by 10 out of 11 companies, and by 26 out of 28
participants (see Table 5). Several of the interviewees explained that measuring inno-
vation, in particular at team level, is highly subjective and that the output from an
innovation measurement framework, or most of the other innovation metrics would be
highly uncertain. Therefore, using ones ‘gut-feeling’ to determine a team’s innovation
capability was considered more reliable than most ‘hard’ metrics. This result may be
related to the result of RQ1 (see Sect. 4.1), where the participants expressed that mea-
suring innovation, and a team’s innovation capability is very difficult, if not impossible.
This result is not in line with any previous studies in innovation measurement in general,
nor in studies focusing on innovation in software engineering (see Sect. 2 for example of
previous studies in the field). One possible explanation for why ‘gut-feeling’ was con-
sidered the most useful metric may be related to that measuring the performance of a
team’s innovation capability is not seen as important during product development.

Looking at Table 5, we see that the participants from companies (E-I) in the Tele-
com and Mobile domains believe that the number of ideas generated by the teams is a
good metric to use. Moreover, the five companies (E-I) from the Telecom and Mobile
domain together with two other companies (J and K) believe that number of generated
ideas from/based on third party is a good metric to use when measuring a team’s
innovation capability. With third party, some participants referred to sub-contractors, a
few mentioned ideas that were generated from the use of Open Source Software, but
most of the participants (14 our of 20, see Table 5) explicitly mentioned Open Inno-
vation. That is, most of the participants believe that a good way to measure the inno-
vation capability is to count the number of ideas that have been generated due to
participation in Open Innovation.

Using number of generated ideas as a way to measure innovation is in line with the
finings from Adams et al. [1], Crossan and Apaydin [11], and Regnell et al. [22].
However, using Open Innovation as part of measuring innovation capability in general,
and particularly at team level has not been reported in previous studies. On the other
hand, the participants from companies A, B, and C believe that number of collected
ideas from key stakeholders, and pre-release to key customers could be measured to
determine a team’s innovation capability. One hypothesis may be related to the market
and type of customers. For the companies in the Telecom and Mobile domains, the
market and the customers may be pushing for new innovations and therefore externally
generated ideas could be used to measure the innovation capability. Moreover, if the
market “pushes” the companies to generate new innovative products and features, this

48 R. Berntsson Svensson

may stimulate the employees to internally generate new ideas, hence it could be used to
measure the innovation capability.

Two interesting metrics for measure innovation are using the history of a team’s
number of innovations (companies E, G, and H), and to use the history of how many of
the generated ideas actually led to real innovations (companies E, F, and K). One
participant explained, “if a team has generated 20 ideas, of these 20 ideas, 10 led to the
creation of prototypes/mockups, while only 1 of these 10 prototypes/mockups actually
became an innovation, then we can use this data to measure each team’s innovation
capability”. The participant further explained the benefits of measuring these kinds of
metrics, “this provides the managers with some indications of how many ideas each
team must generate to get one new innovation”.

For Company D, no metrics were identified that could be used to measure a team’s
innovation capability. Although the participant from Company D believes that number
of patents could, to some extent, be useful for other things, the participant believes that
it is not possible to measure the innovation capability in general, nor by using number
of patents. The participant explained, “to measure number of patent applications could
give some indications to some things, but it does not tell the truth about innovation or
innovation capability. A team’s innovation capability is based on very subjective
measures and therefore it is not a very reliable measure. It is not worth the effort
considering how unreliable the measurement will be. Therefore, I do not believe that
there are any metrics that you can use so it would be useful in practice”.

None of the 11 companies mentioned any metrics or possible way of measure a
team’s innovation capability that could be mapped to ‘ways-of-working’, that is related
to the process of innovation, organizational abilities, the innovation climate, or con-
tinuous process improvement. Although, for example, organizational climate factors
have been shown to be important for creating an innovative organization [15], these
factors can only stimulate creativity and innovation, but may not be able to measure
how innovative a team is.

None of the participants mentioned granted patents, or number of patent application
as metrics that could be used to measure the innovation capability. This result is in line
with the participants view (see RQ1 in Sect. 4.1) on that patents are not a good metrics
to use to determine the innovation capability.

In summary, the results show that the participants believe that some metrics can be
used in practice to measure a team’s innovation capability. The most frequently
mentioned metric was ‘gut-feeling’, followed by number generated ideas from third
parties, especially number of ideas that have been received from participating in Open
Innovation.

5 Conclusions

In conclusion, this paper presents the results of an empirical study that examines how a
team’s innovation capability in agile software developing companies is currently
measured, and what metrics could be used in practice to measure the innovation
capability. Data are collected from 28 participants at 11 agile software developing
companies.

Measuring Team Innovativeness 49

In relation to RQ1, what metrics are currently used in practice to measure a team’s
innovation capability, the overall result indicates that relatively few metrics are used in
practice to measure the performance of the innovation process at team level. The two
most used metrics in practice are number of granted patents and number of patent
applications; however, none of the participants believed that patents could be used to
measure a team’s innovation capability. In addition to patent, the only other metrics
used in practice are, number of ideas from key stakeholders, number of ideas generated
by the team, number of ideas generated from third parties, when a feature is wanted by
the customers, and return on investment.

The relatively few metrics used in practice to measure a team’s innovation capa-
bility may be an indication that innovation is complex and unpredictable; hence, it is
difficult to get a reliable measure of a team’s innovation capability. Another possible
explanation may be that innovation is not prioritized in practice, which may be because
of the agile development process. That is, the short sprints with a focus on delivering a
working product may force the practitioners to solely focus on implementing features
that the market wants and that their competitors already have implemented, hence the
companies are more focused on following others rather than inventing new ideas to
gain competitive advantage.

In relation to RQ2, what metrics could be used to measure a team’s innovation
capability, the findings reveal that ‘gut-feeling’ is the most frequently mentioned
metric. ‘Gut-feeling’ is seen as at least as reliable as any other innovation measurement
frameworks. The second most frequently mentioned metric was number of generated
ideas from/based on third parties, where generated ideas from participating in Open
Innovation was the most frequently mentioned one.

The main problem is that measuring the performance of the innovation process are
not seen as important during product planning and development, making the realization
of new innovative products/features a reactive (i.e. identify competitors new innova-
tions and follow them) rather than a proactive effort to gain competitive advantage. The
companies may thus not be able to rely on the innovation capacity to achieve com-
petitive economy.

Further research is encouraged to investigate other industries in order to establish
how innovation capabilities are measured. Furthermore, based on the results from our
study, a broad survey, involving more companies from different parts of the world
could also provide interesting if the pattern found in this study is similar in the wider
scope of software based companies.

References

1. Adams, R., Bessant, J., Phelps, R.: Innovation management measurement: a review. Int.
J. Manag. Rev. 8, 21–47 (2006)

2. Alcaide-Marzal, J., Tortajada-Esparza, E.: Innovation assessment in traditional industries, a
proposal of aesthetic innovation indicators. Scientometrics 72, 33–57 (2007)

3. Anderson, N.R., West, M.A.: Measuring climate for work group innovation: development
and validation of the team climate inventory. J. Organ. Behav. 19, 235–258 (1998)

50 R. Berntsson Svensson

4. Balachandra, R., Friar, J.: Factors for success in R&D projects and new product innovation:
a contextual framework. IEEE Trans. Eng. Manag. 44, 276–287 (1997)

5. Burns, R.B.: Introduction to research methods, 4th edn. Pearson Education, Sydney (2000)
6. Chiesa, V., Coughlan, P., Voss, C.A.: Development of a technical innovation audit. J. Prod.

Innov. Manag. 13, 105–136 (1996)
7. Christensen, C.M., Kaufman, S.P., Shih, W.C.: Innovation killers: how financial tools

destroy your capacity to do new things. Harvard Bus. Rev. 86(1), 98–105 (2008)
8. Cooper, R.G.: The dimensions of industrial new product success and failure. J. Mark. 44,

93–103 (1979)
9. Cooper, R., Edgett, S., Kleinschmidt, E.: Benchmarking best NPD practices. Res. Technol.

Manag. 47, 31–43 (2004)
10. Cougar, J.D.: Measurement of the climate for creativity in IS organisations. Creat. Innov.

Manag. 5(4), 273–279 (1996)
11. Crossan, M.M., Apaydin, M.: A multi-dimensional framework of organizational innovation:

a systematic review of the literature. J. Manag. Stud. 47, 1154–1191 (2010)
12. Davila, T., Epstein, M.J., Shelton, R.: Making Innovation Work: How to Manage it, Measure

it, and Profit From it. Wharton School Publishing, NJ (2006)
13. Di Benedetto, C.A.: Identifying the key success factors in new product launch. J. Prod.

Innov. Manag. 16, 530–544 (1996)
14. Edvinsson, L., Dvir, R., Roth, N., Pasher, E.: Innovations: the new unit of analysis in the

knowledge era: the quest and context for innovation efficiency and management of IC.
J. Intellect. Cap. 5(1), 40–58 (2004)

15. Ekvall, G.: Organizational climate for creativity and innovation. Eur. J. Work Organ.
Psychol. 5, 105–123 (1996)

16. Griffin, A., Page, A.L.: PDMA Success measurement project: recommended measures for
product development success and failure. J. Prod. Innov. Manag. 13, 478–496 (1996)

17. Huang, X., Soutar, G.N., Brown, A.: Measuring new product success: an empirical
investigation of Australian SMEs. Ind. Mark. Manag. 33, 117–123 (2004)

18. McCarthy, I.P., Tsinopoulos, C., Allen, P., Rose-Anderssen, C.: New product development
as a complex adaptive system of decisions. J. Prod. Innov. Manag. 23(5), 437–456 (2006)

19. Murray, P., Blackman, D.: Managing innovation through social architecture, learning, and
competencies: a new conceptual approach. Knowl. Process Manag. 13(3), 132–143 (2006)

20. Patton, M.Q.: Qualitative Research and Evaluation Methods. Sage Publications, California
(2002)

21. Porter, M.E., Ketels, C.H.M.: UK Competitiveness: Moving to the next stage. DTI
Economics Paper No 3, URN 03/899 (2003)

22. Regnell, B., Höst, M., Nilsson, F., Bengtsson, H.: A measurement framework for team level
assessment of innovation capability in early requirements engineering. In: Bomarius, F.,
Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 71–86.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02152-7_7

23. Robson, C.: Real World Research, 2nd edn. Blackwell, Oxford (2002)
24. Smith, K.M.: Measuring Innovation. The Oxford Handbook of Innovation. Oxford

University Press, New York (2005)
25. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Sage, London (2003)

Measuring Team Innovativeness 51

http://dx.doi.org/10.1007/978-3-642-02152-7_7

Data Science and Analytics

What Can Be Learnt from Experienced
Data Scientists? A Case Study

Leah Riungu-Kalliosaari1, Marjo Kauppinen2, and Tomi Männistö1(B)

1 University of Helsinki, Helsinki, Finland
{leah.riungu-kalliosaari,tomi.mannisto}@helsinki.fi

2 Aalto University, Espoo, Finland
marjo.kauppinen@aalto.fi

Abstract. Data science has the potential to create value and deep
customer insight for service and software engineering. Companies are
increasingly applying data science to support their service and software
development practices. The goal of our research was to investigate how
data science can be applied in software development organisations. We
conducted a qualitative case study with an industrial partner. We col-
lected data through a workshop, focus group interview and feedback
session. This paper presents the data science process recommended by
experienced data scientists and describes the key characteristics of the
process, i.e., agility and continuous learning. We also report the chal-
lenges experienced while applying the data science process in customer
projects. For example, the data scientists highlighted that it is chal-
lenging to identify an essential problem and ensure that the results will
be utilised. Our findings indicate that it is important to put in place
an agile, iterative data science process that supports continuous learn-
ing while focusing on a real business problem to be solved. In addition,
the application of data science can be demanding and requires skills for
addressing human and organisational issues.

Keywords: Data science · Software development · Service engineering

1 Introduction

Data science is defined as “a new interdisciplinary field that synthesises and
builds on statistics, informatics, computing, communication, management and
sociology to study data and its environments (including domains and other con-
textual aspects, such as organizational and social aspects) in order to transform
data to insights and decisions by following a data-to-knowledge-to-wisdom think-
ing and methodology” [4]. The interdisciplinary nature implies that knowledge
from different fields is needed in order to ensure successful outcomes, making
data scientists valued members of teams in many different fields. In particular,
there is a growth in the application of data science in software engineering [3].
For example, in 2015, Microsoft grew its ‘data and applied science’ discipline

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 55–70, 2017.
https://doi.org/10.1007/978-3-319-69926-4_5

56 L. Riungu-Kalliosaari et al.

to over six hundred people and more than 1600 people were interested in data
science work and signed up to data science related mailing lists [10].

Five years ago, Davenport and Patil [7] described the data scientist position
as the sexiest job of the 21st century. In the recent past, the data scientist role
has grown in both popularity and demand. However, there is a wide shortage
of data scientist despite an increasing need for them across many fields [7]. In
order to fill the growing gap, education institutions are also making efforts in
educating future data scientists [14].

In order for data scientists to add the most value, they must be part of
a team that encourages them to ‘innovate with customer-facing products and
services and not just to create reports and presentations’ [7]. As part of a large
Finnish research programme Need for Speed1, we wanted to understand how data
science can enable organizations to gain deep customer insight. We conducted
a case study with one of the project partners whose data science team was
involved in service and software development projects. We wanted to understand
the activities involved in the data science projects along with the challenges
associated with them. Hence, we focused on these research questions: (1) What
are the key characteristics of the data science process applied in service and
software development projects? and (2) What are the challenges of applying the
data science process in the projects?

We present the results of the study in this paper. We found the data science
process to be an agile, end-to-end and continuous learning process. We classified
the challenges into three groups: (1) the demanding problems, e.g., difficulties in
identifying relevant problems and measuring the impact of the results; (2) mod-
erate problems e.g. unrealistic customer expectations; (3) mild problems such as
poor data quality and differences in modelling and production technologies.

The rest of the paper is as follows: Sect. 2 takes a look at related research;
Sect. 3 presents the research process; Sect. 4 presents the results as lessons learnt;
Sect. 5 discusses the results and Sect. 6 concludes the paper.

2 Related Work

As data science continues to gain more prevalence in software engineering, so
does the role of data scientists within organisations. The role and job titles of
data scientists can vary greatly in practice. Kandel et al. [9] conducted inter-
views with 35 data analysts from 25 organisations, and they identified three
analyst archetypes: hackers, scripters and application users. Hackers were pro-
ficient programmers and comfortable manipulating data. Scipters were experts
in modeling and producing visualizations with software packages such as R and
Matlab. Application users worked with smaller data sets using application such
as SAS and SPSS.

1 http://n4s.fi.

http://n4s.fi

What Can Be Learnt from Experienced Data Scientists? A Case Study 57

More recently, Kim et al. [10] identified five emerging roles of data scientists
in software development teams:

(1) “Insight Providers, who work with engineers to collect the data needed to
inform decisions that managers make;”

(2) “Modelling Specialists, who use their machine learning expertise to build
predictive models”;

(3) “Platform Builders, who create data platforms, balancing both engineering
and data analysis concerns;”

(4) “Polymaths, who do all data science activities themselves;”
(5) “Team Leaders, who run teams of data scientists and spread best practices.”

Data science has the potential to improve software engineering in many
ways. Begel and Zimmermann [1] surveyed the areas in which software engi-
neers desired input from data scientists. They found 12 potential areas where
data science could be applied namely, bug measurements, development practices,
development best practices, testing practices, evaluating quality, services related
to cloud computing and continuous delivery, customers and requirements, soft-
ware development lifecycle, software development process, productivity, teams
and collaboration, and reuse and shared components.

Handling of data and producing results involves different activities. These
may include tasks such as discovering the data for analysis, wrangling or manip-
ulating the data into an appropriate format, profiling data to ensure its quality
and suitability for analysis, modelling the data, and reporting the results of the
analysis [9]. Similarly, according to Fisher et al. [8], the analysis process may
include five activities, i.e., acquiring data, choosing an architecture, shaping the
data into the architecture, writing an editing code, and reflecting and iterating
on the results. All these activities have challenges that can make data analysis
an exhausting process.

Some of the existing challenges include data access restrictions, data quality
issues, i.e., missing, incorrect or inconsistent data values, difficulties with iden-
tifying data sources and integrating data from multiple sources, problems with
inferring the most important data while creating models and visualizations, and
communication issues, e.g., while presenting the results [8,9].

The presence of data everywhere has led to a rapid growth of the data sci-
ence field. Data-driven decision making is becoming increasingly critical while
addressing different information needs in the software domain [3]. Critical and
careful analysis of the problems should be practised in order to effectively apply
data science interventions. As the goal in such interventions is not primarily to
analyse data, but make the data useful for decision-making in relation to the
business processes. It is of importance to consider the problems from a wider
perspective than, e.g., data analytics only. Hence, our focus is on the data sci-
ence process, i.e., the activities and tasks carried out while analysing data to
produce actionable insights and outcomes.

58 L. Riungu-Kalliosaari et al.

3 Research Process

We conducted a qualitative study with experienced data scientists to understand
their data science process along with its challenges (see Table 1 for an overview
of our research process). We use the term ‘experienced data scientist’ because
the participants had each been involved in data science or analytics type of
work for 4–12 years (see Table 2). Despite the experience of the data scientists
themselves, the team in question was new and worked on newly started data
science projects. The data scientists were employees of an industrial partner
Reaktor2 in the Need for Speed programme. The industrial partner has 400
employees spread out in 4 offices across 3 continents. The company provides
consultancy services in different areas with a connection to digital products and
services. The data science team was composed of seven people.

At the beginning of the Need for Speed programme, the industrial partner
hosted a workshop where its data science process was presented and discussed
(Phase I, Table 1). After the workshop, collaboration between the researchers
and the company was agreed upon. In addition, the presentation material was
compared and linked with the findings from the focus group interview.

Our primary unit of analysis was the data science team. The work of the
team was concretely characterised by examples from case projects. In addition,
the informants also described the work of the team beyond the case projects.

Table 1. Research process

Phase Theme Method Data Informants

I Overview of data
science process

Workshop:
presentations,
discussions

5 slidesets DS1, DS3, DS4

II Characteristics and
challenges related to
data science process

Focus group
interview

Audio recording,
Post-it pictures

DS1, DS2,
DS3, DS4

III Validation of analytic
interpretations (for
Phase II), current
situation

Feedback
session, group
interview

Slides, audio
recording

DS1, DS4,
Research
manager

Next, we carried out a focus group interview (Phase II, Table 1). We chose
the focus group method because it is suitable for gathering experiences and
discovering new insights as well as allowing an in-depth discussion within a
reasonable period of time [11,12]. The goal of the focus group was to know more
about the data science process in the organization. The themes of the focus
group included individual introductions, the company, the data science team,

2 http://reaktor.com.

http://reaktor.com

What Can Be Learnt from Experienced Data Scientists? A Case Study 59

skills of a good data scientist, example projects, and lessons learnt (including
challenges and success factors). Four researchers and four data scientists were
present during the focus group interview. One researcher acted as the moderator
and the others took notes and asked clarifying questions. The focus group was
audio recorded and later transcribed for analysis. Details of the data scientists
and the projects they had worked or were working on are shown in Table 2.

Table 2. Details of focus group participants

Participant Background Experience
(years)

Examples of customer
projects

DS1 Theoretical physics,
data mining

12 Personalisation, optimisation; make
predictions

DS2 Machine learning,
CS, statistics

4 Change detection, make
recommendations, produce more
tailored advertisements

DS3 Machine learning,
statistics

8 Marketing campaigns, make
recommendations, location analysis

DS4 Psychology, IS,
machine learning

11 Segmentation; make
recommendations, improve revenue
and user experience

The data scientists were given post-it notes where they wrote notes related to
the discussed themes. The post-it notes were collected, placed on a white board
and a picture was taken that would be used to support the analysis.

After the analysis, we held a two-hour feedback workshop session (Phase III,
Table 1). Regarding the research process and its validation strategy, the feedback
session also acted as member checking [5]. The goal was to present the results
of the analysis from the focus group session and get feedback from the data
scientists. The company’s research manager, two most experienced data scientists
(DS1 and DS4), and three researchers were present during the feedback session.
The feedback session was also audio recorded and transcribed for analysis.

We analysed the data iteratively using the thematic analysis approach [6].
To guide our analysis, we used the pre-existing themes of interest discussed in
the focus group interview, i.e., key characteristics of the data science process,
challenges, success factors, example projects, and skills of a good data scientist.
We iterated and refined the codes as we discussed with each other during the
analysis as well as after the feedback session. We also used material obtained
from the company to supplement our analysis, e.g., presentation slides. In this
paper, we present the analysed themes related to the data science process, its
characteristics and challenges.

60 L. Riungu-Kalliosaari et al.

4 Lessons Learnt

4.1 Data Science Process

The organisation had defined a data science process. During a Need for Speed
programme workshop, the organisation presented the data science process on
a high abstraction level. During the focus group and feedback sessions, the
study participants provided more details about the process composed of six steps
(Fig. 1): conceptualization, problem definition, data collection and preparation,
modelling, evaluation and validation, and deployment and utilization of results.

Fig. 1. Overall data science process of the case company.

Conceptualization: The main focus of this activity is the business problem.
This involves interacting with the customer in order to assess the customer’s
understanding of (1) the business problem and (2) data science as a solution to
the business problem. The business problem should be described clearly, putting
the business targets and constraints into consideration, so as to develop the
appropriate solution. The data scientists stressed the importance of knowing
the customer’s understanding of data science because it helped in preparing to
address different customer expectations. One participant emphasised this:

It’s important [for the customer] to understand the possibilities and limita-
tions, really understanding what you are able to do and not do with data sci-
ence. [DS3]

Problem definition: This activity focuses on the data science solution to the
identified business problem. The business problem is formalised into an ana-
lytically solvable problem. One data scientists explained that many customers
needed help to ‘translate the [business] problem into a computational or mathe-
matical problem’ [DS1]. Successful problem definition therefore calls for a lot of
interaction between the customer and the data scientist.

A good data science solution starts by understanding who the customer or
end-user is. This helps to know how the data science solution will be applied.

What Can Be Learnt from Experienced Data Scientists? A Case Study 61

With this knowledge, the data scientists said that it was the best way to provide
an optimum solution.

Data collection and preparation: The end result is determined by the data
at hand. Hence, this makes collecting the data and preparing it for efficient use
a vital aspect. In order to make this a fruitful endeavour, the data scientists
wished that not only would the data be handed over to them, but that they
would also be granted access to the actual data collection process. This would
grant them the opportunity to improve the data collection process which they
believed would have significant impact on the results.

Modelling: When the data is in good shape for analysis, the data scientists
then manipulate the data using different data analysis and modelling techniques.
Depending on the problem, modelling aims at describing what has happened,
diagnosing why something has happened, predicting what will happen or provid-
ing guidance on how to make something happen. Often, the models are demon-
strated using visualisations.

Evaluation and validation: The data scientists need to provide results that
are reliable and relevant to the business problem. The participants were very
interested in knowing the effectiveness of their results and therefore desired to
obtain feedback from the real end users, not just from the business stakeholders
or domain experts.

Deployment and utilization of results: It is essential that the results are put
into use so as to assess their impact. Continuous and consistent monitoring is
imperative along with a feedback loop that enables the end users to communicate
their thoughts about the results. One participant [DS1] emphasised that tight
collaboration with the end result user was very important.

4.2 Characteristics of the Data Science Process

Agility: Data science projects are exploratory and iterative in nature. Following
an agile approach helps to manage customers? expectations and produce useful
results. The data scientists said that their way of working resonates well with
the agile approach.

There’s a lot in common that you can really apply...Like always [in software
development], do the MVP [“Minimum Viable Product”]...start iterating quick
and try to have lots of communication and have the end user involved. [DS4]

...agility fits very well [with our] approach because we have to start with some-
thing and then actually try to produce as quickly as possible some kind of insight
or results and then learn from those results and build on top of that. [We also]
learn the environment that the customer has. Then actually I think it?s more
visible also to the customer [that] we are producing something useful. [DS3]

Data science problems have to deal with a degree of uncertainty. The agile
approach provides the opportunity to address the unexpected changes along
the way.

62 L. Riungu-Kalliosaari et al.

Continuous learning process: The agile approach supports continuous learn-
ing throughout a project. It is important that both the data science team and
the customer have the opportunity to learn during the process. The data scien-
tists want to work with domain experts in order to gain good understanding of
the application domain and the problem to be solved. The customer can learn
what kind of results can be gained from the application of data science and how
to utilize the results. It should be everyone’s aim to ‘learn by doing’ [DS1] and
use the new knowledge to improve the end results and possibly ‘inspire some
other ideas’ [DS1].

End to end process: This means that the data scientists start the project
by first understanding the customer and the customer’s problem. This entails
evaluating the relevance of the business problem. It also important that end-
users are willing to utilize the solution. This calls for understanding the problem
from the end-user?s point of view in order to provide the appropriate solution.

...we have sort of tried to formulate our way of getting into projects that go
on and we really want to put an emphasis on the starting point or the end usage
point, of who is going to use this result and how. And we start from there and
then go backwards and do what we can and then try to improve it always...really
start from the end user. [DS1]

4.3 Challenges

We present the challenges as they were experienced by the data scientists in
different phases of the data science process. Table 3 shows an overview of the
challenges.

Table 3. Overview of the challenges

Data Science Process
Phase

Challenges

Conceptualization Unrealistic customer expectations, communicating
uncertainty

Problem definition Identifying the right problem, limited interaction with
domain experts, preference for tools as a solution

Data collection and
preparation

Limited access to the data collection process, poor data
quality, lack of cooperation from all required parties

Modelling Lack of the required computational resources, differences
in modelling and production technologies

Evaluation and
validation

Lack of feedback from the end user

Deployment and
utilization of results

The results are not utilised, what is the impact of the
results?

What Can Be Learnt from Experienced Data Scientists? A Case Study 63

Conceptualization. The challenges of this activity had to do with unrealistic
customer expectations and communicating uncertainty.

Unrealistic customer expectations: The participants found that most cus-
tomers did not have a realistic view of data science and its capabilities. In order
to sell their solutions, tool vendors had propagated a tools-driven approach in
the market. Hence, the customers expected quick solutions, mostly in the form
of tools or systems but not recommendations or guidelines to aid in decision
making. This led to a tendency to acquire tools without clearly knowing the
initial problem for which to use the tools.

...people have need for data science but they don’t understand it...then the
other thing is that the market is kind of saturated by vendors who don’t really
sell data science in the sense that we understand it. [DS4]

If customers did not understand data science well, it made it difficult for them
to view the problem correctly, hence hindering how well they could conceptualise
the problem. The participants strongly advocated for a data-driven approach and
had to employ some effort in getting the customer to gain the appropriate focus
on the problem.

Communicating uncertainty: Due to the exploratory nature of data science,
it is not always easy to predict the results. The conceptualization process also
involved getting the customer to have an open mind towards what the results
might imply. It was difficult for the participants to get the customer to under-
stand and accept the inherent uncertainty of the outcome. This resulted in pro-
longed initial negotiations that were not always fruitful in closing the deals.

...often times, it is that you [i.e., the data scientist] really cannot say before-
hand that—okay this is the result and that is what you will get. Basically because
the outcome is very vague. You [i.e., the customer] use the money and you don?t
know what you are investing [in]. [DS1]

Problem Definition. The main challenge here was identification of an essential
problem to be addressed. The other issues were the limited interaction with the
domain experts and the customers’ overemphasis on tools.

Identifying an essential problem: A correct problem should be one that
is solved by the obtained results. The participants had a great desire to pro-
duce useful results. However, it was often that the customers could not clearly
explicate the problem in the first place.

...in many cases, you notice that your customer has collected data, but what
to do with the data is unclear. And then there are lots of things we can actually
calculate from the data but, all of them are not useful ones. So you really should
find the useful thing and then concentrate on that. Then we would try to make
the point that okay—in a way such data collection is not enough but you really
need to find the correct problem that you actually need to solve. [DS3]

Limited interaction with domain experts: In most cases, the domain
experts would be the ones to evaluate and sometimes use the data science results.

64 L. Riungu-Kalliosaari et al.

When defining the problem, the participants expressed that it was important to
have input from the customers’ domain experts. The domain experts know the
problem best and are able to describe it very well—but their input was not
readily available.

We might have a communication problem with the customer since we’re not
experts on the domain. We don’t know what their problems are. And on the other
hand they might not be aware of what we could do. [DS1]

The other one [i.e., problem] is how much we can actually communicate with
the domain expert. [DS2]

Preference for tools as a solution: The participants found that there was
a general bias towards tools and products in the market. Tools were seen as
easy solutions to the problems as they were easy to acquire, were well-defined,
easy to start using, and were perceived with less uncertainty. This hindered the
customers’ attitudes towards more thorough problem solving that data science
requires.

I think many times the products are preferred to in a way because if you don’t
know the field then you actually think [of a product]. Because it’s a product you
can teach anybody to use it. But that’s not really the case because if you don’t
know what you are doing or you don’t know what the problem you are solving
is, you put rubbish [in] and get rubbish out. I think it goes for why [the] typical
thinking [is] okay, we buy a tool and then everybody can use it. [DS3]

Data Collection and Preparation. The challenges encountered during this
activity are as follows.

Limited access to the data collection process: The participants were
uncomfortable with being seen as magicians that could unravel wonderful dis-
coveries from any sort of data without knowing its context. Not only did the
participants want to have access to the data, but they also felt that under-
standing the process through which the data was collected would be useful in
evaluating the problem and achieving the desired results.

...data is produced by some process. And, what we really need to do is under-
stand the process or, preferably intervene with the process so that we get mea-
surements that we really are after. Not so that there’s some shadow on the wall
[and] we try to deduce from that—we want to set up the whole thing. [DS4]

Poor data quality: There were several factors that compromised the data
quality, such as the data being random and subpar, incorrect formatting and
missing attributes, values and information. One participant gave an example:

But just as a practical example, it was not a data science project per se but in
one project they had this legacy database of users where they only had one field
for name. And then you had one to three first names and then several different
variations of surnames and then we spent two weeks to build the engine that
parsed the names to extract a surname. And even after two weeks, we got like
two per cent of errors. [Research manager]

What Can Be Learnt from Experienced Data Scientists? A Case Study 65

The way the data was gathered might also have had a negative effect, espe-
cially if it was collected without knowledge or intention of its use in the future.

...the data is originally not for the use that we [intend] but it has been collected
for other purposes, maybe as log [data] and it’s a side product of a process, and
it’s supposed to be somehow, [a] gold mine of insights. Or useful for some specific
purpose. [DS2]

The data is often scattered around the organizations, the quality is poor. [DS1]
During the feedback session, the participants said that the data quality prob-

lem was improving. This was mainly because the market was becoming more
informed about data science, hence investing effort and resources to collect mean-
ingful data that could be utilised in the future and for different purposes.

Lack of cooperation from all required parties: We observed that some cus-
tomer organizations had internal issues that hindered the participants’ involve-
ment in the projects. The issues mainly stemmed from the lack of a shared
vision for the data science project amongst different departments in the cus-
tomer organizations. This made it especially difficult to gather or have access to
the required data.

One thing is that often the processes are lateral in the organization so that
they [spread across] different branches of the organization. So there’s IT and
marketing and someone else involved and it’s often hard to get [them] working
[together]. [DS4]

Modelling. There were a couple of challenges related to this activity.

Lack of the required computational resources: During the focus group
interview, the participants mentioned having difficulties with getting access to
the IT resources and computational environments that they needed for mod-
elling the results, particularly if the data could not be moved from the company
premises.

More than so, it?s difficult to get the IT resources, both the data and the
computational environment that we need. Often it?s difficult to get either of
them or at least one of them. [DS1]

During the feedback session, the participants pointed out that the situation
had improved due to cloud solutions becoming readily acceptable and accessible.

Differences in modelling and production technologies: Sometimes, there
was a difference between the modelling technology and the one in which the
results are applied. This led to difficulties with integrating the results in the
customer’s environment and required more time, effort and money. In the end,
this would limit the impact of the results.

Evaluation and Validation. The main challenge here was an apparent gap
between the data scientists and the end users of the results. The people who
ordered the project and thus got the results, e.g., the business experts, were not
necessarily the actual end users acting on or using the results.

66 L. Riungu-Kalliosaari et al.

Lack of feedback from the end user: There is a difference between the
feedback received from the business or domain experts working in the customer
company, and the real end users of the results. If the real end users are not
connected to the data scientists, it makes hard for the data scientists to actually
assess the progress of their results.

This is actually the number one [problem], [lack of] tight collaboration with
the end result user. [DS1]

Deployment and Utilization of Results. The data scientists were sometimes
frustrated by how the customers handled the project outcomes. Sometimes, the
results were not put into use which meant that the participants would never
know the real impact of the results.

The results are not utilised: Sometimes, the results were not applied. This
was due to factors, such as (1) lack of cooperation between different depart-
ments, e.g., marketing and IT, (2) the business stakeholders failed to facilitate
the utilization of the results if they did not understand, were not fully convinced
or they did not feel confident about the results.

...I think most of the failures that we [have] had are because the results are
just never [used]. They are ready and nobody ever uses them for anything...like
I said, most of the time the problem is really to get the results into use. [DS1]

What is the impact of the results? As a result of the outcomes not being
utilised, the participants found it difficult to know, measure or observe the effec-
tiveness of the results.

For the results to be useful, they [i.e., customers] have to accept that—well—
things are how they are, not how people thought they would like them to be. [DS4]

On the other hand, the participant quoted above [DS4] pointed out the fact
that in order to effectively measure the impact, one would require an experimen-
tal setup which is usually ‘expensive and technically heavy’ to put in place. This
means some considerations have to made with respect to investments towards
experimentation.

Summary of the Challenges. The challenges we have presented above reflect
the complications of applying data science in software and service engineering
as experienced by the study participants. We classified the challenges into three
groups, i.e., difficult, moderate, and mild problems. The groups were according
to the perceived ability to solve them, as observed during the analysis. Table 4
summarises the challenges.

The difficult problems were those considered hard to solve. They comprised
of human and organisational aspects which are always not easy to resolve. These
problems also seemed to be more out of the participants’ control, even though the
participants considered them to be very important. The moderate problems were
seen as somewhat solvable with some persistent intervention from the partici-
pants. The mild problems, such as those related to data quality, computational
resources, and modelling issues, were seen as clear and easily solvable.

What Can Be Learnt from Experienced Data Scientists? A Case Study 67

Table 4. Summary of the challenges

Problem Group Challenges

Difficult Communicating uncertainty, identifying essential problems, lack
of cooperation from all required parties, lack of feedback from
the end user, the results are not utilised, what is the impact of
the results?

Moderate Unrealistic customer expectations, limited interaction with
domain experts, preference for tools as a solution, limited access
to the data collection process

Mild Poor data quality, lack of required computational resources,
differences in modelling and production technologies

The human and organisational nature of the difficult problems is an indi-
cation of immature markets, which have spread extremely fast to many new
application domains. Some of these problems can be expected to fade with time
as the misconceptions about data science get clearer and data scientists become
integrated as members of software and service development teams.

5 Discussion

The goal of this study was to gain understanding on how data science can be
applied in software development organisations. The results are based on a qual-
itative case study approach. This paper presents the process that the experi-
enced data science team of the case study company recommends to be used with
customers. The paper also describes the key characteristics of the process and
challenges encountered in practice when data science projects were conducted
with customers.

The recommended data science process consists of six activities. The first
activity focuses on understanding customers? business problem and their expec-
tations for the project. The second step is to translate the business problem into
a computational or mathematical problem. The following two activities cover
data collection and modelling tasks. During the fifth activity of the data science
process, the results are evaluated and validated with the customers and end
users. Finally, it is essential to ensure that the results are put into use and their
impacts are assessed. Some of the activities of this process are similar to activi-
ties mentioned in other data science analysis processes, i.e., discovering the data
[8,9], modelling the data [8,9], and reflecting and iterating on the results [8].

Based on the interview study of 16 data scientists, Kim et al. [10] found
that data scientists at Microsoft worked on three activities: (1) data collection,
(2) data analysis, and (3) data use and dissemination. The authors also point
out that this list is not complete, but an overview of the activities they identified
from their study. When comparing the list of the three activities with the data
science process described in this paper, the main difference is that the data

68 L. Riungu-Kalliosaari et al.

scientists of our case study highlighted especially the importance of identifying
a real business problem that can be translated into a computational problem.

According to the experienced data scientists of our case study, identifying
essential problems to be solved by data science is one of the most difficult chal-
lenges in their work. Similarly, Zhang et al. [15] report that it is often easy to
start from some datasets, apply certain data analysis techniques and make some
observations that actually do not help practitioners. One of the main lessons
Zhang et al. learned was that it is important to first identify essential problems
and then obtain the right dataset to help solve the problems.

Another difficult challenge that data scientists can face in practice is that it
is not easy to communicate and get the customer to understand the uncertainty
of outcomes from data science projects. According to the experienced data sci-
entists, it is often so that they cannot state precisely at the beginning of the
project what results the customer will get. In order to solve this challenge and
also other challenges, such as identifying essential problems and managing unre-
alistic customer expectations, the experienced data scientists recommended the
agile and iterative data science process. This lesson from our case study sup-
ports the lesson learned by Zhang et al. [15]. Based on a case study conducted
at Microsoft, they report that creating software analytics solutions for real-world
problems is an iterative process. They also point out that it is important to work
in an agile way to build a quick feedback loop with practitioners and to identify
essential problems early.

From the perspective of research, the main contribution of this paper is that
it describes a rather large set of challenges that are based on the experiences of
the data scientists who have worked in customer projects. An increasing number
of companies are interested in applying data science. Therefore, it is important
that software engineering and data science researchers can develop solutions to
these challenges in close collaboration with practitioners. It is also important
that challenges related to the application of data science in software develop-
ment projects will be investigated in different kinds of companies and contexts.
For example, Kim et al. [10] plan to conduct a large-scale survey to quantify
data science tasks identified in their interview study and describe the challenges
associated with data science work. It will be interesting to compare the results
of the survey with the results of our case study.

From the perspective of practice, the paper offers an overview of the six data
science activities. The results also suggest that the data science process should
be an agile, continuous learning and end-to-end process. Continuous learning
means that data scientists need to gain iteratively a good understanding about
the business problem and application domain. In addition, customers need to
learn what kind of insights can be gained from the application of data science
and what these insights mean in practice. The end-to-end process means that it
starts from the discovery of relevant problem and covers the activity where the
results from the application of data sciences are actually used and their impacts
are evaluated.

What Can Be Learnt from Experienced Data Scientists? A Case Study 69

Threats to Validity. As this study is a case study and descriptive in nature,
there is little evidence to support any causal relationships, thus the internal
validity is not the main concern of this study. However, the results do include
knowledge constructs that could be interpreted having some causal characteris-
tics, such as the claims from the informants that iterative approach to design
science process would help to overcome certain challenges. These are clearly the
views of the informants and thus to be taken with appropriate caution if inter-
preted as guidelines to follow. On the other hand, however, the informants were
data science experts, who have encountered the challenges in their work and
thought for the possible solutions beyond the interview sessions of this study, so
their claims may be more valid and justified than random opinions.

In terms of construct validity, the richness of the data from multiple intervie-
wees and member checking the results with the informants significantly reduce
the risk that major issues would have been misunderstood by the researchers.
However, one issue on construct validity may rise from the varied definitions or
understandings of the term data science, particularly as its interpretation beyond
this study may differ from the semantics captured between the informants and
the researchers, which is broader than, e.g., data collection and analytics only
(see Fig. 1). To build a basis for the credibility [13], the interviews were audio
recorded, transcribed and analysed using Atlas.ti as the tool.

Our study is conducted with the case company only, although through their
customer projects, the results cover data science challenges beyond the case com-
pany only. The external validity or transferability of the results beyond the case
would be based on the assumption that the informants would have encountered
challenges that are not particular or stemming from the context of the case com-
pany only. That is, it is very much possible that the challenges identified have
relevance beyond the case as well as the ideas proposed by the informants for
alleviating the challenges. However, it is clear that the potential application of
the results in other cases essentially expects a knowledgeable person or persons
with good expertise in their own domain in order to interpret and apply the
results in their context.

6 Conclusions

This study contributes to the growing interest in data science across different
disciplines, specifically service and software engineering. It helps both researchers
and practitioners to understand the applicability of data science in service and
software development and be informed about some of the impending challenges.

The difficult problems identified comprised of human and organisational
aspects, whereas the problems such as poor data quality and modelling issues
were not seen as primary concerns for the data science process. Our results also
indicate that it is important to establish an agile and lightweight data science
process that supports continuous learning while focusing on a real business prob-
lem. The experienced data scientists highlighted that it is not enough to focus
on data collection and modelling. Instead, you really need to find the relevant
problem that you actually need to solve and can be solved by applying data
science.

70 L. Riungu-Kalliosaari et al.

Our future work will focus on the factors influencing the successful applica-
tion of data science in service and software development projects. In addition,
we are interested in investigating how customers experience the application of
data science in service and software development projects.

Acknowledgments. This work was supported by TEKES as part of the N4S Program
of DIMECC (Digital, Internet, Materials & Engineering Co-Creation). We would also
like to thank the case company Reaktor for the possibility to conduct this research.

References

1. Begel, A., Zimmermann, T.: Analyze this! 145 questions for data scientists in soft-
ware engineering. In: ICSE, pp. 12–22 (2014)

2. Bener, A., Misirli, A.T., Caglayan, B., Kocaguneli, E., Calikli, G.: Lessons learned
from software analytics in practice. In: The Art and Science of Analyzing Software
Data, pp. 453–489 (2015)

3. Bird, C., Menzies, T., Zimmermann, T.: Past, present, and future of analyzing
software data. In: The Art and Science of Analyzing Software Data, 1st edn.,
pp. 1–13 (2015)

4. Cao, L., Science, D.: A comprehensive overview. ACM Comput. Surv. 59(3) (2017).
Article No 43

5. Creswell, J.W.: Research Design-Qualitative, Quantitative, and Mixed-Methods
Approaches, 4th edn. SAGE, California (2014)

6. Cruzes, D., Dyba, T.: Recommended steps for thematic synthesis in software engi-
neering. In: International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pp. 275–284 (2011)

7. Davenport, T.H., Patil, D.J., Scientist, D.: The Sexiest Job of the 21st Century,
Harvard Business Review, pp. 70–76 (2012)

8. Fisher, D., DeLine, R., Czerwinski, M., Drucker, S.: Interactions with big data
analytics. Int. Mag. 19(3), 50–59 (2012)

9. Kandel, S., Paepcke, A., Hellerstein, J.M., Heer, J.: Enterprise data analysis and
visualization: an interview study. IEEE Trans. Vis. Comput. Graph. 18(12), 2917–
2926 (2012)

10. Kim, M., Zimmmermann, T., DeLine, R., Begel, A.: The emerging role of data
scientists on software development teams. In: ICSE, pp. 96–107 (2016)

11. Kontio, J., Lehtola, L., Bragge, J.: Using the focus group method in software
engineering: obtaining practitioner and user experiences. In: ISESE, pp. 271–280
(2004)

12. Liamputtong, P.: Focus Group Methodology-Principles and Practices. SAGE,
California (2011)

13. Patton, M.Q.: Qualitative Research & Evaluation Methods, 3rd edn. SAGE,
California (2002)

14. Strawn, G.: Data Scientist, IT Pro, pp. 55–57. Computer.org
15. Zhang, D., Han, S., Dang, Y., Lou, J.-G., Zhang, H., Xie, T.: Software analytics

in practice. IEEE Softw. 30(5), 30–37 (2013)

https://www.computer.org

A Virtual Study of Moving Windows
for Software Effort Estimation Using

Finnish Datasets

Sousuke Amasaki1(B) and Chris Lokan2

1 Okayama Prefectural University, Department of Systems Engineering, Soja, Japan
amasaki@cse.oka-pu.ac.jp

2 School of Engineering and Information Technology,
UNSW Canberra, Canberra, Australia

c.lokan@adfa.edu.au

Abstract. CONTEXT: Studies have shown contradictory results on
the effectiveness of using a moving window of only the most recent
projects for effort estimation, compared to using the full history of past
data. Moving windows improved the accuracy of effort estimates for a
single-company subset of the ISBSG dataset (www.isbsg.org), but not for
three single-company subsets of the Finnish dataset (www.4sumpartners.
com). The contradiction may be caused by different characteristics of the
data sets: in particular, they differ noticeably in heterogeneity of indus-
try sector. GOAL: To investigate the effect on estimation accuracy of
differences in the characteristics of the data sets. METHOD: Conduct
an experiment with a virtual data set, composed from the three subsets
of the Finnish dataset. The composite data set is similar to the ISBSG
subset in that it includes data from multiple industry sectors; the largest
group of projects in both data sets comes from the same industry sector;
and in both data sets the projects are concentrated in a similar number
of years. RESULTS: The conclusions is the same as in the past study
using the individual Finnish subsets: in the composite data set, moving
windows are of no help. CONCLUSIONS: In this instance, increased
heterogeneity of projects does not explain the contradiction. It is still
not clear when windows may be helpful. Practitioners and researchers
should not assume automatically that only the most recent data is best
for effort estimation.

1 Introduction

A software effort estimation model is developed from past project data. The set
of past project data grows as projects finish. When estimating the effort for a
new project, an estimator must choose whether the estimate should be based on
the whole set of past data. It may make intuitive sense to discount older projects,
as they may be less representative of an organization’s current practices.

Lokan and Mendes [7] examined whether using only recent projects improves
estimation accuracy. They used a window to limit the amount of training data so
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 71–79, 2017.
https://doi.org/10.1007/978-3-319-69926-4_6

www.isbsg.org
www.4sumpartners.com
www.4sumpartners.com

72 S. Amasaki and C. Lokan

that an effort estimation model used only the most recently-completed projects.
As data from a newly-completed project is added to a repository of data from
past projects, the window moves forward so that the oldest one drops out. The
results supported the advantage of the windowing approach, on one company’s
project data. A series of studies has also explored the use of windows over various
effort estimation models and window policies [2,4,8] with the same dataset.

Studies using other datasets [3,9,10] have given contradictory results: the
use of moving windows did not improve the accuracy of effort estimates, or even
made it worse. The question arises: what is different about the datasets, or the
organizations and projects from which the data were collected, that may explain
the different results? Some possible causes were suggested in [10].

To attempt to answer this question requires replicating the experiments with
further datasets. As obtaining project data with dates is a difficult task, combin-
ing existing datasets of past project data is a realistic approach for replication.

This paper replicates previous experiments [7,10], using a dataset composed
from the three datasets used in [10]. The composite dataset varies more in time
density, size, and industry sector than the three individual subsets; in this sense
it is more similar to the dataset studied in [7]. The aim is to investigate whether
these changes in the characteristics of the dataset affect estimation accuracy.

Using the combined dataset, we revisit the same research questions of [7,10]:

RQ1: Is there a difference between the accuracy of estimates using prediction
models that are built using all available data in a training set, and the
accuracy of estimates using prediction models that are built using only
the N most recently-completed projects in the training set?

RQ2: Can insights be gained by observing trends in estimation accuracy as N
varies?

2 Related Work

The first detailed studies on the effect of using moving windows were conducted
by Lokan and Mendes [6,7]. They used linear regression (LR) models, and a
single-company data set from the ISBSG repository. Training sets were defined
to be the N most recently completed projects. They found that the use of a
window could affect accuracy significantly, predictive accuracy was better with
larger windows, and some window sizes were particularly effective.

Further studies have investigated the use of moving windows, considering
different effort estimation models (Estimation by Analogy [2], and CART [1,4]),
windows whose size was based on a fixed duration instead of a fixed number of
projects [9], and giving more weight to more recent training projects in a window
of the most recent projects [3].

Several studies used the single-company ISBSG data set studied originally
in [7], finding that the use of moving windows was effective when using a suit-
able window size. Recent studies have considered other data sets, drawn from
the Finnish data set, to further investigate the effectiveness of moving windows.

A Virtual Study of Moving Windows for Software Effort Estimation 73

The Finnish data set contains three substantial subsets, which come from differ-
ent organizations. Lokan and Mendes [10] found that with these data sets, the use
of windows was never beneficial, and with some window sizes was significantly
harmful, to estimation accuracy.

Some notable differences between the ISBSG subset and the three Finnish
subsets are in homogeneity of industry sector, sample sizes, and time span. These
differences can be reduced by combining the three Finnish organizations’ data
sets: the combined data set is more like the ISBSG data set by being larger
and more heterogeneous than the individual subset; the same industry sector
(Insurance) contributes the most projects to both; most of the projects in the
combined data set cover a time span of the same length as the ISBSG subset. This
study focuses on examining the effects of those factors by using the combined
data set.

3 Research Method

3.1 Description of Combined Datasets

This study uses a composite data set, combining data from the three single-
company subsets of the Finnish dataset that were analyzed in [10]. The funda-
mental variables are size, effort, and four basic project classifiers: development
type, hardware platform, development language, and business sector. The com-
bined dataset contains 398 projects, implemented from 1982 to 2007.

Table 1. Basic statistics for ratio-scaled variables of the combined Finnish dataset

Variable Mean Median St. Dev. Min. Max.

Size (FP) 466 261 790 6 6294

Effort (hours) 2992 1305 5583 42 67576

Duration (months) 8.8 6.5 9.6 0.8 105.1

PDR (hours/FP) 7.5 6.6 5.0 0.4 47.8

Table 1 summarizes the ratio-scaled variables for the combined dataset. Some
temporal tendencies were also observed as follows:

– Size, Effort, and Duration are higher in the earlier projects.
– PDR (project delivery rates; defined as effort divided by size) declines to

begin with, but thereafter increases with time.
– New developments dominate the earlier projects, but decline as enhancement

and maintenance projects increase.
– 3rd Generation Languages always dominate, even more so in the later

projects.
– Multi-platform and mainframe projects are always dominant.

74 S. Amasaki and C. Lokan

Even in the combined dataset, projects are sparse to begin with (15 projects
in the first 10 years). By start date, the first 20% of completed projects span 20
years; the next four groups of 20% of projects in chronological order span about
4.5, 4.3, 2.8, and 3 years.

3.2 Modeling Technique

This study follows previous studies [7,10] by using linear regression to form esti-
mation models, with some procedures for feature selection and outlier detection,
Its procedure includes the following treatments:

– Size and Effort metrics were log-transformed, as in the original study and as
is common in this research field [5].

– Independent variables whose values were not known for a target project were
not considered for inclusion in the estimation model.

– Every model included log(Size) as an independent variable.
– Outliers were determined by Cook’s distance and removed after examining

its effects.
– Models constructed in our experiment can be different for every project.

Full details are as described in [10].

3.3 Effort Estimation with Chronologically Ordered Projects

This study evaluated the effects of moving windows of several sizes along with
a timeline of projects’ history. The effects were measured by performance com-
parisons between moving windows and a growing portfolio.

For a window of N projects, this evaluation was performed as follows:

1. Sort all projects by starting date.
2. For a given window size N , find the earliest project p0 for which at least

N + 1 projects were completed prior to the start of p0 (projects from p0
onwards are the ones whose training set is affected by using a window, so
they form the set of evaluation projects for this window size. For example,
with a window of 20 projects at least 21 projects must have finished for the
window to differ from the growing portfolio; in this data set 373 projects had
yet to start when the 21st project finished.)

3. For every project pi in chronological sequence, starting from p0, form esti-
mates using moving windows and the growing portfolio (all completed
projects). For moving windows, the training set is the N most recent projects
that finished before pi started. If multiple projects finished at the same date,
all of them are included. For the growing approach, the training set is all
projects that finished before pi started.

4. Evaluate estimation results.

We explored window sizes from 20 to 240 projects. The minimum size was
that used in [7]. As the size of the combined data set is approximately twice that
used in [7], the maximum size was set as twice the maximum size of that study.

A Virtual Study of Moving Windows for Software Effort Estimation 75

3.4 Performance Measures

We used Mean Absolute Error (MAE) as the performance measure, as it is not
biased towards either under- or over-estimates. Effect size was used for quanti-
tative comparison. Effect size is considered to be small below ≈ 0.2, medium at
≈ 0.5, and large at ≈ 0.8 or above [11]. To test for statistically significant differ-
ences between accuracy measures, we used the two-sided Wilcoxon signed-rank
test for paired samples, setting α = 0.05. As this study uses multiple related
tests, the p-values of the tests must be controlled. We used the Holm-Bonferroni
correction.

4 Results

Table 2 shows the effect of moving windows of different sizes on MAE1. The
first column shows window sizes. The second column shows the total number of
projects used as testing projects with the corresponding window size: the larger
the window size, the smaller the number of testing projects. The third and fourth
columns show accuracy measures for the growing portfolio and moving windows
for the corresponding window sizes. The fifth column shows the difference in per-
centages. The sixth column shows the p-value from statistical tests on accuracy
measures between the growing portfolio and moving windows. The last column
shows the effect size compared to using the growing portfolio. Positive values
mean a preference for the growing portfolio.

Table 2. Mean absolute residuals with different window sizes

Window
size (N)

Testing
projects

Growing
portfolio

Moving
windows

Diff. (%) p-value Effect size

20 373 1346.8 1472.3 9.32 0.78 0.04

40 340 1227.0 1323.0 7.82 0.45 0.04

60 319 1239.6 1289.2 4.00 0.58 0.02

80 281 1162.6 1237.5 6.44 0.08 0.03

100 277 1173.6 1228.6 4.69 0.23 0.02

120 253 1128.9 1161.7 2.90 0.64 0.01

140 232 1103.8 1114.1 0.94 0.79 0.00

160 202 926.2 939.4 1.42 0.86 0.01

180 176 918.9 942.4 2.56 0.08 0.01

200 160 948.9 977.8 3.05 0.00 0.02

220 142 861.5 884.1 2.63 0.04 0.01

240 132 777.0 812.0 4.50 0.02 0.03

1 The results are graphed for all window sizes. The tables only show every twentieth
window size, due to space limitations. This is sufficient to show the essential trends.

76 S. Amasaki and C. Lokan

Figure 1 plots the difference in mean absolute error against window sizes.
The x-axis is the size of the window, and the y-axis is the subtraction of the
accuracy measure value with the growing approach from that with the window
at the given x-value. Moving windows are advantageous on average when the
line is below 0, and disadvantageous when the line is above 0.

25 50 75 100 125 150 175 200 225
Window Size (number of projects)

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
iff

er
en

ce
s

in
m

ea
n

A
E(

%
)

Fig. 1. Difference in MAE between growing portfolio and moving windows

Figure 1 shows that MAE is always better (the line is above 0), except for
a single spike at N = 35, when all past data is used to train an estimation
model rather than a moving window of the most recent projects. The advantage
is up to 10%, compared to using windows. Although the sixth column in Table 2
has some p-values below 0.05, with the Holm-Bonferroni correction no difference
remains statistically significant.

In summary, for this virtual organization, there is no reason to use a window
instead of the growing portfolio. Effect sizes are very small, and there is no
window size that produces a statistically significant difference in accuracy.

5 Discussion

5.1 Answer to RQ1

The first question is whether the use of moving windows affects the accuracy of
effort estimates, in the combined dataset.

The use of moving windows did not improve the accuracy of estimates, for
any window size. With this composite dataset, as in the three subsets from
which it is composed, it is always better to retain all past data when building an
estimation model. Heterogeneity in industry sector does not change the result.

A Virtual Study of Moving Windows for Software Effort Estimation 77

5.2 Answer to RQ2

The second question is whether insights can be gained by observing trends in
estimation accuracy as the window size varies.

The line in Fig. 1 is always above zero (meaning that windows are detrimen-
tal), except for a single spike. It is well above zero for smaller window sizes:
estimation accuracy is 2.5–10% worse with the window, averaging about 5%
worse, for windows of up to about 100 projects. With larger windows, the loss
of accuracy averages around 3%. The loss of accuracy with small window sizes
agrees with previous studies. It suggests that small windows do not contain
enough training projects to learn an accurate effort estimation model.

It may be arguable that experiments with a data set similar to the single-
company ISBSG data set could result in a similar trend. The heterogeneity could
be a possible factor for instability (and lower performance) of models with small
training datasets.

Doubling the range of window sizes does not reveal a window size that
improves estimation accuracy.

In summary, in this virtual organization, the use of moving windows does
not improve the accuracy of effort estimates. It is better to use all past projects
as training data for effort estimation.

5.3 Comparison to Previous Studies

Moving windows were able to improve estimation accuracy in [7], but not in [10].
The contribution of this study is that none of heterogeneity in industry sec-

tor, a wider range of window sizes, nor more training and testing projects at
each window size was found to be related to the different results concerning the
effectiveness of moving windows. This reinforces the previous result that moving
windows are not always useful. Also, it implies a need for exploring other factors
relating to the potential effectiveness of using windows.

6 Threats to Validity

First, the data sets we used are convenience samples, and may not be representa-
tive of software projects in general. Thus, the results might not be generalizable
beyond these data sets; this is true of all studies based on convenience samples.

Next, this study combines data sets from multiple companies, and may not
represent any real company. In a sense this is an arbitrary combination. However,
we think it is a reasonable approach for our purpose, because this treatment
creates a data set with characteristics more similar to the subset from ISBSG.

All the models employed in this study were built automatically. The valid-
ity of our results depends on the automated process being suitable for model-
building using linear regression. Based on our experience building models man-
ually, we believe that the automated process is appropriate.

78 S. Amasaki and C. Lokan

7 Conclusion

This study investigated a possible cause of contradictory results regarding the
effectiveness of moving windows for effort estimation. An experiment was con-
ducted with a virtual dataset, comprising three subsets of the Finnish dataset,
which retains characteristics of those subsets but is more similar to the subset
of ISBSG. The results show that moving windows do not improve the accuracy
of estimates with this dataset, compared to using the growing portfolio.

Contradictory results from past studies could not be explained by the differ-
ences in the data that were considered here. In particular, this study suggests
that differences in the heterogeneity of industry sector do not account for the
different results found in [7,10].

For practitioners, the value of this research is that it reinforces that recency
of data is not necessarily a dominant factor of representativeness. Using recent
data as a basis for estimation seems intuitively attractive, but keeping in mind
what can be learned from both recent data and older data can be beneficial.

Exploring the effects of other differences between the data sets is a future
research direction.

Acknowledgment. This work was supported by JSPS KAKENHI Grant #15K15975.

References

1. Amasaki, S., Lokan, C.: The effect of moving windows on software effort estimation:
comparative study with CART. In: Proceedings of IWESEP 2014, pp. 1–6. IEEE
(2014)

2. Amasaki, S., Lokan, C.: A Replication of comparative study of moving windows on
linear regression and estimation by analogy. In: Proceedings of PROMISE 2015,
pp. 1–10. ACM, New York, October 2015

3. Amasaki, S., Lokan, C.: On the effectiveness of weighted moving windows: experi-
ment on linear regression based software effort estimation. J. Softw. Evol. Process
27(7), 488–507 (2015)

4. Amasaki, S., Lokan, C.: Evaluation of moving window policies with CART. In:
Proceedings of IWESEP 2016, pp. 24–29. IEEE (2016)

5. Kitchenham, B.A., Mendes, E.: Why comparative effort prediction studies may be
invalid. In: Proceedings of PROMISE 2009, p. 4. ACM (2009)

6. Lokan, C., Mendes, E.: Investigating the use of chronological splitting to compare
software cross-company and single-company effort predictions. In: Proceedings of
EASE 2008 (2008)

7. Lokan, C., Mendes, E.: Applying moving windows to software effort estimation.
In: Proceedings of ESEM 2009, pp. 111–122 (2009)

8. Lokan, C., Mendes, E.: Investigating the use of duration-based moving windows to
improve software effort prediction. In: Proceedings of APSEC 2012, pp. 818–827
(2012)

9. Lokan, C., Mendes, E.: Investigating the use of duration-based moving windows to
improve software effort prediction: a replicated study. Inf. Softw. Technol. 56(9),
1063–1075 (2014)

A Virtual Study of Moving Windows for Software Effort Estimation 79

10. Lokan, C., Mendes, E.: Investigating the use of moving windows to improve soft-
ware effort prediction: a replicated study. Empir. Softw. Eng. 22(2), 1–52 (2016)

11. Shepperd, M., MacDonell, S.: Evaluating prediction systems in software project
estimation. Inf. Softw. Technol. 54(8), 820–827 (2012)

A Survival Analysis of Source Files Modified
by New Developers

Hirohisa Aman1(B), Sousuke Amasaki2, Tomoyuki Yokogawa2,
and Minoru Kawahara1

1 Ehime University, Matsuyama, Ehime 790–8577, Japan
aman@ehime-u.ac.jp

2 Okayama Prefectural University, Soja, Okayama 719–1197, Japan

Abstract. This paper proposes an application of the survival analysis
to bug-fix events occurred in source files. When a source file is modified,
it has a risk of creating a bug (fault). In this paper, such a risk is ana-
lyzed from a viewpoint of the survival time—the time that the source file
can survive without any bug fix. Through an empirical study with 100
open source software (OSS) projects, the following findings are reported:
(1) Source files modified by new developers have about 26% shorter sur-
vival time than the others. (2) The above tendency may be inverted if the
OSS project has more developers relative to the total number of source
files.

Keywords: Open source development · Survival analysis · Time to
bug fix

1 Introduction

Open source software (OSS) products have been more and more popular in the
IT world. Many users and companies have utilized in their social life or business.
As an OSS product has more users or stakeholders, post-release failures occurred
in the product have larger impacts [4]. Hence, the quality management of OSS
products has gotten a lot of attention recently. A software product usually evolves
through its functional enhancements and bug (fault) fixes. Although it is ideal
that developers never create any bugs, the bug-free evolution would be hard in
reality; some code modifications are also creations of new bugs [6,8]. Nonetheless,
frequent bug fixes are always undesirable in software development.

There have been many studies in regard to bug-fix prediction in the past.
Rahman et al. [11] reported the trend that recently-bug-fixed source files are
likely to be fixed again. Google utilized their results and released the prediction
tool working on Git repositories [5]. Bird et al. [3] and Posnett et al. [10] focused
on the ownership of source files and reported that a source file having lower
ownership is likely to be more fault-prone; low ownership of a source file means
that the file has not been developed and maintained by specific core developer(s),
i.e., the file has been modified by various developers.
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 80–88, 2017.
https://doi.org/10.1007/978-3-319-69926-4_7

A Survival Analysis of Source Files Modified by New Developers 81

According to the previous work, the change history and ownership of source
files are promising data for analyzing the occurrence of bug fixes. However, most
previous studies focused on the number of bug fixes or the bug-fix rate; we
consider that the time to bug fix would be yet another noteworthy feature to
be analyzed. For example, suppose bug fixes were made in two files fA and fB.
If fA was modified “one day” ago and fB was done “one year” ago, we should
preferentially examine the precedent modification of fA than fB . In order to
analyze such a difference, we will focus on the survival analysis [12]. The survival
analysis is popular in the medical field, which analyzes the survival rate and the
survival time of patients who were received specific treatments. In this paper, we
propose an application of the survival analysis to the bug-fix survival time—the
time to bug fix. The key contributions of this paper are as follows:

1. An application of the survival analysis to the bug-fix events in source files:
To the best of our knowledge, although there have been studies utilizing the
survival analysis to the substantivity of OSS projects [2,14], there have not
been a study applying it to the time to bug fix.

2. An empirical report with many OSS projects: We collected data from 100
OSS projects, and report the results of the bug-fix survival analysis.

2 Survival Analysis and Its Application to Bug Fix

2.1 Survival Analysis

The survival analysis is a statistical method for analyzing the time to the occur-
rence of an event (e.g., a patient death in a clinical site).

Let t be the elapsed time from the start of our observation, and S(t) be the
probability that the event of interest had not been occurred until t, i.e., a subject
survives at t. S(t) is a monotonically decreasing function and called the survival
rate function. The expected survival time μt is computed as:

μt = −
∫

t dS(t). (1)

That is to say, μt is the area under S(t) (see Fig. 1).

Fig. 1. Example of S(t) and μt (area of the hatched part).

Needless to say, there may be a subject which has survived after the end of
our event observation. Such a subject is called a “censor sample.” If we have a

82 H. Aman et al.

censor sample, we cannot get true S(t). However, when our event occurrence time
is discrete type (t = t1, t2, . . . , ti, . . .), we can estimate it by using the Kaplan-
Meier (KM) method (see [7] for the details). The KM method is a popular
non-parametric method for estimating S(t) using the cumulative hazard as:

S(ti) =
i∏

k=1

{1 − λ(ti)} , (2)

where λ(ti) is the hazard at ti and λ(ti) = ei/ni; ni is the number of subjects
which have survived at least just before ti and ei is the number of subjects which
died (encountered the event) at ti, respectively.

2.2 Application of Survival Analysis to Bug Fix

Now we consider another survival analysis in which a subject and an event are a
source file and a bug fix, respectively. Then, we can develop a model of the time
to bug fix in a source file. While many studies have been done for predicting
bug fixes in the past, most of them focused on the number of bug fixes or
the occurrence rate. We will focus on yet another point of view in this paper.
According to the previous work regarding the file ownership [3,10], modifications
made by new developers may have higher risks of causing future bug fixes. By
analyzing the survival time to bug fix, we will evaluate such risks. We describe
the survival analysis of the time to bug fix in the remainder of this section.

Let f be a source file, and tE be the time when the observation was finished,
respectively. Then, let tM (<tE) be the time when f was finally modified (or
created) but the modification was not a bug fix. If a bug is fixed in f at tB , the
life time of f to the bug fix, L(f), is computed as L(f) = tB − tM . If bug fixes
occurred in f twice or more, use the oldest bug-fix time as tB ; if no bug fix was
observed until tE , f is a censor sample. Then, we define L(f) = tE − tM .

Next, we check the developer who made the modification at tM , and examine
whether he/she is a new developer who has never been involved in f before tM .
Then, we categorize f into two types, NEW and CONV—if f is modified by
a new developer at tM , we consider f to be Type NEW; otherwise, f is Type
CONV which means that the modification is made by a conventional developer.

Table 1 presents a simple example where eight files f1, f2, · · · , f8 have been
developed and maintained by three developers (ID = 1, 2, 3). Symbols “A,” “M”
and “B” in the table signify a creation of new file, a modification of a file, and a
bug fix of a file, respectively. Their subscripts denote the developer ID who made
those work. For each file, the modification (or the creation) according to its tM
is marked with an asterisk. For example, f1, f4 and f5 are modified by developer
1 at t = 21. f1 is Type NEW because its final modification at t = 26 is made
by developer 2 and it is the first time for developer 2 to modify f1 at that time.
Similarly, f5 is Type CONV since its final modification before the bug fix (at
t = 21) is made by developer 1 and he/she had already been involved in f5. Since
f1, f4, f6 and f8 have no bug fix within the observation duration (0 ≤ t ≤ tE),
they are censor samples and their life times are computed as L(fi) = tE − tM .
The remaining files’ life times are obtained as L(fi) = tB − tM .

A Survival Analysis of Source Files Modified by New Developers 83

Table 1. Example of source file development history.

file t tE type tB tM L(fi)

0 5 12 15 18 20 21 25 26 30 31 35

f1 A1 M1 M1 M∗
2 NEW — 26 9

f2 A1 M∗
2 B2 NEW 25 20 5

f3 A1 M∗
2 B1 NEW 18 15 3

f4 A2 M1 M∗
3 NEW — 31 4

f5 A1 M∗
1 B2 CONV 25 21 4

f6 A1 M2 M∗
2 CONV — 15 20

f7 A∗
2 B2 CONV 25 12 13

f8 A∗
3 CONV — 30 5

The KM method can estimates the survival rate function S(t) with Eq. (2).
Figure 2 shows the estimated S(t) of each type. We can see that NEW has a
shorter life time to bug fix than CONV. The expected survival time of NEW
and CONV are 6 and 13.375, respectively1. While both type have the same bug-
fix rate (50%), they have remarkable differences in terms of expected survival
time—6 vs. 13.375: the expected survival time of Type NEW is shorter than the
half of Type CONV’s survival time.

Fig. 2. Estimated S(t)’s for NEW and CONV types in Table 1.

3 Empirical Study

3.1 Dataset

We collected 100 local copies of OSS projects’ repositories which are available on
the GitHub, and obtained data to be analyzed from those repositories. Our sub-
ject projects consist of 50 Java projects and 50 C++ ones. The main reason why
we selected these projects is their popularities; we believe that a finding derived

1 NEW: 1 × 3 + 0.750 × (5 − 3) + 0.375 × (9 − 5) = 6; CONV: 1 × 4 + 0.750 × (13 −
4) + 0375 × (20 − 13) = 13.375.

84 H. Aman et al.

Table 2. Analyzed OSS projects (in decreasing order of “stars”).

Java projects C++ projects

RxJava, elasticsearch, retrofit, okhttp,
java-design-patterns, guava, leakcanary,
zxing, libgdx, interviews, fastjson, dubbo,
Android-CleanArchitecture, realm-java,
MaterialDrawer, ExoPlayer,
deeplearning4j, BottomBar, spark,
vert.x, dagger, presto, junit4,
Android-Bootstrap, dropwizard,
UltimateRecyclerView, uCrop, jedis,
auto, guice, mybatis-3, jadx, metrics,
mockito, HikariCP, webmagic, buck,
j2objc, jsoup, lombok, rebound,
swagger-core, pinpoint, scribejava, okio,
android-classyshark, async-http-client,
mosby, CoreNLP, dex2jar

folly, imgui, json, libphonenumber,
openFrameworks, Catch, proxygen,
capnproto, rapidjson, libzmq, libsass,
muduo, crow, tiny-dnn, ppsspp, dlib,
spdlog, Cpp-Primer, openpose,
pybind11, GamePlay, re2,
concurrentqueue, envoy, oclint, zopfli,
nghttp2, cpprestsdk, websocketpp,
osrm-backend, BansheeEngine, swig,
i2cdevlib, algorithms,
AtomicGameEngine, mlpack, thrust,
iaito, glog, cpr, cpp-ethereum,
magnum, cppcheck, gosu, phxpaxos,
deepdetect, actor-framework, cereal,
oryol, cling

from more popular projects is more attractive for more researches and practition-
ers. These projects have high “stars” scores at GitHub: We performed project
searches sorted by “most stars” option, where the search keywords were “Java”
and “C++,” respectively. Table 2 presents the names of collected projects.

3.2 Procedure

For each project, we conducted our empirical study in the following four steps.

1. Made a copy of the repository, and obtained the set of source files included
in the latest version (F). Source files for testings, demos and documents were
excluded from F . Let tE be the time when the repository was copied.

2. For each f ∈ F , extracted its change history from the commit logs, and
decided tB: if the commit message of f contained a bug fix-related keyword,
we considered that a bug fix was performed in f at the commit [13].

3. For each f ∈ F , determined tM and and f ’s type—NEW or CONV. The
identification of developer was performed in accordance with the following
rules [1]: if two developers had the same name or the same e-mail address, we
considered that they are the same developer.

4. Estimated the survival rate function S(t) for each types, NEW and CONV,
using the KM method. Then, computed the expected survival time with Equa-
tion (1): let μN and μC be the expected survival time in NEW and CONV,
respectively. To compare their differences across projects, define the following
criterion, Δμ:

Δμ =
μC − μN

μC
. (3)

A Survival Analysis of Source Files Modified by New Developers 85

If Δμ has a larger positive value, Type NEW files have shorter expected
survival times than Type CONV ones. While “μC − μN” directly shows the
difference of two survival times, we considered it is better to normalize the
difference with using one of those times because there would be dispersions
of survival times among projects; such a raw difference would not be suitable
for comparing different projects.

3.3 Results

Table 3 and Fig. 3 show distributions of Δμ values. The median and the average
(mean) of Δμ in the 100 OSS products are 0.394 and 0.258, respectively (see
Table 3). Moreover, a majority of projects show Δμ > 0 (see Fig. 3). In other
words, the expected survival times of Type NEW source files tend to be about
26% shorter than that of Type CONV on average.

Table 3. Distribution of Δμ values in analyzed OSS projects.

Min. 25% Median Mean 75% Max.

−1.675 0.048 0.394 0.258 0.628 0.997

−1

0

1

Δμ

Fig. 3. Boxplot of Δμ values in analyzed OSS projects.

3.4 Discussions

Through the survival analysis, we have understood a major trend of time to bug
fix in many OSS projects—how long time a source file tends to take until a bug
fix, rather than whether a bug fix would occur or not. A source file modified
by a new developer (Type NEW) would have a higher risk of a latent bug and
the time to bug fix would be about 26% shorter than another type of source file
(Type CONV). This trend seems to support the previous work regarding the file
ownership [3,10].

While the above results show an overall trend, some projects had small Δμ
values or the opposite trends. To examine if there is a statistically significant

86 H. Aman et al.

difference between NEW and CONV in terms of S(t), we performed the log-
rank test [9] (at a 5% significance level). The test results were as follows: there
seem to be significant differences in 65 products (does not in 35 products); in
56 out of 65 products, Type NEW tends to have a shorter survival time (denote
it by “NEW < CONV”); the remaining 9 products show the opposite tendency
(“CONV < NEW”).

To explore a difference between two cases “(a) NEW < CONV” and
“(b) CONV < NEW,” we examined the numbers of developers (=nd) and source
files (=nf) in those projects, and calculated the ratio between them: r = nd/nf .
While the average of r values in case (a) is about 0.079, that in case (b) is 0.246.
That is to say, r in case (b) is about 3 times larger than case (a); furthermore,
the average r of the outliers shown in Fig. 3 is 3.93 which is about 50 times larger
than case (a). Hence, case (b) tends to have more variety in terms of develop-
ers relative to the number of source files to be maintained, and they would be
projects which more new developers can actively contribute to. We would like
to do a further analysis from such a viewpoint as our future work.

Now, we have to notice that we have checked bug “fixing” events but not
bug (fault) “inducing” ones. In other words, even if a bug fix occurred after
a new developer’s commit, it is not always true that the corresponding fault
was induced by the new developer. We need to perform a further analysis of
fault-inducing commits in the future for an enhanced discussion.

3.5 Threats to Validity

We collected only Java and C++ data from only Git repositories. Since our
analysis method is applicable to any other programming languages and version
control systems (VCSs) without any change, the limitations of language and
VCS are not serious threats to validity. Nonetheless, there is a risk of getting
different results in OSS projects other than the ones we examined. To mitigate
such a threat, we collected empirical data from a set of many popular projects.

While we focused on whether a source file modification was made by a new
developer or not, we did not examine his/her experience of maintaining other
source files and expertise. Since our findings in this paper are derived from a lot
of samples, impacts of individuals on our results might not be serious threats. A
further analysis on individuals is our important future work.

We decided whether a commit is a bug fix or not, by using a keyword match-
ing method [13], and it is a popular way of detecting bug-fix commits in the
mining software repository community. However, our analysis was based on the
assumption that all commit messages provided proper information in regard to
their code changes. The assumption can be a threat to validity. For example,
some bug-fix commits might be missed in our dataset because some developers
might not appropriately describe their commit messages even if they performed
bug fixes. The development of a more accurate detection method is one of our
future challenges.

A Survival Analysis of Source Files Modified by New Developers 87

4 Conclusion

For a bug fix of a source file in an OSS development, we focused on the developer
who made the last modification of the file before the bug fix—whether the devel-
oper had an experience of modifying the file at the time or not. In accordance
with the above developer type, we categorized source files into the following two
types, NEW and CONV: if a source file’s last modification before its bug fix
(or the end of our observation) was made by a new developer who had never
modified that file, the source file is Type NEW; otherwise, it is Type CONV.
Then, we considered to compare these two types in terms of the time to bug
fix through a survival analysis, and conducted an empirical study with 100 OSS
projects which are available on the GitHub. The empirical results showed that
the expected survival time of Type NEW source files is about 26% shorter than
that of Type CONV ones. That is to say, when a source file is modified by a new
developer who had not been involved in the maintenance of the file, that file is
likely to require a bug fix sooner. In such a case, a more careful review would be
useful to prevent a quality degradation.

On the other hand, if a project has more developers relative to the total
number of source files, the project tends to produce the opposite tendency: Type
NEW has a longer expected survival time. Such a project may be easier for more
new developers to contribute. A further analysis on those points of view is our
future work. Moreover, we plan to take into account the degree of a developer’s
familiarity with a file and to perform a further analysis toward a just-in-time
defect prediction.

Acknowledgment. This work was supported by JSPS KAKENHI #16K00099. The
authors would like to thank the anonymous reviewers for their helpful comments.

References

1. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email
social networks. In: Proceedings of International Workshop Mining Software Repos-
itories, pp. 137–143 (2006)

2. Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open borders?
Immigration in open source projects. In: Proceedings of 4th International Work-
shop Mining Software Repositories (2007)

3. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!:
examining the effects of ownership on software quality. In: Proceedings of 19th
ACM SIGSOFT Symposium and 13th European Conference Foundations of Soft-
ware Engineering, pp. 4–14 (2011)

4. Duck, B.: The 2017 open source 360◦ survey (2017). https://www.blackducksoft
ware.com/about/news-events/releases/open-source-360-organizations-increase-
reliance-open-source

5. Google: Bugspots (2011). https://github.com/igrigorik/bugspots
6. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and

Quality, 3rd edn. McGraw-Hill, New York (2008)

https://www.blackducksoftware.com/about/news-events/releases/open-source-360-organizations-increase-reliance-open-source
https://www.blackducksoftware.com/about/news-events/releases/open-source-360-organizations-increase-reliance-open-source
https://www.blackducksoftware.com/about/news-events/releases/open-source-360-organizations-increase-reliance-open-source
https://github.com/igrigorik/bugspots

88 H. Aman et al.

7. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53(282), 457–481 (1958)

8. Li, Y., Li, D., Huang, F., Lee, S.Y., Ai, J.: An exploratory analysis on software
developers’ bug-introducing tendency over time. In: Proceedings of International
Conference Software Analysis, Testing and Evolution, pp. 12–17 (2016)

9. Peto, R., Peto, J.: Asymptotically efficient rank invariant test procedures. J. Roy.
Stat. Soc. Ser. A (Gen.) 135(2), 185–207 (1972)

10. Posnett, D., D’Souza, R., Devanbu, P., Filkov, V.: Dual ecological measures of focus
in software development. In: Proceedings of International Conference on Software
Engineering, pp. 452–461 (2013)

11. Rahman, F., Posnett, D., Hindle, A., Barr, E., Devanbu, P.: Bugcache for inspec-
tions: hit or miss? In: Proceedings of 19th ACM SIGSOFT Symposium and 13th
European Conference on Foundations of Software Engineering, pp. 322–331 (2011)

12. Rupert, G., Miller, J.: Survival Analysis. John Wiley & Sons, Hoboken, NJ (2011)
13. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes?. In: Pro-

ceedings of International Workshop Mining Software Repositories, pp. 1–5 (2005)
14. Samoladas, I., Angelis, L., Stamelos, I.: Survival analysis on the duration of open

source projects. Inf. Softw. Technol. 52, 902–922 (2010)

Top Management Support for Software
Cost Estimation

A Case Study of the Current Practice and Impacts

Jurka Rahikkala1, Sami Hyrynsalmi2(B), Ville Leppänen1, Tommi Mikkonen3,
and Johannes Holvitie1

1 University of Turku, Turku, Finland
{juperah,ville.leppanen,jjholv}@utu.fi

2 Tampere University of Technology, Tampere, Finland
sami.hyrynsalmi@tut.fi

3 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. Context: Despite decades of research in software cost esti-
mation (SCE), the task remains difficult and software project overruns
are common. Many researchers and practitioners agree that organisa-
tional issues and methodologies are equally important for successful SCE.
Regardless of this recent development, SCE research is revolving heavily
around methodologies. At the same time project management research
has undergone a major shift towards managerial issues, and it found that
top management support can be the most important success factor for
projects.

Goal: This study sheds light on top management’s role in SCE by
identifying real-life practices for top management participation in SCE,
as well as related organisational effects. Also, the impact of top manage-
ment actions on project success is examined.

Method: The study takes a qualitative and explorative case study
based approach. In total, 18 semi-structured interviews facilitated exam-
ination of three projects in three organisations.

Results: The results show that top management takes no, or very lit-
tle, direct actions to participate in SCE. However, projects can conclude
successfully regardless of the low extent of participation.

Conclusions: Top management actions may also induce bias in esti-
mation, influencing project success negatively. This implies that senior
managers must recognise the importance of seeking realism and avoid
influencing the estimation.

Keywords: Senior management · Software cost estimation · Project
management

1 Introduction

The global software spending is growing rapidly [12]. Especially R&D spend-
ing on software has increased by 65% between 2010 and 2015 [43], driven by
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 89–107, 2017.
https://doi.org/10.1007/978-3-319-69926-4_8

90 J. Rahikkala et al.

innovations depending more and more on electronics and software [13]. While
software has become increasingly important for companies, estimating the cost
of software is difficult. The annual losses from software projects are measured in
billions of euros [11,36], and software project overruns are common [9,14,16].

Software cost estimation (SCE) and project management (PM) are both
inseparable parts of a software project, and project management should always
consider estimation [17]. Therefore the reasons for overruns may also reside in
SCE, PM, or other project areas [6,24,35,38]. Considering the gravity of the
problem and the known positive effect of using methodologies on project suc-
cess [52], both SCE and PM professionals have developed a plethora of method-
ologies to aid in guiding the project to a planned conclusion. In the area of
SCE, hundreds of estimation methodologies have been developed [22,34], some of
which have been proven to produce accurate results, when used properly [40,42].
Yet, overruns are common [9,14,16].

Recent studies show that there are severe deficiencies in applying SCE
methodologies in organisations [3,20,30,33,45], although the problems have been
known for decades [15,27]. The situation is significantly better in the area of PM,
where 95% of the projects report using PM methodologies [50]. This difference
in the extent of use of methodologies is surprising, because SCE research is
methodology heavy, having 84% of the studies focusing on methodologies [22].
At the same time PM research has undergone a major shift towards topics like
management and business, having only 16% of the recent articles focusing on
methodologies [25]. Especially Top Management Support (TMS) has been an
important topic for PM research, and it has been found to be even the most
important success factor for projects [50]. The body of knowledge regarding top
management support in PM is extensive, and contains clear advice for top man-
agement for how to support projects, including refreshing project procedures and
appropriate project management assignment [53].

Considering the previous, the estimation related problems are not connected
only to methodologies, but also to how these methodologies are applied in
organisations. Although SCE research is still mainly focusing on methodolo-
gies, recently topics like estimation bias [18–20], organisational inhibitors and
distortions [30,33], and top management participation [45], have become focus
of the research. This paper continues on this highly relevant path of examining
other than technical factors in SCE.

The research objective of this paper is to address the role of top management
in SCE, and to answer the following unanswered questions:

RQ1 What are the real life top management support practices for SCE and
how do they appear in an organisation?
RQ2 How much effort top management invests in participating in SCE?
RQ3 Which persons or items are affected by top management actions?
RQ4 What is the impact of TMS for SCE on project success?

In the scope of our study, when a reference to top management is made,
we refer to the highest up manager, who is aware of the estimate on the basis

Top Management Support for Software Cost Estimation 91

on their responsibilities related to the studied projects. This paper provides in-
depth findings from three projects in three case companies. Based on the study
of 18 interviews1, the paper contributes to the scientific literature by reporting
on the current practice of top management participation in software cost esti-
mation, and the effects of this participation in organisations. Additionally, the
impact of top management participation in SCE on project success is addressed.
Understanding the role of top management in SCE may better justify project
managers, other software professionals and researchers to pay more attention to
top management’s role in software cost estimation.

The remainder of the study is structured as follows. Section 2 presents the
background and related work of software cost estimation and top management
support for project management. Section 3 describes the case study subject and
research design. It is followed by the presentation of findings in Sect. 4. Section 5
discusses the results and Sect. 6 concludes the study.

2 Background

The purpose of software cost estimation, or effort estimation, is to provide the
management and project leadership a clear enough view of the project to make
good decisions about how to control the project to hit its targets [34]. SCE
has already been studied for over half of a century, c.f. [37], and hundreds of
different estimation methods have been developed [5,22]. Still, despite of the
long and extensive work on the area of SCE, many software projects fail to meet
estimates.

Software cost estimation research has heavily focused on estimation method-
ologies; leaving organisational issues with relatively little attention. According
to Jørgensen’s and Shepperd’s [22] systematic literature review, organisational
issues have been discussed only in 16% of the reviewed articles (Table 1). Further-
more, the interest towards organisational issues is decreasing. The recent study
of SCE research trends shows also that the research focus has remained consis-
tently on estimation methodologies and techniques between 1996 and 2016 [48].

The previous may be problematic, because the SCE challenge seems to
reside elsewhere than in estimation methodologies. Researchers and practition-
ers largely agree on this point [22,27,30,34], getting support from recent stud-
ies [30,44,45]. Also, major industrial software development frameworks, such as
CMMI [1], ITIL v3 [2] and PRINCE22, continue along the same lines, emphasis-
ing the importance of estimation, without giving specific advice, which estima-
tion techniques to use. Thus, while the estimation problems seem to reside on the
application of the methodologies in an organisation, the research is still focusing
on the methodologies themselves, leaving a gap between the actual problem and
the means to fix it.

1 Due to the non-disclosure agreements, the raw data cannot be disclosed.
2 https://www.axelos.com/qualifications/prince2-qualifications.

https://www.axelos.com/qualifications/prince2-qualifications

92 J. Rahikkala et al.

Much of the work performed in organisations is organised as projects which
is understandable because the results of projects are critical for organisa-
tions [7,49]. Considering the importance of PM, also PM has been intensively
studied for over decades which has resulted into an extensive body of knowledge.
However, whereas the SCE research is still focusing on methodologies as its pri-
mary line of research, the PM research has undergone a significant shift from
methodologies towards other topics, such as leadership and business. According
to Kolltveit et al. [25] (Table 2), PM research related to Task and Transaction
perspectives, representing technical methodologies, has decreased from 68% to
18% over the time, measured in the number of published articles. This shift of
focus seems natural, since organisational issues are reported to be even more
important factors in project success than technical ones [10,29,52]. Also, top
management’s interest in PM is increasing along with the number of PM related
articles published in top management and business journals [26].

Table 1. Distribution of published SCE articles among research topics [22].

Perspective -1989 1990–1999 2000–2004 Total

Estimation method 73 % 59 % 58 % 61 %

Size measures 12 % 24 % 16 % 20 %

Organisational issues 22 % 15 % 14 % 16 %

Uncertainty assessment 5 % 6 % 13 % 8 %

Calibration of models 7 % 8 % 4 % 7 %

Production function 20 % 4 % 3 % 6 %

Measures of estimation performance 5 % 5 % 6 % 5 %

Data set properties 0 % 1 % 2 % 1 %

Other 0 % 2 % 1 % 1 %

Regardless of the methodology heavy mainstream of the SCE research, some
of the recent research has also been attending to non-technical problems, such as
human bias, organisational inhibitors and distortions, as well as top management
participation. Jørgensen et al. have conducted a broad and widely cited work
on human bias, originating from different sources. Their studies have covered
e.g. the impact of the first impression [19], customer expectations [23], irrelevant
or misleading information [18], and wording [21] on the estimate. Magazinius
et al. have published their results regarding intentional distortions [30–32] and
organisation inhibitors [33] in SCE. Additionally, among the studies of organisa-
tional factors, Rahikkala et al. [44,45] have studies top management participa-
tion in SCE, and Ahonen et al. [3] have found problems in the reporting effort
in projects.

To summarise, although both SCE and PM are inseparable parts of a soft-
ware project [17], only PM research takes a holistic view, and examines the
organisational context of the respective area to any great extent. SCE continues

Top Management Support for Software Cost Estimation 93

Table 2. The distribution of published PM articles among different perspectives [25].

Perspective 1983–1987 1988–1992 1993–1997 1998–2002 2003–2004 Total

Task 49% 34% 32% 23% 12% 29%

Leadership 8% 16% 25% 28% 33% 23%

System 23% 25% 18% 19% 15% 20%

Stakeholder 1% 3% 1% 5% 6% 3%

Transaction 19% 9% 6% 10% 6% 10%

Business 0% 13% 17% 15% 29% 15%

to focus on methodological problems. This is a noteworthy observation, because
the problems for software project overruns reside both in SCE and PM [6,35,38].
Understanding the organisational context of SCE may better help to overcome
many organisational problems related to SCE, and to eliminate related sources
of estimation error. This paper continues examining the organisational context
of SCE, and addresses specifically the top management’s role, which has been
found to be of critical importance in PM.

3 Research Process

3.1 Research Approach

The study is based on three anonymous case companies and projects. For each
company, we interviewed stakeholders involved in the projects (Table 3) and
analysed 18 documents related to the project, including project plans, design
documents, and minutes of meetings.

This study is based on a qualitative research approach [8]. We use a case study
research strategy and interviews as the main tools of inquiry. The qualitative
research approach was selected to allow us to get an in-depth understanding
about the phenomenon under the study lens. The case study research strategy
was used as the researchers have no control over the study subject [51]. As
Patton [39] states, case studies are well capable of shedding light on phenomena
occurring in the context of real-life. This study is of exploratory type, finding
out what is happening, seeking new ideas, and generating hypotheses and ideas
for new research [46]. The research uses a multiple case study design following
a replication logic [51]. The unit of analysis is a single software cost estimate.
The study is focused on the experiences gained during the preparation of the
cost estimate. The conceptual framework of the study assisting in answering the
research questions is presented in Fig. 1. Additionally, we have employed the list
of 16 top management support practices suggested by Rahikkala et al. [45] for
studying top management participation practices.

An interview protocol consisting of questions related to top management
participation in SCE was created, following the guidelines by Runeson and
Höst [47]. The one hour interviews were conducted as semi-structured [46] by

94 J. Rahikkala et al.

Table 3. Interviewees of the research.

Small Global Large Multinational Tech Giant

Product Owner (KI) Project Manager (KI) Program Manager (KI)

Senior Business
Manager

Business Manager Line Manager

Testing Manager Senior Manager

Senior Technology
Manager

Requirements Engineer Requirements Engineer

Project Manager Software Developer Head of Product
Management

Head of Programs
KI = Key informant for the study, interviewed twice

two researchers, and the discussion was recorded. The recordings were tran-
scripted and sent to the interviewees for review. All case subjects participated
in the study voluntarily and anonymously, and the collected data was treated as
confidential.

For the analysis of data, we used nVivo 10. All transcripted interviews, notes
done during the interviews, in addition to the auxiliary materials, were imported
into the software. The analysis was conducted in a series of steps [46]. First the
texts were coded by the researchers, whereafter iteration followed, until conclu-
sions were reached.

Fig. 1. The conceptual model of this research.

Top Management Support for Software Cost Estimation 95

3.2 Case Companies and Projects

‘Small Global ’ is a software producing firm of about 100 persons. The company’s
line of business consists of selling consultancy and support services in addition
to software products to businesses. The company is global; it has customers and
offices in several countries. The selected project, referred to as Developer Tool
(DT), was about producing a visual design tool for developing applications.
The end-result is a commercial product. The project followed a waterfall-style
software engineering method, but the actual development work was divided into
sprints. The estimation was done by using work breakdown structure (WBS)
and expert estimation.

The DT project started with a prototype where technical challenges were
studied. After the prototype project, a project aiming at the release of version 1.0
was planned. The product owner crafted a design document for the product, and
based on that document, the project manager created a project plan with time
and effort estimates. Initially, the project was estimated to take three months
with a team of four people. The project completed nine months after the deadline
with a team of approximately six persons.

‘Large Multinational ’ produces software and consultancy for a wide area of
business sectors. The company has tens of thousands of employees around the
world. The selected project, referred to as Operational Control System (OCS), is
a business intelligence reporting system for following certain control activities.
The software was ordered by a long-term customer of the company.

Also this project followed a waterfall-like software development process. The
estimation was done by the developers using expert estimation, whereafter the
values were filled into a structured sheet. The project manager prepared the
final estimates based on the results from expert estimation. The OCS project
was planned according to certain preconditions: the customer had a fixed budget
and schedule for development. The project lasted 10 months, and the size of the
project was approximately 30 man-months. The project concluded successfully
on time and budget.

‘Tech Giant ’ is selling products with software to global business-to-business
markets. The company has tens of thousands of employees around the world.
We studied the Network Management Product (NSP) project of Tech Giant.
The project produced a new release of a tool for managing the network. The
project produced a new release of the system. The NSP has been in use for
several years.

The project was part of a continuous development cycle involving just under
100 people. A new release of the system is developed every three months. The
development methodology it used was based on Scrum with two week sprints.
The development teams were distributed over several locations. The cost esti-
mation was conducted in two phases: firstly, rough planning for the whole three
month release in the product management function. Secondly, the backlog items
were estimated in the scrum teams, the main responsible being the program
manager. The backlog items were estimated using expert estimation. The project

96 J. Rahikkala et al.

concluded successfully and delivered over 85% of the planned scope, which is the
goal for all releases.

4 Findings and Results

This section presents the findings identified during the analysis of the data
as described in the research methodology section. The findings are grouped
into the following five categories according to the conceptual framework (c.f.
Fig. 1): (1) Project boundaries, (2) Participation practices, (3) Participation
effort, (4) Practical impacts, and (5) Impact on project success. The Project
boundaries were separated clearly from the participation practices because, from
this study’s point of view, they are related to creating prerequisites for the esti-
mation and the project rather than directly to the estimation itself.

4.1 Project Boundaries: Scope, Cost and Schedule

Software cost estimation is fundamentally about estimating the size of the soft-
ware for a given scope. The size is then converted into a schedule and budget,
based on different factors, like the composition of the development team. How-
ever, there are usually boundaries for an acceptable scope, cost or schedule,
originating from the business environment. Based on these boundaries, the deci-
sion makers, project management and estimators try to find an optimal balance
between the previously mentioned three dimensions. This section summarises
boundaries for the studied projects and estimation.

At Tech Giant, who operates in a three month release cycle, the schedule
was fixed. Also the cost (resources) was fixed to a great extent, although there
were some additional resources available for situations, where overruns seemed
probable. Large Multinational reported that their customer also operated under
a predefined system update cycle and budget framework, also fixing the schedule
and cost. At Small Global, the Senior Business Manager and other team members
reported that the schedule was fixed. The Senior Business Manager also reported
that the planned scope was a minimum viable and nothing could not have been
dropped out, making also the scope of the project fixed. Thus, for Tech Giant
and Large Multinational, the only variable element was the scope, and for Small
Global the resources. Additionally, the senior managers monitored the progress
of the projects against the estimate regularly, and made adjusting decisions based
on the situation, where deemed necessary.

4.2 Participation Practices

First of all, top management did not exercise seven of the sixteen studied sup-
port practices at all, as shown in Table 4. Practices 1–16 are adapted from [45].
Additionally, the presence of three practices, ‘TM ensures the involvement of the
project manager during the estimation stage’, ‘TM ensures ongoing estimation

Top Management Support for Software Cost Estimation 97

Table 4. Exercised top management support practices.

Practice Tech
Giant

Large
Multinational

Small
Global

1. TM ensures existence of estimation
procedures

2. TM ensures that the estimator has
adequate skills

3. TM ensures improving estimation
procedures

4. TM ensures the involvement of the
project manager during the estimation
stage

+++ +++ +++

5. TM ensures good communication
between the estimator and the
organisation

6. TM ensures that there are criteria for
evaluating the meaningfulness of the
estimate

7. TM ensures ongoing estimation skills
training programmes

+ +

8. TM requires re-estimating during the
project to get more accurate estimates

9. TM ensures that the estimate relies on
documented facts rather than guessing
and intuition

10. The IT executive studies and approves
the estimate

11 TM recognizes that estimates are critical
to this organization’s success

+++ +++ ++

12. TM is knowledgeable of estimation
procedures

+++

13. TM understands the consequences of an
erroneous estimate to the project success

+++ +++ +/-

14. TM can distinguish between estimates,
targets and commitments

+++ +++ −

15. TM recognizes that the estimates are
inaccurate in the beginning of the project

N/A + +

16 TM takes the output of an estimate as
given without debate

+++ +++ +++

17. NEW: TM studies and approves the
estimate

+++ +++ +++

18 NEW: TM ensures adequate resources
for estimation

+++ +++ +++

(+) signs and (−) signs indicate evidence of assumed positive and negative presence,
respectively. N/A signs for not available.

98 J. Rahikkala et al.

skills training programmes’ and ‘TM recognizes that the estimates are inaccu-
rate in the beginning of the project’, was indirect, meaning that the presence of
the practices could not be tracked back to any specific TM actions related to the
studied projects. ‘TM recognizes that the estimates are inaccurate in the begin-
ning of the project’ was not relevant for Tech Giant, as they are in a continuous
three month release cycle, and the delivered scope must be constantly at least
85% of the planned scope. Large Multinational and Small Global had improved
the accuracy with a specification phase, but this was a standard practice in both
companies, like the involvement of the project manager during the estimation
phase was for all three companies. Large Multinational and Tech Giant had
arranged training for SCE earlier, but there were no ongoing training programs
during the studied projects.

In all projects the senior managers reported that they had studied and
approved the estimates. At Small Global, the Senior Business Manager studied
the estimate in detail, as part of the project plan, while at Large Multinational
and Tech Giant, the senior managers studied the estimates only on a summary
level. Certain items in the estimates were also challenged by the senior managers
in the OCS and NSP projects, which resulted in better estimates for the items
in question. Considering the list of predefined 16 practices at hand, studying the
estimates is close to ‘TM ensures that the estimate relies on documented facts
rather than guessing and intuition’ and ‘IT executive studies and approves the
estimate’. However, as studying and approving the estimates does not fit pre-
cisely under either of the previous, we decided to report it as a new TM support
practice for SCE, ‘TM studies and approves the estimate’. ‘TM is knowledgeable
of estimation procedures’ was present in the OCS project, where the Business
Manager reported having been well aware of the estimation practices. This was,
according to the Business Manager, coincidental rather than a result of planned
actions. The presence of the four remaining support practices was strong in all
case projects. The interviewees reported that the management considered the
estimates having a high importance. However, none of the interviewees spec-
ified concrete examples of how the importance was demonstrated during the
case projects, which means that the importance has most likely been established
before these particular projects. At Large Multinational, the estimate was used
for preparing an offer for a customer, who made the order decision based on it.
At Tech Giant, a business plan, product roadmap and customer commitments
were made based on the estimates. At Small Global, a GO/NOGO decision of the
project was made based on the estimate. However, the Senior Business Manager
at Small Global reported that the decision of making the product was practi-
cally made, and the estimate was used for reassuring that the scope was small
or minimum viable, and that the delivery was possible in the targeted schedule.
Thus, the estimate was connected to significant financial interests at Tech Giant
and Large Multinational, and for making important planning decisions at Small
Global.

When asked, all interviewees reported that realism and accuracy were always
sought during the estimation. Furthermore, each interviewee also concluded that

Top Management Support for Software Cost Estimation 99

there was no push from the management to make the estimates smaller, and the
management did not try to negotiate the estimate smaller. The Line Manager
from Tech Giant says that estimates are accepted as facts, and the scope is
reduced, if necessary. The Business Manager from Large Multinational says that
the price can be negotiated with the customer, but not the estimate itself. How-
ever, although all interviewees at Small Global report that there was no push
from the management, they also say that there was still a pressure to make the
estimate smaller, conveyed by the Senior Business Manager in form of a strict
deadline. The Project Manager, who was responsible for making the estimate,
says that he experienced a high pressure and started to doubt his own estimates
and eventually made them smaller.

As described earlier in this section, all of the projects had clear targets, or
business goals, consisting of the scope, budget, and schedule. In the OCS and
NSP projects the estimates were also accepted as facts which steered the plan-
ning. However, in the DT project, the Project Manager described that he made
the estimate smaller because of the perceived pressure. The Senior Business Man-
ager also told that the purpose of the estimate was to verify that the fixed scope
was possible to be delivered within the target schedule, with higher resources, if
necessary. The decision of executing the project was practically done. The pre-
vious signals that, in addition to creating estimates, the management seem to
have expected the estimation to result into a plan, how to hit the targets, even
though this seems not to have been consciously understood and intended.

In the NSP project, there was a continuous commitment to deliver at least
85% of the target scope, and at Large Multinational the normal practice was to
use the estimate also as a commitment. At Small Global, the Project Manager
says having been committed to the estimate in the beginning, but during the re-
estimations in the later phases of the project he describes as having been afraid of
giving estimates, because the estimates were taken literally by the management.
Thus, estimates seem to have been implicitly taken as commitments by the
management, although there was no explicit agreement on this.

In addition to the findings related to the 17 support practices reviewed earlier,
resource provisioning for SCE emerged from the discussions. According to the
interviewees’ subjective perception, all projects had enough time and resources
for preparing the estimates. At Small Global and Large Multinational, there
was a separate specification phase prior to the actual implementation phase.
The requirements engineer at Tech Giant reports that pre-studies are conducted,
when necessary, to gain adequate understanding of the features. However, also
this support practice was indirect of nature, and could not be attributed to any
top management actions specific for the studied projects.

4.3 Participation Effort

According to the evidence discovered during the interviews and review of the
documents, top management’s effort for participating in SCE was low in all
case projects. In terms of time and effort, the most significant contribution was

100 J. Rahikkala et al.

the follow-up of the progress against the estimate. This, however, is primar-
ily connected to project management, and not to SCE. Additionally, the senior
managers studied the estimate in all projects. However, as an investment of
time and effort, this was relatively small. The effort related to all other partic-
ipation practices could not be attributed to the studied project in particular.
The practices had emerged in a longer period of time and become established
routines, which do not need attention for each new project. The interviewees in
all projects also confirmed that the top management did not participate directly
in the estimation.

4.4 Affected Items

As concluded earlier, top management sets boundaries for the project and esti-
mation in form of budget, schedule and scope. This, however, is not influencing
the estimation itself. Furthermore, the indirect support practices ‘TM ensures the
involvement of the project manager during the estimation stage’, ‘TM recognizes
that the estimates are inaccurate in the beginning of the project’, ‘TM ensures
ongoing estimation skills training programmes’, ‘TM ensures adequate resources
for estimation’ and ‘TM is knowledgeable of estimation procedures’ did not have
any direct effects on estimation, which could have been attributed to the studied
projects.

The awareness related practices, ‘TM recognizes that estimates are critical to
this organization’s success’, ‘TM understands the consequences of an erroneous
estimate to the project success’, ‘TM can distinguish between estimates, targets
and commitments’ and ‘TM takes the output of an estimate as given without
debate’ did not have any tangible effects either in their positive occurrences.
However, in the DT project the Project Manager reported that he had made
the estimates smaller, because of the awareness of the target schedule. Further-
more, he reported that his willingness to give re-estimates during the project
had decreased and he had started to give upper bound estimates, because the
estimates were taken literally and interpreted as commitments. So, the aware-
ness related support practices seem to have tangible effects on people or SCE
related artefacts only, when the effects are harmful.

‘TM studies and approves the estimate‘ was the only support practice that
had direct positive impacts on estimation as a result of top management actions.
After studying the estimates, managers challenged some parts of the estimate in
the OCS and NSP projects. This lead to re-estimation, and improved the effort
estimates for those particular functionalities.

4.5 Impact on Project Success

Cost estimation is an inseparable part of any software project [41], thus the
cause of an overrun may reside in SCE, PM or other areas [6,35,38]. Not even
the best project management can control a project if it has to meet unrealistic
goals, while chaotic project control will usually overshoot set limits, making cost
estimation meaningless. In this study our aim was to find evidence from the

Top Management Support for Software Cost Estimation 101

real-life experiences of how management’s actions impact SCE, which further
influences project success. Of the studied projects, two, OCS and NSP, delivered
on time, scope and budget, and one project, DT, suffered from significant cost
and schedule overruns.

In the two successful projects, top management’s participation in SCE has
been minimal, and we found very little evidence of their actions’ impact on per-
sons or artefacts during the estimation. On the other hand, top management
seemed to have understood well that a realistic and unbiased estimate is critical
for the success of a project and organisation. We found plenty of evidence of
this understanding in both projects, although this understanding did not mani-
fest into any concrete actions. For example, the software developer in the OCS
project told that top management did not try to negotiate the estimate in any
direction, customer agreements and offers are depending on the estimates. The
requirements engineer in the NSP project said that top management was seeking
realistic estimates—nobody wants to betray themselves, and everybody under-
stands that without realistic estimates things will fail.

Top management’s efforts for participating in SCE were equally low in the
studied runaway project. But where the senior managers refrained themselves
from any interference in SCE in the two successful projects, top management
seemed to have influenced the estimation results by emphasising the importance
of the targeted release date, and that the scope was small or minimum viable.
The project manager reported having made the estimates smaller under this
pressure. Additionally, implicitly interpreting estimates as commitments influ-
enced the project manager’s willingness to give estimates, and he reported hav-
ing given upper bound estimates after noticing this. Although the reasons for
the experienced project overruns may have been many, one of the reasons seem
to have been top management induced pressure to make the estimate conform
to the target delivery date. The Senior Business Manager of Small Global also
attributes the overrun both to SCE and project execution.

5 Discussion

5.1 Implications for Practice

Our study clearly shows that a project can conclude successfully with no, or with
very little, direct top management participation in software cost estimation. On
the other hand, this study presents evidence that top management’s incautious
interference may lead to undesired outcomes, and influence the project success
negatively. The most important distinctive factor between a positive and nega-
tive top management participation seems to be to not create bias. Not creating
bias manifests through understanding the negative impact of poor estimates on
project and organisation success, and therefore avoiding influencing the estima-
tion to any direction.

Previous studies have found plenty of evidence about the negative effects
emerging from influencing estimation. Magazinovic and Pernst̊al [33] have found

102 J. Rahikkala et al.

that management goals affect the results of estimation. Furthermore, Magazinius
et al. [30] found that personal agenda, management pressure and attempt to
avoid re-estimation may affect an estimate. The previous studies also show that
cognitive bias may affect estimators: e.g. high or low expectations influence even
experienced estimators [4], first impression may dictate a significant part of
the estimation result [19], and even the wording may have a significant impact
on the estimate [21]. The estimators may not even notice the influence of the
expectations, or consider it to be very low [23]. The findings from the studied
runaway project show, in accordance with the above mentioned studies, that
it is indeed easy for top management to influence the estimation and project
success in a negative way. Thus, in the light of our findings and previous studies,
it seems advisable for top management to stay outside of estimation to minimise
any biasing effect they may induce.

The most tangible top management participation practice in SCE was ‘TM
studies and approves the estimate’. Although the general recommendation seems
to be staying outside of the estimation, we cannot reject the potential importance
of this support practice. Studying the estimate may be a necessary action to
ensure that the estimate is prepared professionally and with due care. Some other
studies support the potential importance of studying the estimate: e.g. Rahikkala
et al. [45] report that the extent of use for ‘Top management ensures that the
estimate relies on documented facts rather than guessing and intuition’ correlates
positively with project success, and Lederer and Prasad [28] recommend that
computing management should study and approve the estimate.

The remaining three top management support practices that were present
during the estimation, ‘TM ensures the involvement of the project manager
during the estimation stage’, ‘Top management ensures adequate resources for
estimation’ and ‘Top management ensures ongoing estimation skills training pro-
grammes’, are indirect of nature, and were not directly related to any of the
studied projects. Additionally, none of these practices could be tracked back to
any specific top management actions, implying that these practices were among
the presumably many results of top management actions to create an overall
framework for software development. Thus, because of the lack of direct top
management participation, these practices cannot be considered as top manage-
ment support practices for SCE, and do not seem to justify for top management’s
attention during SCE.

Finally, this study shows that top management invests very little time in
SCE. In light of the previous findings this was expected, and even recommended,
because the successful conclusion of a project did not need significant partici-
pation from top management. As is natural considering the low extent of top
management participation, the footprint of their actions is also low. The results
of top management actions tend to have a negative impact on project success,
which was the case in the studied runaway project. The only exception for this
was studying the estimate, which triggered re-estimation of certain items in the
two successful projects, resulting in more accurate estimates.

Top Management Support for Software Cost Estimation 103

5.2 Implications for Theory

The current SCE literature sparsely contains studies addressing management
aspects of software cost estimation [22], and, to our best knowledge, this is
among the first studies to report on experiences related to top management par-
ticipation practices in SCE. This paper contributes to the body of knowledge by
showing that no, or very little, direct actions are required from senior manage-
ment for a successful project delivery. On the contrary, the results indicate that
top management must understand SCE’s delicate nature prone to bias, and stay
outside of the estimation to avoid any negative effects they may induce. This
study also shows, from the perspective of top management that many known
negative effects from biasing the estimation can also be caused by firms’ top
management.

Furthermore, our results show that the time top management invests in SCE
is low, as well as the footprint that their actions leave on SCE related artefacts
and actors. Considering the previous, the responsibility of improving SCE seems
to move back towards project management and technical experts. However, as
the literature has shown, methodologies are not a silver bullet, and a holistic
view considering techniques, people and procedures is needed for producing more
useful estimates.

5.3 Validity, Limitations and Further Research

The qualitative case study methodology involves the researchers themselves as
the instrument of the research, which poses a risk that the results are biased by
the researchers’ subjective opinions. As countermeasures to the validity threats,
we have employed six strategies outlined by Robson [46]: prolonged involvement,
triangulation, peer debriefing, member checking, negative case analysis and audit
trail. Additionally, we have tried to maximise the richness of the data set by
selecting different case companies and projects, improving the transferability of
the results. However, as this study is explorative of nature and has not been
widely examined prior to this study, generalisation of the results must be done
with caution.

Overall, this study provides evidence that top management participation in
SCE is low and that their participation is not needed for successful estimation.
Although we believe that the results of this study can be transferred to similar
settings, the situation can still vary from context to context. For example, we
may have overlooked the role of some company properties, like size or matu-
rity. Therefore, further studies in different project and company contexts are
needed to see if the same phenomena are repeated, or new phenomena discov-
ered. Quantitative studies would also provide certainty in how commonly the
reported phenomena are repeated in organisations. The importance of top man-
agement studying and approving the estimate was also left unanswered in this
study.

104 J. Rahikkala et al.

6 Conclusions

This study examined top management support for SCE by using a case study
approach and interviewing 15 experts involved in three software projects in
three organisations. Top management support practices for SCE were studied by
employing a list of 16 predefined practices. The results show that 8 from the 16
studied practices were not present in any of the projects, and that ‘Top manage-
ment studies and approves the estimate’ was the only tangible practice present
(RQ1). This study also found evidence that the time and effort top manage-
ment invested in SCE was low (RQ2), and the items or persons affected by their
actions were only a few (RQ3). However, the results show further that some of
the top management actions induced undesired bias on estimation, and affected
project success negatively (RQ4).

The main implications from the results for managers, software experts,
project managers and academia are the following:

1. No, or very little, direct top management participation in software cost esti-
mation is required for the successful conclusion of a project.

2. ‘Top management studies and approves the estimate’ was the only concrete
top management participation practice.

3. Top management actions may induce undesired bias on estimation, and affect
project success negatively.

4. Senior managers must recognize the importance of seeking realism in estima-
tion, and avoid inducing accidental bias in cost estimation.

Finally, the aforementioned also serve as a good starting point for further
research.

Acknowledgment. The authors gratefully acknowledge Tekes – the Finnish Funding
Agency for Innovation, DIMECC Oy and Need for Speed research program for their
support.

References

1. CMMI for development, V1.3. Technical report CMU/SEI-2010-TR-0336, Carnegie
Mellon (2010)

2. Adams, S.: ITIL V3 Foundation Handbook, vol. 1. The Stationery Office, Norwich
(2009)

3. Ahonen, J.J., Savolainen, P., Merikoski, H., Nevalainen, J.: Reported project man-
agement effort, project size, and contract type. J. Syst. Softw. 109, 205–213 (2015)

4. Aranda, J., Easterbrook, S.: Anchoring and adjustment in software estimation. In:
Proceedings of the 10th European Software Engineering Conference, pp. 346–355.
ACM (2005)

5. Briand, L.C., Wieczorek, I.: Resource Estimation in Software Engineering. Ency-
clopedia of Software Engineering. Wiley, New York (2002)

6. Cerpa, N., Verner, J.M.: Why did your project fail? Commun. ACM 52(12), 130–
134 (2009)

Top Management Support for Software Cost Estimation 105

7. Cleland, D.I.: The strategic context of projects. In: Project portfolio management
- selecting and prioritizing projects for competitive advantage. CBP, PA, USA
(1999)

8. Creswell, J.W.: Research Design: Qualitative and Quantitative and Mixed Methods
Approaches. SAGE Publications Inc., Thousand Oaks (2003)

9. Dwivedi, Y.K., Wastell, D., Laumer, S., Henriksen, H.Z., Myers, M.D., Bunker, D.,
Elbanna, A., Ravishankar, M., Srivastava, S.C.: Research on information systems
failures and successes: status update and future directions. Inf. Syst. Front. 17(1),
143–157 (2015)

10. Fortune, J., White, D.: Framing of project critical success factors by a systems
model. Int. J. Proj. Manag. 24(1), 53–65 (2006)

11. Galorath, D.: Software project failure costs billions. In: Better Esti-
mation & Planning Can Help (2012). http://www.galorath.com/wp/
software-project-failure-costs-billions-betterestimationplanning-can-help.php

12. Gartner, I.: Gartner says global it spending to reach $3.5 trillion in 2017 (2016).
http://www.gartner.com/newsroom/id/3482917

13. Grimm, K.: Software technology in an automotive company: major challenges.
In: Proceedings of the 25th international conference on Software Engineering, pp.
498–503. IEEE (2003)

14. Halkjelsvik, T., Jørgensen, M.: From origami to software development: a review of
studies on judgment-based predictions of performance time. Psychol. Bull. 138(2),
238 (2012)

15. Hihn, J., Habib-agahi, H.: Cost estimation of software intensive projects: a survey of
current practices. In: Proceedings of the 13th ICSE, pp. 276–287. IEEE Computer
(1991)

16. Hughes, D.L., Dwivedi, Y.K., Simintiras, A.C., Rana, N.P.: Success and Failure
of IS/IT Projects: A State of the Art Analysis and Future Directions. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-23000-9

17. PMI: a guide to the project management body of knowledge. PMBOK R© Guide
Series, Project Management Institute (2013)

18. Jørgensen, M., Grimstad, S.: The impact of irrelevant and misleading information
on software development effort estimates: a randomized controlled field experiment.
IEEE Trans. Softw. Eng. 37(5), 695–707 (2011)

19. Jørgensen, M., Løhre, E.: First impressions in software development effort estima-
tion: easy to create and difficult to neutralize. In: Proceedings of EASE 2012, pp.
216–222 (2012)

20. Jørgensen, M.: Communication of software cost estimates. In: Proceedings of EASE
2014, pp. 28:1–25:5. ACM (2014)

21. Jørgensen, M., Grimstad, S.: Avoiding irrelevant and misleading information when
estimating development effort. IEEE Softw. 25(3), 78–83 (2008)

22. Jørgensen, M., Shepperd, M.: A systematic review of software development cost
estimation studies. IEEE Trans. Softw. Eng. 33(1), 33–53 (2007)

23. Jørgensen, M., Sjøberg, D.I.: The impact of customer expectation on software
development effort estimates. Int. J. Proj. Manag. 22(4), 317–325 (2004)

24. Keil, M., Rai, A., Mann, J.E.C., Zhang, G.P.: Why software projects escalate: the
importance of project management constructs. IEEE Trans. Eng. Manag. 50(3),
251–261 (2003)

25. Kolltveit, B.J., Karlsen, J.T., Grønhaug, K.: Perspectives on project management.
Int. J. Proj. Manag. 25(1), 3–9 (2007)

26. Kwak, Y., Anbari, F.: Analyzing project management research: perspectives from
top management journals. Int. J. Proj. Manag. 27(5), 435–446 (2009)

http://www.galorath.com/wp/software-project-failure-costs-billions-betterestimationplanning-can-help.php
http://www.galorath.com/wp/software-project-failure-costs-billions-betterestimationplanning-can-help.php
http://www.gartner.com/newsroom/id/3482917
http://dx.doi.org/10.1007/978-3-319-23000-9

106 J. Rahikkala et al.

27. Lederer, A.L., Prasad, J.: Causes of inaccurate software development cost esti-
mates. J. Syst. Softw. 31(2), 125–134 (1995)

28. Lederer, A.L., Prasad, J.: Software management and cost estimating error. J. Syst.
Softw. 50(1), 33–42 (2000)

29. Luna-Reyes, L., Zhang, J., Gil-Garćia, J., Cresswell, A.: Software developments
development as emergent socio-technical change: a practice approach. Eur. J.
Softw. Dev. 14(1), 93–105 (2005)

30. Magazinius, A., Börjesson, S., Feldt, R.: Investigating intentional distortions in
software cost estimation – an exploratory study. J. Syst. Softw. 85(8), 1770–1781
(2012)

31. Magazinius, A., Feldt, R.: Exploring the human and organizational aspects of soft-
ware cost estimation. In: Proceedings of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 92–95. ACM (2010)

32. Magazinius, A., Feldt, R.: Confirming distortional behaviors in software cost esti-
mation practice. In: 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 411–418. IEEE (2011)

33. Magazinovic, A., Pernst̊al, J.: Any other cost estimation inhibitors?. In: Proceed-
ings of the 2nd ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement, pp. 233–242. ACM (2008)

34. McConnell, S.: Software Estimation: Demystifying the Black Art. Microsoft Press,
Redmond (2006)

35. McLeod, L., MacDonell, S.G.: Factors that affect software systems development
project outcomes: a survey of research. ACM Comput. Surv. 43(4), 24 (2011)

36. McManus, J., Wood-Harper, T.: A Study in Project Failure. BCS (2008). www.
bcs.org/content/ConWebDoc/19584

37. Nanus, B., Farr, L.: Some cost contributors to large-scale programs. In: Proceedings
of the Spring Joint Computer Conference 1964, AFIPS 1964, pp. 239–248. ACM,
New York (1964)

38. Nasir, M.H.N., Sahibuddin, S.: Critical success factors for software projects: a
comparative study. Sci. Res. Essays 6(10), 2174–2186 (2011)

39. Patton, M.: Qualitative Research and Evaluation Method. SAGE Publications,
Thousand Oaks (2001)

40. Pitterman, B.: Telcordia technologies: the journey to high maturity. IEEE Softw.
17(4), 89–96 (2000)

41. PMI: A Guide to the Project Management Body of Knowledge (PMBOK), 5th
edn. Project Management Institute, Newtown Square (2012)

42. Putnam, L., Myers, W.: Five Core Metrics: The Intelligence Behind Successful
Software Management. Dorset House Publishing, New York (2003)

43. PwC: Companies shifting more R&D spending away from physical products to soft-
ware and services: 2016 global innovation 1000 study (2016). http://www.pwc.com/
us/en/press-releases/2016/pwc-2016-global-innovation-1000-study-press-release.
html

44. Rahikkala, J., Hyrynsalmi, S., Leppänen, V.: Accounting testing in software cost
estimation: a case study of the current practice and impacts. In: Proceedings of 14th
Symposium on Programming Languages and Software Tools, Tampere, Finland,
pp. 64–75 (2015)

45. Rahikkala, J., Leppänen, V., Ruohonen, J., Holvitie, J.: Top management support
in software cost estimation: a study of attitudes and practice in Finland. Int. J.
Manag. Proj. Bus. 8(3), 513–532 (2015)

46. Robson, C.: Real World Research: A Resource for Social Scientists and
Practitioner-Researchers, 2nd edn. Blackwell Publishing, Oxford (2002)

www.bcs.org/content/ConWebDoc/19584
www.bcs.org/content/ConWebDoc/19584
http://www.pwc.com/us/en/press-releases/2016/pwc-2016-global-innovation-1000-study-press-release.html
http://www.pwc.com/us/en/press-releases/2016/pwc-2016-global-innovation-1000-study-press-release.html
http://www.pwc.com/us/en/press-releases/2016/pwc-2016-global-innovation-1000-study-press-release.html

Top Management Support for Software Cost Estimation 107

47. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14, 131–164 (2009)

48. Sehra, S.K., Brar, Y.S., Kaur, N., Sehra, S.S.: Research patterns and trends in
software effort estimation. In: Information and Software Technology. Elsevier,
Amsterdam (2017)

49. Turner, R.: The Handbook of Project Based Management, 2nd edn. McGraw-Hill,
New York (1999)

50. White, D., Fortune, J.: Current practice in project management-an empirical study.
Int. J. Proj. Manag. 20(1), 1–11 (2002)

51. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. SAGE Publications
Inc., Thousands Oaks (2003)

52. Zwikael, O.: Top management involvement in project management: a cross country
study of the software industry. Int. J. Manag. Proj. Bus. 1(4), 498–511 (2008)

53. Zwikael, O.: Top management involvement in project management: exclusive sup-
port practices for different project scenarios. Int. J. Manag. Proj. Bus. 1(3), 387–
403 (2008)

Software Engineering Processes
and Frameworks

The Choice of Code Review Process: A Survey
on the State of the Practice

Tobias Baum(B) , Hendrik Leßmann, and Kurt Schneider

FG Software Engineering, Leibniz Universität Hannover, Hannover, Germany
{tobias.baum,hendrik.lessmann,kurt.schneider}@inf.uni-hannover.de

Abstract. Code review has been known to be an effective quality assur-
ance technique for decades. In the last years, industrial code review
practices were observed to converge towards “change-based/modern code
review”, but with a lot of variation in the details of the processes. Recent
research also proposed hypotheses on factors that influence the choice of
process. However, all current research in this area is based on small and
largely non-random samples of cases. Therefore, we set out to assess the
current state of the practice and to test some of these hypotheses with
a survey among commercial software development teams. We received
responses from 240 teams. They support many of the stated hypothe-
ses, e.g., that change-based code review is the dominating style of code
review in the industry, and that teams doing change-based code review
have a lower risk that review use fades away. However, other hypotheses
could not be confirmed, mainly that the balance of effects a team tries to
reach with code reviews acts as a mediator in determining the details of
the review process. Apart from these findings, we contribute the survey
data set as a foundation for future research.

Keywords: Code reviews · Code inspections and walkthroughs ·
Change-based code review · Modern code review · Empirical software
engineering

1 Introduction

Code review is a well-established method of software quality assurance. Several
researchers noted that, in recent years, change-based review1 has become the
dominant style of code review in practice [8,24]. The main characteristic of
change-based review is the use of code changes performed in a unit of work, e.g.,
a user story, to determine the scope of the review. This is often combined with
the replacement of management intervention through conventions or rules for
many decisions [8], making a review planning phase [22] largely obsolete.

However, recent quantitative information on the use of different review
practices in the industry is largely missing. Furthermore, it is important for

1 Also called “modern code review”, “differential code review” or “patch review” in
other publications.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 111–127, 2017.
https://doi.org/10.1007/978-3-319-69926-4_9

http://orcid.org/0000-0003-3623-5349

112 T. Baum et al.

researchers trying to improve development processes to know what mechanisms
influence process choices in practice. Although previous research has put for-
ward hypotheses on the benefits of change-based code review and reasons for
the choice of a review process, these have not yet been verified on a larger sam-
ple. Consequently, the purpose of this article is to test hypotheses on industrial
code review use and the use of change-based code review in particular and to
provide further empirical data on current review practices.

Specifically, we selected three research questions based on hypotheses put
forward in our and others’ earlier research, all relating to how review processes
are shaped in the industry and why they are shaped that way:

RQ1 How prevalent is change-based review in the industry? (based on [8,24])
RQ2 Does the chance that code review remains in use increase if code review is

embedded into the process (and its supporting tools) so that it does not
require a conscious decision to do a review? (based on [9])

RQ3 Are the intended and acceptable levels of review effects a mediator in
determining the code review process? (based on [9])

To answer these questions, we conducted an online survey among commer-
cial software development teams. We will further concretize the questions and
derive testable sub-hypotheses in Sects. 4.1, 4.2 and 4.3. In addition to answer-
ing the research questions, we give some descriptive statistics from the survey
and we note some findings on review process characteristics and the use of read-
ing techniques in Sects. 4.4 and 4.5. A secondary contribution of the study is
the questionnaire instrument used to assess a team’s review process, which we
publish along with the full survey data for reuse in future research [7].

2 Related Work

As described in the previous section, the hypotheses we test in the current arti-
cle stem from earlier research, mainly the summary of converging code review
practices by Rigby and Bird [24] and the Grounded Theory study on code review
use by parts of the current article’s authors and others (Baum et al. [8,9]).

The most recent academic survey on the state of review practices we are
aware of was published by Ciolkowski, Laitenberger, and Biffl in 2003 [13], with
partial results also published in a technical report [21]. This survey targeted not
only code review, but also reviews in other lifecycle phases. Its authors found a
share of 28% of the 226 respondents using code reviews. We will discuss some
similarities and differences between their and our survey in Sect. 6.

Bacchelli and Bird [2] surveyed expectations regarding code review at
Microsoft and found a set of intended effects similar to the ones we are using. A
recent survey on software testing practices by Winter et al. [30] briefly touches
upon reviews and notes that 52% of the respondents often or always perform
reviews for source code.

The Choice of Code Review Process 113

Looking beyond the academic literature, there are some more recent surveys
that contain information on code review practices. A whitepaper written in 2010
by Forrester Consulting [15] for Klocwork, a company selling a code review tool,
notes that 25% of the 159 survey respondents use a review process that we would
describe as “regular, change-based code review” [8].

A survey performed in 2015 by Smartbear [26], another company selling code
review software, contains information on code review practices and perceptions
on code quality from about 600 respondents. Like the Forrester study, it contains
very little information on the sampling method and possible biases. It states that
63% of their respondents are doing tool-based code review.

Compared to the small number of surveys, there is a lot more qualitative and
case study research on code review practices and we can just name a few here.
Baker [3] gave an early description of a change-based code review process in the
industry and Bernhart et al. [11] describe its use (under the term “continuous
differential code review”) in airport operations software. Other small-scale stud-
ies of code review and inspection practices in the industry have been performed
by Harjumaa et al. [17] and by Kollanus and Koskinen [19].

A survey by Bosu and Carver studied the impact of code review on peer
impression in open source projects [12]. Peer review practices in open source
software development have been studied intensively in the last decade, with
further contributions for example by Asundi and Jayant [1], Rigby and Storey
[25], Wang et al. [29], Thongtanunam et al. [28] and Baysal et al. [10].

3 Methodology

Our goal was to reach out to a large number of commercial software development
teams. We used (online) survey research as our main vehicle. In the following,
we describe details of the planning, execution, and analysis of the survey.

3.1 Participant Selection

Our research questions deal with the code review practices and context of com-
mercial software development teams. Consequently, our target population con-
sists of all commercial software development teams.

As there is no repository of all software development teams, a controlled ran-
dom sampling of participants was not possible. Instead, we relied on a number
of communication channels to reach possible participants: We directly contacted
32 people belonging to the target population from our personal networks. We
further asked 23 people outside the target population from our networks to adver-
tise the survey. We posted the survey invitation to several online communities,
on Twitter, Xing, and Facebook; and also advertised the survey at a German
software engineering conference. Finally, we posted the invitation on some mail-
ing lists. Probably the most important single channel was a post on the mailing
list of the German software craftsmanship communities (“Softwerkskammer”),
reaching out to roughly 1400 people. When selecting channels, we took care

114 T. Baum et al.

to avoid introducing bias on the type of review process used. Specifically, we
decided against sampling GitHub users, and we turned down an offer to spread
our invitation to a mailing list of former participants of a series of review courses.
In Sect. 5, we discuss the remaining risk of sampling bias.

Since we were not able to exactly control who was answering the survey, we
included a filter question at the start of the survey and excluded participants not
working in a commercial software development team. Our intended granularity
of sampling was teams. As our survey was conducted anonymously, we could not
tell whether two respondents come from the same or different teams. We told
survey participants that we only want one response per team and asked them
to only forward the invitation to people in other teams or companies. When
inviting participants directly, we took care to only invite one person per company.
Nevertheless, there is a risk that the sample includes several respondents from
the same team.

3.2 Questionnaire Creation and Pilot Tests

Most parts of the survey were created based on existing qualitative empirical
research, mainly the classification scheme for change-based code review processes
by Baum et al. [8] and the collection of contextual factors influencing review
process choices by the same authors [9].

The process of survey creation followed established guidelines [18,27]. To ease
answering and analyzing the survey, we mainly used multiple choice and numeri-
cal questions. Many questions contained an “Other” option to allow participants
to specify missing options in free-text. The instrument was self-contained and
it included all relevant information, for example by giving a definition of code
review (from [8]) when asking for the use of code review in the team.

Based on our sampling strategy, we expected the main share of participants
to come from Germany and a mix of other countries for the remaining share.
Therefore, we decided to create a German as well as an English version of the
survey, following the rationale that it is better to have a consistent, pre-tested
translation instead of demanding translation effort from each participant.

Following guidelines for survey research [27], we tried to reuse questions from
existing surveys, but only a limited number of questions from the first version
of the HELENA survey [20] could be reused after some adjustments.

To ensure that the survey questions were comprehensible and valid with
respect to the study constructs, we iteratively tested and refined the question-
naire. Initial testing of the research and survey questions was performed among
the authors of this article. We used a checklist distilled from existing guidelines
to check each survey question. This was followed by 6 rounds of pre-tests, 4 of
these with members of the target population and 2 with members of our lab.
During each pre-test, a participant completed the survey, followed by a discussion
about possible problems and misunderstandings. For two of these pre-tests, we
had detailed knowledge about the process used by the team and could, therefore,
compare answers to our expectations. The final survey also allowed the partici-
pants to enter feedback on the survey, which we checked for possible problems.

The Choice of Code Review Process 115

The review process classification scheme [8] we used as a foundation consists
of 20 process facets, and we identified 16 potentially relevant contextual fac-
tors in our previous research [9]. It became evident early during questionnaire
creation that even if we restricted the survey to these two groups of questions,
it would become too long for the intended audience. Therefore, we limited the
questionnaire to a subset of the contextual factors and split the remaining ques-
tions into a main part and an optional extension part. Answering the main part
took around 15 min and answering the extension part additional 8 min in our
pre-tests. The exact number of questions differed depending on the answers of a
respondent, e.g., it was shorter for teams that have never used code reviews.

3.3 Data Collection and Instrument

We started data collection on February 22nd, 2017, and closed the survey on
March 20th, 2017. Invitations were sent out gradually during the first weeks.
The questionnaire was implemented using LimeSurvey, hosted by our university.

The survey questions can be roughly classified into four groups: (1) Demo-
graphics or filter questions (e.g., on the country, role of the participant or the
use of reviews), (2) questions on the context of the review process (e.g., product,
development process, team characteristics,. . .) (3) questions on the used review
process (based on [8]) and (4) ranking questions to assess the relative impor-
tance of intended and unintended review effects. The full instrument can be
found in our online material [7]. Most parts of the survey were confirmatory or
descriptive, but it also contained some exploratory parts, mainly on the non-use
of reviews. In the current article, we focus on the former.

We offered respondents the chance to leave an email address if they were
interested in the results of the survey. All participants that did this have been
informed about preliminary results some weeks after the survey closed.

3.4 Data Analysis

Our data analysis constitutes a mix of descriptive and inferential statistics. We
will describe the detailed analyses for the research questions in the respective
subsections of Sect. 4.

Multiple-choice questions that contained an “other” option with free-text
answers were coded for analysis. The free-text answers were either converted to
new categories or classified as belonging to one of the existing categories.

All but the filter questions were optional, to avoid forcing participants to
answer. We handled the resulting missing data by “pairwise deletion” (also called
“available case analysis”), i.e., we excluded participants only from those analyses
where data was missing for at least one of the needed questions. Consequently,
the total number of respondents taken into account differs between analyses.

Most statistical tests performed during analysis checked for a dependence
between two dichotomous variables. Unless otherwise noted, these 2× 2 contin-
gency tables were checked using Fisher’s exact test and statistical significance

116 T. Baum et al.

was tested at the 5% level. We perform Bonferroni correction when there are
multiple tests for a research question (i.e., for RQ3), but not between research
questions. When we give confidence intervals for proportions, they will be 95%
confidence intervals calculated using the Clopper-Pearson method. All percent-
ages will be presented rounded to the nearest integer.

The raw data of the survey, descriptive statistics for all questions, and the
source code used for data analysis is available in the study’s online material [7].

4 Results

In total, 240 respondents from the target population answered the survey.2 130
participants went on to answer the extension part after finishing the main part.
Due to our sampling method, we are not able to give a response rate, but we
will describe some characteristics of the sample in the following.

The respondents are working in 19 different countries. The majority of
respondents, 170 (76%), is from Germany. 33 respondents (15%) work in other
European countries, 11 (5%) in Asia (including the Middle East) and 11 (5%) in
Northern America.3 We distributed the survey invitation through various chan-
nels and asked the respondents how they heard about the survey. 19 respondents
(10%) were invited directly by one of the researchers, 30 (16%) were indirectly
invited by other people, 104 (55%) heard about the survey on a mailing list, 24
(13%) in an online forum and 13 (7%) named some other channel. When asked
about their role, 154 respondents (67%) said they mainly work as a developer,
50 (22%) work as architects, 14 (6%) as managers and 11 (5%) gave other roles.

The target population of this survey is teams in commercial software develop-
ment. Quite unsurprisingly, the large majority (94%, 215 teams) of the respond-
ing teams works on closed source software. The remaining share (14 teams) said
their team mainly works on an open source project. The teams work in compa-
nies of vastly differing sizes, from less than 10 to more than 10,000 employees;
Fig. 1 shows the detailed distribution of company sizes. 68% (148 of 217) of the
participants work in collocated (as opposed to distributed) teams.

We asked teams whether they are currently using code reviews. Teams not
using code reviews were subdivided further: Have they never used reviews before,
and if so have they never thought about it or did they explicitly decide against
review use? Or did they stop using reviews in the past, and if so was this an
explicit decision or did the review use “fade away” (i.e., end without an explicit
decision, just becoming less and less frequent over time)? Figure 2 shows the
results: With a share of 78% (186 teams), the majority of teams is currently

2 More precisely, 240 respondents answered at least the questions about being part
of the target population and about their team’s review use, which were the only
obligatory questions in the survey.

3 The remaining 15 did not answer this question. Unless otherwise noted, we only
include respondents that answered the respective questions in our analyses; conse-
quently, the total sum of respondents will differ between analyses.

The Choice of Code Review Process 117

0 10 20 30 40

1 to 10

11 to 25

26 to 50

51 to 100

101 to 250

251 to 500

501 to 1000

1001 to 10000

10001 or more

14

24

19

24

42

33

23

27

19

respondent count

Fig. 1. Company sizes (number of employees)

using code reviews.4 38 teams (16%) have never used code reviews so far, 8 of
them because there was an explicit decision against their use. In 16 teams (7%),
the use of code reviews ended, but in only one of those teams this was an explicit
decision. For teams that currently use code reviews, we asked how much time
ago they started using them. The results are shown in Fig. 3.

0 50 100 150 200

explicitly terminate

fade away

currently in use

explicitly no start

never thought about it

1

15

186

8

30

respondent count

Fig. 2. Use of reviews

4.1 The Dominance of Change-Based Code Review (RQ1)

A number of recent articles postulate that code review based on code
changes/patches is dominating in industrial as well as open-source practice
[8,24]. In this section, we provide quantitative empirical support for this claim
(RQ1) and study the prevalence of several more specific review styles.

To answer RQ1, we asked our participants how the review scope is deter-
mined: Based on changes, based on architectural properties of the software
(whole module/package/class) or in some other way (with free text for further
details). With a share of 90% (146/163; confidence interval 84–94%) of the teams
doing code reviews, a change-based review scope is indeed dominating.
4 This number is likely biased, see Sect. 5.

118 T. Baum et al.

0 20 40 60 80

less than 1 year

1 to 5 years

more than 5 years

47

87

23

respondent count

Fig. 3. Time that code review is in use

Table 1. Frequency of use of different styles of code review

Style Used approximation of definition
using survey constructs

Frequency of use

Review based on
code-changes

scope = changes 90% (146/163)

Regular,
change-based
code review [8]

scope = changes and trigger = rules 60% (96/160)

Contemporary
code review [24]

scope = changes and
publicness = pre-commit and
unit-of-work ≤ user-story

46% (61/133)

Pull-based
software
development [16]

scope = changes and trigger = rules
and publicness = pre-commit and
interaction = no-meeting

22% (29/134)

Approximating
Inspection [14]

interaction = meeting and
communication = oral + stored and
temporal-arrangement = parallel
and trigger = explicit

2% (3/141)

In the recent literature on code review and related work practices, there
are slightly differing definitions and descriptions of sub-styles of change-based
code review. Table 1 shows the frequency of use for “modern/contemporary code
review” [24], “regular, change-based review” [8] and “pull-based software devel-
opment” [16]. As not all of these sub-styles are concisely defined in the respective
publications, the table also shows how the definitions/descriptions were approxi-
mated in terms of constructs used in the survey. We will not discuss every detail
of the table, but want to note that most of the teams that do not fall under
Rigby and Bird’s description of contemporary code review do so because they
do not use pre-commit reviews (pre-commit: 46%, 61 teams; post-commit: 54%,
72 teams). There is only one respondent whose team uses a review scope that is
larger than a user story/requirement.

We did not focus on Fagan-style Inspection [14] in our survey and therefore
cannot completely tell whether a team uses a fully-fledged Inspection process

The Choice of Code Review Process 119

to review code. To estimate an upper bound on the number of teams doing
Inspection, we combined a number of necessary conditions that we would expect
to hold for those teams (see Table 1). Only 2% (3/141; confidence interval 0–6%)
of the teams have a process that approximates Inspection in that way.

Because much existing research on modern/change-based code review is
based on open-source development or agile teams, we also checked whether there
is a difference in the use of change-based review between open-source and closed-
source products and between agile and classic development processes. We did
not find a statistically significant difference in either case.

4.2 Change-Based Code Review and the Fading of Review Use
(RQ2)

This section mainly deals with Baum et al.’s hypothesis “Code review is most
likely to remain in use if it is embedded into the process (and its supporting
tools) so that it does not require a conscious decision to do a review.” [9]. More
specifically, we tested a subset of this hypothesis:

H2 The risk that code review use fades away depends on the mechanism that
is used to determine that a review shall take place: This risk is lower when
rules or conventions are used instead of ad-hoc decisions.

To test this hypothesis, we compare two sub-samples: Teams currently doing
code reviews, and teams where review use faded away. We also asked how it was
decided whether a review should take place: By fixed rules or conventions, or
ad-hoc on a case-by-case basis. For the ad-hoc triggers, we further distinguished
triggering by the reviewer, the author or a manager. There was the possibility
for respondents to select “other” and enter a free-text description.

Of 12 teams where review use faded away, 3 used rules or conventions and the
remaining 9 used ad-hoc decisions. For the 162 teams currently doing reviews, the
relation was 103 with rules/conventions compared to 59 without. Put differently,
the risk to be in the “fade away” subsample increases from 2.8% with rule triggers
to 13.2% with ad-hoc triggers, a risk ratio of 4.7. The exact Fisher test of the
corresponding 2× 2 contingency table results in a p-value of 0.01237, therefore
the difference is statistically significant at the 5% level. Table 2 shows the detailed
numbers for the different review triggers. An interesting side-note is that having
managers trigger reviews seems to be especially prone to discontinuation.

Another possible explanation for the higher share of teams with ad-hoc trig-
gers in the “fade away” subsample is a generation effect: Teams that introduced
reviews more recently could use rule triggers more often. Therefore, we com-
pared teams that have used reviews for less than a year with those that used
them for two years or more. Of 45 teams with brief review use, 25 use rules. For
teams with long review use, the share is 49 of 75. This higher share of rule-use
for longer review use supports H2 and opposes the stated generation effect.

120 T. Baum et al.

Table 2. Review triggers vs. review continuation

Trigger Reviews in use Review use faded away

Manager 7 3 (30%)

Reviewer 14 2 (13%)

Author 38 4 (10%)

Rules/conventions 103 3 (3%)

4.3 Rankings of Review Effects as a Mediator in Determining
the Review Process (RQ3)

In this section, we deal with another of Baum et al.’s [9] hypotheses: “The
intended and acceptable levels of review effects are a mediator in determining
the code review process.” (H3) More specifically, Baum et al. state that “Many
process variants are expected to promote certain effects, and often also to impair
others. . . . Consequently, the chosen review process is heavily influenced by the
combination of intended effects. Some effects are seen as more important than
others, while others are seen as secondary or not pursued at all. This is used to
perform trade-offs while designing the review process.” [9] Intended review effects
are for example “better code quality”, “finding defects” and “learning of the
reviewer”. Unintended effects are “[increased] staff effort”, “increased cycle time”
and “offending the author/social problems”. Following H3, we would expect to
find that the relative ranking of review effects influences the chosen variant for
some of the review process facets, that the team’s context influences the relative
ranking of review effects, and that this indirect effect is in most cases stronger
than the direct influence of context on review process facets.

Based on the addendum to Baum et al.’s article [6], we systematically checked
each of the listed combinations of review effect and process facet.5 For intended
review effects, none of the checked interactions were statistically significant, even
at the 10% level and without Bonferroni correction. For the relative ranking of
undesired effects, some of the predicted effects had p-values smaller than 0.05:

– When “increased staff effort” is most unintended this makes a “very small
review scope” (i.e., more overhead due to a higher number of small reviews)
less likely: Risk ratio = 2.2; p = 0.034. The detailed contingency table can be
found in Table 3.

– When “increased staff effort” is most unintended this makes “pull or mixed
reviewer to review assignment” more likely: Risk ratio = 1.6; p = 0.037. The
detailed contingency table can be found in Table 4.

– When “increased cycle time” is most unintended this makes “review meet-
ings” less likely: Risk ratio = 2.8; p = 0.006. The detailed contingency table
can be found in Table 5.

5 I.e. we did not check every possible combination, but only those where the prior
research gave reason to expect an influence.

The Choice of Code Review Process 121

Table 3. Contingency table: staff effort most undesired vs. small review scope

Small review
scope

Medium to large
review scope (≥Task)

Total

Increased staff effort most
undesired

5 19 24

Something else most
undesired

36 43 103

Total 41 62 103

Table 4. Contingency table: staff effort most undesired vs. review assignment

Push
assignment

Pull or mixed
assignment

Total

Increased staff effort most
undesired

12 20 32

Something else most
undesired

52 34 86

Total 64 54 118

Table 5. Contingency table: increased cycle time most undesired vs. review meetings

Meetings No meetings Total

Increased cycle time most undesired 6 40 46

Something else most undesired 27 46 73

Total 33 86 119

Those three interactions are also those with the highest risk ratio (i.e., effect
size). Even though they have p-values smaller than 0.05, none of them is sta-
tistically significant after Bonferroni correction. A complete list of all tested
interactions can be found in the study’s online material [7].

Summing up, only 3 of 30 cases give some support for the expected relation-
ship. Therefore, there is little evidence that the intended and acceptable levels
of review effects influence the code review process, except in some narrow areas.
Consequently, they cannot be mediators, and we cannot support hypothesis H3.

4.4 Further Convergence in Review Practices?

Apart from their description of a change-based review process that we referred
to in Sect. 4.1, Rigby and Bird consolidated three further convergent review
practices, cited in the following. In this section, we analyze to what degree these
practices can also be observed in the survey’s sample.

“Contemporary review usually involves two reviewers. However, the number
of reviewers is not fixed and can vary to accommodate other factors, such as

122 T. Baum et al.

the complexity of a change.” [24]: Our results support the finding that the usual
number of reviewers is low, indeed our numbers are even lower than Rigby and
Bird’s.6 The average usual number of reviewers in our sample is 1.57, the median
is 1 reviewer. With regard to the accommodation of other factors when deter-
mining the number of reviewers, 51% of the teams (47 of 92) named at least one
rule that they use to adjust the number of reviewers in certain situations. The
most commonly used rule is to decrease the number of reviewers or to skip code
review completely when the code change was implemented using pair program-
ming: Such a rule is used in 36% of the teams.

“Contemporary reviewers prefers [sic] discussion and fixing code over report-
ing defects.” [24]: Fig. 4 shows how the surveyed teams usually interact during a
review. Depending on how many of the teams discuss code during review meet-
ings, between 55% and 81% of the teams have a review process that includes
discussion of the code. Regarding fixing the code, 54% (84 of 157) of the respon-
dents indicate that reviewers sometimes or often fix code during a review. This
pragmatic attitude towards the classic boundaries of code review also shows up
when 76% (69 of 91) of the respondents state that the reviewer executes the
code for testing during review at least occasionally.

0 20 40 60 80

asynchronous discussion

meeting with author

meeting without author

on demand

89

41

2

26

respondent count

Fig. 4. Interaction during reviews

“Tool supported review provides the benefits of traceability, when compared
to email based review, and can record implicit measures, when compared to tra-
ditional inspection. The rise in adoption of review tools provides an indicator
of success.” [24]: In our sample, 59% of the teams (96 of 163) use at least one
specialized review tool. 33% (33 of 163) use only general software development
tools, like ticket system and version control system, for review. 13 respondents
indicated no tool use.7 The ability of specialized review tools to record implicit
measures might be one of their benefits, but it is seldom used in practice. Only
5% (4 of 88) of the teams systematically analyze review metrics.

6 The numbers are not fully comparable: Rigby and Bird looked at the actual number
of reviewers in a large sample of reviews, whereas we asked our participants for the
usual number of reviewers in a review.

7 A weakness in the used questionnaire is that there was no explicit “We do not use any
tool” choice available. Therefore, the distinction between non-response and non-use
of tools cannot be reliably made.

The Choice of Code Review Process 123

4.5 Some Notes on the Use of Reading Techniques

Research on Inspection has resulted in a number of different “reading techniques”
to guide the reviewer during review [4]. We looked at the spread of some read-
ing techniques in the survey, albeit not in much detail, and will describe the
corresponding results in the following.

It is sometimes claimed that “checklist-based reading” is the prevalent read-
ing technique in practice. Our results do not support this claim: Only 23% (22
of 94) of the respondents state that they use a checklist during reviews.

Another family of reading techniques uses different roles/perspectives to
focus the reviewers (e.g., perspective-based reading [5]). 7% (6 of 90) of the
respondents state that they explicitly assign distinct roles to the different review-
ers. 72% (63 of 88) use neither checklists nor roles.

5 Limitations

This section discusses the addressed and unaddressed threats to validity.
The primary threat to internal validity in this study is sampling bias, given

that we distributed the survey over various channels and could not control who
answered. Consequently, our participants likely differ systematically from the
population of all developers, and they do so not only in their geographical dis-
tribution: They are probably more interested in code reviews and/or in process
improvement or software quality in general. People who introduced code reviews
just recently are probably more interested in learning more about them, which
could explain the high share of participants that introduced reviews less than a
year ago. The tendency to have participants with a higher than average quality
orientation was probably further amplified by using the software craftsmanship
mailing list to advertise the survey. Due to this bias, the share of teams using
code review that we observed in the survey should be regarded as an upper
limit rather than as an estimate of the real proportion. Apart from this bias,
we actively tried to avoid favoring certain types of code review processes in the
sample.

A general problem of online surveys is that there is little control over the
quality of responses. We included filter questions to check whether participants
belong to the target population. We also screened free-text answers for obviously
nonsensical responses. These checks, and the fact that there was no financial
reward and therefore little incentive to participate without giving honest answers
make us believe that this threat is under control. Another threat with long online
surveys is survey fatigue. As 209 of 240 participants reached the end of the main
part, there is no indication of major fatigue effects.

The survey was anonymous, and most of the questions did not touch upon
sensitive topics. However, the results of some questions might be influenced by
social desirability bias, e.g., by stating that the team is using reviews just because
it is desirable to do. Again, this might have influenced the descriptive parts but
we do not see a major influence on the confirmatory parts of the current article.

124 T. Baum et al.

An important input for the testing of H3 was the ranking of intended and
unintended review effects. We used LimeSurvey’s ranking widget for these ques-
tions, and we observed some usability problems with it that might have increased
noise in the results or lowered the response rate.

To reduce the threat of participants misunderstanding a question, we spent
approximately four months carefully designing the survey during which we per-
formed several rounds of quality control and pre-testing. Furthermore, our ques-
tions were based on a qualitative study, which increases our confidence in their
ecological validity. To further reduce threats to construct validity, we used ran-
domization where appropriate, and we provided definitions for key terms.

Although the total sample contains 240 respondents, some of our conclu-
sions might be affected by threats due to a small sample size. The test of H3
demanded the comparison of many imbalanced and therefore small sub-samples.
Consequently, the power of these statistical tests was largely low.

A weakness of our method of data collection, i.e., of cross-sectional obser-
vational studies, is that they cannot be used to distinguish between correlation
and causation. Therefore we cannot reliably exclude other explanations for H2.

The coding of free-text answers might be affected by subjectivity. For most
questions, the proportion of free-text “other” answers was low. Exceptions were
generally easy to code, e.g., country or review tool. An unexpectedly high number
of free-text answers was given for the review trigger question: We regard “a
review has to be performed for every task/story” as a special kind of rule, but
many participants selected “other” instead of “rule” in this case. Details on how
the free-text answers were coded can be found in the study’s online material [7].

6 Conclusion

To conclude, we relate our findings to other studies and outline future work.
Comparing our results to those of Ciolkowski et al. [13], the raw numbers

indicate a large increase in the use of code reviews in the last 15 years. We already
noted that the proportion observed in our survey is probably biased, but even
when taking the much smaller number from Winter et al. [30] as a comparison,
there was a significant increase. The systematic use of review metrics, on the
other hand, seems to have decreased, as has the use of review meetings. We
cannot reliably decide whether this is really due to a change in practices or due
to differences between the studies.

By answering our first research question, we provided quantitative evidence
that change-based review is indeed dominating in practice and that there is still a
lot of variation in the details. Many researchers have begun to study and improve
change-based code review, and our results should encourage them further.

By strengthening the evidence that using rules or conventions to trigger code
reviews helps to keep code review use from fading away, we provide a partial
explanation for the dominance observed in RQ1. As a more abstract consequence
for future software engineering research, we believe this finding strengthens the
case for software engineering techniques that not only work in isolation but are

The Choice of Code Review Process 125

also able to “survive” in the environment of a software development team. The
low number of teams using perspective-based reading or a similar technique for
code review could be an example for such a mismatch: There is little use in
perspectives when there is only one reviewer.

Due to the low statistical power and multiple threats, the analysis of RQ3
is problematic. Assuming that our non-finding is not caused by flaws in the
data collection and analysis, we see two explanations: (1) There is an effect,
but we checked the wrong sub-hypotheses, or (2) the intended effects determine
a team’s review process only to a small degree. The second explanation is in
line with Ciolkowski, Laitenberger, and Biffl’s conclusion that many companies
use reviews unsystematically [13]. It would also mean that satisficing [23] and
orientation along experiences from peers and processes used by review tools are
even more important than noted by Baum et al. [9]. There remains a lot of
research to be done, both to find out which process variants are best in a given
situation, and to find ways to bring these results into practical use.

Finally, we hope that by making the questionnaire and the survey data avail-
able [7], independent researchers can profit and build upon our efforts.

Acknowledgments. The authors would like to thank all pre-testers and all partic-
ipants of the survey for the time and effort they donated. We would further like to
thank Philipp Diebold and Paul Clarke for providing questions from their surveys for
reuse.

References

1. Asundi, J., Jayant, R.: Patch review processes in open source software development
communities: a comparative case study. In: 40th Annual Hawaii International Con-
ference on System Sciences, HICSS 2007, p. 166c. IEEE (2007)

2. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the 2013 International Conference on Software Engi-
neering, pp. 712–721. IEEE (2013)

3. Baker Jr., R.A.: Code reviews enhance software quality. In: Proceedings of the 19th
International Conference on Software Engineering, pp. 570–571. ACM (1997)

4. Basili, V., Caldiera, G., Lanubile, F., Shull, F.: Studies on reading techniques. In:
Proceedings of the Twenty-First Annual Software Engineering Workshop, vol. 96,
p. 002 (1996)

5. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumg̊ard, S.,
Zelkowitz, M.V.: The empirical investigation of perspective-based reading. Empir-
ical Softw. Eng. 1(2), 133–164 (1996)

6. Baum, T.: Detailed table with review effects (team level) and their connections
to contextual factors and process variants for “factors influencing code review
processes in industry” (2016). http://dx.doi.org/10.6084/m9.figshare.5104111

7. Baum, T., Leßmann, H., Schneider, K.: Online material for survey on code review
use. http://dx.doi.org/10.6084/m9.figshare.5104249

8. Baum, T., Liskin, O., Niklas, K., Schneider, K.: A faceted classification scheme
for change-based industrial code review processes. In: 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE, Vienna
(2016)

http://dx.doi.org/10.6084/m9.figshare.5104111
http://dx.doi.org/10.6084/m9.figshare.5104249

126 T. Baum et al.

9. Baum, T., Liskin, O., Niklas, K., Schneider, K.: Factors influencing code review
processes in industry. In: Proceedings of the ACM SIGSOFT 24th International
Symposium on the Foundations of Software Engineering. ACM, Seattle (2016)

10. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: Investigating technical
and non-technical factors influencing modern code review. Empirical Softw. Eng.
21, 932–959 (2016)

11. Bernhart, M., Strobl, S., Mauczka, A., Grechenig, T.: Applying continuous code
reviews in airport operations software. In: 2012 12th International Conference on
Quality Software (QSIC), pp. 214–219. IEEE (2012)

12. Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation:
a survey. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 133–142. IEEE (2013)

13. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software reviews: the state of the prac-
tice. IEEE Softw. 20(6), 46–51 (2003)

14. Fagan, M.E.: Design and code inspections to reduce errors in program development.
IBM Syst. J. 15(3), 182–211 (1976)

15. Forrester Research Inc.: The value and importance of code reviews, March 2010.
http://embedded-computing.com/white-papers/white-paper-value-importance-
code-reviews/. Accessed 13 June 2017

16. Gousios, G., Pinzger, M., Deursen, A.V.: An exploratory study of the pull-based
software development model. In: Proceedings of the 36th International Conference
on Software Engineering, pp. 345–355. ACM, Hyderabad (2014)

17. Harjumaa, L., Tervonen, I., Huttunen, A.: Peer reviews in real life-motivators and
demotivators. In: Fifth International Conference on Quality Software (QSIC 2005).
IEEE (2005)

18. Jacob, R., Heinz, A., Décieux, J.P.: Umfrage: Einführung in die Methoden der
Umfrageforschung. Walter de Gruyter (2013)

19. Kollanus, S., Koskinen, J.: Software inspections in practice: six case studies. In:
Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 377–382.
Springer, Heidelberg (2006). doi:10.1007/11767718 31

20. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere,
K., Linssen, O., Hanser, E., Prause, C.R.: Hybrid software and system development
in practice: waterfall, scrum, and beyond. In: ICSSP 2017 (2017)

21. Laitenberger, O., Vegas, S., Ciolkowski, M.: The state of the practice of review and
review technologies in Germany. Tech. report 011.02, Virtual Softw. Eng. Compe-
tence Center (VISEK) (2002)

22. Laitenberger, O., DeBaud, J.M.: An encompassing life cycle centric survey of soft-
ware inspection. J. Syst. Softw. 50(1), 5–31 (2000)

23. March, J.G., Simon, H.A.: Organizations. Wiley, London (1958)
24. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pp. 202–212. ACM, Saint Petersburg (2013)

25. Rigby, P.C., Storey, M.A.: Understanding broadcast based peer review on open
source software projects. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 541–550. ACM (2011)

26. SmartBear: The state of code quality 2016. https://smartbear.com/resources/
ebooks/state-of-code-quality-2016/. Accessed 13 June 2017

27. Sudman, S., Bradburn, N.M.: Asking Questions: A Practical Guide to Question-
naire Design. Jossey-Bass Publishers, San Francisco (1982)

http://embedded-computing.com/white-papers/white-paper-value-importance-code-reviews/
http://embedded-computing.com/white-papers/white-paper-value-importance-code-reviews/
http://dx.doi.org/10.1007/11767718_31
https://smartbear.com/resources/ebooks/state-of-code-quality-2016/
https://smartbear.com/resources/ebooks/state-of-code-quality-2016/

The Choice of Code Review Process 127

28. Thongtanunam, P., McIntosh, S., Hassan, A.E., Iida, H.: Investigating code review
practices in defective files: an empirical study of the QT system. In: Proceedings of
the 12th Working Conference on Mining Software Repositories, MSR 2015 (2015)

29. Wang, J., Shih, P.C., Wu, Y., Carroll, J.M.: Comparative case studies of open
source software peer review practices. Inf. Softw. Technol. 67, 1–12 (2015)

30. Winter, M., Vosseberg, K., Spillner, A.: Umfrage 2016 “Softwaretest in Praxis und
Forschung”. dpunkt.verlag (2016)

Unwasted DASE: Lean Architecture Evaluation

Antti-Pekka Tuovinen1(B), Simo Mäkinen1, Marko Leppänen2,3,
Outi Sievi-Korte2, Samuel Lahtinen2, and Tomi Männistö1

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
antti-pekka.tuovinen@helsinki.fi

2 Department of Pervasive Computing,
Tampere University of Technology, Tampere, Finland

3 Ministry of Education and Culture, Helsinki, Finland

Abstract. A software architecture evaluation is a way to assess the
quality of the technical design of a product. It is also a prime oppor-
tunity to discuss the business goals of the product and how the design
bears on them. But architecture evaluation methods are seen as hard
to learn and costly to use. We present DASE, a compact approach that
combines carefully selected key parts of two existing architecture evalu-
ation methods while making evaluation lean and fast. We have applied
DASE in three industrial cases and the early results show that even a
one-day evaluation workshop yields valuable results at a modest cost.

Keywords: Software architecture evaluation · Product development

1 Introduction

The purpose of architecture evaluation is to analyze how well a software system
will satisfy its quality requirements, uncover the key architectural decisions, and
identify risks. The effectiveness of architecture evaluation has been proven many
times after the introduction of the first methods in the late 1990’s [1–4].

An evaluation is an expert review that requires the key technical persons and
other stakeholders to meet in person and contribute their knowledge. Usually,
this entails a deep discussion about the mission of the product and about the
possibilities created by technology. This strengthens common understanding of
the goals but provides also a golden chance to share experiences, knowledge, and
the rationale behind the design decisions [3] [2, p. 6]. These ‘soft effects’ may in
practice be even more valuable than the hard technical results [5].

However, architecture evaluation is still not yet a common practice in the
industry [5–7]. There is a learning curve, a general perception of high cost,
and problems in quantifying results for decision making, which make companies
reluctant to adopt them [1,3,8]. Industrial use is reported, e.g., in [1,3–5,7].

An architecture evaluation is typically a staged review process. Depending on
the method, the different stages produce outputs that are not necessarily used
later on. For example in some scenario-based methods, due to time pressure and
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 128–136, 2017.
https://doi.org/10.1007/978-3-319-69926-4_10

Unwasted DASE: Lean Architecture Evaluation 129

set priorities, half of the created and elaborated scenarios may not be used at
all [1], which is considerable waste. Also, a perceived dependency on explicit
architecture design may alienate agile developers. They fear that “big design
up-front” incurs waste because if the design assumptions are incorrect or out-of-
date, it leads to inability to cope with change and to expensive rework [9].

In this paper we present our architecture evaluation approach called DASE,
short for decision and scenario based architecture evaluation. Our goal is to
make architecture evaluation more attractive to practitioners: First, based on
our own experiences, we have carefully selected from well-known scenario-based
and decision-centric methods the elements that we know to work best. Second,
we aim at minimizing the calendar time and the resources needed for an archi-
tecture evaluation by concentrating the main effort in a one-day workshop and
by keeping the learning curve low. Third, we keep the evaluation focused on the
most important things from both business and technology viewpoints.

In Sect. 2, we discuss existing architecture evaluation methods and our own
experiences. Section 3 describes the DASE approach. We describe three industrial
case studies of using DASE and the results, observations, and feedback in Sect. 4.
Section 5 presents the conclusions and outlines future work.

2 Background

2.1 Architecture Evaluation Methods

The idea of scenario-based methods, like ATAM [10,11], is to evaluate an archi-
tecture through scenarios elicited from all stakeholders in workshops. Typically, a
scenario focuses on one quality aspect from a quality tree (defined in the process)
and specifies a situation and a stimulus that test the response of the system and
its architecture. The scenarios are evaluated to determine the system’s response
and to identify risks. To be useful, scenarios need to be concrete, clear and pri-
oritized. The results of properly executed assessments are valuable and usually
well received [1,3]. Scenarios are a powerful tool for assessing the adequacy of the
system under evaluation and also for making the technical people aware of the
needs of the business and for making the business people aware of the technical
opportunities and challenges [1,3].

Instead of scenarios, the Decision-Centric Architecture Review method
DCAR [5] focuses on identifying architectural design decisions, their rationale,
and their interrelationships. The decisions are ranked based on importance. In
the evaluation part, the participants discuss the forces affecting the decisions
and their consequences (pros and cons) and vote whether each decision is good
or needs to be reconsidered. The importance of identifying and analyzing the
key design decisions is also emphasized by others [7]. Because of their emphasis
on design and its consequences, these kind of methods could be characterized as
bottom-up or inside-out as opposed to scenario-based methods that emphasize
requirements.

Other approaches include, e.g., the TARA method [7] that is a light-weight
expert review where a single assessor does the evaluation (consulting others)

130 A.-P. Tuovinen et al.

according to a specific focus of interest. At the other end of the spectrum is the
comprehensive RATE approach [1,2] that recognizes different types of assess-
ments based on their purpose and employs several analysis and evaluation meth-
ods including ATAM, as needed.

On the down side, an architecture evaluation typically requires several meet-
ings, couple of weeks of calendar time, and tens of person hours (sometimes
hundreds) [1]. Understandably, organizations may be reluctant to make this
investment [7]. Also, there is a certain learning curve [3,7]. For example, the
construction of the quality tree and the formulation and prioritization of the
quality attribute scenarios in ATAM can be challenging [1,3,12]. The results
can sometimes be hard to quantify for decision makers [1].

2.2 Our Architecture Evaluation Experience

Tampere University of Technology has a lot of experience in architecture evalu-
ation [3,8]. At TUT, the third author facilitated about ten evaluations carried
out in the local industry, using either ATAM [11] or DCAR [5]. The first author
has over ten years of experience in architecture work in mobile device industry
including architecture evaluations. Several of the authors have also experience
in teaching the methods. The evaluations have brought a lot of insights. First,
companies are rarely willing to invest in an evaluation – except in the engineer-
ing domain, where architecture is valued and changes are slow [3]. Second, the
most valuable outcome was information transfer: both the stakeholders and the
architect gained valuable knowledge. For example, scenario creation was often
turned into an ad hoc requirements elicitation workshop. Last, but not least,
the architects felt that they had been designing the system on their own and
the evaluation provided an opportunity to challenge their decisions. Usually, the
architect was the ‘defendant’ and had to explain the rationale of a decision.
Even if the other participants did not have the expertise to really challenge it,
the questions posed and the process of explaining the decision deepened under-
standing and forced the architect to see the problem from different perspectives.
So, the assessment acted as a form of ‘rubber duck debugging’ [13, p. 95].

3 Decision and Scenario-Based Architecture Evaluation

The DASE approach picks and combines parts of architectural design decision
review from DCAR [5] and parts of scenario analysis from ATAM [11]. The idea
is to work faster by involving less people and by focusing on key issues. There are
two phases: First, in the pre-work (preparation) phase, technical and business
information is collected and processed into a list of decisions and scenarios.
Second, the decisions and scenarios are used to evaluate the architecture in a
one day workshop (the main phase). Figure 1 shows an overview.

Unwasted DASE: Lean Architecture Evaluation 131

Fig. 1. Phases in the decision and scenario-based architecture evaluation (DASE)

3.1 Pre-work

The pre-work phase is centered around an interview (1–2 h) where the product
owner presents the mission and the business objectives of the product and the
architect presents the technical solution. The interview is lead by the facilitators,
a team of two to three people who facilitate and guide the evaluation process
from start to finish.

Based on the presentations, their notes (and possible recordings), the facili-
tators identify and list significant design decisions (described in a few words). In
this point the design starts to become visible, if it wasn’t so before. The archi-
tect is asked to check the list. Together with the architectural information, the
business objectives are then used to devise a number of scenarios that reflect the
interests and topical issues that came up in the interview. Good scenarios are
relevant to the stated business objectives and challenge the architecture in some
way, by targeting potentially problematic areas or by focusing on architectural
hot spots that could affect system responses. The facilitators have an important
role in identifying the key issues because there is no extensive scenario collec-
tion and elaboration phase involving multiple stakeholders. The scenarios are
reviewed in the next phase and can be adjusted, if needed.

3.2 Architecture Evaluation Workshop

The one-day architecture evaluation workshop is split into two sessions: the first
(morning) is for the decision-centric review and the second (afternoon) for the
scenario based evaluation. The order is important because the design is then
fresh in mind when evaluating the scenarios. In addition to the facilitators, the
morning session requires the presence of the architect and other technical people
(who know the design) and business stakeholders are required for the afternoon
session. The presence of the product owner is good also for the morning session.

132 A.-P. Tuovinen et al.

Decision-Centric Review. The objective of the morning session is to evaluate
and document the most important architectural decisions. The session follows
the general protocol of DCAR, leaving out the analysis of the design forces [5].

In the beginning, the facilitators present the list of decisions they have iden-
tified earlier. Next, the participants vote for the most important decisions. Each
participant has a pool of votes (e.g. 10 voting points) to assign freely to decisions;
the facilitators can also vote but with fewer points (e.g. 5). The decisions are
then ordered by the vote count so that those with the highest count are selected
for review. The selected decisions are documented with a fixed template [5] that
is used to explain the issue solved by the architecture decision, potential alterna-
tive solutions, the rationale for the particular solution, and possible drawbacks.
The facilitators can document the decisions together with the developers or the
developers can do it themselves, working in parallel for more efficient use of time.
A pre-filled example helps developers to get started. Once the selected decisions
have been documented, each decision is discussed together. The discussion ends
with another vote where the participants are asked whether the decision can be
considered a good one, neutral, or risky. The number of decisions documented
depends on the number of people working on them, typically it is three to five.

Scenario-Based Evaluation. The afternoon session focuses on the scenarios.
The scenarios have been defined using the ATAM [11] template that includes a
descriptive name, the related quality attributes, an environment description, the
stimulus triggering the scenario, and the expected response.

First, the facilitators present an overview of the devised scenarios in order
to assess their feasibility and to make any adjustments. Each scenario is then
evaluated so that the participants will try to explain what would happen when
the triggering event happens, given the conditions, and whether the expected
outcome (system response) would be achieved. The facilitators add the expla-
nation to the scenario’s description. The architectural decisions affecting the
outcome are also noted and listed. The decisions have just been reviewed, which
helps in this. The workshop ends when all relevant scenarios are covered or when
time runs out. At this point, the facilitators wrap up the workshop and ask for
immediate feedback. The facilitators supply a report of the documented decisions
and scenarios to the participants after some final editing. These reports are the
concrete outcome of the evaluation.

4 Applying the Method

The DASE method has been tested in three Finnish companies during 2015–
2017. The companies were selected by convenience and based on their own inter-
est. Two of the companies, A and B, were participants of the Finnish software
research program Need for Speed1. Each architecture evaluation focused on a
single project. The first, second and third author were the facilitators in cases
A and C, and the first, second, and fourth author in B.

1 http://www.n4s.fi/en.

http://www.n4s.fi/en

Unwasted DASE: Lean Architecture Evaluation 133

As general results, in all cases the company representatives found the evalu-
ations useful and they appreciated the concise schedule. Below, we describe the
cases and the findings that are specific for them. The number of decisions and
scenarios in each case are listed in Table 1. The amount of covered scenarios in
all cases was about 10 (same as reported, e.g., in [14]).

Case A was a mid-sized software company working in business software solu-
tions. The evaluated project was a large and mature accounting product. Archi-
tecturally, they needed to take into account multiple customers sharing same
server-side data resources and many external dependencies (banks, tax office).

Table 1. Number of decisions and scenarios in evaluation cases

A B C

Decisions identified 20 16 9

Decisions receiving votes 15 11 6

Decisions documented 4 3 3

Scenarios devised 10 15 10

Scenarios evaluated 10 13 8

Scenario waste ratio 0% 13% 20%

The four documented decisions concerned the customer database design
(single-tenancy), the nature of transactions in the services, the requirements for
strong authentication in many system functions, and the technical infrastructure
of the application hosting servers and database servers. The scenarios touched
on quality attributes such as maintainability, availability, and scalability of the
system that were affected by the design decisions on data management.

The participants of the evaluation workshop found the scenarios mostly rel-
evant but thought that some of the scenarios were too exploratory and unlikely
in the near future. A new employee was present in the workshop and he thought
it was good training for him.

Case B was a small company developing an on-demand video broadcasting
application for different devices. The product was not very big but there were
several versions of it, and it was already in the market. The architecture of the
product had been just restructured to be more modular and flexible to enable
parallel development of features. There were also real-time requirements.

The three documented decisions defined the key aspects of the new plug-in
architecture that promoted separation of concerns and made testing easier, for
instance. Modifiability and testing were the main themes in scenarios. Scalability
did not concern company B because the customer is responsible for the infra-
structure. Two new scenarios were created on the fly in the afternoon session.

The mixing of ‘bottom-up’ (decisions) and ‘top-down’ (scenarios) analysis
was appreciated, and the order of the sessions was considered good. However,
even better scenarios could have been devised if the facilitators could have used

134 A.-P. Tuovinen et al.

the product first. It was seen helpful to have architecture decision templates with
concrete examples in order to get started with documenting the decisions.

Case C was a mid-sized company closely associated with the public sector in
Finland. The product evaluated was a recently launched user authentication
solution meant for educational on-line services for primary schools. The product
was developed by a single person. Company C wanted to utilize and maintain
an open-source based solution for its product in an environment where there are
many authentication providers and learning service providers.

The three documented decisions concerned the use of an open source authen-
tication framework as a basis for the solution, storing of client configurations in
databases, and a specific dependency to legacy code that added extra complex-
ity to the overall architecture. The scenarios touched on the central role of the
company acting as a hub and a connection point for authentication and service
providers. Interoperability and maintainability were important quality attributes
as well as the ability to integrate new providers. Being able to monitor the
responsiveness of the authentication providers was also important.

The architect would have liked the facilitators to more strongly challenge
the solution and provide alternatives. Doing evaluations regularly as part of
development was considered possible but it was seen important to get an external
viewpoint. Reporting and making the outcome of the scenario analysis actionable
was also raised as a topic as people were uncertain what to do with the scenarios
after the evaluation. One suggestion was that the evaluation report could include
options and recommendations for addressing a particular concern.

5 Conclusions

We have presented the DASE approach that combines selected activities from
two best of breed architecture evaluation methods into a compact process. DASE
has been validated in three commercial projects, and the results show that at a
modest use of resources (two days per facilitator and one day per other partici-
pant) an architecture can be successfully evaluated in a one-day workshop. The
participants saw the evaluations as useful in general and appreciated the broad
perspective to architecture they gained through design decisions and scenarios.
The facilitators do need to understand design decision analysis and scenario eval-
uation enough to guide the process, but templates and pre-filled examples help
participants to get quickly on board. The facilitators have a key role in preparing
for the main evaluation workshop and in keeping it focused on key issues. How-
ever, based on our earlier experiences, the facilitators have even more coaching
and guiding to do when doing an ATAM-evaluation, for example.

As criticism and improvements, some participants asked for more actionable
results that would guide further development. They asked for challenging the
design stronger and for suggesting alternative solutions. This implies that the
goals of an evaluation need to be openly discussed and that relevant expertise
must be available, e.g. an internal consultant from another team. We observed
also the risk that because the participants select the decisions to document, there

Unwasted DASE: Lean Architecture Evaluation 135

may be a tendency to select only ‘good’ decisions. In the three cases, none of
the documented decisions were considered problematic. The situation might be
different for a system in an early phase of development.

As further work, it would be important to study how the approach scales
up for really big systems. Also, the consequences of the fact that the number of
documented design decisions seems to be constant need to be understood better.

Acknowledgments. This work was supported by the Finnish Funding Agency for
Innovation (Tekes) as part of the N4S Program of DIMECC (http://www.dimecc.
com/).

References

1. Knodel, J., Naab, M.: Software architecture evaluation in practice: retrospective on
more than 50 architecture evaluations in industry. In: 2014 IEEE/IFIP Conference
on Software Architecture (WICSA), pp. 115–124, April 2014

2. Knodel, J., Naab, M.: Pragmatic Evaluation of Software Architectures. The
Fraunhofer IESE Series on Software and Systems Engineering. Springer, Cham
(2016). doi:10.1007/978-3-319-34177-4

3. Reijonen, V., Koskinen, J., Haikala, I.: Experiences from scenario-based archi-
tecture evaluations with ATAM. In: Babar, M.A., Gorton, I. (eds.) ECSA
2010. LNCS, vol. 6285, pp. 214–229. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15114-9 17

4. Bellomo, S., Gorton, I., Kazman, R.: Toward agile architecture: insights from 15
years of ATAM data. IEEE Softw. 5, 38–45 (2015)

5. van Heesch, U., Eloranta, V.P., Avgeriou, P., Koskimies, K., Harrison, N.: Decision-
centric architecture reviews. IEEE Softw. 31(1), 69–76 (2014)

6. Bass, L., Nord, R.: Understanding the context of architecture evaluation methods.
In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), pp. 277–281, August
2012

7. Woods, E.: Industrial architectural assessment using TARA. J. Syst. Softw. 85(9),
2034–2047 (2012)

8. Eloranta, V.P., Koskimies, K.: Lightweight architecture knowledge management
for agile software development. In: Ali Babar, M., Brown, A.W., Mistrik, I. (eds.)
Agile Software Architecture, pp. 189–213. Morgan Kaufmann, Boston (2014)

9. Sedano, T., Ralph, P., Péraire, C.: Software development waste. In: Proceed-
ings of the 39th International Conference on Software Engineering, ICSE 2017,
pp. 130–140. IEEE Press (2017)

10. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.:
The architecture tradeoff analysis method. In: Proceedings of the Fourth IEEE
International Conference on Engineering of Complex Computer Systems, ICECCS
1998, pp. 68–78 (1998)

11. Kazman, R., Klein, M., Clements, P.: ATAM: method for architecture evaluation.
Technical Report CMU/SEI-2000-TR-004, Carnegie Mellon Sw. Eng. Inst. (2000)

12. Boucké, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an
architecture for decentralized control of a transportation system. In: Hofmeister,
C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 180–198.
Springer, Heidelberg (2006). doi:10.1007/11921998 16

http://www.dimecc.com/
http://www.dimecc.com/
http://dx.doi.org/10.1007/978-3-319-34177-4
http://dx.doi.org/10.1007/978-3-642-15114-9_17
http://dx.doi.org/10.1007/978-3-642-15114-9_17
http://dx.doi.org/10.1007/11921998_16

136 A.-P. Tuovinen et al.

13. Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, Boston (1999)

14. Del Rosso, C.: Continuous evolution through software architecture evaluation: a
case study. J. Softw. Maintenance Evol. Res. Pract. 18(5), 351–383 (2006)

Towards a Usability Model for Software
Development Process and Practice

Diego Fontdevila1(&), Marcela Genero2, and Alejandro Oliveros1

1 Universidad Nacional de Tres de Febrero, Caseros, Argentina
{dfontdevila,aoliveros}@untref.edu.ar
2 University of Castilla-La Mancha, Ciudad Real, Spain

marcela.genero@uclm.es

Abstract. Context/Background: Process and practice adoption is a key element
in modern software process improvement initiatives, and many of them fail.
Goal: This paper presents a preliminary version of a usability model for software
development process and practice.
Method: This model integrates different perspectives, the ISO Standard on
Systems and Software Quality Models (ISO 25010) and classic usability litera-
ture. For illustrating the feasibility of the model, two experts applied it to Scrum.
Results: Metrics values were mostly positive and consistent between evaluators.
Conclusions: We find the model feasible to use and potentially beneficial.

Keywords: Usability � Process and practice � Adoption � Model

1 Introduction

Process and practice adoption is a key element in modern software process improve-
ment initiatives, and it has become a central issue for organizations trying to become
more agile. Many of these initiatives fail to accomplish their objectives [1, 2], pro-
ducing negative impact on costs, productivity and motivation for future improvements.
On the other hand, there is evidence that human factors like emotion influence pro-
ductivity, turnover, and job satisfaction in software development [3].

Processes and practices are tools that people use to coordinate and define their
activities [4]; and adoption success may depend on the interactions between people as
users of the process, and the process itself [5, 6]. Since usability characterizes good
interactions between users and tools that are appropriate and satisfactory to use [7], we
propose that applying usability concepts to process and practice might improve
adoption strategies. That is to say, focusing on process and practice usability might
improve the probability of success of any process improvement, culture transformation
or practice adoption initiative.

We initially defined process and practice usability as “how easy it is to follow a
process or practice, including the effort needed to learn, the probability of making
mistakes, the cost of such mistakes and the overall satisfaction and motivation pro-
moted by following the practice or process” [8]. To operationalize this definition, our
main contribution is the definition of a process and practice usability model composed
of a set of sub-characteristics and metrics. Our model integrates three different sources,

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 137–145, 2017.
https://doi.org/10.1007/978-3-319-69926-4_11

the work of Kroeger et al. [5], the ISO Standard on Systems and Software Quality
Models [7] and classic usability literature as well.

This model should help practitioners and process improvement specialists to better
plan improvement initiatives, methodologists to better design new ways of working,
and researchers to better understand adoption challenges. Adoption initiatives might
increase their probability of success by adapting processes and practices to make them
more usable, or at least by refining adoption strategies to take usability challenges into
account. As an example, in the practice of Test Driven Development [9] the name of
the practice suggests a testing practice but is actually about designing and coding
software. Unclear naming is a typical usability issue [10].

The objective of this paper is to present a preliminary version of this model, and its
application to Scrum as a feasibility study.

The rest of this paper is organized as follows: Sect. 2 presents related work, Sect. 3
describes our research method, Sect. 4 presents the preliminary version of the Usability
Model for Software Development Process and Practice, Sect. 5 presents how we
applied the model to Scrum, Sect. 6 analyzes threats to validity and Sect. 7 outlines the
conclusions and future work.

2 Related Work

Very few studies consider people users of their processes or even mention process
usability: Feiler and Humphrey mention process usability in the introduction to their
work, but do not include it in their list of process quality attributes [11]. Culver-Lozo
discusses usability but in terms of process documentation usability [12]. Kroeger et al.
have published significant research on the subject [5]. As an example of methodology
analysis in terms of its relationship with its practitioners, Alistair Cockburn has
reflected on the concept of high-discipline methodologies [13], which he defines as
those that might probably be abandoned if a mechanism to keep them up is not put in
place (an example of such mechanism is the Coach role in XP).

Kroeger et al. [5] built their model from the concepts that they identified as quality
attributes for software development processes. These quality attributes, in turn, the
researchers grouped into 4 groups: Suitability, Usability, Manageability and Evolv-
ability. They arrived at Usability as a grouping of: Learnability, Understandability,
Accessibility and Adaptability. The ISO 25010 Standard on Systems and software
quality models presents a product-oriented perspective on usability. Considering pro-
cess to be like a software product is an analogy that other researchers have already used
[11]. Since there is no Software Development Process Quality Standard, using the
product standard seemed the right complement to the study by Kroeger et al. [5].

The classic literature on usability represented by the work of Norman [10] and
Nielsen [14] brought into the model very specific and rich terminology. An example of
this is the generalization of the concept of appropriateness Recognizability from ISO
25010, aligned with the principle of affordance from Norman [10], into Self-evident
Purpose.

138 D. Fontdevila et al.

3 Research Method

Our research includes the following activities: review the state of the art for software
development process and practice usability; define a usability model for software
development process and practice; perform a feasibility study to determine preliminary
viability; refine the model and perform model validation.

To define the model we first identified the source literature related to process and
practice usability. We conducted unstructured interviews with expert researchers on the
subject1 to identify candidate sources. From references provided by some of the experts
we established three source types: process and practice usability, classic product
usability literature, and product usability standards. We chose the study by Kroeger
et al. [5] as the reference source for process usability, and three reference sources on
product usability [7, 10, 14]. Then, for each of the sources we added all elements to an
initial candidate list of sub-characteristics. We proceeded to identify and group similar
concepts, and then to purge the ones that did not seem to fit. We then refined or
changed names in specific cases, mainly for clarification purposes. Finally, we added
candidate metrics, some inspired from metrics defined in the sources, but mainly based
in our experience with software process and practice adoption. The main author defined
the model as described, and both other authors acted as reviewers of the model. We
then performed a feasibility study on Scrum as described in Sect. 5. At this point we
are planning further model refinement and validation (See more details in Appendix A,
Sects. 1 to 4).

4 A Usability Model for Software Development Process
and Practice

In this section we present an analysis of the sources and then describe the Process and
Practice Usability Model.

4.1 Analysis of Model Sources

We based our model in the following sources: the study by Kroeger et al. [5]; ISO
25010 [7], a standard for quality of systems and software products; and the classic
works by Norman [10] and Nielsen [14].

Kroeger et al. [5] have developed a model for improving software development
processes from the perspective of the people involved. Their model is a generic quality
model. Beyond its wider scope and its sound research methodology, their model has
limitations regarding usability: although they define Process Usability as “ease with
which a software engineering process can be interpreted and performed by practi-
tioners” (the highlight is ours), its quality sub-attributes have little relationship with

1 Personal interviews with Eduardo Miranda, Laurie Williams and Mario Piatinni.

Usability Model for Software Development Process and Practice 139

actual process performance. Specifically, understandability, learnability and accessi-
bility are related to the interpretation of the process, and adaptability to is modification,
which leaves no attribute to characterize process performance. Their definition of
accessibility is “ease with which a process user is able to find information about a
software engineering process” [5], which is focused in what we consider today a
comparatively minor issue, information acquisition, as opposed to the traditional def-
inition of “access for users with different capabilities” [7]. From our perspective, the
most significant interactions are those between the people involved and the actual
process, not between the people and the process definition documentation.

ISO 25010 [7] is a systems and software products quality standard, it has a com-
prehensive usability perspective that includes “soft” sub-characteristics like user sat-
isfaction and user interface aesthetics. It defines usability as “degree to which a product
or system can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use”. It provided our work with a
more modern perspective on usability (i.e. more related to user experience). It also
defines three of the four sub-characteristics that Kroeger et al. [5] consider for usability
(learnability, adaptability and accessibility), although in the case of accessibility, with a
very different meaning; and adaptability is considered a sub-characteristic of main-
tainability, not usability.

The classic usability literature [10, 14] provided the first elements for the earliest
forms of the model, starting with Feedback [10] and Tolerate mistakes [14]. It also
provided some of the more nuanced sub-characteristics, like Affordance, which the ISO
25010 standard [7] confirmed with its own Appropriateness recognizability
sub-characteristic. We later renamed affordance to Self-evident purpose, to increase
model understandability since early discussions with expert practitioners2 showed
affordance as a term that was hard to apprehend.

4.2 The Model

The model is composed of nine sub-characteristics, which are aligned with our defi-
nition and emerged from the study of our model sources. In building the model we
made sure that none of the concerns identified in the sources were left out, except
accessibility as explained in Sect. 4.1, and avoid modes [14], which seemed
inapplicable.

The model has several sub-characteristics that support process performance, in
particular: visibility, that characterizes how transparent the status of a process and its
intermediate products are to its stakeholders; controllability, that describes how easy it
is for different stakeholders to control a process or practice during execution; and user
satisfaction, which is a by-product of the experience of using the process or practice.

2 Mary and Tom Poppendieck, Alistair Cockburn, Tobias Mayer and Brian Marick.

140 D. Fontdevila et al.

For each sub-characteristic we present a name, a definition and explain the rationale
behind the inclusion of that sub-characteristic. We also present a set of candidate
metrics for each sub-characteristic. The sub-characteristics are presented in Table 1 and
the candidate metrics in Table 2.

To improve model application consistency and make it easier to use, we defined an
evaluation process based on the ISO 25040 [15]. Table 2 describes model metrics.

Table 1. Process and practice usability sub-characteristics.

Sub-characteristic Definition Rationale

Self-evident
purpose

Degree to which users can recognize
what a process or practice is for

Purpose is a key motivator
Newcomers to a process or practice
need to be able to make sense of it

Learnability “Ease with which a process user is
able to learn how to perform the
activities of a software engineering
process” [5]

Difficulty to learn a new process or
practice is a basic barrier for
adoption

Understandability “Ease with which a process user is
able to understand whether a
software engineering process is
relevant and how it can be used to
achieve desired results” [5]

Understandability applies to process
and practice selection before
adoption, and also during process
performance

Error tolerance Degree to which the process is safe
for its users, preventing errors or
limiting their impact

Error tolerance supports efficiency
and effectiveness, and it also makes
a process or practice easier to learn
“on the job”

Visibility Degree to which process structure,
activities, status and information
inputs and outputs are visible to
stakeholders of the process in a
specified context of use

Visibility allows stakeholders to
know the status of a process or
practice and take early corrective
action when necessary. It also helps
set realistic expectations early

Controllability Degree to which a process or
practice has attributes that make it
easy to control

Decisions need to be made at the
appropriate time and impact the
results effectively

Adaptability “Ease with which a process user is
able to adapt a software engineering
process for use in different
situations” [5]

Adaptability is about a process or
practice supporting different
contexts and users. This allows
better fit and a higher reuse rate

Attractiveness Degree to which users of the process
or practice find it attractive or
resonate with its form or structure

Attractiveness characterizes the
appeal to newcomers. It might
impact the desire to learn and adopt

User satisfaction Degree to which user needs are
satisfied when using a process or
practice

Satisfaction is a key element for
positive feedback and impacts the
creation of new habits

Usability Model for Software Development Process and Practice 141

Table 2. Candidate metrics.

Sub-characteristic Candidate metric Definition Values Type

Self-evident
purpose

Appropriateness
of name

Measures how appropriate
the name is for describing
the purpose of the process
or practice

Deceiving,
Ambiguous,
Partial,
Appropriate,
Accurate

Nominal

Self-evident
purpose

Purpose
alignment for
stakeholders

Measures the alignment of
purpose for all stakeholders

None, Low,
Medium, High,
Complete

Ordinal

Learnability Volume of
information of
introductory
material

Measures the size of
introductory material as
defined by authoritative
sources, e.g. for an
authoritative introductory
course

Number of
words

Absolute

Learnability Standard
introductory
course duration

Measures standard course
duration in hours, as
defined by authoritative
sources

Number of
hours

Absolute

Understandability # of elements Measures how many
components make up the
definition of the process or
practice

Number of
elements

Absolute

Understandability Conceptual
model
correspondence

Measures the level of
correspondence between
the user’s conceptual model
of an activity and the
conceptual model of that
same activity that the
process or practice implies

Low, Medium,
High

Ordinal

Understandability Data model
complexity
index

Measures the subjective
complexity of the data
model

Low, Medium,
High

Ordinal

Error tolerance Cost of error Measures the cost of error
as overall impact

Low, Medium,
High

Ordinal

Error tolerance Safety
perception

Measures how safe is it to
use the process or practice

Low, Medium,
High

Ordinal

Error tolerance Use of
restraining
functions

Measures whether the
process or practice provides
hard restrictions to prevent
risk materialization

Yes/No Nominal

Visibility # of indicators Measures how many
standard indicators the
process or practice defines

Number of
indicators

Absolute

(continued)

142 D. Fontdevila et al.

5 Applying the Model to Scrum

In this section we describe how we applied the model to Scrum to evaluate its feasi-
bility. We limited evaluation to standard Scrum implementations [16]. First, one of the
authors performed an evaluation, and then we proceeded to select two external Scrum

Table 2. (continued)

Sub-characteristic Candidate metric Definition Values Type

Visibility Use of
information
radiators

Measures whether
information radiators are
used in the process or
practice. Information
radiators display
information regardless of
user action

Yes/No Nominal

Visibility Audience
alignment for
information

Measures whether
information is presented in
the same way to all
stakeholders

Yes/No Nominal

Controllability Degree of
control
concentration by
role

Measures how concentrated
control is among the roles
defined

Low, Medium,
High

Ordinal

Controllability Level of
autonomy

Measures the level of
autonomy users have in
making decisions related to
the process or practice

Low, Medium,
High

Ordinal

Controllability Control
granularity

Measures the control
granularity of the process or
practice

Fine, Medium,
Coarse

Ordinal

Adaptability # of adaptation
points

Measures how many
adaptation points the
process or practice defines

Number of
adaptation
points

Absolute

Adaptability Ratio of roles
allowed to adapt

Measures how many roles
are allowed to adapt the
process or practice out of
the total number of roles

0 to 1 Ratio

Attractiveness User
attractiveness
rating

Measures how attractive the
process or practice is to
prospective users (i.e. those
lacking experience)

1 to 5 Ordinal

User satisfaction User experience
rating

Measures the subjective
experience of using the
process or practice

1 to 5 Ordinal

Usability Model for Software Development Process and Practice 143

experts3 with more than 10 years of experience with Scrum. We provided them with
introductory training to understand the model and the evaluation process, and also
specific clarifications when required. For each model sub-characteristic, the evaluators
assigned values to the model’s candidate metrics, and added qualitative comments.

Evaluation results show that almost all metric values are in the middle or positive
spectrum for that metric (see details in Appendix A, Sect. 5). This is consistent with
Scrum’s popularity, simplicity and its focus on visibility and risk mitigation.

After the evaluation, informal feedback from the external evaluators provided
interesting insights: granularity of the object of evaluation might be an issue (scrum vs.
retrospective); differences between correct and incorrect implementations (one of the
evaluators made a related distinction when evaluating Cost of error); distinguish
standard from typical implementations (this emerged in the case of the Use of infor-
mation radiators metric); evaluation is context sensitive (the Safety perception metric
yielded two different values but with coherent underlying explanations); there are
definitions that need to be improved. Overall, the results of both evaluators were highly
consistent (see details in Appendix A, Sects. 5 and 6).

Finally, external evaluators were able to use the model effectively and produce
qualitative comments that are aligned with model concepts. Thus, this provides initial
confirmation that the model is understandable and feasible to apply.

6 Threats to Validity

Our work, being still on its early stages, presents issues that need to be addressed: lacks
completeness validation, there is not enough confirmation of theoretical saturation; we
cannot yet assess applicability to other processes or to specific practices; sample of
evaluations is very limited, we have only two external evaluations; evaluators trained
only with informal material (verbal explanations from the authors and access to the
model in its current version); validation is limited, we need to improve on issues like
consistency in evaluations by different evaluators and model accuracy in describing real
life processes and practices.

7 Conclusions and Future Work

In this paper we presented our process and practice usability model, defining its
sub-characteristics and candidate metrics. Through an initial application of the model to
Scrum by one author and two external evaluators, we found the model feasible to use
and potentially beneficial.

Next steps include model and evaluation process refinement, including adding
details, improving unclear definitions and metrics, defining how to compose metrics,
and a user guide and training material; further validation with experts; application to

3 Juan Gabardini and Alan Cyment.

144 D. Fontdevila et al.

other software development processes and practices to increase representativeness of
the study; and empirical studies in industry.

Appendix A

Supplementary data available at https://doi.org/10.6084/m9.figshare.5296276.v1.

References

1. Ambler, S.: Agile practices survey results, July 2009. http://www.ambysoft.com/surveys/
practices2009.html. Accessed 24 Jan 2017

2. Paez, N., Fontdevila, D., Oliveros, A.: Characterizing technical and organizational practices
in the agile community. In: Proceedings of CONAIISI, Salta, Argentina (2016)

3. Graziotin, D., Wang, X., Abrahamsson, P.: Software developers, moods, emotions, and
performance. IEEE Softw. 31, 24–27 (2014)

4. Cockburn, A.: What the Agile Toolbox Contains, Crosstalk Magazine, November 2004
5. Kroeger, T.A., Davidson, N.J., Cook, S.C.: Understanding the characteristics of quality for

software engineering processes: a grounded theory investigation. Inf. Softw. Technol. 56,
252–271 (2014)

6. Brown, J.S., Duguid, P.: The Social Life of Information. Harvard Business Press, Boston
(2000)

7. International Organization for Standardization: ISO/IEC 25010 Systems and Software
Engineering - Systems and Software Quality Requirements and Evaluation (SQuaRE) -
System and Software Quality Models, Geneva, Switzerland (2011)

8. Fontdevila, D.: A tool evaluation framework based on fitness to process and practice. In:
International Conference on Software Engineering Advances, ICSEA, Nice, France (2014)

9. Beck, K.: Test Driven Development by Example. Addison-Wesley, Boston (2002)
10. Norman, D.A.: The Design of Everyday Things. Basic books, New York (1988)
11. Feiler, P., Humphrey, W.: Software process development and enactment: concepts and

definitions. Software Engineering Institute, CMU/SEI-92-TR- 004 (1992)
12. Culver-Lozo, K.: The software process from the developer’s perspective: a case study on

improving process usability. In: Proceedings of Ninth International Software Process
Workshop, Airlie, VA, pp. 67–69 (1994). doi:10.1109/ISPW.1994.512766

13. Cockburn, A.: Agile Software Development: The Cooperative Game. Pearson Education,
London (2006)

14. Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)
15. International Organization for Standardization: ISO/IEC 25040 Systems and Software

Engineering – System and software Quality Requirements and Evaluation (SQuaRE) –

Evaluation process, Geneva, Switzerland (2011)
16. Kchwaber, K., Sutherland, J.: Scrum Guide. http://www.scrumguides.org/scrum-guide.html.

Accessed 24 Jan 2017

Usability Model for Software Development Process and Practice 145

https://doi.org/10.6084/m9.figshare.5296276.v1
http://www.ambysoft.com/surveys/practices2009.html
http://www.ambysoft.com/surveys/practices2009.html
http://dx.doi.org/10.1109/ISPW.1994.512766
http://www.scrumguides.org/scrum-guide.html

More for Less: Automated Experimentation
in Software-Intensive Systems

David Issa Mattos1(&) , Jan Bosch1 ,
and Helena Holmström Olsson2

1 Department of Computer Science and Engineering,
Chalmers University of Technology, Hörselgången 11,

412 96 Gothenburg, Sweden
{davidis,jan.bosch}@chalmers.se

2 Department of Computer Science and Media Technology, Malmö University,
Östra Varvsgatan 11, 205 06 Malmö, Sweden
helena.holmstrom.olsson@mah.se

Abstract. Companies developing autonomous and software-intensive systems
show an increasing need to adopt experimentation and data-driven strategies in
their development process. With the growing complexity of the systems, com-
panies are increasing their data analytic and experimentation teams to support
data-driven development. However, organizations cannot increase in size at the
same pace as the system complexity grows. Experimentation teams could run a
larger number of experiments by letting the system itself to coordinate its own
experiments, instead of the humans. This process is called automated experi-
mentation. However, currently, no tools or frameworks address the challenge of
running automated experiments.
This paper discusses, through a set of architectural design decisions, the

development of an architecture framework that supports automated continuous
experiments. The contribution of this paper is twofold. First, it presents, through
a set of architectural design decisions, an architecture framework for automated
experimentation. Second, it evaluates the architecture framework experimentally
in the context of a human-robot interaction proxemics distance problem. This
automated experimentation framework aims to deliver more value from the
experiments while using fewer R&D resources.

Keywords: Continuous experimentation � Automated experimentation �
Architectural design decisions

1 Introduction

During the development of a system, existing or new features are expected to add value
to the systems, e.g. increase the number of users, improved security, better battery
performance. Features that deliver low or negative value can have a negative impact on
the system and maintenance cost [1]. However, often deployed features to customers
fail to deliver the desired value or these features are rarely used [2]. The development
of a full feature from conception to user deployment can result in losses, or at least
opportunity cost if it does not deliver the expected value. The decisions in companies

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 146–161, 2017.
https://doi.org/10.1007/978-3-319-69926-4_12

http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
http://orcid.org/0000-0002-7700-1816

sometimes are based on the Highest Paid Person’s Opinion (HiPPO) and not actual data
[3]. Data-driven companies rely on data provided by running experiments with their
system in the field and from customer feedback.

Continuous Experimentation can be seen as the evaluation of different alternatives
decisions formulated and evaluated with hypothesis testing. Continuous Experimen-
tation does not refer to verification and validation of the system functionality. It rather
represents techniques to evaluate alternatives captured in the hypothesis. Some
examples of continuous experimentation in industry context can be seen in [4].

Many web-facing companies continuously report the use of experiments in their
data-driven decision process [5, 6]. However, there are a number of challenges asso-
ciated with manual experimentation. The first challenge appears when the experiments
go beyond simple user interface changes with traditional metrics. Running experiments
in the whole system and the system’s infrastructure, challenge R&D departments to
develop a scalable experimentation system able to handle a large amount of experi-
ments [5].

The second challenge arises with the growing complexity of the systems. Com-
panies are increasing their data analytic and experimentation teams to support
data-driven development. However, it is unfeasible to grow the size of R&D teams with
this increasing demand. To address this second challenge, in [7], it is proposed a
conceptual solution where the R&D teams build part of the functionality, set guardrails
and let the system autonomously experiment its functionality. These large companies
report automation in part of their experiments. However, most experiments are still
manually developed, conducted and analyzed.

Automated continuous experimentation refers to a set of experimental techniques
that allows the system to test variants, generate new variants and learn continuously
from the field experiments [8]. Automated experimentation offers a significant return
on investment as it allows systems to run experiments with significantly less R&D
effort. Moreover, generating new variants allows the system to converge to an optimal
state faster compared to manually conducted experiments [8].

Works on experimentation focus on experimentation algorithms, metrics and
machine learning techniques to analyze the data [6, 9]. However, to the best of our
knowledge, there is no research that addresses from a software engineering perspective
the architecture of an experimentation system that employs automated experimentation.

This research paper investigates the design decisions, the problem constraints and
their implication in the development of an architecture framework to support automated
experimentation. The presented architecture is based on decisions, evaluation and
experiences based on different research and industrial frameworks as described in this
paper and in previous work [8].

In this context, we propose an approach that combines manual and automated
experimentation in an integral framework. We present an architecture framework that
facilitates automated experiments in a system. The benefits of using this architecture
framework are shown in a human-robot interaction problem.

The contribution of this paper is twofold. First, it presents, through a set of
architectural design decisions [10], an architecture framework for automated continu-
ous experimentation. Second, it evaluates the architecture framework experimentally in
the context of a human-robot interaction proxemics distance problem. This evaluation

More for Less: Automated Experimentation 147

suggests a more effective way to develop a system, as compared to traditional manual
experiments. This automated experimentation framework aims to deliver more value
from the experiments while using fewer R&D resources.

The rest of this paper is organized as follows. Section 2 provides a background and
related works in controlled experiments, in automated experiments and describes the
research process. Section 3 discusses the context, requirements, the architectural design
decisions and the architecture framework. Section 4 presents the human-robot inter-
action (HRI) proxemics distance problem, discusses the framework instantiation, and
shows some experimental results. Section 5 concludes this paper and discusses future
works and research challenges.

2 Related Work and Research Process

2.1 Controlled Experiments in Software Systems

Controlled experiments use the scientific method to establish a causal relationship
between changes and their influence on the observed behavior [3]. Controlled exper-
iments (A/B tests, split tests, multivariable tests among others) are a central part of the
development process in web-facing companies [11]. In the most basic form, A/B tests,
users are randomly assigned to one of two variations (also known as a challenger).
With a large number of interactions (high statistical power) with the two variations, it is
possible to measure the difference in the behavior and establish a causal relationship to
the variations. Randomized experiments are not restricted to web-companies and are
present in several fields, such as Social Sciences, Medicine, Marketing and Behavioral
Economics. Online software systems have the advantage of being able to introduce
variations on the system without significant engineering cost and expose these varia-
tions to a high number of users. Data-driven companies use controlled experiments to
optimize their systems, to iterate more frequently by validating hypotheses and to
support the design and decision-making processes throughout the product lifecycle [4].

Industry software engineering research provide a techniques, tools and guidelines
on how to run effectively controlled experiments on online systems [3, 5, 11, 12].
However, companies still struggle on how to guide the R&D activities towards
experiments and evolve the organization to data-driven at [4]. The work presented in
[4] shows how Microsoft teams evolve from few experimentation to continuous
experimentation in large scale in their development, from the technical, organizational
and business perspective.

Although experimentation is gaining traction not only in web systems, the available
commercial platforms for A/B experiments focus only in web-systems (websites,
mobile apps and Facebook web pages) and are guided towards GUI changes.

2.2 Automated Experiments

Successful data-driven companies such as Microsoft, Google, Facebook, LinkedIn and
Booking continuously report an exponential growth in experimentation over time [5,
11, 12]. The exponential growth in the number of experiments is accompanied by an

148 D.I. Mattos et al.

increased growth in the R&D team and the need for new tools to address new prob-
lems, such as overlapping experiments [12]. However, it is unfeasible to grow the size
of R&D teams at the same rate. R&D organizations do not increase productivity
linearly with the size of the teams [7]. In [7], the need for automated experimentation is
also discussed in large extent. This discussion includes not only some of technical
needs but also organizational changes.

Running experiments for system optimization is common practice in web compa-
nies. However, the optimization process requires, through the experimentation process,
a high number of users for a number of days. As the systems and the organizations
grow in size each team reaches a maximum number of experiments they can run in
parallel.

Automated continuous experimentation refers to a set of experimental techniques
that allows the system to test variants, generate new variants and learn continuously
from the field experiments. Automated experiments aim to alleviate some of the bur-
dens of running experiments for optimization and transferring it to the system. Work in
automated experimentation is under development by different research groups and
companies. However, no companies report the use of automated experiments in their
operational side, but rather only from a research perspective [8].

To the best of our knowledge, no research exists that addresses the architecture of
an experimentation system that employs automated and continuous experimentation.
To address this research gap, our on-going research [8] started analyzing several
frameworks and architectures for experimentation and adaptation. In [8], we focus on
the analysis of research and industrial architectures to automated experimentation,
while in this paper we focus on the design decisions to develop an architecture
framework. Also in [8], we identified software architectures qualities to support
automated experimentation. These qualities together with the functional requirements,
described in Sect. 4, consist the structure of our design decisions. The identified
qualities are listed below, in order of relevance.

External experiment control: it allows separation between the application logic
from the experimentation part. This implies the use of an external manager, that interacts
with the system through sensors and effectors interfaces. This facilitates adding
experiments to existing features and also removing it for features that have reached a
static loop (the system under experimentation converges to a unique solution) [7].

Data collection as an integral part of the architecture: collecting experiment
data, from both the system and the environment should be an integral part of the
architecture. The collected data can be processed to provide insightful information and
allow development data-driven software. A systematic approach to data collection
allows the scalability of automated experimentation from one to several features.

Performance reflection: performance here does not mean the ability to meet
timing requirements. Performance reflection consists of the system evaluating the
current system behavior due to the variant and according to an expected value.

Explicit representation of the learning component: learning techniques can be
used to help the system to achieve an optimal solution. Machine learning techniques
such as multi-armed bandits and reinforcement learning can leverage the experiment
speed. However, not all controlled experiment problems support all kinds of algorithms

More for Less: Automated Experimentation 149

and the experiment designer needs the ability to replace the learning component to a
more suitable one.

Decentralized experimentation framework: this refers to the use of different
instances of an experimentation manager in contrast with using only one manager for
the whole system. This allows experimentation in feature-level while maintaining
scalability.

Knowledge exchange: experimentation can happen in different scenarios with one
or several systems. In the case where several systems are deployed, one system can
share information and the learning process with other systems. This knowledge
exchange can help several systems collaboratively optimize their behavior.

2.3 Research Process

This research follows the design-science process and the guidelines described by
Hevner [13]. The correspondence process of this research to the design-science method
are listed below:

Design as an artifact: this research produces an architecture framework for
automated experimentation as the artifact.

Problem relevance: the relevance of this problem is discussed in the introduction
and background session. A more in-depth discussion can be found in [7] and in [8].

Design evaluation: the architecture framework developed is instantiated in a
human-robot interaction problem and evaluated experimentally in both simulation with
artificial data and in a real-world scenario. In this step, it was collected experimental
data from the interaction of the robot with the participant. The experimental setup deals
with the optimization for one participant without knowledge of the system. This
experimental setup does not aim to determine the best proxemics distance for a pop-
ulation, but rather investigate the use of the framework in such case.

Research contributions: this research breaks down the design decision process
and the tradeoffs of different configurations of an architecture that supports automated
experimentation.

Research rigor: foundations in controlled experiments and architectures for
adaptation guided the design decisions for the architecture framework. A previous
literature review identified relevant software qualities and evaluated existing archi-
tectures alternatives and how they implement solutions for their domain-specific
problems [8].

Design as a search process: the architecture framework was developed in an
iteration process. The different versions were evaluated against the experimental and
descriptive scenarios and updated by the design decisions.

3 Architecture Framework Design Decisions

The introduction and background sections provided the motivation for the development
of this architecture framework. We assume the system is already developed using a
particular set of technologies and following a specific software architecture. The
automated experimentation architecture framework will enhance the system capabilities

150 D.I. Mattos et al.

using the existing system infrastructure. The system under experimentation (SuE) refers
to the part of the system that is being experimented. For simplification, we divide a
system into three levels: system, subsystems and components. Although we envision to
automated experimentation in different levels of a system, we started the development
of an automated experimentation architecture framework in the component level only.

3.1 Functional Requirements

Below we describe the functional requirements of the experimentation system. These
requirements were obtained by analyzing the automated experimentation problem [7,
8], the descriptive scenario presented in [7] and the attributes needed to support it in a
family of systems.

• The experimentation system allows the system under experimentation to run
experiments, measure its own behavior and learn from this process. Based on
predefined metrics the system under experimentation will improve its behavior
aided by the experimentation system.

• The architecture framework should support different learning algorithms and not be
restricted to one in particular.

• If the system under experimentation is part of a family of systems It should be able
to learn and share learned solutions with the other systems.

• More than one feature can be experimenting at the same time. Confounding factors
associated with multivariable experiments should be considered.

• The system should support manually predefined variations, as well as an auto-
matically generator of new variations.

• The system should keep track of some guardrails metrics [7] while experimenting.
If the system is not in the experiment boundaries, a predefined safe version should
be active.

3.2 Problems, Potential Solutions and Decision

We describe the design decisions using a set of {problem, potential solutions, deci-
sion}. Some of these problems are recognized from research literature or industry
challenges in both the controlled experimentation, software architecture and adaptive
systems.

1. Type of experimentation

Problem: the experimentation can be integrated into the application logic or
developed as a separate part of the application logic. Motivation: several systems that
can benefit from experimentation are built using different architectures, frameworks
and technologies.

Potential solutions
External experimentation manager. Description: this solution creates an external

manager to the system. This separates the experimentation logic from the application
logic. Design rules: the experimentation manager interacts with the system through its
interfaces. The system should continue to work even if the experimentation manager is

More for Less: Automated Experimentation 151

removed. Design constraints: the manager should only interact with the system
through its interfaces. Consequences: the becomes loosely coupled with the system.
Pros: maintainability of both the system and the experiment. Cons: reduced timing
performance of the system. Additional complexity as it introduces a communication
layer and new interfaces.

Internal to the application logic. Description: this solution incorporates the
experiment into the application logic, combining into one system. Design rules: the
experiment design is incorporated into the development workflow of the systems.
Design constraints: the feature developments should handle the experiment design.
Consequences: the correct functionality of the system becomes dependent on the
experiment logic. Difficult to reuse code between similar experiments. Pros: integrated
with the current development workflow. Better timing performance compared to an
external manager. Cons: reduced maintainability. If there is a need to change the
experiment/learning algorithms or the application functionality, affects both the
application and experiment logic.

Decision
The decision is made to use the external experimentation manager solution, which

decreases maintainability, facilitates changes and new algorithms and increases the
reliability of the system. This decision is also acknowledged in the manually controlled
experimentation [11] and in adaptation architectures [9].

2. The degree of decentralization

Problem: the external experimentation manager can be integrated with the systems
in different degrees of decentralization. Motivation: the degree of decentralization of
the system impacts both performance, maintainability and scalability.

Potential solutions
Centralized experimentation manager. Description: in this solution, the system

has only one manager coordinating all experiments. Design rules: the experimentation
manager is responsible for getting all the system data and coordinating the experiment
at all levels, from sub-systems and component to feature-level. Design constraints:
only one instantiation of the manager. the manager should be able to control inde-
pendent experiments and different algorithms. Consequences: each experiment is
controlled in only one central place. Pros: only one place to keep track of the
experiments. Easier to coordinate different experiments and avoid confounding factors.
Cons: a single point of failure, experiments not related to each other can be influenced
by the manager performance. Scalability might be affected when dealing with several
experiments at the same time.

Decentralized experimentation at feature-level. Description: in this solution,
several experimentation managers are deployed in feature-level. Design rules: each
manager is responsible only for the feature it is interacting with. Design constraints: a
feature experiment should not alter other features experiments. The managers should
not share resources with each other. Consequences: several instances of experiment
managers are deployed. Pros: provides a way to scale the system and a failure in one
manager does not affect the other experiments. Customization of the manager for a
particular experiment does not imply changes in a larger manager. Cons: different
software versions of a manager might be running at the same time, reducing

152 D.I. Mattos et al.

maintainability. In this approach, lack of synchronization between the managers can
introduce confounding factors between the experiments.

Decision
The decision is made to use a decentralized approach. Data-driven companies

experimenting at large scale report using decentralized tools to run experiments, seg-
menting the system to allow concurrent experiments [11, 12]. Although, in simple
cases a single manager might be easier, in systems where the software is distributed in
different computational nodes (such as robotics, automotive and other embedded
systems) a single manager is not an alternative. This approach allows to experiment at
different levels of the system hierarchy. Moreover, parts of the system can be isolated
(e.g. security) from each other and a single manager in those parts might break other
architectural rules of the application logic.

3. Confounding factors

Problem: different experiments can influence the same aspect of the system
behavior. In this scenario, it is hard to correctly interpret which experiment lead to the
correct change (confounding factors). Motivation: in a decentralized architecture, lack
of synchronization on the on-going experiments can lead to confounding factors.

Potential solutions
Centralized experiment coordinator. Description: the system has only one

experiment coordinator to manage all the experiments. The other parts of the archi-
tecture would remain decentralized. Design rules: all the decentralized components
communicate and coordinate the experiments with a central coordinator. Design
constraints: each decentralized component does not have full autonomy to run the
experiment. They should receive permission from the central coordinator. Conse-
quences: every new experiment should register and communicate with the central
coordinator. Pros: simplify the coordination process in a single instance. Cons:
reduces the reliability of the system by having a single point of failure. Changes in the
experiment coordinator can affect all experiments. Changing the coordinator with
running experiments can insert bias in the sample and possibly affect all running
experiments (in the order of hundreds in large data-driven companies [12]).

Decentralized conflict manager. Description: each experiment instantiation has
its own experiment coordinator and a conflict manager. The conflict manager is
responsible for keeping track of the current experiments in the system and the
experiment coordinator is independent of other experiments. Design rules: the conflict
manager signals when starting an experiment and it is notified when other experiments
start or stop. This allows the experimenting feature to keep track of potential con-
founding factors. Design constraints: experiments should be independent of each
other and communication happens decentralized. Consequences: each experiment
system is contained, not depending on the other experiments. Pros: independent
experiments reduce the risk of one experiment failure increasing the risk of failures in
all experiments, facilitates the scalability of the number of concurrent experiments.
Cons: introduces an extra layer of complexity when running the experiments or create
decentralized communication infrastructure between features.

More for Less: Automated Experimentation 153

Decision
The decision is made to use a decentralized conflict manager. Although this

solution introduces an extra layer of complexity, it is the solution used in open source
tools from companies that experiment in large scale [11, 12]. The extra complexity
comes in the designing of the experiment inside the organization. Experiments in the
system can be divided between different teams in a way that there is no overlapping.
Google divides different experiments in a layer model [12]. Facebook uses namespaces
mapped to independent segments of users [11]. Sometimes experiments go through
several iterations until the result can be considered valid and the cost to affect several
on-going experiments might be prohibited for an organization.

4. Information exchange

Problem: The learning behavior can take a long time to converge in a system
isolated. Moreover, the learning process might converge to a specific context where the
system is inserted. This situation can reduce the value that the system is delivering.
Motivation: In the case of several systems being deployed, one system can help the
learning process of the other systems. A system initializing with more advanced ver-
sions can converge quicker to a solution or initialize with a pre-defined solution.

Potential solutions
Central server. Description: in this solution, the system sends experiment data

back to the development team and to other systems through a central server. This data
can be used to initialize new learning processes in other systems and be integrated into
future developments by the R&D team. Design rules: the system needs an infras-
tructure to communicate with the other systems and the R&D when it learns. A central
server infrastructure is necessary to coordinate the information flow. Design con-
straints: the system should have access to a reliable and secure network. Communi-
cation directly between systems is not allowed. Control over quality and origin of the
information is transferred to the central server. Consequences: The system is con-
stantly sharing information with a central server. This solution requires a backend
infrastructure. Pros: the company behind the system has control of the information
flow and the information quality. Cons: a central server introduces a point of failure in
the system. If the server is down communication between systems is compromised.

Peer-to-peer. Description: this solution equips the system the ability to handle
communication directly between systems. Design rules: each system should be able to
discover other systems and manage the communication and information flow. Design
constraints: control over the quality and origin of the information is constrained to
each system. Consequences: this solution can use the same network infrastructure as
the central server solution. However, each system should be able to discover other
systems, authenticate and verify the quality of information. Pros: reduces the depen-
dency on a central server, eliminating a possible point of failure. This also facilitates
communication directly between the systems. Cons: this solution introduces an
overhead to verify the source and quality of information in each system. Systems
producing incomplete or faulty information become harder to detect. The research and
development team does not have access to the full information shared between systems.

154 D.I. Mattos et al.

Decision
The decision is made to use a central server to coordinate information exchange.

Knowledge, tools and solutions for running central servers and handling communi-
cation are largely available. This solution also provides a way to control the infor-
mation flow concerning user’s private usage data, quality and origin of the information.
Moreover, it allows sharing data with the R&D team.

5. Guardrails

Problem: experiments should happen in predefined boundaries and conditions.
Running experiments outside the experiments boundaries can decrease the perfor-
mance, deteriorate systems metrics or business goals, and generate invalid experiment
results. Motivation: systems experimenting outside their experiment boundaries can
lead to situations that put the user or the system safety in risk, or deteriorate metrics that
were not considered when designing the experiment.

Potential solutions
Restrict when the system can experiment. Description: in this solution, the R&D

team only allows experiments in systems that fulfill the experiment criteria in advance.
Design rules: the experimentation framework is not responsible for selecting when the
system can experiment. This is done by the R&D team. Design constraints: the system
does not keep track of the boundaries or the experiment context. Consequences: if the
system or the user change context, an experiment might be running outside boundaries.
Unless the R&D teams take action, the system will continue running the experiment.
Pros: this solution is easier to implement when experimenting a low number of features
in a small user base. The system does not need to monitor the context of the experi-
ment. Cons: this solution can introduce bias in the experiments, because of the pop-
ulation selection process. Depending on the experiment this solution might require a
large user base. Moreover, this solution might not scalable with a large number of
experiments in parallel.

Measure and keep track of the experiment conditions. Description: in this
solution, the experimentation manager feature decides if the systems can experiment or
not. Design rules: the experimentation manager needs to keep track of the context and
determine the current state of the system. Design constraints: the system is not
allowed to experiment without determining complying with the experiment boundaries.
Consequences: this requires the system a capability of keeping track of its context and
business goals. Incomplete or wrong information of the context leads to experiments
running outside its boundaries. Pros: each experiment is independent. The experi-
mentation manager can stop the experiment if the system is running out of the
experiment boundaries. Cons: the system needs to instrument several context variables
to correctly induce the current state. This can create a large overhead for the first
experiments in an organization that is not data-driven.

Decision
The decision is made to measure and keep track of the experiment conditions. In

dynamic systems and in uncertain environments the system there are no guarantees that
the system will stay in its initial experiment boundaries. Traditional controlled
experiments systems rely on the R&D teams to check the conditions of the experiment.

More for Less: Automated Experimentation 155

Manually keeping track of the experiments limits the number of experiments the R&D
team can run in parallel.

3.3 The Architecture

The architecture framework for automated experimentation is represented in Fig. 1.
This architecture is the result of the design decisions over several iteration processes
and inspired by solutions already developed in frameworks for controlled experi-
mentation and architectures for adaptation [8]. The architecture is presented in a general
way. Implementation and instantiation of it for a particular domain would require a new
set of design decisions linked to both the domain as to the technologies of the system
itself. These decisions are linked to the framework in the different components. The
design decision 2 affects the architecture framework as a whole. The architecture
components are described next:

Monitor. This component implements the data collection. The both local and
global behavior of the system. This component is directly related to the data collection
in the discussed qualities. This component does not represent only a stream of raw data
into the experimentation architecture framework, it represents data processed that add
information to experimentation framework system. This component is linked to the
design decision 1.

Experiment Coordinator. This component is responsible for running the experi-
ment and coordinating with the version manager. This component controls only the
specific SuE, other experiments have their own experiment coordinator components.
The experiment coordinator can control experiments such as A/A, A/B/n,
explore/exploitation and crossover experiments. This component keeps track on when

Fig. 1. The architecture framework for automated continuous experimentation

156 D.I. Mattos et al.

to experiment, the number of experiments that should be run, which solution is more
significant. This component receives inputs from the conflict-list manager if it is
allowed to run an experiment or not. It also receives inputs from the experiment
watchdog component, if the system is deteriorating any global metrics, if it went out of
boundaries or if it still needs to perform more experiments. This component is linked to
the design decision 3.

Version Manager. This component is responsible for managing and generating
different versions (or variations) to experiment. This can be acting in parameters or
replacing whole sub-component models. The version generator keeps a list of the
versions used and accepts versions inputs from the Knowledge Exchange component
and the Version Generator. This allows the experimentation system to use both auto-
matically generated versions, as well as manual versions crafted by the R&D team.
Although this component is not directly connected to a one of the design decision
listed, this component is linked to both the functional and quality requirements.

Version Generator. This component can accommodate different artificial intelli-
gence algorithms that we might want to test. The generation algorithm is not specified,
but it could include machine learning algorithms, such as reinforcement learning
algorithms, genetic algorithms, parameter scheduling or randomized versions. This
component is directly connected to the learning quality.

Experiment Watchdog. This component checks the conditions that the system can
run the experiments, such as when the system should continue experimenting and when
it should stop. If the system goes out the predefined boundaries or if there is deteri-
oration in global metrics this component can stop the experiment and return the system
to the “safe” version. Having a stop condition for global metrics prevents the system
improving a local metric, but degrading a global metric. If any of the stop conditions is
reached this component signals to the experiment coordinator to stop the experimen-
tation process or to roll back to a safe version. This component is linked to the design
decision 5.

Conflict Manager. This component keeps track in run-time of components that are
being experimented with and which factors it affects. This manager keeps track of those
systems in order to avoid confounding variables in the experiment. This is directly
related to the decentralized experimentation manager decision. Different alternatives
can be used for implementing this component, such as the use layers [12] or names-
paces management [11]. This component is linked to the design decision 3.

Effector. This component is responsible for interfacing with the managed system.
Besides the monitor, it is the only point of contact with the rest of the experimentation
framework. This component requires that the managed system expose interfaces for
interaction with the system. This concept of not intermixing the experimentation logic
and the application is directly related to the external experimentation quality. The same
observations made to the monitor component are valid for the effector. This block is
linked to the design decision 1.

Metric Analysis. This component is responsible for keeping track of the managed
system behavior and the value function. This component analyzes and guides the
experimentation through by checking the delivered value of all variants. In this com-
ponent, we insert the value function or overall evaluation criteria [3] and we run our

More for Less: Automated Experimentation 157

statistical analysis. This component is directly related to the performance reflection
quality.

Knowledge and Information Exchange. This component exchange information
with the external world. This component is responsible for sharing discovered solutions
in the experimentation process and also for sharing and learning the validated solutions
from the experiment through a central server infrastructure. This also represents a way
in which the R&D can interact with the system, either helping in the analysis step or
proposing different versions not generating by the version manager, for example,
testing different algorithms. This component is directly related to the Knowledge
Exchange quality and linked to the design decision 4.

4 Evaluation of the Architecture Framework

Human interaction is based on several unwritten and subjective rules. One example is
respecting other people’s personal space. In human-human relations, several social
factors play an important role in this interaction. Not conforming to these rules may
cause miscommunication and discomfort. Different works recognize some base dis-
tances and how they are influenced depending on a change of factor. However, this is
still an open problem. The development of new robots and the deployment of these
robots in very different contexts (e.g. different countries) require new experiments to
validate and optimize the proxemics distance as seen in [14].

4.1 Instantiation of the Framework

The framework was instantiated in a research mobile robot Turtlebot 21 using the
Robot Operating System (ROS) middleware2. The source code for the full automated
experimentation framework implementation is available at https://github.com/
davidissamattos/david_ws. Each of the component blocks represented in Fig. 1 were
implemented as a separate Python process communicating through publish-subscribe
messages. In this instantiation, the conflict manager and information exchange com-
ponents were not implemented as the system is only running one experiment using only
one platform robot.

Feedback Monitor: this component listens to events implemented in the robot
such as distance to a person, audio feedback and battery level.

Metric Analysis: this component keeps track of the user satisfaction with the robot
approach. It summarizes the event input in an evaluation criteria similar to the OEC [3].
We expect our user to be satisfied at least 70% of the approaches in the long run or an
increase of absolute 20% in our 50% baseline [8].

Experiment Watchdog: this component verifies the current state of the system and
the boundaries of our problem. For this system, we defined some boundaries such as,
human safety distance (minimum of 20 cm), restrict experiment in the case of low

1 www.turtlebot.com.
2 www.ros.org.

158 D.I. Mattos et al.

https://github.com/davidissamattos/david_ws
https://github.com/davidissamattos/david_ws
http://www.turtlebot.com
http://www.ros.org

battery and deterioration of our business metrics, e.g. if the experiment is performing
poorly (e.g. less than 30% of the cases) we roll back to the baseline variation.

Experiment Coordinator: this component is responsible for implementing tradi-
tional A/B experiments control and multi-armed bandit algorithms. We are using a
heuristic algorithm for the k-armed bandit optimization problem.

Version Manager: the version manager component receives input from the
experiment coordinator regarding which experiment is running. The version manager
generates these versions either by static input (manual experiments) or by calling a
learning component to generate it (e.g. calling the machine learning component).

Machine Learning: the version manager requests new versions to the machine
learning component. This component uses the K-means clustering algorithm with the
k-means++ initialization algorithm implemented in the scikit-learn Python library.

Effector: this component changes the system behavior using a parameter server,
similar to remote configuration libraries for mobile development.

This system was evaluated against a user in an office environment. The baseline
distance was 1.5 meters. The framework took 37 samples to converge to an optimal
solution for a user (0.92 m). This solution can be then validated with traditional A/B
experiments against the baseline variation (Fig. 2).

4.2 Cost-Effectiveness

Kohavi [3] provides guidelines on a minimum number of samples when running A/B
experiments. Using these guidelines, the optimization of the proxemics distance for one
individual requires at least 96 samples for each variation (assuming a baseline of 50%
with a minimum detectable effect of 20%, with a statistical power of ß = 80% and

Fig. 2. Instantiation of the automated continuous experimentation framework in the
human-robot proxemics distance problem.

More for Less: Automated Experimentation 159

significance level of a = 95%) [3]. Considering a grid of 1 m per sample in a range of
1 m to 5 m, it results in 480 samples. Using the automated continuous experimentation
framework, the system converged to a distance in 37 samples. Integrating this result
with a traditional A/B experiment results in a total of 133 samples to achieve statistical
validity in the optimization process. Although this result was not generalized, it already
suggests a more effective way to run experiments.

5 Conclusion

Data-driven companies employ controlled experiments as an essential mechanism to
evaluate ideas and optimize their systems [3, 5, 11, 12]. Research in this area
emphasize the algorithms and building blocks for manual experimentation. However,
as the number of experiments grows, organizations face challenges in both the scala-
bility of their experiments as well as the complexity. Automated continuous experi-
mentation addresses the problem of the ever-growing number of the R&D organization
to support experimentation.

This research paper investigates different design solutions, the problem constraints
and their implication in the development of an architecture framework to support
automated experimentation. The presented architecture is based on decisions, evalua-
tion and experiences based on different research and industrial frameworks as described
in this paper and in previous work [8]. We propose an approach that combines manual
and automated experimentation in an integral framework. We present an architecture
framework that facilitates automated experiments in a system. The use and benefits of
using this architecture framework are shown in a human-robot interaction problem. The
evaluation in the proxemics distance problem reinforces that automated experimenta-
tion can lead to a better solution compared to manual experimentation while using
fewer R&D resources.

Currently, this framework is also being evaluated in mobile and web systems, in
both research and industrial applications. Together with the human proxemics distance
problem, the evaluation of the framework in different applications strengths the benefits
of automated experimentation.

Acknowledgements. This work was partially supported by the Wallenberg Autonomous Sys-
tems and Software Program (WASP).

References

1. Fabijan, A., Olsson, H.H., Bosch, J.: Time to say ‘good bye’: feature lifecycle. In: 2016 42th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 9–
16 (2016)

2. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘open loop’ problem. In: Proceedings of 40th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), SEAA 2014, pp. 9–16 (2014)

3. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Mining Knowl. Discov. 18(1), 140–181 (2009)

160 D.I. Mattos et al.

4. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development. In: Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017 (2017)

5. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled
experiments at large scale. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD 2013, p. 1168 (2013)

6. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized
news article recommendation. WWW 2010, 10 (2010)

7. Bosch, J., Olsson, H.H.: Data-driven continuous evolution of smart systems. In: Proceedings
of the 11th International Workshop on Software Engineering for Adaptive and
Self-Managing Systems - SEAMS 2016, pp. 28–34 (2016)

8. Mattos, D.I., Bosch, J., Olsson, H.H.: Your system gets better every day you use it: towards
automated continuous experimentation. In: 2017 43th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (2017)

9. Kohavi, R., Deng, A., Frasca, B., Walker, T.: Online controlled experiments at large scale.
In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD 2013, pp. 1–9 (2013)

10. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In: 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), vol. 2005,
pp. 109–120 (2005)

11. Bakshy, E., Eckles, D., Bernstein, M.S.: Designing and deploying online field experiments.
In: Proceedings of 23rd International Conference on World wide web - WWW 2014,
pp. 283–292, September 2014

12. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2010, p. 17 (2010)

13. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

14. Oskoei, M.A., Walters, M.L., Dautenhahn, K.: An autonomous proxemic system for a
mobile companion robot. In: Proceedings of Second International Symposium on New
Frontier Human-Robot Interaction, pp. 9–15, April 2010

More for Less: Automated Experimentation 161

Industry Relevant Qualitative Research

The Evolution of Design Pattern Grime:
An Industrial Case Study

Daniel Feitosa1(&) , Paris Avgeriou1 ,
Apostolos Ampatzoglou1 , and Elisa Yumi Nakagawa2

1 Department of Mathematics and Computer Science, University of Groningen,
Groningen, The Netherlands

{d.feitosa,a.ampatzoglou}@rug.nl, paris@cs.rug.nl
2 Department of Computer Systems, University of São Paulo, São Carlos, Brazil

elisa@icmc.usp.br

Abstract. Context: GoF design patterns are popular among both researchers
and practitioners, in the sense that software can be largely comprised of pattern
instances. However, there are concerns regarding the efficacy with which soft-
ware engineers maintain pattern instances, which tend to decay over the soft-
ware lifetime if no special emphasis is placed on them. Pattern grime (i.e.,
degradation of the instance due to buildup of unrelated artifacts) has been
pointed out as one recurrent reason for the decay of GoF pattern instances. Goal:
Seeking to explore this issue, we investigate the existence of relations between
the accumulation of grime in pattern instances and various related factors:
(a) projects, (b) pattern types, (c) developers, and (d) the structural character-
istics of the pattern participating classes. Method: For that, we empirically
assessed these relations through an industrial exploratory case study involving
five projects (approx. 260,000 lines of code). Results: Our findings suggest a
linear accumulation of pattern grime, which may depend on pattern type and
developer. Moreover, we present and discuss a series of correlations between the
accumulation of pattern grime and structural characteristics. Conclusions: The
outcome of our study can benefit both researchers and practitioners, as it points
to interesting future work opportunities and also implications relevant to the
refinement of best practices, the raise awareness among developers, and the
monitoring of pattern grime accumulation.

Keywords: Design patterns � Pattern grime � Industrial case study

1 Introduction

The most popular catalogue of design patterns among practitioners consists of the 23
GoF design patterns (from the Gang of Four—Gamma, Johnson, Helm, and Vlissides)
[1]. In Java applications, it has been reported that the number of classes that participate
in GoF pattern occurrences can vary from 15% to 65% (e.g., in software libraries) [2, 3],
leading to a significant influence on the overall quality of the system. However, the
effect of patterns on quality is not uniform [4]; the same pattern can have both a positive
and a negative effect on the quality of a software product. Therefore, gaining more

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 165–181, 2017.
https://doi.org/10.1007/978-3-319-69926-4_13

http://orcid.org/0000-0001-9371-232X
http://orcid.org/0000-0002-7101-0754
http://orcid.org/0000-0002-5764-7302

insights on how exactly patterns have an impact on quality is of paramount importance.
A significant parameter that determines how pattern instances affect quality is the
amount of artifacts (e.g., methods and attributes) that exist in the pattern-participant
classes, which however, are not compliant to the original pattern definition [5]. Izurieta
and Bieman [5] named this phenomenon pattern grime and defined it as the degra-
dation of design pattern instance due to buildup of unrelated artifacts in pattern
instances. For example, grime can be introduced to a Template Method pattern instance
by adding public methods that are not invoked inside the template method. Similarly,
grime is introduced to a concrete state class of a State pattern instantiation when adding
public methods other than those defined in the state interface. For both the aforemen-
tioned examples, such changes would lead to a reduced cohesion for the specific class,
as well as reduced levels of source code understanding. Thus, the accumulation of grime
can certainly be harmful to the quality of pattern instances and the overall system [5–7].

Despite the potential effect of pattern grime on software quality, there is currently a
lack of studies that investigate factors related to the accumulation of pattern grime.
Therefore, in this study, we take a first step by exploring two types of factors related to
the accumulation of pattern grime, i.e., different: projects, pattern types, developers,
and structural characteristics of pattern-participating classes (e.g., coupling and lack
of cohesion). To this end, we performed an industrial case study, in which we analyzed
five projects (that sum up to approx. 260,000 source lines of code) containing eight
different GoF pattern types and implemented by 16 developers. To measure grime, we
provide an open-source tool that automates the assessment of several pattern grime
metrics. The outcome of this study sheds light on the factors that influence the accu-
mulation of grime in pattern instances. Our results can be used by architects and
designers to develop best practices while using design patterns, but also to monitor the
evolution of grime and its respective effect on software quality.

The remainder of this paper is organized as follows. In Sect. 2, we present work
related to ours. The design of the case study is presented in Sect. 3, reported according
to the guidelines of Runeson et al. [8], i.e., the Linear Analytic Structure. In Sects. 4
and 5 we present the results of our study and discuss the most important findings,
respectively. We report on the identified threats to validity and actions taken to mitigate
them in Sect. 6. Finally, in Sect. 7 we conclude the paper and present some interesting
extensions for this study.

2 Related Work

In this section, we present work reporting on empirical studies on the evolution of
grime and/or its relation to other characteristics of software pattern instances (e.g.,
quality attributes and metrics).

Izurieta and Bieman [9] investigated the evolution of various design pattern
instances from an open-source project to understand how patterns decay. The results
suggest that the main reason for pattern instances to decay is due to grime. Schanz and
Izurieta [10] proposed a taxonomy for subtypes of modular grime (one type of grime)
and performed a pilot study on nine pattern instances evolving throughout eight ver-
sions of one industrial software. The study validated the proposed classification, as well

166 D. Feitosa et al.

as suggested an increase of pattern grime. Regarding how the accumulation of grime
correlates to other characteristics of the system, Griffith and Izurieta [11] proposed a
taxonomy for one type of grime, class grime, and performed a pilot study on randomly
selected pattern instances from open-source projects to investigate the effects of class
grime on design pattern understandability, and found this quality attribute to be neg-
atively affected by the accumulation of class grime. In another study, Izurieta and
Bieman [6] evaluated the testability of design pattern instances from three different
patterns and found that as grime is accumulated, other issues such as code smells also
appears, and the testability of the pattern instances decreases.

Izurieta and Bieman [5] studied the accumulation of grime and rot (another form of
pattern decay, due to deterioration of the structural or functional integrity) during the
evolution of pattern instances of three open-source systems. The study also correlated
grime to testability, adaptability and pattern instability. The results are similar to those
observed in the aforementioned studies, including increase of pattern grime and neg-
ative correlation with testability and adaptability. The authors also reported that they
could not identify rot of pattern instances nor correlation between grime and pattern
instability. Dale and Izurieta [7] reported an experiment to study the correlation
between three subtypes of modular grime and technical debt. Pattern instances of three
example systems were used and modular grime was systematically injected in the
instances. The results suggest that one subtype of modular grime (i.e., strength) is more
strongly correlated to technical debt, in the sense that strong coupling (through class
attributes) is correlated with stable grime, while weak coupling (other kinds of cou-
pling) is correlated to increased technical debt.

In comparison to related work, we contribute the following: (a) we studied five
industrial non-trivial projects that collectively provided 36,571 units of analysis (i.e.,
editions to pattern instances’ source code, see Sect. 3). Therefore, we can compare our
results with those obtained from the analysis of open-source projects and toy examples;
(b) among other facets, we investigated how pattern grime is accumulated by different
developers (16 in total), which has not been considered in previous studies; and (c) we
studied the correlation between pattern grime and multiple structural metrics of pattern
instances, which has not been thoroughly explored in previous studies.

3 Study Design

Objectives and Research Questions (RQs): The goal of this study, described using
the Goal-Question-Metric (GQM) approach [12], is formulated as follows: “analyze
instances of GoF design patterns for the purpose of investigating the factors of project,
pattern type, developers and structural characteristics of pattern participants with
respect to their relationship with pattern grime, from the point of view of software
designers in the context of industrial software development”. Based on this goal, we
defined the following research questions—RQs:

The Evolution of Design Pattern Grime 167

RQ1: How does grime accumulate in pattern instances?
RQ1.1: Are there differences in accumulated grime among different projects?
RQ1.2: Are there differences in accumulated grime among different pattern types?
RQ1.3: Are there differences in accumulated grime among different developers?

RQ1 aims at assessing pattern grime within the five projects and exploring differences
across three different factors: projects, types of pattern (e.g., Observer, Template
Method) and developers. We chose these factors as they may potentially influence the
accumulation of grime: the projects vary in requirements, design, size, scope etc. and
may thus influence grime accumulation; the types of patterns exhibit different solutions
and may allow or inhibit the accumulation of grime; the developers have diverse
backgrounds and experience thus knowingly or inadvertently accumulating grime
differently.

RQ2: Are structural characteristics of the pattern participants related to the accu-
mulation of grime?

RQ2 aims at investigating the relationship between levels of grime and a different type
of factor: the structural characteristics of pattern-participating classes. This helps to
further understand the details of how the structure of the pattern itself relates to
accumulating grime, and can thus inform best practices on the usage of design patterns.

Case Selection, Unit of Analysis, and Subjects: To answer the research questions,
we designed an exploratory case study [8], in which we analyze five industrial projects
from one company in the domain of web and mobile applications development. Two
projects were developed by two independent teams, whereas the remaining three
projects were developed by a third team. We selected an industrial case study, since
there is a lack of empirical studies on pattern grime for such projects; most of the
previous studies have been performed on toy examples or open-source projects.

As cases, we used the pattern instances of the explored projects. From each case,
we recorded multiple units of analysis, based on the evolution of the specific instance.
In particular, we recorded a unit of analysis for every change in the instance (i.e., pair
of successive commits). We decided to focus on pairs of commits to isolate and assess
events (changes to pattern instances) performed by a single developer. This allows to
investigate developers as a potential factor influencing grime (see RQ1.3).

Variables and Data Collection: To answer the research questions, we extracted four
groups of variables:

(1) Identification of unit of analysis (commit, developer). To identify every unit of
analysis, we queried the git repository and extracted the author information and
files that were changed for every commit. We ignored merge commits, as they do
not provide new information regarding changes to files. In addition, we consid-
ered only changes to java classes that participate in a pattern instance.

168 D. Feitosa et al.

(2) Pattern information (instance-id, pattern). The collection of the pattern instances
is a time-consuming task. For that reason, we used two tools, namely SSA
(Similarity Score Analysis, v4.12) [13] and SSA+ (v1.0.0), to detect pattern
instances and performed a series of validations. In short, these tools allow us to
detect pattern instances of 12 types: Adapter/Command, Composite, Decorator,
Factory Method, Observer, Prototype, Singleton, State/Strategy, Template
Method, and Visitor. Due to space limitations, we do not elaborate on the SSA
tool nor its validation. However, we used a similar design setup to detect patterns
in a previous study [14], in which all relevant information can be found. We note
that we manually verified various (randomly selected) outputs. Regarding SSA+,
it detects 10 extended pattern-participant classes, i.e., that participate in the pattern
but it is not part of the main pattern structure (e.g., Concrete State/Strategy). The
full list of detected extended pattern participants is available in the tool’s website1.
To validate SSA+, we also manually verified randomly selected outputs.

(3) Assessment of grime change (cg-*, mg-*, og-*) between a pair of successive
commits. According to Izurieta and Bieman [9], there are three types of grime,
which can be assessed independently: class, modular and organizational. To
measure these types, we selected six metrics, as shown in Table 1. Each metric is
estimated based on diverse design elements of pattern-participating classes:
(a) class grime metrics are based on attributes and public methods; (b) modular
grime metrics are based on incoming and outgoing dependencies; and (c) orga-
nization grime metrics are based on package and their dependencies. Due to space
limitations, we do not elaborate further on the metrics, which are calculated as
described by Izurieta and Bieman [9]. We chose these metrics because they allow
us to assess different aspects of each type of grime, and they were previously used
and validated to assess pattern grime in non-trivial systems [5]. To automate the
calculation of the metrics, we created an open-source tool, spoon-pttgrime2

(v0.1.0), available online as a public repository, which also contains further
information on how the metrics are calculated. To validate the tool, we manually
verified the output for 20 pattern instances (randomly selected) over five con-
secutive commits. Bugs were fixed and additional verification rounds showed no
errors. As we are interested in assessing the change of grime in pattern instances
for a pair of commits, we subtracted the grime estimation at the current commit
(identified by the unit of analysis) from the estimation of the immediate previous
commit (i.e., its parent).

(4) Assessment of structural change (s-*) between a pair of successive commits. To
assess structural change, we selected three sets of metrics, proposed by Chidamber
and Kemerer [15], Li and Henry [16], and Bansiya and Davis [17], accounting for
the 21 metrics presented in Table 1. We selected these metrics because they allow
us to investigate many characteristics of the structure of pattern participants, and
because they are well-known by both researchers and practitioners. To calculate
the metrics, we used Percerons Client, i.e., a tool developed in our research group

1 https://github.com/search-rug/ssap.
2 https://github.com/search-rug/spoon-pttgrime.

The Evolution of Design Pattern Grime 169

https://github.com/search-rug/ssap
https://github.com/search-rug/spoon-pttgrime

that automates the assessment of these metrics for Java classes. Percerons is a
software engineering platform [18] to facilitate empirical research in software
engineering and has been used for similar reasons in [11, 19].

Presented in Table 1, these variables are recorded for each unit of analysis (i.e.,
change to pattern instance). The entire process of identifying and measuring the units of
analysis culminates in the creation of a dataset of all extracted variables for each unit.
This dataset is recorded as a table in which the columns correspond to collected
variables. We clarify that due to a non-disclosure agreement signed with the company
in this case study we cannot share the created dataset.

Analysis Procedure: To answer RQ1, we analyze the descriptive statistics of the
variables for unit identification, pattern information, and assessment of grime change.
As our study comprises several projects/subjects and encompasses several GoF pat-
terns, we derive data subsets, so as to group the units of analysis based on the different
analyzed factors (i.e., project, pattern and developer). When necessary we also perform
linear regressions and parametric or non-parametric tests [20] in order to devise trends
and test differences between groups. To answer RQ2, we first analyze whether the
distribution of all measurements for each metric is normally distributed. If true, we can
select the Pearson correlation method [20], otherwise the Spearman’s rank correlation
method [20]. For each pattern grime metric, we perform the analysis as follows: first we
calculate the correlation between the grime metric and all structural metrics; next, we
identify strong correlations (>0.8) that are statistically significant, and discuss the
results from the perspective of grime accumulation.

Table 1. List of collected variables

Group Variable Description

Unit information project Project from which the pattern instance was extracted
commit Hash of the commit in the git repository
dev Developer author of the commit

Pattern information inst_id ID of the pattern instance the class belongs to
pattern GoF design pattern of the instance

Assessment of
grime change

cg-npm Difference in the total number of alien public methods in
all classes of the pattern instance (Class grime)

cg-na Difference in the total number of alien attributes in all
classes of the pattern instance (Class grime)

mg-ca Difference in the pattern instance afferent coupling
(Modular grime)

mg-ce Difference in the pattern instance efferent coupling
(Modular grime)

og-np Difference in the number of packages within the pattern
instance (Organizational grime)

og-ca Difference in the fan-in at the package level
(Organizational grime)

(continued)

170 D. Feitosa et al.

4 Results

In this section, first we briefly describe the collected data and subsequently address
each research question independently. We note that we investigated six metrics for
pattern grime, and therefore report the results for all metrics and highlight findings
independently for each one, when this is relevant. We collected a total of 1,422
commits, from the five studied projects, that include the creation or modification of
pattern-participating classes. From these commits, 94% (i.e., 1,341) include modifi-
cations to one or more pattern instances. We identified 2,349 pattern instances of eight
different GoF patterns: (Object) Adapter-Command, Factory Method, Observer, Sin-
gleton, State-Strategy, and Template Method. Each pattern instance was created and
then modified up to 178 times (i.e., the maximum number of modifications for a single
instance). From the total number of pattern instances, 87% (i.e., 2,039) were modified
at least once after being created, and 64% (i.e., 1,500) at least five times. The data
collection resulted in the identification of 36,571 units of analysis (i.e.,
creation/modification of a pattern instance in a commit).

Table 1. (continued)

Group Variable Description

Assessment of
structural change

s-wmc Difference in the average weighted methods per class
s-dit Difference in the maximum depth of inheritance tree
s-noc Difference in the average number of children
s-cbo Difference in the average coupling between object classes
s-rfc Difference in the average response for a class
s-lcom Difference in the average lack of cohesion in methods
s-nom Difference in the average number of methods
s-mpc Difference in the average message-passing coupling
s-dac Difference in the average data abstraction coupling
s-size1 Difference in the lines of code
s-size2 Difference in the number of properties
s-dsc Difference in the design size in classes
s-noh Difference in the number of hierarchies
s-ana Difference in the average number of ancestors
s-dam Difference in the data access metric
s-camc Difference in the cohesion among methods of class
s-moa Difference in the measure of aggregation
s-mfa Difference in the measure of functional abstraction
s-nop Difference in the number of polymorphic methods
s-cis Difference in the class interface size
s-fan-in Difference in the afferent couplings

The Evolution of Design Pattern Grime 171

RQ1 - Accumulation of Grime: To study the differences in accumulated grime
among different projects, types of patterns and developers, we first present how the
assessed pattern grime metrics change within the instances’ evolution. Table 2 shows
the following descriptive statistics for the six metrics (previously presented in Table 1):
minimum and maximum values, mean value among all units of analysis and standard
deviation (i.e., how much measurements vary from the mean value). Based on the
Table 2, we notice that grime can either reduce (i.e., negative measurement) or
increase. However, the data suggest that on average, grime in pattern instances tends to
increase during the instance’s evolution. Another observation is that the number of
packages in a pattern instance (og-np) seems to be the grime indicator that is less likely
to change, which is a probable sign of common design practices. Moreover, despite
considerably higher maximum values, we notice that the measurements are consistently
close to the mean, since the standard deviation is not much higher than the mean
(especially compared to maximum values).

Next, we are interested in investigating how grime accumulated in different projects
(RQ1.1). Figure 1 depicts this information for the six metrics. P1 is the project with
most collected commits (605), while P5 provided the least commits (76). The y-axis
represents the mean amount of grime accumulated per modified instance in a given
commit. The x-axis represents consecutive commits. We note that the x-axis does not
represent the full history of commits. Our goal is to investigate the evolution of pattern
instances and, thus, we considered only commits that include the modification of
pattern-participant classes. By inspecting Fig. 1, we observe that every project indi-
vidually reflects the trend of the population, i.e., pattern grime linearly increases during
the project evolution. To verify this, we performed linear regression for every pair
<metric, project> and assessed how well the calculated equation fits the data.

In Table 3, we present the results, which are all statistically significant. We notice
that the vast majority of the equations are powerful descriptors, since R2 (i.e., how
close the data fit the regression line) is close to 1. The exceptions are the tuples <og-np,
P1> , <og-np, P5> , and <og-ca, P5> , which regard metrics of organization grime.
This is due to the drastic change in the accumulated grime observed for these tuples,
which may reflect systematic changes in the design (e.g., package renaming).

Table 2. Amount of grime accumulated per commit

Metric Minimum Maximum Mean Std. deviation

cg-npm –1.00 15.00 0.28 0.64
cg-na –1.50 9.50 0.12 0.45
mg-ca –3.75 44.00 0.21 1.18
mg-ce –10.00 85.00 1.61 4.53
og-np –0.25 2.00 0.02 0.14
og-ca –2.00 35.00 0.14 1.13

172 D. Feitosa et al.

Fig. 1. Accumulation of grime per project for each grime metric

Table 3. Linear regression of pattern grime accumulation per project

Metric Project Equation R2 Metric Project Equation R2

cg-npm P1 13.91 + 0.15x 0.91 cg-na P1 5.47 + 0.07x 0.93
P2 –0.28 + 0.19x 0.99 P2 –0.59 + 0.08x 0.92
P3 –1.79 + 0.24x 0.99 P3 –0.51 + 0.11x 0.99
P4 7.44 + 0.24x 0.95 P4 1.89 + 0.13x 0.95
P5 5.32 + 0.37x 0.95 P5 3.44 + 0.17x 0.89

mg-ca P1 2.27 + 0.04x 0.90 mg-ce P1 129.84 + 1.40x 0.89
P2 –1.72 + 0.34x 0.99 P2 –9.04 + 1.00x 0.99
P3 –2.24 + 0.17x 0.93 P3 –15.42 + 1.34x 0.99
P4 5.68 + 0.11x 0.92 P4 15.36 + 1.21x 0.96
P5 0.71 + 0.04x 0.87 P5 26.47 + 1.20x 0.89

og-np P1 2.00 + 0.01x 0.58 og-ca P1 1.09 + 0.03x 0.92
P2 –0.06 + 0.00x 0.82 P2 3.11 + 0.12x 0.95
P3 –0.20 + 0.02x 0.96 P3 –3.86 + 0.08x 0.90
P4 –0.02 + 0.01x 0.89 P4 2.61 + 0.03x 0.81
P5 0.12 + 0.01x 0.61 P5 1.04 + 0.00x 0.64

The Evolution of Design Pattern Grime 173

Further, we analyzed the dataset regarding different GoF patterns (RQ1.2). In
Table 4, we show the descriptive statistics for each metric and identified pattern. Due to
space limitations, we do not report the results for the Observer and Template Method
patterns, as the number of units of analysis for them is negligible (18 and 5, respec-
tively). The results suggest that different patterns are subject to different levels of grime.
For example, it seems that little grime is accumulated in instances of Singleton after
their creation, whilst instances of Factory Method tend to accumulate the most amount
of grime. To statistically investigate the difference between patterns, we performed
pairwise comparisons (Mann-Whitney tests), which, due to lack space, are reported
within the supplementary material [21]. The results showed that the differences in most
comparisons (86% of the 36 tests) is statistically significant, thus supporting our
findings.

Table 4. Amount of grime accumulated per pattern

Metric Pattern Num. of
instances

Num. of
changes

Min. Max. Mean Std.
deviation

cg-na Adapter-Command 770 13,225 –3.00 17.00 0.12 0.53
Factory Method 61 776 –3.42 13.00 0.15 0.78
Singleton 83 281 –1.00 1.00 0.01 0.16
State-Strategy 1121 19,937 –4.00 13.00 0.10 0.44

cg-npm Adapter-Command 770 13,225 –3.00 26.00 0.21 0.77
Factory Method 61 776 –7.58 21.67 0.35 1.42
Singleton 83 281 –2.00 4.00 0.06 0.44
State-Strategy 1121 19,937 –8.00 21.33 0.21 0.80

mg-ca Adapter-Command 770 13,225 –2.00 44.00 0.08 0.89
Factory Method 61 776 –7.00 102.00 0.59 4.15
Singleton 83 281 –1.00 7.00 0.49 0.96
State-Strategy 1121 19,937 –15.00 44.00 0.12 0.87

mg-ce Adapter-Command 770 13,225 –20.00 197.00 1.19 5.60
Factory Method 61 776 –13.00 60.00 1.44 4.40
Singleton 83 281 –4.00 17.00 0.47 1.85
State-Strategy 1121 19,937 –30.00 159.00 1.23 5.66

og-ca Adapter-Command 770 13,225 –2.00 35.00 0.06 0.75
Factory Method 61 776 –36.00 36.00 0.17 2.32
Singleton 83 281 –1.00 27.00 0.41 2.19
State-Strategy 1121 19,937 –6.00 34.00 0.06 0.62

og-np Adapter-Command 770 13,225 0.00 2.00 0.01 0.13
Factory Method 61 776 –1.00 3.00 0.03 0.21
Singleton 83 281 0.00 1.00 0.01 0.10
State-Strategy 1121 19,937 –1.00 3.00 0.01 0.15

174 D. Feitosa et al.

The last facet we investigated was how different developers accumulate grime
(RQ1.3). Due to space limitations, we do not report the complete descriptive statistics for
each metric and developer, which are available within the supplementary material [21].
In Table 5, we present the number of pattern instances maintained by the 16 developers,
changes to pattern instances and mean value of the grime metrics. By analyzing the
results, we notice that some developers seem to consistently accumulate more grime
than others (e.g., D7, D8 and D9), or less grime than others (e.g., D1 and D3), with
respect to most metrics. Furthermore, we can observe that developers that changed
pattern instances more often tend to accumulate less grime. Seeking to support our
observations statistically, we compared pairs of developers based on every metric using
the Mann-Whitney test. By observing the findings of the test, we suggest that 73% of the
396 tests are statistically significant, and that the non-significant tests regard mostly the
number of packages (og-np). Due to lack space, detailed results are reported on the
supplementary material [21].

Summarizing the results for RQ1, pattern grime: (a) is likely to increase linearly
over system evolution; (b) grows similarly across different projects; (c) accumulates at
different paces depending on the pattern type and the individual developer. The
interpretation of all findings reported in this section, as well as their implications to
researchers and practitioners are discussed in Sect. 5.

Table 5. Average amount of grime accumulated per developer

Developer Num. of
instances

Num. of
changes

cg-na cg-npm mg-ca mg-ce og-ca og-np

D1 465 7,525 0.08 0.17 0.04 0.93 0.04 0.00
D2 1,132 6,232 0.12 0.34 0.20 1.25 0.05 0.00
D3 549 5,232 0.07 0.07 0.04 0.85 0.01 0.00
D4 837 5,141 0.10 0.14 0.13 0.96 0.04 0.01
D5 335 3,442 0.10 0.23 0.04 1.35 0.02 0.02
D6 469 1,554 0.13 0.24 0.14 2.28 0.24 0.00
D7 292 1,406 0.17 0.29 0.23 2.54 0.19 0.05
D8 326 1,346 0.20 0.26 0.21 1.72 0.18 0.02
D9 161 697 0.13 0.38 0.27 1.68 0.20 0.02
D10 225 636 0.07 0.37 0.24 1.05 0.27 0.01
D11 233 515 0.01 0.19 0.34 0.37 0.06 0.00
D12 170 431 0.23 0.28 0.06 1.89 0.00 0.00
D13 41 56 0.79 1.64 0.89 8.04 0.29 0.21
D14 13 17 0.00 0.00 0.00 2.06 0.00 0.00
D15 3 8 0.00 0.03 –0.25 0.00 0.38 0.00
D16 2 4 0.00 0.00 0.00 0.75 0.00 0.00

The Evolution of Design Pattern Grime 175

RQ2 - Structural Characteristics and Pattern Grime: To assess the correlation
between pattern grime and structural metrics, we first verified whether all measure-
ments for each metric are normally distributed. We found that not all are normally
distributed and, thus, we decided to use a non-parametric method to study the metrics:
Spearman’s rank correlation. All assessed correlations are presented in Table 6, and are
all statistically significant.

Regarding the metrics for class grime, we make the following observations. The
metric cg-npm is strongly correlated (>0.8) to s-wmc, s-nom, and s-cis. This may be an
indication that when many methods are added to pattern-related classes it is common
that a large portion of them are not related to the pattern realization. The metric cg-na is
strongly correlated to s-dac and s-moa. This may be an indication that a considerable
part of the pattern instance coupling is coming from added attributes. This may not be
necessarily an alert for bad design, but it rather depends on how many attributes are
added. Regarding modular grime, we notice that the metric mg-ca is strongly corre-
lated to s-fan-in only, which is a metric that is similar to mg-ca, but at class level. This
suggests that most of the pattern instance afferent coupling comes from regular afferent
coupling of the pattern participants. This may indicate that pattern instances tend to
evolve by adding functionality not related to the pattern. The metric mg-ce is not

Table 6. Correlation between grime and structural metrics

cg-npm cg-na mg-ca mg-ce og-np og-ca

s-wmc 0.86 0.44 0.38 0.48 0.46 0.38
s-dit 0.44 0.53 0.55 0.43 0.99 0.71
s-noc 0.45 0.52 0.60 0.41 0.99 0.73
s-cbo 0.47 0.67 0.50 0.73 0.46 0.41
s-rfc 0.65 0.54 0.31 0.65 0.41 0.33
s-lcom 0.70 0.35 0.32 0.36 0.35 0.31
s-nom 0.86 0.44 0.38 0.48 0.46 0.38
s-mpc 0.43 0.44 0.22 0.55 0.35 0.27
s-dac 0.36 0.87 0.34 0.59 0.56 0.42
s-size1 0.69 0.53 0.31 0.58 0.41 0.35
s-size2 0.79 0.65 0.38 0.58 0.44 0.38
s-dsc 0.44 0.53 0.56 0.43 0.99 0.70
s-noh 0.38 0.43 0.50 0.35 0.77 0.60
s-ana 0.45 0.53 0.51 0.43 0.93 0.66
s-dam 0.34 0.56 0.42 0.43 0.76 0.54
s-camc –0.14 0.16 0.17 0.03 0.45 0.30
s-moa 0.37 0.90 0.36 0.61 0.58 0.44
s-mfa 0.03 0.11 0.03 0.08 0.21 0.07
s-nop 0.71 0.35 0.48 0.34 0.51 0.43
s-cis 0.97 0.41 0.41 0.44 0.48 0.41
s-fan-in 0.46 0.42 0.90 0.36 0.70 0.63

176 D. Feitosa et al.

strongly correlated to any metrics, whereas the strongest correlations are with s-rfc and
s-cbo. These moderate correlations also indicate that, to some extent, the introduction
of coupling in pattern instances is also introducing grime. Finally, regarding organi-
zational grime, the metric og-np is strongly correlated to s-dit, s-noc, s-dsc, and s-ana.
Despite the strong correlations, this finding may be inconclusive as og-np rarely
changes and this is probably the main reason for such high correlations. Finally, the
metric og-ca is not strongly correlated to any metrics, whereas the strongest correla-
tions are with s-noc, s-dit and s-dsc. These moderate correlations may indicate that, to
some extent, the addition of new classes to the pattern instance is to serve a new
purpose, i.e., serve a class not served before.

5 Discussion

In this section, we discuss the findings of our case study, as well as their implications.
First, we interpret our findings, elaborating on explanations and consequences for the
observed results. Next, we present how our findings can benefit both researchers and
practitioners.

Interpretation of Results: In Sect. 4, we reported the raw findings of our case study,
whereas in this section, we interpret them and compare them against the
state-of-the-art. First, regarding the evolution of grime, we observed that pattern grime
is constantly increasing along the versions of a system. This result can be considered
intuitive as it aligns with Lehman’s laws on software evolution: software quality
deteriorates as the software becomes larger and more complex. However, there is an
interesting aspect of this finding: the amount of grime that is accumulated in pattern
instances clearly suggests that pattern-participating classes are not “closed to modifi-
cations”, in the sense that they are continuously “polluted” with artifacts (e.g., methods,
dependencies, etc.) that are not pattern-related. This pollution potentially influences
how the application of design patterns affects quality attribute indicators of a system.
Thus, pattern instantiation does not have a constant effect on quality, but it changes
along evolution. This finding is in accordance to the literature, which suggests that the
effect of GoF design patterns on product quality is not uniform along different pattern
instances [4], and aligns with results of studies with similar setups [5–7]. In particular,
Izurieta and Bieman [5] used the same pattern grime metrics and investigated some
patterns in common (e.g., Singleton and Factory Method), but by inspecting
open-source systems. The results of both studies agree on the increase of grime metrics.

Regarding the three parameters that were investigated in RQ1 (i.e., grime in dif-
ferent projects, patterns, and developers), the results suggested that the levels of grime
are similar at the different projects of the same company despite the little overlap of
developers among projects. This outcome can be potentially explained by the fact that
the developers were guided by the same practices, since they usually follow the same
company process. Nevertheless, this finding needs to be further validated through a
follow-up study conducted in different companies. Another finding is that the levels of
grime are different among pattern types, which complies with the literature suggesting
that different patterns have different effect on quality attributes (e.g., [3] on stability).

The Evolution of Design Pattern Grime 177

In particular, we noticed that instances of the Singleton pattern are the least likely to
accumulate grime, whereas instances of Factory Method are the most grime-prone. The
acknowledgement of certain good practices (e.g., avoid creation of God Classes) can
lead to more “grime-free” Singleton instances. However, if not careful, developers may
enlarge the responsibility of classes unnecessarily, as observed with Factory Method
instances, which may include methods that suffer from the Feature Envy, Shotgun
Surgery, or Divergent Change smells. Therefore, we suggest monitoring pattern grime
to identify spots of bad quality in the system. Such a practice may support the
preservation of quality indicators (such as understandability and testability) at
acceptable levels and thus increase productivity. Moreover, in comparison with related
work, Izurieta and Bieman [5] also show that Singleton pattern instances tend to
accumulate less grime, whereas on the contrary Factory Method instances tend to
accumulate grime faster than other investigated patterns. This observation further
supports that open-source and industrial systems have similarities with regards to the
accumulation of pattern grime.

From the last investigated parameter, we found that the levels of grime also differ
among developers. Their tendency to accumulate grime likely depends on diverse
factors. In particular, varied levels of programming skills, knowledge of the system and
of GoF patterns can explain the different tendency to accumulate grime. This finding
supports the belief that personalized quality assessments are required in industry [22].
Furthermore, we observed that developers that performed more changes are related to
lower levels of accumulated grime, suggesting that most tasks (resulting in more
changes) are assigned to more experienced developers, inclined to accumulate less
grime. We suggest using such information about developers in order to improve the
software development process. For example, since our industrial partner use agile
methodologies, such information can be considered in daily Scrum meetings in which
issues are assigned to individual developers. The personalization of software devel-
opment and the effect on human factors in the quality of the software have been
extensively studied in the last years, underlying the importance of such strategies.

Finally, regarding the relation of structural metrics with grime metrics, the results
point out that some of the most established structural quality metrics are related to the
grime metrics. For example, the fan-in metric is at least moderately correlated to all
grime metrics. This finding may be explained by the fact that pattern grime is calcu-
lated at the detailed-design level. Since class dependencies consist one of the main
elements of object-oriented design, it is intuitive to expect the obtained correlations,
e.g., between two metrics that are calculated based on class dependencies. However,
we note that the strength of the correlations varies among pattern instances, which
shows that structural metrics can be adequate predictors of grime accumulation.

Implications to Researchers and Practitioners: Researchers can benefit from our
results from several perspectives. We presented a thorough exploration of the accu-
mulation of pattern grime and we identified several factors that influence how pattern
grime grows during the evolution of pattern instances. This exploration not only
reinforces the importance of investigating pattern grime, but also suggests several
opportunities of future work, e.g., investigate characteristics of developers that tend to
accumulate grime. In addition, the identified correlations between pattern grime and

178 D. Feitosa et al.

structural metrics help on understanding how pattern grime is introduced, as well as
open further possibilities to investigate other relevant aspects of software systems and
processes, for example technical debt. We also foresee benefits of our results to
practitioners. Because we investigated five non-trivial projects, our findings can help
practitioners improve best practices on the usage of design patterns, e.g., by warning
developers to avoid accumulating grime on Singletons pattern instances. Moreover, the
metrics and correlations that we present can be considered in processes for monitoring
the evolution of the software systems, e.g., high levels of fan-in in pattern-participating
classes may indicate that considerable grime is being inserted.

6 Threats to Validity

In this section, we discuss threats to construct validity (i.e., if the studied phenomenon
is connected to the set objectives), reliability (if the study can be replicated), and
external validity (i.e., generalizability). We do not analyze internal validity, as we do
not try to establish causal relationships.

Concerning construct validity, the tool SSA is limited by its precision and recall:
false positives and negatives may bias the presented results. However, to the best of our
knowledge the used tool is among the most reputed in the community, and has ade-
quate performance (see Sect. 3). For mitigating this threat, we verified its precision and
recall manually by checking 30 random pattern instances for each GoF pattern that was
detected (i.e., over 100 instances in total), which were all successful. Additionally,
regarding SSA+ and spoon-pttgrime, we acknowledge that the tools may have bugs.
However, we verified over 50 random outputs of each tool and, to the best of our
knowledge, no bugs were found.

In order to mitigate reliability threats, two different researchers performed the
collection and analysis, double-checking sample outputs. Besides that, we acknowl-
edge that non-disclosure agreements do not allow us to share the collected dataset.
However, all used tools are freely available and replication studies can be carried out.
Finally, the external validity of our study is threatened by the fact that we analyzed
projects of the same company, thus, our findings may not be generalizable to other
projects nor teams. However, our results relate to those obtained in other studies with
similar setup, e.g., we expected modular grime to be the main contributor for the
pattern grime, and we found mg-ce to clearly grow at a faster pace. In addition, our
results are bounded by our study design. Adding other GoF patterns, pattern grime
metrics, or structural metrics could lead to adjustments in our findings.

7 Conclusion

In this paper, we presented an exploratory case study on how grime accumulates in
pattern instances and its correlation to structural characteristics of the pattern partici-
pants. To this end, we investigated the evolution of 2,349 pattern instances of eight
patterns, assessing six grime metrics of three types of grime (class, modular and
organization), as well as 21 structural metrics. We explored how grime is distributed

The Evolution of Design Pattern Grime 179

according to: (a) projects, pattern types, and developers, and (b) structural character-
istics of pattern-participating classes. The results suggest that pattern grime tends to
increase linearly, it is likely independent of project but depends on pattern type and
developer. Moreover, we identified a series of correlations between metrics for pattern
grime and structural characteristics, e.g., the coupling added to pattern participants tend
to also introduce grime. Based on our results and observations, we envisage several
opportunities for future work. First, some of the investigated facets on how pattern
grime accumulates can and should be further explored, e.g., what factors may be related
to developers that tend to accumulate more or less grime. Furthermore, our observa-
tions based on the correlation between pattern grime and structural metrics raised
questions that can be investigated in confirmatory studies, e.g., whether most intro-
duced afferent coupling is indeed resulting in the accumulation of grime.

Acknowledgements. The authors would like to thank the financial support from the Brazilian
and Dutch agencies CAPES/Nuffic (Grant No.: 034/12), CNPq (Grant No.: 204607/2013-2), as
well as INCT-SEC (Grant No.: 573963/2008-8 and 2008/57870-9).

References

1. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Khomh, F., Gueheneuc, Y.-G., Antoniol, G.: Playing roles in design patterns: an empirical
descriptive and analytic study. In: 25th IEEE International Conference on Software
Maintenance, pp. 83–92. IEEE (2009)

3. Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S., Avgeriou, P.: The effect of GoF
design patterns on stability: a case study. IEEE Trans. Softw. Eng. 41, 781–802 (2015)

4. Ampatzoglou, A., Charalampidou, S., Stamelos, I.: Research state of the art on GoF design
patterns: a mapping study. J. Syst. Softw. 86, 1945–1964 (2013)

5. Izurieta, C., Bieman, J.M.: A multiple case study of design pattern decay, grime, and rot in
evolving software systems. Softw. Qual. J. 21, 289–323 (2013)

6. Izurieta, C., Bieman, J.M.: Testing consequences of grime buildup in object oriented design
patterns. In: First International Conference on Software Testing, Verification, and
Validation, pp. 171–179. IEEE (2008)

7. Dale, M.R., Izurieta, C.: Impacts of design pattern decay on system quality. In: Eighth
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
pp. 1–4. ACM Press, New York (2014)

8. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Blackwell, Hoboken (2012)

9. Izurieta, C., Bieman, J.M.: How software designs decay: a pilot study of pattern evolution.
In: First International Symposium on Empirical Software Engineering and Measurement,
pp. 449–451. IEEE (2007)

10. Schanz, T., Izurieta, C.: Object oriented design pattern decay. In: Fourth ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, pp. 1–8.
ACM Press, New York (2010)

11. Griffith, I., Izurieta, C.: Design pattern decay: the case for class grime. In: Eighth ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, pp. 1–4.
ACM Press, New York (2014)

180 D. Feitosa et al.

12. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal question metric paradigm. In: Encyclopedia
of Software Engineering, pp. 528–532. Wiley (1994)

13. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern detection
using similarity scoring. Softw. Eng. IEEE Trans. 32, 896–909 (2006)

14. Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Investigating the
effect of design patterns on energy consumption. J. Softw. Evol. Process. 29, e1851 (2017)

15. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20, 476–493 (1994)

16. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. J. Syst. Softw.
23, 111–122 (1993)

17. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Softw. Eng. 28, 4–17 (2002)

18. Ampatzoglou, A., Michou, O., Stamelos, I.: Building and mining a repository of design
pattern instances: practical and research benefits. Entertain. Comput. 4, 131–142 (2013)

19. Alhusain, S., Coupland, S., John, R., Kavanagh, M.: Towards machine learning based design
pattern recognition. In: 13th UK Workshop on Computational Intelligence, pp. 244–251.
IEEE (2013)

20. Field, A.: Discovering Statistics Using SPSS. SAGE Publications Ltd., Thousand Oaks
(2009)

21. Feitosa, D., Avgeriou, P., Ampatzoglou, A., Nakagawa, E.Y.: Supplementary Material: “The
Evolution of Design Pattern Grime: An Industrial Case Study.” https://doi.org/10.5281/
zenodo.806800

22. Amanatidis, T., Chatzigeorgiou, A., Ampatzoglou, A., Stamelos, I.: Who is producing more
technical debt? A personalized assessment of TD principal. In: Nineth International
Workshop on Managing Technical Debt, pp. 1–8. ACM (2017)

The Evolution of Design Pattern Grime 181

https://doi.org/10.5281/zenodo.806800
https://doi.org/10.5281/zenodo.806800

Should I Stay or Should I Go?
On Forces that Drive and Prevent MBSE

Adoption in the Embedded Systems Industry

Andreas Vogelsang1(B) , Tiago Amorim1 , Florian Pudlitz1, Peter Gersing2,
and Jan Philipps3

1 Technische Universität Berlin, Berlin, Germany
{andreas.vogelsang,buarquedeamorim,florian.pudlitz}@tu-berlin.de

2 GPP Communication GmbH & Co. KG, Munich, Germany
p.gersing@gppag.de

3 foqee GmbH, Munich, Germany
philipps@foqee.de

Abstract. [Context] Model-based Systems Engineering (MBSE) com-
prises a set of models and techniques that is often suggested as solution
to cope with the challenges of engineering complex systems. Although
many practitioners agree with the arguments on the potential benefits of
the techniques, companies struggle with the adoption of MBSE. [Goal]
In this paper, we investigate the forces that prevent or impede the adop-
tion of MBSE in companies that develop embedded software systems. We
contrast the hindering forces with issues and challenges that drive these
companies towards introducing MBSE. [Method] Our results are based
on 20 interviews with experts from 10 companies. Through exploratory
research, we analyze the results by means of thematic coding. [Results]
Forces that prevent MBSE adoption mainly relate to immature tool-
ing, uncertainty about the return-on-investment, and fears on migrating
existing data and processes. On the other hand, MBSE adoption also
has strong drivers and participants have high expectations mainly with
respect to managing complexity, adhering to new regulations, and reduc-
ing costs. [Conclusions] We conclude that bad experiences and frustra-
tion about MBSE adoption originate from false or too high expectations.
Nevertheless, companies should not underestimate the necessary efforts
for convincing employees and addressing their anxiety.

Keywords: System engineering · Model-based · Process
improvement · Embedded systems · Interview study · Empirical
research

1 Introduction

Model-based Systems Engineering (MBSE) describes the use of models and
model-based techniques to develop complex systems, which are mainly driven by

The original version of this chapter has been revised. The title of the paper was incorrect
and has been modified. The ORCIDs of the authors Andreas Vogelsang and Tiago
Amorim have also been added. For detailed information please see the Erratum. The
erratum to this chapter is available at https://doi.org/10.1007/978-3-319-69926-4 57

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 182–198, 2017.
https://doi.org/10.1007/978-3-319-69926-4_14

https://doi.org/10.1007/978-3-319-69926-4_57

Should I Stay or Should I Go? 183

software [5]. MBSE tackles the complexity of those systems through an interre-
lated set of models, which connects development activities and provides compre-
hensive analyses. Many companies face problems with the increasing complexity
of software-intensive systems, their interdisciplinary development, and the huge
amount of mainly text-based specifications. MBSE offers a solution to managing
these problems and companies are attracted to its benefits.

Despite the envisioned MBSE benefits, companies are struggling with imple-
menting it within the organization. Of course, organizational change is never
easy [7], however other methodologies, such as agile practices, have been adopted
much faster. So, what are the reasons and factors that prevent or impede com-
panies from adopting MBSE?

In this paper, we investigate the forces that prevent or impede the adoption
of MBSE in companies that develop embedded systems. We contrast forces that
hinder its adoption with forces that drive companies towards introducing MBSE.

Our results are based on 20 interviews with experts from 10 organizations in
Germany. We analyze the results by means of thematic coding and categorize the
identified forces into inertia and anxiety forces, which prevent MBSE adoption, as
well as push and pull forces, which drive the companies towards MBSE adoption.
We frame the results with a coding of what the interviewees considered as MBSE.
Our paper makes the following contributions:

– We present a set of hindering and fostering forces on MBSE adoption in
industry. These results were extracted from interviews with 20 experts from
10 organizations located in Germany.

– We analyze these forces to differentiate between MBSE specific forces and
forces inherent to any kind of methodological change.

Forces that prevent MBSE adoption mainly relate to immature tooling, uncer-
tainty about the return-on-investment, and fears on migrating existing data and
processes. On the other hand, MBSE adoption also has strong drivers and par-
ticipants have high expectations mainly with respect to managing complexity,
adhering to new regulations, and detecting bugs earlier. We observed that the
hindering forces are much more concrete and MBSE-specific compared with the
fostering forces, which are oftentimes very generic (e.g., increase in product qual-
ity, managing complexity, supporting reuse). Oftentimes, the interviewees could
not even tell why or which part of MBSE contributes to the expected benefits.

From this, we conclude that bad experiences and frustration about MBSE
adoption originate from false or too high expectations. Nevertheless, companies
should not underestimate the necessary efforts for convincing employees and
addressing their anxiety.

2 Background and Related Work

Model-based Systems Engineering (MBSE) is a methodology to develop
systems with focus on models. Compared with traditional development, MBSE
supports engineers with automation capabilities (e.g., code generation, docu-
ment derivation) and enhanced analysis capabilities (e.g., behavioral analysis,

184 A. Vogelsang et al.

performance analysis, simulation). INCOSE defines MBSE as the following [11]:
“MBSE is the formalized application of modeling to support system requirements,
design, analysis, verification and validation activities beginning in the conceptual
design phase and continuing throughout development and later life cycle phases.”

UML and SysML are standardized graphical modeling languages for MBSE
with capabilities to define different types of models, processes, procedures, and
operations. While UML is predominantly used for software development, SysML
encompasses also physical aspects of a system. The languages’ graphical models
are intended to cover all development phases of a system.

In some application domains, MBSE is widely used and is an integral part
of development [4]. Large tool vendors, such as IBM, Oracle, Microsoft, or the
Eclipse Foundation offer tooling solutions for MBSE.

Studies on MBSE Adoption. Bone and Cloutier [4] report on a survey con-
ducted by the OMG, in which participants were asked about MBSE adoption
within their organization. Culture and general resistance to change was identi-
fied in the study as the largest inhibitor for MBSE adoption. The study found
that SysML is being used primarily for large-scale systems.

Motamedian [15] performed an applicability analysis for MBSE. Similar to
the results of Bone and Cloutier, she found that MBSE is widely used in specific
application areas. She reported that 50–80% of respondents who declared the use
of MBSE in real programs or projects work in defense and aircraft industries.
In contrast, over all responses, only 10% of participants claimed that they use
MBSE in their organization. The study identified lack of related knowledge and
skills as main barrier to MBSE introduction.

Mohagheghi et al. [14] collected data from four large companies that use
Model-Driven Engineering (MDE) in different projects. Their study summa-
rizes qualitative data from internal empirical studies, interviews, and a survey
to investigate the state of the practice and adoption of MDE. All participants
see advantages in developing domain-specific solutions and modeling at differ-
ent levels of abstraction. None of the companies mentioned shorter development
time or improved quality of code as main motivation. In addition, the integration
with other tools is problematic and mature tools for complex models are miss-
ing. Higher degree of automation and reuse was considered the most important
aspect to improve productivity in the long-term. Hutchinson et al. [10] describe
the practices of three commercial organizations as they adopted MBSE. Later,
they built a taxonomy of tool-related issues affecting the adoption of MBSE [24].

Kuhn et al. [12] focus on contextual forces and frictions of MBSE adoption
in large companies. They found that diffing in product lines, problem-specific
languages and types, live modeling, and traceability between artifacts are the
main drivers for adopting MBSE. Aranda et al. [1] focus more on developers
and infrastructure changes. They conclude that MBSE brings developers closer,
disrupts organizational structures, and achieves improvements in productivity.

Besides these studies on MBSE adoption, several case studies exist on apply-
ing model-based techniques to complex systems in different domains (e.g., rail-
way [3], automotive [22], maritime traffic [21]).

Should I Stay or Should I Go? 185

Summary. Related studies report on successful applications of MBSE in several
cases but also mention challenges related to its adoption. MBSE techniques are
widely used in some industries, however, the majority of companies do not apply
MBSE. The goal of our study is to identify reasons and forces that prevent
companies from adopting MBSE and contrast them with the envisioned benefits
that drive the companies towards MBSE.

3 Study Approach

3.1 Research Questions

We structure our research by two research questions that focus on hindering and
fostering forces of MBSE adoption.

– RQ1: What are perceived forces that prevent MBSE adoption in industry?
• RQ1.1: What are habits and inertia that prevent MBSE adoption?
• RQ1.2: What are anxiety factors that prevent MBSE adoption?

– RQ2: What are perceived forces that foster MBSE adoption in industry?
• RQ2.1: What are perceived issues that push industry towards MBSE?
• RQ2.2: What MBSE benefits are perceived as most attractive?

3.2 Research Design

This is an exploratory research [20] based on semi-structured interviews. The
method provides insights into the examined topic and gives essential informa-
tion to understand the phenomenon in its real context [8,18]. We developed
an interview guide [6] that was structured along a funnel model [18] starting
with general questions about the participant’s context and the understanding of
MBSE and afterwards going into detail about specific topics such as employee
training, MBSE integration, or experiences in the past.

3.3 Data Collection and Analysis

Study Participants. The interview participants were selected from personal
contacts of the authors and industrial partners that participate in a German
research project1 that has a focus on MBSE adoption in practice. The inter-
viewee selection was based on two criteria: First, the interviewee should have a
work experience of several years. Second, the interviewee should work in an envi-
ronment where MBSE adoption is a realistic option. In our case, we therefore
restricted the group of interviewees to people working on embedded systems or
in the context of embedded systems. It was not necessary that interviewees have
adopted MBSE in their context, however, 13 of the 20 interviewees stated that
they already have experiences in adopting MBSE. Table 1 provides an overview
of the participants and their context. The interviews were conducted by two of
the authors from May to December 2016.
1 https://spedit.in.tum.de/.

https://spedit.in.tum.de/

186 A. Vogelsang et al.

Table 1. Study participants

ID Industry sector Type of company Role of participant MBSE
attitude

P1 Tool vendor OEM Technical Sales Neutral

P2 Tool vendor Academic Professor Neutral

P3 R&D services SME Manager Neutral

P4 Automotive OEM Head of Development Positive

P5 Automotive OEM Systems Engineer Neutral

P6 Medical SME Head of SW Development Positive

P7 Medical SME Head of QA Positive

P8 Automotive Supplier Function Architect Negative

P9 Automotive OEM SW Architect Neutral

P10 Automotive OEM Function Architect Positive

P11 Research Academic Professor Negative

P12 Avionics Supplier Technical Project Manager Neutral

P13 Automotive Supplier Developer Positive

P14 Avionics OEM SW Developer Neutral

P15 Avionics Supplier SW Developer Negative

P16 Avionics OEM Team Lead Neutral

P17 Electronics OEM Head of SW Development Neutral

P18 Avionics SME Head of System Engineering Negative

P19 Robotics OEM Team Lead Positive

P20 Automotive OEM Research and Development Negative

Interviews. There were 20 fact-to-face interviews. Every interview took around
one hour. In consent with the interviewee, the interviewer took notes for detailed
analysis. All interview notes were managed using the qualitative data analysis
tool ATLAS.ti2.

Analysis. Three researchers analyzed the interviews using qualitative cod-
ing [16]. Neither of them participated in the interview phase. The study was
framed using the framework of Forces on MBSE Adoption (see Sect. 4.2) with
the following codes: {Push, Pull, Inertia, Anxiety}. The analysis started with
all three researchers working on the same five interviews. The results were later
discussed and merged in a meeting. The discussions helped to homogenize the
understanding of the codes among the researchers [23] (i.e., what/how to look
for on each force). The remaining 15 interviews were tackled in a cross-analysis
fashion. The interviews were divided equally into three groups (A, B, C) and each
researcher coded the interview transcripts of two groups (i.e., AB, BC, or AC)
individually the same way as before. Then, each researcher merged the results
2 http://atlasti.com.

http://atlasti.com

Should I Stay or Should I Go? 187

and judged existing conflicts of the group he did not work on (a researcher coding
interviews of groups AB merged the results of interviews of group C). In a round
with all three researchers, the unresolved conflicts were ironed out. Finally, the
codes were divided into three groups {Pull, Inertia, (Anxiety, Push)} and each
researcher worked on the quotations of codes of a group individually, performing
open coding to create second level codes. We present the results in Sect. 4 by
reporting the codes with the number of related quotations and the number of
interviews in which the code appeared. The number of quotations indicates the
significance of a code over all interviews and the number of interviews indicates
the pervasiveness of the code within the interviews.

Availability of Data. Due to unreasonable effort necessary for anonymizing
the interview transcripts, we do not disclose them. However, we disclose the
interview guide and the codebook.3

4 Results

4.1 Overview and Definition of MBSE

As depicted in Table 1, we had a balanced set of participants with respect to
MBSE attitude. For 9 out of the 20 interviews, we coded a similar number of
fostering and hindering forces (i.e., neutral attitude). In 6 interviews, the foster-
ing forces dominated (i.e., positive attitude) and in 5 interviews, the hindering
forces dominated (i.e., negative attitude). In the interviews, we did not refer to
any specific MBSE approach. We did this on purpose to identify forces indepen-
dent from any concrete technique or tooling. Additionally, comparing the results
would have been much harder due to the large variety of MBSE approaches and
flavors. Nevertheless, we asked the interviewees to define MBSE. The result can
be seen in Fig. 1, where a word cloud representation of terms mentioned more
than 2 times is depicted.

Fig. 1. Word cloud of MBSE descriptions

3 https://doi.org/10.6084/m9.figshare.5368453.

https://doi.org/10.6084/m9.figshare.5368453

188 A. Vogelsang et al.

The word cloud shows the close association of MBSE with graphical models.
Especially graphical descriptions of architectures and processes were mentioned
several times. However, some interviewees mentioned that “graphical representa-
tion is only a part of MBSE, not everything” (P12) and others pointed out that
MBSE should not be deformed to graphical programming. The only reference to a
specific instance of MBSE in the word cloud is given by Simulink. Simulink4 is a
widely used tool in the embedded systems domain for modeling, simulating, and
analyzing dynamic systems. Interestingly, the interviewees mentioned that using
Simulink is not considered as doing MBSE (e.g., P4:“Pure implementation with
Simulink is graphical programming, not MBSE.”, P16:“Simulink is model-based
engineering but not model-based systems engineering”). UML/SysML, which we
expected to appear more often in the characterization of MBSE, was only men-
tioned rarely, however, notation was mentioned several times. The term infor-
mation model was used a few times as important part of an MBSE approach.
P7: “A core topic of MBSE is the information model that specifies and relates all
development artifacts.” Apart from that, the interviewees frequently mentioned
several well-known properties related to MBSE such as abstraction, formaliza-
tion, and comprehension. In summary, the results show that our interviewees
were not biased by a specific MBSE flavor or approach that they previously
had in mind when answering our questions. However, the variety of answers also
shows that the term MBSE is still far away from common understanding.

4.2 Forces on MBSE Adoption

Inspired by the categorization of Hohl et al. [9], we defined a quadrant-wise
framework for categories of forces on MBSE adoption (see Fig. 2). The catego-
rization aims to better understand the different aspects of the transition process
from traditional to MBSE practices. We designed the framework to identify
Forces that work towards Hindering or Fostering the adoption of MBSE and
their origin. These forces have different origins or Triggers and are classified

Fig. 2. MBSE adoption forces diagram

4 https://de.mathworks.com/products/simulink.html.

https://de.mathworks.com/products/simulink.html

Should I Stay or Should I Go? 189

either into shortcomings of the Current Situation or expected benefits of the
Envisioned Solution (MBSE in our case). We distinguish between Push and
Pull as forces that foster MBSE adoption. The former is triggered by issues or
demands that the current situation cannot address, the latter is triggered by the
“to-be harvested” benefits of the new solution. In contrast, we define Inertia and
Anxiety as forces that hinder MBSE adoption. The former is triggered by the
feeling that the current solution is “good enough” and habits that keep people
from trying out something new. The latter is triggered by fears that MBSE intro-
duction will not pay-off, mainly caused by uncertainties and perception flaws.
According to Hohl et al. [9], this classification is inspired by the Customer Forces
Diagram by Maurya5 that itself is inspired by the Forces Diagram by Moesta and
Spiek from the Jobs-to-be-done framework6. All four forces are present within
an organization at the same time.

Fig. 3. Number of quotations related to MBSE adoption forces

In total, we coded 242 quotations. Their distribution between the forces can
be seen in Fig. 3. The fostering (131 times) and hindering (111) forces were men-
tioned to a similar amount. Quotations categorized as pull (94) are almost triple
of push (37). Comparing both (pull and push), 72% of the fostering quotations
were driven by the benefits of MBSE, while problems in their in-house processes
represented 28%. This can be compared to the number of quotations on inertia
(51). Pull forces were coded most, representing 39% of all quotations. To analyze
the general attitude of a participant towards MBSE adoption, we divided the
number of coded quotations related to fostering forces (push and pull) by the
total number of quotations coded for that participant. We considered a partici-
pant to have a positive attitude when the ratio of fostering forces was higher than
60%, a neutral attitude for ratios between 60% and 40%, and a negative attitude

5 https://leanstack.com/science-of-how-customers-buy/.
6 http://jobstobedone.org.

https://leanstack.com/science-of-how-customers-buy/
http://jobstobedone.org

190 A. Vogelsang et al.

for a ratio smaller than 40%. This can be seen in Table 1. The results of the last
step of the coding process generated similar codes in different categories (e.g.,
Tooling Shortcomings from Anxiety category and Immature tooling or Incompat-
ibility with existing tools, both from Inertia category). Although similar names,
these codes encompasses disjoint characteristics and their coexistence serves a
purpose. All codes created during the analysis can be seen in Fig. 4.

Fig. 4. Overview of MBSE adoption forces

In the following, the preventing forces found in the study are subsequently
described and explained using the information from the interview transcripts
and the interpretations from coding and analysis.

4.3 Hindering Force: Inertia

With 51 distinct quotations, inertia forces were mentioned fewer times compared
with forces related to anxiety (60 quotations). We structured the inertia related
quotations with respect to four inertia topics.

Tooling Inertia (21 coded quotations from 15 interviews). With 21 quo-
tations, tooling inertia was the most frequently mentioned inertia force. Tooling
inertia describes phenomena of the current in-house tooling environment that
made our participants refrain from adopting MBSE. Tooling inertia includes
resistance against learning new tools as well as potential incompatibilities of
MBSE tools with current tools. “People preferred using Excel instead of the new

Should I Stay or Should I Go? 191

MBSE tool” (P8), “Especially elderly employees who are used to textual specifi-
cations have difficulties with drawing tools” (P15), “It’s not possible to connect/
trace the models with artifacts in other tools.” (P5)

Apart from the resistance of learning and integrating new tools, our partici-
pants reported on resistance of employees if MBSE tools are immature. Especially
tools with bad user experience, low stability, and missing basic features are a
major factor why employees resist MBSE adoption. “Tool is not user friendly.
Things are distributed over several menus; you have to look for everything.”
(P5), “We are working in teams. That’s why we need a tool with fine-grained
access rights and control.” (P10)

We classified immature tooling as inertia force because the expectation that
tools are missing important features makes the current situation look not so
bad. Tooling issues were also mentioned in the context of anxiety. In that cases,
interviewees feared that the available tools cannot fulfill the promises of MBSE.

Context Inertia (18 quotations, 13 interviews). A second inertia force
mentioned quite often was context inertia, which describes people refraining
from MBSE adoption because they believe it does not fit their current business
situation. The most mentioned in this category was doubts about whether MBSE
would really improve the current situation. “It needs a huge emergency to justify
the costs of introducing an MBSE tool.” (P7), “Currently, problems are not so
urgent yet. Therefore, there is not much willingness to act.” (P20) Another
aspect of the context that make people refrain from MBSE adoption is the
potential need to migrate old data or legacy systems or when it seems that the
current development process does not fit MBSE techniques. “Legacy problems
are a huge hurdle because, in general, the old way of working must further be
maintained and supported.” (P20), “MBSE adoption would have caused changes
in our development process. Therefore, we didn’t do it.” (P2)

Personal Inertia (16 quotations, 9 interviews). Personal inertia captures
forces related to an individual’s personality and experiences that hold him/her
back from adopting MBSE. In our study, these forces were led by the resistance
against learning a new way of thinking. “MBSE is not just about changing
the notation; it’s about changing the way of how I think about systems” (P2),
“Abstractions in MBSE are not easy to comprehend.” (P12) Similarly, if people
had bad experiences with MBSE or related techniques, they have a personal
reluctance against adopting MBSE in their current situation.

Maturity Inertia (12 quotations, 8 interviews). Maturity inertia was least
mentioned in our interviews. Participants were critical about a potential MBSE
adoption if they had the impression that the MBSE methodology is not mature
enough, there has not been sufficient training before, and there is no support by
experts. “We first need a common terminology between employees of different
departments” (P7), “The support for debugging problems is very limited” (P9)

192 A. Vogelsang et al.

4.4 Hindering Force: Anxiety

Anxiety is a force related to expectations and fears that make MBSE adoption
less appealing. These expectations originate from uncertainties that are still to
be clarified or a false perception of reality. We structured the anxiety related
quotations into the following topics:

ROI Uncertainty (19 quotations, 12 interviews). Return on investment
(ROI) is the benefit resulting from an investment. Introducing MBSE will incur
cost spread in several factors such as training, tooling, migration, or lower pro-
ductivity. Many interviewees were concerned that the investments on introducing
MBSE will not pay off. “[It will costs us] A large sum in the million range” (P7),
“Coaching on the job is very important, but it costs a lot” (P2)

Skills of Employees (19 quotations, 11 interviews). Some interviewees fear
that (some of) the employees in their company may lack the necessary skills to
efficiently adopt MBSE. This can negatively influence the introduction of MBSE
in two different ways: Either those employees do not adopt MBSE or they apply
them incorrectly. “Mechanical engineers know CAD modeling but don’t know
modeling of behavior” (P1), “Modeling should not be an end in itself” (P16)

Tooling Shortcomings (12 quotations, 8 interviews). The interviewees
perceived problems with tooling as a reason for not introducing MBSE. The
interviewees fear that current tool solutions do not address a significant part
of the development process and the envisioned benefits of MBSE. Thus, extra
work would be necessary to fill the gaps (e.g., migration of data between MBSE
tools and current tools). “Everything in one tool? Nobody wants that” (P5),
“Performance of the tools [is a challenge for introducing MBSE]” (P7)

Methodology Shortcomings (11 quotations, 6 interviews). Many inter-
viewees emphasized the lack of maturity on the current MBSE methodology.
This category can be interpreted in two ways. Either the methodology really is
incomplete or the knowledge of practitioners is immature. In addition, concerns
about the lack of tailored approaches for MBSE introduction were pointed out.
“A consistent methodology is lacking, resulting in uncertainties” (P1), “There
are no process models that integrate MBSE properly.” (P11)

Large Training Efforts (10 quotations, 5 interviews). This category
groups perceived potential problems related to training the team on using MBSE
and its respective tools. Some of the codes were related to the costs of training
and had intersections with ROI uncertainty. Other codes were related to the fear
of unsuccessful training. “Training is necessary: How do I bring my employees
to the same level as the experts?” (P7), “Employees will not accept MBSE if no
training is provided before.” (P7)

Besides these major categories, interviewees also mentioned potential team
competence loss (3 quotations, 3 interviews) and new responsibilities in the team
that could cause role misunderstandings (8 quotations, 5 interviews). The inter-
viewees perceived migration issues (6 quotations, 6 interviews) of projects that
started with traditional development method to MBSE.

Should I Stay or Should I Go? 193

4.5 Fostering Force: Push

With 37 distinct quotations, push was the force with the smallest number of
quotations. We structured push forces within three categories:

Product Push (20 quotations, 10 interviews). We grouped here codes
related to product-oriented push forces. Growing complexity (11 quotations/8
interviews) of the software was the code with most quotations within the
push forces. As systems become more software-intensive, tackling the grow-
ing complexity is currently a real challenge, thus, organizations feel the need
to shift to better solutions. “Increasing complexity of products [pushes us
towards MBSE]” (P1), “Complex software, especially with concurrency [pushes
us towards MBSE]” (P3) Further codes were quality issues (6/3) within the
product or its specification and the need for modularization (3/3) in order to
make certification and reuse more efficient.

Stakeholder Enforcement (8 quotations, 4 interviews). Some interviewees
mentioned that they are forced or at least pushed towards MBSE by recommen-
dations or requests from stakeholders. Demands by internal actors (4/3) such
as developers or management push companies towards MBSE adoption as well
as legal requirements to comply with regulations (3/1). Market pressure (1) was
mentioned with respect to issues with acquiring talented employees: “We have
to be modern, otherwise we will not get good people anymore” (P2)

Process Push (7 quotations, 4 interviews). Deficiencies of the current
process were only mentioned a few times as forces that push companies towards
MBSE. The codes were time pressure (4/3), inefficient testing (2/2), and lack
of traceability (1). “We have no idea what happens when something changes”
(P5), “[We have] Large amounts of requirements; how can the tester handle
this?” (P5)

In summary, interviewees provided more push forces related to issues with
the product instead of issues with the process.

4.6 Fostering Force: Pull

We identified several factors of envisioned benefits that drive companies towards
MBSE adoption. A majority of the responses given by the interviewees is related
to envisioned improvements of the development process. This is interesting since
process issues were only mentioned a few times as push factors.

Easier Handling of Complexity (19 quotations, 12 interviews). With
each new function to integrate, the complexity of software increases. Managing
the different software components gets more and more complicated. The inter-
viewees see great opportunities in MBSE to support this challenge. Due to a
large number of possible variants of products, complexity of software increases
in many companies. “[MBSE will help us to] understand highly complex issues or
illustrate something” (P15), “[MBSE will support the] management of product
line and variability” (P1)

194 A. Vogelsang et al.

Early Feedback on Correctness (15 quotations, 10 interviews). The
desire for early feedback and front-loading was also a strong pull factor. Espe-
cially early verification on higher levels of development were mentioned to
improve the development process and finally also the product. “Early verifi-
cation and simulation saves time in the end” (P7), “[MBSE will provide] better
quality due to early fault detection” (P4), “[MBSE will] Enable automatic veri-
fication” (P6)

Documentation Support (10 quotations, 7 interviews). The interviewees
expect support to create and manage documentation. The increasing complex-
ity of software development has complicated the management of requirement
documents. “[MBSE will provide] better documentation” (P13), “[MBSE will]
generate documentation and code” (P12)

Increase in Product Quality (10 quotations, 5 interviews). The inter-
viewees expect better products by introducing MBSE. This includes the final
product as well as intermediate development artifacts. “[MBSE will] improve
the quality of requirement documents” (P10)

Efficient Certification (8 quotations, 5 interviews). Some interviewees
envision that MBSE will make it easier to certify software-intensive products.
Some interviewees specifically mentioned that MBSE would enable a modular
certification, where only parts of the product are certified and not the entire
product. “[MBSE is] necessary to comply with regulatory requirements” (P6),
“[MBSE will enable] modular certification and parallel development” (P6)

Additional, less frequently mentioned, pull factors include cost reduction (6
coded quotations), positive experiences (4), code generation (4), better overview
through abstraction (4), and support of reuse (3).

5 Discussion

The results show that people from industry have high hopes and expectations for
MBSE. However, there are also several hurdles that need to be addressed when
adopting MBSE, some of which are very generic. These problems are sometimes
even part of the human nature and its natural resistance to change in general.

Relation to Existing Evidence. When comparing our results to related stud-
ies on forces of adopting development methodologies in industry, we can identify
some general patterns. Hohl et al. [9] report on forces that prevent the adoption
of agile development in the automotive domain. They also report on forces of
inertia and anxiety resisting a necessary change of mind-set, or limited accep-
tance for organizational restructuring. Additionally, the current development
process was perceived as good-enough. The same forces also appeared in our
study. Riungu-Kalliosaari et al. [17] performed a case study on the adoption
of DevOps in industry, where they identified five high-level adoption challenges.
Three of these challenges were also mentioned as inertia or anxiety factors in our
study, namely deep-seated company culture, industry constraints and feasibility,

Should I Stay or Should I Go? 195

and unclear methodology. Parallels can also be found in the work of Bauer and
Vetrò [2] with respect to the adoption of structured reuse approaches in industry.

Similarly, we also found common and generic goals (i.e., pull forces) that are
in the focus of many process improvement activities. Schmitt and Diebold [19]
have analyzed common improvement goals that are usually considered when
improving the development process. The pull factors that we extracted in our
study are part of the main goals elicited by them (e.g., quality and time-to-
market).

When focusing on the forces specific to MBSE that did not appear (so
strongly) in the related studies, some factors remain. Incompatibility of MBSE
tools with existing tools is a specific inertia force that prevent MBSE adoption.
A second force of inertia that was specifically reported for MBSE adoption is
the need to adopt a new way of thinking, especially with respect to abstractions.
The anxiety forces that we identified were rather generic such that we did not
identify any MBSE specific anxiety forces. Interestingly, loss of competences or
loss of power, which is a typical anxiety factor, was not mentioned very often.

Impact for Industry. MBSE streamlines the activities in all phases of the soft-
ware lifecycle. It replaces document-based systems engineering and automates
several tasks (e.g., code generation). An organization doing the transition from
document-based to model-based will require changes in all software development
stages, including tools, processes, artifacts, and developing paradigms.

Our interviewees focused more on push forces related to the product and not
so much on the process. One might infer that engineers recognize the growing
complexity of their products but they cannot link it to the shortcomings of the
current processes. Perhaps, inside their mind, the processes are OK since it has
been functioning properly until now and the problem is the product that is
getting more difficult to develop.

The results support decision-making and are an initial step towards efficiently
introducing MBSE in companies. Implementing change is always a hassle, there-
fore companies should manage expectations by setting concrete improvement
goals, relating them to concrete MBSE techniques, and making changes step-by-
step. Many interviewees mentioned that MBSE adoption should best be piloted
in small projects with a clear scope.

Impact for Academia. MBSE complexity raises uncertainties towards effort
and success of its introduction. These uncertainties can be mitigated by knowl-
edge building. Misunderstandings of MBSE, its tools, and processes were quoted
many times, which means research is not properly reaching practitioners. This
problem is not limited to the MBSE domain but to research in general. With a
clear idea of the forces fostering and hindering MBSE introduction, the next step
is to understand how to manage those factors, mitigating them when necessary,
or strengthen the ones that contribute to successful MBSE introduction. The
results provide promising research directions based on real industry needs.

196 A. Vogelsang et al.

5.1 Threats to Validity

The validity of our results is subject to the following threats:

Subject Selection Bias. Since this is an exploratory study, we selected a
convenience sample of project partners and personal contacts as study subjects.
Although we selected participants from a broad spectrum of companies and
industrial domains, the results may be influenced by the fact that all study
participants work in Germany. Additionally, the interviewees were selected from
an environment where MBSE adoption is a realistic option.

Researcher Bias. Our study was carried out in the context of a project on
transferring MBSE into practice, which means that the authors have a positive
attitude towards MBSE in general. Additionally, some of the interviewees are also
partners in this project, however, we also interviewed people from companies not
involved in the project. To reduce researcher bias, the interviews were conducted
by two researchers who took notes independently.

Research Method. Validity is threatened by the possibility of misunderstand-
ings between interviewees and the researchers. To minimize this risk, the study
goal was explained to the participants prior to the interview. Steps taken to
improve the reliability of the interview guide included a review and a pilot test.
We followed several strategies proposed by Maxwell [13] to mitigate threats.
The interviews were conducted as part of a larger project, where we established
a long-term involvement of the study subjects. As part of this, we presented
our study in the context of the project, where the results were reviewed by the
project partners. We substantiate our assertions by providing quasi-statistics on
the frequency of codes occurrences in the interview data. To validate our results,
we compared them with existing studies on development methodology adoption.

External Validity. We expect that our results are representative for the Ger-
man embedded systems industry, however, we cannot generalize the results to
other countries or other types of systems engineering.

6 Conclusions

Organizational change is never easy, especially when trying to introduce complex
approaches such as MBSE. In this research, we look for the reasons and factors
that prevent or impede companies from adopting MBSE. For this means, we
created a forces framework that we used to analyze the information from the
verbatim of 20 interviews. We identified forces that hinder and foster MBSE
adoption in organizations. We coded the interviews within several discussion
rounds. Based on our results, practitioners may challenge their decision processes
and adoption strategies. Researchers may study our results and find evidence
to quantify and detail the considerations of practitioners. We conclude that
bad experiences and frustration about MBSE adoption originate from false or
too high expectations. Nevertheless, companies should not underestimate the
necessary efforts for convincing employees and addressing their anxiety.

Should I Stay or Should I Go? 197

As future work, we plan to analyze the data to investigate correlations
between roles and identified categories as well as dependencies between the
forces. Additionally, the research community may create mechanisms to iden-
tify the forces within the organization in a more effective and systematic way,
analyze how hindering forces can be mitigated, understand how to harvest forces
synergy, and figure out which tools and techniques have the highest ROI.

Acknowledgements. This work was partly funded by the German Federal Ministry
of Education and Research (BMBF), grant “SPEDiT, 01IS15058”.

References

1. Aranda, J., Damian, D., Borici, A.: Transition to model-driven engineer-
ing. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 692–708. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33666-9 44

2. Bauer, V., Vetrò, A.: Comparing reuse practices in two large software-producing
companies. J. Syst. Soft. 117, 545–582 (2016)

3. Böhm, W., Junker, M., Vogelsang, A., Teufl, S., Pinger, R., Rahn, K.: A formal
systems engineering approach in practice: an experience report. In: International
Workshop on Software Engineering Research and Industrial Practices (SER&IPs)
(2014). doi:10.1145/2593850.2593856

4. Bone, M., Cloutier, R.: The current state of model based systems engineering:
results from the OMG SysML request for information 2009. In: CSER (2010)

5. Broy, M., Damm, W., Henkler, S., Pohl, K., Vogelsang, A., Weyer, T.: Introduction
to the SPES modeling framework. In: Pohl, K., Hönninger, H., Achatz, R., Broy,
M. (eds.) Model-Based Engineering of Embedded Systems, pp. 31–49. Springer,
Heidelberg (2012)

6. Bryman, A.: Social Research Methods. Oxford University Press, Oxford (2015)
7. Conner, D.R.: Managing at the Speed of Change. Random House, New York (1993)
8. Dresch, A., Lacerda, D.P., Antunes, J.A.V.: Design Science Research. Springer,

Cham (2015)
9. Hohl, P., Münch, J., Schneider, K., Stupperich, M.: Forces that prevent agile adop-

tion in the automotive domain. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc,
A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol.
10027, pp. 468–476. Springer, Cham (2016). doi:10.1007/978-3-319-49094-6 32

10. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices
in industry. In: ICSE (2011)

11. INCOSE: Systems engineering vision 2020 (2007)
12. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study of forces and fric-

tions affecting large-scale model-driven development. In: France, R.B., Kazmeier,
J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 352–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33666-9 23

13. Maxwell, J.A.: Qualitative Research Design: An Interactive Approach, vol. 41. Sage
publications, Thousand Oaks (2012)

14. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An empirical study
of the state of the practice and acceptance of model-driven engineering in four
industrial cases. Empirical Soft. Eng. 18(1), 89–116 (2013)

15. Motamedian, B.: MBSE applicability analysis. Int. J. Sci. Eng. Res. 4(2) (2013)

http://dx.doi.org/10.1007/978-3-642-33666-9_44
http://dx.doi.org/10.1007/978-3-642-33666-9_44
http://dx.doi.org/10.1145/2593850.2593856
http://dx.doi.org/10.1007/978-3-319-49094-6_32
http://dx.doi.org/10.1007/978-3-642-33666-9_23

198 A. Vogelsang et al.

16. Neuman, W.: Social Research Methods: Qualitative and Quantitative Approaches,
7th edn. Alpha Books, New York (2010)

17. Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L.E., Tiihonen, J., Männistö, T.:
DevOps adoption benefits and challenges in practice: a case study. In: Abrahams-
son, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen,
T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 590–597. Springer, Cham (2016).
doi:10.1007/978-3-319-49094-6 44

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Soft. Eng. 14(2), 131–164 (2008)

19. Schmitt, A., Diebold, P.: Why do we do software process improvement? In: Abra-
hamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen,
T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 360–367. Springer, Cham (2016).
doi:10.1007/978-3-319-49094-6 23

20. Shields, P., Rangarjan, N.: A Playbook for Research Methods: Integrating Con-
ceptual Frameworks and Project Management. New Forums, Stillwater (2013)

21. Vogelsang, A., Eder, S., Hackenberg, G., Junker, M., Teufl, S.: Supporting concur-
rent development of requirements and architecture: a model-based approach. In:
MODELSWARD (2014)

22. Vogelsang, A., Femmer, H., Winkler, C.: Systematic elicitation of mode models for
multifunctional systems. In: International Requirements Engineering Conference
(RE) (2015). doi:10.1109/RE.2015.7320447

23. Weston, C., Gandell, T., Beauchamp, J., McAlpine, L., Wiseman, C., Beauchamp,
C.: Analyzing interview data: the development and evolution of a coding system.
Qual. Sociol. 24(3), 381–400 (2001)

24. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: A taxonomy
of tool-related issues affecting the adoption of model-driven engineering. Soft. Syst.
Model. 16(2), 313–331 (2017)

http://dx.doi.org/10.1007/978-3-319-49094-6_44
http://dx.doi.org/10.1007/978-3-319-49094-6_23
http://dx.doi.org/10.1109/RE.2015.7320447

How Accountability is Implemented
and Understood in Research Tools

A Systematic Mapping Study

Severin Kacianka1(B), Kristian Beckers2, Florian Kelbert3,
and Prachi Kumari4

1 Technical University of Munich, Munich, Germany
kacianka@in.tum.de

2 Siemens, Munich, Germany
kristian.beckers@siemens.com

3 Imperial College London, London, England
f.kelbert@imperial.ac.uk

4 Munich, Germany
prachi.kumari@tum.de

Abstract. [Context/Background]: With the increasing use of cyber-
physical systems in complex socio-technical setups, mechanisms that hold
specific entities accountable for safety and security incidents are needed.
Although there exist models that try to capture and formalize account-
ability concepts, many of these lack practical implementations. We hence
know little about how accountability mechanisms work in practice and
how specific entities could be held responsible for incidents. [Goal]: As
a step towards the practical implementation of providing accountability,
this systematic mapping study investigates existing implementations of
accountability concepts with the goal to (1) identify a common definition
of accountability and (2) identify the general trend of practical research.
[Method]: To survey the literature for existing implementations, we
conducted a systematic mapping study. [Results]: We thus contribute
by providing a systematic overview of current accountability realizations
and requirements for future accountability approaches. [Conclusions]:
We find that existing practical accountability research lacks a common
definition of accountability in the first place. The research field seems
rather scattered with no generally accepted architecture and/or set of
requirements. While most accountability implementations focus on pri-
vacy and security, no safety-related approaches seem to exist. Further-
more, we did not find excessive references to relevant and related concepts
such as reasoning, log analysis and causality.

Keywords: Accountability · Tools · Literature review · Survey ·
Systematic mapping study

The original version of this chapter was revised. Modifications have made to Table 3.
For detailed information please see Erratum. The erratum to this publication is
available online at https://doi.org/10.1007/978-3-319-69926-4 56
P. Kumari was formerly at TU Munich, Munich, Germany.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 199–218, 2017.
https://doi.org/10.1007/978-3-319-69926-4_15

https://doi.org/10.1007/978-3-319-69926-4_56

200 S. Kacianka et al.

1 Introduction

Traditionally, IT practitioners have aimed to avoid safety and security incidents
using preventive measures. In complex systems, however, it is often hard to
enumerate and plan for possible contingencies. Besides, preventive measures gen-
erally require many additional resources and are expensive to implement [17].
As a consequence, the focus of research has shifted towards alternative ideas like
detective security [23] or root cause analysis [24]. Detective security is inspired
by how law enforcement works in the real world [26]: Speeding violations are not
prevented by technical means, e.g. by limiting the maximum speed of the car,
but by punishment if caught exceeding the speed limit.

To develop a broad and structured understanding of these and related issues
and research undertakings, we designed a mapping study with a focus on account-
ability in the context of privacy, safety, and security. We thus survey the literature
of practical accountability implementations that address violations of safety, secu-
rity, and privacy requirements with the goal to identify the set of existing methods
and approaches. Our focus is on the post-mortem analysis of unwanted events.

In terms of related work, Xiao et al. [30] investigate accountability in computer
networks and distributed systems. In contrast to their work, we focus on imple-
mentations and do not restrict our study to computer networks. While Papaniko-
laou and Pearson [19] give a cross-discipline overview of the term accountability,
they focus on theoretical definitions and do not consider applications.

Our contribution is a systematic mapping study on accountability in the
context of privacy, safety, and security requirements. We identify which contribu-
tions were made over time, the various application domains, layers of abstraction,
technologies and protocols in implementing accountability in socio-technical sys-
tems. We find that even though there exist very few tools for accountability, it is
a growing area of research in different domains. All raw data of our study can
be found online [16]; see https://acc.in.tum.de/accountability 2016/ for a more
interactive viewer of the data.

2 Methodology

We followed the five-step methodology laid out by Petersen et al. [21]: (1) defin-
ition of research questions (Sect. 2.1), (2) conduct search (Sect. 2.2), (3) screen-
ing of papers (Sect. 2.3), (4) keywording using abstracts (Sect. 2.4), and (5) data

Fig. 1. The “sieving” process

https://acc.in.tum.de/accountability_2016/

How Accountability is Implemented and Understood in Research Tools 201

extraction and mapping process (Sect. 2.5). This section describes our instanti-
ation of this methodology. All steps were conducted jointly by the four authors
of this paper. The later stages (screening, keywording and mapping) were con-
ducted using a custom written web tool, that offered all authors a unified inter-
face and functioned as a review tool. Figure 1 illustrates our process.

2.1 Definition of Research Questions

We were interested in answering the following research questions:

RQ1 What types of research papers have been published over the years?
RQ2 Which application domains have seen most implementations?
RQ3 Which underlying techniques/protocols are implemented by these tools, at

which layers of abstraction are these tools deployed and is there a trend?
RQ4 What do the underlying definitions of accountability have in common?
RQ5 Are prominent contributors recognizable? How are they related to each

other?

2.2 Paper Search

In accordance with our research questions, we constructed the search string
accountability AND (privacy OR safety OR security) AND (tool OR implemen-
tation OR application) and adapted it to the idiosyncrasies of each digital library.
We limited our search to those technical domains, because we know that account-
ability is a focus in those fields and because otherwise the result set balloons,
encompassing mostly papers covering (non-technical) management and gover-
nance problems.

We obtained a basic set of publications from ACM [1] (73 results), IEEE
[2] (321), Scopus [3] (212) and Springer [4] (2591), as shown in Table 1, column
‘Raw’. As a first step, we stored the search results as CSV files. For this, IEEE
and Scopus provided CSV export functionalities, comprising authors, titles, and
abstracts. Springer’s export functionality did not include abstracts, hence we
used a simple script to access the abstracts from the publication’s URL. To
extract this information from ACM, we used the Zotero tool [5].

Table 1. Dataset overview

Source Raw Cleanup Relevant

ACM 73 45 5

IEEE 321 201 25

Scopus 212 212 5

Springer 2591 322 10

Total 3197 780 45

202 S. Kacianka et al.

Due to the comparatively large amount of results returned by Springer, we
performed an initial screening step for all Springer results. We realized that a
large amount of those results did not feature the term “accountability” within
their abstract. We thus randomly selected 40 publications that did not refer to
accountability in their abstract. As it turned out that none of these publications
were indeed related to our study subject, we removed all Springer publications
that did not feature the term accountability in their abstract. For consistency,
we also did this check for the other sources, but had to remove no papers for
that reason. Further, Scopus is a meta-search engine that searches, amongst
other sources, also the three primary libraries. Scopus thus introduced duplicates.
After an additional screening for duplicates and removing them, we obtained
the dataset shown in Table 1, column ‘Cleanup’. To be consistent in the removal
process, we always kept the Scopus version of a paper. Hence for Scopus the
number of papers is the same in the columns ‘Raw’ and ‘Cleanup’.

2.3 Screening

We used a custom collaborative web tool to further screen the remaining 780
papers based on their title, keywords and abstract. In this step, we excluded
all publications that (i) did not report a tool, implementation or application,
(ii) were not related to privacy, safety, or security, or that (iii) reported only an
idea, formalism or abstract framework. To ensure consistent decisions from all
reviewers, we had frequent meetings. The first meeting was scheduled after every
reviewer completed approximately 10 reviews, follow up meetings were held after
approximately 50 reviews per authors. The frequency of meeting slowly decreased
after the reviewers got more familiar with the screening process.

In practice, our web tool presented each paper randomly to two (out of
four) researchers, who then read the abstract and decided whether to include or
exclude the paper based on the above criteria. If the researchers’ decision was
unanimous, the paper was accepted (92 papers) or rejected (532 papers) accord-
ingly. In a second round, all 156 papers with disagreements were presented to
two additional researchers. Upon a clear majority of 3–1, the paper was accepted
(31 papers) or rejected (80 papers). After this phase, we manually identified and
removed 26 more duplicates.

In the following round, the 41 papers that had received a 2–2 draw were
discussed in the presence of all researchers and a final verdict was reached. In
this phase 25 papers were rejected. Overall, 117 papers proceeded to the next
phase of keywording.

2.4 Keywording

In the keywording phase, we classified the remaining 117 papers. For this, we
initialized our custom web tool with an intuitive set of keywords agreed upon by
discussion among the authors (e.g., security, monitoring, or cloud). These key-
words emerged from the authors’ experience during the initial screening phase.
We also added some keywords under the category of “sanity check” to further

How Accountability is Implemented and Understood in Research Tools 203

[31] Ahmed and Ahamad (2014) [32] Alexiou et al. (2013) [33] Ali and Moreau (2013)
[34] Ali et al. (2014) [35] Ali et al. (2013) [36] Asokan et al. (2013)
[37] Brzuska et al. (2014) [38] Cherrueau and Sudholt (2014) [39] Choi et al. (2005)
[40] Clifton and Fernandez (1988) [41] Dailianas et al. (2000) [42] De Oliveira et al. (2013)
[43] Fahl et al. (2014) [44] Flegel (2002) [45] Fugkeaw et al. (2007)
[46] Fugkeaw et al. (2009) [47] Haidar et al.(2010) [48] Jedrzejczyk et al. (2010)
[49] Kang et al. (2014) [50] Khalasi et al. (2012) [51] Ko et al. (2011)
[52] Ko and Will (2014) [53] Kuacharoen (2012) [54] Langheinrich (2002)
[55] Wonjun et al. (2009) [56] Lin and Chang (2009) [57] Masmoudi et al. (2014)
[58] Michalas and Komninos (2014) [59] Mivule et al. (2014) [60] Mortimer and Cook (2010)
[61] Naessens et al. (2005) [62] Pato et al. (2011) [63] Pearce et al. (2005)
[64] Pearson et al. (2009) [65] Popa et al. (2011) [66] Rubin (1995)
[67] Ruth et al. (2004) [68] Sriram et al. (2007) [69] Such et al. (2012)
[70] Such et al. (2013) [71] Chun et al. (2013) [72] Kang et al. (2010)
[73] Yang et al. (2010) [74] Gang et al. (2012) [75] Zhou et al. (2010)

Fig. 2. All papers part of this study. The full citations can be found online: https://
acc.in.tum.de/accountability 2016/study papers.pdf

exclude irrelevant papers. These keyword-categories were: “No implementation”,
“Not about accountability”, “Full text not available” (was never used) and “I
am not sure, I need help”. The last category was used if an author was not
sure and wanted to discuss the paper with another author. Each paper was then
keyworded by one author. Apart from the above initial keywords, each author
was able to create new ones on the fly. To ensure a common understanding of
the keywords, we again held regular meetings to discuss the keywords.

Despite the previous screening step, 66 papers had to be removed because
they (i) did not describe an implementation or (ii) were not about accountability.
This is because in the initial screening process we were only deciding on the basis
of the papers’ titles, abstracts, and provided keywords. Since on this basis it was
often not clear whether a paper described an implementation or not, we decided
to accept papers if in doubt. After this process, 45 relevant research papers where
subject to our study as shown in Table 1, column ‘Relevant’, and Fig. 2.

2.5 Mapping

During the mapping process, our web tool randomly and equally assigned the 45
accepted papers to the four researchers. Each researcher screened the full text,
categorized the paper, and gave a short rationale for the categorization. If the
paper did not fit into any existing categories, the researcher could create new
categories. All of the categories were shared by all researchers in a “tag-cloud”
(for example: Security, Efficiency, or Health Care) that was managed by our
collaborative web tool. During the process we had several meetings to discuss
new categories and unclear publications.

3 Findings

Types of research papers and distribution over the years (RQ1).
Our classification of the contributions is based on the classification scheme

https://acc.in.tum.de/accountability_2016/study_papers.pdf
https://acc.in.tum.de/accountability_2016/study_papers.pdf

204 S. Kacianka et al.

by Wieringa et al. [28] which was applied to systematic mapping studies by
Peterson et al. [21]. We classify the selected papers strictly according to their
criteria, which are: Validation Research, Evaluation Research, Solution Proposal,
Philosophical Papers, Opinion Papers and Experience Papers. Table 2 maps the
selected papers according to these criteria. We realize that all papers focus on
solutions and their evaluations. Note that our mapping study focuses on papers
that report on techniques that are actually implemented; we excluded meta stud-
ies. Hence, we find no papers in the categories experience paper, opinion paper,
or philosophical paper.

Table 2. Paper categorisation into research type facets; grouped by publisher

Category ACM IEEE Springer Others

Validation
research

[43]

Evaluation
research

[32,35,65,75] [31,34,38,46,51,52,55,
57,71,73]

[37,39,44,61] [70]

Solution
proposal

[48,50] [33,40–42,45,47,49,58,
60,62,64,66,68,72,74]

[36,53,54,56,63,67,69] [59]

1 1 1

2

1

3

2

4

6

3

5

7

9

0

1

2

3

4

5

6

7

8

9

10

1988 1995 2000 2002 2004 2005 2007 2009 2010 2011 2012 2013 2014

Fig. 3. Number of papers over the years

To identify how the number of contributions developed over time, we analyzed
the papers according to their year of publication. Figure 3 shows the graph of the
distribution from 1988 to 2014, revealing that accountability implementations
started gaining interest in 1988 beginning with the work of [40]. For the first few
years until the year 2000, this area did not attract much attention with only three
papers in 12 years. There are several crests and troughs starting in the year 2000,
but the overall interest of the research community has been increasing. In fact,
as shown in Fig. 3, every trough is at a higher level than the previous one. Since

How Accountability is Implemented and Understood in Research Tools 205

45%

36%

14%

5%

Application

Network

Kernel

File System

(a) Layers of abstraction

8

7

6

4

2

2

2

2

2

9

Cloud

Distributed Data Sharing

Web Applications

Healthcare

Banking

Android

E-Mail

Software Distribution

Body Area Networks

Others

(b) Papers per domain

8

8

5

Cryptographic Protocol

Network Protocol

Accountability Protocol

(c) Protocols used

7

7

7

6

6

3

2

2

19

Policy

PKI

Anonymity

Access Control

Signatures

Authentication

Provenance graph

Identity Management

Others

(d) Mechanisms used

Fig. 4. Findings

2011, there has been a consistent growth in the number of implementations. It
is also notable that after the publication of the influential paper by Weitzner
et al. [26] (which, as a theoretical paper, is not subject of our study) in 2008, we
see relevant publications in every consecutive year.
Interpretation: The research types in the field of implemented accountability
approaches are validation, evaluation and solution approaches. It is no surprise
that the field started with solution approaches and moved over time to evalua-
tion approaches. The majority of publications in the years 2013 and 2014 are of
that type. We have seen only one validation approach. We assume over time the
focus of research will go towards evaluation approaches and ultimately valida-
tion approaches. Hence, the field evolves towards evaluation research, while we
see a clear gap in validation research. Though the initial work on implementing
accountability is by [40] in the year 1988, the field of accountability implementa-
tions started growing only from the year 2000, as shown in Fig. 3. In summary,
contributions over the years indicate that accountability is (1) not yet a mature
field as indicated by the low number of tools and implementations, and (2) a
growing field of research with a consistent increase in the number of tools over
the last decade.

Application Domains (RQ2). To answer the second research question,
we classified the papers according to the targeted application domains. As
shown in Fig. 4b, accountability concepts have been mostly implemented for the

206 S. Kacianka et al.

cloud domain with 8 implementations [33,42,50–52,57,60,71]. Other important
domains are distributed data sharing (7 implementations [45,52,59,60,63,67,
68]), webapplications (6; [38,47,49,58,72,74]), and health care (4; [31,34,35,59]).
For other domains we found at most two implementations.

Since the implementation of accountability mechanisms is a relatively new
area of research, there are many domains for which only single implementations
exist. These have been grouped as Others in Fig. 4b and include web services,
ubiquitous computing, wireless networks, business organization, ecommerce, lot-
tery, insurance, grid computing and location based services.

Interpretation: Cloud computing is en vogue. At the same time, it is one of
the application domains where most privacy and data protection concerns have
been raised. Distributed data sharing is another such domain. Encryption and
access control have been shown to be insufficient for addressing these issues in
remote computing and data sharing in general [26]. Hence, it is only obvious
that researchers are trying to address privacy and security issues by detective
enforcement viz. implementing accountability in these domains. An interesting
finding is that web applications and health care domains have not attracted equal
focus, especially health care where HIPPA (Health Insurance Portability and
Accountability Act of 1996) explicitly mandates accountability enforcements.

Underlying Techniques and Protocols (RQ3). As depicted in Fig. 4c, we
found three different kinds of protocols that are leveraged by implementations
to achieve accountability.

Eight papers use network protocols [39,41,42,58,72–75] or cryptographic pro-
tocols [32,34,37,39,58,63,68,74], while five papers make use of accountability
protocols [35,36,61,63,74]. Contrary to our expectation, data provenance proto-
cols are not commonly used for accountability implementations.

Since accountability is the focus of this study, we took a more detailed
look at the accountability protocols: [35] uses fingerprinting of wireless connec-
tion in body area networks to later proof communication between two parties.
[36] describes a system for friends to share resources and uses accountability to
prevent abuse. They use internet connection sharing as a use case. [61] treats a
similar problem, considering an anonymous e-mail service and providing account-
ability in case a user abuses the system to commit criminal acts. [63] describes
a protocol to resolve disputes about transactions in e-commerce systems. [74]
proposes the term “accountable anonymity” and uses an encryption scheme to
build an accountable and anonymous internet proxy.

Furthermore, we investigated which mechanisms and techniques are used to
implement accountability. As detailed in Fig. 4d, we found that most solutions
are concerned with enforcement of policies (7 solutions [33,38,46,50,54,55,62]),
public key encryption schemes (7; [32,37,43,46,47,63,66]), anonymity (7; [32,44,
58,61,63,65,74]), access control (6; [33,36,45,46,55,62]), and digital signatures
(6; [34,37,42,43,67,68]). Some tools also use authentication (3; [45–47]), prove-
nance graphs (2; [67,71]), and identity management (2; [55,69]) to hold entities
accountable in systems. 19 further mechanisms appeared in only one implemen-
tation each. These are represented as “Others” in Fig. 4d and include certificates,

How Accountability is Implemented and Understood in Research Tools 207

traces, pseudonyms, pseudonymity, log tamper resistance, time synchronization,
reputation systems, unlinkability, accountable anonymity, OLAP, questionnaire
and report generation, key management, resource description framework (RDF),
job-flow tracking, fault detection, monitoring, onion routing, decentralization,
and Shamir’s threshold scheme.

We further found that accountability mechanisms are mainly implemented at
the application layer (10 instances; [37,46,50,59–62,65,69,72]) and the network
layer (8; [34,39,47,52,58,63,72,74]), see Fig. 4a. Few solutions are implemented
at the kernel layer (3; [40,52,71]) and the file system layer (1; [44]).

Interpretation: The underlying techniques in accountability implementations are
dominated by cryptographic protocols and network protocols. We found only one
implementation relying on data provenance and very few accountability-centric
protocols which combine, e.g., anonymity with accountability. In addition, we
observed three overall trends in mechanisms offered within accountability imple-
mentations. First, cryptography is dominating the field with, e.g., public key
infrastructures, signature-based solutions, and certificates. Second, access con-
trol mechanisms are wide-spread. Either under the term access control or in
supporting topics such as policy-based approaches, authentication mechanisms,
or identity management. Third, privacy is a recurring theme in particular with
respect to anonymity. Further privacy goals such as pseudonymity and unlink-
ability are supported as well, but to a lesser extend. We sparsely encountered
further supporting mechanisms such as provenance and traceability.

Definitions of Accountability (RQ4). We scanned all 45 papers for the
definition of accountability. To find the definition, we searched the documents
for all occurrences of the term “accountability”. We then read the text before
and after the highlighted term and looked for a definition.

We found that 20 of the 45 papers provide no explicit definition of accountabil-
ity. 17 papers provide their own definition, not taking other sources into account.
These definitions define accountability in terms of responsibility/assigning blame
(6), non-repudiation/integrity (3), a-posteriori enforcement (3), collect evidence
(2), transparency (2), traceability (1).

Only 8 papers rely on a previously-published and peer-reviewed definition:

Anderson et al. [6] the “(...) ability to associate an action with the responsible
entity.”

Bhargav-Spantzel et al. [7] “(...) the ability of holding entities responsible
for their actions.”

Brzuska et al. [8] “A sanitizable signature scheme satisfies non-interactive
public accountability, if and only if for a valid message/signature pair (m,σ),
a third party can correctly decide whether (m,σ) originates from the signer
or from the sanitizer without interacting with the signer or sanitizer.”

Ko et al. [18] who rely on [20] and use the definition from the “The Best
Practices Act of 2010” (we, however, could not find the formulation in the
original source): “the obligation and/or willingness to demonstrate and take
responsibility for performance in light of agreed-upon expectations.”

208 S. Kacianka et al.

Pearson [20] relies on Weitzner et al. [26] and extends the definition of the
“Galway project”: “Accountability is the obligation to act as a responsi-
ble steward of the personal information of others, to take responsibility for
the protection and appropriate use of that information beyond mere legal
requirements, and to be accountable for any misuse of that information.”

Xiao [29] “Accountability implies that any entity should be held responsible for
its own specific action or behavior so that the entity is part of larger chains
of accountability. One of the goals of accountability is that once an event
has transpired, the events that took place are traceable so that the causes
can be determined afterward.”

These definitions, like the 17 definitions provided by the other papers, are not
peer-reviewed and rely on a common understanding of the (dictionary-)meaning1

of accountability.

Interpretation: It was surprising that no clear and accepted definition of account-
ability emerged. We assume that the main reason for this is that it is a common
English word and everyone has some intuitive understanding of the term. The
lack of a clear definition and differentiation from other terms like “responsibil-
ity” or “detection” hinders the scientific discourse and the comparability of the
approaches. We hope that in the future works will rely on a peer reviewed def-
inition of accountability and that thus trends and relations among approaches
will become more pronounced. Despite this, all definitions see accountability as
some form of a-posteriori mechanism to provide evidence and ultimately assign
blame or responsibility. It relies either on logs or some other form of monitor.

Contributors and Relationships (RQ5)

Collaboration Networks. We analyzed the author networks of the selected papers.
First, we find that most authors feature only one publication on accountability
implementations, as indicated by the size of the nodes in Fig. 5. 13 authors fea-
ture two publications, while only one author features three. For the authors with
at least two publications, we found that the corresponding papers are closely
related follow-up papers. As also indicated by Fig. 5, the analyzed author net-
work is very scattered. The authors of accountability tools do not collaborate
across research groups. Again, the only papers published by the same authors are
[34,35], [45,46], and [51,52,71] all of which are a series of papers.

These results lead us to the conclusion and hypothesis that the field of
accountability implementations would greatly benefit from more systematic col-
laborations and research among the identified researchers.

1 The Oxford dictionary defines accountability as “The fact or condition of being
accountable; responsibility”. For a more detailed discussion see [19].

How Accountability is Implemented and Understood in Research Tools 209

P. Sharma

V. Dandamudi-Ratnakar

S. Patruni

A. Paull

A. Parry

T. Sander

P. Rao

S. Pearson

S. Stelle

T. Schneider
A. Sadeghi

E. Reshetova
M. Nagy

A. Dmitrienko

N. Asokan

M. Smith

Y. Mao

B. Loo

J. Smrcek

F. Fischer

X. Li

H. Perl

T. Tao

M. Sherr

S. Dechand

S. Fahl

W. Zhou

R. Ko
B. Lee

P. Jagadpramana

Y. Tan

C. Suen

B. Beckles

M. Maheswaran

P. Papadimitratos

S. Jha
S. Wang

A. Abdallah

C. Han

F. ShihG. Tsudik

M. Khodaei

D. Ostry I. Jacobi

N. Jia

P. Coveney

S. Gisdakis

A. Malozemoff

M. Laganà

S. Paradesi

S. Zasada

V. Sivaraman

A. Haidar

J. Pato

K. Wang

N. Alexiou

S. Ali

B. Nuseibeh

F. Li

F. Regnier

H. Huang

J. Bellver

K. Jenatton

S. Sharma

A. Bandara

A. Espinosa

A. Garaga

B. Bhargava

D. Florissi

H. Balakrishnan

T. Tripathy

A. Blumberg

A. Garcia-Fornes

B. Price

D. Xu

J. Sendor

S. Otunba

Y. Yemini
A. Dailianas

A. DeOliveira

J. Such

K. Mivule

L. Jedrzejczyk

P. Ruth

R. Popa

A. Kacem

D. Takahashi

E. Bertino

J. Shrager

K. Gopinath

K. Samelin

L. Demuynck

R. VanSchyndel

S. Juntapremjitt

Y. Guan

Z. Zhang

A. Schiffman

A. Squicciarini

B. DeDecker

G. Narayan

H. Pöhls

K. Meng

L. Aguilera

M. Loulou

P. Bertok

P. Manpanich

Y. Dong

C. Brzuska

C. Choi

C. Pearce

F. Masmoudi

G. Xu

S. Fugkeaw

V. Naessens

V. Sriram

W. Lee

Y. Kang

Y. Xiao

M. Will

E. Fernandez

L. Moreau

M. Ahamad

M. Chaudhari

M. Sudholt

N. Cook

N. Komninos

S. Chang

A. Michalas

D. Clifton

D. Mortimer

G. Khalasi

K. Lin

M. Ahmed

M. Ali
R. Cherrueau

A. Rubin

M. Langheinrich

P. Kuacharoen

U. Flegel

Fig. 5. Collaboration map. The size of nodes and author names corresponds with the
author’s number of papers (1–3) considered in this study.

Most Influential Researchers. We further analyzed the references of the 45
selected papers. Our goal was to find out whether they share common litera-
ture that is essential for the understanding and implementation of accountability
mechanisms. Because some authors made heavy use of self citations, we decided
to exclude any self references. We realized that there exist some researchers that
are cited across many of the study papers. Table 3 shows those researchers that
were cited at least seven times.

Interpretation: In contrast to the theoretical discussions of accountability, where
we often find citations to papers like the one by Weitzner et al. [26] or Feigenbaum
et al. [12], there are no especially noticeable contributors. We assume that there
are more prominent works on topics related to (but not called) accountability,
like fault localization or root cause analysis. This suggests that a clear and
thorough overview of the whole field of computer science is needed. This should
then yield to a clearer definition and taxonomy of the term accountability and
its related concepts.

210 S. Kacianka et al.

Table 3. Most influential researchers.

Name Institution Cit.

Siani Pearson HP Labs Bristol, UK 16

David L. Chaum Voting Systems Institute 14

Margo Seltzer Harvard University, Cambridge, MA, USA 13

Jan Camenisch IBM Research, Zurich, Switzerland 13

Markus Kirchberg National University of Singapore, Singapore 11

Kiran Kumar Muniswamy-Reddy Harvard University, Cambridge, MA, SA 9

Lorrie Faith Cranor Carnegie Mellon University, Pittsburgh, PA,
USA

9

Elisa Bertino Purdue University, West Lafayette, Indiana,
USA

8

Uri J. Braun Harvard University, Cambridge, MA, USA 8

Gene Tsudik University of California, Irvine, California,
USA

8

Anna Lysyanskaya Brown University, Providence, RI, USA 8

Wade Trappe Rutgers University, Piscataway, New Jersey,
USA

7

Ian T. Foster University of Chicago, Chicago, IL, USA 7

Peter Macko Harvard University, Cambridge, MA, USA 7

Susan Hohenberger Johns Hopkins University, Baltimore, MD,
USA

7

4 Synthesis

4.1 Definition of Accountability

One of the main motivation for us to conduct this mapping study was to come
to a unified definition of accountability. We originally anticipated that most
papers would agree on a specific definition; we assumed it would be the defi-
nition of Information Accountability as given by Weitzner et al. [26]. We did
not expect that most papers would use the term without any definition or that
so many papers would use ad-hoc definitions. Yet, this diversity of definitions
also highlights the different facets of accountability and can serve as a basis for
a more general definition. Analyzing all given definitions, we can identify five
main themes:

1. Accountability should associate (or link) actions to entities (often individuals).
2. This link should then be used (often by a neutral third party) to hold the

entity responsible for that action (often the terms blame and punish are used).
3. All definitions implicitly rely on some notion of log that is complete, tamper-

proof and available to the neutral third party.

How Accountability is Implemented and Understood in Research Tools 211

4. Another implicit assumption is that the log data can be used to reason about
the events that have transpired.

5. All definitions only consider single systems. There is no notion of “distrib-
uted” accountability in those definitions.

Considering these aspects, we propose the following work-in-progress defini-
tion of accountability:

1. Accountability is a property of a system or a collection of systems and is
ensured by an Accountability Mechanism.

2. An Accountability Mechanism is part of an Accountable System and reasons
over a tamper-proof log to link effects of that system to entities.

3. An entity is (partially) accountable for a given effect if an Accountability
Mechanism can prove a causal link between the entity’s action and the given
effect.

4. The set of entities accountable for a given effect is the set of all entities
for which an Accountability Mechanism can prove a causal link between the
entities’ actions and the given effect.

4.2 Future Research Directions

We identified two main observations from the 45 study papers:

1. Preventing unwanted behavior is increasingly difficult in distributed and
highly interconnected systems.

2. The impact of any unwanted behavior of computer systems increases with
their adoption.

The first observation is corroborated by the domains that accountability
mechanisms are mostly used in: cloud computing, distributed data sharing and
web applications are all highly distributed systems. The use for accountability
in a single user system is limited: as long as the system is not faulty, any effect is
the result of its sole user’s actions. Consequently, we expect a rising demand for
accountability and its implementations in the fields of cyber-physical systems,
smart systems, and similar fields where devices are only now being connected to
form a wider Internet of Things. Indeed, a recent position paper by Datta et al.
[11] calls for exactly such mechanisms to enhance the security of cyber-physical
systems.

The second observation is best illustrated with the surprisingly high number
of papers from the health care and medical domain. In our opinion, this can be
explained with the legal risks and liabilities within the field. Medical devices are
highly regulated and malfunctioning can be a serious threat to life and limb.
If a pacemaker malfunctions, it is impossible to simply reboot the system or to
restore the last backup. Similarly, computer systems already control cars, drones
and hydro-dams. Any malfunctioning can have serious consequences and thus a
high risk of legal action. In such a case the operator (and often also regulatory
bodies) want a clear trace of accountability.

212 S. Kacianka et al.

5 Threats to Validity

There are three main threats to validity of this mapping study: the selection of
papers, our potential bias when reviewing and categorizing the papers, and the
timeliness of the data.

Selection of papers. By limiting our study to the term “accountability”, we
might have missed papers that implement similar concepts but refer to them by
different terms (e.g., “black box” or “root cause analysis”). We made our choice
based on experiences of existing research. Petticrew and Roberts [22] highlight
that the two main issues in conducting a literature survey are the sensitivity
and specificity of the search. The sensitivity refers to the number of relevant
publications of a search. Specificity describes the number of irrelevant studies of
a search. The aim is to have a high sensitivity and a low specificity of a search.
Synonyms may increase the sensitivity, but it also increases the specificity. Pre-
vious experiences of literature studies advocate simple search strings and limited
synonyms to achieve an optimal trade-off between specificity and sensitivity [25].

Potential bias. It is possible that we collectively misclassified some papers.
We countered this with a multi-staged voting process and took special care that
every paper was reviewed by at least two different researchers. Furthermore, an
inherent limitation of mapping studies is the superficial review of the source
literature. Especially in the early stages we only looked at the abstract of a
paper and not at its content. In the later stages, however, we examined each
paper more carefully.

Timeliness of data. A well-known problem with literature reviews is that they
are quickly outdated. The present data was gathered in 2015 and contains works
up to the year 2015. This means that any more recent works are not part of our
dataset. A recent (June 2017) manual check of the publishers’ digital databases
with study’s search string returned one additional survey about accounting in
content distribution networks [10] and some additional implementations in the
field of e-health [13,14,27] and cloud computing [9,15]. While this search was
not backed by a systematic process, we have not found any indication that our
study’s conclusions need revision. On the contrary, this cursory search seems to
confirm our findings.

6 Conclusion and Future Work

Through this systematic mapping study, we establish the state of the art in
accountability implementations and tools.

We have considered only those papers that describe an implementation. We
did not consider contributions that described, even if in detail, how the ideas
could be implemented. In this context, an interesting finding is that none of the
papers have evaluated their tools for performance. This is important because one
key factor that could limit the usefulness of accountability mechanisms is per-
formance efficiency. The reason is that the origin of unwanted events is typically

How Accountability is Implemented and Understood in Research Tools 213

tracked using logging and analysis of “interesting” system events. Depending on
the complexity of the analysis algorithm and the size of the logs, accountability
implementations could be very expensive in terms of computation. It would help
to get an insight into how the existing implementations perform and if the con-
cepts can be reused in domains where real-time processing is needed, e.g., the
automotive domain.

Another identified gap is the missing link between the high-level unwanted
events that take place in an environment (e.g., personal and medical data is
leaked in a Healthcare domain application) and the low-level unwanted events
that are logged in the running technical systems (e.g., system calls reading from
confidential files and writing to a socket in a network connection). It is important
to establish this link because unwanted events are extracted from high-level
requirements of privacy, security and safety properties and there is no universally
agreed upon semantics of the relevant high-level events (e.g., data leak) in terms
of low-level technical events (e.g., system calls writing to sockets). Though this
gap has been filled in the context of preventive enforcement of usage control, it
is not clear how this could be done for accountability.

One of our goals of this study was to identify which properties are often con-
sidered in combination with accountability. We found that security and privacy
are most often considered along with accountability. Other important properties
are integrity, provenance, trust, legal compliance, confidentiality, transparency,
traceability, auditability and non-repudiation. While most papers consider more
than one of these properties, an interesting finding is that none of the papers
implement a safety property. This discovery points out a gap in the work on
accountability for safety-critical systems.

We were also surprised that relevant concepts like reasoning, log analysis and
causality did not feature prominently in the result set. Current accountability
technologies focus mainly on preventive concepts (policies and access control)
or authenticity/Non-repudiation (public key infrastructures, anonymity and sig-
natures). At the high-level view of this mapping study we could not reliably
identify an a-posteriori approach. We believe that this needs to change in the
future: While it is feasible to manually analyze the logs (flight recorders) the
few times a year an aircraft crashes, it becomes infeasible when multiple drones
crash every day.

Our conclusion is that though accountability concepts have been around for
quite some time, this area has not seen enough implementations, especially of a-
posteriori approaches. At the technical level, there exists no generally accepted
architecture and we did not come across contributions that give insights into
acceptability issues like usability, scalability, etc. At the methodological level,
there are no processes for deriving accountability-specific requirements. Thus,
there is plenty of room for developing accountability infrastructures.

Acknowledgments. This work was funded in part by the Munich Center for Internet
Research and the TUM Living Lab Connected Mobility (TUM LLCM) project which
has been funded by the Bavarian Ministry of Economic Affairs and Media, Energy
and Technology (StMWi) through the Center Digitisation. Bavaria, an initiative of the
Bavarian State Government.

214 S. Kacianka et al.

References

1. ACM digital library (2017). http://dl.acm.org/. Accessed 07 June 2017
2. IEEE Xplore (2017). http://ieeexplore.ieee.org. Accessed 07 June 2017
3. Scopus (2017). http://www.scopus.com. Accessed 07 June 2017
4. Springer (2017). http://link.springer.com. Accessed 07 June 2017
5. Zotero (2017). http://www.zotero.org. Accessed 07 June 2017
6. Andersen, D.G., Balakrishnan, H., Feamster, N., Koponen, T., Moon, D., Shenker,

S.: Accountable internet protocol (AIP). ACM Comput. Commun. Rev. 38, 339–
350 (2008). ACM

7. Bhargav-Spantzel, A., Camenisch, J., Gross, T., Sommer, D.: User centricity: a
taxonomy and open issues. J. Comput. Secur. 15(5), 493–527 (2007)

8. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40012-4 12

9. Chen, H., Tu, S., Zhao, C., Huang, Y.: Provenance cloud security auditing system
based on log analysis. In: 2016 IEEE International Conference of Online Analy-
sis and Computing Science (ICOACS), pp. 155–159 (2016). doi:10.1109/ICOACS.
2016.7563069

10. Coileáin, D.O., O’mahony, D.: Accounting and accountability in content distribu-
tion architectures: a survey. ACM Comput. Surv. 47(4), 59:1–59:35 (2015). http://
doi.acm.org/10.1145/2723701

11. Datta, A., Kar, S., Sinopoli, B., Weerakkody, S.: Accountability in cyber-physical
systems. In: 2016 Science of Security for Cyber-Physical Systems Workshop
(SOSCYPS), pp. 1–3 (2016). doi:10.1109/SOSCYPS.2016.7579998

12. Feigenbaum, J., Jaggard, A.D., Wright, R.N.: Towards a formal model of account-
ability. In: Workshop on New Security Paradigms Workshop, pp. 45–56. ACM
(2011)

13. Grunwel, D., Sahama, T.: Delegation of access in an information accountability
framework for ehealth. In: Proceedings of the Australasian Computer Science Week
Multiconference, ACSW 2016, NY, USA, pp. 59:1–59:8. ACM, New York (2016).
doi:10.1145/2843043.2843383

14. Grunwell, D., Batista, P., Campos, S., Sahama, T.: Managing and sharing health
data through information accountability protocols. In: 2015 17th International
Conference on E-health Networking, Application Services (HealthCom), pp. 200–
204 (2015). doi:10.1109/HealthCom.2015.7454498

15. Jain, J.R., Asaduzzaman, A.: A novel data logging framework to enhance security
of cloud computing. In: SoutheastCon 2016, pp. 1–6 (2016). doi:10.1109/SECON.
2016.7506764

16. Kacianka, S., Beckers, K., Kelbert, F., Kumari, P.: Dataset: How Accountability
is Understood and Realized (2017). https://doi.org/10.5281/zenodo.807129

17. Kelbert, F., Pretschner, A.: A fully decentralized data usage control enforcement
infrastructure. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M.
(eds.) ACNS 2015. LNCS, vol. 9092, pp. 409–430. Springer, Cham (2015). doi:10.
1007/978-3-319-28166-7 20

18. Ko, R.K., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Q.,
Lee, B.S.: Trustcloud: a framework for accountability and trust in cloud computing.
In: IEEE World Congress on Services, pp. 584–588. IEEE (2011)

http://dl.acm.org/
http://ieeexplore.ieee.org
http://www.scopus.com
http://link.springer.com
http://www.zotero.org
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://dx.doi.org/10.1109/ICOACS.2016.7563069
http://dx.doi.org/10.1109/ICOACS.2016.7563069
http://doi.acm.org/10.1145/2723701
http://doi.acm.org/10.1145/2723701
http://dx.doi.org/10.1109/SOSCYPS.2016.7579998
http://dx.doi.org/10.1145/2843043.2843383
http://dx.doi.org/10.1109/HealthCom. 2015.7454498
http://dx.doi.org/10.1109/SECON.2016.7506764
http://dx.doi.org/10.1109/SECON.2016.7506764
https://doi.org/10.5281/zenodo.807129
http://dx.doi.org/10.1007/978-3-319-28166-7_20
http://dx.doi.org/10.1007/978-3-319-28166-7_20

How Accountability is Implemented and Understood in Research Tools 215

19. Papanikolaou, N., Pearson, S.: A cross-disciplinary review of the concept of
accountability. In: Proceedings of the International Workshop on Trustworthiness,
Accountability and Forensics in the Cloud (TAFC) (2011)

20. Pearson, S.: Toward accountability in the cloud. IEEE Internet Comput. 15(4), 64
(2011)

21. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: 12th International Conference on Evaluation and Assess-
ment in Software Engineering, vol. 17 (2008)

22. Petticrew, M., Roberts, H.: Systematic Review in the Social Sciences: A Practical
Guide. Blackwell Publishing, Oxford (2006)

23. Povey, D.: Optimistic security: a new access control paradigm. In: Proceedings of
the 1999 Workshop on New Security Paradigms, pp. 40–45. ACM (2000)

24. Rooney, J.J., Heuvel, L.N.V.: Root cause analysis for beginners. Qual. Prog. 37(7),
45–56 (2004)

25. Salleh, N., Mendes, E., Grundy, J.: Empirical studies of pair programming for
CS/SE teaching in higher education: a systematic literature review. IEEE Trans.
Softw. Eng. 37(4), 509–525 (2011)

26. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.,
Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

27. Wickramage, C., Sahama, T., Fidge, C.: Anatomy of log files: implications for
information accountability measures. In: Healthcom, pp. 1–6 (2016). doi:10.1109/
HealthCom.2016.7749426

28. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requir. Eng.
11(1), 102–107 (2005)

29. Xiao, Y.: Flow-net methodology for accountability in wireless networks. IEEE
Netw. 23(5), 30–37 (2009)

30. Xiao, Z., Kathiresshan, N., Xiao, Y.: A survey of accountability in computer net-
works and distributed systems. Secur. Commun. Netw. 9(4), 290–315 (2012)

Study Papers

31. Ahmed, M., Ahamad, M.: Combating abuse of health data in the age of eHealth
exchange. In: IEEE International Conference on Healthcare Informatics, pp. 109–
118 (2014)

32. Alexiou, N., Laganà, M., Gisdakis, S., Khodaei, M., Papadimitratos, P.: VeSPA:
Vehicular Security and Privacy-preserving Architecture. In: 2nd ACM Workshop
on Hot Topics on Wireless Network Security and Privacy, pp. 19–24. ACM (2013)

33. Ali, M., Moreau, L.: A provenance-aware policy language (cProvl) and a data
traceability model (cProv) for the cloud. In: Third International Conference on
Cloud and Green Computing, pp. 479–486 (2013)

34. Ali, S., Sivaraman, V., Ostry, D., Tsudik, G., Jha, S.: Securing first-hop data
provenance for bodyworn devices using wireless link fingerprints. IEEE Trans. Inf.
Forensics Secur. 9(12), 2193–2204 (2014)

35. Ali, S.T., Sivaraman, V., Ostry, D., Jha, S.: Securing data provenance in body area
networks using lightweight wireless link fingerprints. In: Proceedings of 3rd Inter-
national Workshop on Trustworthy Embedded Devices, pp. 65–72. ACM (2013)

36. Asokan, N., Dmitrienko, A., Nagy, M., Reshetova, E., Sadeghi, A.-R., Schneider, T.,
Stelle, S.: CrowdShare: secure mobile resource sharing. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 432–440.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38980-1 27

http://dx.doi.org/10.1109/HealthCom.2016.7749426
http://dx.doi.org/10.1109/HealthCom.2016.7749426
http://dx.doi.org/10.1007/978-3-642-38980-1_27

216 S. Kacianka et al.

37. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sani-
tizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.)
EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-53997-8 2

38. Cherrueau, R.A., Sudholt, M.: Enforcing expressive accountability policies. In:
IEEE 23rd International WETICE Conference, pp. 333–338 (2014)

39. Choi, C., Dong, Y., Zhang, Z.-L.: LIPS: Lightweight Internet Permit System for
stopping unwanted packets. In: Boutaba, R., Almeroth, K., Puigjaner, R., Shen, S.,
Black, J.P. (eds.) NETWORKING 2005. LNCS, vol. 3462, pp. 178–190. Springer,
Heidelberg (2005). doi:10.1007/11422778 15

40. Clifton, D., Fernandez, E.: A microprocessor design for multilevel security. In:
Fourth Aerospace Computer Security Applications Conference, pp. 194–198 (1988)

41. Dailianas, A., Yemini, Y., Florissi, D., Huang, H.: MarketNet: market-based pro-
tection of network systems and services-an application to SNMP protection. In:
Proceedings 19th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, vol. 3 (2000)

42. De Oliveira, A., Sendor, J., Garaga, A., Jenatton, K.: Monitoring personal data
transfers in the cloud. In: IEEE 5th International Confernce on Cloud Computing
Technology and Science, vol. 1, pp. 347–354 (2013)

43. Fahl, S., Dechand, S., Perl, H., Fischer, F., Smrcek, J., Smith, M.: Hey, NSA: stay
away from my market! Future proofing app. Markets against powerful attackers. In:
Proceedings of 2014 ACM Conference on Computer and Communications Security,
pp. 1143–1155. ACM (2014)

44. Flegel, U.: Pseudonymizing unix log files. In: Davida, G., Frankel, Y., Rees, O.
(eds.) InfraSec 2002. LNCS, vol. 2437, pp. 162–179. Springer, Heidelberg (2002).
doi:10.1007/3-540-45831-X 12

45. Fugkeaw, S., Manpanpanich, P., Juntapremjitt, S.: AmTRUE: authentication man-
agement and trusted role-based authorization in multi-application and multi-user
environment. In: The International Conference on Emerging Security Information,
Systems, and Technologies, pp. 216–221 (2007)

46. Fugkeaw, S., Manpanpanich, P., Juntapremjitt, S.: A-COLD: access control of web
OLAP over multi-data warehouse. In: International Conference on Availability,
Reliability and Security, pp. 469–474 (2009)

47. Haidar, A., Zasada, S., Coveney, P., Abdallah, A., Beckles, B.: Audited credential
delegation - a user-centric identity management solution for computational grid
environments. In: Sixth International Confernce on Information Assurance and
Security, pp. 222–227 (2010)

48. Jedrzejczyk, L., Price, B.A., Bandara, A.K., Nuseibeh, B.: On the impact of real-
time feedback on users’ behaviour in mobile location-sharing applications. In: Pro-
ceedings of Sixth Symposium on Usable Privacy and Security, pp. 14:1–14:12. ACM
(2010)

49. Kang, Y., Schiffman, A., Shrager, J.: RAPPD: a language and prototype for
recipient-accountable private personal data. In: IEEE Security and Privacy Work-
shops, pp. 49–56 (2014)

50. Khalasi, G., Chaudhari, M.: TrustGK monitor: ‘Customer Trust As a Service’ for
the cloud. In: Proceedings of CUBE International Information Technology Confer-
ence, pp. 537–543. ACM (2012)

51. Ko, R., Jagadpramana, P., Lee, B.S.: Flogger: a file-centric logger for monitor-
ing file access and transfers within cloud computing environments. In: IEEE 10th
International Conference on Trust, Security and Privacy in Computing and Com-
munications, pp. 765–771 (2011)

http://dx.doi.org/10.1007/978-3-642-53997-8_2
http://dx.doi.org/10.1007/978-3-642-53997-8_2
http://dx.doi.org/10.1007/11422778_15
http://dx.doi.org/10.1007/3-540-45831-X_12

How Accountability is Implemented and Understood in Research Tools 217

52. Ko, R., Will, M.: Progger: an efficient, tamper-evident kernel-space logger for cloud
data provenance tracking. In: IEEE 7th International Conference on Cloud Com-
puting, pp. 881–889 (2014)

53. Kuacharoen, P.: Design and implementation of a secure online lottery system.
In: Papasratorn, B., Charoenkitkarn, N., Lavangnananda, K., Chutimaskul, W.,
Vanijja, V. (eds.) IAIT 2012. CCIS, vol. 344, pp. 94–105. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-35076-4 9

54. Langheinrich, M.: A privacy awareness system for ubiquitous computing environ-
ments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498,
pp. 237–245. Springer, Heidelberg (2002). doi:10.1007/3-540-45809-3 19

55. Lee, W., Squicciarini, A., Bertino, E.: The design and evaluation of accountable
grid computing system. In: 29th IEEE International Conference on Distributed
Computing Systems, pp. 145–154 (2009)

56. Lin, K.J., Chang, S.: A service accountability framework for QoS service manage-
ment and engineering. Inf. Syst. e-Business Manag. 7(4), 429–446 (2009)

57. Masmoudi, F., Loulou, M., Kacem, A.: Multi-tenant services monitoring for
accountability in cloud computing. In: IEEE 6th International Conference on Cloud
Computing Technology and Science, pp. 620–625 (2014)

58. Michalas, A., Komninos, N.: The lord of the sense: a privacy preserving reputation
system for participatory sensing applications. In: IEEE Symposium on Computers
and Communication, pp. 1–6 (2014)

59. Mivule, K., Otunba, S., Tripathy, T.: Implementation of data privacy and secu-
rity in an online student health records system. Technical report, Department of
Computer Science, Bowie State University (2014)

60. Mortimer, D., Cook, N.: Supporting accountable business to business document
exchange in the cloud. In: IEEE International Conference on Service-Oriented
Computing and Applications, pp. 1–8 (2010)

61. Naessens, V., De Decker, B., Demuynck, L.: Accountable anonymous E-mail. In:
Sasaki, R., Qing, S., Okamoto, E., Yoshiura, H. (eds.) SEC 2005. IAICT, vol. 181,
pp. 3–18. Springer, Boston (2005). doi:10.1007/0-387-25660-1 1

62. Pato, J., Paradesi, S., Jacobi, I., Shih, F., Wang, S.: Aintno: demonstration of
information accountability on the web. In: IEEE 3rd International Conference on
Privacy, Security, Risk and Trust and 2011 IEEE 3rd International Conference on
Social Computing, pp. 1072–1080 (2011)

63. Pearce, C., Bertok, P., Van Schyndel, R.: Protecting consumer data in composite
web services. In: Sasaki, R., Qing, S., Okamoto, E., Yoshiura, H. (eds.) SEC 2005.
IAICT, vol. 181, pp. 19–34. Springer, Boston (2005). doi:10.1007/0-387-25660-1 2

64. Pearson, S., Rao, P., Sander, T., Parry, A., Paull, A., Patruni, S., Dandamudi-
Ratnakar, V., Sharma, P.: Scalable, accountable privacy management for large
organizations. In: 13th Enterprise Distributed Object Computing Conference
Workshops, pp. 168–175 (2009)

65. Popa, R.A., Blumberg, A.J., Balakrishnan, H., Li, F.H.: Privacy and accountability
for location-based aggregate statistics. In: Proceedings of 18th ACM Conference
on Computer and Communications Security, pp. 653–666. ACM (2011)

66. Rubin, A.: Trusted distribution of software over the internet. In: Proceedings of
Symposium on Network and Distributed System Security, pp. 47–53 (1995)

67. Ruth, P., Xu, D., Bhargava, B., Regnier, F.: E-notebook middleware for account-
ability and reputation based trust in distributed data sharing communities. In:
Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp.
161–175. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24747-0 13

http://dx.doi.org/10.1007/978-3-642-35076-4_9
http://dx.doi.org/10.1007/3-540-45809-3_19
http://dx.doi.org/10.1007/0-387-25660-1_1
http://dx.doi.org/10.1007/0-387-25660-1_2
http://dx.doi.org/10.1007/978-3-540-24747-0_13

218 S. Kacianka et al.

68. Sriram, V., Narayan, G., Gopinath, K.: SAFIUS - a secure and accountable filesys-
tem over untrusted storage. In: Fourth International IEEE Security in Storage
Workshop, pp. 34–45 (2007)

69. Such, J.M., Espinosa, A., Garcia-Fornes, A.: An agent infrastructure for privacy-
enhancing agent-based E-commerce applications. In: Dechesne, F., Hattori, H., ter
Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011. LNCS, vol.
7068, pp. 411–425. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27216-5 31

70. Such, J.M., Garćıa-Fornes, A., Espinosa, A., Bellver, J.: Magentix2: a privacy-
enhancing agent platform. Eng. Appl. Artif. Intell. 26(1), 96–109 (2013)

71. Suen, C.H., Ko, R., Tan, Y.S., Jagadpramana, P., Lee, B.S.: S2Logger: end-to-end
data tracking mechanism for cloud data provenance. In: 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications,
pp. 594–602 (2013)

72. Wang, K., Malozemoff, A., Jia, N., Han, C., Maheswaran, M.: A social account-
ability framework for computer networks. In: IEEE Global Telecommunications
Conference, pp. 1–6 (2010)

73. Xiao, Y., Meng, K., Takahashi, D.: Implementation and evaluation of accountabil-
ity using flow-net in wireless networks. In: Military Communications Conference,
pp. 7–12 (2010)

74. Xu, G., Aguilera, L., Guan, Y.: Accountable anonymity: a proxy re-encryption
based anonymous communication system. In: IEEE 18th International Conference
on Parallel and Distributed Systems, pp. 109–116 (2012)

75. Zhou, W., Sherr, M., Tao, T., Li, X., Loo, B.T., Mao, Y.: Efficient querying and
maintenance of network provenance at internet-scale. In: Proceedings of 2010 ACM
SIGMOD International Conference on Management of Data, pp. 615–626. ACM
(2010)

http://dx.doi.org/10.1007/978-3-642-27216-5_31

User and Value Centric Approaches

Differentiating Feature Realization in Software
Product Development

Aleksander Fabijan1(&), Helena Holmström Olsson1, and Jan Bosch2

1 Faculty of Technology and Society, Malmö University,
Nordenskiöldsgatan 1, 211 19 Malmö, Sweden

{Aleksander.Fabijan,Helena.Holmstrom.Olsson}@mah.se
2 Department of Computer Science and Engineering,
Chalmers University of Technology, Hörselgången 11,

412 96 Gothenburg, Sweden
Jan.Bosch@chalmers.se

Abstract. Context: Software is no longer only supporting mechanical and
electrical products. Today, it is becoming the main competitive advantage and
an enabler of innovation. Not all software, however, has an equal impact on
customers. Companies still struggle to differentiate between the features that are
regularly used, there to be for sale, differentiating and that add value to cus-
tomers, or which are regarded commodity. Goal: The aim of this paper is to
(1) identify the different types of software features that we can find in software
products today, and (2) recommend how to prioritize the development activities
for each of them. Method: In this paper, we conduct a case study with five
large-scale software intensive companies. Results: Our main result is a model in
which we differentiate between four fundamentally different types of features
(e.g. ‘Checkbox’, ‘Flow’, ‘Duty’ and ‘Wow’). Conclusions: Our model helps
companies in (1) differentiating between the feature types, and (2) selecting an
optimal methodology for their development (e.g. ‘Output-Driven’ vs.
‘Outcome-Driven’).

Keywords: Data � Feedback � Outcome-driven development � Data-driven
development � Goal-oriented development

1 Introduction

Rapid delivery of value to customers is one of the core priorities of software companies
[1–3]. Consequently, the amount of software added to products with attempts to deliver
the value is rapidly increasing. At first, software functionality was predominately
required in products to support tangible electrical, hardware and mechanical solutions
without delivering any other perceptible value for the customers. Organizations
developed the software as a necessary cost, leaving the prioritization part to the
responsible engineering, hardware and mechanical departments, without exploring the
value of software features as such. Today, products that were once built purely from
hardware components such as e.g. cars and household appliances, contain functionality
that allows them to connect to the Internet, exchange information and self-improve over

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 221–236, 2017.
https://doi.org/10.1007/978-3-319-69926-4_16

time. Software functionality is rapidly becoming the main competitive advantage of the
product, and what delivers value to the customers [4].

However, the way in which software features are being developed, and how they are
prioritized is still a challenge for many organizations. Often, and due to immaturity and
lack of experience in software development, companies that transitioned in this way (e.g.
from electrical to software companies) treat software features similarly to electronics or
mechanics components. They risk being unable to identify what features are differenti-
ating and that add value to customers, and what features are regarded commodity by
customers. As a consequence of this, individual departments continue to prioritize what
they find the most important and miss the opportunities to minimize and share the
investments into commodity features [5, 6]. Companies that are becoming data-driven,
are exploring this problem and trying to learn from the feedback that they collect to
optimize the prioritization decisions. The focus of software companies and product team
that recognized the benefits of being data-driven is to develop the product that delivers
the most value for the customer [1–3]. For every feature being developed, the goal is to
create clarity in what to develop (Value Identification), develop it to a correct extent
(Value Realization), and accurately measure the progress (Value Validation).

In our work, we perform an exploratory case study in which we were interested in
(1) identifying how companies differentiate between different types of features and
(2) how they prioritize the development activities with respect to the type of the feature
that they are developing. In this study, we identify that the lack of distinguishing
between different types of features is the primary reason for inefficient resource allo-
cation that, in the end, make innovation initiatives suffer. In our previous work [7], we
confirmed that differentiating between the different levels of functionality is indeed a
challenge that software companies face today. In this paper, however, we further detail
the feature differentiation model and evaluate it in two additional case companies.

The contribution of this paper is twofold. First, we provide detailed guidelines on
how to distinguish between different types of features that are being developed and we
provide empirical evidence on the challenges and implications involved in this. Second,
we detail a conceptual model to guide practitioners in prioritizing the development
activities for each of the feature types identified in our differentiation model. We identify
in our work that for the successful development of innovative ‘Wow’ and ‘Flow’ fea-
tures, a different methodology is required. We label this methodology ‘Outcome-Driven
development’ and demonstrate how it differs from ‘Output-Driven approach’. With our
contribution, companies can develop only the amount of feature that is required for
commoditized functionality and, on the other hand, frees the resources to maximize their
investments in innovative features that will deliver the most value.

2 Background

Software companies strive to become more effective in delivering value to their cus-
tomers. Typically, they inherit the Agile principles on an individual development team
level [8] and expand these practices across the product and other parts of the organi-
zation [9]. Next, they focus on various lean concepts such as eliminating waste [10,
11], removing constraints in the development pipeline [12], and advancing towards

222 A. Fabijan et al.

continuous integration and continuous deployment of software functionality [13].
Continuous deployment is characterized by a bidirectional channel that enables com-
panies not only to deliver new updates to their customers in order to rapidly prototype
with them [14], but also to collect feedback on how these products are used. By
evaluating ideas with customers, companies learn about their preferences. In this
process, the actual product instrumentation data (for example, features used in a ses-
sion) has the potential to identify improvements and make the prioritization process of
valuable features more accurate [15]. In fact, a wide range of different techniques is
used to collect feedback, spanning from qualitative techniques capturing customer
experiences and behaviors [16–18], to quantitative techniques capturing product per-
formance and operation [19, 20]. However, this development of getting rapid feedback
in real time is only possible today when software products are increasingly becoming
connected to the internet. And as such data focuses on what customers do rather than
what they say, it complements other types of feedback data [21] and improves the
understanding of the value that the product provides [22]. For example, knowing which
features are used in a certain context helps companies in identifying customer pref-
erences and possible bottlenecks. The intuition of software development companies on
customer preferences, can be as much as 90% of the time inaccurate [23–25]. In most
companies, customer feedback is collected on a frequent basis in order to learn about
how customers use products, what features they appreciate and what functionality they
would like to see in new products [16]. This enables the companies to very quickly test
new variants with the customers and explore how they perform with the respect to the
metrics that are important. This concept is known as Continuous Experimentation [26]
and its impact is extensive [27].

2.1 Business and Design Experimentation

Davenport [28] suggests the design of smart business experiments to emphasize the need
to bridge business needs closer to software design and engineering. The importance of
running experiments to learn more about customer behavior is one of the core principles
of the Lean Startup methodology [14, 29]. This idea is emphasized also in the product
management literature by Bosch [18] who propose the need of constant generation of
new ideas that should be evaluated with customers. Fagerholm et al. [1] suggest the
RIGHT model for continuous experimentation and support constant testing of ideas. In
their view, this is essential to create the evaluation of product value as an integral part of
the development process. The strength of experimentation is further accelerated with
controlled experiments. In controlled experiments (also known as A/B test), users of a
software product or a feature are randomly divided between the variants (e.g., the two
different designs of a product interface) in a persistent manner (a user receives the same
experience at multiple software uses). Users’ interactions with the product are instru-
mented and key metrics are computed [30, 31]. Research contributions with practical
guides on how to create controlled experiments in software product development have
previously been published both by Microsoft [19, 32] and Google [33]. The Return on
Investment (ROI) of controlled experiments has been demonstrated and discussed a
number of times in the literature [31, 32].

Differentiating Feature Realization 223

2.2 Feature Differentiation

Already in 1984, Kano [34] has identified the need to differentiate between product
attributes (e.g. attractiveness, satisfaction, must-be, indifferent and reverse attributes)
based on their importance for the product and the stakeholders. One of the key char-
acteristics of the Kano model itself is the notion of attribute drift (for example, an
attribute such as camera resolution is expected to improve over time). Attribute drift is
driven by customers’ expectations and changes over time. In this context, Bosch [35]
developed the ‘Three Layer Product Model’ (3LPM) on the idea that a return on
innovation requires differentiation [36]. The model provides a high-level understanding
of the three different layers of features, i.e. commodity, differentiating and innovative,
and it has been constructed for the purpose of reducing architectural complexity. And
although these models can be applied to an industrial context, they do not provide
guidance on how to differentiate between the different types of features, neither how to
prioritize software development activities based on the differentiation. At the same
time, the pace at which we are becoming to be able to learn from the customers in the
software industry is faster than anywhere else [16, 19]. The feedback that is available
today (e.g. feature usage data while the product in the hands of the users) opens new
possibilities for understanding and differentiating features in products. Using existing
models (e.g. such as the Kano model or the 3LPM model) and accommodating new
dimensions of learnings that we discussed above is challenging for software compa-
nies, and it blocks them from fully benefiting from the new possibilities [7, 20]. The
implications of limited customer learning are substantive and can cause companies to
inaccurately prioritize feature development by e.g. develop the software features to the
wrong extend in either direction.

In our previous research [7], we developed a model in which four fundamentally
different types of features are being developed. We name them “duty”, “wow”,
“checkbox” and “flow” types of features. With “duty”, we label the type of features that
are needed in the products due to a policy or regulatory requirement. “Checkbox”
features are the features that companies need to provide to be on par with the com-
petition that provides similar functionality. With “wow”, we label the differentiating
features that are the deciding factor for buying a product. Finally, and with “flow”, we
label the features in the product that are regularly used.

In this paper, we address the new possibilities of learning from customers to
(1) detail the differentiation of features for software products, and (2) to suggest on how
to prioritize the development activities for each of them. Our model (1) helps com-
panies in differentiating between the feature types, and (2) selecting a methodology for
their development (e.g. ‘Output-Driven’ vs. ‘Outcome-Driven’ development).

3 Research Method

In this section, we describe our research method. This case study [37] builds on an
ongoing work with five case companies and it was conducted between January 2015
and June 2017. The goal of this study was to identify a state-of-the-art differentiation of

224 A. Fabijan et al.

software features. Companies A–C were participating for the full period of the ongoing
research while companies D–E joined in this research in April 2016.

We present the case companies in Table 1.

3.1 Data Collection

We collected our data using three types of data collection activities. First, we conducted
individual workshops with the companies involved in this research. Second, we
conducted joint workshops with participants from multiple companies discussing the
focus of our research. Finally, we conducted semi structured interviews following a
guide with pre-defined open-ended questions with participants from each of the
companies for in-depth analysis. During the group workshops, we were always three
researchers sharing the responsibility of asking questions and facilitating the group
discussion. The data collection activities were conducted in English and lasted on
average three hours (individual workshops and joint workshops), and one hour (in-
terviews). Each of the data-collection activities was conducted with practitioners in
different roles (software engineers, project/product managers, sales specialists, and
line/portfolio managers). In total, we performed 14 individual workshops, 7 joint
workshops and 45 interviews.

3.2 Data Analysis

During analysis, the workshop notes, interview transcriptions and graphical illustra-
tions were used when coding the data. The data collected were analyzed following the
conventional qualitative content analysis approach [38]. We read raw data word by
word to derive codes. In this process, we first highlighted individual phrases that
captured our attention in the transcriptions. We used color coding to highlight different
topics that emerged during the analysis process. In this process, we reflected on the

Table 1. Case company descriptions.

Company A is a manufacturer and supplier of transport solutions construction technology and
vehicles for commercial use. The systems that they develop require stable and fine-defined

cludes both products for B2B as well as B2C types of customers.
Company B is a provider of telecommunication systems and equipment, communications net-

is extensive and primarily consists of products developed for B2B customers.
Company C is a software company specializing in navigational information, operations man-
agement and optimization solutions. Their portfolio includes products and services for the B2B
market.
Company D develops software systems for several different domains, including healthcare,
energy and infrastructure operations. Their portfolio is extensive and includes products and
services for both B2B as well as B2C types of customers.
Company E produces software and hardware systems for various surveillance purposes. Their
portfolio includes products mostly for B2B types of customers and it operates in many market
segments such as transport, infrastructure, retail, banking, education, etc.

Differentiating Feature Realization 225

highlighted text several times and took notes. As this process continued for a few
iterations (e.g. by analyzing the first few workshop notes and interviews), codes
emerged from the highlights. In the next step, we sorted these codes into categories
(e.g. grouping them by color). This type of design is appropriate when striving to
describe a phenomenon where existing theory or research literature is limited. After we
emerged with a few codes, we created definitions for those codes and continued to code
the rest of the data using the definitions.

3.3 Threats to Validity

Internal Validity. As the participants were familiar with the research topic and
expectations between the researchers and participants were well aligned, this can be a
potential source of bias and thus a possible threat to internal validity. We mitigate this
threat by providing unbiased overviews of the research area at the beginning of every
data collection session, and avoiding suggestive interrogation during the workshops
and leading questions during the interviews.

Construct Validity. To improve the study’s construct validity, we used multiple
techniques of data collection (e.g. workshops, interviews) and multiple sources of data
collection (product managers, software engineers, sales representatives, managers,
etc.). The complete meeting minutes from the workshops and interview transcriptions
were independently assessed by two of the researchers. This process was overseen by
the third researcher for quality control.

External Validity. Our results cannot directly translate to other companies. However,
we believe that certain software companies could benefit from studying our results.
Specifically, the results of this research are applicable for companies that are transi-
tioning from mechanical or electrical towards software companies, which may expe-
rience similar issues in differentiating and prioritizing software features.

4 Empirical Findings

In this section, we present our empirical findings. First, and to understand the current
development practices in our case companies to identify the type and the extent of the
feature that they are developing, we outline the current customer data collection prac-
tices in the case companies. We recognize that the practices to collect customer data do
not differ with respect to the feature being developed, but rather depend on the perceived
need of information ad-hoc. Next, we identify the challenges that are associated with
distinguishing between the different feature types. Finally, we explore their implications.

4.1 Current State of Feature Differentiation

In the case companies, products and features that are being developed are handed over
from one development stage to another, together with their requirements and priorities.
Although our case companies acknowledge that they are aware of the need for dif-
ferencing between the types of features, i.e. commodity, differentiating and innovative,

226 A. Fabijan et al.

the information that would help them achieve that does not circulate with the
requirements. The differentiation strategy is unclear to the practitioners developing the
features. And consequently, setting the development investment level for a feature does
not vary with respect to the type of the feature, allowing the prioritization strategy to be
in favour of commodity features. We illustrate and describe the current state with
description and quotes from our case companies below.

"Should we go into Maintenance budget? Or should it go to investment budget and we prioritize
there?" - Product Strategist from Company C.

- Technology Specialist from Company C.

prioritization that we do in pre-development. Is this fea-
ture - Product Owner from Company B.

4.2 Challenges with Feature Differentiation

The current state advocates a situation where features are not differentiated in the
strategy between being innovative, differentiating or commodity and, consequently,
development activities do not differ between the features. Based on our interviews, we
see that there are several challenges associated with this situation. Our interviewees
report that the collection of feedback, which serves as the base for developing a feature
is conducted ad-hoc and not following the type of the feature being developed. Second,
the directives to differentiate the feature on a granular level are incomprehensible for
our practitioners. Therefore, it is very challenging for the R&D staff in our case
companies to be effective in understanding which of the features are differentiating and
innovative in the market.

-Product Manager from company A.

Function owner from Company C.

hings that worry us the most. All of us, since it is so hard, you need to gamble a

Product Manager from Company A.

4.3 Implications

Due to an unclear differentiating strategy, our case companies experience several
implications during the development process of a feature. The companies consider the
stakeholders that the features are being developed for as a uniform group and not
differentiating the development extent of the features based on the type of the feature
and stakeholder. This leads to a situation where resources are used in developing and

Differentiating Feature Realization 227

optimizing the features that might never get used by a customer to a similar extent as
the ones that are regularly utilized. Consequently, commodity suppresses resources that
could be better used to develop features in the innovation layer.

-Product Manager from company A.

We tend to focus on the wrong things. We need to look at the benefit for their customers

In our organization is difficult to sew everything together, to make it work. That requires funding
that is almost non-existent Software engineer from Company A.

-Product Strategist from Company C.

4.4 Summary of Our Empirical Findings

Vague differentiating strategy results in challenges with the purpose of the feature being
developed, implicating uniform treatment of features. Invariable investment levels into
development activities results in incomprehensible directives, implicating arbitrary
investments in development activities. Favoring commodity results in a challenge of
identifying what innovation, implicating the suppression of the actual innovation and
projecting competitors current state as the norm. We summarize them in Table 2.

5 Differentiating Feature Realization

In this section, and as a response to the empirical data from our case companies, we
present and detail our model for feature differentiation. The contribution of our model
is threefold. First, it provides four different categories of features and their character-
istics to give practitioners an ability to better differentiate between feature types.
Second, and as a guide for practitioners after classifying a feature, we provide a
summary of development activities that should be prioritized for every type of feature.

Table 2. Mapping of the current state, challenges and implications.

Current state Challenges Implications

Vague differentiating
strategy

Understanding the stakeholder
and purpose of the feature

Stakeholders treated uniformly,
not reflecting their differing
business value

Invariable investment
levels

Incomprehensible high-level
directives

Arbitrary investments in
development activities

Feature prioritization
processes is in favor of
commodity

Commodity functionality is
internally considered to be
innovative

Commodity suppresses innovation
Projecting competitors current state
is the norm

228 A. Fabijan et al.

5.1 Feature Differentiation

In our model, four fundamentally different types of features are being developed. The
differentiation is based on the characteristics in Table 3.

By going through the process of articulating different views on the characteristics
below, product teams can make the most of their collective insight on classifying them
into “duty”, “wow”, “checkbox” or “flow” type. What is important for the practi-
tioners, however, is how to optimally prioritize the development activities for each of
the features types. We present this in the next section.

Table 3. Feature differentiation.

S
ta

ke
-

ho
ld

er
 We recognize four types of fundamentally different stakeholders that are targeted

with new feature development. Product users, the competitor developing or already
selling a similar feature, the customer purchasing and asking for a feature, or a regu-
latory entity imposing it.

F
ea

tu
re

 E
ng

ag
e-

m
en

t

This characteristic describes the level of engagement expected with the feature. Fea-
tures are primarily used by the end-users and occasionally by the customers directly.
The engagement with the features is therefore expected for these two groups. Regu-
lators and competitors, however, typically do not use the features directly. Instead,
and what we see in our case companies is that verify the documents or tests demon-
strating the existence or compliance of the feature. The expected exposure to the fea-
ture for regulators and competitors is therefore low.

F
ee

db
ac

k

Feedback data that is collected about features under development is of various types.
For e will be regularly used by users and should be
equipped with automatic feedback collection mechanisms to retrieve customer data
about feature us source are the competitors that are be-
ing analysed for a similar offering. In , the primary stake-
holders are customers, whom companies study extensively through market analysis
and available reports. Finally, and in the case of the regulation and standardization
services (A), companies query regulation agencies for regulatory requirements.

F
oc

us

 focus on the user and maximizing user value. Practitioners, in this
case, develop and iterate features that are validated with t
tures, practitioners use their own technical ability to maximize the technical outcome
of the feature. Here, for example, companies use their simulators to test the speed of
the software or its stabil , practitioners compare the fea-
ture under development towards the ones from the competitors. In this case, the ob-
jective of the development organization is to develop a feature that is matching or

petition and intentionally slows down if they are performing better as expected.

S
al

es
 I

m
pa

ct

The greatest influence on driving sales have the features that focus on the customer
 and features that focus . Both types are

differentiating or innovative. However, in B2B markets, the user of the product is

for potential customers. As an example, users communicate and show satisfaction
with a product to their managers and departments that purchase the features and prod-
ucts. Their opinions have the possibility to indirectly influence the opinion of the

choosing a product over the one from a competitor.

Differentiating Feature Realization 229

5.2 Activity Prioritization

In this his section, we present the activities that should be prioritized for each of the
four feature types. We suggest how to set the extent of the feature that should be
developed. Here, the extent of the feature can be either defined once (constant) or
dynamically adjusted during development and operation (floating alternates, following
follows the competitors or open no limitation). Second, the sources that contain the
information required to set the development extent need to be defined. Next, we
suggest the most important activities for feature realization. They are followed by the
activities that do not deliver value and should be avoided. Finally, we suggest how to
set the deployment frequency. For details see Table 4.

Table 4. Activity prioritization.

D
ut

y
F

ea
tu

re
s

The development extent for this type of features is constant and defined by the regula-
tors. To identify it, practitioners can use research institutions, standardization industries
and industry publishers as a source of feedback to get access to various standardization
reports, vendor communications and obtain the regulatory requirements. For this type
of features, identifying regulatory requirements and developing them until they satisfy
the requirements are the two main activities. UX optimization, investments in marketing
activities developing infrastructure and other similar activities for this type of features
should be minimized. Deployment of this type of features is single.

W
ow

 F
ea

tu
re

s

For this type of feature, development extent is dynamically set using the feedback from
the market. Practitioners query social media, marketing agencies, customer reports, re-
quests, and interviews to identify business cases and sentimental opinions about the
product. The two most important activities of this type are the identification of technical
selling points and selling characteristic of the product, and maximizing investments in
the technical development of the feature and marketing it. The feature's quantifiable
value should be maximized with periodically scheduled deployment increments.

C
he

ck
bo

x
F

ea
tu

re
s

ollows

trend collected from industry test magazines and internal evaluation of customer prod-
ucts. It is essential to read articles in the media, consolidative question the customers,
participate in customer events and perform trend analysis. Practitioners should perform
competitor analysis to determine feature characteristics and develop the feature incre-
mentally following the trend. Since features of this type will not be used extensively by
the actual users, investments in improving user experience and interaction with the fea-
ture can be minimized. Deployment should be frequent and scheduled. Although prod-
ucts typically require this type of features to be even considered by the customers, they
are not the decisive reason for customers to churn or select a product over a competitor.

F
lo

w
 F

ea
tu

re
s

With this type of features and the ambition to discover new and innovative concepts,
practitioners should continuously deploy changes to their products, collect product feed-
back, analyse it, and perform A/B test to rank alternatives. The two most important
activities for this type of feature are the defining of evaluation criteria and maximizing
the ability to experiment with them. Interviewing the stakeholders or gathering qualita-
tive information should be of secondary value and used for interpreting results. Also,
and due to the continuous deployment, there is a high impact on the infrastructure.

230 A. Fabijan et al.

6 Model Evaluation

We detailed our model and evaluated its feasibility with the five case companies in
recent workshop and interview sessions. Our validation criteria were to identify
whether companies identify the feature types that they develop (based on our model),
and whether it helps them mitigate any challenges. Based on the evaluation, we
identified that four of the five companies develop all types of features, whereas com-
pany E does not develop “duty” features. They do, however, acknowledge that they
developed duty features in their early stages of building the key products.

Effortless Differentiation: One of the key challenges for companies is to identify
whether a feature is a commodity, differentiating or innovative. With the feature dif-
ferentiation model, practitioners felt empowered to perform this distinction based on
the five key characteristics. By passing through the characteristics, practitioners can
determine in which of the four quadrants their feature under development belongs to.
We illustrate this with the two quotes next.

Directive Comprehension: With the differentiation between the features (‘Duty’,
‘Checkbox’, ‘Wow’ and ‘Flow’) and the development process (Output-Driven vs.
Outcome-Driven), we give practitioners in large software companies the ability to
define the right ambition level for a certain type of the feature, the preferred methods of
collecting customer feedback, and provide them with instructions on which develop-
ment activities to focus on.

Distinguishing Innovative Features: With a clear separation between different types
of features, our model enables practitioners to prioritize innovative functionality and
invest in relevant activities, e.g. running continuous controlled experiments with cus-
tomers for “Flow” features, or prioritizing investments into identifying regulation
requirements for “Duty” features.

- Product Owner from Company C

features, that we are selling is that we change rules and we demonstrate it in front of the custom-

Product Owner from Company C
"We have a lot of checkbox features in our products that are only there because the competitors
have

- Product Manager from Company E

-
- Product Manager from Company E

uty and Checkbox features you know what you need to do, and you just have to do enough.

- Product Manager from Company E

Differentiating Feature Realization 231

7 Output-Driven vs. Outcome-Driven Development

In the previous sections, we provided guidance on how to differentiate between the
different types of features and which development activities to prioritize for each of
them. In this section, we illustrate the differences in the development approaches (based
on additional learnings during the validation sessions) for the three stages of feature
development (Value Identification, Value Realization, and Value Validation). For each
of the stages, we provide indications on what is beneficial and a drawback for this type
of development. For example, in the Value Identification phase (illustrated with 1 in
Fig. 1), we discuss requirements freedom (the extent to which feature teams can
interpret and change requirements) of both approaches. Next, we contrast ‘Value
Realization’ phase (illustrated with 2 in Fig. 1) by briefly presenting the differences in
the autonomy of the development teams. In the Value Validation phase (illustrated with
3 in Fig. 1 below, we compare the extent to which a completion goal is known to a
development team, and how distant they are from the customer data (e.g. feedback that
can be used to validate how well the feature satisfies the objectives.

Output-Driven Development. Our findings indicate that ‘Duty’ and ‘Checkbox’
features development follows a common process. We select this label to emphasize the
long-lasting tradition that our case companies followed in their transition from elec-
tronics to software companies. Companies that develop features in this way typically
spend a considerable amount of time studying the requirements and/or competitors to
determine what to develop in the Value Identification phase. Because of known poli-
cies, defined standards or competitor’s development outcomes (for example, a feature
that was realized), they fix the requirements on what they should develop and infor-
mation to which extent is given (for example, a safety feature should activate under
10 ms). This enables teams in the Value Realization phase to focus on meeting the

Fig. 1. Feature development in Output-Driven and Outcome-Driven development.

232 A. Fabijan et al.

requirements and following the standards and sparing the team from customer repre-
sentative roles. The teams that develop these types of features have limited autonomy
and they do not re-prioritize development activities at execution. This is not necessarily
a drawback. Certain approaches for feature development [39] reject the autonomy of
teams and consider it an overhead. Minimizing the number and significance of the
prioritization decisions that the development teams must do makes teams more focused
on the development activity at hand. Generally, the development team should be
deciding on feature priority only after the priorities of regulations, the business, and the
customer have already been addressed. Because of the Stakeholder objectives, the
teams in the ‘Value Validation’ phase can benefit from knowing what exactly satisfies
the objectives. The resulting feedback used for evaluation, however, can be very dis-
tant. As described in the previous section, features developed in this way typically do
not get instrumented with real-time feedback collection. This implies that development
teams depend on the time distance of feature integration and deployment to the cus-
tomer, and the time distance of feedback collection, which can be (and in several of
features developed by our case companies is) significant. In this development process,
our case companies define the following question and strive to answer it: “Are the
customers using the system and how?” and answer it using typically qualitative
feedback such as observations and interviews, and quantitative raw logs.

Outcome-Driven Development. We contrast the approach above by presenting how
‘Wow’ and ‘Flow’ features are being developed. In what we label ‘Outcome-driven
development’ development teams work significantly more iteratively and autono-
mously. In the Value Identification phase, and due to the nature of ‘Wow’ and ‘Flow’
features, teams invest into identifying what customers and users expect as an outcome
and outline a feature idea around this. As a result of studying the value as it will be
experienced by the customer and not a requirement, it is very challenging to quanti-
tatively describe the extent to which the feature should be developed. In the Value
Realization phase, agile teams embed a customer representative within the develop-
ment team and the customer representative determines the priorities for development.
Therefore, the team has a high autonomy and ownership of the features that they are
developing. This is, in principal different than traditional agile teams which follow the
backlog items as defined and prioritized by a product owner. This is possible as the
Value Validation phase is closely connected with the first two phases due to proximity
to customer data. In this development process, our case companies define the following
question that they try to answer: “Are the customers efficiently achieving desired
outcomes with minimal blocking?” and measure their success with prescriptive ana-
lytics (for example experimentation) on customer value metrics (for example task
success, time needed to result).

8 Conclusions

In this paper, based on case study research in five large software-intensive companies,
we identify that companies struggle to differentiate between different types of features,
i.e. they don’t know what is innovation, differentiation or commodity, which is the

Differentiating Feature Realization 233

main problem that causes poor allocation of R&D efforts and suppresses innovation. To
address this challenge, we developed and detailed a model in which we depict the
activities for differentiating and working with different types of features and stake-
holders. Also, we evaluated the model with our case companies.

With our model, which differs from existing models and similar models (e.g. the
Kano model [34]) in that it focuses on software products with rapid customer feedback
capabilities, practitioners can (1) categorize the features that are under development
into one of the four types and invest into activities that are relevant for that type,
(2) maximize the resource allocation for innovative features that will deliver the most
value, and (3) mitigate certain challenges related to feature differentiation.

Our model, however, still requires an in-depth validation on a larger scale to claim
its general applicability. The current evaluation is based on qualitative impressions of
the practitioners from our study, which is certainly a limitation. In future work, we plan
to expand this model by studying how mature online companies differentiate between
the different types of features that they develop, how their activities are prioritized, and
validate the model using quantitative metrics (e.g. counting the number of features of
individual type in each of the case companies).

References

1. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for continuous
experimentation. J. Syst. Softw. 0, 1–14 (2015)

2. Denne, M., Cleland-Huang, J.: The incremental funding method: data-driven software
development. IEEE Softw. 21, 39–47 (2004)

3. Boehm, B.: Value-based software engineering: reinventing. SIGSOFT Softw. Eng. Notes
28, 3 (2003)

4. Khurum, M., Gorschek, T., Wilson, M.: The software value map - an exhaustive collection
of value aspects for the development of software intensive products. J. Softw. Evol. Process.
25, 711–741 (2013)

5. Lindgren, E., Münch, J.: Software development as an experiment system: a qualitative
survey on the state of the practice. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP
2015. LNBIP, vol. 212, pp. 117–128. Springer, Cham (2015). doi:10.1007/978-3-319-
18612-2_10

6. Olsson, H.H., Bosch, J.: Towards continuous customer validation: a conceptual model for
combining qualitative customer feedback with quantitative customer observation. In:
Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 154–
166. Springer, Cham (2015). doi:10.1007/978-3-319-19593-3_13

7. Fabijan, A., Olsson, H.H., Bosch, J.: Commodity eats innovation for breakfast: a model for
differentiating feature realization. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A.,
Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 517–
525. Springer, Cham (2016). doi:10.1007/978-3-319-49094-6_37

8. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices (2002)
9. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to heaven” - a multiple-case

study exploring barriers in the transition from agile development towards continuous
deployment of software. In: Proceedings of 38th EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA 2012, pp. 392–399 (2012)

234 A. Fabijan et al.

http://dx.doi.org/10.1007/978-3-319-18612-2_10
http://dx.doi.org/10.1007/978-3-319-18612-2_10
http://dx.doi.org/10.1007/978-3-319-19593-3_13
http://dx.doi.org/10.1007/978-3-319-49094-6_37

10. Mujtaba, S., Feldt, R., Petersen, K.: Waste and lead time reduction in a software product
customization process with value stream maps. In: Proceedings of the Australian Software
Engineering Conference, ASWEC, pp. 139–148 (2010)

11. Sedano, T., Ralph, P., Sedano, T.: Software development waste. In: Proceedings of the 39th
International Conference on Software Engineering - ICSE 2017, pp. 130–140. IEEE Press,
Buenos Aires (2017)

12. Goldratt, E.M., Cox, J.: The Goal: A Process of Ongoing Improvement. North River Press,
Great Barrington (2004)

13. Rodríguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T., Eskeli, J.,
Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M.: Continuous deployment of software
intensive products and services: a systematic mapping study. J. Syst. Softw. 123, 263–291
(2015)

14. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business, New York (2011)

15. Fabijan, A.: Developing the right features: the role and impact of customer and product data
in software product development (2016). https://dspace.mah.se/handle/2043/21268

16. Fabijan, A., Olsson, H.H., Bosch, J.: Customer feedback and data collection techniques in
software R&D: a literature review. In: Fernandes, J., Machado, R., Wnuk, K. (eds.) ICSOB
2015. LNBIP, vol. 210, pp. 139–153. Springer, Cham (2015). doi:10.1007/978-3-319-
19593-3_12

17. Williams, L., Cockburn, A.: Introduction: Agile Software Development: Its About Feedback
and Change (2003)

18. Bosch-Sijtsema, P., Bosch, J.: User involvement throughout the innovation process in
high-tech industries. J. Prod. Innov. Manag. 32, 1–36 (2014)

19. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled
experiments at large scale. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1168–1176 (2013)

20. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in
product development. Inf. Softw. Technol. 77, 80–91 (2015)

21. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE
Softw. 25, 60–67 (2008)

22. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the “open loop” problem. In: Proceedings of 40th Euromicro Conference Series
on Software Engineering and Advanced Applications, SEAA 2014, pp. 9–16. IEEE (2014)

23. Manzi, J.: Uncontrolled: The Surprising Payoff of Trial-and-Error for Business, Politics, and
Society. Basic Books, New York (2012)

24. The Standish Group: The Standish Group Report. Chaos, vol. 49, pp. 1–8 (1995)
25. Castellion, G.: Do it wrong quickly: how the web changes the old marketing rules by Mike

Moran. J. Prod. Innov. Manag. 25, 633–635 (2008)
26. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous

experimentation in software product development: from data to a data-driven organization
at scale. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pp. 770–780. IEEE, Buenos Aires (2017)

27. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The benefits of controlled experimen-
tation at scale. In: 43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Vienna, Austria. 30 August–1 September 2017. IEEE, Vienna (2017)

28. Davenport, T.H.: How to design smart business experiments (2009). https://hbr.org/2009/02/
how-to-design-smart-business-experiments

29. Blank, S.: Why the lean start up changes everything. Harv. Bus. Rev. 91, 64 (2013)

Differentiating Feature Realization 235

https://dspace.mah.se/handle/2043/21268
http://dx.doi.org/10.1007/978-3-319-19593-3_12
http://dx.doi.org/10.1007/978-3-319-19593-3_12
https://hbr.org/2009/02/how-to-design-smart-business-experiments
https://hbr.org/2009/02/how-to-design-smart-business-experiments

30. Kohavi, R., Longbotham, R.: Online controlled experiments and A/B tests. In: Encyclopedia
of Machine Learning and Data Mining, pp. 1–11 (2015)

31. Siroker, D., Koomen, P.: A/B testing - the most powerful way to turn clicks into customers
(2012)

32. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Min. Knowl. Discov. 18, 140–181 (2009)

33. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2010, p. 17. ACM Press, New York (2010)

34. Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must-be quality. J. Jpn.
Soc. Qual. Control. 14, 39–48 (1984)

35. Bosch, J.: Achieving simplicity with the three-layer product model. Computer (Long Beach
Calif.) 46, 34–39 (2013)

36. Moore, G.A.: Dealing with Darwin: How Great Companies Innovate at Every Phase of their
Evolution. Penguin, New York (2005)

37. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131–164 (2008)

38. Mayring, P.: Qualitative content analysis - research instrument or mode of interpretation. In:
The Role of the Researcher in Qualitative Psychology, pp. 139–148 (2002)

39. Augustine, S., Payne, B., Sencindiver, F., Woodcock, S.: Agile project management:
steering from the edges. Commun. ACM 48, 85–89 (2005)

236 A. Fabijan et al.

A Method to Transform Automatically
Extracted Product Features into Inputs

for Kano-Like Models

Huishi Yin(&) and Dietmar Pfahl

Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia

{huishi,dietmar.pfahl}@ut.ee

Abstract. Background: In the context of a larger research project, we plan to
automatically extract user needs (i.e., functional requirements) from online open
sources and classify them using the principles of the Kano model. In this paper,
we present a two-step method for automatically transforming feature related text
extracted from online open sources into inputs for Kano-like models. Goal: The
problem we are facing is how to transform requirements and related sentiments
extracted from raw texts collected from an online open source into the input
format required by our Kano-like models. To solve this problem, we need a
method that transforms requirements and related sentiments into a format that
corresponds to answers that would be given to either the functional or dys-
functional question of the Kano method on a specific requirement. Method: We
propose a method consisting of two steps. In the first step, we apply machine
learning methods to decide whether a text line extracted from an online open
source corresponds to an answer of the functional or dysfunctional question
asked in the Kano method. In the second step, we use a dictionary-based method
to classify the sentiment of each statement such that we can assign an answer
value to each text line previously classified as functional or dysfunctional. We
implemented our method in the R language. We evaluate the accuracy of the
proposed method using simulation. Result: Based on the simulation results, we
found the overall accuracy of our method is 65%. We also found that data
sources such as app store reviews are better suited to our analysis than
question/answer sources such as Stack Overflow. Conclusion: The method we
proposed can be used to automatically transform feature-related text into inputs
for Kano-like models but performance improvements are needed.

Keywords: Sentiment analysis � Kano model � Online source

1 Introduction

Noriaki Kano developed the Kano model in the 1980s [9]. It characterizes the rela-
tionship between user satisfaction and product features. The Kano model defines five
categories1 (O, A, M, I, R) of user needs having different effects on user satisfaction.

1 O = One-dimensional Quality, A = Attractive Quality, M = Must-be Quality, I = Indifferent
Quality, R = Reverse Quality.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 237–254, 2017.
https://doi.org/10.1007/978-3-319-69926-4_17

Since it is possible to receive contradictory responses from customers, the Questionable
(Q) category is also an option. To use the Kano model, the Kano questionnaire is
necessary. It is composed of a pair of questions, i.e., a functional and a dysfunctional
question, that a group of users has to answer for every feature that is to be categorized.
In the software engineering domain, it is a well-known method to classify user pref-
erences according to their importance, and by doing so support requirements prioriti-
zation [10].

To be able to apply the idea of the Kano model to categorize product features
automatically extracted from online open sources one needs to find a way to simulate
the answering of the paired Kano questions as usually such answers are not readily
available. To be able to do so, in our previous work, we designed two modified Kano
models, which we denote Kano-like models, to classify user needs [10]. In this paper,
we describe and evaluate a two-step method using analysis to transform raw text related
to user needs voiced in online open sources into inputs for Kano-like models.

2 Related Work

Mustasfa et al. [28] presented an example of classifying software requirements by using
Kano model. Based on the Kano model, Nascimento et al. [29] proposed an approach
of using the crowd for requirements classification. This approach extends the scope of a
survey from a smaller range of existing users to the Internet-wide of people, all
potential users are considered in the scope of the survey. As same as Nascimento’s
research, we use the Kano model as a basis, to survey the opinions from Internet-wide
users. The different between their research and ours is that their research is based on an
artificial survey, but our goal of the research is to achieve the classification and pri-
oritization of software requirements automatically.

There exists quite a lot of research related to sentiment analysis. Sentiment analysis,
also known as opinion extraction, opinion mining, or emotion mining, is a field of
study that analyzes texts containing opinions, comments, and evaluations. While
research on sentiments and opinions started in 2001 [1–5], the terms ‘opinion mining’
and ‘sentiment analysis’ appear the first time in 2003 [6–8]. In this paper, we use the
terms ‘sentiment analysis’ and ‘opinion mining’ interchangeably.

Sentiment classification at the document and sentence levels classifies documents
and sentences (e.g., product comments, reviews) with regards to their emotional bias
towards either the positive or negative side [11–13]. Research that analyses the emo-
tional bias of text related to a finer granular level either combine topic modeling with
sentiment analysis [14, 15] or apply sentiment analysis directly at the level of product
features. For example, Shah et al. [16] presented a method for automated feature-based
opinion mining involving two steps: (1) extracting product features (e.g., “picture
quality” and “battery life” in a camera review) and (2) finding orientations (positive,
negative or neutral) of opinions expressed on the features by reviewers. There are also
studies on discovering orientations of context dependent on opinion comparative words
[17]. The main difference of our research compared to the mentioned studies is that, in
addition, we need to classify the features and related sentiments extracted from online
open sources into two classes corresponding to answers of the Kano paired questions,

238 H. Yin and D. Pfahl

i.e., functional and dysfunctional, and within each of these classes, each feature related
text must be classified into the classes very negative, negative, neutral, positive, and
very positive.

3 Research Context and Goal

In the context of a larger research project, Open Innovation in Requirements Engi-
neering (OIRE) [30], we plan to extract systematically user needs from online open
sources to complement traditional approaches to elicit and prioritize software
requirements. Figure 1 shows the four-main phases of our project. Currently, we focus
on the second phase where we extract from raw data product features and related
sentiments and format the extracted material such that it can serve as an input to a
Kano-like model. The input to Kano-like models consists of two vectors, i.e., the
functional and dysfunctional vectors, corresponding to answers that would be given to
either the functional or dysfunctional question of the Kano method. Each vector
contains numbers ranging from –2 to 2 which represent the sentiment classes very
negative (–2), negative (–1), neutral (0), positive (1), and very positive (2).

The goal of the research presented in this paper is to transform the feature-related
raw text collected from an online open source into the input format required by a
Kano-like model. To achieve this goal, we need to analyze and transform the raw data
into a format that corresponds to answers that would be given to either the functional or
dysfunctional question of the Kano method.

4 Method

The method by which we tackle this goal consists of two steps. Figure 2 shows an
example of how the two-step method transforms the text that relates to feature A is
transformed into inputs for a Kano-like model. How the input text is extracted from
open online sources is outside the scope of this study and will be described elsewhere.
In Fig. 2, the program that will produce the feature-related text for us is labeled Feature
Text Extraction Method.

Fig. 1. Main phase of the OIRE model

A Method to Transform Automatically Extracted Product Features 239

In method step 1, since the input data of this step already contains only
feature-related text, we use machine learning methods to classify the input text into two
classes, i.e., functional (exist) and dysfunctional (not exist). The unit of analysis is one
line of text. Text classified as functional corresponds to text lines stating the presence
of a feature, and text classified as dysfunctional corresponds to text stating the absence
(or lack) of a feature.

In method step 2, we use a dictionary-based method to classify the polarity of a
sentiment (from very negative to very positive) of each text line in each of the two
classes functional and dysfunctional and translate it into the corresponding Kano score.
For example, the sentiment very negative corresponds to a Kano score of –2 and the
sentiment very positive corresponds to a Kano score of +2.

4.1 Method Step 1

Figure 3 shows the process of classifying feature-related text lines into the functional
and dysfunctional dimensions of the Kano model. We apply supervised machine
learning in this step. The process consists of four sub-steps.

Fig. 2. Example illustrating the transformation of feature-related text into inputs for Kano-like
models using our two-step method

Fig. 3. The process of method step 1.

240 H. Yin and D. Pfahl

Step 1.1: To be able to select a suitable machine learning method for our classification
task, we must analyze the performance of candidate machine learners. To do so, we
need labeled training and test datasets.

Since our input is unlabeled, we either need to find such data sets or we need to
create them by ourselves. If we cannot find suitable existing labeled data sets for our
purpose, we must create such data sets manually. We can do this, for example, by
taking a subset of the input data set and analyzing each text line relating to a feature as
follows: If a text line contains words of affirmation or complaint about using/having a
feature, it means the feature exists or is imagined as being present, and thus we label the
related text line to be of the category functional. If a text line contains words that
express affirmation or complaint about the lack of a feature, it means the related feature
does not exist and thus we label the related text line to be of the category dysfunctional.
However, when the subjunctive mood is used, we classify the text line according to the
imagined or wished part of the text line. For example, when someone says, “I would be
happy if you can add this feature”, even though this means the feature is still missing,
the text line expresses the feeling a person has imagined the feature exists. Hence, we
will classify this text line to be of category functional.

The total size of the labeled dataset should be large enough to facilitate proper
training and small enough to not be too time-consuming. We suggest a dataset size of
100–250 labeled text lines. Table 1 shows some example text lines that we labeled to
be functional or dysfunctional.

Step 1.2: We split the set of labeled text lines into a test and a training dataset. The
ratio of the lines of text of training dataset to it of the test dataset is 80:20.

Step 1.3: We use the training dataset to train the classification models and the test
dataset to check the accuracy of the output of the models. We may select several
supervised machine learning methods for comparison, e.g., Naïve Bayes, MaxEnt,
Decision Trees, Support Vector Machines (SVM) and others.

Table 1. Examples of labeled text lines

Examples

Functional

The plugin function is good.
I have found that this method works.
I use ‘checkstyle’ to analyze my code.
I cannot figure out why people want this button here.
I would be happy if you can add this feature.

Dysfunctional

I miss the hierarchical (frame-based) view.
The link is not available now.
Basically I'd like to avoid to do this in a js file.
So far I've had no luck to use the Bespin one in
Pydev.
I would be sad if this feature be deleted.

A Method to Transform Automatically Extracted Product Features 241

We use a confusion matrix [18] to calculate the performance of each method.
Table 2 shows the confusion matrix for our classification problem. Based on the
predicted results of each model, we calculate the accuracy2 of each trained classifi-
cation model as well as FPV3 (Functional predictive value), which shows the pro-
portion of the functional text lines that are predicted correctly, and DPV4

(Dysfunctional predictive value), which shows the proportion of the dysfunctional text
lines that are predicted correctly.

Step 1.4: We select the best performing classification model to our original input and
classify each text line into either functional or dysfunctional.

4.2 Method Step 2

In the second step of our method, the purpose is to conduct opinion mining to attach
sentiment scores to each of the labeled text lines. According to Reagan et al.’s study
[19], sentiment detection methods can be one of the following types:

• Dictionary-based methods [20],
• Supervised learning methods [21],
• Unsupervised/Deep learning methods [22].

In this step, we need to classify text lines into five categories, i.e., very positive,
positive, neutral, negative, and very negative. To do so, multiclass instead of binary
classification methods are needed. However, the multiclass classification case is more
intricate than solving binary classification problems [27]. In other words, using
supervised learning methods is more costly. Since it is easy to implement, we decided
to design a dictionary-based method to classify the polarity of sentiments contained in
each of the labeled text lines received from step 1 of our method.

Step 2.1: We first create a special Emotional Dictionary consisting of seven corpuses,
i.e., containing ‘Positive Emotional Words’ (PEW), ‘Very Positive Emotional Words’
(VEPW), ‘Negative Emotional Words’ (NEW), ‘Very Negative Emotional Words’

Table 2. The confusion matrix used to assess the performance of supervised machine learners

Predicted condition
Functional Dysfunctional

True condition
Functional

True Func-
tional (TF)

False Func-
tional (FF)

Dysfunctional
False Dys-

functional (FD)
True Dysfunc-
tional (TD)

2 Accuracy = (TF + TD)/(TF + FF + FD + TD).
3 FPV = TF/(TF + FF).
4 DPV = TD/(FD + TD).

242 H. Yin and D. Pfahl

(VNEW), ‘Adversative Words’ (AW), ‘Negative Words’ (NW), and ‘Intense Words’
(IW), respectively.

The PEW and NEW corpuses of our Emotional Dictionary are created based on the
sentiment dictionary consisting of two files provided by Minqing Hu and Bing Liu [23].
The two files contain 2041 positive words (file: positive-words.txt), and 4818 negative
words (file: negative-words.txt), respectively. The IW corpus refers to the intense corpus
file of the HowNet sentiment dictionary collected by Qiang Dong and Zhendong Dong
[24]. The IW includes 71 words. To create VPEW, VNEW, AW, and NW, we use the
world’s largest and most trusted free online Synonyms dictionary, Thesaurus.com. We
first find a keyword, for example, the word “amazing” as a keyword of VPEW, or the
word “awful” as a keyword of VNEW. Then we search the synonyms of this keyword,
next we manually check all the synonyms words suggested by the Synonyms dictionary,
and finally we get word lists for the VPEW, VNEW, AW, and NW corpuses. We also
remove those words listed in VPEW from ‘positive-words.txt’ (PEW) and very negative
emotional words (listed in VNEW) from ‘negative-words.txt’ (NEW). Table 3 shows
the total numbers of words and example words of each corpus of the Emotional
Dictionary.

Step 2.2: We split each labeled text line into words and search each word in the
Emotional Dictionary to identify its sentiment polarity. When one word is confirmed
included in one corpus of our Emotional Dictionary, we assign different sentiment
score to this word according to the different corpuses it belongs to. For example, if one
word is included in VPEW or in VNEW, the sentiment score of this word is 100
or –100. If this word is included in PEW or in NEW, the sentiment score of this word is
1 or –1.

Step 2.3:We calculate the total sentiment score of each text line and transfer it to Kano
score (ranging from –2 to 2, i.e., very negative to very positive) which constitutes the
input needed for the Kano-like models. Figure 4 uses a simplified algorithm to show
the schematic process for automatically calculating the sentiment score when using our
dictionary-based method. The real script is implemented in the R language with over
100 lines of code.

Table 3. Emotional Dictionary with example words.

Corpus No. of words Examples

Emotional
Dictionary

PEW 2013a like, good, well, accept,
NEW 4794b bad, sad, cannot, delete,
VPEW 28 amazing, love, brilliant,
VNEW 24 awful, worst, terrible,
IW 71 very, much, extremely,
AW 9 but, however,
NW 18 no, not, never, aren't,

a = 2041-28
b = 4818-24

A Method to Transform Automatically Extracted Product Features 243

Instead of classifying sentiments into three categories, i.e., positive, negative, and
neutral, like other researchers did, we need to classify functional and dysfunctional text
lines into five categories, i.e., very positive (sentiment score >= 100), positive
(0 < sentiment score < 100), neutral (sentiment score = 0), negative (–100 < senti-
ment score < 0), and very negative (sentiment score <= –100).

Table 4 shows examples of how to calculate the sentiment score and Kano score of
text lines using the algorithm presented in Fig. 4. The words in different colors indicate
the reference to different emotional corpuses as shown in Table 3. For example, words
in red refer to corpus PEW.

Fig. 4. The schematic process of calculating the sentiment score in the Dictionary-based
method.

Table 4. Examples of calculating the sentiment and Kano scores for text lines

Text linea Sentiment
Score

Polarity Kano
Score

i like (α) this function very much (β). 10000 Very positive 2

why cannot (γ) you delete (γ) this function -2 Negative -1

i hate (δ) this feature -100 Very Negative -2

this feature is not (ε) bad (γ) 1 Positive 1

the software allows user to open files automatically 0 Neural 0

a α = words from PEW, β = words from IW, γ = words from NEW, δ = words from
VNEW, ε = words from NW.

244 H. Yin and D. Pfahl

5 Method Application Example

In this section, we demonstrate the applicability of our two-step method with an
example (Sects. 5.1 and 5.2) and discuss its overall performance (Sect. 5.3). In addi-
tion, we discuss the suitability of different types of sources from which the input data to
our method was extracted. We do this by comparing the outcomes of the sentiment
analyses conducted in step 2 of our method applied to data retrieved from a
question/answer web-page, i.e., Stack Overflow, and from an App store, i.e., a joint
data set extracted from Google Play and Apple Store (Sect. 5.4).

5.1 Application Example for Method Step 1

Input: We used a dataset containing 1493 lines of text from an App store as input to
our method. This dataset was derived from an original set of 92217 reviews which was
cleaned to be appropriate for further processing. For example, we only used text lines
from the reviews which correspond to one feature. In addition, we removed stop words
(e.g. ‘a’, ‘an’, ‘the’, etc.) as well as punctuation and strange symbols. We also removed
text lines contained in reviews containing less than 20 words, because we believe long
reviews may be able to comprehensively express a reviewer’s real thought.

Approach: In order to classify the input text lines and transform them into input for
Kano-like models, we first created a ‘functional-dysfunctional’ corpus as training and
test datasets for selecting machine learning methods. We followed the rules described in
Sect. 4.1. We needed approximately 4 person-hours of effort to manually label 250 lines
of text. The split between text lines labeled as functional and dysfunctional was 50:50.

We compared five frequently used machine learning methods, i.e., Naïve Bayes,
MaxEnt, Decision Trees, Random Forest, and SVM. We used the confusion matrix (cf.
Table 2) to calculate the performance of each method. To check whether the proposed
ratio of 80:20 between training and test dataset really gets the best results, we vary the
size of the training data set in the range from 50 to 200 with a fixed test dataset of size 50.
Thus, we check for the ratios 50:50 (training dataset size = 50), 66:34 (training dataset
size = 100), and 80:20 (training dataset size = 200). Table 5 shows the results of the
experiment.

We can see from Table 5 that the Naive Bayes method achieved the highest
average FPV (90%), and the SVM method achieved the highest average DPV (76.7%)
and the highest average overall accuracy value (64.2%). For the training dataset con-
taining 200 text lines, the methods MaxEnt and SVM have the highest accuracy (65%)
and closest FPV and DPV values. In additional, the standard deviation of accuracy
values of MaxEnt and SVM methods (0.006 and 0.014 respectively) from three tests
are very small. This suggests that the performance of methods MaxEnt and SVM is
stable and no further improvement can be expected for larger training datasets.
However, although the accuracy values when using MaxEnt and SVM methods are the
highest in Table 5, the absolute values (65% for both methods) are not very high. Thus,
to improve accuracy further, we decided to use the training dataset of size 200, then
implement both MaxEnt and SVM methods together, and then only keep those cases
where the predictions of the two methods are consistent. According to the experiment

A Method to Transform Automatically Extracted Product Features 245

results, we found that the two methods yielded the same classifications for 44 out of 50
text lines in the test datasets. A further analysis showed that 15 out 22 text lines were
accurately classified as functional (FPV = 68%) and 17 out of 22 text lines were
accurately predicted as dysfunctional (DPV = 77%). This means that the overall
accuracy increased to 73% from 68%. Hence, we decided to use MaxEnt together with
SVM in our application example, and only keep those cases where the predictions of
the two methods are consistent.

Result: After implementing the classification method of step 1, we found that 1151 out
of 1493 lines of text were classified into the same categories when using both SVM and
MaxEnt methods. 628 lines of text were classified as functional, and 523 were clas-
sified as dysfunctional.

To estimate the actual classification accuracy of method step 1, we used the Prob-
ability Proportional to Size (PPS) method [25]. We randomly chose 20% of the total
number of classified text lines and then we manually checked the correctness of the
classification of the text lines contained in this sample. The results of this performance
check are shown in Table 6. We can see that the overall accuracy of method step 1

Table 5. Experiment results

Methods Indicator

Size of training set
(number of text lines) Average

Value

Standard
Deviation

(σ)50 100 200

Naive
Bayes

FPV 100% 100% 70% 90% 0.173
DPV 0 0 45% 15% 0.260

Accuracy 50% 50% 57.5% 52.5% 0.043

MaxEnt
FPV 45% 40% 60% 48.3% 0.161
DPV 75% 80% 70% 73.3% 0.076

Accuracy 60% 60% 65% 61% 0.006

Decision
Trees

FPV 50% 40% 40% 43.3% 0.058
DPV 55% 80% 80% 71.7% 0.144

Accuracy 52.5% 60% 60% 57.5% 0.043

Random
Forest

FPV 60% 70% 60% 63.3% 0.058
DPV 35% 50% 45% 43.3% 0.076

Accuracy 47.5% 60% 52.5% 53.3% 0.063

SVM
FPV 45% 45% 65% 51.7% 0.115
DPV 80% 85% 65% 76.7% 0.104

Accuracy 62.5% 65% 65% 64.2% 0.014

Table 6. Prediction accuracy of method step 1

Lines of texts Proportion Samples Correct
classification

Functional 628 55% 126 116
Dysfunctional 523 45% 105 61

Total 1151 100% 231 173
FPV 92%
DPV 58%

Accuracy 75%

246 H. Yin and D. Pfahl

is 75%. The accuracy of classifying text lines into category functional is very high
(FPV = 92%), while the accuracy of classifying text lines into the category dysfunc-
tional (DPV = 58%) is relatively low.

5.2 Application Example for Method Step 2

Input: The output of method step 1 contained two categorized files. One file has 628
lines of functional text, and another file has 523 lines of dysfunctional text. These two
files were used as the input of method step 2. In the following, we use ‘functional input’
and ‘dysfunctional input’ when referring to these two files.

Approach: We ran the dictionary-based method as described in Sect. 4.2 to calculate
the sentiment and Kano scores of each line of text in the functional and dysfunctional
inputs separately. Then we used again the PPS method to check the performance for
20% of the text lines contained in each input. To be able to manually check the
emotions expressed in the sampled text lines to verify the accuracy of classification, we
used the guidelines presented in Table 7.

Result: After implementing method in step 2, text lines were classified into five sen-
timent classes. The classification details as well as the corresponding accuracies for the
samples drawn from each class are presented in Table 8.

Table 7. Evaluation criteria for manually checking sentiment classifications

Sentiment Classi-
fication

Evaluation Criterion

Very positive
When the content shows a very happy or excited mood or high
satisfaction.

Positive
When the content shows a happy or excited mood or satisfaction
without a very strong expression.

Neutral
When the content does not clearly show positive or negative emo-
tions or the content has contradictory expression.

Negative
When the content shows an unhappy or disappointed mood without
a very strong expression.

Very negative When the content shows a very unhappy or disappointed mood.

Table 8. Prediction accuracy of method step 2

Lines of
text Proportion Samples

Correct
classification Accuracy

Very Positive 629 55% 127 118 93%
Positive 154 13% 31 18 58%
Neutral 135 12% 27 20 74%
Negative 146 13% 29 23 79%

Very Negative 87 7% 17 10 59%
Total 1151 100% 231 188 81%

A Method to Transform Automatically Extracted Product Features 247

We can see from Table 8, that the highest accuracy value (93%) was achieved for
class Very Positive. 118 out of 127 text lines were accurately predicted. The lowest
accuracy value (58%), was achieved for class Positive, closely followed by class Very
Negative (59%). Nonetheless, due to the larger number of text classified as Very
Positive (55% of 231) and a very high accuracy for this class, the overall accuracy of
step 2 of our method reached 81%.

5.3 Overall Performance of the 2-Step Method

To see the combined accuracy of both steps of our proposed method, we consider those
lines of text which are classified into correct categories both in method step 1 and
method step 2 as final correct classifications. As described in Sects. 5.1 and 5.2, the
analysis of classification accuracy was done manually based on a sample of 231 text
lines (out of a total of 1151 classified text lines). The results of this analysis are shown in
Tables 9 and 10, presenting the results for text lines classified in step 1 of the method as
functional and dysfunctional, respectively. When comparing the results shown in
Tables 9 and 10, we observe that the overall accuracy of text lines classified as func-
tional (81%, i.e., 102 of 126 text lines in the sample) is much higher than the accuracy of
text lines classified as dysfunctional (46%, i.e., 48 of 105 text lines in the sample). The
overall weight average of accuracy of all 231 text lines of the sample is 65%.

Table 9. Accuracy of method steps 1 and 2 for text lines classified as functional in step 1

Lines
of text

Propor-
tion

Ana-
lyzed

samples

Method Step 1 Method Step 2 Overall
Correct

classifica-
tion

Accura-
cy

Correct
classifica-

tion

Accura-
cy

Correct
classifica-

tion

Accura-
cy

Very Positive 413 66% 83 77 93% 77 93% 76 92%
Positive 78 12% 16 14 88% 9 56% 9 56%
Neutral 52 8% 10 7 70% 9 90% 7 70%

Negative 50 8% 10 8 80% 7 70% 6 60%
Very Nega-

tive
35 6% 7 6 86% 4 57% 4 57%

Total 628 100% 126 116 92% 107 85% 102 81%

Table 10. Accuracy of method steps 1 and 2 for text lines classified as dysfunctional in step 1

Lines
of text

Propor-
tion

Ana-
lyzed

samples

Method Step 1 Method Step 2 Overall

Correct
classifica-

tion

Accu-
racy

Correct
classifica-

tion

Accura-
cy

Correct
classifica-

tion

Accura-
cy

Very Positive 216 41% 44 16 36% 41 93% 14 32%
Positive 76 15% 15 10 67% 9 60% 6 40%
Neutral 83 16% 17 11 65% 11 65% 8 47%

Negative 96 18% 19 16 84% 15 79% 14 74%
Very Nega-

tive
52 10% 10 7 70% 6 60% 6 60%

Total 523 100% 105 61 58% 85 81% 48 46%

248 H. Yin and D. Pfahl

When looking deeper into the details of Tables 9 and 10 we observe that classi-
fication correctness varies a lot. For example, the highest overall accuracy is 92% for
text lines expressing very positive emotions about something existing (functional). On
the other hand, the overall accuracy of dysfunctional text lines is very low, especially
when expressing very positive (32%), positive (40%), and neutral (47%) emotions.
While generally, the accuracy of text lines classified as functional is better than that of
text lines classified as dysfunctional, those text lines classified as dysfunctional
expressing negative and very negative emotions have higher accuracy (74% and 60%)
than the corresponding text lines classified as functional (60% and 57%). We also
observe that the main cause for low overall accuracy can be traced to both steps of the
method depending on the sentiment classification. For example, the low overall
accuracy of 32% for text lines classified as dysfunctional and expressing very positive
emotion is mostly due to the low accuracy in method step 1 (36%). On the other hand,
the relatively low overall accuracy of 56% for text lines classified as functional and
expressing positive emotion is mostly due to low accuracy in method step 2 (56%).

When comparing the accuracies of the method steps 1 and 2, we observe that the
lowest accuracy value for step 1 is 36%, which is the only value less than 65%, while
the lowest accuracy values for step 2 are 56%, 57%, 60%, and 60%, respectively. The
low accuracy values in step 2 relate to text lines classified as positive and very negative
for both functional and dysfunctional categories.

5.4 Applicability of the Dictionary-Based Method for Sentiment Analysis

We ran a separate experiment to test the accuracy of the Dictionary-based Method. In
that experiment, we used a small set of 250 user questions and comments collected
from Stack Overflow as our test input 1. Meanwhile, we used another small set of 250
reviews collected from App stores Google Play and Apple Store as our test input 2. We
manually labeled the test inputs by attaching a sentiment score to all 500 input text
lines. To do so, we use the criteria shown in Table 7.

Tables 11 and 12 show the actual and predicted classifications of input 1 and input 2,
respectively. Table cells with gray background show the numbers of those cases where
input text lines were classified correctly by the Dictionary-based Method. We can see
from Tables 11 and 12 that the overall prediction accuracies are very similar (71.6% and
78%).We also observe that the highest prediction accuracies for both inputs 1 and 2 were
achieved for text lines expressing very positive emotions. However, when looking at
other sentiment categories, we see that there are also several differences between input 1
and input 2. For example, the prediction accuracy of text lines expressing negative
emotions is much higher for input 1 (72%) than for input 2 (47%).

Another observation we made is related to the distribution of sentiments in the two
input sets. Input 1, which contains data collected from a question/answer web-page,
contains considerably more text lines expressing neutral emotions than input 2, which
contains data collected from app store reviews. Also, input 1 contains more text lines
expressing positive or very positive emotions and less text lines expressing negative
and very negative emotions than input 2. Based on that, we believe that inputs stem-
ming from reviews (such as those found in app stores) are a more suitable data source
for our purpose than question/answer web-pages. When people post a question, they

A Method to Transform Automatically Extracted Product Features 249

usually describe problems, and they need answers, so most of the posts are written in an
objective mode describing facts, rather than in a subjective mode expressing emotions.
Even if someone wants to express feelings in a question/answer forum, it is difficult to
have a positive feeling when someone has a problem. However, when writing an app
review, sentiments expressed are often related to features and if a feature is good/bad,
more positive/negative sentiments will be expressed. Thus, app reviews are potentially
more comprehensive with regards to the expression of sentiments.

6 Threats to Validity

Threats to Internal Validity: The results of our performance analysis rely highly upon
the nature of the input data. If the input data is not good, the accuracy will be affected.
After analyzing the input data, we found that non-standard language is a problem.

There are three main types of non-standard language issues of the input text. In
Table 13, we show some examples that we picked from the input data that we used.

Table 11. Prediction accuracy based on input 1 (Stack Overflow)

Predicted sentiment classification Accurate
predic-

tion

Text
lines

Accura-
cyVery posi-

tive
Posi-
tive

Neu-
tral

Nega-
tive

Very nega-
tive

Actual
sentiment
classifica-

tion

Very posi-
tive

10 2 0 0 0 10 12 83%

Positive 2 30 1 8 1 30 47 64%
Neutral 1 15 61 9 1 61 87 70%

Negative 1 12 14 68 0 68 95 72%
Very nega-

tive
1 2 0 1 10 10 14 71%

Overall 179 250 71.6%

Table 12. Prediction accuracy based on input 2 (Google Play and Apple Store)

Predicted sentiment classification Accurate
predic-

tion

Text
lines

Accura-
cyVery posi-

tive
Posi-
tive

Neu-
tral

Nega-
tive

Very nega-
tive

Actual
sentiment
classifica-

tion

Very posi-
tive

86 3 2 1 1 86 93 92%

Positive 8 30 2 4 2 30 46 65%
Neutral 7 3 27 6 2 27 45 60%

Negative 13 10 0 24 4 24 51 47%
Very nega-

tive
5 0 0 0 10 10 15 67%

Overall 177 250 78%

250 H. Yin and D. Pfahl

• Spelling issues: For example, when “goodbye” is spelled as “good bye”, the
dictionary-based method will detect a positive emotion (“good”) instead of a neutral
one.

• Contradictory text: For example, the text line “terribly (negative) love (positive) it”
will be classified by the dictionary-based method as neutral although the sentence
probably expresses a positive feeling.

• Unclear content: Whatever sentiment will be detected is meaningless.

Another threat is that during our experiment, only one person labeled all the
training data and test data in method step 1. Due to the somewhat subjective flavor of
the labeling task, there is a probability of occasional mislabeling. Similarly, the eval-
uation of the sentiment classification conducted in method step 2 was done manually by
a single person. In order to mitigate this threat to validity, we created the guidelines for
labeling and evaluation presented in Tables 1 and 7, respectively. Applying the
guidelines standardizes the labeling and evaluation tasks to some degree and thus
reduces the danger of mislabeling and misjudgment.

Threats to External Validity: In this paper, we only give one application example,
which may not offer enough evidence to prove that our proposed two-step method is
reliable (at least to the degree of accuracy that we reached in our application). How-
ever, given the size of our data set extracted from app reviews, we expect that our
results are to some degree representative for data stemming from app stores such as
Google Play and Apple Store. We also compared the input of app reviews with another
type of input text collected from Stack Overflow in Sect. 5.4 and found that app
reviews are a more suitable input data source for our method than question/answer
web-pages.

7 Conclusions and Future Plan

In this paper, we have presented a method that helps analyze and classify text lines
extracted from online open sources such as app stores into a format that can be further
processed by Kano-like models in order to classify features. The proposed method is

Table 13. Main issues of non-standard language

Type of issues Example

Spelling issues
“ssssssshhhhhhhhhoooocccccccckkkkkkkkkk wave”
“awsome”
“good bye”

Contradictory text
“terribly love it”
“why cant android users disable last seen timestamp and iphone users can
sort it out”

Unclear content

“its ma 1 of d fvrt app plz upload it n njoy wid uh frndzzz its just awe-
some bt still i hv prblm wid it”
“this game needs to be better like really oh my gosh like i love lipstick
and i put like it on in school like school is cool i get straight as like really
do you dress nice i do really you should”

A Method to Transform Automatically Extracted Product Features 251

supported by R scripts5 and thus can be performed to a large degree automatically. The
value of this method is that product managers and other stakeholders who are devel-
oping software products can learn from feedback posted in online open sources with
little effort.

We demonstrated the applicability of our method in an application example using
real-world data extracted from two popular app stores.

Based on the results of our application experiment, we found the accuracy of the
prediction of dysfunctional text lines, especially when these text lines express positive
emotions, is low. Also, the accuracy of classifying the sentiments expressed in text
lines into positive and negative classes when using our dictionary-based method is still
too low for practical purposes. These two reasons affect the overall accuracy of our
method negatively.

The overall accuracy of our two-step method is 65%. Compared with other research
results, we think the performance of the method is acceptable. Hence, we think our
proposed two-step method can already be used for transforming the feature related text
into the inputs for Kano-like models.

As in all research endeavors, we see possibilities for improving our method, e.g., by
optimizing the size and the quality of the training dataset in step 1 of our method and
by refining the dictionary in step 2 of our method. We also plan to further investigate
how certain characteristics of the input data (e.g., length of text lines, balance between
dysfunctional and functional text lines, as well as the distribution of sentiments) affect
the overall accuracy of our method. In addition, we also plan to experiment with deep
learning approaches in step 2 of our method. For example, we plan to apply the
Stanford Sentiment Analysis [26] approach which uses recursive deep models to
analyze movie reviews.

Acknowledgement. The research was supported by the institutional research grant IUT20-55 of
the Estonian Research Council. In addition, Huishi Yin was funded by the European Regional
Development Fund for Higher Education.

References

1. Das, S., Chen, M.: Yahoo! for Amazon: extracting market sentiment from stock message
boards. In: Proceedings of the Asia Pacific Finance Association Annual Conference (APFA),
vol. 35, p. 43 (2001)

2. Morinaga, S., Yamanishi, K., Tateishi, K., et al.: Mining product reputations on the web. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 341–349. ACM (2002)

3. Tong, R.M.: An operational system for detecting and tracking opinions in on-line discussion.
In: Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification,
vol. 1, p. 6 (2001)

4. Wiebe, J.: Learning subjective adjectives from corpora. In: AAAI/IAAI, pp. 735–740 (2000)

5 https://figshare.com/s/d13b6f16738190d7b935.

252 H. Yin and D. Pfahl

https://figshare.com/s/d13b6f16738190d7b935

5. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine
learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in
Natural Language Processing, vol. 1, pp. 79–86. Association for Computational Linguistics
(2002)

6. Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language
processing. In: Proceedings of the 2nd International Conference on Knowledge Capture,
pp. 70–77. ACM (2003)

7. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and
semantic classification of product reviews. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 519–528. ACM (2003)

8. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San
Rafael (2012)

9. Kano, N., Seraku, N., Takahashi, F., et al.: Attractive quality and must-be quality. J. Jpn.
Soc. Qual. Control 14, 39–48 (1984)

10. Yin, H., Pfahl, D.: Evaluation of Kano-like models defined for using data extracted from
online sources. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M.,
Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 539–549. Springer,
Cham (2016). doi:10.1007/978-3-319-49094-6_39

11. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)

12. Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: separating facts from
opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003
Conference on Empirical Methods in Natural Language Processing, pp. 129–136.
Association for Computational Linguistics (2003)

13. Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? Finding strong and weak opinion
clauses. In: AAAI, vol. 4, pp. 761–769 (2004)

14. Lin, C., He, Y., Everson, R., et al.: Weakly supervised joint sentiment-topic detection from
text. IEEE Trans. Knowl. Data Eng. 24(6), 1134–1145 (2012)

15. Rao, Y., Li, Q., Mao, X., et al.: Sentiment topic models for social emotion mining. Inf. Sci.
266(5), 90–100 (2014)

16. Shah, F.A., Sabanin, Y., Pfahl, D.: Feature-based evaluation of competing apps. In:
Proceedings of the International Workshop on App Market Analytics, WAMA 2016, pp. 15–
21. ACM, New York (2016)

17. Ganapathibhotla, M., Liu, B.: Mining opinions in comparative sentences. In: Proceedings of
the 22nd International Conference on Computational Linguistics, vol. 1, pp. 241–248.
Association for Computational Linguistics (2008)

18. Stehman, S.V.: Selecting and interpreting measures of thematic classification accuracy.
Remote Sens. Environ. 62(1), 77–89 (1997)

19. Reagan, A., Tivnan, B., Williams, J.R., et al.: Benchmarking sentiment analysis methods for
large-scale texts: a case for using continuum-scored words and word shift graphs. Comput.
Sci. (2015)

20. Ku, L.W., Wu, T.H., Lee, L.Y., et al.: Construction of an evaluation corpus for opinion
extraction. In: NTCIR, pp. 513–520 (2005)

A Method to Transform Automatically Extracted Product Features 253

http://dx.doi.org/10.1007/978-3-319-49094-6_39

21. Dasgupta, S., Ng, V.: Mine the easy, classify the hard: a semi-supervised approach to
automatic sentiment classification. In: Joint Conference of the, Meeting of the ACL and the,
International Joint Conference on Natural Language Processing of the AFNLP: Volume,
pp. 701–709. Association for Computational Linguistics (2009)

22. Socher, R., Perelygin, A., Wu, J.Y., et al.: Recursive deep models for semantic
compositionality over a sentiment treebank. Proceedings of the conference on empirical
methods in natural language processing (EMNLP). 1631, 1642 (2013)

23. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 168–177. ACM (2004)

24. HowNet knowledge Database (2016). http://www.keenage.com/html/e_index.html. Acces-
sed 2 Feb 2017

25. Skinner, C.J.: Probability proportional to size (PPS) sampling. In: Encyclopedia of Statistical
Sciences (1983)

26. Recursive Neural Tensor Network (2017). http://nlp.stanford.edu/sentiment/index.html.
Accessed 2 Feb 2017

27. Aly, M.: Survey on multiclass classification methods. Neural Netw., 1–9 (2005)
28. Mustasfa, B.A.: Classifying software requirements using Kano’s model to optimize customer

satisfaction. In: SoMeT, pp. 271–279 (2014)
29. Nascimento, P., Aguas, R., Schneider, D., et al.: An approach to requirements categorization

using Kano’s model and crowds. In: 2012 IEEE 16th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pp. 387–392. IEEE (2012)

30. Yin, H.: A study plan: open innovation based on internet data mining in software
engineering. In: Proceedings of the 2015 International Conference on Software and System
Process. ACM (2015)

254 H. Yin and D. Pfahl

http://www.keenage.com/html/e_index.html
http://nlp.stanford.edu/sentiment/index.html

Feedback Gathering for Truck Parking Europe: A Pilot
Study with the AppEcho Feedback Tool

Melanie Stade1,2(✉) and Holger Indervoort3,4

1 Centre for Requirements Engineering (CeRE), University of Applied Sciences and Arts
Northwestern Switzerland (FHNW), Windisch, Switzerland

melanie.stade@fhnw.ch
2 Cognitive Psychology and Cognitive Ergonomics, Berlin University of Technology (TUB),

Berlin, Germany
3 PTV Planung Transport Verkehr AG, Karlsruhe, Germany

4 PTV Truckparking BV, Utrecht, The Netherlands

Abstract. Feedback communication channels enable end-users to express their
needs and problems when using a software system. This feedback can increase a
software company’s knowledge about real software usage and can positively
affect software evolution and maintenance. However, research shows that gath‐
ering feedback can be cumbersome for software companies. In a pilot study with
Truck Parking Europe, we explore how we can enable truckers to communicate
feedback on an app for parking slots. Results of our pilot study, consisting of a
small group of truckers, show that the truckers provided useful feedback through
a dedicated, mobile, and screenshot-based feedback tool. As stated by the Truck
Parking Europe team, the feedback received is understandable and relevant for
improving the parking app. In our future work, we will investigate the extent to
which an integrated feedback tool can allow many truckers to provide feedback
simultaneously and the extent to which the gathered feedback can aid in
improving software evolution and maintenance activities at Truck Parking
Europe.

Keywords: Post-deployment end-user feedback · User involvement · User
participation · Mobile application · Software evolution

1 Introduction

1.1 User Involvement for Software Evolution

User involvement can positively affect software development and evolution [1] as it
increases a software company’s knowledge about real software usage [2]. To engage
end-users in software evolution and requirements elicitation activities, software compa‐
nies can either solicit feedback or allow end-users to trigger the feedback communication
process [3]. Both cases entail explicit feedback where end-users provide the input delib‐
erately. In contrast, software usage data that is unintentionally provided by end-users is
treated as implicit feedback [3]. Explicit feedback communication channels that allow
end-users to remotely communicate their needs, opinions, and problems with a software

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 255–262, 2017.
https://doi.org/10.1007/978-3-319-69926-4_18

system can include public channels such as online forums, social media, and app stores
as well as non-public channels like email, contact forms and phone. Research on dedi‐
cated tools that support gathering of end-user feedback has increased [4, 5], and there
are various commercial service providers who offer feedback gathering solutions such
as Usabilla (usabilla.com), Usersnap (usersnap.com), and UserVoice (uservoice.com).
However, previous work shows that in several cases, software companies are not satis‐
fied with the quantity and quality of the feedback received from their end-users [6].
Moreover, the characteristics of the feedback communication channels can contribute
towards the end-users’ willingness to provide feedback, along with the existing hurdles
that discourage end-users from providing feedback [6, 7].

In our study, we focus on a specialized end-user group who are not easily accessible
for user involvement activities in practice because they are working under time pressure
and are constantly on the road, i.e., truckers.

1.2 Feedback Gathering for Truck Parking Europe and Study Goal

Truck Parking Europe (TPE) is the largest free European platform for truck parking
facilities (truckparkingeurope.com). More than 25,000 parking spots are updated and
assessed by a pan-European community of more than 500,000 truckers. The app that
shares the same name (Fig. 1) helps truckers find the best truck parking space on their
route across Europe based on their needs related to infrastructure, comfort, and security.
Moreover, the TPE app can help to avoid overcrowded parking areas by supporting a
better utilization of parking spaces. PTV Planung Transport Verkehr AG, the German
company behind the idea of the app, supports the TPE project. The app is available for
free for iOS and Android users.

Fig. 1. Truck Parking Europe (TPE) app supports truckers to find the best parking slot. (Pictures:
truckparkingeurope.com)

User involvement at TPE and PTV is an emerging topic. For the last few years,
preliminary user involvement activities have been evolving, and both TPE and PTV are

256 M. Stade and H. Indervoort

http://usabilla.com
http://usersnap.com
http://uservoice.com
http://truckparkingeurope.com
http://truckparkingeurope.com

using several feedback communication channels (e.g., surveys, Facebook pages, app
stores) to gather end-user feedback. However, TPE and PTV are not always satisfied
with the quantity and quality of the feedback. Thus, they want to improve their feedback
gathering process in the long run. To facilitate this, a comparison of current and new
feedback channels is planned. New feedback channels like dedicated screenshot-based
feedback tools are not just promising to support end-users to describe (with additional
textual description) the exact location (e.g., button) and context (e.g., active page) of the
feedback object but also allow the feedback receiver to understand the issue behind the
feedback [8, 9]. However, before starting a complex study and providing such a feedback
tool to all the truckers, we want to test whether a small sample of truckers can use the
feedback tool at all during their daily work.

In particular, we explore whether a dedicated, mobile, and screenshot-based push
feedback tool enables truckers to express their feedback (RQ1), how satisfied the
truckers are with this feedback gathering approach (RQ2), and whether the feedback
received is useful for the TPE team (RQ3).

2 Study Procedure and Data Collection

2.1 Our Criteria for the Feedback Tool

For our pilot study, we had two reasons for deliberately opting against an embedded
feedback tool solution that is integrated in the TPE app. First, we would have to wait
for the next release of the TPE app to start the pilot study. Second, we would have to
convince the stakeholders that an integrated feedback tool would neither adversely
influence the performance of the TPE app nor the end-users’ opinion of it. Thus, we had
to find a dedicated, mobile push feedback tool that is standalone, but easy to access [9].
Because commented and marked screenshots are very promising feedback formats (see
previous section), the tool needs to support text input and annotations of a created or
uploaded screenshot.

2.2 AppEcho – The Chosen Feedback Tool

By applying the aforementioned criteria, we conducted an unsystematic analysis of
research tools and commercial service providers. The AppEcho app [5] was the only app
that satisfied our criteria. The AppEcho Android app guides the end-user step by step in
a wizard-like interface to document feedback on other applications and on the mobile
platform in situ. When the trucker wants to communicate feedback on the TPE app, she
takes a screenshot of the app and opens AppEcho by clicking on the feedback tool icon
in the Notification Center. The latest screenshot is automatically inserted (Fig. 2a), but
can be replaced by any other picture file (folder symbol at the top-right corner). The
trucker can use two simple annotation functions: a marker to highlight elements and
segments on the screenshot (Fig. 2b), and an eraser to void areas. The trucker can type
a short text in the window that pops up after three seconds of user inactivity (Fig. 2c).
In this study, we de-activated the option to provide an audio message (Play, Record, and
Stop buttons shown in Fig. 2c), because we assumed that we would receive recordings

Feedback Gathering for Truck Parking Europe 257

with a lot of background noise and also estimated that we would have limited resources
to transcribe verbal feedback. Finally, after clicking on the send button, the trucker
receives a confirmation message, the AppEcho app closes automatically, and the latest
active screen of the parking app is displayed. In contrast to other available mobile feed‐
back tools, the trucker can get an overview of the sent feedback (not shown here). In
our previous work, this was identified as an important feature [10].

a b c

Fig. 2. Main interaction steps in the English version of the mobile feedback tool, AppEcho [5],
exemplified with an original feedback documented by a trucker (in German).

2.3 Sampling and Task Alignment

The truckers, who received an Amazon voucher of €20 as a monetary incentive for taking
part in the study, were invited to the study by the TPE Facebook group, the TPE news‐
letter, and the TPE website. After their registration to the study, we briefly explained
the study procedure via email, including their task to provide feedback whenever they
had a positive or negative experience with the TPE app. Then, the truckers downloaded
the AppEcho app from the app store on their smartphones. They used the app in German
or English. The truckers viewed an illustration of all the functions of AppEcho through
a short one-minute video and they were able to familiarize themselves with the feedback
tool by sending a test feedback after the installation of AppEcho and prior to the study
period. In total, nine truckers (one female, eight males, mean age = 46.9, SD = 7.4)
participated in our study in the capacity of a feedback sender for a two-week period.

2.4 Feedback Sender’s Questionnaire

After two weeks, the truckers completed a short online questionnaire on their experience
with the AppEcho app. We were interested to know (i) whether they could imagine
themselves giving feedback on the TPE app again with the AppEcho app (yes/no
format), (ii) what they liked about the AppEcho app, (iii) how we should improve the

258 M. Stade and H. Indervoort

AppEcho app, and (iv) what would be the best feedback communication channel for
them to provide feedback on the TPE app (ii-iv in free text format).

2.5 Feedback Receiver’s Questionnaire and Discussion Session

We also wanted to explore how useful the feedback is for the TPE team. To answer this
question, five TPE team members (Product Management, Marketing, Design, Usability
Engineering; multiple roles possible) judged each feedback that was documented in the
form of (annotated) screenshots and texts. For this, each representative rated the under‐
standability and the relevance of a feedback entry on a 5-point scale (1 = not under‐
standable/relevant, 2 = slightly understandable/relevant, 3 = moderately understand‐
able/relevant, 4 = understandable/relevant, 5 = completely understandable/relevant).
With understandability, we indicated how clearly the feedback was formulated and
whether the feedback documentation included all the necessary information required to
understand the issue being reported. Regarding relevance, we probed as to what extent
did the feedback included information that helped the TPE team to ensure a high quality
of the parking app. After completing the rating questionnaire individually, the academic
author moderated a brief discussion with all the five representatives regarding the study
procedure, results, and the next steps. The data was analyzed by the academic author.
The ratings were aggregated among the raters and the feedback entries.

3 Results

3.1 Number and Characteristics of Feedback Entries (RQ1)

In total, nine truckers sent 40 feedback entries, referring to shortcomings (n = 27),
followed by feature requests (n = 16), and praise (n = 3) (multiple categories possible).
On average, each of the truckers provided 4.4 feedback entries (MIN = 1, MAX = 8).
Interestingly, none of the truckers repeated the same feedback issue several times, and
only one issue was communicated by two truckers (missing zoom function). The feed‐
back entries had an average length of 19 words (SD = 11.1) with a minimum of one
word (“sometimes”) and maximum of up to 41 words. The eraser function was not used
at all. In more than half of the cases, the marker was used. In 14 cases where the marking
function was not used, the truckers referred to problems or feature requests that were
valid for the TPE app in its entirety (e.g., request for a landscape mode) or when the
feedback issue did not pertain to any object of the current view. The marker was not
used exclusively to locate the object of the feedback by framing an object with a circle
(n = 13) (Fig. 3a: wrong parking spot status) or to point to an object with an arrow (n = 6)
(Fig. 3b: overlaying column of the list). The marking function was also used in three
cases where the truckers communicated feedback regarding the entire TPE app or the
visible screen. For this, they drew an exclamation point (Fig. 3c: missing option to add
a parking slot on this screen). In addition, four truckers used free-hand drawing to sketch
where a function or information should be located on the app screen. For example, the
location for a zoom function was sketched (Fig. 3d) while another trucker indicated that
additional characteristics of a parking slot should be represented as an icon (Fig. 3e).

Feedback Gathering for Truck Parking Europe 259

Fig. 3. Original marked screenshots sent with the mobile feedback tool. Name and photo of the
trucker have been blackened by the authors (e).

3.2 Feedback Sender’s Experience (RQ2)

Seven of the eight truckers, who completed the questionnaire, could imagine themselves
using the AppEcho app again to provide feedback on the TPE app. The truckers stated
that it was simple to provide feedback as AppEcho was user-friendly. Improvement
ideas included suggestions to make it possible to send feedback without a screenshot
and to clearly mention the receiver of the feedback in the app. The truckers stated that
email (n = 4), the AppEcho app (n = 3), a feedback screen that can be accessed within
the TPE app (n = 2), and phone (n = 1; multiple answers possible) are the best commu‐
nication channels for providing feedback on the TPE app. Interestingly, email was
chosen as the best channel although it requires the trucker to open an external application,
similar to the AppEcho app. One of the explanations for this could be that the information
about the feedback receiver was not communicated in the AppEcho app (see improve‐
ment idea above), while it is obvious when writing an email to TPE.

3.3 Feedback Receiver’s Experience (RQ3)

Most of the feedback entries rated by the five TPE members varied from understandable
to completely understandable (Mean = 4.3, SD = 0.8) and from relevant to completely
relevant (Mean = 4.2, SD = 0.6). They stated that the feedback helped them not only to
confirm their presumptions about the weaknesses of the TPE app, but also to be aware
of the unknown issues that were identified by the truckers. The team was pleasantly
surprised regarding the low amount of effort needed for feedback gathering and about
the relatively high number of feedback entries that were received in a short time-period
from nine truckers – given that their end-users were usually unavailable for user involve‐
ment activities. Please note that we did not compare the results of the pilot study with
the quantity and quality of feedback received from other feedback communication
channels as we did not define a baseline yet.

260 M. Stade and H. Indervoort

4 Discussion

4.1 Threats to Validity

Regarding the feedback data collection process, the main limitation is that we cannot
guarantee to what extent the truckers would use the AppEcho app over a longer period
and without getting paid for study participation. Furthermore, our sampling might be
biased due to self-selection of the truckers and advertising of the study not in the TPE
app (where the advertisement would ideally reach all truckers) but on the TPE website,
Facebook, and newsletter. These channels might not be used by all truckers.

Regarding data collection from the TPE team, the feedback quality ratings might be
affected by the biased selection of raters as we chose availability as the only criterium.
However, we assumed that the five raters represented the whole TPE team, including
the development team’s perspective. The understandability and the relevance ratings
were averaged for all the raters and the feedback issues, without handling outliers and
extremely divergent judgments. We assume that the presented ratings were underesti‐
mated because most of the divergences were caused by only one or two raters who gave
low ratings. Unfortunately, as we had time restrictions and as the rating was paper-pencil
based, we could not compare and discuss the values of the individual ratings in the
session.

4.2 Conclusion and Next Steps

In this pilot study, we explored a tool-supported approach to enable truckers to commu‐
nicate their problems and needs regarding a parking app. Together with TPE, we have
shown that the nine truckers, who participated in our pilot study, could use a dedicated,
mobile, and screenshot-based feedback tool to provide feedback on the TPE app (RQ1).
Barring one exception, the truckers could imagine themselves using AppEcho again to
provide feedback on the TPE app, and we received positive comments as well as
improvement ideas regarding the AppEcho app (RQ2). Most of the 40 feedback entries
that were received were rated by the TPE team as understandable and relevant for
improving the TPE app (RQ3).

In our future work with TPE, we want to solve the limitations of our pilot study.
First, we want to scale our study by involving more truckers for a longer duration.
Second, we plan to use an embedded feedback gathering tool that was developed in the
SUPERSEDE EU project [11]. In contrast to the AppEcho feedback app, this tool
supports a wide range of feedback formats, such as advanced marking functions and
customizable categories and ratings. We assume that the SUPERSEDE feedback tool
supports the investigation of how to best assist truckers to provide feedback on the TPE
app in their everyday work. Third, we will test the extent to which such a dedicated
feedback tool can increase the feedback quality and quantity compared to feedback
received from other feedback communication channels such as the app store or email.
Fourth, we will trace the influence of a single feedback in the decision-making process
of the TPE team, including, what feedback is finally considered in the TPE app evolution.

Feedback Gathering for Truck Parking Europe 261

Finally, we will investigate the contribution of end-user feedback in improving TPE’s
software evolution and maintenance processes.

Acknowledgment. The authors thank Ronnie Schaniel, Norbert Seyff, the anonymous
reviewers, the study participants, and the TPE team members. We also thank the Requirements
Engineering Research Group at the University of Zurich who made the AppEcho app available
for our study. This work was partially supported by the European Commission within the
SUPERSEDE project (Agreement No. 644018) and by the UseTree project (Bundesministerium
für Wirtschaft und Energie im Förderschwerpunkt Mittelstand Digital, Initiative Usability,
Förderkennzeichen 01MU12022A).

References

1. Ko, A.J., Lee, M.J., Ferrari, V., Ip, S., Tran, C.: A case study of post-deployment user feedback
triage. In: Proceedings of the 4th International Workshop on Cooperative and Human Aspects
of Software Engineering, pp. 1–8 (2011)

2. Maalej, W., Pagano, D.: On the socialness of software. In: Proceedings of the 9th International
Conference on Dependable, Autonomic and Secure Computing (DASC), pp. 864–871 (2011)

3. Maalej, W., Happel, H.-J., Rashid, A.: When users become collaborators: towards continuous
and context-aware user input. In: Proceedings of the 24th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pp. 981–990 (2009)

4. Yetim, F., Draxler, S., Stevens, G., Wulf, V.: Fostering continuous user participation by
embedding a communication support tool in user interfaces. AIS Trans. Hum. Comput.
Interact. 4(2), 153–168 (2012)

5. Seyff, N., Ollmann, G., Bortenschlager, M.: AppEcho: a user-driven, in situ feedback
approach for mobile platforms and applications. In: Proceedings of the 1st International
Conference on Mobile Software Engineering and Systems, pp. 99–108 (2014)

6. Stade, M., Fotrousi, F., Seyff, N., Albrecht, O.: Feedback gathering from an industrial point
of view. In: Proceedings of the 25th International Requirements Engineering Conference
(RE), pp. 63–71 (2017)

7. Almaliki, M., Ncube, C., Ali, R.: The design of adaptive acquisition of users feedback: an
empirical study. In: Proceedings of the International Conference on Research Challenges in
Information Science (RCIS), pp. 1–12 (2014)

8. Elling, S., Lentz, L., de Jong, M.: Users’ abilities to review web site pages. J. Bus. Tech.
Commun. 26(2), 171–201 (2012)

9. Schneider, K.: Focusing spontaneous feedback to support system evolution. In: Proceedings
of the 19th International Requirements Engineering Conference (RE), pp. 165–174 (2011)

10. Stade, M., Seyff, N.: Features for mobile feedback tools: applying the KANO method. In:
Proceedings of Mensch und Computer (Human and Computer), pp. 171–180 (2017)

11. Stade, M., Oriol, M., Cabrera, O., Fotrousi, F., Schaniel, R., Seyff, N., Schmidt, O.: Providing
a user forum is not enough: first experiences of a software company with CrowdRE. In:
Proceedings of the 25th International Requirements Engineering Conference (RE), pp. 164–
169 (2017)

262 M. Stade and H. Indervoort

Software Startups

Towards Understanding Startup Product Development
as Effectual Entrepreneurial Behaviors

Anh Nguven-Duc1(✉), Yngve Dahle2, Martin Steinert2, and Pekka Abrahamsson3

1 University College of Southeast Norway, Bø, Norway
anh.nguyen.duc@usn.no

2 Norwegian Univesrity of Science and Technology, Trondheim, Norway
3 University of Jyväskylä, Jyväskylä, Finland

https://www.usn.no/

Abstract. With the rapid development of technology and competitiveness of IT
sectors, the speed of learning and evolving is vital for success of software startups.
However, software startups often face with multiple technical and business chal‐
lenges, which lengthen the duration of their idea-to-launch process. Little is
known about the relation of entrepreneurial characteristics of software startups
and their product development. We conducted an empirical study on twenty soft‐
ware startups to understand their challenges that leads long idea-to-launch
processes. Six engineering-related challenges were identified and interpreted via
a lens of an entrepreneurial behavior theory. Our main finding is that the effec‐
tuation-based approach of developing a startup business is mismatched with the
iterative, evolutionary-oriented approach of developing a startup product. Soft‐
ware startups search for local optimal solutions, emphasize on short-run feedback
rather than long-run strategies, which results in vague prototype planning,
paradox of demonstration and evolving throw-away prototypes.

Keywords: Effectuation · Entrepreneurial behavior theory · Software
development · Prototyping · Empirical study

1 Introduction

The software industry has witnessed a growing trend, where software products are
developed by small teams with limited resource and little operating history. This is
especially visible in newly created companies with new kinds of business models. These
companies are developing products and services to which potential customers can be
quickly adopted. Slack, Spotify, Appsumo, Grasshopper and Github, to name a few, are
examples of successful software startups with rapid user acquisitions and rapid growths.

With the advancement of software and hardware technology, it seems that everyone
with a business idea, a website and a pitch can launch a new company. However, not so
many business ideas are realized as concrete prototypes. Furthermore, even a smaller
portion of prototypes is transformed into commercialized products. By engaging at
multiple coarse-grained mockups and prototypes, startups refine the understanding
about customers and market, while at the same time refining their business concepts. At
a certain point in time, evolutionary prototypes are created, which will eventually turn

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 265–279, 2017.
https://doi.org/10.1007/978-3-319-69926-4_19

into the final products. Difference from practitioner’s perception on quick learning [1]
or “learn fast, fail fast” [2], our observation in a Norwegian incubator gives an impres‐
sion that this launching process can be time-consuming. An entrepreneur might take a
year or more to delivery the initial intended value to mass market.

The uncertainty in both market and product gives a basic understanding about the
heterogeneity in journeys from ideas to launch. Startups travel iteratively though the
space of market knowledge and product concept development in order to achieve
product-market fit. We argue that there is a mismatch between the way startup evolving
their business and the way their products are developed. Startups are different from
established companies, from not only their dynamic and multiple-influenced environ‐
ment, but also an entrepreneurial approach in decision-making and reaction to the situa‐
tion. Prototyping and product development are not supported by entrepreneurial activ‐
ities, which leads to the delay in the idea-to-launch journey.

The research community in Software Engineering (SE) and Information Systems
(IS) has shown an increased interest in software startups from a procedural viewpoint.
Some empirical research attempt to visualize the evolution of software startups in the
form of models, processes and patterns [4–6]. Increasing number of studies attempt to
combine the business aspect of startups in the product development. Nevertheless, there
is very rare research that considers the specific entrepreneurial characteristics of startups
in the context of software product development. Looking at software startups from the
lens of entrepreneurial theory can be useful in relating the contextual factors of software
startups and their product development, hence be able to better and more practically
support software startups.

Our research objective is to understand the challenges software startups facing and
through in the phases from ideas to launch and to look for possible explanation. The
investigation of different challenges leading to the delay of startup launching was
reported in an International Conference on Agile Software Development (XP2017) [3].
In the scope of this work, we focus on describing the typical startup idea-to-launch
duration and discussing the influencing factors from entrepreneurship perspective. Our
primary research questions are as follows:

RQ1: How long does it take to transform a business idea into a launching product
in software startups?

RQ2: How can we explain for technical challenges occurred during the idea-to-
launch journey of software startups?

The paper is organized as follows; firstly we will present related work about software
startups, software development in startups and a behavior theory of entrepreneur firm
(Sect. 2). Then, we described our research methodology (Sect. 3). After that, findings
for RQs are presented (Sect. 4). Finally, we will discuss the threats to validity and
conclude the paper (Sects. 5 and 6).

266 A. Nguven-Duc et al.

2 Background and Related Work

2.1 Software Startups

The fundamental differences between a startup and an established company can be
described as in Table 1. While a startup often aim to grow fast, an established company
focuses on doing stable business for years [24]. Another difference lies on product and
market certainty. Established companies generally sell known products to known
customers in known local markets. Rather than a formal organization, a software start-
up is likely to be a task-oriented group. Entrepreneurs are central to the organization as
a whole and they carry out most of tasks. In the scope of this work, we considered startup
companies that adopt software technology as part of their core business value.

Table 1. Comparison between a startup and a SME

Elements Startups Established firms
Business goal High growth Stable business
Risk High risk Low risk
Organization
structure

Various from agile team to more
structured organization

A structured and stable group of
employees

Funding Often seek large-scale funding from
venture capitalists or angel investors,
IPO

Self-funded or financed from family,
friends or a bank loan

Product Unknown, often related to advanced
technology

Often known, various

Customer Unknown Often known

2.2 Product Development in Early Stage Software Startups

From idea to launching, startups typically go through a significant amount of early-stage
prototyping and product development. Empirical research yielding insights on early-
stage activities in software startups are limited. Paternoster et al. performed a systematic
mapping study of 43 primary studies about software development in startups [7]. The
authors summarize that startups adopt fast releases to build a prototype in an evolu‐
tionary fashion and quickly learn from the users’ feedback to address the uncertainty of
the market. Teixeira et al. describe a case where mockup prototypes were used to support
requirement engineering processes [8]. The author found that that a rapid and functional
prototyping model can improve the effectiveness of the requirement elicitation of any
software development. Fagerholm et al. investigate how a minimum viable product
(MVP) is created and how a product hypothesis is tested in the context of university-
industry collaboration [5]. Nguyen-Duc et al. conduct five case studies to explore usage
scenarios of a MVP. The authors found that benefit from MVPs were not fully achieved
in current prototyping practices [9].

A body of SE research reveal some development practices and techniques in software
startup context [10–12]. Kordon et al. introduce the brief overview of rapid prototyping,
suggested that prototyping-based development methodologies will increase in industry

Towards Understanding Startup Product Development 267

[10]. Brandt et al. describe the concept of opportunistic programming in writing code to
prototype [11]. By studying 20 web programmers, five prototyping traits are found: glue
together high-level components, add functionality via copy-and-paste from the web, iterate
rapidly, consider code impermanent, and face unique debugging challenges. Grevet et al.
describe a rapid prototyping technique called piggyback prototyping [12]. The six-stage
prototyping process is validated in a single startup case. While these studies provide knowl‐
edge on what are done in early stage software startups, they do not relate these engineering
practices with technical challenges faced by startups. Furthermore, there is no attempt to
explaining for these challenges.

2.3 Behavioral Theory of the Entrepreneurial Firm

Entrepreneurship research has long focused on understanding the formation, develop‐
ment and influencing factors to the succeed of startups. When reasoning about startups’
activities and behaviours, an important assumption one can make is to consider a startup
with causation or effectuation theory. In one hand, the causation process takes an
outcome as given and focus on selecting between means to implement the outcome [23].
Particularly, the behavior theory of firms (BTF), authored by Cyert and March [14],
propose that company decision making consists of finding a satisfactory solution (satis‐
ficing) rather than in evaluating the best possible alternative (optimization). Even though
BTF was originally applied to large companies, recent work has paid attention in using
the theory to explain for entrepreneurial learning [13]. In the other hand, effectuation
processes take a set of means as given and focus on selecting between possible outcomes
that can be realized [23]. Alternatively, entrepreneurial companies are seen as hetero‐
geneous, bounded rational entities [13]. In the face of environmental uncertainty, there‐
fore, these bounded rational firms form expectations based on available means and
information.

Dew et al. proposed a behavioral theory of the entrepreneurial firm (BTEF), based
on Cyert and March’s idea. Assuming entrepreneurs as an effectual unit, Dew et al. [13]
propose four constructs related to entrepreneurial decision-making (as shown in Fig. 1):

• Means-driven transformation: startup companies tend to be effectual, available
means drive action. Effectual action involves transforming extant means into new
possibilities, including new problems of interest. Transformation processes are actor-
centric, as who comes on board determines goals, not vice versa. The transformation
is appeared as a search activity, aiming at solving pressing problems rather than
developing long-run strategies.

• Docility: conflict and difference among stakeholders is avoided through stakeholder
docility, goals are residual of the process. Simon et al. defined docility as “the
tendency to depend on suggestions, recommendation, persuasion and information
obtained through social channels, as a major basic of choice” [20]. The decisions
made by startups, for instance, can be done by cooperating other’s ideas and not
necessary to go through conflict resolution.

• Leveraging contingency: avoiding uncertainty by short run feedbacks. But also
encouraging surprise; even ‘bad’ surprises can be leveraged to provide new means

268 A. Nguven-Duc et al.

and new opportunities. Actions emphasize commitment and contingency, not choice
and determinacy.

• Technology of foolishness: insulation from learning sought through allowing exper‐
imental actions with regard to affordable lost. The technology of foolishness allows
startups to relax the primacy of functional rationality, to temporarily suspend inten‐
tionality, and promote the openness to new actions, objectives and understandings.

Fig. 1. Behaviour theory of entrepreneurial firm

3 Research Approach

3.1 Study Design

We conducted this study by using a multiple-case study design [15]. Exploratory case
studies are suitable to explain the presumed causal links in real-life interventions [16].
The case designed was conducted by the first authors and reviewed by the fourth author.
Different early-stage software startup companies were chosen to acquire a broad view
of state-of-practices in startups. We tested the data collection instrument using two
interviews, which is not included in this study. As stated by Yin [15], a case in a multiple-
case study can be a typical case, a confirmatory case, a contrasting case, or a theoretically
diverse case. We intended to have a small set of typical cases that we can have in-depth
investigation, and remaining cases as confirmatory cases.

Contacts for startups were searched via four channels, (1) startups within professional
networks of papers’ authors, (2) startups in the same town with the authors, (3) startups
listed in Startup Norway and Crunchbase database. We also include contacts we got from

Towards Understanding Startup Product Development 269

startups events, such as Norwegian Investment Forum, Startup Weekend and Hackathons.
Case selection criteria include:

(1) a startup that has at least two full-time members, as we look at startups from an
aspect of entrepreneurial team

(2) a startup that have already launched their product(s), so their experience can be
relevant

(3) a startup that has software as a main part of business core value.

The contact list includes 219 startups from Sweden, UK, Norway, Finland, Italy,
Germany, Netherlands, Singapore, India, China, Pakistan and Vietnam. After sending
out invitation emails, we received 41 feedbacks, approximately 18.7% response rate.
The final set of valid cases is 20 startups. Many startups expressed their interest with
the result of the research, however they did not have time to participate, i.e. “The
research appears interesting and relevant to our past experience. Unfortunately, we
don’t have the resources/time to participate in such a survey…” Excluding startups that
are not interested in the research, or startups that do not pass our selection criteria, the
final set of cases includes twenty software startups.

The unit of analysis is a startup company. We intended to approach multiple data
sources in each startup, to achieve triangulation in data [16]. In seven cases (S01–S05,
S07, S08), we can have multiple interviews, and access to company documents, such as
data repository, project management and technical documents. The other thirteen cases
with single interview were used to extend and to confirm the findings from the main
cases.

3.2 Data Collection and Analysis

The data were collected in eleven months, from March 2015 to February 2016. Inter‐
views were semi-structured to understand the engineering activities from the idea stage
to the final product stage. The interviewees were asked questions about (1) realization
of business idea (2) pivot practices (3) product design and development. The interview
guideline is published online1. Methodological triangulation in data collection was done
by data extracted from technical documents and participant observations. For piloting
and refining interview guideline, we talked to software startups in coworking spaces and
incubators in Trondheim to get familiar with startup scenes and their current issues.

We conducted 25 interviews from CEO or CTO of these twenty companies. Five
companies allowed us to carry a follow up interview. Fifteen interviews (60% of total
interview) were conducted via Skype. During each interview, the first authors also did
note taking to mark important concepts coming up from the interview. Later on, all the
interviews were transcribed by using a freelancing service2. The service was recom‐
mended by a researcher in our network and pilot test of the service was conducted before
actual adoption. The total number of transcripts is 313 A4 pages.

1 www.goo.gl/r9okCu.
2 www.fiverr.com/debbierojonan.

270 A. Nguven-Duc et al.

http://www.goo.gl/r9okCu
http://www.fiverr.com/debbierojonan

We used thematic analysis to analyze the data, a common technique for identifying,
analyzing, and reporting conceptual themes found from qualitative data [17]. We started
by reading all interview transcripts and relevant documents, and coded them according
to open coding [17]. We attempted to label all meaningful text segments with appropriate
codes. To support the data analysis, we used a tool, NVivo 113, which enables classifi‐
cation and analysis of textual data and summary of extracted codes. To feed data to this
study, we filtered the codes that are related to prototyping, technical implementation,
and testing activities prior to product launching. By this bottom-up approach, statements
from interviewee about challenges with technical implementation of software startups
are revealed.

Collected code are grouped into higher-order representing different technical chal‐
lenges when going from ideas to commercialized product. After that, all of the authors
go through each challenge, one by one and attempt to use a theory to explain for the
challenges [21]. Several theoretical frameworks were considered, such as Cynefin model
[18], boundary spanning object theory [19] and theory about entrepreneurial firm
behavior [13]. Considering the rationale behind startup decisions and activities, we
found that entrepreneurial literature is the most relevant choice.

4 Results

4.1 RQ1: How Long Does It Take to Transform a Business Idea into a Launching
Product in Software Startups?

Figure 2 describes the time of idea-to-launch duration in our cases at pre-startup, startup
and scaling phases. The cases are classified based on their current stage (pre-startup,
startup or scaling stage [22]) and the time-to-launch of their startup product. The time-
to-launch is defined as the time between that the business idea appeared and was
discussed relative to the time the first product version was released to the market. There
are multiple prototypes created during the time-to-launch duration. It is noticed here that
counting the starting time of a business idea is bases on the perception of the interviewee.
The launching version, is also subjective, based on the interviewee’s definition of
“public” users. For instance, company S02 counted a product launched when it is
publicly available in Apple store. Company S09 considered a launch of their product
after they have more than 5000 users in the local region.

As described from Fig. 2, there is a diversity in terms of time-to-launch in pre-startup,
startup and scaling companies. Successful startups (who scale) might take months to
years to launch their products. One of the pre-startup teams are struggling to launch their
product. However, their startup involved hardware development and long R&D
processes.

In our startup sample, there are no startups that launch their products one month after
initializing their ideas. There is only one startup launched their product after two months
development. In this case, the CEO did spin off from a large company with the business
idea to extend their existing product. He also had a group of customers lined up before

3 www.fiverr.com/debbierojonan.

Towards Understanding Startup Product Development 271

http://www.fiverr.com/debbierojonan

the product was developed. All the necessary team competence was onboard. The major
time-to-market duration is between six months to two years. There are three companies,
which took more than two years to conceptualize, prototype and launch their products.
Interestingly, one of them surpassed startup level and became a successful company
with more than 50 developers.

4.2 RQ2: How Can We Explain for Technical Challenges Occurred During
the Idea-to-Launch Journey of Software Startups?

Figure 3 describes challenges that result in a delay or a longer-than-expected duration
of prototyping and product development. We preliminarily map the issues that are found
relating to software developer’s work, i.e. task implementation and communication.
Description of each challenge and our interpretation is given in the following sub-
sections.

Fig. 3. A preliminary map of technical challenges during startup launch

4.2.1 Challenge 1: Vague Prototype Planning
Description: In early stage, defining and planning for prototypes is often overlooked.
Designers expect a conception phase prior to a prototyping phase that provides a
roadmap for the prototypes. However, rapid prototyping that involve a great deal of
implementation are very difficult to sufficiently conceptualize in advance. When each
of the prototypes turned out to be something else than envisioned, the following proto‐
types are often chosen in an ad-hoc manner, without considering the overall plan of how

Fig. 2. Time idea-to-launch of startups

272 A. Nguven-Duc et al.

many prototypes are actually needed, what assessment criteria to use. The plan for acting
against uncertainty drives the prototype costs and the timeline.

Illustration: Startup S05 develops a peer-to-peer platform for news publication. Their
business roadmap aims at having a community of citizen reporters after five years. The
ultimate goal is implemented via some milestones for both product development and
community development. However, when realizing the general business ideas, many
different alternative business cases appear, i.e. building an event sharing platform,
building a hyper-local news sharing space, etc. The product roadmap is diverged from
the initial business roadmap. Prototypes were created one after the other, little was reused
and the prototypes was not designed in a detailed way before starting building them.
This lead to a long (three to six months per prototype) and costly prototyping process.

Interpretation: According to BTEF theory, startups avoid uncertainty by emphasizing
short-run reaction to short-run feedback rather than anticipation of long-run uncertain
events [13]. Causal rationality with a pre-determined goal and existing resource, and
seeks to identify the optimal product roadmap, is not the case of our startups [23].
Prototyping is encouraged to find suboptimal set of features or functionalities. Proto‐
typing roadmap, which is to find the optimal product development plan, is not encour‐
aged.

4.2.2 Challenge 2: Feature Creeps
Description: Startups operate under multiple influences, which introduces different,
sometimes conflicting feature requests for a startup product. Feature prioritization is
often performed during sprint planning. At a certain point in time, features from impor‐
tant customers or investors is prioritized over features from smaller customers or experi‐
mented features. Chasing customer requirements without a proper synchronization with
the product development roadmap can lead to increased development costs and unnec‐
essary business divergence.

Illustration: Startup S03 developed a mobile solution for managing the construction
and maintenance of buildings. The startup was firstly funded by a large construction
cooperation to develop a solution for some of their on-going construction projects. After
that, the startup had few more customers, which require slightly different set of features,
i.e. reporting, connecting to their existing databases, etc. The startup failed to balance
the customer requests and consolidate a launching version to a mass market: “We are
adding features all the time. This is not a product that will ever stop evolving. We will
always have a strong engineering team to develop the product forward. We are not
talking about maintenance here. We are talking about this being the core of the compa‐
ny’s competence” (CEO of S03).

Interpretation: According to BTEF theory [13], startups tend to perform different
experiments with technology, i.e. features, user experience etc. Many startup features
are a good representation of technology of foolishness. A new feature might reasonably
come from essential needs of customer, but also come from trying out variation of

Towards Understanding Startup Product Development 273

details, which are not certainly served for any pre-determined purpose. The technology
of foolishness allows startups to relax the primacy of functional rationality, to tempo‐
rarily suspend intentionality, and promote the openness to new actions, objectives and
understandings.

4.2.3 Challenge 3: Paradox of Demonstration
Description: Highly influenced by funding sources and large customers, many startups
have a discrete product development, synchronized with their funding stream. A soft‐
ware startup might pause technical activities at different phases of the project, waiting
for adequate funding. In order to complete business development, prototypes need to be
well-prepared and convincing in term of business concept and technical implementation.
For such prototypes, it often require a reasonable amount of product development effort.
However, an early stage prototype is rapidly developed to serve the learning propose
tightly tied to a specific timing and budgeting constraints. Financial and time constraints
are often a main barrier for carrying out the proper product development. The well-
preparedness and rapidness of prototyping is therefore a paradox in early-stage software
startups.

Illustration: Company S08 develops a platform promoting and selling event tickets.
An angel investor wanted to see how the platform worked in practice and also how easy
it was to use. The demonstration, planned to happen one week after the initial investor
meeting, was critical for having the investor onboard. During this week, all development
effort was focused on developing demonstrable features, work-around solutions for
some components and fixing of some use case scenarios. After securing funding, the
product was developed from scratch again. The series of high fidelity prototypes with
little reuse lasted for more than 18 months before the actual product got launched.

Explanation: Startups operate based on mean-driven transformation [13]. Demon‐
strated prototypes were limited by the current means startups possess, including financial
and human resources. Effort to reducing the gap between the reality of prototypes and
the expectations of startup stakeholders, i.e. entrepreneurs, investors, and customers,
leads to the paradox of demonstration.

4.2.4 Challenge 4: Sharing Visions Between Business and Technology
Description: Entrepreneurial teams typically consist of people with diverse skillsets
and mindsets. Conceptualizing a business idea includes discussion and development of
ideas. While prototypes are iteratively refined, derivations among team members, espe‐
cially between the non-technical persons and software developers can lengthen the idea
conceptualization. In one hand, communicating the product ideas and convincing the
technical people about the product value can be time-consuming. In the other hand, the
communication of technical difficulties is sometimes difficult.

Illustration: Startup S03 outsourced the development part to a software provider.
Frequent meetings, sprint reviews and site visit were done to overcome the geographical
distribution. However, there was still the gap on perceiving business value of the

274 A. Nguven-Duc et al.

features. The communication between the development team and the CEO was time
consuming, and sometimes lead to rework due to misunderstanding: “She [the CEO] is
very sharp about business and finance stuff, but it takes a long discussion to explain her
about the importance of having flexible product design…” (S03 team leader).

Interpretation: According to March’s theory of firm, there can be internal inconsensus
about firm’s strategy and decision-making [14]. Not only different visions but also
different ways to achieve the same vision creates the diverged opinions among startup
team members. However, conflicts do not necessarily happen in startup context, as
startup team members are both persuadable and persuasive to different degrees about
different matters [13]. The duration of prototyping needs to account for amount of time
to pursue different startup team members.

4.2.5 Challenge 5: Insufficient Involvement of Lead Users
Description: Not all users’ input is equally valuable to product development. Finding
a group of users that represents the market needs is essential for market-driven software
products. These users are often referred as lead users [25]. In some cases, lead users can
act as a market creator by their ability to adopt the proposed technology in the early
phases. Getting access to lead users early in the prototyping process is not always a
straight forward task for the entrepreneurs. In some startups, it may become a bottleneck
in the prototype validation phases to find appropriate early lead users. Balancing the
speed of learning (learning fast) and the relevancy (learning the right things) of learning
is a challenging task for the founding team in a startup.

Illustration: Startup S12 develops an Internet of Thing (IoT) operating system (OS)
with a target market of IoT application developers. Most of the features were invented
by the CEO. The startup had problems when validating the ides with actual users, who
should have a clear expectation from the OS. “Most of them don’t understand the idea
… It came 10 years before the app developers can recognize its benefit … I have to
change the idea into a more applicable product to get funding application approved by
Innovation Norge …” (CEO of S12).

Interpretation: Challenges of early user involvement can be tracked to two problems,
(1) to find appropriate early innovators and (2) whether there actually is a market for the
product. On one hand, finding early lead users might be limited by the capacity of the
startups, i.e. existing personal and professional networks, available human and financial
resources. Hence, a lead user is often found as a suboptimal candidate for early stages.
Many times, the first users are also startup team members. On the other hand, the startup
products might have so small market that it is difficult to find relevant users.

4.2.6 Challenge 6: Evolving Throw-Away Prototypes
Description: Many prototypes are designed to eventually turn into a final software
product. However, there are also many prototypes that accidentally become evolutionary
ones. The modules that were not designed for a long-term usage was quickly fixed by
some glue code and an ad-hoc reuse in the next prototype version. Along with learning

Towards Understanding Startup Product Development 275

and experimenting new technology, developers would emphasize the speed and ease of
development over code robustness and maintainability. The increasing Technical debt
caused by the lack of proper refactoring threatens the quality of product in later phases
of software startups

Illustration: Startup S15 develops an in-class online quiz to check student under‐
standing about lectures. Multiple prototypes developed by the CEO or as a student
project, were experimented with different classes. The final prototype, which capture
refined design and business ideas, were decided to become a launching version.
However, the launch was delayed due to the low quality of the version. The reason was
that the backend was not properly architected for scaling to a large number of users.

Interpretation: According to Dew et al. [13], startups, instead of avoiding the uncer‐
tainty as established organizations do, seek to leverage contingencies. Tolerating
surprises during a series of prototypes might lead to utilize the business-fit prototype for
long-term development. However, the prototype is not technical-fit for a long-term
purpose, leading to the observed technical debts.

5 Discussion

5.1 Understanding Entrepreneurial Behavior of Startups

Entrepreneurship literature discusses the difference between causation and effectuation
startups [13, 14, 23]. Startups adopting causation has a given goal and searches for means
to reach his goal, while startups using effectuation will start with the means he has and
from this point he looks at possible goals. By using an effectuation theory [13], we can
explain different technical challenge startups facing with during their evolution journey.
Effectuation-based entrepreneurial processes at the business level seem to mismatch
with the agile, product-oriented approach at the technical level.

Collaboration, including efficient communication of visions and tasks among startup
teams and interaction with external stakeholders, is important for shortening the idea-
to-launch process. Besides, how customers are involved in the prototyping loops has an
impact on the duration of the prototyping. From the product perspective, inappropriate
customer feedback delays the learning and creates more prototyping loops, too many
requests from customers delay the time-to-release and introduce complexity to product
management. From the market perspective, startups might actually end up with so small
market segment that is difficult to find early customers.

Paternoster et al. present that startups adopt fast releases to build a prototype in an
evolutionary fashion and quickly learn from the users’ feedback to address the uncer‐
tainty of the market [7]. In this study, we highlighted a new type of prototype, which is
evolving throwaway prototypes. Intentionally or not, software startups do not throw
away quick-and-dirty prototypes and evolve them (or part of them) into the final prod‐
ucts. Giardino et al. point out two characteristics of the early stage development, which
are neglect of software quality and evolutionary approach [6]. Our study complements
to this work by add in an intention factor to explain for the evolving throw-away

276 A. Nguven-Duc et al.

prototypes. While the evolving throw-away prototypes contain a lot of technical debts,
the quality problem they face with sometimes so critical to be resolved by code refac‐
toring.

5.2 Threats to Validity

One possible classification of validity concerns includes internal, external, construct and
conclusion validity [16]. In our study, an internal threat to validity is the bias in the data
collection, as the data might not represent the comprehensive case. In order to mitigate
this threat, we selected CTO and CEO as interviewees, who have the best understanding
about their startups. We also adopted different information source, i.e. observation,
social media and press release to increase our understanding about the cases.

A construct validity threat is the possible inadequate descriptions of constructs.
When analyzing data, the coding process of interview transcripts was assisted by the
authors’ prior knowledge about prototyping and validated learning. While codes and
themes were mainly performed by the first author, the interpretation of the results was
collectively discussed and refined with other co-authors. The viewpoint triangulation,
especially with one of the co-authors as an entrepreneur makes us confident with the
interpretation.

An external validity, which concerns about how can we generalize the results into a
startup population, is more interesting to discuss. Our cases offer a good variety with
regards to company size, application domain, financial model, and growth stage and
organization structure. Startup cases are from Finland, Norway, Italy, UK, Netherland
and Vietnam, however, the sample is dominant by Norwegian companies (70% total
cases). The observed startups are mainly small size (three to seven people) and operate
bootstrapping financial model. We do not consider other types of startups, for example,
internal cooperate startups, venture capital invested startups, and American startups. The
findings can be observable in other companies in countries in North Europe, because
the contextual settings would be similar (e.g. culture, government regulations, innova‐
tive thinking and incentives surrounding start-up activities).

6 Conclusions

This paper portrayed a state-of-practice product development in twenty software
startups. We systematically collected evidence about how long does it take a software
startup to launch and what technical challenges do they face during the launch phase.
Six engineering related challenges were identified and discussed from the viewpoint of
behavior theory of entrepreneur firm. Our main finding provide evidence that there is a
mismatch between the effectuation-based approach of business development and the
iterative, evolutionary-oriented approach of product development in many early stage
European software startups. Driven by the existing means and resource, startups search
for local optimal solutions, emphasize on short-run feedback rather than long-run strat‐
egies. This results in technical challenges, such as vague prototype planning, paradox
of demonstration and evolving throw-away prototypes.

Towards Understanding Startup Product Development 277

There are several possibilities for future work on software startups. Our next step is
to extend the map of startups challenge to include non-technical challenges that we
identify from the cases, such as lock-in to external resources, changing team composition
and market uncertainty. Furthermore, we found that entrepreneurial theories are helpful
in understanding and explaining the context of technical challenges and decision-
making. Future work would investigate more on how other theories can be adopted in
software startup research.

References

1. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses, p. 103. Crown Publishing, New York (2013)

2. Maurya, A.: Running Lean. O’Reilly, Sebastopol (2012)
3. Nguyen-Duc, A., Wang, X., Abrahamsson, P.: What influences the speed of prototyping? an

empirical investigation of twenty software startups. In: XP2017, Essen, Germany (2017)
4. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the stairway to heaven - a multiple-case study

exploring barriers in the transition from agile development towards continuous deployment
of software. In: 38th EuroMicro SEA, Izmir, Turkey (2012)

5. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: 1st International Workshop on Rapid Continuous Software Engineering
(RCoSE 2014), Hyderabad, India (2014)

6. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: the greenfield startup model. IEEE Trans. Softw. Eng.
42(6), 585–604 (2016)

7. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: a systematic mapping study. Inf. Softw. Technol. 56(10),
1200–1218 (2014)

8. Teixeira, L., Saavedra, V., Ferreira, C., Simões, J., Sousa Santos, B.: Requirements
engineering using mockups and prototyping tools: developing a healthcare web-application.
In: Yamamoto, S. (ed.) HCI 2014. LNCS, vol. 8521, pp. 652–663. Springer, Cham (2014).
doi:10.1007/978-3-319-07731-4_64

9. Nguyen-Duc, A., Ambrahamsson, P.: Minimum viable product or multiple facet product? the
role of prototyping in early stage software startups. In: XP2016, Edinburg, Scotland (2016)

10. Kordon, F., Luqi.: An introduction to rapid system prototyping. IEEE Trans. Software Eng.
28(9), 817–821 (2002)

11. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Opportunistic
programming: writing code to prototype, ideate, and discover. IEEE Softw. 26(5), 18–24
(2009)

12. Grevet, C., Gilbert, E.: Piggyback prototyping: using existing, large-scale social computing
systems to prototype new ones. In: CHI 2015, Seoul, Korea, pp. 4047–4056 (2015)

13. Dew, N., Read, S., Sarasvathy, S.D., Wiltbank, R.: Outlines of a behavioral theory of the
entrepreneurial firm. J. Econ. Behav. Organ. 66, 37–59 (2008)

14. Cyert, R.M., March, J.G.: A Behavioral Theory of the Firm. Prentice-Hall, Englewood Cliffs
(1963)

15. Yin, R.K.: Case Study Research: Design and Methods (Applied Social Research Methods),
5th edn. SAGE Publications Inc, Thousand Oaks (2014)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

278 A. Nguven-Duc et al.

http://dx.doi.org/10.1007/978-3-319-07731-4_64

17. Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and Code
Development. Sage Publications, Thousand Oaks (1998)

18. Snowden, D.J., Boone, M.E.: A leader’s framework for decision making. Harv. Bus. Rev.
85(11), 69–76 (2007)

19. Tushman, M.L., Scanlan, T.J.: Boundary spanning individuals: their role in information
transfer and their antecedents. Acad. Manag. J. 24(2), 289–305 (1981)

20. Simon, H.A.: Strategy and organizational evolution. Strateg. Manag. J. 14, 131–142 (1993)
21. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev. 14(4), 532–

550 (1989)
22. Nguyen-Duc, A., Seppnen, P., Abrahamsson, P., Hunter-gatherer cycle: a conceptual model

of the evolution of startup innovation and engineering. In: 1st Workshop on Open Innovation
on Software Engineering, ICSSP (2015)

23. Sarasvathy, S.D.: Causation and effectuation: toward a theoretical shift from economic
inevitability o entrepreneurial contingency. Acad. Manag. Rev. 26(2), 243–263 (2001)

24. Startups & High-Growth Businesses: The U.S. Small Business Administration. SBA.gov
25. von Hippel, E.: Lead users: a source of novel product concepts. Manag. Sci. 32(7), 791–805

(1986)

Towards Understanding Startup Product Development 279

http://SBA.gov

Little Big Team: Acquiring Human Capital
in Software Startups

Pertti Seppänen(&), Kari Liukkunen, and Markku Oivo

M3S/M Group, University of Oulu, FI 90015 Oulu, Finland
{pertti.seppanen,kari.liukkunen,markku.oivo}@oulu.fi

Abstract. Background – Resource-based-view and human capital theories have
been used for decades when studying firms, their strategies, organizations,
businesses, and successes. The value of the theories as general frameworks has
commonly been recognized, especially because of their flexibility in adopting
new perspectives, such as the dynamic character of the resources and human
capital. Startup companies represent an interesting area on a map of firms
because of their specific characteristics and tendency not to strictly follow the
processes common in more established companies. Despite the differences, it is
reasonable to assume that startups face similar phenomena as established
companies do when building up their firms and operations. Aim – In this
research, we studied software startups from the perspective of resource-based-
view and human capital theories. We examined what human capital resources,
capabilities, knowledge, and skills, were needed in the early stages of software
startups and how the startups acquired such human capital. Method – We
conducted a multiple-case study on a group of software startups in Norway and
Finland. Results – We identified six high-level capability areas, nine means to
acquire those capabilities, and nine drivers affecting the utilization of different
means. We concluded that the capabilities in software startups are dynamic,
evolving by growth and learning from the basis of the founders’ prior capa-
bilities, and the utilization of different acquiring means is a case-dependent thing
with a varying set of drivers. We also found the uniqueness of the resources, as
proposed by the resource-based-view theory, was not reached in our case star-
tups, but replaced with a combination of commonly-available resources, inno-
vation, and application-specific capabilities.

Keywords: Software startup � Initial team � Product development � Product
development process � Capability needs � Resource-based-view theory � Human
capital theory

1 Introduction

A software startup’s ability to transform an innovation to a product and a business case
is largely affected by the challenges it faces during its early stages, such as time
pressure, a small and inexperienced team, dependency on a single product, and general
lack of resources [1]. It is crucial that a startup should be able to gather the knowledge,
skills, and capabilities needed to create a product based on the innovation.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 280–296, 2017.
https://doi.org/10.1007/978-3-319-69926-4_20

Recent studies [1–3] revealed the software startups’ characteristics that partly
contradicted one another and these startups’ contributions to the latest technical and
economic developments. On one hand, typical software startups are immature [2, 3],
characterized by small and inexperienced teams, limited resources, and third-party
dependency [1]. On the other hand, they are innovative, rapidly evolving [1], and have
created some of the most successful products of the past years.

We explored the software startups from the perspective of two interrelated business
and economic theories defining the competitive potentials offirms—the resource-based-
view (RBV) theory [4, 5] and the human capital (HC) theory [6, 7]. Research based on the
RBV theory studies a firm’s sustainable competitive advantage as a function of its
resources, covering different categories. The HC theory focuses on knowledge-oriented
human attributes as a basis of creating economic value. The focus of HC research varies
from individuals to firms and further to nations, addressing a broad palette of human
capabilities, knowledge, and skills, as well as ways to obtain them. The linkage of both
theories by defining HC as one resource category of the RBV theory was already pro-
posed by Barney [4], and a broader study on their convergence had been conducted [8].

In this research, we studied software startups’ HC resources—capabilities, skills,
and knowledge. We have chosen this research focus because several characteristics of
software startups are tied to the availability of resources [1].

For our study, we asked the following research questions:

RQ1: What are the engineering-related capabilities in a software startup?
RQ2: What are the means to acquire those capabilities?
RQ3: What are the reasons for deploying different capability-acquiring means?

The research was conducted on two Norwegian and nine Finnish software com-
panies. Nine companies were developing products of their own, while two were
offering experienced resources to software startups on a subcontracting basis.

Comparing our empirical findings with the results of prior research on the theories,
we identified both commonalities and differences. The importance of the availability of
HC was recognized. Acquiring HC through experience and learning was also in line
with the findings of prior literature. The uniqueness of the resources, as proposed by the
RBV, was not identified in our study. Based on our results, we suggest that the software
startups’ business advantage does not depend on the uniqueness of their resources in
general but on their ability to make a small team large by combining commonly
available resources with unique innovation and application domain knowledge.

The rest of this paper is structured as follows. Section 2 focuses on the background
of and the motivation for the study, reviewing prior research on software startups and
the RBV and the HC theories. Section 3 presents the research design, including the
case selection and research data analysis. Section 4 deals with the results, and Sect. 5
discusses the study’s findings and relevance. Section 6 concludes the paper and offers
suggestions for future research.

Little Big Team: Acquiring Human Capital in Software Startups 281

2 Prior Research

In this section, we review prior research on RBV and HC theories in the context of
startups and entrepreneurship. We summarize the software startups’ characteristics that
were identified in previous studies.

2.1 Prior Research on Resource-Based View

The RBV is a business theory claiming that sustainable competitive advantage is
gained when a company has access to valuable resources that the competitors lack and
are rare, difficult to imitate, or difficult to substitute. The theory’s development has led
to various definitions and classifications of a company’s resources.

Barney [4] divided the resources into three categories—physical capital, HC, and
organizational capital. He further classified HC into such areas as training, experience,
and personal characteristics of an individual. Several authors further developed the
RBV by refining details and proposing various additional resources, such as strategic
resources [9], managerial resources [10], or a division of resources into tangible and
intangible ones [11].

In further developments of the RBV, a capability approach was defined, separating
the so-called capabilities from the generic definition of resources. Research on the
capability approach addressed companies very broadly, covering a multitude of defi-
nitions of capabilities [12–14]. Amit and Shoemaker [12] defined capabilities as firm
specific and unavailable outside the company. A similar definition was presented by
Makadok [15], claiming that the key characteristic of capabilities was that they must be
built within the company and could not be bought.

To address the challenges caused by continuous changes in business and tech-
nology, the capability approach was further developed to address so-called dynamic
capabilities [16–18]. Teece et al. defined in [16] the dynamic capabilities as “the firm’s
ability to integrate, build, and reconfigure internal and external competences to address
rapidly changing environments”. Dynamic capabilities had further been defined by
different authors in the contexts of processes and routines [17, 18] and of product
development-related competencies [19].

From our study’s perspective, some definitions are of special interest, including
capabilities as self-created [15], as company-internal processes and routines improving
the usage of resources [14, 20, 21], as core competencies deployed in product devel-
opment and gained through learning [11], and as dynamic phenomena [16–18, 21].

2.2 Prior Research on Human Capital Theory

The HC theory [6] is old and established in economics, focusing on human capacity,
such as knowledge, intelligence, and talents, as a source of economic value creation. In
the context of businesses and companies, the HC theory states that such human attri-
butes as the personnel’s education, experiences, and skills affect a firm’s business
performance [22].

In a broad study on Dutch startups, Bosma et al. reported that the founders’
investments in human and social capital significantly affected the startups’ performance,

282 P. Seppänen et al.

measured in three dimensions – survival, profits, and generated employment [23]. Thus,
it is reasonable to assume that HC is a valuable resource for a startup, and investments in
it further increase its value.

Based on the findings of an empirical study, Lazear [24] concluded that entre-
preneurs were generalists with a broad variety of skills without necessarily being
experts in any. Martin et al. in [25] found evidence that entrepreneurship-specific
education positively contributed to entrepreneurship-specific HC, meaning that edu-
cation was a valid source of such HC.

The effects of the technology entrepreneur’s HC on innovation radicalness were
studied by Marvel and Lumpkin [26], based on the understanding that breakthrough
innovations were among the key competitive factors of a new enterprise. As general
HC was proposed to build on the two main concepts of experience and education [6],
Marvel and Lumpkin further divided experience into two different views on its depth
and breadth. The study’s results indicated that experience depth and education posi-
tively correlated to innovation radicalness, while experience breadth did not, differing
from the results of Lazear [24].

Unger et al. [27] presented the results of a broad meta-analysis on HC research in
entrepreneurship over the last three decades. The authors identified a significant rela-
tionship between HC and success. Interestingly, a priori-gained HC (existing capa-
bilities, knowledge, and skills) showed a larger contribution to success than
investments in HC in the form of education or learning. The HC that was specific for an
actual task made the greatest positive contribution, and the positive contribution was
stronger in the case of new businesses than in old established ones.

Shrader and Siegel in [28] found that a key determinant of the enterprises’
long-term performance was the fit between the strategy and the team experience, and
the most important determinant of a differentiation strategy’s success was the team’s
technical experience. However, prior studies on software startups concluded that the
initial team was often inexperienced [1, 29]. On the other hand, Hatch et al. [30]
identified that utilizing external HC with prior industrial experience significantly
reduced learning, while indicating that such compensation would not necessarily
provide a startup with sustainable solutions to issues related to its team’s missing
experience.

2.3 Prior Research on Characteristics of Software Startups

Table 1 lists the characteristics of software startups that were identified in a broad
literature review [1].

When reviewing the above-mentioned results from the HC and the RBV theories’
perspectives, potential conflicts can be observed. The RBV theory points out valuable,
rare, and inimitable resources as key determinants of sustainable business advantage
[4]. Later studies proposed that a category of such inimitable resources was based on
unique company developments, routines, and processes that tied together the capa-
bilities of individuals [14, 20, 21]. Compared with the findings of other studies [1, 29],
it may be concluded that software startups are missing several resource categories
identified as building blocks of sustainable business advantage [4, 11, 17, 18].

Little Big Team: Acquiring Human Capital in Software Startups 283

Similarly, some characteristics identified in a study [1], such as a small and
low-experienced team, third-party dependency, and little work history, seem to be in
conflict with the established HC theory.

3 Research Design

To answer the research questions, we carried out a multiple-case study on a group of
software startups, following the guidelines set out in an article [31].

3.1 Case and Subject Selection

Our research data was collected in three European locations, including two companies
in Trondheim, Norway; two in Helsinki, Finland; and seven in Oulu, Finland. Nine
companies were startups with their own products, while two were service providers
offering highly experienced human resources. The startups were chosen to represent
different products, business cases, evolution phases, and business statuses, using local
startup incubators as the starting point of the selection. The service providers brought

Table 1. Identified characteristics of software startups [1].

ID Characteristic Explanation

C1 Lack of resources Limited economic, physical, and human resources
C2 Highly reactive Ability to quickly react to changes in market, technology, and

products
C3 Innovation Given a competitive ecosystem, startups need to focus on highly

innovative segments of the market
C4 Uncertainty Dealing with highly uncertain ecosystem from many

perspectives: market, product, competition, people, and finance
C5 Rapidly evolving Successful startups aim to grow and scale rapidly
C6 Time pressure External pressure to release fast and to work under constant

pressure
C7 Third-party

dependency
Due to lack of resources, startups heavily rely on external
solutions, such as open-source software and outsourcing

C8 Small team Small number of members of the initial team
C9 One product Activities gravitate toward one product or service only
C10 Low-experienced

team
Many of the team members have less than 5 years of experience
and are often recent graduates

C11 New company The company has been recently created
C12 Flat organization The company is usually founder centric, and all team members

have major responsibilities with no need for high management
C13 Highly risky The failure rate of startups is extremely high
C14 Not

self-sustaining
Especially in the early stage, startups need external funding

C15 Little work
history

The basis of an organizational culture is not present initially

284 P. Seppänen et al.

another viewpoint on the capability development in software startups, deepening our
study. Out of the startup group, four case companies had embedded products, while
five were developing pure software products. Table 2 summarizes the case companies
and their application areas, customer cases, and current statuses.

The sizes of the startups in terms of the staff ranged from four to twelve employees.
The operational age was between one and five years. One service provider was an
established company with over ten years of operational history, while the other was a
startup.

3.2 Data Collection

We collected the research data by conducting interviews and applying the key infor-
mant technique as defined by Marshall [32]. Most of the interviewees were founders or
co-founders. One was a hired chief executive officer (CEO), who had a founder-level
understanding of his company. We conducted semi-structured face-to-face interviews,
using thematic interview guides [33]. All interviews were held in English, recorded,
and transcribed.

3.3 Data Analysis

We analyzed the interview data by combining thematic synthesis and narrative syn-
thesis [34]. Starting with thematic synthesis, the transcribed interview data were ana-
lyzed with the NVivo11 tool. The data that were related to the research questions were
identified and coded. We continued the synthesis by combining the identified codes
under themes in a hierarchical manner as described by Cruzes and Dybå [35]. The
interview data and the qualitative codes are available as open data in [36].

Table 2. Descriptions of the case startups.

Case Location Product Customers Interviewee(s) Status

A Norway Pure software B2C, B2B Founder, expert Product on market
B Norway Pure software B2C, B2B Founder, expert Product on market
C Finland Embedded B2C Founder Dissolved
D Finland Embedded B2C Co-founder Prototype series
E Finland Pure software B2B Founder Established business
F Finland Pure software B2B Founder Prototype series
G Finland Embedded B2B Co-founder Established business
H Finland Pure software B2C, B2B Founder Established business
I Finland Embedded B2C CEO Prototype series
J Finland Service B2B Founder Selling services
K Finland Service B2B Founder Selling services
Legend: B2C business to customer, B2B business to business, CEO chief executive
officer

Little Big Team: Acquiring Human Capital in Software Startups 285

To study the case companies’ characteristics, we opted to use the narrative syn-
thesis method [34]. A previous broad study [1] had identified fifteen characteristics
typical of software startups (Table 1). In the narrative analysis, we figured out how
those characteristics fitted each of our case startups. The results are presented in the
next section.

4 Results

In this section, we discuss the findings identified from the research data in the context
of the case companies.

4.1 Thematic Synthesis Results

In the thematic synthesis we found twenty four themes that we categorized into three
categories according to the research questions: identified capabilities, capability-
acquiring means, and acquiring drivers (Tables 3a, 3b, and 3c, respectively).

Table 3a. Found codes of top-level theme identified capabilities.

Capability Knowledge about …

Application domain The product’s desired functionality and its value to the
customers

Software development How to conduct software development fitting the product
Hardware development How to conduct hardware development fitting the product
Mechanics development How to conduct mechanics development fitting the product
Systematic development
work

How to conduct development according to systematic practices

Difficult technology domain Especially difficult or rare technology needed in the product

Table 3b. Found codes of top-level theme capability-acquiring means.

Theme Description

Founders’ experience Prior experience and knowledge of the founding team members
Other products Learning from existing similar products
Prototyping and
testing

Learning from developing prototypes and testing them

Customer cooperation Learning from cooperating with the customer
Research Learning from conducting empirical or literature research
Team growth:
inexperienced

Acquiring new human capital by hiring inexperienced persons

Team growth:
experienced

Acquiring new human capital by hiring experienced persons

Team growth:
unconventional

Acquiring new human capital by offering unconventional
remuneration or benefits instead of a conventional salary

Team growth:
subcontracted

Acquiring new human capital by subcontracting

286 P. Seppänen et al.

In the research data, we identified two capability domains where special knowledge
was required – capabilities needed to solve difficult technical issues and capabilities
needed to implement systematic routines and processes.

For the discussion section, we group the capability-acquiring means into three
categories, as follows: (a) the original HC (founders’ experience), (b) increasing the HC
by growth (in-house hiring and subcontracting), and (c) increasing the HC by learning.

We identified nine drivers for utilizing different means of acquiring the needed
capabilities. As shown in Table 3c, the drivers varied from the level of the individual
up to the level of the whole company. At the individual level, personal attributes were
dominating, while at the company level, the economic situation was a key factor.

4.2 Company Characteristics

The case companies A to I were software-intensive startups, each with a single product
that had either just entered the markets or was in the prototype phase. Other charac-
teristics listed in Table 1 were also common, such as highly reactive, rapidly evolving,
time pressure, small team, new company, flat organization, and little work history. The
resource situations varied, but only one case company, E, had a good situation in
economic, physical, and human resources. All the other cases lacked resources in some
areas. Uncertainty was another common characteristic. Companies E and G, having
established businesses, were the only ones not facing greater uncertainty in the market,
product, competition, people, or finance areas.

The team experience varied a lot among the companies and individual team
members. Some of the founders were experienced professionals, while others were
recent graduates with no prior industrial experience. A mixed team with both experi-
enced and inexperienced members was a common setup. All case companies were
somehow dependent on third parties. Most of the companies were subcontracting, and
case company G utilized lots of open-source software.

Table 3c. Found codes of top-level theme acquiring drivers.

Theme Description

Founders’ experience The knowledge that founders bring to the startup
Customer cooperation Customer cooperation possible
Skills Knowledge and skills needed in the startup
Known persons Seeking already known persons
Special interests Seeking persons with special interests
Stable economy Company has necessary economic resources
Challenging economy Company has challenges in economic resources
Avoiding economic
risks

Company wants to avoid additional economic risks

Ensuring
innovativeness

Allocation of the key persons’ work on innovation instead of
routines

Little Big Team: Acquiring Human Capital in Software Startups 287

Table 4. Themes’ distribution among the case companies.

Case Capability domains Founders’
experience

Acquiring means Drivers

A Application,
software, systematic
development

Just graduated Other products, team
growth – experienced
and inexperienced

Stable economy

B Application,
software, systematic
development

Just graduated Other products,
customer
cooperation, team
growth –

experienced,
inexperienced,
unconventional and
subcontracting

Customer
cooperation,
challenging economy

C Application,
software, hardware,
mechanics,
systematic
development,
difficult technology

Software,
hardware,
mechanics,
systematic
development

Founders’
experience, team
growth – experienced
and subcontracting,
research

Founders’
experience, avoiding
economic risks

D Application,
software, hardware,
mechanics, difficult
technology,
systematic
development

Application Founders’
experience, customer
cooperation, team
growth – experienced
and subcontracting

Founders’
experience, customer
cooperation, avoiding
economic risks

E Application,
software, systematic
development, difficult
technology

Application,
software,
systematic
development,
difficult
technology

Founders’
experience, team
growth – experienced
and inexperienced

Founders’
experience, stable
economy, special
interest, ensuring
innovativeness

F Application,
software, systematic
development

Application,
software,
systematic
development

Founders’
experience, team
growth – experienced
and inexperienced

Founders’
experience, known
persons, avoiding
economic risks

G Application,
software, hardware,
mechanics,
systematic
development, difficult
technology

Application,
software,
hardware,
systematic
development,
difficult
technology

Founders’
experience, other
products, team
growth –

experienced,
inexperienced,
unconventional and
subcontracting,
prototyping and
testing, customer
cooperation, research

Founders’
experience, customer
relationship, avoiding
economic risks,
ensuring
innovativeness

(continued)

288 P. Seppänen et al.

Three companies, E, G, and H, having established businesses, were self-sustaining.
Other companies depended on external funding. However, the actual financial situation
varied in all companies and affected their setup and operations.

The companies’ innovativeness also varied. Most case companies were modifying
existing product innovations to fit a new market, another price segment, or a new
application domain. Three companies, C, E, and I, developed more innovative, totally
new products. All companies utilized the latest technology, and companies C and G
created new, technically challenging, multidisciplinary solutions.

Case companies J and K differed from the others; their business was to offer human
resources to customer companies. Case company J was a software house that provided
excellent software development knowledge, with over ten years of accumulated
experience in different application domains. Case company K offered services to build
up company structures and systematic work approaches. The company employed few
but very experienced personnel. Company K had created the position of hired chief
information officer (CIO) to support the customers in building up solid administration
structures.

4.3 Prevalence of Capability-Related Themes

We combined the results of the thematic synthesis with the company narratives to find
out the distribution of the themes among the case companies and to highlight the
potential dependencies between the themes and the company characteristics. Table 4
shows the results. Note that the acquiring driver ‘skills’ is not listed in the table because
it was common for all case companies and self-evident in any selection of a new hire or
a subcontractor. All case companies performed prototyping and testing though this
theme is mentioned only in company G, where it played an especially significant role in
learning.

Table 4. (continued)

Case Capability domains Founders’
experience

Acquiring means Drivers

H Application,
software, systematic
development

Only managerial
experience in
software
development

Customer
cooperation, team
growth –

experienced,
unconventional

Customer
relationship, avoiding
economic risks

I Application,
software, hardware,
mechanics,
systematic
development,
difficult technology

Application,
difficult
technology

Founders’
experience, growth –

experienced,
subcontracting

Founders’
experience, stable
economy, known
persons, ensuring
innovativeness

Little Big Team: Acquiring Human Capital in Software Startups 289

5 Discussion

In this section, the answers to the research questions are discussed. The findings are
then explained in the context of the HC and the RBV theories. The discussion on the
validity of the results and their relevance to the academia and to practitioners completes
the section.

5.1 Answering the Research Questions

RQ1: What are the engineering-related capabilities in a software startup?
We identified six high-level capability domains (Table 3a). Application knowledge and
software development domains were common in almost all the case companies; the
service provider K focused on the systematic work domain. The research data further
revealed that the application domain and software development capabilities must be
available from the very beginning. Companies A and B failed in building their first
software development teams, causing difficulties with the first versions of their
respective products.

Hardware and mechanics development were present in all cases with embedded
products. The companies differed the most in two capability areas—systematic
development and difficult technology domains.

RQ2: What are the means to acquire those capabilities?
We identified nine means used in startups to acquire the capabilities (Table 3b). The
most common one was the original HC—the prior knowledge and experience brought
by the founder to the company. In three companies, A, B, and H, the founders’ missing
capabilities in software development were compensated by hiring experts.

Increasing the capabilities by learning was common. The sources included learning
from existing similar products, customer cooperation, and prototype-oriented devel-
opment. In the case of difficult technology domains, research in the form of searching
results from the scientific literature and conducting empirical studies was used.

Additional capabilities were typically also acquired through growth, by hiring new
employees or subcontracting. In companies B, G, and H, new employees were offered
other benefits but normal salaries. For in-house growth, both experienced and inex-
perienced individuals were hired, while the subcontractors were selected based on their
prior experiences and skills.

RQ3: What are the reasons for deploying different capability-acquiring means?
We identified nine drivers affecting the means deployed to acquire the needed capa-
bilities (Table 3c). While the basis of the startups’ HC was their founders’ prior
experience and knowledge, other means identified in our study could be perceived as
compensation for the founders’ missing capabilities.

Three companies, E, G, and I, had a special arrangement for administrative tasks,
ensuring their respective founders’ continuous focus on innovation and product
development. In companies E and I, a CEO was hired at an early phase from outside of
the company. Company K’s special service, hired CIO, confirmed the value of ensuring
continuous innovativeness instead of concentrating on administration.

290 P. Seppänen et al.

The major division line between in-house hiring and subcontracting seemed to be
the financial situation. In cases of a solid funding situation, new persons were hired,
while in the opposite circumstances, subcontracting was preferred. Subcontracting was
also common in cases of hardware and mechanics development and in some situations
when difficult technology was deployed. Avoiding economic risks affected the selec-
tion of the hired persons; experts with well-known careers or former workmates were
recruited for key positions, while the implementation work was many times performed
by students.

In companies B, G, and H, the missing economic resources led to offering shared
ownership instead of normal salaries when hiring new team members. The founder of
company H pointed out that this option was used simply because the firm needed an
experienced software developer but had no possibility to pay the costs of normal
employment or subcontracting.

The individuals’ skills had an effect on when a company sought new employees or
subcontracting partners. The service provider companies, J and K, pointed out their
specific capabilities as the key sales arguments presented to startup companies.

Table 4 summarizes that both the utilization of the means and the reasons were
strongly depending on the context. Several means were used to acquire a specific
capability, and several capabilities acquired by the same means. Similarly, the same
reason led to utilization of different capability acquiring means, and the utilization of a
means was driven by several reasons. Thus, in this study we were not able to create any
proposal of a generic theory linking the capabilities, acquiring means, and reasons.

5.2 Findings in the Context of Prior Research

We discuss our study’s results in the context of the prior knowledge presented in
Sect. 2, covering the previous research on software startups, the HC theory, and the
RBV theory.

Our study’s findings are in line with those of the prior research on software startups
[1, 29], though the companies, their products, and targeted customer segments varied.
Eight out of the fifteen characteristics listed in Table 1 could be identified in all
product-developing case companies. The rest of the characteristics were also identified
in one or more cases. The research data from the service-providing companies, J and K,
confirmed the findings; their business with startups was based on the customers’ lack of
specific HC and need to avoid financial risks.

From a larger perspective, our findings are consistent with those of the earlier
research on the HC theory [6, 22–28, 30]. Becker’s [6] definition of HC as composed
of experience and education should preferably be broadened in the context of startups
to cover learning, as proposed by Hatch and Dyer [30]. In all case companies, the initial
capabilities were both broadened and deepened by learning from different sources, as
shown in Table 4. The need for additional learning was also recognized in the case
companies with founders possessing broader and deeper experiences because they
tended to opt for more challenging technology.

A potential conflict exists between the results of Lazear’s study [24], pointing out
that the entrepreneurs are generalists, and those of Shrader and Siegel’s work [28],
noting the importance of technical experience for a startup. Our results are more in line

Little Big Team: Acquiring Human Capital in Software Startups 291

with the latter. Five out of nine founders had strong technical experience, and even the
rest (four) hired technical experts to compensate for their missing capabilities.

Companies C, E, G, and I confirmed the linkage between the depth of experience
(especially in technology) and the radicalness of the innovation. The findings of Unger
et al. [27], claiming that a priori experience had a more positive effect than education,
were partly confirmed by the significant role of the founders.

Hatch and Dyer’s [30] results, indicating that utilizing external HC with prior
industrial experience significantly reduced learning, were not found in our study.
External HC in the form of subcontracting was broadly used in the case companies in
parallel with learning. In the resource-limited and risk-avoiding reality of a software
startup, it can be regarded as a rational decision to reach the immediate product-related
targets.

Generally, the resources to which the competitors lacked access, as defined in the
RBV [4], were also unavailable in our case companies. The definition of capabilities as
firm specific and unavailable outside the company, as proposed by Amit and Schoe-
maker [12], was not supported. All companies were building capabilities through
learning as proposed in prior research [11], but those capabilities could not be classified
as rare and difficult to imitate [4]. In most cases, potential competitors would have been
able to develop the same competencies or pay for them from outside. Companies C, E,
G, and I owned technology-related capabilities that could be considered rare but not
inimitable.

All but one capability acquiring means were related to growth or learning, creating
dynamic capabilities and supporting the findings of prior research [1, 16]. Dynamic
capabilities, defined as company-internal processes and routines improving the usage of
resources [14, 20, 21], were identified especially in companies A, B, and F.

In summary, we conclude that our case companies’ situations aligned well with the
findings of the prior research on software startups. The HC theory and the RBV theory
were partly applicable in the case companies. The partial applicability could be per-
ceived as an expected result due to the theories’ broad coverage of different types of
companies. The important role of the availability of HC in the form of knowledge and
capabilities was particularly identified in our study. Creating HC through education,
experience, and learning, as proposed in the prior literature, was also consistent with
our study’s results.

The largest deviation from the HC and the RBV theories involved the uniqueness of
the HC resources. Working with small and inexperienced teams under time pressure
did not allow the startups to pursue uniqueness but forced them to acquire external
knowledge and capabilities, which could not be considered exceptional.

Based on our study’s results, we conclude that in the context of software startups, a
company’s ability to rapidly create difficult technology and complex products with a
small team is the key component of its HC, especially in the form of its organizational
capital as defined by Barney [4]. We also suggest that this ability represents uniqueness
and sustainable advantage in the context of the RBV though a startup needs to deploy
various external, publicly available resources to make use of its distinctive ability.

292 P. Seppänen et al.

5.3 Validity Discussion

Our study focused on exploring phenomena related to the HC and the RBV theories in
software startups. We conducted the study by interviewing a group of startups, ana-
lyzing the research data, and drawing conclusions from the analyzed research data.
From the validity perspective, we now discuss construct validity, external validity, and
reliability, as described by Runeson and Höst [31]. Our findings highlighted the
context-dependent nature of the capabilities, acquiring means and reasons, and did not
allow us to draw generic conclusions on the causal relationships them. Thus, we omit
the internal validity discussion [31].

We addressed the construct validity by building our study out of well-established
components, using a pre-prepared semi-structured interview as the means for collecting
the research data, applying the key informant technique by interviewing persons in
senior positions [32], and analyzing the data systematically with thematic and narrative
analysis methods [34].

We collected the research data from nine Finnish and two Norwegian software
companies, using interviews as the data gathering method. The sample’s limited size,
its geographical extent, and the single data gathering method restrict the external
validity of our results though the case companies represent fairly large variations of
business cases, technologies, and evolution phases. Further studies that will broaden
the base of the research data are needed to improve the generalizability of the findings.

To address the reliability issues, we utilized peer work in the steps of our study. Our
research team created the interview schema to enable a broad coverage of the phe-
nomena in software startups. The research data were transcribed by an external pro-
fessional. The results of the qualitative data analysis performed by the first author were
reviewed by the co-authors.

5.4 Relevance to Academia and Practitioners

Our study focused on software startups from the perspective of two established theories
about firms – HC and RBV. The results indicate that software startups represent a
specific case under those theories. Because some key aspects of the theories, such as
uniqueness of resources [4], seem unattainable in startups, it would be interesting to
more closely examine what characteristics of a successful startup would compensate for
those shortages on the resource side.

The theories referred to in this research can be perceived as focusing on a firm’s
success from the how and by whom perspective. Innovativeness, a characteristic of
startups, addresses the what question. Because innovativeness is generally regarded as
a key success factor of a startup, it would be important to conduct studies that compare
the value of what with that of how and by whom.

From the practitioner’s viewpoint, our study identifies the means utilized for
acquiring HC-related resources in different software startups. It highlights the impor-
tance of knowledge and capabilities as key resources. Table 3b shows that all identified
HC-acquiring means, besides the founders’ own prior experiences and increasing the
team size, are related to learning. This fact points out that a startup’s early stages to a

Little Big Team: Acquiring Human Capital in Software Startups 293

great extent constitute a learning story, and the founder has to utilize all relevant means
for nurturing the necessary learning.

6 Conclusions and Future Research

We empirically explored what the elements of the HC in software startups were and
how they were acquired. We identified six high-level capability areas, nine means to
gather the required capabilities, and nine contextual drivers affecting the utilization of
those means. We found that increasing the capabilities could be divided into three
categories—the capabilities brought to the startup by the founders, the capabilities of
the hired or subcontracted team members, and the capabilities developed by learning.

Our results indicate that the contextual features of a software startup drive the
utilization of different capability-acquiring means, including both in-house and external
types. The most important drivers are the founder’s prior experience and the startup’s
economic situation.

Referring to the theories and prior research on a company’s resources, we found
that from an overall perspective, the startups follow the RBV and HC theories. The
deviations in the uniqueness of the resources are due to specific characteristics of
software startups, that is, small and inexperienced teams and limited economic
resources.

In our study, learning was identified as a key means to increase the HC in a
startup. Keeping in mind that software startups have managed to tackle the obstacles
related to small and inexperienced teams, it would be interesting to investigate learning
more closely. Is learning more effective in the small, flat, and new organization of a
startup than in a larger and more established company?

Our study was based on a fairly small group of software startups located in two
North European countries. Further studies that will increase the sample size and the
geographical coverage would be needed to validate and generalize our results.

Acknowledgments. This study was partly funded by TEKES as part of the HILLA program.
We thank the members of the Software Startups Global Research Network Anh Nguyen Duc,
Pekka Abrahamsson, and Nirnaya Tripathi for their valuable help, as well as all the interviewees
for their friendly contributions to the research data gathering.

References

1. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: a systematic mapping study. Inf. Softw.
Technol. 56, 1200–1218 (2014)

2. Blank, S.A.: The four steps to the epiphany: Successful Strategies for Products that Win
(2005). CafePress.com

3. Crowne, M.: Why software product startups fail and what to do about it. Evolution of
software product development in startup companies. In: 2002 IEEE International Engineer-
ing Management Conference, 2002, pp. 338–343. IEEE (2002)

294 P. Seppänen et al.

http://CafePress.com

4. Barney, J.B.: Firm resources and sustained competitive advantage. J. Manag. 17, 99–120
(1991)

5. Barney, J., Wright, P.: On becoming a strategic partner: the role of human resources in
gaining competitive advantage. Hum. Resour. Manag. 37, 31–46 (1998)

6. Becker, G.S.: Human Capital: A Theoretical And Empirical Analysis, With Special
Reference To Education (1993)

7. Becker, G.: Human capital revisted. J. Chem. Inf. Model. 53, 1689–1699 (1994)
8. Wright, P.M., Dunford, B., Snell, S.: Human resources and the resource based view of the

firm. J. Manag. 27, 701–721 (2001)
9. Combs, J.G., Ketchen Jr., D.J.: Explaining interfirm cooperation and performance: toward a

reconciliation of predictions from the resource-based view and organizational economics.
Strateg. Manag. J. 20, 867–888 (1999)

10. Peteraf, M.A., Bergen, M.E.: Scanning dynamic competitive landscapes: a market-based and
resource-based framework. Strateg. Manag. J. 24, 1027–1041 (2003)

11. Galende Del Canto, J., Súarez González, I.: A resource-based analysis of the factors
determining a firm’s R&D activities. Res. Policy 28, 891–905 (1999)

12. Amit, R., Schoemaker, P.J.H.: Strategic assets and organizational rent. Strateg. Manag. J. 14,
33–46 (2007)

13. Grant, R.M.: The Knowledge-Based View of the Firm, vol. 3, pp. 367–381 (2006)
14. Wagner, H.-T., Weitzel, T., Koenig, W.: Modeling the impact of alignment routines on IT

performance: an approach to making the resource based view explicit. In: Proceedings of the
38th Hawaii International Conference on System Sciences (HICSS), pp. 1–10 (2005)

15. Makadok, R.: Toward a synthesis of the resource based and dynamic capability views of rent
creation. Strateg. Manag. J. 22, 387–401 (2001)

16. Teece, D.J., Pisano, G., Shuen, A.: Dynamic capabilities and strategic management. Strateg.
Manag. J. 18, 509–533 (1997)

17. Eisenhardt, K.M., Martin, J.A.: Dynamic capabilities: what are they? Strateg. Manag. J. 21,
1105–1121 (2000)

18. Prieto, I.M., Easterby-Smith, M.: Dynamic capabilities and the role of organizational
knowledge: an exploration. Eur. J. Inf. Syst. 15, 500–510 (2006)

19. Mathiassen, L., Vainio, A.M.: Dynamic capabilities in small software firms: a
sense-and-respond approach. IEEE Trans. Eng. Manag. 54, 522–538 (2007)

20. Foss, K., Foss, N.J.: Learning in firms: knowledge-based and property rights perspectives.
Working Paper, vol. 2, p. 34 (2000)

21. Winter, S.G.: Understanding dynamic capabilities. Strateg. Manag. J. 24, 991–995 (2003)
22. Hitt, M.A., Bierman, L., Shimizu, K., Kochhar, R.: Direct and moderating effects of human

capital on strategy and performance in professional service firms: a resource-based
perspective. Acad. Manag. J. 44, 13–28 (2001)

23. Bosma, N., Van Praag, M., Thurik, R., De Wit, G.: The value of human and social capital
investments for the business performance of startups. Small Bus. Econ. 23, 227–236 (2004)

24. Lazear, E.P.: Balanced skills and entrepreneurship. Am. Econ. Rev. 94, 208–211 (2004)
25. Martin, B.C., McNally, J.J., Kay, M.J.: Examining the formation of human capital in

entrepreneurship: a meta-analysis of entrepreneurship education outcomes. J. Bus. Ventur.
28, 211–224 (2013)

26. Marvel, M.R., Lumpkin, G.T.: Technology entrepreneurs’ human capital and its effects on
innovation radicalness. Entrepreneurship Theory Pract. 31, 807–828 (2007)

27. Unger, J.M., Rauch, A., Frese, M., Rosenbusch, N.: Human capital and entrepreneurial
success: a meta-analytical review. J. Bus. Ventur. 26, 341–358 (2011)

Little Big Team: Acquiring Human Capital in Software Startups 295

28. Shrader, R., Siegel, D.S.: Assessing the relationship between human capital and firm
performance: evidence from technology-based new ventures. Entrepreneurship Theory Pract.
31, 893–908 (2007)

29. Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson, P.: What
do we know about software development in startups? IEEE Softw. 31, 28–32 (2014)

30. Hatch, N.W., Dyer, J.H.: Human capital and learning as a source of sustainable competitive
advantage. Strateg. Manag. J. 25, 1155–1178 (2004)

31. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

32. Marshall, M.N.: The key informant technique. Fam. Pract. 13, 92–97 (1996)
33. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection

techniques for software field studies. Empir. Softw. Eng. 10, 311–341 (2005)
34. Cruzes, D.S., Dybå, T., Runeson, P., Höst, M.: Case studies synthesis: a thematic,

cross-case, and narrative synthesis worked example. Empirical Software Engineering, pp. 1–
32 (2014)

35. Cruzes, D.S., Dybå, T.: Recommended steps for thematic synthesis in software engineering.
In: International Symposium on Empirical Software Engineering and Measurement,
pp. 275–284. IEEE (2011)

36. Seppänen, P., Liukkunen, K., Oivo, M.: Supplementary data: raw interview data and
NVivo11 analysis summary (2017). https://doi.org/10.5281/zenodo.809184

296 P. Seppänen et al.

https://doi.org/10.5281/zenodo.809184

How Do Software Startups Approach
Experimentation? Empirical Results
from a Qualitative Interview Study

Matthias Gutbrod1(&), Jürgen Münch1, and Matthias Tichy2

1 Faculty of Informatics, Reutlingen University, Alteburgstraße 150,
72762 Reutlingen, Germany
{matthias.gutbrod,

juergen.muench}@reutlingen-university.de
2 Institute of Software Engineering and Programming Languages,

Ulm University, Ulm, Germany
matthias.tichy@uni-ulm.de

Abstract. Software startups often make assumptions about the problems and
customers they are addressing as well as the market and the solutions they are
developing. Testing the right assumptions early is a means to mitigate risks.
Approaches such as Lean Startup foster this kind of testing by applying
experimentation as part of a constant build-measure-learn feedback loop. The
existing research on how software startups approach experimentation is very
limited. In this study, we focus on understanding how software startups
approach experimentation and identify challenges and advantages with respect
to conducting experiments. To achieve this, we conducted a qualitative inter-
view study. The initial results show that startups often spent a disproportionate
amount of time focusing on creating solutions without testing critical assump-
tions. Main reasons are the lack of awareness, that these assumptions can be
tested early and a lack of knowledge and support on how to identify, prioritize
and test these assumptions. However, startups understand the need for testing
risky assumptions and are open to conducting experiments.

Keywords: Experimentation � Experiment � Software startups � Lean startup �
Minimum viable product

1 Introduction

Drew Houston, the co-founder and CEO of Dropbox, got his idea for developing a
file-sharing tool on a long bus ride to New York when he wanted to work but could not
because he had forgotten his USB stick [9]. Developing a file sharing tool such as
Dropbox requires significant resources such as time, effort, and money. The founders of
Dropbox wanted to avoid waking up after years of development to see that nobody
wants their product. Therefore, they decided to run a small experiment in order to test
the most critical assumption, i.e., to test if most people have the problem of file
synchronization and would give the product a try. They built a three-minute demo
video and uploaded it to Hacker news together with a call to action to join the waiting

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 297–304, 2017.
https://doi.org/10.1007/978-3-319-69926-4_21

list for the private beta program. The video “drove hundreds of thousands of people to
the website”, Houston reported after the experiment and continued, “our beta waiting
list went from 5,000 people to 75,000 people literally overnight. It totally blew us
away.” With this experiment, the founders validated the most critical assumption that
there was real interest for their product [8]. The development of new products and
services in startups typically faces many uncertainties. For all these uncertainties,
startups need to make assumptions based on their current knowledge. Startups need to
transform the riskiest assumptions into testable hypotheses and test them early, in order
to avoid proceeding based on the wrong assumptions, which could have high-risk
business impacts. Different techniques for testing assumptions can be used. These
techniques are all fundamentally based on scientific experimentation principles. One
approach that focuses on experimentation is the Lean Startup approach which has been
popularized by Eric Ries [8]. It fosters hypothesis testing by applying experimentation
as part of a constant build-measure-learn feedback loop. The build-measure-learn
feedback loop can be seen as a motor that should always run and produce learning data
about critical assumptions. There is only limited research about how startups approach
experimentation. In this study, we focus on understanding how especially software
startups approach experimentation and identify challenges and advantages with respect
to conducting experiments.

The rest of this paper is organized as follows: Sect. 2 presents related work. Sec-
tion 3 defines the research questions and describes how the study was executed. In
Sect. 4 we present the findings followed by Sect. 5 with a discussion. Section 6
summarizes the paper and outline future research.

2 Related Work

The scientific literature offers several frameworks for experiment-driven product
de-velopment based on empirical findings. Bosch, for instance, proposes a framework
for building products as innovation experiment systems [1]. Fagerholm et al. present
build-ing blocks for a continuous experimentation system and an infrastructure [2].

Several studies exist that focus on dealing with uncertainties. Nquyen-Duc et al.
emphasize the role of prototyping for experimenting with business ideas. In a study,
they identified factors influencing a prototype-centric learning loop. One important
finding from their study is that it is necessary to align the prototyping approach with the
learning goals [7]. Another study by Nguyen-Duc and Abrahamsson explored the role
of minimum viable products (MVPs) in early stage startups. Among other findings,
they found that MVPs play an important role in bridging knowledge gaps between the
entrepreneur team and stakeholders [6]. These knowledge gaps could be seen as critical
assumptions that need to be tested. Other studies focus on the challenges and benefits
of organizing and conducting business-oriented experiments. Bosch et al. conducted a
study that was aimed at typical challenges when finding a product idea worth scaling.
They found that only very few companies “worked with continuously validating
product concepts with customers to try to identify problems before building a full
solution.” Based on their findings they identified several key areas where support is
needed. One of these key areas is the validation of product ideas [4].

298 M. Gutbrod et al.

Hassi and Tuulenmäki focused in a study on how to organize the innovation practices
for experimentation. One result was that the design and organization of innovation
activities has a major impact on the ability to unlock the full potential of experimen-
tation [3]. In a study, Lindgren and Münch explored the state of the practice of
experimentation in the software industry. The study found that experimentation is
rarely done systematically and continuously in practice [5]. The study described in this
paper focusses on understanding how software startups approach experimentation and
identifies challenges and advantages with respect to conducting experiments in startups.

3 Research Approach

In practice, the actual situations in which startups use experiments are not clear. And if
they are using experimentation, how do they conduct the experiments? To get a better
understanding we defined the following Research Questions:

RQ1: How do startups use experimentation in practice?
RQ2: What challenges do startups have with conducting experiments?
RQ3: What benefits do startups see with respect to experimentation?

Given the exploratory nature of our study and the “how” research question, we
decided to use a qualitative interview study in the context of a multiple case study
approach [10]. All selected cases were software startups in their early phases before the
product market fit with different products. With the term software startups, we refer to
human institutions searching for scalable, repeatable, and profitable business models in
order to create new software-based products or services, in the context of extreme
uncertainty and unpredictable dynamic technology markets. The data collection method
was semi-structured interviews with open-ended questions. The interview duration time
was between 15–75 min. At the beginning and end of each interview, we included a
“warm-up” and “cool down” question. Before every interview, the participants got a
declaration of consent form to sign, which included ethical guidelines and the data
privacy protection. All interview participants have the role of CIO or CTO in their
company, of which they are also the co-founder. Each interview was recorded and
transcribed for detailed analysis. The data analysis followed procedures suggested by
Yin [10]. The interviews were conducted with German startups companies by the
primary researcher from March to June 2017. Table 1 presents a short profile overview.

4 Results

Case 1: This startup provides a web-based toolbox for designing web applications that
can be connected to the external and internal services of companies. The solution aims
at helping companies to digitize their actual processes. It can be used without any
programming skills and provides many reusable modules from a toolbox.

The startup conducts several kinds of experiments. It primarily conducts landing
page tests. The main goal of these tests is to increase the conversaion rate and transform
more visitors into prospective buyers. The CEO gave an example in the interview:

How Do Software Startups Approach Experimentation? 299

“On our landing page we use A/B testing for positioning call to action buttons in order
to increase the conversion rates.” He added that the duration of such experiments
depends on how the team members vote, and is on average 2–3 weeks.

The startup also does implicit experimentation with some kinds of minimum viable
products (MVPs) and calls customers regularly to test assumptions. The startup also
exhibits at trade fairs and uses these opportunities to do small experiments.

One of the main challenges the startup faces is to drive enough visitors to its
landing pages so that the results from the A/B tests are significant. The CEO men-
tioned: “At the beginning we were happy if we had two visitors on our page”. He also
mentioned technical challenges with respect to A/B testing: “We change the content on
the website with JavaScript and this can lead to conflicts with the actual JavaScript
code on the page.”

Case 2: This startup focuses on developing a web-based market place for vintage cars.
The marketplace consists of an online platform for selling and buying. In addition to
the online platform, the startup provides a hybrid mobile app. The founder and CEO of
this startup explained that the startup is currently not conducting experiments in a
systematic way. However, when developing new features or making changes to the
current system, he feels a need to better understand customers: “Sometimes you ask
yourself after the 10th start of the application: are the customers happy? Do they have
new ideas for improvements?” Currently, new product ideas mainly stem from the
startup itself: “We develop the ideas in our heads. There are only a few which come
from customers.” The startup visits fairs such as trade fairs, and uses these opportu-
nities to test assumptions about products and features through interviews with potential
visitors and investors. According to the CEO, the main challenge that hinders the
conduction of experiments is the lack of resources. He mentioned: “We are 2–8 people
in the startup and there is no time to do experiments. However, in the future we will do
more in this direction.”

The CEO of this startup had already founded another startup before, that focused on
the creation of a speech recognition app. Based on the vision of this startup and ideas
for features that were proposed by customers, the startup created MVPs and observed,
how new features resonated with users. The startup acquired users for these MVP tests
from their friends, through their networks and through Facebook groups. The CEO

Table 1. Profiles of the software startups cases

Software
startup

Business
domain

Founded Number
of
founders

Current product
development phase

Case 1 Software as a
service

2015 3 Functional product with a few
large customers

Case 2 Online
marketplace

2016 4 Functional product

Case 3 Job portal 2017 3 Prototype
Case 4 Software as a

service
2016 2 Functional prototype

300 M. Gutbrod et al.

mentioned that some testers were very engaged: “We had a super contact from
Munich, which tested our software very deeply and wrote us 50–60 pages reports with
weakness or strengths from our product. All for free.” The CEO also mentioned that he
used some testers outside of the target customer segment and gained interesting insights
from these testers. The startup also conducted customer interviews and A/B tests. The
duration of experimentation was from 2 h to 2 weeks.

Another strategy that the CEO applied at his former startup was to partner with
influencers: “We had some meetings with influencer with about 4–5 million followers
in social media channels. These influencers started to use their audience to test our
product assumptions. In this way we got important insights before the implementation”.

The CEO summarized his thinking about testing product ideas as the following:
“You should first find out how customers like your product before you go to market.
We recognized several times that the customers understood our product ideas in
another way than we expected. It happened that 9 from 10 people said: ‘go that
direction not the other’. In case that ideas from customers were tested successfully and
got implemented, the customer identified themselves with the product and told others:
‘Look, they did this because of me’. In this case, the customers are feeling that they are
the co-creator and this is gold”.

Case 3: This startup has the vision to create a web-based online platform to connect
good job applicants to the right companies. With an intelligent psychological matching
system, it aims at finding the perfect match between a job offer and an applicant.
Additionally, the startup wants to help people to better understand different education
and career choices in order to select those that fit their preferences and abilities. This
aims at opening the spectrum of options with respect to education and career and to
help people avoid choosing the wrong path.

The CTO of the startup explained that the first experiments were telephone inter-
views: “It costs a lot of time and kilometers to drive to different companies and ask
their hr manager questions. On the phone, we could find the responsible person
faster”. The questions were prepared in the following manner: “We made a short
brainstorming session and fixed 16 questions, from which some were around our idea.
But in the first calls we found out that the interview partners did not have enough time.
Therefore, we reduced the questions to eight.” The experiment duration was one week.

A challenge with conducting interviews was making cold calls. In addition, the
CTO mentioned in the interview: “I have a little problem to motivate myself make calls
for a whole week.” A second challenge was to convince the companies to talk with the
startup and answer the questions. The CTO already had experience with contacting
customers from his last job as a support person. However, the other founders had no
experience. In addition, he explained that “you should know how to talk to a person on
a phone and how to convince them to answer our questions.”

Actually, the first kind of customer-related study that the startup conducted was a
market research study with data from statistica.com. Based on this study, the startup
concluded that the assumed problem exists. In consequence, the startup started to
develop a solution partly based on wrong assumptions. The CTO explained: “I wish we
could turn back time and do the interview study first and get its results. We lost 1,5
years.”

How Do Software Startups Approach Experimentation? 301

Case 4: This startup has the vision to support persons at a gym with a training software.
The startup developed a combination of hardware and software as a solution. This
startup started directly with the development of the product. The CEO explained: “We
built our product because the core was clear. He mentioned how the startup comes up
with ideas for new features and improvements: “At first, we try to take the customer’s
perspective. This is always the fastest way. We also use our friends and they give us
feedback.” He adds that friends are good testers, but they have a weakness: “It is hard
to get a honest feedback, if we do interviews with our friends. We use our own question
catalogue.” We asked the CEO why he did not create a landing page for the product.
He answered that he considers the product as an innovation: “We want to keep the
range of the people under control who are knowing our product.”

Table 2 gives a summary of the experiment types and the perceived challenges and
benefits found in the studied software startups.

5 Discussion

The studied software startups mainly address these uncertainties by getting feedback
about product ideas from potential customers or friends. They basically use qualitative
techniques such as unstructured or structured interviews to test ideas, or more
light-weight approaches such as testing ideas at trade fairs.

Another approach that some of the studied startups are using is to create initial
versions of products or features, expose them to existing or potential customers, and
observe customer reactions in an unsystematic way. To some extent, this is similar to
experimentation with an MVP, although a clear hypothesis or a learning goal is usually
not explicitly stated.

Table 2. Experimentation summary overview

Conducted
experiment types

Perceived challenges with
experimentation

Perceived benefits
from experimentation

Interviews
Trade show testing
Landing page
A/B testing
MVP testing
Testing with
influencers

Getting enough subjects for
experiments
Fear of contacting customers
Fear of making cold calls
Technical challenges with setting
up an infrastructure for
experimentation
Lack of skills for conducting
customer interviews
Lack of resources/staff for
experimentation
Lack of motivation to conduct
experiments
Fear that people steal the startup
idea

Early feedback
Better understanding of
customer’s
needs, priorities, and behaviors
Better prioritization of
development activities
Avoidance of unnecessary
development efforts
Early testing of market demand

302 M. Gutbrod et al.

Some of the studied startups use specific types of experiments for specific purposes,
such as A/B testing in order to optimize a web site design, or landing pages for testing
value propositions and generating leads. Our study shows significant challenges that
startups are facing with respect to experimentation. Examples are problems with getting
enough subjects, lack of motivation, and technical challenges. A major challenge
identified in this study is the lack of knowledge about experimentation techniques and
startup tactics, such as tactics for finding experimental subjects or showing potentially
secret product ideas to others. Although software startups already apply techniques
such as qualitative customer interviews that are well suited for problem exploration and
solution testing, they do not have sufficient knowledge on how to use these techniques
in a way that creates valuable insights.

The lack of knowledge about experimentation techniques and startup tactics might
be a reason for the identified fears that hinder startups to conduct experiments. Another
challenge that the study reveals is a lack of support for startups with respect to con-
ducting experiments.

Such support might comprise training (e.g., how to conduct customer interviews),
technical expertise (i.e., how to implement A/B tests), and infrastructure for experi-
mentation (i.e., infrastructure for observing customer behavior). The studied startups
lack the awareness that risk mitigation needs to be done early and is crucial for
survival. In addition, it is not well known that risks can be mitigated early and sys-
tematically through experiments. Indicators for this lack of awareness are that (1) all
studied software startups focused on testing ideas and none of them systematically
validated the problem and the customer segments (usually, both should be done before
validating solutions), (2) the statement by the CEO from case three that they have
difficulties in motivating themselves and thus infects the other founders to conduct
experiments negative. The lack of awareness that risks can be mitigated early and
systematically through experiments is probably the most important challenge as it is an
“unknown unknown” that significantly threatens the success of a startup. The inte-
gration of startups in accelerator programs, and a more wide-spread entrepreneurship
education might help to overcome this challenge. It should be mentioned, that the
studied software startups have shown a widely positive attitude towards experimen-
tation. The startups understood some of the major benefits of experimentation, espe-
cially with respect to avoiding solution risks. In addition, customer centricity was seen
as a valuable means towards developing successful products and services.

The study has several shortcomings with respect to validity. The first validity threat
is related to generalization. Qualitative case studies are a suitable approach to under-
stand how software startups use experimentation in the real world. To get more gen-
eralizable results, more case studies and quantitative studies should be conducted. The
second validity threat is the construct validity which especially addresses misunder-
standings between the researchers and participants. Before each interview, the partic-
ipant got a short introduction about the goals of the study. Furthermore, the use of the
interview guide enables asking clear questions. Another validity threat is related to the
degree of knowledge about the history of the startup. To diminish this risk, we only
interviewed founders or cofounders who generally have the best knowledge of their
startup process.

How Do Software Startups Approach Experimentation? 303

6 Conclusions

The studied software startups apply some ad hoc validation of solution-related testing,
the majority of the studied startups are not aware of the importance of risk mitigation
and have a lack of knowledge on how to do this. Simply speaking, the studied startups
do not systematically identify the riskiest assumptions, they do not have sufficient
knowledge on how to describe such assumptions in a testable way, and they do not
know how to test assumptions efficiently by means of experiments. Finally, they do not
have sufficient support for conducting experiments in terms of training, technical
competence, and infrastructure. Despite this, they are open to learn and improve their
capabilities in order to increase the odds of their success.

We are planning to further investigate on how startups approach experimentation
and on how to better support them in doing so. Further studies need to be conducted in
order to increase the generalizability of the results.

Acknowledgements. We wish to thank all participants for their time and contributions.

References

1. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, Michael A.,
Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30746-1_3

2. Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J.: The RIGHT model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017). doi:10.1016/j.jss.2016.03.
034

3. Hassi, L., Tuulenmäki, A. (eds.): Experimentation-driven approach to innovation: develop-
ing novel offerings through experiments. In: ISPIM Conference, Manchester (2012)

4. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software startup
development model: a framework for operationalizing lean principles in software startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
44930-7_1

5. Lindgren, E., Münch, J.: Raising the odds of success. the current state of experimentation in
product development. Info. Softw. Technol. 77, 80–91 (2016). doi:10.1016/j.infsof.2016.04.
008

6. Nguyen-Duc, A., Abrahamsson, P. (eds.): Minimum Viable Product or Multiple Facet
Product? The Role of MVP in Software Startups. In: XP2016 (2016)

7. Nguyen-Duc, A., Wang, X., Abrahamsson, P. (eds.): What influences the speed of
prototyping? An empirical investigation of twenty software startups. In: XP2017 (2017)

8. Ries, E.: The Lean Startup. How Constant Innovation Creates Radically Successful
Businesses/ Eric Ries. The Lean Series. Portfolio Penguin, London (2011)

9. Victoria Barret (2011). https://www.forbes.com/sites/victoriabarret/2011/10/18/dropbox-the-
inside-story-of-techs-hottest-startup

10. Yin, R.K.: Case study research. Design and methods. SAGE, Los Angeles (2014). Robert K.
Yin

304 M. Gutbrod et al.

http://dx.doi.org/10.1007/978-3-642-30746-1_3
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1016/j.jss.2016.03.034
http://dx.doi.org/10.1007/978-3-642-44930-7_1
http://dx.doi.org/10.1007/978-3-642-44930-7_1
http://dx.doi.org/10.1016/j.infsof.2016.04.008
http://dx.doi.org/10.1016/j.infsof.2016.04.008
https://www.forbes.com/sites/victoriabarret/2011/10/18/dropbox-the-inside-story-of-techs-hottest-startup
https://www.forbes.com/sites/victoriabarret/2011/10/18/dropbox-the-inside-story-of-techs-hottest-startup

Scrum

A Study of the Scrum Master’s Role

John Noll1(B), Mohammad Abdur Razzak2, Julian M. Bass3,
and Sarah Beecham2

1 University of East London, University Way, London E16 2RD, UK
j.noll@uel.ac.uk

2 Lero, The Irish Software Research Centre, University of Limerick, Limerick, Ireland
{abdur.razzak,sarah.beecham}@lero.ie

3 University of Salford, The Crescent, Salford M5 4WT, UK
j.bass@salford.ac.uk

Abstract. Scrum is an increasingly common approach to software
development adopted by organizations around the world. However, as
organizations transition from traditional plan-driven development to
agile development with Scrum, the question arises as to which Scrum
role (Product Owner, Scrum Master, or Scrum Team Member) corre-
sponds to a Project Manager, or conversely which Scrum role should the
Project Managers adopt?

In an attempt to answer this question, we adopted a mixed-method
research approach comprising a systematic literature review and a case
study of a commercial software development team. Our research has iden-
tified activities that comprise the Scrum Master role, and which addi-
tional roles are actually performed by Scrum Masters in practice.

We found ten activities that are performed by Scrum Masters. In
addition, we found that Scrum Masters also perform other roles, most
importantly as Project Managers. This latter situation results in tension
and conflict of interest that could have a negative impact on the perfor-
mance of the team as a whole.

These results point to the need to re-assess the role of Project Man-
agers in organizations that adopt Scrum as a development approach.
We hypothesize that it might be better for Project Managers to become
Product Owners, as aspects of this latter role are more consistent with
the traditional responsibilities of a Project Manager .

Keywords: Agile software development · Scrum · Scrum Master role ·
Empirical software engineering

1 Introduction

Scrum [1,2] is an increasingly common approach to software development
adopted by organizations around the world. According to the annual State of
Agile Survey [3], 94% of organizations surveyed practice agile development.

However, while the vast majority of organizations are moving towards a form
of agile development, for most of these organizations, more than half of their
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 307–323, 2017.
https://doi.org/10.1007/978-3-319-69926-4_22

308 J. Noll et al.

teams are still following traditional, plan-driven methods [3]. Therefore, as orga-
nizations transition from traditional plan-driven development to agile develop-
ment with Scrum, the question arises as to which Scrum role (Product Owner,
Scrum Master, or Scrum Team Member) is the Project Manager, or conversely
which Scrum role should Project Managers adopt?

In an attempt to answer this question, we used a mixed method research
approach comprising a systematic literature review, and a case study of a com-
mercial software development organization. Firstly, we reviewed the literature
on agile software development in order to identify which activities are conven-
tionally performed by Scrum Masters. Then, we conducted observations and
practitioner interviews in order find out which activities are actually performed,
and which additional roles Scrum Masters perform.

We found ten activities that are performed by Scrum Masters. Of these, only
three are conventional Scrum Master activities. Others would traditionally be
considered the responsibility of the Product Owner or Scrum Team. In addition,
we found that Scrum Masters also double in other roles, most importantly as
Project Managers. This latter situation results in tension and conflict of interest
that could have a negative impact on the performance of the team as a whole.

These results point to the need to re-assess the role of Project Managers in
organizations that adopt Scrum as a development approach. We suggest that it
might be better for Project Managers to become Product Owners, as this latter
role is more consistent with the traditional responsibilities of a Project Manager.

The rest of this paper is organized as follows: in the next section, we present
the background related to Scrum and Scrum roles. Next, we describe our research
method. Following that, in Sect. 4 we present our results, and a discussion of
those results in Sect. 5. Section 6 ends with our conclusions.

2 Background

There are three key roles defined in the Scrum development approach: the self-
organizing Scrum Team of developers, the Scrum Master, and the Product Owner
[2]. The Product Owner represents the external stakeholder interests (customer,
users, product management) and so is the primary interface between these stake-
holders and the software development team [4]. The Scrum Team is responsi-
ble for the actual software development. A further role, Product Manager, who
“defines initial content and timing of the release, then manages their evolution as
the project progresses and variables change. . . [and] deals with backlog, risk, and
release content” was also described in the original description of Scrum [1]; this
role is mostly performed by the Product Owner in modern versions of Scrum [5].

The Scrum Master is responsible for facilitating the development process,
ensuring that the team uses the full range of appropriate agile values, practices
and rules. The Scrum Master conducts daily coordination meetings and removes
any impediments that the team encounters [2]. Six Scrum Master activities have
been identified in a large-scale distributed organisational context: process anchor,
stand-up facilitator, impediment remover, sprint planner, scrum of scrums facili-
tator and integration anchor [6]. The process anchor nurtures adherence to agile

Scrum Master 309

methods. The stand-up facilitator ensures that team members share status and
impediment information during each sprint. The impediment remover ensures
developers can make progress with their work. The sprint planner supports the
user story triage and workload planning that occurs prior to development work
starting in each sprint. The scrum of scrums facilitator coordinates work with
the other Scrum Masters in the development program. The integration anchor
facilitates the merging of code bases developed by cooperating teams working in
parallel.

According to Schwaber and Sutherland’s Scrum guidelines, “the Scrum Mas-
ter is a servant-leader for the Scrum Team. The Scrum Master helps those outside
the Scrum Team understand which of their interactions with the Scrum Team
are helpful and which aren’t. The Scrum Master helps everyone change these
interactions to maximize the value created by the Scrum Team” [7]; in sum-
mary, the Scrum Master serves the development team. This is in contrast to the
Product Owner, who is responsible for maximizing the value of the product and
the work of the Scrum Team. Schwaber and Sutherland [7] state that although
there is great flexibility in how this is achieved, the Product Owner is the sole
person responsible for managing the Product Backlog.

According to Schwaber and Sutherland [7], Product Backlog management
tasks include: “1. ordering the items in the Product Backlog to best achieve
goals and missions; 2. optimizing the value of the work the Development Team
performs; 3. ensuring that the Product Backlog is visible, transparent, and clear
to all, and shows what the Scrum Team will work on next; and, 4. ensuring
the Development Team understands items in the Product Backlog to the level
needed. [7]”

Evidence from practice shows that the Scrum Master role is evolving. For
example, the role is sometimes shared, and activities performed by the Scrum
Master are varied and somewhat different from the original vision. This was
observed by Gupta et al. [8], who found that the challenges of adapting Scrum
in a globally distributed team were helped by more than one person sharing the
Scrum Master and Product Owner roles. Gupta et al. developed a new Scrum
Master taxonomy in which three new roles were created to reflect the complexity
involved in managing a global software development team, and transitioning from
Waterfall to Scrum, the roles were: Scrum Master cum Part Product Owner
(where development leads were also acting in part as product owners), Bi-Scrum
Master (where a development leads worked remotely with the development team)
and Chief Scrum Master (fulfilling the need to co-ordinate among scrum teams).

According to the ISO/IEC/IEEE standard on user documentation in agile
[9] the Scrum Master and Product Manager have similar responsibilities when
it comes to explaining, changing or new requirements. “The scrum master and
information development lead or project manager should provide guidance to
the technical writers and other members of the agile development teams on
how to handle changing or new requirements.” Perhaps this conflating of roles
is largely due to organizations converting the traditional project manager role
to a Scrum Master role, “As more and more of our Project Managers become

310 J. Noll et al.

Scrum Masters and the Portfolio Managers becomes the Group Scrum Master,
our Portfolio Management Office needed to become Agile itself [10].”

Adapting Scrum roles and creating new roles to manage large scale projects
is observed in other studies, where an ‘Area Product Owner’ (APO) role was cre-
ated; this APO role was shared by two people: a system architect and a product
management representative. The system architect worked closely with the team,
while the product management representative did not interact directly with the
teams [11]. This combined role (shared between two people) worked well for this
organisation and was reported as one of the successes of the project. However,
in a later study, the same authors noted that line managers had a double role:
that of Scrum Master, and that of traditional line management duties involving
personnel issues such as performance evaluation. Over use of the Scrum Mas-
ter role, who acted as a team representative at common meetings rather than
rotate the role, was found problematic. The team felt that these meetings were
a waste of time, and sent the Scrum Master instead of taking turns [12]. The
frequent meetings in Scrum were also a problem in [13]. A Scrum Master’s role is
to facilitate daily coordination meetings where coordination meetings are used
to communicate status of development work within the team and to product
owners. However, the efficacy of daily coordination meetings was often compro-
mised by too many stakeholders attending, or because the meetings were held
too frequently to be beneficial for attendees [13].

Corrupting the careful balance between Scrum roles leads to other problems.
For example Moe et al. [14] observed that the Scrum Master also did estimates
and did not involve all the team in discussing a task. This lead to developers
working alone, poor team cohesion, and problems emerging at the end of the
sprint rather than at the beginning. A lack of thorough discussion was said to
reduce the validity of the common backlog “making the developers focus more
on their own plan. Since the planning had weaknesses and none of the developers
felt they had the total overview, this probably was one of the reasons for design-
problems discovered later.”

Yet, in a recent survey that looked into whether project managers still exist
in agile development teams, Shastri, et al. were surprised to learn that 67% of
organisations surveyed reported that they still had the Project Manager role.
These authors call for more research into why the Project Manager continues
to be present on agile software development projects, and how their role may
have changed [15]. Conventional wisdom suggests that Project Managers use a
command and control style of management, whereas Scrum Masters focus on
leading and coaching [16]. As such, Scrum masters are not line managers for
their sprint team members. Further, Scrum Masters do not assign work items to
the members of their team, since the teams are self-organising [6].

In summary, there is an emerging theme in the literature, namely that the
original balance of Scrum Master, Product Owner and team roles are being
adapted, conflated, and possibly corrupted, to suit the needs of organizations
transitioning from Waterfall to Scrum, or scaling Scrum to large scale organi-
sations. The extent to which the Scrum Master role has changed is unknown.

Scrum Master 311

Therefore, in this study we now look to the wider literature, and specifically ask
two questions:

RQ1: What activities do Scrum Masters perform according to the empirical
literature?
RQ2: What other roles do Scrum Masters perform in practice?

We ask these questions in order to establish a broader understanding of a
key Scrum role that has clearly evolved since its inception in 1995 [17] and later
refinement [7], and consider whether adapting the theory proposed by Schwaber,
Sutherland and Beedle is something to be embraced or resisted.

3 Method

In order to address our research questions, we adopted a mixed method approach
comprising a systematic literature review and a case study of a commercial
software development team [18]. We performed a systematic literature review
[19] to identify the set of activities and additional roles performed by Scrum
Masters. Then, using observations and transcripts of semi-structured interviews
we undertook as part of an empirical study, we attempted to identify benefits or
issues related to these activities and roles.

3.1 Systematic Literature Review

Two researchers were involved in the systematic literature review process
(see Fig. 1), which comprised five steps.

Fig. 1. Systematic literature review process

312 J. Noll et al.

First, we defined two research questions:

1. What are the activities a Scrum Master performs?
2. What roles does the Scrum Master perform in addition to the Scrum Master

role?

Next, we defined a search string. For expediency, we used one search string
(or variants of the search string to fit the various databases) that combined both
our research questions, as follows:

(activit* OR task* OR responsibilit* OR action* OR role* OR job*)
AND (‘‘Scrum Master’’)

We then used this search string to search five well-established digital libraries
listed in Table 1 for potentially relevant publications. This search yielded 1,020
candidate publications.

Table 1. List of databases and number of publications.

Database # of publications

IEEEXplore 13

ACM Digital library 378

Scopus 30

Elesevier Science Direct 282

SpringerLink 317

Total 1020

Subsequently, we applied inclusion and exclusion criteria (see Table 2) to the
titles and abstracts of the initial set of 1,020 publications; this yielded a refined
set of 122 publications. The first researcher applied the criteria, and the second
researcher validated this application by independently applying the same criteria
to a sample of publications.

Finally, we again applied the inclusion and exclusion criteria to the full-
text of these 122 publications, resulting in a final set of 33 publications. In this
step, both reasearchers applied the criteria independently to all 122 publications;
disagreements were resolved by discussion.

From this final set of 33 publications, we extracted a list of Scrum Master’s
activities and additional roles, which are reported in Sect. 4. The first researcher
extracted fragments from every paper that described Scrum Master activities.
Next, the second researcher validated every one of these fragments by examining
them in context to verify that each did indeed describe a Scrum Master activity.
Then, working together, both researchers coalesced the validated set of fragments
into ten higher level themes that represent Scrum Master activities. Finally, again
working together, both researchers identified other roles performed by a Scrum
Master.

Scrum Master 313

Table 2. Inclusion and Exclusion criteria.

Inclusion criteria Exclusion criteria

IC1: Publication year:
2006-2017

EC1: Is an experience report, book,
presentation, or blog entry

IC2: Language: English EC2: Is a duplicated study (where authors
report similar results in two or more
publications–e.g. a journal paper that is an
extension of a conference paper); exclude
the least detailed paper, or if unclear
include the paper that is published in the
more notable venue.

IC3: Full text available and
accessible

IC4: Focus on Scrum, in the
field of software engineering

IC5: Peer reviewed work

IC6: Answers one or more of
the research questions

3.2 Case Study

The company we studied, which we will call PracMed, is a medium-sized Irish-
based software company that develops practice and lab management software
for the optical industry.

Research Site. PracMed employs approximately seventy staff members in its
software development organization, including support and management staff.
PracMed’s annual sales approach e 20 million, from customers across the British
Isles, continental Europe, Scandinavia, North America and China.

Our study focused on TeamA, who are responsible for tailoring the company’s
product for a large customer in North America. The members of TeamA are dis-
tributed over four countries on two continents, with up to eight hours difference
in timezones between locations. They are using Scrum to develop their software,
with two weekly sprints. Table 3 shows the distribution of team members; of
these, two team members share the Product Owner role, five are developers,
one is the QA/Test lead, and one is Project Manager. In TeamA, the Project
Manager also plays role of Scrum Master. Also, the Product Owners report to
the Product Manager, who is based in Spain and is responsible for the strategic
direction of the product.

Data Collection. We observed TeamA from January, 2016 through to March,
2017. Specifically, one of the authors observed approximately 200 of TeamA’s
Scrum ceremonies, including daily standups, sprint planning, backlog grooming,
and sprint retrospectives. Due to team members being distributed across Europe
and North America, the observations were made via video conference for each
ceremony. The same author also conducted semi-structured interviews of each
member of TeamA, which were recorded and transcribed. The interviews took
approximately one hour, and resulted in 136 pages of transcribed verbatim data.
The interview protocol is available from [20].

314 J. Noll et al.

Table 3. Team Distribution.

Country Agile Roles No of Team
Members

Ireland Product Owner 1

Software Developer 3

Quality Assurance 1

Canada Scrum Master (Project Manager) 1

Product Owner 1

Software Developer 1

USA Technical Lead (Software Developer) 1

Spain Product Manager 1

The observer also made contemporaneous hand-written notes during both
the ceremony observations and interviews. Finally, the interviewer summarized
the interviews using a mind-map, and presented the result to five interviewees
in an online workshop to validate the insights gained from the interviews.

Data Analysis. Interview recordings and transcripts were carefully reviewed.
An open coding approach was used to identify topics in interview transcripts
and contemporaneous notes of ceremonies. An approach informed by thematic
analysis was used to group codes into concepts [21].

4 Findings

In this section we summarise our results and in response to our research ques-
tions, describe each of the Scrum Master’s activities identified in our data analy-
sis. As noted in our method, for consistency, where possible we adopt the activity
name given in the literature.

4.1 Systematic Literature Review

Our paper selection process identified a total of 33 publications that fit our
search and inclusion criteria (Table 4).

Table 4. Publication by year.

Year 2006 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total

Publications 1 1 1 3 4 4 1 8 2 6 2 33

Scrum Master 315

Table 5. Scrum Master activities.

Activities Ideal Scrum role Source

Process facilitation Scrum Master [6,22–24]

Ceremony facilitation
(incl. Scrum of Scrums)

Scrum Master [6,23,25–27]

Impediment removal Scrum Master [6,23,28]

Prioritization Product Owner [29,30]

Sprint planning Scrum Team [6,31–33]

Sprint reviewing Scrum Team [34,35]

Estimation Scrum Team Member [36]

Integration Scrum Team Member [6,37]

Travelling None [26,28]

Project management None [24,29,38–40]

Activities. From these papers, we identified ten activities performed by Scrum
Masters; these are shown in Table 5. These activities are defined as follows:

Process facilitation involves guiding the Scrum Team on how to use Scrum
to achieve their objectives.

Ceremony facilitation involves moderation of the daily standup, backlog
grooming, sprint planning, and sprint retrospective meetings that occur during
each sprint.

Impediment removal is part of the Scrum Master as “servant manager” role:
the Scrum Master serves as a buffer between the Scrum Team and external
pressures, and also attempts to secure resources or remove blockers to progress
that come from outside the team.

Prioritization involves ordering stories on the product and sprint backlogs by
order of importance.

Sprint planning identifies those stories on the product backlog that will fit
into a single sprint, taking into account team velocity and capacity, and story
estimates.

Sprint reviewing is part of the Sprint Retrospective ceremony where the
team identifies what went well, what could be improved, and might be added or
removed from their process to be more effective.

Estimation assigns a value in “story points” or ideal engineering time repre-
senting the effort required to complete a story.

Integration facilitates amalgamation of software elements.
Travelling is an activity associated with distributed teams that involves vis-

iting different sites where teams are located, to facilitate communications [41].
Project management is a traditional management activity found in Waterfall-

style development projects.

316 J. Noll et al.

Roles. Fifteen papers mentioned other roles that Scrum Masters hold in addition
to that of Scrum Master. These are summarized in Table 6.

Table 6. Scrum Master additional roles.

Role Company-size Source

Project Manager Large-scale [42–46]

Product Owner Unclear [29,44]

Architect/Software Designer Large-scale [47,48]

Project Lead Large-scale [49]

Developer/Senior Engineer Large-scale [30,43,49–51]

Team Leader Large-scale [42,49,52]

Test Lead Unclear [43]

Head of Department/Dir. of Eng/Dev. Mgr Large-scale [30,43,53,54]

Of these eight roles, four (Architect/Software Designer, Developer/Senior
Engineer, Team Leader, and Test Lead) would be considered technical roles, and
three (Project Manager, Project Lead, Head of Department) are management
roles. In total, nine of fifteen papers reported the Scrum Master also taking on
some kind of management role, with six explicitly mentioning “Project Manager”
or “Project Lead.”

4.2 Case Study

We observed this tension and conflict of interest in our case study organization.
On the one hand, the Scrum Master performs project management duties:

So, we do all the traditional project management roles as in doing the scope
statement, the planning, change control process, communication manage-
ment plan and all that stuff. And, then internally [we act as] Scrum
Master.

The planning part of this role has a Waterfall characteristic:

When I got to start working on this project when there was a contract –
there is a very specific set of requirements. . . . there is a very specific budget
for example, and the timeline is normally set as well [at] a high level.

In PracMed, project management for projects involving customization for
large accounts, also involves interfacing with the customer. The Scrum Master
admits balancing these two roles creates tension:

Scrum Master 317

. . .Madness! It’s hard. . . . if you know about one role not the other, I think
it’s easier because you do the best you can in your Scrum Master role or
you do the best in your Project Manager role ignoring the other. Now, the
dilemma is as a Project Manager I still know what the Scrum Master role
is, I know the Agile team – I know I am not supposed to break their rules
and let them be self-organizing and do all of that. At the end you have the
client to answer [to], you have management to answer to. So, you can’t
just say oh well it’s in the sprint or they plan for it or I don’t know when
its gonna get done because team is self-organizing.

In particular, there is tension between the Project Manager as customer
interface, and the Scrum Master role:

. . .Yah, pressure will always be there . . .An example would be, the client
would want to know . . . exactly when all [features] are going to get done.
Now, in an Agile world there is no way that I could tell them when they
are going to get done until the estimates are there. . . with a client it’s hard
because I cannot just tell them we are doing Agile.

5 Discussion

Scrum defines only three roles: Product Owner, Scrum Team Member, and
Scrum Master [2]. This results in a balance between the customer, user, and
other stakeholder interests, which are represented by the Product Owner, and
the technical realities of software development, which are represented by the
Scrum Team. The Scrum Master facilitates the interaction between these two
interests, and also serves to insulate the team as a whole from external dis-
tractions (hence the description “servant-leader” that is often used to describe
Scrum Masters [5]).

Three Scrum Master activities (Process facilitation, Ceremony facilitation,
and Impediment removal) that formed part of our ten activities observed from
the literature would be considered “traditional” Scrum Master activities, as
defined by Schwaber and Beedle [2]. Prioritizing, on the other hand, is supposed
to be the responsibility of the Product Owner, and Estimation is supposed to
be performed by the Scrum Team members [2]. While the Scrum Master may
facilitate these activities, he or she is not supposed to perform them; this is
because Scrum relies on a balance of power between “business” and “technical”
interests in order to set realistic sprint goals [2,55]. Given the Scrum Master’s
role as facilitator, and mediator between the Product Owner and the Scrum
Team, overloading the Scrum Master role with project management introduces
a conflict of interest that can compromise the Scrum Master’s ability to ensure
a balance between the interests of external stakeholders and the Scrum Team:
the Scrum Master is supposed to insulate the team and remove impediments,
but as Project Manager, he or she would also have responsibilities to achieve
objectives set by higher levels of the organization. Stray and colleagues observed
that when the Scrum Master is viewed as a manager rather than facilitator,

318 J. Noll et al.

the daily standup becomes a management reporting exercise rather than a team
communication meeting [13].

5.1 The Way Ahead

If tensions are created when the Scrum Master activities are combined with
Project Manager activities, which Scrum role is the right role to perform Project
Manager activities?

To answer this question, it’s useful to consider what project management
involves in Scrum, especially considering Scrum teams are supposed to be “self
organizing.” Schwaber defines five project management activities that must be
carried out when undertaking development using the Scrum approach:

1. Vision management – establishing, nurturing, and communicating the prod-
uct vision.

2. ROI management – monitoring the project’s progress against Return on
Investment goals, including updating and prioritizing the product backlog
to reflect these goals.

3. Development iteration management – expanding items on the Product Back-
log into items for the Sprint Backlog, then implementing those items in order
of priority.

4. Process management – facilitating ceremonies, removing impediments, and
shielding the team from outside interference.

5. Release management – deciding when to create an official release, in response
to market pressures and other investment realities.

Of these, only Process management is the responsibility of the Scrum Mas-
ter; Development iteration management is the responsibility of the development
team, and the remaining activities (Vision management, ROI management, and
Release management) are the Product Owner’s responsibility.

This suggests that, when organizations decide to adopt Scrum, their existing
Project Manager’s should be assigned to the Product Owner role. The advan-
tages are twofold: first, as Product Owners, Project Managers could advocate for
business requirements without feeling tension with their Product Owner respon-
sibilities, since such advocacy is consistent with the Product Owner role.

Second, the Scrum Master would be free to support the Scrum Team when
business requirements conflict with technical reality, and to support the Product
Owner when business priorities differ from Scrum Team Member preferences
(for example, when certain mundane functionality must be developed to keep
the product roadmap progressing, at the expense of more technically interesting
features), and to support both when upper management pressure threatens to
override or compromise the team’s own decisions.

Limitations. Practitioner roles, such as that of Scrum Master, are rapidly
evolving and hence, while literature is important, it cannot be solely relied upon
for an up-to-date perspective. On the other hand, an empirical case study, while

Scrum Master 319

providing more up-to-date insights, necessarily derives those insights from at
most a handful of settings.

This research adopts a mixed method approach to compensate for the weak-
nesses of each research approach used in isolation, by combining a systematic
literature review with an empirical case study in a mixed method approach to
provide a broad perspective based on the literature that is supported by obser-
vations from a case study.

Our insights into the tensions and conflicts created by combining the Scrum
Master and Project Manager roles are based on observations of a single devel-
opment team and interviews of one Scrum Master/Project Manager. As such,
we must be extremely cautious about generalizing our results. However, our
observations do suggest two propositions that can serve as the basis for further
research:

P1: When adopting Scrum, teams will be more successful if the former Project
Manager adopts the Product Owner role rather than the Scrum Master role.

Conversely,
P2: When adopting Scrum, teams that combine the Scrum Master and Project
Manager roles will experience tension resulting from the conflict of interests
between these two roles.

6 Conclusions

In this study, we adopted a mixed method research approach to try to answer
two research questions:

1. What activities do Scrum Masters perform according to the empirical
literature?

2. What other roles do Scrum Masters perform in practice?

We first performed a systematic literature review related to the Scrum Master
role and then a case study to uncover empirical evidence of what activities Scrum
Master’s actually perform, and what additional roles they take on. This review
revealed ten activities that are performed by Scrum Masters, and eight additional
roles that Scrum Masters also play.

Combining the findings from the literature with observations from a case
study of a medium-sized development organization, we identified tensions and
conflicts between the Scrum Master role and the Project Manager role that are
often combined in practice. As such, we propose that, when adopting Scrum,
organizations appoint existing Project Managers to the role of Product Owner,
rather than that of Scrum Master.

Acknowledgments. We thank the members of TeamA and members of the Project
Management Team for their generous and thoughtful collaboration on this study,
and PracMed, for allowing us to study their software development efforts. This
work was supported, in part, by Science Foundation Ireland grants 10/CE/I1855 and
13/RC/2094 to Lero - the Irish Software Research Centre (www.lero.ie).

www.lero.ie

320 J. Noll et al.

References

1. Schwaber, K.: SCRUM development process. In: Sutherland, J., Casanave, C.,
Miller, J., Patel, P., Hollowell, G. (eds.) Business Object Design and Implementa-
tion, OOPSLA 1995 Workshop Proceedings, pp. 117–134. Springer, London (1995)

2. Schwaber, K., Beedle, M.: Agile software Development with Scrum, vol. 1. Prentice
Hall Upper Saddle River, NJ (2002)

3. VERSIONONE.COM: 11th annual state of agileTM survey. Technical report, Ver-
sionOne, Inc. (2017)

4. Schwaber, K.: Agile Project Management with Scrum. Microsoft press, WA (2004)
5. Cohn, M., Schwaber, K.: The need for agile project management. Agile Times,

vol. 1, January 2003
6. Bass, J.M.: Scrum master activities: process tailoring in large enterprise projects.

In: 2014 IEEE 9th International Conference on Global Software Engineering
(ICGSE), pp. 6–15. IEEE (2014)

7. Schwaber, K., Sutherland, J.: The Scrum guide-the definitive guide to Scrum:
The rules of the game (2016). http://www.scrum.org/storage/scrumguides/
Scrum%20Guide

8. Gupta, R.K., Reddy, P.M.: Adapting agile in a globally distributed software
development. In: 2016 49th Hawaii International Conference on System Sciences
(HICSS), pp. 5360–5367, January 2016

9. ISO/IEC/IEEE: Systems and software engineering - developing user documenta-
tion in an agile environment. Technical report, International Standards Organiza-
tion, March 2012

10. Tengshe, A., Noble, S.: Establishing the agile PMO: managing variability across
projects and portfolios. In: Agile 2007 (AGILE 2007), pp. 188–193, August 2007

11. Paasivaara, M., Lassenius, C.: Scaling Scrum in a large distributed project. In: 2011
International Symposium on Empirical Software Engineering and Measurement,
pp. 363–367, September 2011

12. Paasivaara, M., Lassenius, C.: Scaling Scrum in a large globally distributed orga-
nization: a case study. In: 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE), pp. 74–83, August 2016

13. Stray, V.G., Lindsjorn, Y., Sjoberg, D.I.: Obstacles to efficient daily meetings in
agile development projects: a case study. In: 2013 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, pp. 95–102. IEEE
(2013)

14. Moe, N.B., Dingsyr, T., Dyb, T.: Understanding self-organizing teams in agile
software development. In: 19th Australian Conference on Software Engineering
(ASWEC 2008), pp. 76–85, March 2008

15. Shastri, Y., Hoda, R., Amor, R.: Does the project manager still exist in agile
software development projects? In: 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), pp. 57–64, December 2016

16. Berczuk, S., Lv, Y.: We’re all in this together. IEEE Softw. 27(6), 12–15 (2010)
17. Sutherland, J.V., Schwaber, K.: Business object design and implementation: OOP-

SLA 1995 workshop proceedings. The University of Michigan. Technical report
(1995). ISBN 3-540-76096-2

18. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 4th edn. SAGE Publications Inc., Thousand Oaks, California (2013)

http://www.scrum.org/storage/scrumguides/Scrum%20Guide
http://www.scrum.org/storage/scrumguides/Scrum%20Guide

Scrum Master 321

19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering, v. 2.3. Technical report EBSE-2007-01, Software
Engineering Group, School of Computer Science and Mathematics, Keele Univer-
sity (2007)

20. Beecham, S., Noll, J., Razzak, M.A.: Lean global project interview pro-
tocol (2017). http://www.lero.ie/sites/default/files/Lero TR 2017 02 Beecham
Noll Razzak-Lean%20Global%20Project%20Interview%20Protocol.pdf

21. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

22. Andriyani, Y., Hoda, R., Amor, R.: Reflection in agile retrospectives. In: Baumeis-
ter, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp. 3–19.
Springer, Cham (2017). doi:10.1007/978-3-319-57633-6 1

23. Baumgart, R., Hummel, M., Holten, R.: Personality traits of Scrum roles in agile
software development teams-a qualitative analysis. In: ECIS (2015)

24. Costa, N., Santos, N., Ferreira, N., Machado, R.J.: Delivering user stories for imple-
menting logical software architectures by multiple Scrum teams. In: Murgante, B.,
et al. (eds.) ICCSA 2014. LNCS, vol. 8581, pp. 747–762. Springer, Cham (2014).
doi:10.1007/978-3-319-09150-1 55

25. Dorairaj, S., Noble, J., Malik, P.: Understanding team dynamics in distributed
agile software development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp.
47–61. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30350-0 4

26. Alzoubi, Y.I., Gill, A.Q., Al-Ani, A.: Empirical studies of geographically distrib-
uted agile development communication challenges: a systematic review. Inf. Manag.
53(1), 22–37 (2016)

27. Maranzato, R.P., Neubert, M., Herculano, P.: Moving back to Scrum and scaling to
Scrum of Scrums in less than one year. In: Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion, pp. 125–130. ACM (2011)

28. Bless, M.: Distributed meetings in distributed teams. In: Sillitti, A., Martin, A.,
Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 251–260. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13054-0 27

29. Cajander, Å., Larusdottir, M., Gulliksen, J.: Existing but not explicit - the user
perspective in Scrum projects in practice. In: Kotzé, P., Marsden, G., Lindgaard,
G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8119, pp. 762–
779. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40477-1 52

30. Gulliksen Stray, V., Moe, N.B., Dingsøyr, T.: Challenges to teamwork: a multiple
case study of two agile teams. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X.
(eds.) XP 2011. LNBIP, vol. 77, pp. 146–161. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-20677-1 11

31. Drury, M., Conboy, K., Power, K.: Obstacles to decision making in agile software
development teams. J. Syst. Softw. 85(6), 1239–1254 (2012)

32. Heikkilä, V.T., Paasivaara, M., Rautiainen, K., Lassenius, C., Toivola, T.,
Järvinen, J.: Operational release planning in large-scale Scrum with multiple
stakeholders-a longitudinal case study at f-secure corporation. Inf. Softw. Tech-
nol. 57, 116–140 (2015)

33. Vlietland, J., van Vliet, H.: Towards a governance framework for chains of Scrum
teams. Inf. Softw. Technol. 57, 52–65 (2015)

34. Chamberlain, S., Sharp, H., Maiden, N.: Towards a framework for integrating agile
development and user-centred design. In: Abrahamsson, P., Marchesi, M., Succi,
G. (eds.) XP 2006. LNCS, vol. 4044, pp. 143–153. Springer, Heidelberg (2006).
doi:10.1007/11774129 15

http://www.lero.ie/sites/default/files/Lero_TR_2017_02_Beecham_Noll_Razzak-Lean%20Global%20Project%20Interview%20Protocol.pdf
http://www.lero.ie/sites/default/files/Lero_TR_2017_02_Beecham_Noll_Razzak-Lean%20Global%20Project%20Interview%20Protocol.pdf
http://dx.doi.org/10.1007/978-3-319-57633-6_1
http://dx.doi.org/10.1007/978-3-319-09150-1_55
http://dx.doi.org/10.1007/978-3-642-30350-0_4
http://dx.doi.org/10.1007/978-3-642-13054-0_27
http://dx.doi.org/10.1007/978-3-642-40477-1_52
http://dx.doi.org/10.1007/978-3-642-20677-1_11
http://dx.doi.org/10.1007/978-3-642-20677-1_11
http://dx.doi.org/10.1007/11774129_15

322 J. Noll et al.

35. Stray, V., Fægri, T.E., Moe, N.B.: Exploring norms in agile software teams. In:
Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S.,
Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 458–467. Springer,
Cham (2016). doi:10.1007/978-3-319-49094-6 31

36. Daneva, M., Van Der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R.,
Ajmeri, N., Ramteerthkar, U., Wieringa, R.: Agile requirements prioritization in
large-scale outsourced system projects: an empirical study. J. Syst, Softw. 86(5),
1333–1353 (2013)

37. Alaa, G., Samir, Z.: A multi-faceted roadmap of requirements traceability types
adoption in Scrum: an empirical study. In: 2014 9th International Conference on
Informatics and Systems (INFOS), p. SW-1. IEEE (2014)

38. Baskerville, R., Pries-Heje, J., Madsen, S.: Post-agility: what follows a decade of
agility? Inf. Softw. Technol. 53(5), 543–555 (2011)

39. Caballero, E., Calvo-Manzano, J.A., San Feliu, T.: Introducing scrum in a
very small enterprise: a productivity and quality analysis. In: O‘Connor, R.V.,
Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011. CCIS, vol. 172, pp. 215–224.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22206-1 19

40. Santos, R., Flentge, F., Begin, M.-E., Navarro, V.: Agile technical management of
industrial contracts: scrum development of ground segment software at the euro-
pean space agency. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.)
XP 2011. LNBIP, vol. 77, pp. 290–305. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20677-1 21

41. Bass, J.M.: How product owner teams scale agile methods to large distributed
enterprises. Empirical Softw. Eng. 20(6), 1525–1557 (2015)

42. Gren, L., Torkar, R., Feldt, R.: Group development and group maturity when
building agile teams: a qualitative and quantitative investigation at eight large
companies. J. Syst. Softw. 124, 104–119 (2017)

43. Hoda, R., Murugesan, L.K.: Multi-level agile project management challenges: a
self-organizing team perspective. J. Syst. Softw. 117, 245–257 (2016)

44. Tuomikoski, J., Tervonen, I.: Absorbing software testing into the Scrum method.
In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES
2009. LNBIP, vol. 32, pp. 199–215. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02152-7 16

45. Stray, V., Sjøberg, D.I., Dyb̊a, T.: The daily stand-up meeting: a grounded theory
study. J. Syst. Softw. 114, 101–124 (2016)

46. Moe, N.B., Dingsøyr, T.: Scrum and team effectiveness: theory and practice. In:
Abrahamsson, P., Baskerville, R., Conboy, K., Fitzgerald, B., Morgan, L., Wang,
X. (eds.) XP 2008. LNBIP, vol. 9, pp. 11–20. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68255-4 2

47. Dı́az, J., Pérez, J., Garbajosa, J.: Agile product-line architecting in practice: a case
study in smart grids. Inf. Softw. Technol. 56(7), 727–748 (2014)

48. Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M., Olsson, H.H.:
Technical dependency challenges in large-scale agile software development. In:
Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 46–61. Springer,
Cham (2014). doi:10.1007/978-3-319-06862-6 4

49. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What do practitioners
vary in using Scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.)
XP 2015. LNBIP, vol. 212, pp. 40–51. Springer, Cham (2015). doi:10.1007/
978-3-319-18612-2 4

http://dx.doi.org/10.1007/978-3-319-49094-6_31
http://dx.doi.org/10.1007/978-3-642-22206-1_19
http://dx.doi.org/10.1007/978-3-642-20677-1_21
http://dx.doi.org/10.1007/978-3-642-20677-1_21
http://dx.doi.org/10.1007/978-3-642-02152-7_16
http://dx.doi.org/10.1007/978-3-642-02152-7_16
http://dx.doi.org/10.1007/978-3-540-68255-4_2
http://dx.doi.org/10.1007/978-3-540-68255-4_2
http://dx.doi.org/10.1007/978-3-319-06862-6_4
http://dx.doi.org/10.1007/978-3-319-18612-2_4
http://dx.doi.org/10.1007/978-3-319-18612-2_4

Scrum Master 323

50. Garbajosa, J., Yagüe, A., Gonzalez, E.: Communication in agile global software
development: an exploratory study. In: Meersman, R., Panetto, H., Mishra, A.,
Valencia-Garćıa, R., Soares, A.L., Ciuciu, I., Ferri, F., Weichhart, G., Moser, T.,
Bezzi, M., Chan, H. (eds.) OTM 2014. LNCS, vol. 8842, pp. 408–417. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45550-0 41

51. Li, J., Moe, N.B., Dyb̊a, T.: Transition from a plan-driven process to Scrum: a
longitudinal case study on software quality. In: Proceedings of the 2010 ACM-IEEE
international symposium on empirical software engineering and measurement, p.
13. ACM (2010)

52. Galster, M., Angelov, S., Meesters, M., Diebold, P.: A multiple case study on the
architect’s role in Scrum. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A.,
Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027,
pp. 432–447. Springer, Cham (2016). doi:10.1007/978-3-319-49094-6 29

53. Alahyari, H., Svensson, R.B., Gorschek, T.: A study of value in agile software
development organizations. J. Syst. Softw. 125, 271–288 (2017)

54. Vlaanderen, K., van Stijn, P., Brinkkemper, S., van de Weerd, I.: Growing into
agility: process implementation paths for Scrum. In: Dieste, O., Jedlitschka,
A., Juristo, N. (eds.) PROFES 2012. LNCS, vol. 7343, pp. 116–130. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31063-8 10

55. Leffingwell, D.: Scaling software agility: Best practices for large enterprises. Addi-
son Wesley, Boston (2007)

http://dx.doi.org/10.1007/978-3-662-45550-0_41
http://dx.doi.org/10.1007/978-3-319-49094-6_29
http://dx.doi.org/10.1007/978-3-642-31063-8_10

An Exploratory Study on Applying a Scrum
Development Process for Safety-Critical Systems

Yang Wang(B), Jasmin Ramadani(B), and Stefan Wagner(B)

University of Stuttgart, Stuttgart, Germany
{yang.wang,jasmin.ramadani,stefan.wagner}@informatik.uni-stuttgart.de

Abstract. Background: Agile techniques recently have received atten-
tion from the developers of safety-critical systems. However, a lack of
empirical knowledge of performing safety assurance techniques, espe-
cially safety analysis in a real agile project hampers further steps. Aims:
In this article, we aim at (1) understanding and optimizing the S-Scrum
development process, a Scrum extension with the integration of a sys-
tems theory based safety analysis technique, STPA (System-Theoretic
Process Analysis), for safety-critical systems; (2) validating the Opti-
mized S-Scrum development process further. Method: We conducted a
two-stage exploratory case study in a student project at the University of
Stuttgart, Germany. Results: The results in stage 1 showed that S-Scrum
helps to ensure safety of each release but is less agile than the normal
Scrum. We explored six challenges on: priority management; communica-
tion; time pressure on determining safety requirements; safety planning;
time to perform upfront planning; and safety requirements’ acceptance
criteria. During stage 2, the safety and agility have been improved after
the optimizations, including an internal and an external safety expert;
pre-planning meeting; regular safety meeting; an agile safety plan; and
improved safety epics and safety stories. We have also gained valuable
suggestions from industry, but the generalization problem due to the
specific context is still unsolved.

Keywords: Agile software development · Safety-critical systems · Case
study

1 Introduction

To reduce the risks and costs for reworking and rescheduling, agile techniques
have aroused attention for the development of safety-critical systems. Tradi-
tionally standardised safety assurance, such as IEC 61508 [1], is based on the
V-model. Even though there is no prohibition to adapt standards for lightweight
development processes with iterations, some limitations cannot be avoided dur-
ing the adaptation [2]. Existing research in agile techniques for safety-critical
systems is striving for consistency to standards. Safe Scrum [3] is a considerable
success due to a comprehensive combination between Scrum and IEC 61508.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 324–340, 2017.
https://doi.org/10.1007/978-3-319-69926-4_23

An Exploratory Study on Applying Scrum for Safety-Critical Systems 325

However, an integrated safety analysis to face the changing architectures inside
each sprint still needs to be enhanced. Therefore, in 2016, we proposed S-Scrum
to integrate a systems theory based safety analysis technique, STPA (System-
Theoretic Process Analysis) [7], which was proposed by Leveson in 2012, inside
each sprint to guide a safe design [16].

Problem statement. We proposed to integrate STPA in a Scrum development
process to enhance the safety in agile development. However, it has not been val-
idated in practice. As far as we know, there exists no empirical data on applying
Scrum for a safety-critical project with the integration of STPA.

Research objective and research questions. In this article, we aim to explore the
agility and safety of S-Scrum as well as challenges and their relevant optimiza-
tions for developing a safety-critical system called “Smart Home”. The research
questions are as follows:

RQ 1 How does S-Scrum handle agility and safety in safety-critical systems?
RQ 2 What are the challenges of S-Scrum in such a context?
RQ 3 How could S-Scrum be optimized to overcome the challenges?
RQ 4 What are the effects of the optimized S-Scrum on safety and agility?

Contribution. This paper provides the first case study on applying a Scrum
development process for safety-critical systems. We investigated the effects and
challenges of S-Scrum in the 1st stage of the case study. We proposed an opti-
mized S-Scrum and validated it in the 2nd stage of the case study. To this end,
we preliminarily discussed the optimized S-Scrum in industry.

Outline. The paper is organized as follows. First, we present the related work on
using Scrum for safety-critical systems and normal Scrum development process
improvement (Sect. 2). Then, we present the background about STPA and our
previous work about S-Scrum (Sect. 3). After that, we describe the approach and
results of the 1st stage of the case study (Sect. 4.1), and the 2nd stage of the
case study (Sect. 4.2). Finally, we discuss the threats to validity (Sect. 5), and
draw the conclusions (Sect. 6).

2 Related Work

To the best of our knowledge, few empirical studies of applying Scrum or other
agile processes for safety-critical systems exist. Most of the research is still in
the stage of theoretical illustration and validation [8,9].

Safe Scrum is a Scrum development process for safety-critical systems, which
was developed to adhere to the general functional safety standard IEC 61508
[3,6]. Previous research of Safe Scrum has been synergized with other safety
standards in different domains [4] [5]. However, purely theoretical validation
is unable to cover the details of the process. More practical experiences are
becoming crucial.

326 Y. Wang et al.

Despite the limited practical experiences in applying Scrum for safety-critical
systems, there are a lot of Scrum development process experiences that could be
taken as a reference for the agile software process improvement of our project
[25,26]. Diebold et al. [10] investigated the industrial usage of Scrum with vari-
ous sprint length, events, team size, requirements engineering, roles, effort esti-
mations and quality assurance. Cho [11] conducted an in-depth case study in
two organizations. The data was analyzed along 4 dimensions, including human
resource management; structured development process; environment; informa-
tion systems and technology. These factors were covered in our assessment of
agility considering our criteria to improve the S-Scrum.

3 STPA and S-Scrum

STPA is a new hazard analysis technique by Leveson in 2012. It has been suc-
cessfully used in various domains, such as aviation, automobiles and healthcare.
Compared with the traditional safety analysis techniques, such as FMEA (Fail-
ure Mode and Effects Analysis) and FTA (Fault tree analysis), STPA bases
on the systems theory rather than the traditional reliability theory. Due to an
increasing complexity of systems, the accidents are not caused by single function
failures or chains of failure events, but resulted from inadequate control actions.
To ensure the safety of today’s complex systems, the use of STPA is becoming
necessary. Besides, we proposed using STPA in a Scrum development process
[16], as current safety analysis techniques start from a complete design, which
is not consistent to agile methodologies, which advocate a lightweight up-front
planning and design. STPA, on the contrary, provides the necessary informa-
tion to start from a high-level architecture and to guide the incremental design
process. In S-Scrum, we integrate STPA mainly in three aspects: (1) During each
sprint, we integrate STPA as safety-guided design. (2) At the end of each sprint,
we use STPA on the product instead of a Reliability, Availibility, Maintainability
and Safety (RAMS) validation. (3) We replace the final RAMS validation with
STPA. The other parts are kept consistent to Safe Scrum: (1) The environment
description and the SSRS phases 1–4 (concept, overall scope definitions, hazard
and risk analysis and overall safety requirements). (2) Test Driven Development.
(3) Safety product backlog. (4) A safety expert [30]. We aim to fill the gap of a
lack of safety analysis in agile development and enhance the safety on the basis
of a standard-based Scrum development process for safety-critical systems.

4 Case Study

To explore S-Scrum further, we conduct this study following the guideline by
Runeson [17] and Yin [18]. We design this case study with a multi-staged pro-
cedure. Each stage has different objectives and research questions. We explored
the challenges and optimizations in S-Scrum in stage 1, while we validated the
optimized S-Scrum in stage 2.

An Exploratory Study on Applying Scrum for Safety-Critical Systems 327

4.1 Research Context

The case study (including stage 1 and stage 2) was performed in the project
developing safety-critical systems, Smart Home, between March, 2016 and
March, 2017 at the Institute of Software Technology, University of Stuttgart.
The project had 400 planned working hours per head with a headcount of 14 stu-
dents. The students have taken part in a training program for agile development
and STPA before joining the project and a course on automation systems dur-
ing the project. The Scrum Master was one research assistant with experienced
project management background, while the Product Owner and Safety Expert
was another research assistant majoring in using agile for safety-critical systems.
All the students were supervised by three research assistants. The project was
to work on an IoT based smart home with a smart coffee machine, smart light
alarm system, autonomous parking system, door-open system, and smoke detec-
tor alarm system through the IoT server - KAA1. The project “Smart Home” is
openly available in GitHub2.

4.2 Case Study - Stage 1

The objective of stage 1 is to validate the safety and agility of S-Scrum and
optimize it. In stage 1, we focus on answering RQ 1, RQ 2, and RQ 3. The
general research strategy in stage 1 is shown in Table 1.

Data Collection in Stage 1. Stage 1 spans from sprint 1 to sprint 9. Each
sprint lasts three weeks. The agility-related quantitative data, M1 to M15, were
collected through 13 questionnaires3. Our participant observation as the Product
Owner (the first author), the Scrum Master, and the customer imposed also an
evaluation and review of the results. The safety-related data, M16.1 to M16.3
and M17.1 to M17.3, were quantitatively collected during sprint 6 and sprint 7.
From sprint 1 to sprint 5, we executed normal Scrum without safety analysis for
the adaptation and preparation for the project. The STPA was performed by
the safety expert and recorded privately by using the STPA tool, XSTAMPP4,
while the hazards and safety requirements were recorded in the safety product
backlog in Jira.

Based on the quantitative data for agility and safety, we then designed semi-
structured interviews with 6 voluntary participants from the development team,
including the Scrum Master and five developers. The interviews lasted 270 min
overall. The questions began with a specific set of questions regarding the obser-
vations. Further, we asked about the causalities. Finally, the optimizations were
collected in an open-ended mode. The interview guideline5 was provided before
1 https://www.kaaproject.org/overview/.
2 https://github.com/ywISTE/student-project---Smart-Home.
3 The questionnaire is available: https://zenodo.org/record/439696#.WODCovl96Uk.
4 http://www.xstampp.de/.
5 The interview guideline is available: https://zenodo.org/record/439696#.
WODCovl96Uk.

https://www.kaaproject.org/overview/
https://github.com/ywISTE/student-project---Smart-Home
https://zenodo.org/record/439696#.WODCovl96Uk
http://www.xstampp.de/
https://zenodo.org/record/439696#.WODCovl96Uk
https://zenodo.org/record/439696#.WODCovl96Uk

328 Y. Wang et al.

Table 1. Research strategy in stage 1 (“DL”-Developer, “SH”-Stakeholder, “SM”-
Scrum Master)

Time Sprint 1 to
sprint 5

Sprint 6 to
sprint 7

Sprint 8 Sprint 9

Process Scrum S-Scrum S-Scrum S-Scrum

Data
collection

Participant
observation

Participant
observation

Questionnaires Semi-structured
interviews

Scrum artifacts Scrum artifacts

Documentation
review

Documentation
review

Participants DLs DLs 13 voluntary
DLs

5 voluntary DLs

SHs SHs 1 SM

Data types Quantitative Quantitative Quantitative Qualitative

Analysis Sum of the
numbers

Sum of the
numbers

Median
MAD

Coding

Output No safety data Safety data:
M16.1-M16.3
M17.1-M17.3

Agility data:
M1-M15

Challenges and
optimizations of
S-Scrum

each interview. We recorded interview data in field notes and we used the audio
recordings for text transcription.

Data Analysis in Stage 1. We analyzed the data using the combination
of GSN [14] and GQM [15] referring partially to the VMF framework [13], as
shown in Fig. 1. The data are from two aspects: agility (S1) and safety (S2). To
evaluate and optimize agility (S1), we set 15 goals (G1 to G15) considering Com-
parative Agility Survey [12]. They are: G1 (Team work composition); G2 (Team
work management); G3 (Communication); G4 (Requirement emergency); G5
(Technical design); G6 (Planning levels); G7 (Critical variables); G8 (Progress
tracking); G9 (Sources of dates and estimates); G10 (When do we plan); G11
(Customer acceptance test); G12 (Timing); G13 (Quality focus); G14 (Reflec-
tion); G15 (Outcome measure). To reach G1 to G15, we analyzed M1 to M15
indirectly by setting sub-metrics. For example, M1 (Team work composition)
was analyzed by M1.1 (Team members are kept as long as possible), M1.2 (Spe-
cialists are willing to work outside their specialty to achieve team goals), M1.3
(Everyone required to go from requirements to finished system is on the team),
and M1.4 (People are no more than two teams). Each sub-metric was analyzed
on an ordinal scale of 5 (e.g., from 1 to 5 means “Negative”, “More negative
than positive”, “Neither negative nor positive”, “More positive than negative”,
and “Positive”). To investigate the in-depth challenges, we found out either the
negative values of the results or the significant differences between the normal
Scrum and S-Scrum to formulate further interview questions. To analyze the

An Exploratory Study on Applying Scrum for Safety-Critical Systems 329

Fig. 1. General data analysis strategy (“FG”-Final Goal, “S”-Strategy, “G”-Goal, “C”-
Context, “Q”-Question, “M”-Metric)

interview results, we used NVivo11 for text encoding [19]. Concerning safety,
G16 is extended with 3 questions together with 3 metrics including: number of
software hazards (M16.1), number of software safety requirements (M16.2), and
number of safety requirements traceable to hazards (M16.3). G17 is extended to
be evaluated by the number of mitigated hazards (M17.1), number of accepted
safety requirements (M17.2) in the present sprint, and number of rejected safety
requirements (M17.3) in the project.

Results in stage 1 - RQ 1: How does S-Scrum handle agility and safety
in safety-critical systems? We investigate the effect on agility by compar-
ing the normal Scrum and the S-Scrum according to the 15 metrics in Fig. 2.
From the general overview, we can conclude that most of the values regarding
agility in S-Scrum are slightly worse than those in the normal Scrum, while one
metric shows strongly negative values (“when do we plan”). We discussed the
results with the technical support from the Comparative Agility Survey and got
the feedback: when most of the values are more positive than negative (more
than “3”), we could say that the process is agile enough. Moreover, most values
show relatively small differences between normal Scrum and S-Scrum. Thus, we
consider the agility of S-Scrum to be acceptable. Yet, optimizations are needed.
Regarding the safety of S-Scrum, we performed STPA two rounds in sprint 6. We
found 6 software hazards (M16.1) and 15 safety requirements (M16.2), which can
all be traced back to software hazards (M16.3). Three hazards were mitigated
(M17.1), while 14 safety requirements were accepted (M17.2). In sprint 7, we
performed two rounds of STPA analysis. We found 10 software hazards (M16.1)

330 Y. Wang et al.

Fig. 2. Boxplots for general agility comparison between normal Scrum and S-Scrum
(From “1”to “5” means less agile (“negative”) to very agile (“positive”))

and 24 safety requirements (M16.2), which can also all be traced back to software
hazards (M16.3). Six hazards were mitigated (M17.1), while 23 safety require-
ments were accepted (M17.2). Each sprint has 1 rejected safety requirement due
to hardware limitation (M17.3).

Results in stage 1 - RQ 2 and RQ 3: What are the challenges of
S-Scrum in such context? and How could S-Scrum be optimized to
overcome the challenges? To optimize S-Scrum, we derived six challenges
from the six abnormal values (see data analysis in stage 1) from the sub-metrics
inside these 15 metrics.

Challenge 1: The priority management of safety requirements and functional
requirements has conflict. In the normal Scrum, the management and develop-
ment team determine the sprint backlog with functional requirements in the
sprint planning meeting. All the team members have a clear overview of and
commitment to the sprint plan with relatively high-level features. The devel-
opers accomplish each item with their own detailed tasks. The requirements
from the management and the concrete realizations from the developer reach a
consensus during each sprint. In S-Scrum, the integrated STPA and the safety
requirements break the balance. The functional requirements are correlated with
the safety requirements. However, some developers preferred: functional require-
ments are more important than the safety requirements. It was found that the
need for long-term quality was given a lower priority than the need for short-
term progress [27]. Moreover, the safety expert spent a relatively short time
working with the team members which influences also the decision making. As
one developer mentioned: The safety expert is not working in the same room with

An Exploratory Study on Applying Scrum for Safety-Critical Systems 331

the development team and has an inconsistent working time. Thus, a lack of an
in-time decision maker on the safety requirements together with the ignorance
of safety requirements in the development team cause the conflict.

To face this challenge, a safety culture should be integrated into a light-
weight development process. We suggest to include an internal safety expert
in the development team to (1) spread the safety culture; (2) increase the safety
expert’s working time with the team members; (3) clarify the bewilded safety
requirements. An external safety expert is necessary to keep the communica-
tion with other stakeholders. To fill the gap between the external safety expert
and the development team, the development team suggests that the external
safety expert should join at least once the weekly Scrum meeting. The discus-
sion between the management, the external safety expert and the internal safety
expert could strive a fresh balance on the priorities.

Challenge 2: The communication between team members and safety expert is
disturbed. To start with, the unclear safety-related documentation influences an
effective communication. The team members mentioned: it is difficult to compre-
hend the purpose of the safety expert and integrate into our daily work from the
existing documents. Moreover, a lack of safety-related knowledge of the develop-
ment team influences the discussion concerning safety issues. Finally, the insuffi-
cient time spent between safety expert and development team causes also a poor
communication. Without a non-obstacle work place to communicate within the
team about the work progress, the safety assurance could either be a superficial
decoration or even worse, a roadblock during fast product delivery.

To face this challenge, in addition to the separated internal safety expert
and external safety expert, a weekly safety meeting is suggested by an
interviewee: The internal safety expert and external safety expert should meet
each other at least once a week to exchange the status of the development team.
Because the discussion should be deep in the safety area, it is not supposed to
be established during the normal weekly Scrum meeting. Last but not least, we
improve our safety epics and safety stories to support an effective communi-
cation [31], as shown in Sect. 4.3 (Optimized S-Scrum).

Challenge 3: The safety requirements are not determined early enough to appro-
priately influence design and testing. In sprint 6 and sprint 7, the safety require-
ments were determined by the development team and the safety expert together
in the sprint planning meeting. However, as one interviewee mentioned: the deter-
mination of safety requirements from the safety product backlog is too late to
avoid a conflict between the functional requirements and their suitability for the
coming sprint. Thus, sometimes the functional design and testing have to start
without the in-time safety requirements.

To face this challenge, we propose a pre-planning meeting for solving the
time pressure problem. First, the internal, external safety experts and product
owner discuss the safety product backlog and the functional product backlog
in the pre-planning meeting. Then they brainstorm the results with the whole
development team in the sprint planning meeting to gather more ideas and make
each safety requirement clear.

332 Y. Wang et al.

Challenge 4: The planning at the start of each iteration is insufficient. In the
normal Scrum, the development team and the product owner plan the upcom-
ing sprint in the sprint planning meeting by formulating the sprint backlog with
estimated items, which makes the development team sufficiently confident about
their plan. However, the estimation and planning for the safety product back-
log seem not ideal, as well as the interconnection with the functional product
backlog, which make an in-time identification of the sprint backlog difficult. An
interviewee said: It is difficult to determine the safety requirements when the
development team has not planned the functional requirements for the coming
sprint.

To face this challenge, we suggest and adapt an agile safety plan [21] in
connection with the pre-planning meeting to increase the understanding of
safety issues and enhance confidence. In our project, the results of STPA are
part of the agile safety plan.

Challenge 5: The time to perform upfront planning is late. A team member said:
the pre-planning meeting for safety issues should start before the sprint planning
meeting. But the concrete time should be decided between the external safety
expert, the internal safety expert and the product owner. Based on the experience
of the previous sprints, it is better to start upfront planning one week before the
sprint planning meeting (3 weeks/sprint). The time could be changed depending
on the sprint length. More explanations are in challenge 4.

Challenge 6: The safety requirements lack well-defined completion criteria. In the
normal Scrum, we have various testing methods to determine the completion of
each feature such as unit testing, system testing, regression testing, and accep-
tance testing, which are promoted to be automated in an agile context. However,
few agile testing methods are suitable for validating safety requirements, as the
safety requirements are either from standard requirements or the safety analy-
sis, which differentiates safety testing and functional testing. In S-Scrum, we
use UAT (User Acceptance Testing) for validating safety requirements. Thus, a
suitable safety criterion becomes important.

To face this challenge, we use a “Given-When-Then” format [23] as safety
requirements’ criteria. The development team suggest that the external safety
expert could decide the safety stories’ criteria and the internal safety expert
could decide the safety tasks’ criteria. The whole development team could
brainstorm both criteria. To this end, the product owner and safety expert
perform the acceptance testing.

4.3 Case Study - Stage 2

After the optimizations described above, the objective of stage 2 is to validate
the safety and agility of the optimized S-Scrum and discuss it in industry. We
focus on answering the RQ 4 together with some discussion from industry. The
general research strategy in stage 2 is shown in Table 2.

An Exploratory Study on Applying Scrum for Safety-Critical Systems 333

Table 2. Research strategy in stage 2 (“DL”-Developer, “SH”-Stakeholder, “SM”-
Scrum Master, “PO”-Product Owner)

Time Sprint 10 to sprint 11 Sprint 12 Sprint 13

Process optimized S-Scrum Optimized S-Scrum Optimized S-Scrum

Data
collection

Participant observation Questionnaires Semi-structured
interviews

Scrum artifacts

Documentation review

Participants DLs 8 voluntary DLs 1 PO (from EPLAN)

SHS 1 SM (from EPLAN)

Data types Quantitative Quantitative Qualitative

Analysis Sum of the numbers
(compare with the data
from stage 1)

Median and MAD
(compare with the
data from stage 1)

Coding

Output Safety data:
M16.1-M16.3
M17.1-M17.3

Agility data:
M1-M15

Preliminary discussion
in industry

Optimized S-Scrum. To have a clear overview, we compare the optimized
S-Scrum to the normal Scrum and the S-Scrum in our project respectively in
Table 3. In the optimized S-Scrum, we differentiate between an internal safety
expert and an external safety expert. A pre-planning meeting and weekly safety
meetings are established between safety experts. We include the safety epics, to
satisfy <the overall safety needs>, the system must <always be able to reach
a safe state> [22], in the story map. The safety product backlog is improved
with optimized safety story: To keep <control action> safe, the system must
<achieve or avoid something>. An agile safety plan based on STPA technology
is suggested for a clear overview. The safety culture is expected to be enhanced
by the additional activities.

Data Collection in Stage 2. Stage 2 is from sprint 10 to sprint 13. The safety-
related data, M16.1 to M16.3 and M17.1 to M17.3, were collected in the same
way as in stage 1. The safety results were collected by both internal and exter-
nal safety experts. The agility-related data, M1 to M15, were collected by the
second round questionnaires6. We further discussed the optimized S-Scrum by
conducting 2 semi-structured interviews with one Scrum Master and one Product
Owner from EPLAN GmbH, Germany. The interview lasted 2 h. We formulated
questions about the status of the Scrum development process in the company
projects; the feasibility of the optimized S-Scrum in industry; and further sug-
gestions from the industrial perspective. A project background illustration was

6 The questionnaire is available: https://zenodo.org/record/439696#.WODCovl96Uk.

https://zenodo.org/record/439696#.WODCovl96Uk

334 Y. Wang et al.

Table 3. Normal Scrum, S-Scrum and optimized S-Scrum in Smart Home (“DL”-
Developer, “SM”-Scrum Master, “PO”-Product Owner, “SE”-Safety Expert)

Normal
Scrum

14 DLs Sprint planning
meeting

Story map

1 SM Weekly Scrum meeting
(2 times/week)

Product backlog

1 PO Sprint review meeting Sprint backlog

Sprint retrospective
meeting

S-Scrum 14 DLs Sprint planning
meeting (with safety
planning)

Story map

1 SM Weekly Scrum meeting
(2 times/week) (with
safety discussion)

Functional product backlog

1 PO Sprint review meeting
(with safety review)

Safety product backlog

1 SE Sprint retrospective
meeting

Sprint backlog

Optimized
S-Scrum

13 DLs Pre-planning meeting Story map (with safety epics)

1 SM Sprint planning
meeting (brainstorming
requirements and
criteria)

Functional product backlog

1 PO Weekly Scrum meeting
(2 times/week)

Safety product backlog (with
safety stories)

1 internal SE Weekly safety meeting
(1 time/week)

Sprint backlog

1 external SE Sprint review meeting
(with safety review)

Safety plan

Sprint retrospective
meeting

provided before the interviews, together with the interview guidelines7. The field
notes, interview transcripts, and voice recordings were all preserved for backup.

Data Analysis in Stage 2. The quantitative data were compared with the
numbers in stage 1. The interview results from the industry were text encoded
with: status, challenges, possible solutions, and the feasibility of S-Scrum.

7 The interview guideline is available: https://zenodo.org/record/439696#.WODCovl9
6Uk.

https://zenodo.org/record/439696#.WODCovl96Uk
https://zenodo.org/record/439696#.WODCovl96Uk

An Exploratory Study on Applying Scrum for Safety-Critical Systems 335

Results in Stage 2 - RQ 4: What Are the Effects of the Optimized
S-Scrum on Safety and Agility? As shown in Fig. 3, most of the evaluated
agility aspects sustained a good level of satisfaction with little variance. However,
the “technical design” is slightly reduced. Due to the new role, the collaborative
part of design between safety work and development work fell on the internal
safety expert. The personal capability is becoming important. To improve the
technical design, cooperation shall increase between the external safety expert
and the development team.

Fig. 3. Boxplots for agility comparison between S-Scrum and optimized S-Scrum (From
“1” to “5” means less agile (“negative”) to very agile (“positive”))

Regarding the safety of optimized S-Scrum, as we can see in Fig. 4, safety
aspects improved (M16.1, M16.2, M16.3, M17.1, M17.2). We also rejected few
safety requirements (M17.3): 1 (sprint 6), 1 (sprint 7), 0 (sprint 10), 2 (sprint
11). We can conclude that, in general, the optimized S-Scrum has better safety
assurance capabilities. However, there are still some abnormal values in sprint 7.
The number of safety requirements, the number of safety requirements traceable
to hazards and the number of accepted safety requirements in sprint 7 are more
than in sprint 10. This may be traced back to the fitting-in phase of the optimized
S-Scrum. Since the training of STPA for the internal safety expert, we finished
STPA in sprint 10 only once. In sprint 6, sprint 7, and sprint 11, we finished
STPA twice. After the adaption of the new role, the safety data rose in sprint 11.

Results in Stage 2 - Discussion. To strength the study further, we discussed
our results preliminarily in industry. For Challenge 1, the conflict between func-
tional requirements and non-functional requirements seems not obvious. As one
interviewee mentioned: Since we have a relative small amount of non-functional

336 Y. Wang et al.

Fig. 4. Safety data comparison between S-Scrum and optimized S-Scrum (“SRs”-
Safety Requirements)

requirements, the priorities are always determined by the product owner together
with the discussion with some external experts. For Challenge 2, one interviewee
mentioned: To enhance the communication between the team members and the
experts, we have a technical meeting before each sprint planning meeting. The
product owner sends the emails to the relevant experts depending on the goals of
each sprint. The experts are welcomed to join the daily stand-up meetings. Thus,
the experts have sufficient time to keep up with the development team, while the
technical knowledge is deeply discussed in the technical meeting before the sprint
planning meeting. The project has also a good knowledge sharing mechanism to
support the communication during each sprint. One interviewee mentioned: We
use pair programming, formal guidelines to teach new colleagues, chat clients,
and screen sharing. When the team includes experts, the product owner will con-
tact 2–3 colleagues to discuss technical stuff, who will inform other colleagues.
A hierarchical communication mode is preferred for a multi-expert team. For
Challenge 3, the industrial projects have also mentioned this problem: Internal
user stories are used to record the non-functional requirements. The execution of
internal user stories is up to the team. For Challenge 4, the two teams execute
a sufficient planning. An interviewee mentioned: We have a refinement time slot
to get all product backlog items approved (each team member has understood)
and not so much discussion in the sprint planning meeting. The team members
are beginning the refinement in the present sprint for the user stories in the next
sprint. In Scrum, not all requirements have to be at the same level of detail
at the same time [24]. The progressive refinement could be further extended
for the safety planning and assessment to: (1) avoid a premature development
decision from the high-level safety requirements; (2) reserve sufficient time for
managing priorities between safety requirements and functional requirements;
(3) increase the rework possibilities; (4) enhance the likelihood of using conver-
sation to clarify safety requirements. That could also illustrate the Challenge 5.

An Exploratory Study on Applying Scrum for Safety-Critical Systems 337

For Challenge 6, the refinement phase helps building a pre-understanding of each
requirement and reaching a common criterion in the sprint planning meeting.
The external expert is a regular member in industry. An interviewee mentioned:
We prefer some experts with deep knowledge in the team, but the arrangement
of an internal expert has to take more issues into account, such as training,
responsibility, and even personal development. An external safety consultant to
test the products and delivered trainings and an internal safety initiative [20]
to promote safety practices across groups in industry could be align with our
internal and external safety expert. Safety culture in industry is enhanced either
by setting the regulations or by the established organization structure and activ-
ities. An agile safety plan is also required from some standards. They draw the
safety plan either in the technical meeting or in parallel with the refinement.
The technical meeting suggested in industry could also be considered as an extra
(weekly) safety meeting. The pre-planning meeting seems to be a suitable form
for realizing progressive refinement in industry. This alignment motivates more
combinations between our optimizations and existing industrial practices. All
the requirements and acceptance criteria are retrieved by brainstorming. An
effective communication plays a vital role in executing acceptance testing.

5 Threats to Validity

Construct validity: The first threat to construct validity is the general data
analysis framework. To apply Scrum for safety-critical systems, we focus primar-
ily on safety aspect and agility aspect in our exploratory study. In terms of agility,
we referred to an official agility comparative survey [12] for ensuring the cover-
age of measurement. In terms of safety, S-Scrum was extended from Safe Scrum,
which was originally developed in accordance with the general functional safety
standard IEC 61508. Thus, the validation regarding to the consistency with
IEC 61508 has not been included in the framework. Furthermore, in S-Scrum
we mainly integrate STPA. We aim to validate the enhanced safety concerning
the integrated safety analysis technique. Thus, the safety assurance technique’s
capability and the deliverable products’ safety are set as two relevant goals. Yet,
the goals and metrics seem not enough and the validation framework is pos-
sible to be extended. The second threat to construct validity is the validation
periods for S-Scrum and optimized S-Scrum are shorter than our expectations.
We executed the normal Scrum in the first five sprints to strengthen students’
background knowledge of agile techniques and prepare the detailed organization
structure, which took us a lot of time.

Internal validity: The first threat to internal validity is the arrangement of
team roles. One of the authors acted as the product owner and the safety expert
concurrently in sprint 6 and sprint 7. To avoid this threat in alignment with
the optimizations in sprint 10 and sprint 11, the product owner acted further
as an external safety expert. An internal safety expert has been arranged in the
development team. The second threat to internal validity exists in the qualitative
data from the semi-structured interviews. The interviews have been performed

338 Y. Wang et al.

by one of the authors together with the audio record. The language we used has
also partial German. To avoid subjective and language bias, the audio recording
has been transcribed independently by two researchers (one is a native German
speaker) and compared to formulate a final result.

External validity: A student project is different from an industrial project.
However, Höst et al. [28], Tichy, Kitchenham et al. [29] proposed that students
could be acceptable. To consider this debatable issue, we mainly referred to an
empirical study conducted by Falessi in 2017 [33]. 16 statements are provided
by 65 empirical researchers. They mentioned: Conducting experiments with pro-
fessionals as a first step should not be encouraged unless high sample sizes are
guaranteed or performing replicas is cheap. In our research, there exists few
industrial projects for developing safety-critical systems fully adopted a Scrum
development process according to the preliminary research [32]. S-Scrum was also
proposed in 2016 as a high-level process model. In addition, the long learning
cycles and a new technology are two hesitations for using professionals. STPA
was developed in 2012. In industry, there is still a lack of experts. Thus, we
believe that in our research area, a student project is a relative suitable way to
aggregate contributions. Even though, the generalizability is considered critical.

Reliability: The student project is a suitable way for a first validation. Yet, the
results from the students are limited by their personal experience. Besides, the
“grading power” of the researchers may influence the results. We separated our
research work from the final examination of the product to mitigate this threat.

6 Conclusion

The main benefit of our research is that it provides a first empirical and prac-
tical insight into applying Scrum for safety-critical systems with the integration
of STPA. Moreover, the presented challenges existing in priority management,
communication, time pressure on determining safety requirements, safety plan-
ning, safety requirements’ acceptance criteria and solutions including the split of
the safety expert, pre-planning meeting, regular safety meeting, improved safety
epics, STPA-based safety stories and an agile safety plan could arouse interest
in practitioners and show future research directions. The effects on safety and
agility aspects indicate the feasibility to align STPA with a Scrum development
process. The discussion in industry motivates the further step of transmitting the
optimized S-Scrum from the academic environment towards industry environ-
ment. However, the execution of S-Scrum and optimized S-Scrum was in a spe-
cific context. We can rely our improvements on an academical project only. The
generalization in industry of the optimizations remains subject to future work.
Finally, regarding safety and security in agile development in today’s cyber-
physical systems, even though special attention has to be paid to the respective
norms and standards, problems’ exploration in practice seems also necessary.

An Exploratory Study on Applying Scrum for Safety-Critical Systems 339

Acknowledgements. We want to thank Dr. A. Nguyen-Duc for proof reading and
his valuable suggestions. We are grateful to all participants involved during the case
study. Finally, we want to thank all the feedback on previous versions. The first author
is supported by the LGFG (Stipendien nach dem Landesgraduiertenfördergesetz).

References

1. IEC61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. International Electrotechnical Commission (2010)

2. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. arXiv
preprint arxiv:1409.6600 (2014)

3. St̊alhane, T., Myklebust, T., Hanssen, G.K.: The application of safe Scrum to IEC
61508 certifiable software. In: 11th International Probabilistic Safety Assessment
and Management Conference and the Annual European Safety and Reliability
Conference (2012)

4. St̊alhane, T., Vikash, K., Myklebust, T.: Scrum and IEC 60880. Enlarged Halden
Reactor Project meeting, Storefjell, Norway (2013)

5. St̊alhane, T.: Safety standards and Scrum A synopsis of three standards
6. Hanssen, G.K., Haugset, B., St̊alhane, T., Myklebust, T., Kulbrandstad, I.: Qual-

ity assurance in Scrum applied to safety critical software. In: Sharp, H., Hall, T.
(eds.) XP 2016. LNBIP, vol. 251, pp. 92–103. Springer, Cham (2016). doi:10.1007/
978-3-319-33515-5 8

7. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT
press, Cambridge (2011)

8. Ge, X., Richard, F.P., John, A.M.: An iterative approach for development of safety-
critical software and safety arguments. In: AGILE Conference, IEEE (2010)

9. Vuori, M.: Agile development of safety-critical software. Tampere University of
Technology 14 (2011)

10. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What do practitioners
vary in using scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.)
XP 2015. LNBIP, vol. 212, pp. 40–51. Springer, Cham (2015). doi:10.1007/
978-3-319-18612-2 4

11. Cho, J.J.: An exploratory study on issues and challenges of agile software devel-
opment with Scrum. All Graduate theses and dissertations (2010). 599

12. Williams, L., Kenny, R., Mike, C.: Driving process improvement via comparative
agility assessment. In: AGILE Conference, IEEE (2010)

13. Cruickshank, K.J., James, B.M., Man-Tak, S.: A validation metrics framework for
safety-critical software-intensive Systems. IEEE International Conference System
of Systems Engineering, SoSE 2009, IEEE (2009)

14. Kelly, T., Rob, W.: The goal structuring notation a safety argument notation. In:
Proceedings of the Dependable Systems and Networks 2004 Workshop on Assur-
ance Cases, Citeseer (2004)

15. Basili, V.R.: Software modeling and measurement: the goal/question/metric par-
adigm (1992)

16. Wang, Y., Wagner, S.: Toward integrating a system theoretic safety analysis in an
agile development process. In: Software Engineering (2016)

17. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2009)

18. Yin, R.K.: Case Study Research: Design and Methods. Sage publications, CA
(2013)

http://arxiv.org/abs/1409.6600
http://dx.doi.org/10.1007/978-3-319-33515-5_8
http://dx.doi.org/10.1007/978-3-319-33515-5_8
http://dx.doi.org/10.1007/978-3-319-18612-2_4
http://dx.doi.org/10.1007/978-3-319-18612-2_4

340 Y. Wang et al.

19. Strauss, A., Corbin, J.M.: Grounded Theory in Practice. Sage, CA (1997)
20. Poller, A., Kocksch, L., Türpe, S., Epp, F.A., Kinder-Kurlanda, K.: Can security

become a routine?: a study of organizational change in an agile software develop-
ment group. In: Proceedings of the 2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing, ACM (2017)

21. Myklebust, T., St̊alhane, T., Lyngby, N.: The Agile Safety Plan. In: PSAM13
(2016)

22. Myklebust, T., St̊alhane, T.: Safety stories a new concept in agile development. In:
Fast Abstracts at International Conference on Computer Safety, Reliability, and
Security (SAFECOMP 2016) (2016)

23. Garg, S.: Cucumber Cookbook. Packt Publishing Ltd, UK (2015)
24. Rubin, K.S.: EssentiaL Scrum: A Practical Guide to the Most Popular Agile

Process. Addison-Wesley, Boston (2012)
25. Moe, N.B., Torgeir, D., Tore, D.: A teamwork model for understanding an agile

team: a case study of a Scrum project. Inf. Softw. Technol. 52(5), 480–491 (2010)
26. Begel, A., Nachiappan N.: Usage and perceptions of agile software development

in an industrial context: an exploratory study. In: First International Symposium
on Empirical Software Engineering and Measurement, ESEM 2007, p. 2007. IEEE
(2007)

27. Moe, N.B., Aybüke, A., Dyb̊a, T.: Challenges of shared decision-making: a multiple
case study of agile software development. Inf. Softw. Technol. 54(8), 853–865 (2012)

28. Höst, M., Björn, R., Wohlin, C.: Using students as subjects a comparative study of
students and professionals in lead-time impact assessment. Empirical Softw. Eng.
5(3), 201–214 (2000)

29. Tichy, W.F.: Hints for reviewing empirical work in software engineering. Empirical
Softw. Eng. 5(4), 309–312 (2000)

30. Wang, Y., Wagner, S.: Towards applying a safety analysis and verification method
based on STPA to agile software development. In: IEEE/ACM International Work-
shop on Continuous Software Evolution and Delivery (CSED), IEEE (2016)

31. Wang, Y., Bogicevic, I., Wagner, S.: A study of safety documentation in a Scrum
development process. In: Proceedings of the XP2017 Scientific Workshops, ACM
(2017)

32. Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.: Is Water-Scrum-Fall real-
ity? on the use of agile and traditional development practices. In: Abrahamsson,
P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS, vol. 9459, pp.
149–166. Springer, Cham (2015). doi:10.1007/978-3-319-26844-6 11

33. Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., Oivo,
M.: Empirical software engineering experts on the use of students and professionals
in experiments. J. Empirical Softw. Eng. 1–38 (2017). Springer

http://dx.doi.org/10.1007/978-3-319-26844-6_11

Exploring the Individual Project Progress
of Scrum Software Developers

Ezequiel Scott(B) and Dietmar Pfahl

University of Tartu, Tartu, Estonia
{ezequiel.scott,dietmar.pfahl}@ut.ee

Abstract. Scrum based software development has become increasingly
popular in recent years. Scrum requires teams following agile practices
and their principles. One of them includes having room for the reflection
of the team on how to become more effective. In this context, measur-
ing and enhancing the performance of teams is still an area of interest
for the Scrum community. Traditional Scrum metrics have often been
used to measure the performance and productivity; however, individ-
ual contributions of team members to the project are often shaded by
the team overall performance. In this paper, we propose a metric for
measuring individual differences in project progress based on the tradi-
tional Burndown chart. We also show preliminary results of applying it
in a particular training context, highlighting how learning-styles based
instruction can improve the individual project progress of students.

Keywords: Agile software development · Scrum · Agile metrics

1 Introduction

Scrum based software development has become increasingly popular in recent
years [3]. In fact, the latest State of Agile Survey reports that Scrum and its vari-
ants are used by more than the 75% of respondents [14]. This acceptance stems
from the fact that many Scrum teams have reported relevant results regarding
the quality of the software, the working synergy, the user satisfaction, and the
enjoyable working environment [12].

To put Scrum into practice, teams not only have to follow the Scrum prac-
tices but also adhere to the agile manifesto and their principles. One of them
includes having room for the reflection of the team on how to become more effec-
tive, in order to tailor their behavior accordingly [1]. In this context, measuring
and enhancing the performance of teams is still an area of interest for Scrum
practitioners. As a result, many metrics for measuring performance in Scrum
have been proposed such as the Velocity of the team and their Burndown chart,
among many others [4].

These metrics have been successfully used for monitoring how certain data
points affect the progress of teams. However, individual contributions are often

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 341–348, 2017.
https://doi.org/10.1007/978-3-319-69926-4_24

342 E. Scott and D. Pfahl

shaded by the team overall performance since Scrum stresses teamwork and col-
lective responsibility for the final outcome of a project [6]. Knowing the individ-
ual project progress could help teams in different ways. For example, teams can
get a better understanding of the progress of the project and use this knowledge
as a first indicator of possible problems. In addition, training contexts can take
advantage of individual metrics since they can serve as an indicator of students’
performance. Thus, studies on metrics for assessing individual project progress
are beneficial for the Scrum community.

In this study, we aim to make a two-fold contribution. First, we propose
a metric for measuring individual project progress based on Scrum. Second,
we show the preliminary results of applying the metric in a particular training
context. Our results highlight how learning-styles based instruction can improve
the individual project progress of students.

2 Related Work

There are many metrics often used to deal with project monitoring and control
activities in Scrum. All of them usually rely on the use of agile artifacts such as
Backlogs and User Stories. Although these metrics are popular, the agile com-
munity agrees with the idea of improving the measurement in Scrum. Dawney
and Sutherland [4] have defined a set of Scrums metrics which aim at improving
the traditional ones. The goal of these metrics, like many of the traditional ones,
is to measure the team productivity.

The team productivity and the factors which correlate with it have been
studied by many authors. For example, performance has been studied in their
relationship with the stakeholder-driven process [9], and the stress and empow-
erment of the teams [8]. In addition, researchers and practitioners seem to agree
about the importance of both technical and non-technical skills of developers
regarding productivity [13]. So far, however, there has been little discussion
about individualized metrics in Scrum.

In particular, studies focused on individuals have been connected with the
educational field. For example, Gamble and Hale [6] have defined four individu-
alized metrics: Contribution, Influence, Impact, and Impression. These metrics
are based on the interaction of the students with a collaborative tool. In con-
trast, this study is more focused on the individuals’ amount of work done during
the software development than in the level of social engagement. Other stud-
ies have proposed metrics that rely on self-reporting activity, project evaluation
rubrics, and grades based on individual submissions related to the project [2,7].
Surprisingly, the analysis of metrics derived from traditional agile artifacts like
the Burndown chart have not been closely examined.

Exploring the individual characteristics of team members allows for studying
their achievements in Scrum from a training point of view. In this line, Scott et al.
[11] have explored how to improve the students’ understanding of Scrum topics
when learning preferences are used. Measuring the individual project progress
in these contexts could be useful for determining the effectiveness of training
approaches.

Exploring the Individual Project Progress of Scrum Software Developers 343

3 Method

The method used to explore the individual project progress mainly comprises
three steps. The first step involves an initial training in Scrum. In the second step,
the trainees put the Scrum framework into practice by developing a small soft-
ware product. Finally, their individual project progress is analyzed. We describe
these steps in the following sections.

3.1 Initial Training in Scrum

The initial Scrum training is based on previous experiences using the Felder-
Silverman learning style model [5] in capstone projects. This model has been
widely used in Computer Science and proposes classifying students into different
learning styles which have their corresponding teaching style. Previous studies
have shown that students can improve their understanding of Scrum concepts
when they are exposed to instructional methods tailored according to their learn-
ing style [11].

To analyze the individual project progress when students receive the instruc-
tional method according to their learning styles, we rely on the recommendations
of Pashler et al. [10]. The authors propose several guidelines to design a con-
trolled experiment and obtain thoroughly evidence from it when learning styles
are involved. According to these guidelines, we organize the initial training as
follows.

First, students are assigned to two different groups according to their learning
style. The students’ learning styles are collected through an online questionnaire
that allows for classifying the students into active or reflective students. Briefly
speaking, active students prefer doing tasks or talking about concepts whereas
reflective students are likely to manipulate and examine the information intro-
spectively [5].

Once students are grouped by learning style, we randomly assign the students
to two different instructional-method groups related to the active and passive
teaching styles. These groups determine the instructional methods received by
the students and the random assignment guarantees that both instructional-
method groups have the same numbers of active and reflective students.

Finally, students receive the training in Scrum on the basis of their assigned
instructional method. One group of students receive the instructional method
according to one learning style (i.e. the active method) whereas the second group
is trained using the remaining instructional method (i.e. the passive method).
Thus, both groups receive the same topics, yet in different ways. The topics
and the instructional methods used are described in more detail in previous
research [11].

After receiving the training in Scrum, the students are expected to put
the Scrum concepts into practice through the development of a small software
project. We organize the software development as follows.

344 E. Scott and D. Pfahl

3.2 Software Development

To put the Scrum concepts into practice, the students are allocated to different
teams. Each team is asked for developing the same software product: a small
software application that allows teachers to manage courses and their topics.
They are also asked for following the Scrum practices they learned before and
track the project monitoring and control information into an online spreadsheet.
Figure 1 shows an example of a user story in the spreadsheet.

Fig. 1. Example of the spreadsheet
used to monitor and control the
projects.

Fig. 2. Example of Burndown chart.

In this context, the students have to create User Stories from the requirements
given by the Product Owner (the teacher) to build the Product Backlog. Then,
they have to define the Sprint Backlog and estimate the User Stories to be
done during the Sprint by using Planning Poker. The students also have to split
User Stories into Tasks and allocate them into a Release Plan. Following these
practices, the User Stories belong to the team whereas Tasks are self-assigned
to team members.

During the development, the students record all the data about User Stories,
Story Points, Tasks, and their statuses in the spreadsheet. At the end of the
Sprint, the students are expected to generate a product increment and integrate
it into the working product. Then, they present the product and receive feedback
from the Product Owner during the Sprint Review. Finally, the students are
encouraged to carry out the Scrum ceremonies within the team such as the
Sprint Retrospective.

At the end of the Sprint, it is also possible to calculate several traditional
Scrum metrics such as Velocity, Technical debt, and the Burndown chart, if the
students use the spreadsheet properly. In particular, we focus on studying the
individual project progress of the students through the data recorded on the
spreadsheet.

Exploring the Individual Project Progress of Scrum Software Developers 345

3.3 Project Progress Measurement

To analyze the project progress of a team, we can analyze the number of Story
Points they have done during the Sprint. The spreadsheet used by the teams
allow us to identify the completed User Stories on each day of the Sprint. This
way, we can build a Burndown chart for each team. This chart is a commonly used
measurement tool for planning and monitoring the progress in agile methods [4].

The Burndown chart represents the amount of work remaining that needs to
be accomplished till the end of the Sprint. The horizontal axis shows the days of
a Sprint whereas the vertical axis shows the number of remaining Story Points.
The trend line of remaining Story Points, also known as ideal, indicates whether
the Team will accomplish the tasks committed by the end of the Sprint. Figure 2
shows an example of Burndown chart.

However, this chart is not suitable for studying the individual contribution
of the team members to the overall project progress. This is because the chart
shows the remaining Story Points of the User Stories, and User Stories belong
to all the members of the team. To deal with it, we apply a straightforward
strategy that is focused on the Tasks done by the team members and not in the
User Stories.

The strategy consists in dividing the number of Story Points of each User
Story among their Tasks. For example, if a User Story has been estimated with
5 Story Points and it has 5 linked Tasks, we consider that the amount of work
of each linked Task is 1 Story Point. Figure 1 shows this example. This way, it is
possible to measure the size of a Task in Story Points based on its User Story.
In consequence, we can calculate the number of spent Story Points and build an
individual Burndown chart representing the contribution of the team member
to the project progress.

Using the individual Burndown chart, we study how far the individual project
progress is from the average expected rate determined by the ideal line. To
address this question, we calculate the area of the region between the real and
the ideal progress lines of the Burndown chart. This area is calculated following
the Trapezoidal Rule (Eq. 1) since its result is exact when the integrand is a
linear function.

A =
∫ b

a

f(x)dx ≈ Δx(
y0
2

+ y1 + · · · +
yn
2

) (1)

In our case, a represents the first day of the Sprint and b the last one, f(x) is
the function of interest (i.e. the difference between the ideal and the real progress
lines of the Burndown chart), yn represents the value of f(x) at day n and we
determine the value of Δx according to the intersection of both lines. Thus, the
area of the region between the real and the ideal lines A can be considered as
a measure of the individual progress of a team member. Values closer to zero
indicate better performance whereas further values indicate worst performance.

346 E. Scott and D. Pfahl

4 Results

We explored the data from a pilot study which involved 35 students. The stu-
dents received the initial training in Scrum according to their learning styles by
following the aforementioned procedure. Among the total number of students,
18 were assigned to the active instructional method (12 of them were active stu-
dents and 6 reflective students). The remaining 17 students were assigned to the
passive instructional method (12 of them were active and 5 reflective).

After receiving the tailored instruction, the students were allocated to 8 teams
for developing the same software product. At the end of the first Sprint, we
processed all the data from the spreadsheets. We removed the data of those
students who were not able to record the spent Story Points. We also removed
data outliers of those who spent an excessive number of Story Points (more than
100) since these values are unrealistic. As a result, we analyzed the data about
27 students in total, 13 who received the active instructional method (10 of them
were active and 3 reflective) and 14 who received the passive one (10 of them
were active and 4 reflective).

We computed 27 Burndown charts in total, one chart per student. We also
calculated the value of the area A for each one. We analyzed the arithmetic
mean of these differences with regard to the different learning and teaching style
groups. According to Pashler et al. [10], the evidence about using learning styles
is reliable if the experiment reveals what is commonly known as a cross-over
interaction between the learning style and the instructional method. In this case,
the cross-over interaction occurs when the value of A of students being taught
with a suitable instructional method is lower than students being taught with
an unsuitable method. Table 1 shows these results in terms of arithmetic mean
(x̄) and standard deviation (s2) and Fig. 3 depicts the crossover interaction.

Table 1. Mean and standard deviation of the area between real and ideal.

Active students (x̄± s2) Reflective students (x̄± s2)

Active method 34.89 ± 28.11 54.80 ± 35.43

Passive method 38.24 ± 41.11 57.02 ± 49.58

We also studied the statistical significance of the difference in the mean areas
of both groups: students who were taught with suitable instructional methods
(Group A) and students who were taught in a way that did not correspond to
their learning style (Group B). Therefore, we conducted a t-test for independent
samples. Although the mean of Group A (x̄A = 27.041) is lower than the mean of
Group B (x̄B = 37.216), the results of the t-test show that there is no statistically
significant difference between both means (T = −0.623, p = 0.537). A possible
explanation for this results could be the small samples used.

Exploring the Individual Project Progress of Scrum Software Developers 347

Fig. 3. Distribution of individual project progress according to the instructional meth-
ods and the students’ learning style.

5 Discussion, Limitations, and Conclusion

In this paper, we explored a metric for measuring the individual project progress
of Scrum developers. The metric is mainly based on adapting the traditional
Burndown chart to the individual and then studying the area of the region
between the real progress and the ideal one. We also showed the utility of apply-
ing this metric in a training context, pointing out how learning-styles based
instruction can improve the students’ individual project progress.

Using the proposed metric, we have found interesting differences in the indi-
vidual project progress of students who were exposed to different instructional
methods. Although these results are not statistically significant yet, they suggest
that these differences can be measured in a traditional Scrum environment and
how the individual project progress can be interpreted as a learning outcome.

There are threats to validity that should be carefully evaluated in future
research. As for construct validity, more indicators have to be considered to
determine the individual project progress. We suggest to use this metric as a first
indicator of possible problems and analyze the context to find the root causes of
the problems. Regarding external validity, there are factors that jeopardize the
generalization of the results. In educational contexts, we suggest to use the metric
carefully, bearing in mind that it is only one learning outcome among many
others. Moreover, different groups of individuals are affected by their history,
cultural background, and previous experience differently, and it can conduct to
different conclusions.

In terms of directions for future research, further work could explore the
previous knowledge on Scrum as well as different metrics that allow for measuring
different aspects of the software development process. These aspects are not
only performance indicators such as the number of incomplete tasks but also

348 E. Scott and D. Pfahl

psychological constructs of the developer. In addition, including communication
metrics of the team is a research line worth to explore in order to understand
the problems that can arise in a project.

Acknowledgements. This research was supported by the institutional research grant
IUT20-55 of the Estonian Research Council.

References

1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: The agile manifesto
(2001)

2. Cooley, W.L.: Individual student assessment in team-based capstone design
projects. In: 34th Annual Frontiers in Education, FIE 2004, p. F1G-1. IEEE (2004)

3. Dingsøyr, T., Nerur, S., Balijepally, V.G., Moe, N.B.: A decade of agile method-
ologies: towards explaining agile software development (2012)

4. Downey, S., Sutherland, J.: Scrum metrics for hyperproductive teams: how they
fly like fighter aircraft. In: 2013 46th Hawaii International Conference on System
Sciences (HICSS), pp. 4870–4878. IEEE (2013)

5. Felder, R.M., Silverman, L.K.: Learning and teaching styles in engineering educa-
tion. Eng. Educ. 78(7), 674–681 (1988)

6. Gamble, R.F., Hale, M.L.: Assessing individual performance in agile undergraduate
software engineering teams. In: 2013 IEEE Frontiers in Education Conference, pp.
1678–1684. IEEE (2013)

7. Hayes, J.H., Lethbridge, T.C., Port, D.: Evaluating individual contribution toward
group software engineering projects. In: Proceedings of the 25th International Con-
ference on Software Engineering, pp. 622–627. IEEE Computer Society (2003)

8. Laanti, M.: Agile and wellbeing-stress, empowerment, and performance in Scrum
and Kanban teams. In: 2013 46th Hawaii International Conference on System Sci-
ences (HICSS), pp. 4761–4770. IEEE (2013)

9. Mahnic, V., Vrana, I.: Using stakeholder driven process performance measurement
for monitoring the performance of a scrum based software development process.
Electrotech. Rev. 74(5), 241–247 (2007)

10. Pashler, H., McDaniel, M., Rohrer, D., Bjork, R.: Learning styles concepts and
evidence. Psychol. Sci. Public Interest 9(3), 105–119 (2008)

11. Scott, E., Rodŕıguez, G., Soria, Á., Campo, M.: Towards better scrum learning
using learning styles. J. Syst. Softw. 111, 242–253 (2016)

12. Stellman, A., Greene, J.: Learning Agile: Understanding Scrum, XP, Lean, and
Kanban. O’Reilly Media Inc., Sebastopol (2014)

13. Trendowicz, A., Münch, J.: Factors influencing software development productivity -
state-of-the-art and industrial experiences. In: Advances in Computers, vol. 77,
pp. 185–241 (2009)

14. VersionOne: 11th annual state of agile survey (2017). https://explore.versionone.
com/state-of-agile

https://explore.versionone.com/state-of-agile
https://explore.versionone.com/state-of-agile

Software Testing

Is 100% Test Coverage a Reasonable
Requirement? Lessons Learned
from a Space Software Project

Christian R. Prause1(B), Jürgen Werner2, Kay Hornig2, Sascha Bosecker2,
and Marco Kuhrmann3

1 German Aerospace Center, Bonn, Germany
christian.prause@dlr.de

2 Test Spacecom GmbH, Backnang, Germany
{Juergen.Werner,Kay.Hornig,Sascha.Bosecker}@tesat.de

3 Institute for Applied Software Systems Engineering,
Clausthal University of Technology, Goslar, Germany

kuhrmann@acm.org

Abstract. To ensure the dependability and safety of spaceflight devices,
rigorous standards are defined. Among others, one requirement from the
European Cooperation for Space Standardization (ECSS) standards is
100% test coverage at software unit level. Different stakeholders need to
have a good knowledge of the implications of such a requirement to avoid
risks for the project that this requirement might entail. In this paper, we
study if such a 100% test coverage requirement is a reasonable one. For
this, we interviewed the industrial developers who ran a project that had
the sole goal of achieving 100% unit test coverage in a spaceflight soft-
ware. We discuss costs, benefits, risks, effects on quality, interplay with
surrounding conditions, and project management implications. We dis-
till lessons learned with which we hope to support other developers and
decision makers when considering a 100% unit test coverage requirement.

Keywords: Validation and verification · Software quality · Unit
testing · Test coverage · Expert interviews · Spaceflight · Software
criticality · Process requirements

1 Introduction

Software has become key to spacecrafts. It is the devices’ brain that, among other
things, maintains altitude and orbit, reads and analyzes sensor data, and controls
the hardware. In particular, software is key to detect, isolate, and recover from
unexpected situations and failures and, eventually, software ensures communi-
cation with ground stations. Due to the special environment, once deployed, a
spacecraft has to ‘survive’ autonomously. Maintenance of its hardware is—if at
all possible—impractical.

More fatal than crashing software is software that performs in the wrong
way, as it may give commands that destroy a device or the whole spacecraft.
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 351–367, 2017.
https://doi.org/10.1007/978-3-319-69926-4_25

352 C.R. Prause et al.

For instance, recently, the Hitomi telescope was erroneously commanded by its
software to start spinning faster and faster until it disintegrated [22]. A software
problem caused the recent crash of the Schiaparelli lander, which prematurely
released its parachute several hundred kilometers above ground: Contradicting
calculations of sensor data made the navigation software erroneously assume the
lander had already touched Mars’ surface [20]. Another software problem hit the
Mars rover Spirit 18 Sols1 after landing. The rover was caught in the rebooting
cycle as it could not read a full fixed-memory block. The rover successfully passed
a 10-Sol test concerning exactly this kind of problem prior to landing, yet, the
memory bank was full at Sol 18, and the rover could only be put back into
operation by using some ‘backdoors’ in the system [1]. Hence, software failures in
space devices can be costly. Malfunctioning spacecrafts, moreover, may seriously
threaten human life or the environment, e.g., remnants of space probes orbiting
Earth endanger other satellites2, uncontrolled reentry might endanger whole
regions, e.g., ROSAT’s uncontrolled reentry [18], and so forth. Software of a
space device has to be dependable (i.e., reliable, available, and maintainable)
and safe. To ensure high dependability and safety, space software and systems
are developed under a strict quality and product assurance regime according to
an extensive system of standards [19].

Context. The standards of the European Cooperation for Space Standardization
(ECSS) are a coherent and comprehensive collection of standards addressing all
areas of spaceflight. At the highest level, the ECSS standards are divided into
management, engineering, and product assurance (quality) branches, and fur-
ther subdivided into so-called areas. Each standard comprises a large number of
requirements prescribing what is to be achieved. The standards ECSS-E-ST-40C
(Software Engineering; [6]) and ECSS-Q-ST-80C (Software Product Assurance;
[8]) address the development and product assurance of software for space appli-
cations. One of the standards’ requirements for highly-critical software is that
“100% code branch coverage at unit testing level” must be achieved. However,
ECSS prescribes 100% for classes3 A and B only [6], but leaves coverage for
classes C and D open to negotiation. Achieving a high—or even a full—coverage

1 A Sol is a day on Mars, which is 24 h 37 min, while a day on Earth is 23 h 56min.
The time unit Sol is used to run Mars operations and to not have the demand of
continuously converting time.

2 Estimates mention more than 500,000 pieces of junk, so-called ‘space debris’, orbiting
Earth at high speeds of dozens of km/s [17]. Due to their extreme speeds, the kinetic
energy of even small particles of only a few millimeters can cause impact craters of
several dozen centimeters on the spacecraft, and lead to fatal and catastrophic effects
like disintegration of the target.

3 The ECSS standards define four levels for criticality from A to D (ECSS-Q-ST-30C
[7]). For instance, criticality class A comprises catastrophic events, e.g., loss of life,
launch site facilities, or the entire spacecraft. Class B is for the risk of losing the
ability to perform the mission (loss of mission), and Class C for a major mission
degradation. The LCT system, which is the subject of this paper (see Sect. 2) is
classified as B (system), and its software as C.

Lessons Learned from a Space Software Project 353

is demanding, though. Adopting Tom Cargill’s 90/90 rule [4] to unit testing,
one could state: The first 90% of the unit test code accounts for the first 90% of
the development time. The remaining 10% of the unit test code accounts for the
other 90% of the development time. So, what happens, if contracting bodies ask
for a 100% unit test coverage?

Contribution. In this paper, we report lessons learned from a space software
project that had the goal of reaching a test coverage of 100% using unit tests for
the flight software of a laser communication device (LCT). While the project very
closely reached the goal of 100% test coverage (>99.5%), the effort turned out to
be tremendous. Two developers spent two years developing the unit tests for a
software of about 25,000 lines of code. Using semi-structured expert interviews,
we studied how the project incrementally increased the test coverage to achieve
the 100%-goal. We present lessons learned to stimulate a critical discussion about
cost, benefits, and reasonableness of the 100% test coverage requirement.

Outline. The remainder of the paper is organized as follows: Sect. 2 provides
the background of the project reviewed. Section 3 presents the research design,
before we present our findings in Sect. 4. Section 5 discusses related work. Finally,
Sect. 6 concludes the paper.

2 Background

The ‘information society’ relies on data and data exchange; and the amount
is increasing year-by-year. More than 100 communication satellites in service
build the communication backbone providing communication, bringing internet
to remote locations, and broadcasting tens of thousands of television and radio
programs worldwide.

The Copernicus program of the European Commission aims to establish a
European capacity for earth observation by providing atmosphere, maritime,
land, climate, emergency and security services. Several Sentinel satellites are the
program’s heart and produce large amounts of data. For instance, Sentinel-2A
orbits Earth at an altitude of 786 km, delivering optical images on 13 spectral
channels at a depth of 12 Bit per channel at resolutions of up to 10 m. A typical
image is a tile of 100 km2, or approx. 500 MB. A setup of two Sentinel satellites
generates up to 1.6 TB of compressed raw image data per day, or 160 MBit/s con-
tinuously. Having access to imagery as quickly as possible is crucial for a number
of Copernicus applications. However, earth’s curvature prevents continuous radio
communication with ground stations in Europe (broken line-of-sight) [9].

Laser Communication. To overcome this limitation, Sentinel satellites use the
European Data Relay System (EDRS). EDRS features geostationary satellites
at 36,000 km altitude that have a permanent link to European ground stations
(Fig. 1). EDRS and Sentinel satellites carry novel Laser Communication Ter-
minal (LCT) devices to establish laser links among one another to overcome

354 C.R. Prause et al.

Fig. 1. Sentinel and AlphaSat satellite link, and relay to Earth (source: Tesat Space-
com GmbH).

Fig. 2. The Laser Communication Terminal (source: Tesat Spacecom GmbH).

bandwidth limitations and to reduce off-line windows (Fig. 2). LCT devices allow
for data transfer rates of up to 1.8 GBit/s. For this, the LCT laser has to hit
a target of 200 m in diameter from a distance of 45,000 km, which corresponds
to a moving 2-Euro coin from a 6.8 Km distance. Besides ‘housekeeping’ activi-
ties, the LCT software is primarily responsible for laser-targeting and controlling
the hardware, e.g., power management or controlling the coolant system for the
laser. Using software allows for precise targeting of the laser and, moreover,
the software allows for compensating degrading hardware, and failure detection,
isolation and recovery (FDIR).

Lessons Learned from a Space Software Project 355

The LCT Device. LCT plays a key role for the Sentinel and EDRS satellites, and
for the Copernicus program as a whole. Due to the criticality, software quality
is crucial and, therefore, quality assurance is a vital part of the system’s devel-
opment. Development of the LCT device itself stretched over several projects
and lasted longer than a decade, resulting in several changes of key personnel.
Furthermore, the LCT project involves several stakeholders: The LCT devices
are developed by Tesat Spacecom GmbH, which was contracted by the national
space agency, the German Aerospace Center (DLR) that also defined the quality
requirements. Those requirements are, basically, grounded in ECSS standards,
yet differ in some aspects, and, in particular, are tailored to project character-
istics according to different technical, programmatic and risk criteria [19]. The
Sentinel 2 and EDRS-A satellites that host the LCTs are manufactured by Air-
bus DS on behalf of the European Space Agency (ESA), which applies mostly
unmodified ECSS.

Within the conglomerate of partners involved and standards to implement,
the ECSS standards received a major revision (Issue B to Issue C) while the
LCT devices were produced. The new revision makes test coverage a first-class-
citizen. Even though LCT was rigorously quality assured4, the manufacturer did
not yet collect test coverage data. This led to a situation in which test coverage
was unknown while contracting agencies insisted on the new 100% test coverage
requirement and proving its fulfillment. To overcome this situation, an agreement
among the involved parties was made to initiate a separate project, which had
the goal of increasing test coverage to 100% before the launch of the satellite.

3 Research Design

This section describes our research design, starting with describing the research
objective and the research questions in Sect. 3.1. Section 3.2 describes the data
collection procedures, including the interview instrument and the subjects selec-
tion. The analysis procedures are described in Sect. 3.3, and we discuss threats
to validity in Sect. 3.4.

3.1 Research Objective and Questions

The overall objective of this study is to shed light on what a 100% coverage-
requirement entails. We aim to study whether 100% test coverage is a reason-
able requirement, what experienced practitioners “normally” consider good/high
quality, and what benefits practitioners see in going beyond “normal” coverage

4 The product assurance process performed so far includes several parties and pro-
cedures. The device manufacturer’s product assurance reports to and is supervised
by the customer’s product assurance (cf. [19]). Further involved on satellite-level are
the customer’s and the prime contractor’s product assurance. At the technical level
V&V activities include, inter alia, static analyses, verification controls’ and reviews.
At device level, separate test teams carry out software tests in isolation and as part
of the integrated device prior to shipment for full integration and system testing.

356 C.R. Prause et al.

and towards 100%. We collect information about the practitioners’ perception of
the requirement’s effects on costs, benefits, risks, its interplay with surrounding
conditions, and project management implications. Hence, the overall research
question investigates:

RQ: Is 100% test coverage a reasonable requirement?

3.2 Implementation

The study was conducted as semi-structured interview with experts in a 2-day
workshop. We talked to all interviewees separately.

Interview Instrument. Table 1 shows the guideline of the semi-structured inter-
view. The table shows the eight top-level ‘entry’ questions and (selected) detailed
questions. In total, the guideline comprises a maximum of 66 questions in eight
categories to ensure all relevant topics are addressed in every interview. In the
interview, the participants were asked the entry question of the respective cat-
egory to start the conversation. The interviewers traced the guideline and only
asked follow-up questions from the question pools if information was not pro-
vided or if responses required clarification.

Interview Subjects. This paper reports on the interviews with the project’s core
personnel, i.e., the two developers and the project manager. For the developers,
it was their first space project. The project manager already had a few years
of experience in the space domain. All interviewees previously worked in other
embedded software domains, mostly automotive software. They all look back on
an industrial development experience of 10–25 years, working primarily with the
languages C and C++ (C is the predominant language in space projects).

Interview Procedure. Before the interviews, we informed interviewees about the
interview and its purpose, and asked them to prepare themselves. Participation
was voluntary; no test development team member opted out. The interviews were
conducted individually and face-to-face at the company’s site and took between
60–90 min. One researcher preceded the interview using the guideline. The sec-
ond one made short notes and only asked clarifying or follow-up questions. Each
interview was audio recorded. Finally, all participants were summoned for a
wrap-up session to clarify possibly remaining open points, ask things we might
have missed, and to provide room for further discussion.

Project Performance Data. Complementing the qualitative data collected in the
interview, we had access to project performance data, notably, the test coverage
statistics. These data sets were included in our analysis to complement and to
help interpret the qualitative data.

Lessons Learned from a Space Software Project 357

Table 1. Summary of the interview guideline, including (selected) detailed questions
used to drive the interview.

358 C.R. Prause et al.

3.3 Analysis Procedures

To qualitatively analyze the interview data, both researchers performed an initial
review to plan the transcription and to revise the data analysis plan. A secretary
was appointed to transcribe the interviews, which was performed interactively
with regular consultations and quality assurance on (tentative) results. Based
on the transcripts, we qualitatively analyzed the data to extract the required
information and to answer the research questions. Project performance data
amended the analysis5.

3.4 Validity Considerations

The lessons learned are based on the experts’ opinions expressed during the inter-
views. Although the experts are experienced industrial developers, we still convey
opinions related to one particular project only. The interviews were conducted
during the final week of the project. One of the interviewers was also the cus-
tomer’s appointed software quality manager during the project. While this situa-
tion possibly affected interviewees’ responses (see also disadvantages of interviews
as stated in [23]), it has to be noted that the project was conducted primarily on
demand from the prime/satellite customer. To improve the objectivity of the inter-
view, an external researcher, who was not involved in the project, was called in.
Due to this interview setup, the participants could speak rather freely. The inter-
views were conducted in the participants’ mother tongue (German), and quotes
presented in this paper were translated to English from the German interview
transcripts afterward. We tried to preserve as many intricacies of the responses as
possible, yet, there is the risk that a few subtleties have been lost during transla-
tion. The interviewees were given the opportunity to review the completed paper,
and encouraged to provide clarifications and comments.

4 Results

In this section, we analyze quantitative project performance data (Sect. 4.1)
and condense lessons learned based on qualitative findings from interviews in
Sect. 4.2.

4.1 Quantitative Data

The project tracked test-coverage progress on a daily basis. This resulted in
approx. 400 data points covering approx. 700 days. The actual project duration
was longer than two years because of the necessary management activities (ramp-
up times, creation of documents, reviews, delivery and acceptance, etc.). Figure 3
plots the percentage of code covered. The curve is quite linear for the most part
of the project. However, it bends when it reaches approximately 90% of coverage.
This indicates that the last few percent of coverage require significantly more
effort.
5 Due to the sensitivity of the data, we only present excerpts and anonymized results.

Lessons Learned from a Space Software Project 359

Fig. 3. Statement and branch coverage over time.

Figure 3 also compares statement coverage to branch coverage. Branch cover-
age was not monitored in the first place. The data shows that—by its nature—
it tends to be a bit lower than statement coverage if not monitored. At the
same time, however, it is not far out. Once monitored, branch coverage can
be improved in conjunction with statement coverage without much additional
effort. This changed upon reaching approx. 90% of coverage, when branch cover-
age started to fall behind, until it again catches up when getting closer to 100%.
As stated in the interviews: “In the beginning, coverage increased quite linearly.
Of course, there were some disturbances [e.g., Christmas]. But the last few per-
cent were really difficult.” The unit test development project found between 20
to 30 issues that could have been interpreted as actual errors. Less than three of
these errors detected were considered having a potentially serious impact on the
device’s functionality. The project caused a development effort of four person
years plus support staff for about 25,000 lines of code (LoC).

4.2 Lessons Learned

This study aimed at collecting experience from a project in which a test coverage
of 100% should have been achieved in order to meet requirements defined by an
external standard. From the qualitative analysis of the interviews conducted, we
extract the following lessons learned.

100% Coverage Is Unusual but Achievable. To start the interviews, we
asked participants if they ever faced a similar requirement before. Prior to this
project, all participants worked for different companies. Yet, all of them faced

360 C.R. Prause et al.

“such a requirement for the first time, and for the first time it was stated that
explicitly.” Furthermore, neither have they faced “such a high coverage ratio”
before nor did they have to realize it “in this way, as a follow-up project.” In
their previous experience, coverage “was not directly being looked at”, and “was
an issue only in the area of [complex electronics, i.e.,] ASIC and FPGA”.

Asked what they consider a ‘normal’ coverage, the participants had difficul-
ties in naming a precise number, as “it depends on what one wants to achieve”.
As a general reference, the participants mentioned it “may be around 80% [. . .
because] the effort per percentage point of coverage, typically increases dramati-
cally towards the end of a project.” Yet, one participant stated that, in general,
referring to all static and dynamic verification techniques available, “when you
have reached more than 90%, you are doing well.” This raises the discussion,
what ‘good’ coverage is after all; because over the last decades, the threshold for
what constitutes a ‘good’ coverage ratio may have risen: “With reasonable effort,
I would say 90% is a lot. In this project here, everything went smooth until we
reached 95% and then it became difficult, because you start to deal with the code
that is difficult to reach. [. . .] My experience in early years was that 85% was
excellent.”

Nevertheless, participants basically agreed that a 100% coverage can be
achieved. Nitpicking, the project reached “only” a coverage of 99.9% and one
participant stated: “100%—you can say good-bye to that—but 100 minus epsilon
is probably possible.”, but another one disagreed: “100%, and I really mean 100
dot zero percent, is definitely achievable.” In fact, true 100% or 100%-epsilon, is
probably an academic question, as from a practical perspective other problems
are more relevant.

100% Coverage Is Sometimes Necessary. One participant considers 100%
as “a necessary, but not a sufficient condition for quality”. He explained that
coverage “should be 100%” because otherwise there is the “risk of fair-weather
tests [. . . , i.e.,] that potentially the most complex, hardest to understand, or most
difficult to reach functionality is left untested.” If less was the target, developers
might “pick the 80% most beautiful tests that they can wangle most easily, [. . . and
think that as they] satisfied the metric, now everything is fine.” The remaining
20%, “what harm can it do?”. But if “the remaining 20% are full of bugs”, then
the other 80% are useless.

However, all participants were in agreement that “for criticality class A, i.e.,
loss of human live or catastrophic consequences, I would demand 100%”. Also “a
high financial loss” was seen as justification. But for criticality class B—“i.e.,
loss of mission, that is an economic loss” or for “a smaller satellite that just
orbits some place where nobody cares”, participants agreed that “less may be
potentially fine.” One participant, however, mentioned that “one should always
target 100%. The reason is: if I aim at less than 100%, what do I leave out? How
do I justify not testing something?”

Lessons Learned from a Space Software Project 361

100% Coverage Brings in New Risks. All participants agree that the 100%
coverage requirement introduces risks to a project. In particular, the participants
saw a risk to the schedule, i.e., that they might “lock jaws in some problem and
let the project slip out of control already at its beginning.” A development team
needs to be aware of and have a strategy to cope with this risk. Moreover, they
all agreed that a fixed and high coverage ratio imposes a financial risk as it is
difficult to say in advance what and how many “hard nuts” are in the project. If
developers “postponed the difficult things”, the real difficulties will start at some
point. This point may be somewhere between 80% and 95% (so-called Pareto
Principle6) and the 100% coverage requirement is likely beyond this point. In
the studied project, two developers required two years to achieve 100% coverage
for about 25,000 lines of code. A customer demanding this should know that “it
will cost a lot. It is going to be expensive”.

Don’t Optimize for the 100%-Metric. On the one hand, a clear point was
made: “100%: it sounds really good. But I think those who demand it, do not
know what they are asking for.” On the other hand, participants mentioned
several risks of setting a 100%-requirement. Therefore, it is necessary that all
stakeholders understand the implications of such a requirement. As mentioned
before, the higher the coverage, the more expensive. The question is, however,
whether this relationship is linear. The project curve in Fig. 3, which is extracted
from the project performance data, is fairly linear and just bends at about 90%.
The remaining 10%, however, do not account for about 80% of project effort.
Consequently, the Pareto principle only applies very roughly here. This is in
contrast to a quick analysis we did in preparation of the test coverage project. On
the basis of test coverage data from a randomly chosen open source project, we
found that to ‘organically grown’ unit tests (i.e., without using coverage metrics)
the Pareto principle seems to fit better. While more rigorous verification of this
observation is needed, it seems that the use of metrics effected the relationship
between effort for developing tests and coverage. The use of metrics seems to be
responsible for the linear relationship for most of the project duration. While
using coverage measurements during the project made good (linear) progress
possible, optimizing for a metric might have hidden downsides (see Sect. 5).

In the same vain as ‘standard’ discussions on metrics, 100% coverage is also
just a metric, and focusing too much on it could mean that one “loses track of
the actual goal; which is to increase the quality.” Instead, testers might know
best where to find bugs and how to use their “available resources so that he will
find all errors.” A misunderstood metric can create a sense of false security: “I
just want to say that I think it is bad to say: Now we have 80% unit tests, now
it’s fine.” A high coverage is not a guarantee of good quality.

6 This is also called the “Pareto principle”; according to Joseph M. Juran who proposed
the 80/20-rule, which roughly says that the first 80% are easy to achieve while the
remaining 20% are not.

362 C.R. Prause et al.

Develop a Proper Strategy to Maximize Coverage. Monitoring using
metrics is important and a prerequisite to achieve a high coverage. However,
aiming at high coverage also requires an appropriate development approach.
When production code is developed, testing must already be planned to avoid
problems that the participants faced in the project: “Testability is a goal that one
actually has to code into the code. It does not come automatically, along the way,
or for free. It is a goal that one must prescribe.” Furthermore, when setting a test
coverage requirement, customers should be careful that a plain 100% coverage
may be too undifferentiated: “What can be tested very well with unit tests is
business logic [e.g., a PI controller7] because it abstracts from the hardware and
the operating system, and because it can be reused. Here unit tests make a lot of
sense” and are “economically reasonable”. “The hardware [. . .] and the operating
system, and all the things at those lower layers are hard to test, and require a lot
of effort, and they are not really what unit tests are intended for. You leave these
things out, and the resulting percentage is what is economically reasonable.” So,
if there is “10% hardware-specific stuff, [. . .] 90% are good tests.”

This includes that a test strategy has to pay attention to the different sys-
tem parts. Hence, the participants also argued for considering a combination of
different V&V techniques: unit tests are not an end in itself, but should be con-
sidered in the scope of the whole V&V ecosystem, where they complement each
other. For example, “reading from or writing to a register, [. . .] these are things
[. . .] on a different level. They will certainly be caught by integration tests,” and
“there were integration tests that covered large areas”, so unit tests do not find
many errors (see Sect. 4.1). Instead, “unit tests were done to ensure certification
of the software.” One may also consider the metric results of other static and
dynamic “verification techniques that have a notion of coverage”. In this regard,
the role of unit tests was also critically discussed by the participants: test-driven
development leads to a high coverage (“we certainly would have had 90%”) but
does not lead to 100%. It is “not relevant whether or not you really reached
100%, but that interfaces were covered”.

Eventually, even though a strategy needs to be in place to achieve a high
coverage, our participants ended up with a fairly pragmatic approach: Do easy
things first. One participant noted that “it is normal: first one does the things
that can be easily done.” It allows the team “to get into a decent flow, [. . .] to
carve out some lead initially, to be able to crack the hard nuts at the end.” If, at
some later point, the project should “slip out of control”, it could be easier for
negotiations if good progress has been made so far. Nonetheless—also regarding
the ‘special’ setup of the studied project—the findings from the interview, again,
confirm the saying: You can’t test quality into a product. It has to be built in
right from the start. The participants noted that unit testing cannot “be done
after the code freeze [. . . when] not a single bit is allowed to be changed.” Testing

7 A proportional-integral (PI) controller is a control loop feedback mechanism that
continuously computes the difference between an expected and an actual value for a
variable (e.g., temperature, electrical current flow, angles,...) and applies a correction
based on proportional, integral, and derivative terms.

Lessons Learned from a Space Software Project 363

“has to happen in parallel, or [. . . as] test after coding. [. . .] It all depends on
when one starts with the tests.” An extreme target value of 100% must be set
early on and reflected in the quality assurance approach, or, otherwise, it may
cause serious trouble.

100% Coverage Is Not a Sufficient Condition for Good Quality. The
participants concluded that “100% coverage is not a sufficient condition for
good quality.” In fact, it might “have a slight impact on quality” because in
the “extreme case, one can achieve 100% coverage by just’running all code’ but
without doing a single test.” One just “claims that one tested something” but
only shows that “the functions did not crash”. It does not necessarily mean that
“the software/the functions really do what they are supposed to.” Hence, coverage
is “a start, [. . . but] one may not forget, there is also test depth. Test depth is
difficult to measure.”

5 Related Work

According to Bennet and Wennberg [3], bug-fixing cost increases by magnitudes
in later system lifecycle stages. In particular for space systems, however, bug-
fixing cost could mean the system’s cost in total, as a software failure might
cause a complete system loss, e.g., as recently happened to ESA’s Schiaparelli
lander [20].

Therefore, rigorous software quality assurance as part of the overall prod-
uct assurance is crucial. Hence, and as also found in our interviews, a 100%-
coverage can be a reasonable requirement. However, the implications need to be
considered as well, especially concerning the efficiency and effectiveness of the
instrument (i.e., unit test) on the project’s operation. For instance, Gokhale and
Mullen empirically investigated the marginal value of increased testing [12]. In
their tests, they observed an asymptotic convergence of test coverage towards
100%. The marginal coverage as a function of the number of tests decreases
logarithmically, reaching almost zero at about 1,000 tests. Approximately linear
growth of coverage ends between 50% and 80% of coverage. However, Arthur
Lowell stated ironically that “20% of the code has 80% of the errors. Find them,
fix them!” [2]. If he is right, then just a few percent of uncovered code might
still contain many (critical) errors (see also [5]). And, eventually, Mockus et al.
[16] found that, on the one hand, cost increases dramatically if achieving higher
coverage rates, but on the other hand, reduction of field issues increases lin-
early. They conclude that, for most projects, (economically) optimal coverage
rates are below 100%. However, it has to be mentioned that, to the best of our
knowledge, test coverage and its economic implications to the space domain has
not yet been investigated in detail as most of the papers listed above are con-
cerned with ‘normal’ software-intensive systems. For instance, although Mockus
et al. [16] might be right, in the space domain, even one ‘field issue’ might lead
to a complete system loss. Referring to the Schiaparelli lander [20], there is no
bug-fixing strategy; the probe is just gone.

364 C.R. Prause et al.

Practitioners also have to be careful to not be trapped in ‘chasing the rabbit’.
In particular, Marick [14] describes the misuse of coverage metrics, e.g., in the
problematic different perception of developers, managers, and product testers,
and their respective constraints and requirements. He makes a clear statement
that coverage (tools) should enhance thought, not replace it. On the other hand,
Martin [15] demands a high coverage to be a goal of any professional development
team. Yet, he is often criticized for this opinion, since people argue that a high
coverage does not necessarily lead to meaningful tests. In this regard, the 2016
Software Testing Technology Report by Vector Software [21] makes a strong
statement that one of the most misunderstood issues with code coverage is its
relevance to software quality. Authors conclude that a 100% code coverage should
not be the goal of software testing, rather than the result of complete testing—a
statement that we also found in our interviews.

Regarding the strategy to achieve a high coverage, our study revealed a fairly
pragmatic approach. This comes as no surprise, as recent research illustrated a
significantly different perspective on software testing [11]. That is, even though
using the same terminology, industry and academia quite often put emphasis
on different ‘things’. On the other hand, empirical evidence on particular meth-
ods/approaches is rare. For example, Fucci et al. [10] found no difference in apply-
ing test-first or test-last approaches. Only thing that counts is the granularity
(and quality) of the work packages and requirements specifications. Further-
more, even though driven by standards, quite often, safety-related requirements
are implemented and assured in a mixed approach. For instance, Ingibergsson
et al. [13] found a discrepancy between method- and development-level imple-
mentation of standards to adhere to quality requirements in the field of
autonomous robotics—providing further support for [11]. Also, our interview
participants emphasized the importance of combining different testing tech-
niques, and that an improved combination of different verification and validation
approaches (including e.g., static analyses), would be wiser than a fairly ‘acad-
emic’ (not to say ‘bureaucratic’) 100% coverage requirement; maybe even more
efficient.

The paper at hand thus adds to the body of knowledge by studying high
test coverage ratios in the domain of software and system development for space
systems. This paper adds an experience report and lessons learned from a space
project and shows a still present need to study (economic) reasonableness of a
100% coverage goal.

6 Conclusion

Space systems are critical systems that require substantial quality assurance
during development. If errors occur, such systems might be completely lost.
However, what is substantial quality assurance? According to the ECSS stan-
dards, software for space systems shall have 100% test coverage (for criticality
classes A and B). Is this a reasonable goal? In order to answer this question, we
studied a project performed in which a software system’s test suite was to be

Lessons Learned from a Space Software Project 365

improved towards meeting a 100% unit test coverage goal. Eventually, the team
managed to achieve >99.5% test coverage (statement and branch coverage), yet,
it became obvious that the effort required to implement such a comprehensive
test suite was tremendous. Therefore, we wanted to reflect on the project and
we wanted to study if the 100%-goal is a reasonable one.

This paper presents the findings of an interview study performed at Tesat
Spacecom in the final phase of the LCT project (Sect. 2). Our leading question,
“Is 100% test coverage a reasonable requirement?” was studied from different
perspectives, e.g., need for 100% coverage, break-even points, and strategies to
achieve this goal. The interviews provided numerous of valuable insights from
which we condensed a set of lessons learned. There is some justification for
setting 100% coverage as a requirement. However, a plain 100% requirement
may be too undifferentiated, and one should really understand the effects and
possible alternatives (which might find possible errors more cost-efficiently). In
a nutshell, our interviews resulted in the following key lessons:

– 100% coverage is unusual but achievable
– 100% coverage is sometimes necessary
– 100% coverage brings in new risks
– Don’t optimize for the 100%-metric
– Develop a proper strategy to maximize coverage
– 100% coverage is not a sufficient condition for good quality

Our findings include that there seems to be a break-even point between 80% and
95%, and everything beyond this points is increasingly costly and could introduce
new project risks—which confirms findings reported so far in literature (Sect. 5).
However, the interview revealed that, still, 100% coverage can be a reasonable
quality requirement; even though a 100% requirement is not a good indicator
for the software quality as such. Especially for dependable systems, the decision
to test less also includes a decision of what not to test, i.e., which parts of the
system to exclude from the tests. Feedback from an author of the test coverage
requirements in ECSS standard was: Only the idea that some statements may
never have been exercised at all by any test should be a source of anxiety.
Yet, such a rule should not be taken and applied too literally, and be discussed
carefully.

Furthermore, we found the participants arguing that 100% should not become
a ‘formal’ goal only, which leads to a situation in which just a metric is optimized.
100% coverage should always be the result of good testing but it makes few sense
as a goal in itself. So how should the issue be treated on the contractual and
standards level? As a customer, one wants to have 100% unit test coverage but
achieving it by a formal demand (requirement) does not guarantee quality.

Moreover, the test depth and applying different V&V techniques should be
considered. Nonetheless, all participants agreed that lifting the unit test coverage
to 100% ex-post has to be criticized (time, effort, no options to change the
software due to already performed certification). If a high coverage must be
achieved in a project, the respective approach needs to be defined upfront and
implemented continuously.

366 C.R. Prause et al.

Finally, regarding the question whether or not the ECSS goal of 100% test
coverage is reasonable: if there is only a small chance to avoid an extreme risk
from materializing, it should be seized. However, when resources are limited, one
has to make the decision whether effort should be spent on increasing the unit
test coverage ratio, or to better put emphasis on other V&V activities. Hence,
the answer to the question whether 100% is a reasonable requirement still is: “It
depends”.

Limitations. As stated in Sect. 3.4, our interview only covers one particular
project, which was in the special situation that the high degree of test coverage
had to be achieved ex-post. Furthermore, we only interviewed one project team.
Hence, our findings are grounded in a few developers’ opinions and, therefore, are
hard to generalize. Also, in the project studied, 100% coverage was not required
from the beginning. That is, it remains unclear if the lessons learned would be
the same if a project starts with such a requirement right from the beginning.
Finally, further implications on the system as such were not in the scope of this
study.

Future Work. As part of the future work, we plan to include the remaining
interviews conducted with project support personnel into the evaluation. Fur-
thermore, since the interviews revealed numerous interesting findings not directly
aligned with the major research question, future work will put more emphasis
on the other parts of the interviews. We also want to investigate links between
techniques like “defensive programming” and their effect on coverage, and as a
justification for not achieving 100% coverage. Finally, even though we already
collected and presented some qualitative data (Sect. 4.1), we also plan to include
more quantitative data into the study to gather further insights. We might still
be able to obtain and to take into consideration some data that has high corre-
lation with hard-to-test modules, like complexity, nesting depth, fan-in, fan-out,
etc.

Acknowledgements. We thank our colleagues Karin Schmitz for transcribing the
several hours of recorded interviews, and Björn Gütlich and Sabine Philipp-May for
supporting our undertaking.

References

1. Adler, M.: Spirit Sol 18 Anomaly, September 2006. http://web.archive.org/web/
20110605095126/www.planetary.org/blog/article/00000702

2. Arthur, L.J.: Quantum improvements in software system quality. Commun. ACM
40(6), 46–52 (1997)

3. Bennett, T., Wennberg, P.: Eliminating embedded software defects prior to inte-
gration test. Qual. Assur. Inst. J. (2006)

4. Bentley, J.: Programming pearls. Commun. ACM 28(9), 896–901 (1985)
5. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34(1),

135–137 (2001)

http://web.archive.org/web/20110605095126/www.planetary.org/blog/article/00000702
http://web.archive.org/web/20110605095126/www.planetary.org/blog/article/00000702

Lessons Learned from a Space Software Project 367

6. ECSS-E-ST-40 Working Group: ECSS-E-ST-40C: Space engineering - Software.
Standard, ECSS Secretariat, March 2009

7. ECSS-Q-ST-30 Working Group: ECSS-Q-ST-30C: Space product assurance -
Dependability. Standard, ECSS Secretariat, March 2009

8. ECSS-Q-ST-80C Working Group: ECSS-Q-ST-80C: Space product assurance -
Software product assurance. Standard, ECSS Secretariat, March 2009

9. ESA: Sentinel online (2017). https://sentinel.esa.int
10. Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A dissection of test-

driven development: does it really matter to test-first or to test-last? IEEE Trans.
Softw. Eng. (2017, in Press)

11. Garousi, V., Felderer, M.: Worlds apart: a comparison of industry and academic
focus areas in software testing. IEEE Softw. (2017, in press)

12. Gokhale, S.S., Mullen, R.E.: The marginal value of increased testing: an empirical
analysis using four code coverage measures. J. Braz. Comput. Soc. 12(3), 13–30
(2006)

13. Ingibergsson, J.T.M., Schultz, U.P., Kuhrmann, M.: On the use of safety certi-
fication practices in autonomous field robot software development: a systematic
mapping study. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PRO-
FES 2015. LNCS, vol. 9459, pp. 335–352. Springer, Cham (2015). doi:10.1007/
978-3-319-26844-6 25

14. Marick, B.: How to misuse code coverage. In: Proceedings of the 16th International
Conference on Testing Computer Software, pp. 16–18 (1999)

15. Martin, R.C.: The Clean Coder: A Code of Conduct for Professional Programmers.
Pearson Education, Upper Saddle River (2011)

16. Mockus, A., Nagappan, N., Dinh-Trong, T.T.: Test coverage and post-verification
defects: a multiple case study. In: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pp. 291–301, October 2009

17. NASA: NASA Missions: Space Station, September 2013. https://www.nasa.gov/
mission pages/station/news/orbital debris.html

18. NBC News: German satellite crashed over Asia’s Bay of Bengal, October 2011.
http://www.nbcnews.com/id/45032034/ns/technology and science-space

19. Prause, C.R., Bibus, M., Dietrich, C., Jobi, W.: Managing software process evo-
lution for spacecraft from a customer’s perspective. In: Kuhrmann, M., Münch,
J., Richardson, I., Rausch, A., Zhang, H. (eds.) Managing Software Process Evolu-
tion: Traditional, Agile and Beyond – How to Handle Process Change, pp. 137–163.
Springer, Cham (2016). doi:10.1007/978-3-319-31545-4 8

20. Tolker-Nielsen, T.: EXOMARS 2016 - Schiaparelli anomaly inquiry. Report
DG-I/2017/546/TTN, European Space Agency (ESA), May 2017

21. Vector Software, Inc.: Software testing technology report, p. 2016. Technical report,
Vector Software, September 2016

22. Witze, A.: Software error doomed Japanese Hitomi spacecraft. Nature 533, 18–19
(2016)

23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29044-2

https://sentinel.esa.int
http://dx.doi.org/10.1007/978-3-319-26844-6_25
http://dx.doi.org/10.1007/978-3-319-26844-6_25
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
http://www.nbcnews.com/id/45032034/ns/technology_and_science-space
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

Exploratory Testing of Large-Scale Systems –
Testing in the Continuous Integration

and Delivery Pipeline

Torvald Mårtensson1(&) , Daniel Ståhl2 , and Jan Bosch3

1 Saab AB, Linköping, Sweden
torvald.martensson@saabgroup.com

2 Ericsson AB, Linköping, Sweden
daniel.stahl@ericsson.com

3 Chalmers University of Technology, Gothenburg, Sweden
jan@janbosch.com

Abstract. In this paper, we show how exploratory testing plays a role as part of
a continuous integration and delivery pipeline for large-scale and complex
software products. We propose a test method that incorporates exploratory
testing as an activity in the continuous integration and delivery pipeline, and is
based on elements from other testing techniques such as scenario-based testing,
testing in teams and testing in time-boxed sessions. The test method has been
validated during ten months by 28 individuals (21 engineers and 7 flight test
pilots) in a case study where the system under test is a fighter aircraft. Quan-
titative data from the case study company shows that the exploratory test teams
produced more problem reports than other test teams. The interview results
show that both engineers and test pilots were generally positive or very positive
when they described their experiences from the case study, and consider the test
method to be an efficient way of testing the system in the case study.

Keywords: Continuous delivery � Continuous integration � Exploratory
testing � Large-scale systems � Software testing

1 Introduction

Exploratory testing was coined as a term by Cem Kaner in the book “Testing Computer
Software” [1] 1988, and was then expanded upon as a teachable discipline by Kaner,
Bach and Pettichord in their book “Lessons Learned in Software Testing” [2] in 2001.
The test technique combines test design with test execution, and focuses on learning
about the system under test.

Different setups exist for planning, execution and reporting exploratory testing.
Testing can be organized as charters [3, 4] or tours [3, 5] which are conducted as
sessions [3, 4] or threads [3]. Janet Gregory and Lisa Crispin [3] describe the test
technique with the following words: “Exploratory testers do not enter into a test session
with predefined, expected results. Instead, they compare the behavior of the system
against what they might expect, based on experience, heuristics, and perhaps oracles.
The difference is subtle, but meaningful.” The core of the test technique is the focus on

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 368–384, 2017.
https://doi.org/10.1007/978-3-319-69926-4_26

http://orcid.org/0000-0003-1438-0182
http://orcid.org/0000-0003-1675-6884
http://orcid.org/0000-0003-2854-722X

learning, shown in for example Elisabeth Hendricksson’s [4] definition of exploratory
testing: “Simultaneously designing and executing tests to learn about the system, using
your insights from the last experiment to inform the next”.

Coevally with the evolution of exploratory testing, continuous integration and other
continuous practices emerged during the 1990s and early 2000s. The exact moment for
the birth of each practice is up for debate. Continuous integration is often referred to as
a term coming from either Kent Beck’s book “Extreme Programming” [6] in 1999 or
Martin Fowler’s popular article [7] in 2006, and the term continuous delivery seems to
have been established by Jez Humble and David Farley in the book “Continuous
Delivery” [8] in 2011. Automated testing is described as a corner stone of continuous
practices, and automated tests tend to be the focus when test activities are assembled to
a continuous integration and delivery pipeline (shown in Fig. 1). This pipeline splits
the test process into multiple stages, and is described with different terminology by
Duvall as “stage builds” [9], by Larman and Vodde as “multi-stage CI system” [10] or
by Humble and Farley as the “deployment pipeline” or “integration pipeline” [8].
Humble and Farley [8] include exploratory testing in the final stage before release to
the customer. We believe that exploratory testing also can play an important role early
in the integration flow, especially when developing large-scale systems with many
dependencies between the subsystems.

Based on this, the topic of this paper is to answer the following research question:
How can exploratory testing be used in the continuous integration and delivery
pipeline during development of large-scale and complex software products?

The contribution of this paper is three-fold. First, it presents a test method for
large-scale and complex software products. Second, the paper shows how exploratory
testing plays a role as part of a continuous integration and delivery pipeline for
large-scale and complex software products. Third, it provides quantitative data and
interview results from a large-scale industry project. The remainder of this paper is
organized as follows. In the next section, we present the research method. This is
followed in Sect. 3 by a study of related literature. In Sect. 4 we present the test
method, followed by validation in Sect. 5. Threats to validity are discussed in Sect. 6.
The paper is then concluded in Sect. 7.

Fig. 1. An example of a continuous integration and delivery pipeline (including exploratory
testing), showing the flow of test activities that follows a commit of new software

Exploratory Testing of Large-Scale Systems 369

2 Research Method

The first step to answer the research question stated in Sect. 1 was to conduct a
systematic literature review (according to Kitchenham [11]), which is presented in
Sect. 3. The question driving the review was “Which test methods related to
exploratory testing and testing of large-scale and complex systems have been proposed
in literature?”

The test method for exploratory testing of large-scale systems was developed based
on related published literature and experiences in the case study company. The test
method was validated using the following methods to achieve method and data
triangulation [12]:

• Systematic literature review: Comparison of the test method and related work found
in literature.

• Validation interviews: Interviews with 18 engineers and 7 flight test pilots who used
the test method during ten months.

• Analysis of quantitative data: Exploratory analysis of quantitative data (problem
reports and time used in the test rig) retrieved from the case study.

Interviews were held with 25 of the 28 individuals who were participating in the
test activity in the case study. The remaining three had in two cases changed jobs, and
was in one case on parental leave. The interviews were conducted as semi-structured
interviews, held face-to-face or by phone using an interview guide with pre-defined
specific questions. The interview questions were sent to the interviewee at least one day
in advance to give the interviewee time to reflect before the interview. The questions in
the interview guide were:

• How would you describe your experiences from [name of the test activity in the
project]?

• What did you like or not like about…
– The planning meetings?
– The briefings before testing?
– The test sessions in the rig?
– The debriefings after testing?

• What do you like or not like about [name of the test activity in the project] com-
pared to other types of test activities?

• Are you interested in participating in this type of activity again?

The interview results were analyzed based on thematic coding analysis as described
by Robson [13, pp. 467–481], resulting in three main themes corresponding to the
characteristics of the test method (each supported by statements or comments by
between 15 and 20 of the interviewees). The process was conducted iteratively to
increase the quality of the analysis. Special attention was paid to outliers (interviewee
comments that do not fit into the overall pattern) according to the guidelines from
Robson [13], in order to strengthen the explanations and isolate the mechanisms
involved.

370 T. Mårtensson et al.

Detailed data on e.g. types of scenarios selected by the test teams, types of issues
found during the test sessions or detailed interview results are not included in this
research paper due to non-disclosure agreements with the case study company.

3 Reviewing Literature

3.1 Criteria for the Literature Review

To investigate whether solutions related to the research question have been presented in
published literature, a systematic literature review [11] was conducted. A review
protocol was created, containing the question driving the review (“Which test methods
related to exploratory testing and testing of large-scale and complex systems have been
proposed in literature?”) and the inclusion and exclusion criteria. The inclusion crite-
rion and the exclusion criterion for the review are shown in Table 1.

To identify published literature, a Scopus search was conducted. The search was
updated before writing this research paper, in order to include the state-of-the-art. The
decision to use only one indexing service was based on the fact that we in previous work
have found Scopus to cover a large majority of published literature in the field, with other
search engines only providing very small result sets not already covered by Scopus.

3.2 Results from the Literature Review

An overview of the publications found in the systematic literature review is presented
in Table 2. The review of the 39 publications retrieved from the search revealed that
five of the publications were not directly related to exploratory testing. These papers
use the term “exploratory testing” as a keyword without a single mention in the article
itself or only mentioning it in passing. In addition to that, one of the papers was a poster
which contained the same information as another paper found in the search.

Ten of the papers were related to methods and tools, typically combining two test
techniques such as model-based testing and exploratory testing [14–18]. Two papers
proposed different approaches to combine script-based testing and exploratory testing
[19, 20] and one paper described how to extract unit tests and from exploratory testing
[21]. One paper discussed “guidance for exploratory testing through problem frames” [22]
and finally one paper investigated the feasibility of using a multilayer perceptron neural
network as an exploratory test oracle [23].

Table 1. Inclusion and exclusion criteria for the literature review

Inclusion criterion Yield

Publications matching the Scopus search string TITLE-ABS-KEY
(“exploratory testing” AND software) on March 27, 2017

52

Exclusion criterion Remaining

Excluding duplicates, conference proceedings summaries and
publications with no available full-text

39

Exploratory Testing of Large-Scale Systems 371

Fourteen of the publications discussed the effectiveness and efficiency of different
test methods. Two of those were systematic literature reviews [24, 25] and one com-
bined a systematic literature review and a survey [26]. Eight papers [27–34] compared
exploratory testing and scripted testing (also referred to as test case based testing or
confirmatory testing). The comparisons were based on either true experiments or
experiences from industry projects. Sviridova et al. [35] discuss effectiveness of
exploratory testing and proposes to use scenarios. Micallef et al. [36] discuss how
exploratory testing strategies are utilized by trained and not trained testers, and how this
affect the type of defects the testers find. Raappana et al. [37] report the effectiveness of
a test method called “team exploratory testing”, which is defined as a way to perform
session-based exploratory testing in teams.

Five papers describe in different ways how exploratory testing is used by the
testers, based on either a true experiment [38], a survey [39], video recordings [40] or
interviews [41, 42]. Itkonen and Rautiainen [42], Shoaib et al. [38] and Itkonen et al.
[40] describe how the tester’s knowledge, experiences and personality are important
while performing exploratory software testing in industrial settings. Itkonen et al. [41]
present the results of a qualitative observation study on the manual testing practices,
and presents a number of exploratory strategies: “User interface exploring”, “Exploring
weak areas”, “Aspect oriented testing”, “Top-down functional exploring”, “Simulating
a real usage scenario”, and “Smoke testing by intuition and experience”.

Finally, four papers [43–46] report experiences from exploratory testing in indus-
try, but without presenting any quantitative or qualitative data as validation. Suranto
[44] describes experiences from using exploratory testing in an agile project. Pichler
and Ramler [46] describes experiences from developing and testing a visual graphical
user interface editor, and touches upon the use of exploratory testing as part of an
iterative development process. Gouveia [43] reports experiences from using explora-
tory testing of web applications in parallel with automated test activities in the con-
tinuous integration and delivery pipeline.

In summary, we found no publications that discussed exploratory testing in the
context of large-scale and complex software system. Some publications touched on
topics related to the subject, such as iterative development and continuous integration
(which are commonly used during development of large-scale and complex software
systems).

Table 2. An overview of the publications found in the systematic literature review

Topic of the publications Number
of papers

Not relevant 5
Poster 1
Methods/tools 10
Effectiveness and efficiency of test methods 14
How exploratory testing is used 5
Reporting experiences 4
Summary 39

372 T. Mårtensson et al.

4 Exploratory Testing of Large-Scale Systems

4.1 Characteristics of the Test Method

The test method for exploratory testing of large-scale systems is based on related
published literature and experiences from the case study company. In this case,
exploratory testing is used to test a large-scale and complex system, which may consist
of a range of subsystems that are tightly coupled with a lot of dependencies.

The motivation behind developing the test method was an interest in the case study
company to increase test efficiency, and to find problems related to the integration of
subsystems earlier in the development process. The transformation to continuous
development practices implies a transformation from manual to automated testing. This
requires large investments, both a large initial investment in implementing automated
test cases and later costs for maintaining the test cases to keep up with changes in the
system under test. For test activities that is likely to not remain static (the same
specification is run over and over again) it is an alternative to utilize the flexibility of
experienced engineers in manual test activities.

The test method is designed to complement automated testing in the continuous
integration and delivery pipeline, and to provide different feedback and insights than
the results from an automated test case. The characteristics of the test method are:

• Exploratory testing as an activity in the continuous integration and delivery
pipeline: Testing is conducted with an exploratory approach where the testers
simultaneously learn about the system’s characteristics and behavior. Testing is
done regularly on the latest system build, which has passed the test activity in the
preceding step in the continuous integration and delivery pipeline.

• Session-based testing in teams with experienced engineers representing different
subsystems: Testing is conducted in time-boxed sessions by teams of hand-picked
experienced engineers, representing the different subsystems of the product. If the
size or complexity of the system under test cannot be covered by a single team, the
test scope can be split between several teams.

• Scenario-based testing with an end-user representative as part of the test team:
Testing is conducted in scenarios, which represent how the product will be used by
the end-user. An end-user representative is participating in both planning and test
execution, securing that the scenarios are reflecting appropriate conditions.

The characteristics of the test method are in different ways described or touched
upon in published literature. Exploratory testing has been described (at least briefly) in
the context of agile or iterative development [3, 44, 46] and one report describes how
exploratory testing is used in the “continuous integration pipeline” [43]. Exploratory
testing is often combined with the use of sessions [3, 4, 28, 37, 40] and the concept of
testing in teams has been described [37] or at least touched upon [3]. There are also
publications that enhance the importance of experience and knowledge [38, 40, 42].
The use of scenarios is also described in different ways [3, 5, 35, 41], but not
specifically with an end-user representative as part of the test team.

Exploratory Testing of Large-Scale Systems 373

4.2 Using the Test Method

The test team work together in planning workshops, test sessions and debriefing
meetings (shown in Fig. 2).

At the planning meeting, the test team discusses ideas for testing that could result in
finding uncovered problem areas. The team members prioritize and group the test ideas
into scenarios, which could be executed during a test session. A scenario is a chain of
events that could be introduced by either the product’s end-user, derive from a problem
in the product’s software or hardware systems, or be coming from other systems or the
environment where the product is operated (e.g. change of weather if the product is a
car). The test team is monitoring the reports from other test activities in the continuous
integration and delivery pipeline, in order to follow new or updated functions or new
problems that have been found which could affect the testing.

During the test session, the scenarios are tested in a test environment which is as
production-like as possible. The test environment must also be equipped so that the test
team is able to test fault injection and collect data using recording tools. Before the test
session the team must also decide on test approaches for the planned test sessions:
Should the team observe as many deviations as possible or stop and try to find root
causes? Should the team focus on the intended scope or change the scope if other issues
come up?

The debriefing meeting is used by the team to summarize the test session. The
responsibility to write problem reports or follow up open issues found in the test
session is distributed among the team members. The team should consider if a problem
should have been caught at a test activity earlier in the pipeline, and report this in an
appropriate way. Decisions are made if the tested scenarios should be revisited at the
next session or not. The team should also discuss how team collaboration and other
aspects of test efficiency could be improved.

Fig. 2. The flow between planning meetings, test sessions and debriefing meetings

374 T. Mårtensson et al.

5 Validation

5.1 The Case Study

The case study company is developing airborne systems and their support systems. The
main product is the Gripen fighter aircraft, which has been developed in several
variants. Gripen was taken into operational service in 1996. An updated version of the
aircraft (Gripen C/D) is currently operated by the air forces in Czech Republic, Hun-
gary, South Africa, Sweden and Thailand. The next major upgrade (Gripen E/F) will
include both major changes in hardware systems (sensors, fuel system, landing gear
etc.) and a completely new software architecture.

The test method described in Sect. 4 was applied to a project within the case study
company for ten months. The system under test was the aircraft system with func-
tionality for the first Gripen E test aircraft, which was tested in a test rig. The test pilot
was maneuvering the aircraft in a cockpit replica, which included real displays, panels,
throttle and maneuvering stick. In the rig the software was executing on the same type
of computers as in the real aircraft. The aircraft computers were connected to an
advanced simulation computer, which simulated the hardware systems in the aircraft
(e.g. engine, fuel system, landing gear) as well as a tactical environment. A visual
environment was presented on an arc-shaped screen. The test team communicated with
the pilot from a test leader station in a separate room. From the test leader station the
tester could observe the pilot’s displays and the presentation of the aircraft’s visual
environment. The test team could also observe the behavior of the software in the
aircraft computers and inject faults in the simulator during flight (e.g. malfunction of a
subsystem in the aircraft).

Continuous integration practices such as automated testing, private builds and
integration build servers were applied in the development of software for the Gripen
computer systems. When a developer committed new software to the mainline, the new
system baseline was tested in multiple stages in a pipeline similar to the example shown
in Fig. 1. All test activities on unit, component and system level which were effectuated
up to weekly frequency were automated tests, followed by exploratory testing and other
manually executed test activities.

Testing was conducted in sessions, starting with four hours per session which after
two months was changed to three hours. The testing started with two teams, followed
by a third team after a month. The teams tested at a frequency of one test session per
week for two weeks out of three, meaning that generally two of the three teams tested
every week. The testers were handpicked from the development teams, all being senior
engineers representing different subsystems in the aircraft. A test pilot (from the flight
test organization) was maneuvering the aircraft in the simulator. The engineers (in total
21 individuals) were allocated to the three test teams, each of which focused on one
cluster of subsystems in the aircraft. The last two months the teams were merged to one
test team, due to that no new functions were introduced and not so many new problems
where found during the test sessions.

Exploratory Testing of Large-Scale Systems 375

5.2 Validation Interviews

The interviewed 18 engineers who participated in the test activity were generally very
experienced, all with many years of experience from industry software development.
The interviewed 7 pilots were all employed as flight test pilots, with training from
military pilot schools and experience from many years of service in both the air force
and as test pilots in the industry. Both engineers and test pilots were generally positive
or very positive when they described their experiences. “Relevant and good testing”, to
quote one of the test pilots. One of the engineers described it with the following words:
“It was fantastic! We identified a lot of problems. And we learned how the system
worked.”

The three test teams used the way of working described in Sect. 4 with planning
meetings, test sessions and debriefing meetings. The interviewees described that they
“built a backlog” of things to test at the planning meetings, which was then used during
the upcoming test sessions. The planning meetings were described with words as
“creative” or “at least as interesting as the testing itself”. Interviewees from one of the
test teams described that they at first did very little preparations before the testing,
resulting in some unprepared and inefficient test sessions. This changed when the team
focused more on the planning meetings.

All teams held a short briefing (10–15 min) right before the test session, in order to
go through the program for the test session. This was appreciated by both engineers and
test pilots, as it gave everyone a picture of what would happen. During the briefing
roles and responsibilities were also clearly distributed (communicating with the pilot,
taking notes etc.). The testing itself was generally described as efficient, where engi-
neers and the test pilot were working together as a team. One voice asked for better
tools for some of the fault injection procedures, and someone else asked for better
recording capabilities. After the test session the team had a short debriefing, with the
purpose to summarize the findings and decide who was to write problem reports or
further examine open issues. The teams often also had a follow-up meeting the day
after the test, focusing on improving test efficiency and ways of working.

Both the engineers and the test pilots were generally very generous with comments
and thoughts regarding their experiences from the test activities. Many engineers
described their experiences with a lot of enthusiasm, and in some cases even referring
to the testing as “great fun”. The experiences shared by the interviewees are summa-
rized in themes corresponding to the characteristics of the test method:

• Exploratory testing as an activity in the continuous integration and delivery pipeline
• Session-based testing in teams with experienced engineers representing different

subsystems
• Scenario-based testing with an end-user representative as part of the test team

Exploratory testing as an activity in the continuous integration and delivery
pipeline: Both engineers and test pilots described the benefits with exploratory testing,
where the test teams not plainly follow the instructions in a test case step by step. As
one interviewee described it: “We could test according to the ideas we had. We wanted
to understand the system that we were building and to find the weaknesses in the
system”. A few interviewees also described that they during this test activity were

376 T. Mårtensson et al.

looking for the root cause of the problems that were found, whereas they in other test
activities just wrote down a brief description of the problem. Besides talking about the
benefits from the higher level of freedom, many engineers also described the need for
structure and discipline. A field of improvement seemed to be communication of the
results from other test activities in the continuous integration and delivery pipeline.
Several interviewees described situations where the team was not sure if a problem was
already known, or even if a function was complete or still under development. How-
ever, according to the interviewees the synchronization with other test activities
improved over time.

Session-based testing in teams with experienced engineers representing different
subsystems: Almost all engineers described benefits from testing in teams. According
to the interviewees, many of the questions that came up at a test session could be solved
directly during the test session. Another engineer described that “the quality of the
problem reports improves if there are people from different subsystems participating at
the test”. The engineers described that they were “learning about the system” and
“learning about other subsystems”. A few voices talked about the importance of having
the right people onboard, referring to personality as well as knowledge and experience
from the different subsystems of the product. To have a team of six or up to eight
people participating during the same test session could also be challenging. Several
interviewees described that it sometimes was difficult to see what was going on at the
displays, and it was important that the test leader was good at involving all team
members in the test process.

Scenario-based testing with an end-user representative as part of the test team:
Almost all interviewees described or touched upon that scenarios was a good way to
test the complete system. Both engineers and test pilots described that most of the other
test activities focused on a subsystem in the aircraft, whereas this test activity focused
on the complete aircraft. The interviewees seemed to like to use scenarios as a
description of the tests, seeing it as a description that everyone could understand and
more flexible than a traditional test case. Several engineer commented on the value to
use a real test pilot, who could describe how the product would be used by the end user.
The test pilots also described that they could “learn a lot from the engineers”. To quote
one of the test pilots: “During this test activity the engineers who design the product
came in direct contact with the pilots who use it”. A few voices (especially from the test
pilots) asked for more clear objectives with each scenario test.

One of the questions in the interview guide asked the interviewee to compare the
exploratory test activity and other types of test activities. None of the interviewees
wanted to describe one way of testing as better than the other, but did instead in
different ways describe that exploratory testing and specification-based testing are
different types of testing with different purposes. To quote one of the engineers:
“Testing according to [a test specification] verifies that the function is implemented
according to the specification. This type of testing checks that it is good enough, that
we can use the product.”

Two of the engineers were a bit less positive than the others. One of them described
it like “it never worked quite well”, but explained this with that the subsystem he was
representing had very little coupling to other subsystems. The other engineer described
his situation in the following way: “I was never fully in, I do not know why. I had no

Exploratory Testing of Large-Scale Systems 377

clear vision of the whole system. I wished I had known more about my own subsystem,
to be able to answer questions from the others.”

The last question in the interview guide was if the interviewee was interested in
participating in this type of activity again. Twenty-three of the 25 interviewees
answered the question with “yes”. Some of the engineers and some of the test pilots
added that their participation were depending on priority decisions from management.
Two of the participants answered the question with “maybe”. One of them just added
“we’ll see when the question comes up”. The other described himself as “not com-
pletely negative, but not completely positive either” but did not expand this further.

5.3 Problem Reports and Testing Time

Each test session in the case study resulted in a number of found defects in the system
or open issues. The open issues were discussed with other developers or system
managers, which sometimes clarified that the behavior was according to design, and
sometimes confirmed that this was a defect in the system. All defects were documented
as problem reports in the organization’s issue management tool. All test sessions were
conducted in one of the test rigs. The test rig was a scarce and valued test resource, as it
was constructed with the same bespoke hardware as a real aircraft and a complex
system for the visual environment (as described in Sect. 5.1).

Figure 3 shows for every month during the test period how many percent of all
problem reports that month that came from the exploratory test teams. The figure also
shows how many percent of all time in the rig that month (rig maintenance not
included) that were booked by the exploratory test teams. The figure shows that except
for May (and July when almost no testing was done due to vacation period) the
exploratory test teams produced a larger share of the problem reports than the
exploratory test teams’ share of the rig time. As problem reports from other test
activities were also written based on testing in other rigs and test environments, the
share of time in all related rigs and test environments is actually even lower.

Fig. 3. The exploratory test teams’ share of problem reports (in percent) and share (in percent)
of all time in the rig

378 T. Mårtensson et al.

Figure 4 shows how the problem reports from the exploratory test teams are dis-
tributed over the ten months when the test activity was conducted. The figure also
shows how all testing time in the rig used by the exploratory test teams is distributed
over the same period of time. Figures 3 and 4 together show that the three test teams
started a bit slow, and did not generate so many problem reports the first month. This
changed during June, and peaked during August. Then the trends seem to stabilize for
three months, followed by a period of time when the activity was run less intensively
due to that no new functions were introduced.

6 Threats to Validity

6.1 Threats to Construct Validity

One must always consider that a different set of questions and a different context for the
interviews can lead to a different focus in the interviewees’ responses. In order to
handle threats against construct validity, the interview guide was designed with open
questions (presented in Sect. 2). In this paper, we present both the interview guide and
the background for both the interviewees and the case study in order to provide as
much information as possible about the context.

The test rig was considered to be a scarce and valued resource. Therefore, we
measure the number of problem reports (defects found) per unit of rig time in order to
discuss the efficiency of the test method. We do not claim to discuss efficiency on more
general terms, such as comparing the importance of the problem reports from different
types of test activities (which we consider much harder to measure or quantify).

The observed effectiveness of exploratory testing in terms of number of problem
reports may have been influenced by a focus on new functionality. It is conceivable that
using the test method with a more clear focus on regression testing would provide a
different result.

Fig. 4. Distribution of problem reports and testing time for the exploratory test teams

Exploratory Testing of Large-Scale Systems 379

It is conceivable that the effectiveness of the studied test method is affected by the
knowhow and experience of the participants in the study. As the studied test method
was new for the participants, the study represents an early usage phase or basically the
introduction of the test method. Results and feedback from participants may be dif-
ferent once the test method has turned into an established practice.

6.2 Threats to Internal Validity

Of the 12 threats to internal validity listed by Cook, Campbell and Day [47], we
consider Selection, Ambiguity about causal direction and Compensatory rivalry rele-
vant to this work:

• Selection: Interviews were held with 25 of the 28 individuals who were partici-
pating in the test activity. The remaining three had in two cases changed jobs, and
was in one case on parental leave. As the interview series managed to cover all of
the participants that were present at the company, there was no selection of
interviewees.

• Ambiguity about causal direction: While we in this study discuss correlation, we are
very careful about making statements regarding causation. Statements that include
cause and effect are collected from the interview results, and not introduced in the
interpretation of the data. Due to this, we consider this threat to be mitigated.

• Compensatory rivalry: When performing interviews and comparing scores or per-
formance, the threat of compensatory rivalry must always be considered. The
questions in our interviews were deliberately designed to be value neutral for the
participants, and not judging performance or skills of the interviewee or the inter-
viewee’s organization. Generally, the questions were also designed to be
opened-ended to avoid any type of bias and ensure answers that were open and
accurate. However, our experiences from previous work is that we found the
interviewees more prone to self-criticism than to self-praise.

6.3 Threats to External Validity

The validation of the test method is based on interviews and quantitative data from a
single company. It is conceivable that the findings from this study are only valid for
this company, for companies that operate in the same industry segment (military air-
craft), or for similar products in different types of industry segments (e.g. other types of
vehicles). The characteristics of the test method are in different ways described in
related work (as described in Sect. 4), which we argue supports the generalizability of
the results of this study (external validity). We have also presented detailed information
about both the case study company and the project in the case study, in order to support
attempts to replicate our results in other studies.

380 T. Mårtensson et al.

7 Conclusion

In this paper, we have discussed how exploratory testing can be used in the continuous
integration and delivery pipeline during development of large-scale and complex
software products. We have proposed a new test method with the following
characteristics:

• Exploratory testing as an activity in the continuous integration and delivery pipeline
• Session-based testing in teams with experienced engineers representing different

subsystems
• Scenario-based testing with an end-user representative as part of the test team

The characteristics of the test method are in different ways described or touched
upon in published literature, which we argue strengthens the validation of the test
method. However, none of the found publications presents a test method focusing on
large-scale and complex systems, which we argue strengthens this paper’s position as a
valid contribution. The test method has been validated in a case study, where the
system under test was a fighter aircraft. The test method was used during ten months by
28 individuals (21 engineers and 7 flight test pilots). Validation is based on quantitative
data and interviews with 25 of the 28 participants.

Quantitative data from the case study company (presented in Sect. 5.3) shows that
the exploratory test teams produced more problem reports than other test teams. The
three test teams started a bit slow, and did not generate so many problem reports the
first month. This changed the following months, and the number of problem reports
peaked during the fourth month.

The interview results (summarized in Sect. 5.2) show that the characteristics of the
test method are considered valuable by the interviewed 18 engineers and 7 flight test
pilots, and that they consider the test method to be an efficient way of testing the system
in the case study. Both engineers and test pilots embraced exploratory testing, and
appreciated more freedom. Coordination with other test activities in the continuous
integration and delivery pipeline was described as a problem at the beginning of the
case study, but this improved later on. Many of the engineers described that they were
able to test that the subsystems worked together, and that they learned about other
subsystems due to that the team consisted of engineers from different subsystems.
Engineers and test pilots thought that testing with scenarios was a good way to test the
complete system, and described it as valuable to have the test pilot as an end-user
representative participating in the test activity. The interviewees were generally posi-
tive or very positive when they described their experiences from the case study, using
phrases like “relevant and good testing” or “we learned a lot”.

Consequently, we find that the test method presented in this paper succeeds in
incorporating exploratory testing in the continuous integration and delivery pipeline
and is an efficient test method for large-scale and complex software products. This is a
significant result, as we see great value in how automated testing and exploratory
testing could be complementing one another, each mitigating the weaknesses of the
other by addressing unique concerns. Whereas automated test activities in the pipeline
are able to rapidly provide feedback to developers and to verify requirements,

Exploratory Testing of Large-Scale Systems 381

exploratory testing can provide more in-depth insights about the system under test.
Based on this research study, we believe that exploratory testing should be used in a
continuous integration and delivery pipeline, preferably to test new functions and
systems in a large-scale system.

7.1 Further Work

As the validation in this paper is based on a single case study, this calls for validation
from other case studies using the same test method. As a suggestion, the system under
test could be another type of vehicle, such as a car or a truck. This type of study could
also be combined with the use of other methods to compare the efficiency of the test
method (preferably using quantitative data).

References

1. Kaner, C.: Testing Computer Software. TAB Books, Blue Ridge Summit (1988)
2. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing. Wiley, New York

(2001)
3. Gregory, J., Crispin, L.: More Agile Testing. Addison Wesley, Boston (2015)
4. Hendrickson, E.: Explore It! The Pragmatic Bookshelf, Dallas (2013)
5. Whittaker, J.: Exploratory Software Testing. Addison Wesley, Boston (2010)
6. Beck, K.: Extreme Programming Explained: Embrace Change, 1st edn. Addison-Wesley

Professional, Boston (1999)
7. Fowler, M.: Continuous integration (2006). http://www.martinfowler.com/articles/

continuousIntegration.html
8. Humble, J., Farley, D.: Continuous Delivery. Addison Wesley, Boston (2011)
9. Duvall, P.: Continuous Integration. Addison Wesley, Boston (2007)
10. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development – Large, Multisite,

and Offshore Product Development with Large-Scale Scrum. Addison Wesley, Boston
(2010)

11. Kitchenham, B.: Procedures for performing systematic reviews. Keele UK Keele University,
vol. 33, pp. 1–26 (2004)

12. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009). doi:10.1007/s10664-
008-9102-8

13. Robson, C., McCartan, K.: Real World Research, 4th edn. Wiley, London (2016)
14. Frajtak, K., Bures, M., Jelinek, I.: Exploratory testing supported by automated reengineering

of model of the system under test. Cluster Comput. 20(1), 855–865 (2017). doi:10.1007/
s10586-017-0773-z

15. Frajtak, K., Bures, M., Jelinek, I.: Model-based testing and exploratory testing: is synergy
possible? In: 6th International Conference on IT Convergence and Security, ICITCS 2016
(2016). 7740354

16. Gebizli, C.Ş., Sözer, H.: Automated refinement of models for model-based testing using
exploratory testing. Softw. Qual. J., 1–27 (2016). doi:10.1007/s11219-016-9338-2

17. Schaefer, C.J., Do, H.: Model-based exploratory testing: a controlled experiment. In:
Proceedings of IEEE 7th International Conference on Software Testing, Verification and
Validation Workshops, ICSTW 2014, pp. 284–293 (2014). 6825674

382 T. Mårtensson et al.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10586-017-0773-z
http://dx.doi.org/10.1007/s10586-017-0773-z
http://dx.doi.org/10.1007/s11219-016-9338-2

18. Schaefer, C., Do, H., Slator, B.M.: Crushinator: a framework towards game-independent
testing. In: Proceedings of 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, pp. 726–729 (2013). 6693143

19. Shah, S.M.A., Gencel, C., Alvi, U.S., Petersen, K.: Towards a hybrid testing process
unifying exploratory testing and scripted testing. J. Softw. Evol. Process. 26(2), 220–250
(2014). doi:10.1002/smr.1621

20. Rashmi, N., Suma, V.: Defect detection efficiency of the combined approach. In: Satapathy,
S., Avadhani, P., Udgata, S., Lakshminarayana, S. (eds.) ICT and Critical Infrastructure.
AISC, vol. 249, pp. 485–490. Springer, Cham (2014). doi:10.1007/978-3-319-03095-1_51

21. Kuhn, A.: On extracting unit tests from interactive live programming sessions. In:
Proceedings of International Conference on Software Engineering, pp. 1241–1244 (2013).
6606688

22. Kumar, S., Wallace, C.: Guidance for exploratory testing through problem frames. In:
Proceedings of Software Engineering Education Conference, pp. 284–288 (2013). 6595262

23. Makondo, W., et al.: Exploratory test oracle using multi-layer perceptron neural network. In:
2016 International Conference on Advances in Computing, Communications and Informat-
ics, ICACCI 2016, pp. 1166–1171 (2016). 7732202

24. Thangiah, M., Basri, S.: A preliminary analysis of various testing techniques in Agile
development - a systematic literature review. In: Proceedings of 3rd International Conference
on Computer and Information Sciences, ICCOINS 2016, pp. 600–605 (2016). 7783283

25. Garousi, V., Mäntylä, M.V.: A systematic literature review of literature reviews in software
testing. Inf. Softw. Technol. 80, 1339–1351 (2016)

26. Ghazi, A.N., Petersen, K., Börstler, J.: Heterogeneous systems testing techniques: an
exploratory survey. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2015. LNBIP, vol.
200, pp. 67–85. Springer, Cham (2015). doi:10.1007/978-3-319-13251-8_5

27. Itkonen, J., Mantyla, M.V., Lassenius, C.: Test better by exploring: harnessing human skills
and knowledge. IEEE Softw. 33(4), 90–96 (2016). 7155417

28. Afzal, W., et al.: An experiment on the effectiveness and efficiency of exploratory testing.
Empirical Softw. Eng. 20(3), 844–878 (2015). doi:10.1007/s10664-014-9301-4

29. Itkonen, J., Mäntylä, M.V.: Are test cases needed? Replicated comparison between
exploratory and test-case-based software testing. Empirical Softw. Eng. 19(2), 303–342
(2014). doi:10.1007/s10664-013-9266-8

30. Shah, S.M.A., et al.: Exploratory testing as a source of technical debt. IT Prof. 16(3), 44–51
(2014). 6475929

31. Shah, S.M.A., Alvi, U.S., Gencel, C., Petersen, K.: Comparing a hybrid testing process with
scripted and exploratory testing: an experimental study with practitioners. In: Cantone, G.,
Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 187–202. Springer, Cham (2014).
doi:10.1007/978-3-319-06862-6_13

32. Prakash, V., Gopalakrishnan, S.: Testing efficiency exploited: scripted versus exploratory
testing. In: 2011 3rd International Conference on Electronics Computer Technology, ICECT
2011, vol. 3, pp. 168–172 (2011). 5941824

33. Itkonen, J., Mäntylä, M.V., Lassenius, C.: Defect detection efficiency: test case based vs.
exploratory testing. In: Proceedings of 1st International Symposium on Empirical Software
Engineering and Measurement, ESEM 2007, pp. 61–70 (2007). 4343733

34. Do Nascimento, L.H.O., Machado, P.D.L.: An experimental evaluation of approaches to
feature testing in the mobile phone applications domain. In: Workshop on Domain-Specific
Approaches to Software Test Automation - In Conjunction with the 6th ESEC/FSE Joint
Meeting, DoSTA 2007, pp. 27–33 (2007)

Exploratory Testing of Large-Scale Systems 383

http://dx.doi.org/10.1002/smr.1621
http://dx.doi.org/10.1007/978-3-319-03095-1_51
http://dx.doi.org/10.1007/978-3-319-13251-8_5
http://dx.doi.org/10.1007/s10664-014-9301-4
http://dx.doi.org/10.1007/s10664-013-9266-8
http://dx.doi.org/10.1007/978-3-319-06862-6_13

35. Sviridova, T., Stakhova, D., Marikutsa, U.: Exploratory testing: management solution. In:
2013 12th International Conference on the Experience of Designing and Application of CAD
Systems in Microelectronics, CADSM 2013, p. 361 (2013). 6543293

36. Micallef, M., Porter, C., Borg, A.: Do exploratory testers need formal training? An
investigation using HCI techniques. In: Proceedings of 2016 IEEE International Conference
on Software Testing, Verification and Validation Workshops, ICSTW 2016, pp. 305–314
(2016). 7528977

37. Raappana, P., et al.: The effect of team exploratory testing - experience report from F-Secure.
In: Proceedings of 2016 on IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2016, pp. 295–304 (2016). 7528976

38. Shoaib, L., Nadeem, A., Akbar, A.: An empirical evaluation of the influence of human
personality on exploratory software testing. In: 2009 IEEE 13th International Multitopic
Conference, INMIC 2009 (2009). 5383088

39. Pfahl, D., et al.: How is exploratory testing used? A state-of-the-practice survey. In:
International Symposium on Empirical Software Engineering and Measurement (2014)

40. Itkonen, J., Mäntylä, M.V., Lassenius, C.: The role of the tester’s knowledge in exploratory
software testing. IEEE Trans. Softw. Eng. 39(5), 707–724 (2013). 6298893

41. Itkonen, J., Mäntylä, M.V., Lassenius, C.: How do testers do it? An exploratory study on
manual testing practices. In: 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ESEM 2009, pp. 494–497 (2009). 5314240

42. Itkonen, J., Rautiainen, K., Exploratory testing: a multiple case study. In: 2005 International
Symposium on Empirical Software Engineering, ISESE 2005, pp. 84–93 (2005). 1541817

43. Gouveia, N.: Agile testing on an online betting application. In: Sharp, H., Hall, T. (eds.) XP
2016. LNBIP, vol. 251, pp. 193–200. Springer, Cham (2016). doi:10.1007/978-3-319-
33515-5_16

44. Suranto, B.: Exploratory software testing in agile project. In: 2015 2nd International
Conference on Computer, Communications, and Control Technology, Art Proceeding, I4CT
2015, pp. 280–283 (2015). 7219581

45. Moss, C.: Big visible testing. In: Proceedings of AGILE 2013, pp. 94–100 (2013). 6612884
46. Pichler, J., Ramler, R.: How to test the intangible properties of graphical user interfaces? In:

Proceedings of the 1st International Conference on Software Testing, Verification and
Validation, ICST 2008, pp. 494–497 (2008). 4539578

47. Cook, T.D., Campbell, D.T., Day, A.: Quasi-Experimentation: Design & Analysis Issues for
Field Settings, vol. 351. Houghton Mifflin, Boston (1979)

384 T. Mårtensson et al.

http://dx.doi.org/10.1007/978-3-319-33515-5_16
http://dx.doi.org/10.1007/978-3-319-33515-5_16

Process and Tool Support for Internationalization
and Localization Testing in Software Product Development

Rudolf Ramler1(✉) and Robert Hoschek2

1 Software Analytics and Evolution, Software Competence Center Hagenberg GmbH,
Softwarepark 21, 4232 Hagenberg, Austria

rudolf.ramler@scch.at
2 OMICRON Electronics GmbH, Oberes Ried 1, 6833 Klaus, Austria

robert.hoschek@omicronenergy.com

Abstract. Software globalization is an inevitable step for many companies.
Developing for a global market requires the internationalization of software
products and their localization to different countries, regions, and cultures. Inter‐
nationalization and localization testing verifies that localized variants of the soft‐
ware product work, look and feel as expected. The highly repetitive task of testing
of multiple language variants makes localization testing a perfect candidate for
automation with a high potential to reduce the involved human effort and to speed-
up release cycles. However, there is surprisingly little support for localization
testing by existing test automation tools. Furthermore, there are only few empir‐
ical results or practical insights available as the topic is rarely addressed in the
scientific literature. In this paper we describe the process and tools applied for
automated testing of the different localized variants of a large commercial soft‐
ware product, we report on the issues detected with automated localization tests,
and we discuss our experiences and lessons learned.

Keywords: Internationalization · Localization · I18N · L10N · Multilingual
software · Internationalization testing · Localization testing · GUI testing

1 Introduction

Developing successful software products for a global market requires meeting the
demands of users all over the world and supporting their local languages and customi‐
zations. Problems in localized product variants can be devastating for the reputation of
a software product since they are commonly visible to end users. They can manifest in
the form of inappropriate or misleading translations, misaligned and irritating screen
layouts, or corrupted data and crashes. Thus, even relatively “simple” translation bugs
can quickly create an exceptionally negative impression [1].

To support a global audience software products have to be designed and built with
internationalization (i18n) in mind. World-ready software products [2] are adjustable to
different countries, regions, and cultures. Localization (l10n) is the step of adapting the
internationalized software product by configuration, translation or creation of region-
specific variants. Consequently, internationalization testing extends functional testing

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 385–393, 2017.
https://doi.org/10.1007/978-3-319-69926-4_27

http://orcid.org/0000-0001-9903-6107

of the software system to its ability to be adjusted by switching to a different language,
format, measurement system etc. Localization testing makes sure that the localized
variants of the software system work – and look and feel – as expected.

A major focus of localization testing is usually on checking the graphical user inter‐
face (GUI) for missing translations, grammar and spelling issues, and layout problems.
These properties are often verified manually. Thus, localization testing becomes a
resource-intensive and time-consuming task. The effort multiplies for software products
supporting many different localized variants. Furthermore, localization testing is often
performed towards the end of software development, when the functionality has reached
a stable state and all translations are available. Hence, internationalization and locali‐
zation bugs are usually found very late, which is in conflict with fast feedback encour‐
aged by continuous delivery and agile development principles [3].

There is surprising little support for localization testing by existing tools for test
automation. In this paper we describe the approach we applied for automating testing
of localized variants of a large software product developed by OMICRON electronics.
We report on the various bugs found and discuss our experiences and lessons learned.

2 Industry Context

OMICRON electronics1 is an international company in the domain of electrical engi‐
neering and energy systems. The company is a world leader in electrical power system
diagnostics and monitoring solutions. It serves customers in over 150 countries all
around the world and offers localized versions of its products and services.

2.1 System Under Test

One of these products – the system under test (SUT) investigated in this paper – is a
large software suite for analyzing of protection and measurement devices in power
systems. Technically, the system is a Windows application designed to run on a PC or
laptop. It offers more than 30 different modules for monitoring, measurement, diagnos‐
tics and reporting. The entire application consists of about 2.700 screens (e.g., dialog
windows, message boxes and menus) containing over 85.000 GUI elements with textual
representations (e.g., buttons, labels, text fields, lists, menu entries).

The application supports 16 different languages including, for example, English,
German, French, Indonesian, Russian, Chinese, Japanese and Korean. All languages are
installed with the software system and switching to a different language is possible at
any time without restarting. Especially in international projects, commissioning engi‐
neers from different countries are working together and exchanging data. Moreover,
customers often wish (or have the legal obligation) to generate a measurement report in
a specific language other than the engineer’s preferred working language.

1 https://www.omicronenergy.com.

386 R. Ramler and R. Hoschek

https://www.omicronenergy.com

2.2 Internationalization and Localization Process

The default language of the application is English. The first step is the internationaliza‐
tion of the application as part of GUI design and software development. English text
strings to be localized are stored in separate resource files from which the application
loads them at runtime. The current version of the software system contains 141 resource
files containing 25.430 localizable text strings in English. In addition, designing the
application requires considering that translated text strings are usually longer than in
English. Growth rates of strings can be from 10 to 100% [2]. GUI design needs to provide
extra space to display strings in all languages without clipping or unwanted wrapping
to subsequent lines.

In every release and throughout development new text strings are added, changed or
removed. To keep track of new or changed text strings that need to be translated, a
software tool developed in-house scans all source code folders for resource files, extracts
the localizable text resources, and stores them in a central terminology database. The
database contains the terms (i.e., words, phrases or sentences) in the default language
English and the available translations in the supported local languages. Identical text
resources that appear in several resource files are consolidated to one entry. The database
is compared to the source code in every nightly build and changed or new terms with
missing translations are reported. For the current software version the terminology data‐
base contains 11.170 unique entries.

The actual translation is done by specialized translation agencies. Terms needing
translation are exported and sent to agencies together with optional annotations and hints
for the translator. This is necessary because terms in the database are missing context
information, which makes them ambiguous and hard to translate. Translated terms are
reviewed, e.g., by engineers from offices in different countries.

Finally the translation tool is used to generate the localized resource files containing
the translated text strings from the terminology database. More than 10 different resource
file types are supported. The generation process runs as part of the nightly build, which
makes the latest translation results available on a frequent basis and allows exploring
the system in all supported languages already in the development phase. About 2.300
resource files are generated in every build.

3 Automation Support for Localization Testing

Internationalization and localization testing are performed as part of regression testing
for every release. However, localization testing is a highly time consuming and resource
intensive task when performed manually via the GUI. Testers have to verify the correct
localization by opening every single screen to check its visual appearance, to inspect all
localized text strings (including “hidden” elements such as collapsed tree and list
elements, context menus and tooltips), to assert that no elements overlap and none of
the text strings has been truncated, etc. All these test steps have to be repeated in the
same manner for each of the 16 supported languages. The repetitive character of local‐
ization testing makes it a natural candidate for automation, which helps to save time and
resources and, furthermore, allows running the localization tests more frequently. In the

Process and Tool Support for Internationalization and Localization Testing 387

past, due to the high manual effort, the tests were executed infrequently, usually only
once at the end of the release cycle.

Figure 1 shows the steps and artifacts involved in automated localization testing.
Testing is based on automated GUI test scripts that exercise the application in each of
the 16 languages. The outcome is a localization test report that contains an annotated
comparison of the localized version of all screens with the English default version.

Test Execution Environment

(1) Traversing the GUI

(2) Ripping GUI information

(3) Analyzing ripped data

(4) Generating test report

Automated
GUI test script

Test report

Fig. 1. Process and automation approach for localization testing.

(1) Traversing the GUI: First, for each module, a GUI test script has been developed
using a commercial GUI test automation tool. These test scripts perform a round trip
over all screens. The scripts differ from conventional functional tests as they are not
related to specific usage scenarios. They only open each of the different screens. Input
is provided by the scripts to proceed to the next screen or to trigger error message dialogs.
The scripts contain checks verifying that a certain screen has been actually been opened,
but they do not verify the correctness of the output on the screens.

The scripts are based on an in-house library and GUI interaction is defined as a
sequence in tables that can be easily maintained. They were created by testers with
detailed knowledge about where to locate all screens in the navigation structure and how
to access them. The testers also decided what constitutes a “screen” relevant for testing.
Typically a screen corresponds to a dialog window. However, complex dialogs contain
frames or tabs that represent distinct screens, i.e., one per frame or tab.

For localization testing, the test scripts had to be executable on each localized
versions of the SUT. Therefore, the scripts themselves had to be internationalized, which
means that language-specific references to GUI elements (e.g., button label “Next”) had
to be replaced by neutral references (e.g., index or position in the GUI hierarchy).
(2) Ripping GUI information: For each module, the corresponding test script is
executed in the default language English as well as in each localized variant. The scripts
take a screenshot of each visited screen. Furthermore the scripts traverse the hierarchy
of GUI elements of each screen to extract various properties of the GUI elements such
as their element type, displayed text, visibility status, position and size. Only data from
GUI elements relevant for testing was extracted, e.g., buttons, text fields, lists containing
text strings; structural elements were ignored. The programming interface of the applied

388 R. Ramler and R. Hoschek

GUI test automation tool has been used to access the properties of the GUI elements.
This approach allowed to process visible as well as hidden GUI elements. Actually a
large number of relevant GUI elements were “hidden”. They were either outside the
visible part of a scrollable area, a collapsed list or tree, they were set invisible in a
particular system state, or they become visible on certain events such as tooltips that are
activated by hoovering over an element.
(3) Analyzing extracted data: In a post-processing step, the data extracted during test
execution is analyzed by comparing the different localized variants with the reference
version in English. The comparison is based on an extensible set of checks. They check
for missing translations, e.g., the same text string appears in the reference language and
a localized variant, whereby a list of exceptions is maintained for terms that should not
be translated. Similarly, a list of illegal and obsolete terms is used in a related check.
Further checks search for missing or inconsistent keyboard shortcuts. Violations of basic
style guidelines [4] are identified, for example, capitalization and punctuation issues in
labels. The size, location and alignment of the GUI elements are checked to reveal
corrupted screen layouts. These checks perform the actual verification step in localiza‐
tion testing. Currently we have implemented more than 20 checks for various properties
that can be easily extended or adapted.
(4) Generating test report: Finally, reports are generated that show the analyzed
screens in the reference language English and the localized variants side-by-side (Fig. 2).
For every screen the corresponding screenshot is shown and details about the analyzed
GUI elements are listed, including annotations about potential localization issues
detected by the implemented checks. The reports are used to investigate the detected
issues and for further manual analysis. The report generator is also able to output
summary information and statistics over all reports to determine the overall test status
and to compute trends when included in the build process.

Fig. 2. Localization test report showing reference language and localized variant side-by-side.

Process and Tool Support for Internationalization and Localization Testing 389

4 Results and Discussion

Automated localization testing was introduced when the Korean language version was
added [5]. Test reports were generated as support for the review of Korean translations.
They show the translated terms in context of the dialogs where they are used, which
makes it easier to verify that the translations are appropriate and consistent. The tests
were also used to find regression bugs introduced during the internationalization/local‐
ization process when running the SUT in the Korean localization with corresponding
fonts and character sets installed. Subsequently, localization testing was also established
for all other languages. Therefore the localization tests are run for all supported
languages as part of the build pipeline on a central test execution server that is also used
for performing other automated testing. The summary test results are monitored and
when a deviation occurs in the overall trend, e.g., when several checks fail after an
update, the detailed results are investigated further.

4.1 Detected Defects

Automated localization testing was applied for 30 modules of the SUT in the Korean
language. They include 2.663 screens containing a total of 84.165 GUI elements. The
automated tests revealed 59 additional issues, despite running them after manual testing
conducted by the test team and a Korean native speaker. Table 1 provides an overview
of the different types of detected bugs2.

Despite being real bugs, many of the found problems are characterized as cosmetic
issues with low severity. Two issues, however, were found to be critical. The first is
related to an incorrectly initialized GUI element that contained arbitrary values in local‐
ized versions. When interpreted as text, these values formed illegal, non-Unicode char‐
acters crashing the automated tests. Testers recounted a similar issue found in localiza‐
tion testing of an earlier version that actually crashed the entire SUT. Second, the trans‐
lation of displayed measurement units sometimes changes the length of data values and
numbers shown in fields. Since numbers are aligned right, the highest digits may be
truncated, which can lead to a highly misleading situation, e.g., when a value such as
“110 V” is shown as “10 volts” instead. The user will not be able to recognize the
truncated value unless setting the edit focus to the field.

2 The work reported in this paper has been conducted in context of the development of a
commercial software product, which constrains the publication of defect data. An aggregated
overview of detected issues is provided in Table 1.

390 R. Ramler and R. Hoschek

Table 1. Detected issues in automated localization testing of the Korean language version.

Issue category Description Share
Missing
translations

Text strings that have not been translated can be detected
automatically by comparing the text extracted from the localized
and the reference variant. We found several issues including false
positives as this often occurs during development, when
translations are still missing.

24%

Incorrect
translations

The automated tests detected syntactical defects related to typos
and punctuation issues. Correctness of translations can only be
determined by human reviewers knowing in the target language.

36%

Corrupted text
and illegal
characters

Translated text strings may contain control characters (e.g., tabs or
line breaks) as well as placeholders for parameters. Their incorrect
use results in corrupted labels or the display of illegal characters.
In one case an uninitialized GUI element contained random
characters that led to a crash of the tests.

3%

Truncation and
overlap

Translations vary in length which may lead to labels being
truncated if the layout is static or overlapping with other GUI
elements if dynamic layout is used. Related issues were detected
by checking the size and position of the bounding box of the GUI
elements.

14%

Misalignment The tests check basic layout properties such as alignment or
spacing between elements. The detected layout issues were not
caused by localization bugs but they were already present in the
reference version.

14%

Incorrectly
formatted data

Due to translation of text data and measurement units the length of
displayed data values changes. When truncated, it requires the user
to set the focus to the field to see the entire value. For numbers
aligned to the right, the highest digits may be truncated, which can
cause misleading situations that are hard to recognize for the user.

2%

Disrupted sort
order

Related to translations of data values such as “none” or “n/a” we
also found an impact on the sort order in lists and drop down menus.

2%

Missing or
inconsistent
shortcuts

While the SUT does not support keyboard shortcuts in the Korean
language version, the tests detected labels that contained
misleading hints for the use of shortcuts.

5%

Other Miscellaneous issues not directly related to localization. 2%

4.2 Observations and Lessons Learned

There are several observations and lessons learned from developing an automation
approach for localization testing that scales to a large, real-world software product.

• Automation inherits testability issues from GUI testing: Since our localization testing
approach is based on the SUT’s GUI, we encountered the same testability issues as
in conventional GUI testing (e.g., timing issues, missing unique IDs to identify GUI
elements, and a zoo of different GUI technologies and frameworks not supported by
the test automation tool). What makes it even more challenging is the need to develop

Process and Tool Support for Internationalization and Localization Testing 391

language-independent, “internationalized” test scripts that run on all localized
versions of the software product.

• Finding localization issues requires executing the SUT: Can localization testing be
performed by analyzing the text strings in the terminology database, avoiding the
struggles of accessing the GUI? No, because most localization issues (more than
80%) were only detectable in context of the screen on which the translated text
appears when executing the SUT. For example, truncated labels can only be spotted
when the GUI elements are rendered, inconsistencies between correct translations
become apparent when they are displayed in context of a particular screen, and
elements missed in internationalization are not stored in the database at all.

• Testing visual representations is not enough: Localization issues often affect the
visual appearance of screens (e.g., overlapping elements, illegal characters, corrupted
layouts). However, a visual inspection of the screenshots is not sufficient to detect
all issues as a large share of information relevant for localization testing is only shown
on user interaction (e.g., tooltips, entries menus, content of lists and scrollable areas).
Less than half of the available information (46%) was found to be visible on screen‐
shots. Thus, we extracted the “hidden” information from screens at runtime using
GUI ripping and also extended our test reports accordingly.

• Detailed knowledge of the SUT is inevitable for localization testing: Although most
automated tasks in localization tests appear to be generic (e.g., traversing screens,
extracting data from GUI elements, comparing localized variants), they involve
questions that can only be answered with detailed knowledge about the SUT. Where
to find a particular screen in the navigation structure? What constitutes a unique
“screen” (e.g., a dialog, tab or frame) relevant for testing? Furthermore, involvement
of human experts is also required for developing the checks that detect localization
issues when questions arise such as how to interpret the style guide or which screens
have to be treated differently as they are based on system dialogs.

4.3 Related Work

Localization testing contains many simple, highly repetitive tasks (e.g., traversing each
language version of the SUT, extracting and comparing text from each screen) that
encourage automation. Moreover, many localization problems are caused by “simple”
bugs that are easily detectable by automated checks. There is, however, surprising little
support for localization testing by existing tools for test automation. Key tasks such as
making automated GUI tests language independent in order to run on different locali‐
zations requires considerable effort but are not well supported.

With a few exceptions, localization testing is also rarely addressed in the scientific
literature. Archana et al. [6] show examples of localization issues that can be detected
automatically by using a testing approach similar to our work. Martinez et al. [7] applied
random testing to search the GUI for mistranslations based on a predefined list of incor‐
rect terms. Zaraket et al. [8] developed GUICop, a tool that searches for violations of
properties defined with their GUI specification language. Furthermore, in the area of
Web and mobile application development, automation approaches have been proposed
for detecting presentation failures caused by localization bugs [9, 10].

392 R. Ramler and R. Hoschek

5 Summary and Future Work

In this paper we described the internationalization/localization process and the approach
we applied for automated testing of the different localized variants of a large software
product. Our work contributes empirical results on the various bugs we found (including
critical ones that caused crashes or resulted in highly misleading situations for the user)
and practical insights on how to develop a scalable, industry-strength automation
approach. The results show that test automation allows continuous regression testing of
localized versions. It supports finding localization bugs early and it helps to speed-up
release cycles and to save human effort in testing.

The implemented testing approach generates a wealth of data about the software
systems’ GUI that can also be used to gain new insights and to support other quality
assurance tasks. For example, we plan to extend our testing approach to detect presen‐
tation and layout issues when scaling the GUI to high resolution displays.

Acknowledgments. This research has been supported by the Austrian Research Promotion
Agency, the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry
of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET
center SCCH (FFG 844597).

References

1. Alameer, A., Halfond, W.G.J.: An empirical study of internationalization failures in the web.
In: International Conference on Software Maintenance and Evolution (ICSME). IEEE (2016)

2. Kano, N.: Developing International Software, 2nd edn. Microsoft Press, Amsterdam (2002)
3. Ressin, M., Abdelnour-Nocera, J., Smith, A.: Defects and agility: localization issues in agile

development projects. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.) XP 2011.
LNBIP, vol. 77, pp. 316–317. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20677-1_23

4. Microsoft Corp.: Microsoft Manual of Style, 4th edn. Microsoft Press, Amsterdam (2012)
5. Ramler, R., Hoschek, R.: How to test in sixteen languages? Automation support for

localization testing. In: 10th International Conference on Software Testing, Verification and
Validation (ICST). IEEE Computer Society (2017)

6. Archana, J., Chermapandan, S.R., Palanivel, S.: Automation framework for localizability
testing of internationalized software. In: International Conference on Human Computer
Interactions (ICHCI). IEEE Computer Society (2013)

7. Martinez, M., Esparcia, Anna I., Rueda, U., Vos, Tanja E.J., Ortega, C.: Automated
localisation testing in industry with test*. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS
2016. LNCS, vol. 9976, pp. 241–248. Springer, Cham (2016). doi:
10.1007/978-3-319-47443-4_17

8. Zaraket, F., Masri, W., Adam, M., Hammoud, D., Hamzeh, R.: GUICOP: specification-based
GUI testing. In: 5th International Conference on Software Testing, Verification and
Validation (ICST). IEEE Computer Society (2012)

9. Alameer, A., Mahajan, S., Halfond, W.G.J.: Detecting and localizing internationalization
presentation failures in web applications. In: International Conference on Software Testing,
Verification and Validation (ICST), pp. 202–212. IEEE Computer Society (2016)

10. Awwad, A.A., Slany, W.: Automated bi-directional languages localization testing for android
apps with rich GUI. Mob. Inf. Syst. 2016(27), 1–13 (2016)

Process and Tool Support for Internationalization and Localization Testing 393

http://dx.doi.org/10.1007/978-3-642-20677-1_23
http://dx.doi.org/10.1007/978-3-319-47443-4_17

Workshop: HELENA 2017

2nd Workshop on Hybrid Development
Approaches in Software Systems Development

Marco Kuhrmann1(B), Philipp Diebold2, Stephen MacDonell3,
and Jürgen Münch4

1 Department of Computer Science, Institute for Applied Software Systems
Engineering, Clausthal University of Technology, Goslar, Germany

marco.kuhrmann@tu-clausthal.de
2 Fraunhofer IESE, Kaiserslautern, Germany

Philipp.Diebold@iese.fraunhofer.de
3 Auckland University of Technology, Auckland, New Zealand

stephen.macdonell@aut.ac.nz
4 Reutlingen University, Bögblingen, Germany
Juergen.Muench@Reutlingen-University.de

Abstract. Software and system development is complex and diverse,
and a multitude of development approaches is used and combined with
each other to address the manifold challenges companies face today. To
study the current state of the practice and to build a sound understand-
ing about the utility of different development approaches and their appli-
cation to modern software system development, in 2016, we launched the
HELENA initiative. This paper introduces the 2nd HELENA workshop
and provides an overview of the current project state. In the workshop,
six teams present initial findings from their regions, impulse talk are
given, and further steps of the HELENA roadmap are discussed.

Keywords: Software process · Process description · Process improve-
ment · Agile methods · Hybrid development approaches

1 Introduction

Practitioners face numerous challenges in selecting the appropriate development
approach for an organization, a team or a project. Since there is no “Silver Bul-
let” [2] in software system development, software engineers are on the quest for
suitable development approaches, yet facing a huge variety of dynamic contextual
factors influencing the definition of appropriate processes [3,10]. Hence, a vari-
ety of development approaches compete for the users’ favor: standard approaches
as well as home-grown approaches, more traditional and/or more agile ways of
work, and projects influenced by the need to adhere to standards, norms, or
regulations.

In 2015, West claimed that “Water-Scrum-Fall” had become reality [9]. A
systematic review to investigate the current state-of-practice in software process
use [8] revealed a considerable imbalance in the research concerning traditional
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 397–403, 2017.
https://doi.org/10.1007/978-3-319-69926-4_28

398 M. Kuhrmann et al.

and agile software system development. As a consequence, we initiated HELENA
that aims to study the use of “Hybrid dEveLopmENt Approaches in software
systems development”. This initiative grew to a real project involving about 80
researchers1 from (currently) 26 countries. Each of these 26 sites has a local head
supporting the general organization team, and we owe special thanks to all our
colleagues, who helped us quality assuring the survey instrument, translating the
instrument, and spreading the word among their local peers. Initial results—in
particular from the HELENA trials and the first stage of the study—have been
presented at the annual meeting of the Software Process special interest group of
the German Computer Society [6], at the International Conference on Software
System Process (ICSSP) 2017 [4], and in [5].

The remainder of the paper is organized as follows: In Sect. 2, we provide a
brief overview of the current state of the study. Section 3 introduces the workshop
as such, and Sect. 4 provides a summary of future work.

2 The HELENA Study: Overview and Current State

In this section, we provide a quick overview of the current state of the HELENA
study from a global perspective. Information provided concerns the current dis-
semination of the survey (Sect. 2.1) and few selected results (Sect. 2.2) grounded
in a data dump from mid August 2017. Furthermore, detailed results can be
obtained from the region-specific reports, which are introduced in Sect. 3.

2.1 Current State

The second HELENA workshop aims at discussing preliminary results from
HELENA’s stage 2. For this, the participating teams were invited to provide
an initial analysis of a dataset, which was dumped from the survey tool on
August 15, 2017. This dataset comprised 501 complete2 data points, i.e., com-
pletely answered questionnaires. Figure 1 illustrates the countries from which we
received answers. In total, we received data points from 31 countries. Among
these data points, more than 20 data points each come from 10 countries and
14 countries provided fewer than 5 data points. The stage 2 questionnaire of
HELENA was made available to the public on May 2, 2017 and accepts answers
until September 30, 2017.

2.2 Selected Results

As already found in [4], the HELENA dataset is rich with information. Thus,
in this section, we only provide a quick overview of selected results. The ques-
tionnaire was made available in English (35% of all answers), German (26%),
1 The full list of all HELENA contributors can be depicted from: https://helenastudy.

wordpress.com/helena-team.
2 It has to be mentioned that we have more that 1,100 data points in the database.

Nevertheless, for the preliminary analyses, we only include those data points from
completed questionnaires.

https://helenastudy.wordpress.com/helena-team
https://helenastudy.wordpress.com/helena-team

2nd Workshop on Hybrid Development Approaches 399

Fig. 1. Overview of the countries from which we received answers to the questionnaire
(status: August 15, 2017).

Spanish (25%), and Portuguese (14%). Included in this analysis are the “com-
plete” answers only, which results in an n = 501. Yet, since the questionnaire
has a number of optional and multiple-selection questions, we have a varying n,
which is reported in the respective answers. In the following, we provide some
basic parameters:

Company Size (n = 501): We provided five categories for the company size
from which the participants could choose: micro-sized (11.58% of the par-
ticipants), small (14.97%), medium (27.54%), large (23.95%), and very large
(21.76%). Only 0.2% of the participants did not provide information regard-
ing the company size.

Distributed work (n = 501): The participants were asked to state their dis-
tributed work pattern. In total 38.12% of the participants stated that they
do not work in a distributed manner, 25.75% use distributed work within the
same country, 11.98% in the same region, i.e., the same continent. Finally,
23.95% use globally distributed work. Again, 0.2% of the participants did
not provide information.

Product/Project Size (n = 501): A considerable share of the participants
classifies the projects they refer to in their answers as very large, i.e.,
more than one person year in effort (60.88%). For the remaining categories,
we received the following answers: large: 17.76%, medium: 15.37%, small
(less than one person month): 4.19%, and very small (less than two person
weeks): 1.8%.

Experience (n = 501): In total, 63.07% of the participants stated that they
have more than 10 years of experience. Another 15.97% have 6–10 years,
13.97% have 3–5 years, and 4.59% of the participants has 1–2 years of expe-
riences. Only 2.40% mentions to have less than one year of experience.

400 M. Kuhrmann et al.

Fig. 2. Self-evaluation of the participants concerning the implementation of the stan-
dard SWEBoK disciplines (n = 378).

In the survey, we asked the participants if they (intentionally) combine different
development approaches, and 74.85% positively answered this question. In the
regard, we are interested—similar to [4]—in the self-perception of the partici-
pants’ way of work. To this end, we asked the participants to rate their way of
implementing the standard SWEBoK disciplines [1]. Figure 2 shows that the par-
ticipants aim at implementing a balanced process ecosystem, yet with a strong
tendency toward agile.

Concerning the development approaches as such, we provided the partici-
pants with two lists: one comprising 24 (large, integrated) development methods
and frameworks, and a second list comprising 35 techniques and practices. We
did not provide an explicit categorization, whether a method or a practice is “tra-
ditional” or “agile”, but provided the alphabetically sorted lists only. In total,
we received 30,060 selections on the 7-point Likert scale answers that will help us
to identify particular combination patterns. Just these few pieces of information
show the richness of the HELENA dataset; further exciting insights are reported
by the presenters of this workshop.

3 The Workshop

This 2nd HELENA workshop aims at continuing the community work initiated
at ICSSP 2016 (Austin, Texas); in particular, the HELENA survey. It continues
the 1st workshop held in conjunction with ICSSP 2017 (Paris; [7]).

3.1 Overview

In this workshop, we aim at bringing together all academic and industry con-
tributors and further interested people to:

1. Report the current state and (preliminary) outcomes of the HELENA survey
2. Develop a work program and define next steps within the whole community

2nd Workshop on Hybrid Development Approaches 401

3. Build working groups to work on selected (sub-)topics of interest
4. Create a research agenda for hybrid software and system development

This second workshop comprises reports from the regions presenting the cur-
rent state of the data collection and analysis, posters that report status and/or
present research questions, and (external) “lightning” talks given by researchers
and practitioners not involved on the HELENA core activities to challenge the
HELENA community. For the regions’ reports, we asked the regions to submit
short position papers, which were thoroughly reviewed by the HELENA core
coordination group. Six regional and cross-regional papers have been invited for
presentation. Hence, this second workshop also aims at informing the research
community as well as practitioners about the current state of practice.

3.2 Workshop Organization

The 2nd HELENA workshop is a 1-day workshop aiming at bringing together all
the contributors of the HELENA project. Table 1 shows the general workshop
schedule. Besides the reports on the current state of the work in the different
regions all across the globe, a key activity in the workshop is working in Break-
out Sessions. These sessions aim at identifying and further developing topics

Table 1. Overview of the workshop topics and schedule.

402 M. Kuhrmann et al.

of interest that allow for (i) continuing the survey research, and (ii) to form
working groups within the HELENA team. Different to the first workshop, we
also provide room for Lightning Talks in which HELENA team members and
interested “externals” discuss different topics of interest and/or challenge the
team and the research findings obtained so far. Finally, this workshop will also
continue developing a research agenda to steer further work on the use of hybrid
development approaches.

4 Conclusion and Future Work

Research conducted in the HELENA community so far strongly indicates the
high relevance of the topic. Specifically, the combination of different software
and system development approaches has become reality (see Fig. 2) and, more-
over, as we could show in [5], it happens to all companies—independent of their
size or the respective industry sectors. With this second workshop, we can also
add the “region” as a further parameter (Table 1) and, thus, conclude that com-
bination of different development approaches also happens independently from
the actual region. That is, hybrid software and system development is a world-
wide phenomenon, which requires further attention.

This second workshop is the last one performed during the HELENA stage 2
data collection. The third HELENA workshop will be held in conjunction with
the Evaluation and Assessment in Software Engineering Conference (EASE)
2018, June 28–29, 2018 in Christchurch, New Zealand.

Acknowledgements. We want to thank the Profes 2017 Chairs and organization
board for providing us with the opportunity to held the second workshop in conjunction
with Profes 2017. We look forward to a fruitful and long-term collaboration with the
Profes community.

References

1. Bourque, P., Fairley, R.E. (eds.): Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society, Washington, DC (2014)

2. Brooks, F.P.: No silver bullet essence and accidents of software engineering. IEEE
Comput. 20(4), 10–19 (1987)

3. Clarke, P., O’Connor, R.V.: The situational factors that affect the software devel-
opment process: towards a comprehensive reference framework. Inf. Softw. Technol.
54(5), 433–447 (2012)

4. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere,
K., McCaffery, F., Prause, C.R., Hanser, E., Linssen, O.: Hybrid software and
system development in practice: waterfall, scrum, and beyond. In: Proceedings of
the International Conference on Software System Process, ICSSP, pp. 30–39. ACM,
New York, July 2017

5. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., McCaffery, F.,
Garousi, V., Felderer, M., Linssen, O., Hanser, E., Prause, C.R.: Hybrid software
development approaches in practice: a European perspective. IEEE Softw. (2017,
in press)

2nd Workshop on Hybrid Development Approaches 403

6. Kuhrmann, M., Münch, J., Diebold, P., Linssen, O., Prause, C.R.: On the use of
hybrid development approaches in software and systems development: construction
and test of the HELENA survey. In: Proceedings of the Annual Special Interest
Group Meeting Projektmanagement und Vorgehensmodelle (PVM). Lecture Notes
in Informatics (LNI), vol. P-263, pp. 59–68. Gesellschaft für Informatik (GI), Bonn
(2016)

7. Kuhrmann, M., Münch, J., Tell, P., Diebold, P.: Summary of the 1st international
workshop on hybrid development approaches in software systems development.
ACM SIGSOFT Softw. Eng. Notes (2017, submitted)

8. Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.: Is Water-Scrum-Fall real-
ity? On the use of agile and traditional development practices. In: Abrahamsson,
P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS, vol. 9459, pp.
149–166. Springer, Cham (2015). doi:10.1007/978-3-319-26844-6 11

9. West, D.: Water-Scrum-Fall is the reality of agile for most organizations today.
Technical report, Forrester (2011)

10. Xu, P., Ramesh, B.: Using process tailoring to manage software development chal-
lenges. IT Prof. 10(4), 39–45 (2008)

http://dx.doi.org/10.1007/978-3-319-26844-6_11

Initial Results of the HELENA Survey
Conducted in Estonia with Comparison
to Results from Sweden and Worldwide

Ezequiel Scott1(B), Dietmar Pfahl1, Regina Hebig2, Rogardt Heldal2,
and Eric Knauss2

1 University of Tartu, Tartu, Estonia
{ezequiel.scott,dietmar.pfahl}@ut.ee

2 Chalmers University of Gothenburg, Gothenburg, Sweden
{hebig,heldal,knauss}@chalmers.se

Abstract. The way how software is developed in industry has consider-
ably changed with the advent of the agile development paradigm about
20 years ago. The HELENA initiative tries to investigate the current
state of practice in software and system development. This paper reports
about initial results of an online survey that was conducted in 26 coun-
tries simultaneously, focusing on results from Estonia and comparing
these results with results from Sweden as well as with the joint results
from all participating countries worldwide.

Keywords: Agile software development · HELENA · Survey

1 Introduction

The acronym HELENA stands for Hybrid Software and System Development
Approaches. The associated project aims to investigate the use of hybrid devel-
opment approaches in software system development - from emerging and inno-
vative sectors to regulated domains. For this purpose an online survey form
was created1. The overall goal of this survey is to investigate the current state
of the practice in software and systems development. In particular, researchers
involved in the HELENA project are interested to collect data about the types of
development approaches (traditional, agile, main-stream, or home-grown) used
in practice and how those approaches are combined, how such combinations were
developed over time, and if and how standards (e.g., safety standards) affect the
used development processes. This information will help push forward system-
atic process design and improvement activities resulting in more effective and
efficient software development.

1 HELENA Survey - https://www.soscisurvey.de/HELENA/.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 404–412, 2017.
https://doi.org/10.1007/978-3-319-69926-4_29

https://www.soscisurvey.de/HELENA/

Initial Results of the HELENA Survey Conducted in Estonia 405

HELENA has been designed as a 3-staged international research endeavor.
The first stage, which has been completed (cf. [1]), aimed at preparing the data
collection and to test the survey instrument. The project is now in the second
stage, i.e., international “mass data” collection using a revised survey instru-
ment. The second stage is conducted in a large international consortium that
comprises more than 60 partners from more than 30 countries. More details
can be found in the official web site2. The results of the second stage will fuel
the third project stage by focusing follow-up in-depth research on particularly
interesting outcomes of the second stage.

In this paper we present first results from the second stage of the survey for
Estonia and compare it to the joint results from all countries as well as to the
results from Sweden. We picked Sweden as a point of comparison since Sweden
is similar to Estonia in terms of being a Nordic country with a highly digitalized
society but at the same time very different from Estonia in terms of the type of
software industry.

2 Initial Results

Table 1 shows the communication channels used in Estonia and Sweden. In both
countries, most effort was invested in direct emailing, with comparable response
rates. Data collection in Estonia was mostly done through emailing contact per-
sons in software development companies in the time period May 20 to June 20
(one reminder was sent). In addition, we posted the survey in a blog of a com-
munity of software testers as well as in a mailing list. In total, we received 12
responses by June 20, 2017, all responses coming from the direct mailing ini-
tiative (30.8% response rate). Similarly, data collection in Sweden was mainly

Table 1. Communications channels used.

Channel Estonia Sweden

Requests Answers Response
rate

Request Answers Response
rate

Personal
contact

39 12 30.8% 35 13 37%

Mailinglist 1 0 0% 0 - -

Twitter 0 - - 1 0 0%

Blog post 1 0 0% 0 - -

Other 0 - - 2 0 0%

Total 41 12 - 38 13 -

2 HELENA Web Site - https://helenastudy.wordpress.com.

https://helenastudy.wordpress.com

406 E. Scott et al.

based on direct emails to existing contacts, complemented by posting the sur-
vey in social media such as Twitter. All 13 responses received in Sweden are
accounted for through direct mailing, leading to a response rate of 37%. Over-
all, i.e. across all 26 participating countries, 513 responses were collected until
August 23, 2017, when we conducted our analyses.

The differences of company sizes reported by Estonian respondents as com-
pared to Swedish respondents was roughly as we expected, i.e., many of the
Estonian respondents (41.7%) work in small companies (11–50 employees) while
most of the Swedish respondents work in large companies (251–2499 employees),
compared to only 7.7% who work in small companies. The difference of company
size becomes even more explicit when merging the numbers for respondents
working in small and medium size companies (11–250 employees) and those for
respondents working in large and very large companies (above 250 employees).
While the number of respondents is equally distributed over both classes, i.e.,
50% in each class, only about 15% of the Swedish respondents work in small and
medium size companies while about 85% work in large or very large companies.

When comparing the company size distributions of the Estonian and Swedish
respondents one can observe that the two countries are either balanced with
regards to company size (Estonia) or strongly leaning towards larger companies
(Sweden). The distribution of company sizes among the responses from all par-
ticipating countries can be placed somewhere between the Estonian and Swedish
distributions. In addition, worldwide, 11.6% of the respondents work in micro
companies (<10 employees). None of the respondents from Estonia and Sweden
works in such small companies (Fig. 1).

21.76%

23.95%

27.54%

14.97%

11.58%

Not Answered
Micro (<10 employees)

Small (11 - 50 employees)
Medium (51 - 250 employees)

Large (251 - 2499 employees)
Very Large (>2500 employees)

0.20%

41.67%

41.67%

8.33%

8.33%

38.46%

46.15%

7.69%
7.69%

Estonia SwedenAll participants

Company Size
What is your company's size in equivalent fulltime employees (FTEs)?

Fig. 1. Distribution of company sizes among the responses from all the participants,
Estonia, and Sweden.

Initial Results of the HELENA Survey Conducted in Estonia 407

Scrum
Iterative Development

Kanban
DevOps

Classic Waterfall Process
eXtreme Programming (XP)

Lean Software Development
Domain-Driven Design

ScrumBan
Feature Driven Development (FDD)

V-shaped Process (V-Model)
Phase / Stage-gate model

Model-Driven Architecture (MDA)
Scaled Agile Framework (SAFe)

Team Software Process
Personal Software Process

Nexus
Large-Scale Scrum (LESS)

SSADM
Spiral Model

Dynamic Systems Development Method
Crystal Family

PRINCE2
Rational Unified Process

17%

17%

75%

25%

33%

67%

25%

75%

83%

50%

67%

83%

75%

83%

17%

83%

67%

67%

67%

58%

17%

25%

17%

25%

25%

17%

17%

17%

17%

17%

17%

25%

17%

17%

67%

58%

50%

25%

17%

33%

58%

25%

42%

25%

17%

17%

17%

67%

17%

25%

33%

33%

42%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

Do not know it
Do not know if we use it

We never use it
We rarely use it

We sometimes use it
We often use it

We always use it

Frameworks/Methods
Which of the following frameworks and methods do you use?

Fig. 2. Distribution of responses according to the use of frameworks/methods in Estonia.

Scrum
Iterative Development

Kanban
DevOps

Classic Waterfall Process
eXtreme Programming (XP)

Lean Software Development
Domain-Driven Design

ScrumBan
Feature Driven Development (FDD)

V-shaped Process (V-Model)
Phase / Stage-gate model

Model-Driven Architecture (MDA)
Scaled Agile Framework (SAFe)

Team Software Process
Personal Software Process

Nexus
Large-Scale Scrum (LESS)

SSADM
Spiral Model

Dynamic Systems Development Method
Crystal Family

PRINCE2
Rational Unified Process

54%

15%

31%

15%

23%

23%

54%

15%

15%

62%

77%

62%

23%

15%

54%

62%

77%

54%

15%

15%

15%

15%

31%

31%

15%

15%

23%

31%

15%

15%

23%

38%

31%

23%

15%

23%

23%

23%

38%

62%

15%

15%

23%

23%

15%

15%

31%

15%

38%

23%

31%

23%

38%

23%

31%

38%

38%

31%

15% 23%

38%

15%

15%

46%

46%

38%

15%

31%

23%

15%

15%

15%

15%

15%

15%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

Do not know it
Do not know if we use it

We never use it
We rarely use it

We sometimes use it
We often use it

We always use it

Frameworks/Methods
Which of the following frameworks and methods do you use?

Fig. 3. Distribution of responses according to the use of frameworks/methods in Sweden.

408 E. Scott et al.

Scrum
Iterative Development

Kanban
DevOps

Classic Waterfall Process
eXtreme Programming (XP)

Lean Software Development
Domain-Driven Design

ScrumBan
Feature Driven Development (FDD)

V-shaped Process (V-Model)
Phase / Stage-gate model

Model-Driven Architecture (MDA)
Scaled Agile Framework (SAFe)

Team Software Process
Personal Software Process

Nexus
Large-Scale Scrum (LESS)

SSADM
Spiral Model

Dynamic Systems Development Method
Crystal Family

PRINCE2
Rational Unified Process

10%

11%

18%

12%

10%

24%

32%

38%

26%

40%

57%

35%

42%

54%

59%

61%

33%

51%

38%

58%

64%

48%

26%

10%

12%

12%10%

34%

27%

23%

17%

15%

10%

26%

23%

10%

11%

11%

12%

20%

23%

33%

33%

30%

28%

26%

33%

28%

22%

32%

31%

26%

25%

23%

37%

30%

36%

29%

28%

36%

47%

14%

12%

20%

20%

11%

11%

10%

14%

19%

18%

16%

16%

19%

9%

9%

9%

8%

7%

8%

6%

9%

7%

8%

6%

7%

8%

7%

8%

7%

7%

7%

8%

8%

8%

9%

7%

9%

9%

6%

7%

7%

8%

8%

7%

8%

Do not know it
Do not know if we use it

We never use it
We rarely use it

We sometimes use it
We often use it

We always use it

Frameworks/Methods
Which of the following frameworks and methods do you use?

Fig. 4. Distribution of responses according to the use of frameworks/methods in all
the countries.

In the following, we discuss two main results of the survey, i.e., to what
extend specific development frameworks/methods are used, and to what extend
certain development practices are used.

Figures 2, 3 and 4 show the usage profiles of development frameworks/methods
in Estonia, Sweden, and overall, respectively. Each respondent had to rate 24 dif-
ferent frameworks/methods on a 5-point scale from ‘we never use it’ to ‘we always
use it’. In addition, respondents could check the box ‘Do not know the framework’
or ‘Do not know if we use it’.

With regards to the Estonian responses (Fig. 2) one can see a clear pref-
erence for a small set of agile development frameworks, clearly lead by Scrum
which is ’always used’ by 58% of the respondents. It is also interesting that only
three of the 24 listed frameworks (Scrum, Classic Waterfall Process, eXtreme
Programming) are known by all respondents.

Initial Results of the HELENA Survey Conducted in Estonia 409

When looking at the responses from Sweden (Fig. 3) one can again see a fre-
quent use of Scrum but only 8% of the respondents use it always. Similarly often
used as Scrum are Iterative Development, Kanban - and the Classic Waterfall
Process. Only 46% of the respondents said that they use eXtreme Programming
‘rarely’ or ‘sometimes’, nobody said they use it ‘often’ or ‘always’.

When comparing the results from Estonia and Sweden with the overall results
from all participating countries (Fig. 4), one can see that the three most fre-
quently used frameworks (Scrum, Iterative Development, and Kanban) are the
same as in Sweden. However, one can observe that the usage frequency of Scrum
is between those of Estonia and Sweden.

Practices
Which of the following practices do you use?

Coding standards
Code review
Prototyping
Refactoring

Release planning
Automated Unit Testing

Expert/Team based estimation
Design Reviews

Backlog Management
Continuous integration

User Stories
Architecture Specifications

Iteration/Sprint Reviews
Limit Work-in-Progress

Retrospectives
Daily Standup

Continuous deployment
Detailed Designs

Definition of done / ready
Formal estimation

Security Testing
Burn-Down Charts
Pair Programming

End-to-End (System) Testing
Collective code ownership
Test-driven Development

Use Case Modeling
Automated Code Generation

On-Site Customer
Velocity-based planning

Iteration Planning
Destructive Testing

Scrum-of-Scrums
Model Checking

Formal Specification
Automated Theorem Proving

25% 25%

17%

50%

17%

33%

25%

67%

50%

25%

17%

25%

33%

17%

17%

17%

25%

17%

42%

17%

17%

17%

17%

17%

25%

25%

58%

17%

17%

17%

17%

17%

25%

17%

17%

17%

17%

17%

25%

33%

58%

17%

42%

25%

58%

17%

33%

50%

58%

50%

25%

25%

17%

17%

25%

17%

25%

25%

33%

58%

17%

25%

42%

33%

42%

33%

50%

75%

17%

67%

42%

42%

67%

33%

42%

17%

17%

25%

25%

17%

25%

42%

17%

17%

17%

33%

17%

25%

17%

42%

25%

42%

25%

25%

33%

25%

17%

25%

25%

33%

42%

33%

17%

17%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8% 8%

8%

Do not know it
Do not know if we use it

We never use it
We rarely use it

We sometimes use it
We often use it

We always use it

Fig. 5. Distribution of responses according to the use of practices in Estonia.

410 E. Scott et al.

Practices
Which of the following practices do you use?

Coding standards
Code review
Prototyping
Refactoring

Release planning
Automated Unit Testing

Expert/Team based estimation
Design Reviews

Backlog Management
Continuous integration

User Stories
Architecture Specifications

Iteration/Sprint Reviews
Limit Work-in-Progress

Retrospectives
Daily Standup

Continuous deployment
Detailed Designs

Definition of done / ready
Formal estimation

Security Testing
Burn-Down Charts
Pair Programming

End-to-End (System) Testing
Collective code ownership
Test-driven Development

Use Case Modeling
Automated Code Generation

On-Site Customer
Velocity-based planning

Iteration Planning
Destructive Testing

Scrum-of-Scrums
Model Checking

Formal Specification
Automated Theorem Proving

15%

31%

54%

31%

15%

23%

62%

15%

23%

15%

31%

62%

31%

31%

46%

15%

15%

15%

15%

46%

15% 15%

38%

15%

15%

15%

15%

15%

15%

15%

31%

23%

15%

15%

23%

15%

15%

15%

15%

23%

15%

15%

15%

31%

23%

31%

31%

31%

23%

15%

31%

46%

23%

15%

15%

15%

15%

15%

38%

15%

15%

23%

31%

23%

15%

15%

15%

31%

31%

15%

31%

38%

15%

38%

23%

15%

23%

15%

23%

15%

23%

15%

31%

38%

46%

54%

15%

23%

23%

23%

31%

31%

54%

46%

15%

38%

38%

31%

46%

23%

15%

23%

15%

23%

15%

23%

23%

31%

31%

46%

23%

31%

23%

69%

62%

54%

46%

69%

23%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

8%

Do not know it
Do not know if we use it

We never use it
We rarely use it

We sometimes use it
We often use it

We always use it

Fig. 6. Distribution of responses according to the use of practices in Sweden.

Figures 5, 6 and 7 show the usage profiles of specific development practices
in Estonia, Sweden, and overall, respectively. Each respondent had to rate 36
different practices, again using a 5-point scale from ‘we never use it’ to ‘we
always use it’. In addition, respondents could check the box ‘Do not know the
framework’ or ‘Do not know if we use it’.

When looking at Figs. 5, 6 and 7 it sticks out that ‘Coding Standards’ and,
in particular, ‘Code Review’ are popular in Estonia as well as Sweden and over-
all. One difference between the responses from Estonia and Sweden is that in
Estonia twelve practices are always used by more than 40% of the respondents.
In contrast, in Sweden, with the exception of ‘Code Review’, which is used by
38% of the respondents always, none of the practices is used more than 23%
always. As could be expected, the project usage profile of development practices
aggregated over all survey participants lies in-between Estonia and Sweden.

Initial Results of the HELENA Survey Conducted in Estonia 411

Practices
Which of the following practices do you use?

Coding standards
Code review
Prototyping
Refactoring

Release planning
Automated Unit Testing

Expert/Team based estimation
Design Reviews

Backlog Management
Continuous integration

User Stories
Architecture Specifications

Iteration/Sprint Reviews
Limit Work-in-Progress

Retrospectives
Daily Standup

Continuous deployment
Detailed Designs

Definition of done / ready
Formal estimation

Security Testing
Burn-Down Charts
Pair Programming

End-to-End (System) Testing
Collective code ownership
Test-driven Development

Use Case Modeling
Automated Code Generation

On-Site Customer
Velocity-based planning

Iteration Planning
Destructive Testing

Scrum-of-Scrums
Model Checking

Formal Specification
Automated Theorem Proving

25%

32%

21%

27%

27%

28%

27%10%

25%

25%

12% 19%

20%

11%

14%

11%

23%

15%

19%

16%

21%

23%

11%

21%

23%

27%

13%

20%

23%

36%

22%

38%

17%

17%

14%

18%

15%

15%

20%

13%

13%

11%

10%

33%

32%

32%

27%

19%

11%

16%

10%

33%

31%

24%

15%

29%

10%

32%

10%

12%

10%

10%

11%

30%

12%

16%

16%

12%

17%

19%

16%

22%

20%

13%

24%

25%

26%

25%

25%

33%

30%

32%

31%

41%

40%

35%

11%

16%

12%

19%

12%

25%

16%

20%

10%

18%

13%

10%

14%

12%

10%

13%

19%

24%

11%

19%

13%

23%

11%

11%

15%

15%

21%

14%

10%

15%

16%

12%

12%

18%

22%

33%

28%

15%

20%

19%

25%

14%

15%

18%

20%

16%

15%

14%

12%

17%

22%

12%

17%

22%

17%

23%

16%

11%

19%

17%

21%

14%

10%

12%

11%

10%

36%

28%

27%

30%

33%

26%

6%

9%

7%

8%

4%

6%

7%

5%

9%

8%

8%

8%

8%

6%

5%

5%

6%

7%

5%

7%

6%

7%

6%

6%

6%

7%

6%

9%

9%

8%

8%

9%

7%

6%

8%

8%

8%

9%

6%

8%

9%

7%

9%

9%

8%

9%

5%

9% 7%

6%

9%

9%

5%

9%

6%7%

7%

7%

6%

6%

5%

8%

8%

7%

Do not know it
Do not know if we use it

We never use it
We rarely use it

We sometimes use it
We often use it

We always use it

Fig. 7. Distribution of responses according to the use of practices in all the countries.

3 Discussion

Initial results of the second stage of the HELENA project show interesting simi-
larities and differences between the usages of development frameworks/methods
and practices when comparing responses from Estonia and Sweden.

One clear similarity is, for example, that Scrum is the most used development
framework/method in both Estonia and Sweden, as well as overall. A similar
statement could me made regarding the use of the practices ‘Coding standards’
and ‘Code review’. An explanation for the high popularity of agile approaches
and techniques could be that both countries have very competitive software
industries that are constantly striving to improve their processes and adopt
effective techniques.

One of the main differences between Estonian and Swedish responses is
related to the popularity of non-agile framework/methods - they seem to be
used more often in Sweden than in Estonia. One possible explanation for this
could be that Sweden has not only young, small and medium-sized software
houses that mainly build web-applications and business software but, in addi-
tion, a well-established software industry producing a large amount embedded

412 E. Scott et al.

and safety-critical software in larger companies and within larger and complexer
projects.

In future work, it would also be interesting to study whether the high number
of companies that claim to always us a practice in Estonia is correlated to the
high number of small companies in the Estonian data set. Open questions are:
Are these numbers due to the small companies? Are small companies stricter
with their process? Do small companies simply have less diverse use of methods
and processes, due to the lower number of teams?

4 Conclusions

In this paper, we only presented partial results from the HELENA survey, with
focus on the usage of software development frameworks/methods and practices.
The analysis of the related data brought up some interesting insights about the
similarities and differences between Estonia and Sweden. We expect even more
interesting insights from a broader analysis of the responses to all questions
asked as well as a more systematic comparison between the results from all 26
participating countries. From follow-up surveys and focused case studies during
the third stage of the HELENA project we hope to be able understand better and
give advice on what combination of practices and frameworks/methods works
best in a certain context.

Acknowledgements. We would like to thank the designers of the HELENA survey
instrument and all survey participants. Special thanks go to Anne Jääger for compiling
the list of contacts in Estonian companies and sending out emails to them, as well as
to Nauman bin Ali, Rashidah Kasauli, Grischa Liebel, and Kai Petersen for their help
in survey design and data collection as part of the Swedish group. Ezequiel Scott and
Dietmar Pfahl were financially supported by the institutional research grant IUT20-
55 of the Estonian Research Council as well as the Estonian IT Center of Excellence
(EXCITE).

Reference

1. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M.,
Trektere, K., McCaffery, F., Linssen, O., Hanser, E., et al.: Hybrid software and
system development in practice: waterfall, scrum, and beyond. In: Proceedings of
the 2017 International Conference on Software and System Process, pp. 30–39. ACM
(2017)

Hybrid Software and Systems Development
in Practice: Perspectives from Sweden

and Uganda

Joyce Nakatumba-Nabende1(B), Benjamin Kanagwa1, Regina Hebig2,
Rogardt Heldal2, and Eric Knauss2

1 Makerere University, Kampala, Uganda
{jnakatumba,bkanagwa}@cis.mak.ac.ug

2 Chalmers University of Technology, Gothenburg, Sweden
{regina.hebig,heldal,eric.knauss}@cse.gu.se

Abstract. Many organizations are adapting the use of hybrid software
development approaches by combining traditional methods with flexible
agile practices. This paper presents the initial results from the survey on
the use of hybrid software and systems approaches. The results are from
twenty one respondents from Sweden and Uganda. Our results show that
the iterative model is the most widely used process model in both Sweden
and Uganda. However, the traditional process models are also used in
combination with the more agile models like Scrum. From the results,
we also show that the large sized companies face the biggest problems
during implementation of agility since they have to adhere to standards
and control measures.

Keywords: Software process · Hybrid development approaches ·
HELENA survey

1 Introduction

Software development methodologies cover a range of techniques that are useful
for planning, executing and monitoring the process of developing software sys-
tems. These methodologies are diverse and organizations are quickly adopting
to new technologies [4]. This paper analyzes initial results from a survey carried
out with an overall goal of investigating the current state of practice in software
and systems development. The aim of the HELENA1 survey was to collect data
from software developers and practitioners to help determine the main software
development approaches used in practice and how these approaches are com-
bined in project development [3]. This paper presents preliminary results of the
data collected as part of the second phase of HELENA. The results discussed
here are from Sweden and Uganda. As part of the second phase of HELENA,
Uganda is the only country from Africa that is participating in the survey and

1 Hybrid dEveLopmENt Approaches in software systems development.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 413–419, 2017.
https://doi.org/10.1007/978-3-319-69926-4_30

414 J. Nakatumba-Nabende et al.

therefore we decided to compare results from a developing country to those from
a Nordic country like Sweden. The first reason is that we were interested in estab-
lishing any differences and similarities between these two countries in terms of
the type of software industry. The second reason is that Uganda and Sweden
share a program to educate PhD students, which gives us the unique possibility
to have young researchers visiting both sites for future studies in phase three of
HELENA.

The survey was sent out to several practitioners in industry and based on
their responses, Sweden received 13 data points while Uganda received 8 data
points. The data collection was mainly done through personal contacts, via email,
mailing lists and telephone contacts. In Uganda, the link to the survey was sent
out to 15 companies and was filled out by eight of those resulting in a response
rate of 53%. In Sweden the survey was mainly distributed through direct emails
to existing contacts, complemented by posting the survey in social media such
as Twitter. All 13 responses received in Sweden are accounted for through direct
mailing, leading to a response rate of 37%.

The remainder of the paper is organized as follows: Sect. 2 provides an
overview of the initial results from Sweden and Uganda. Section 3 provides a
discussion of the results. Finally, we conclude the paper in Sect. 4.

2 Initial Results

In this section we present results from the HELENA survey [3]. The survey
consists of five categories of questions belonging to: Metadata, Process Use,
Process Use and Standards, Process use in the lifecycle and Experience. The
results presented in this section were selected from three of the five sections in
the survey, i.e., Metadata, Process Use (PU) and Process Use and Standards
(PS). As indicated in the previous section, we received a total of 21 data points
from both Sweden and Uganda; the analysis in this section is based on these
data points.

2.1 Demographics

In this section, we cover the responses from the Metadata section of the survey.
We analyzed responses on the company sizes and the roles that the respon-
dents have in the projects they are part of. Table 1 provides an overview of the
comparison of the company sizes and the roles from Sweden and Uganda.

The result set provided answers from all categories, i.e., micro-sized orga-
nizations to the very large organizations. As seen from the results, five of the
organizations were micro-sized organizations and they all belonged to respon-
dents from Uganda while five of the organizations were very large companies and
these were only observed in Sweden. All the Uganda respondents had defined
roles that they performed on the projects while from the Sweden respondents,
there was the “other” category with two respondents. The respondents also high-
lighted the roles that they were frequently assigned to. From the results, it is

Hybrid Software and Systems Development in Practice 415

Table 1. Overview of the comparison of the number of participants from Sweden
(SW) and Uganda (UG) under different company sizes and the roles of the participants
(n= 21).

Micro Small Medium Large Very large Sum

UG SW UG SW SW UG SW

C-level Manager - - 1 - - - - 1

Product Manager - 1 - - - 1 1 3

Project/Team Manager 1 - - - 2 - 2 5

Analyst/Req. Engineer 1 - - - - - - 1

Architect 1 - - 1 2 - 1 5

Developer 2 - 1 - 1 - - 4

Other - - - - 1 - 1 2
∑

5 1 2 1 6 1 5 21

seen that the architect and project/team managers were the most frequently
stated roles in Sweden while in Uganda the developers were the most frequently
stated roles.

2.2 Process Use

Under process use, we were interested in determining the patterns in software
development, as there is move towards agile software development process [3]. We
aimed to establish the least used/unknown process models and the always/often
used process models. Figure 1 provides an overview of these results from the
Sweden and Ugandan respondents.

We picked the top five software development models based on the results from
the survey. All processes that tied for the fifth position were included. From the
results in the Fig. 1, Crystal Family and Nexus are the either not known or
never used in most software companies for both Uganda and Sweden. It is also
interesting to note that whereas the Dynamic Systems Development Method
(DSDM) is unknown in Sweden, it is one of the most commonly used models in
Uganda. We find the opposite result for Kanban, for which is known by most of
the Swedish companies, but never used for five of the Ugandan companies.

2.3 Process Use and Standards

The authors in [2,3] argue that external standards, norms and regulations are
major initiators brought about by the increasing complexity of software-intensive
systems. In this subsection, we investigate if external standards facilitate the
creation of hybrid development approaches. From the survey results, it was

416 J. Nakatumba-Nabende et al.

Fig. 1. Overview of the comparison of the least used/unknown development approaches
verses the often/always used development approaches in Sweden (SW) and Uganda
(UG) (TM: Traditional Method; AM: Agile Method).

established that 61.5% of the Swedish companies implemented external stan-
dards in comparison to the 37.5% of Uganda companies. For both countries, more
than 50% of the participants indicated that they implemented the standards due
to the requirements of the company/project businesses. Table 2 shows whether
using standards, norms and regulations challenge companies in the implementa-
tion of agility. However, we note that the responses received for this questions
were quite few (n = 11) in comparison to the responses from the previous ques-
tions. Therefore, we did not carry out a comparison of Sweden and Uganda but
rather we considered an aggregated view of the responses from both countries.
From the results, it is evident that the large companies face the biggest problems
during implementation of agility.

Hybrid Software and Systems Development in Practice 417

Table 2. Results of the number of respondents that identified whether standards,
norms and regulations challenge the implementation of agility in their organizations
(n= 11).

Company size Challenged by agility?

Yes No

Micro 1 1

Medium 1 -

Large 2 1

Very large 3 1

3 Discussion

In this section, we discuss the results presented in the previous section. We high-
light any commonalities and differences between the respondents from Sweden
and Uganda. As shown in Table 1, the role distributions are reflective of the
company sizes. For example, we observe that larger companies from Sweden
had more roles compared to the small sized companies which is also consistent
with the results presented in [3]. In Uganda, the greater number of the respon-
dents were software developers since there is a growth in software development
industry as compared to the architects and project managers from the Sweden
results.

From the results shown in Fig. 1, the iterative method of software develop-
ment is the most commonly used model in Uganda and Sweden. This is possibly
due to fact that it is one of oldest development processes. Furthermore, from the
results we observe that there is a widespread use of V-shaped traditional model
in Sweden while it is one of the least used development methods in Uganda. The
wide spread use of the model could be attributed to the model being an exten-
sion of one of the oldest process models and also this is in line the with large size
of companies as established in Sect. 2. More companies in Sweden indicated con-
sistent use of agile software related approaches as opposed to Uganda, e.g., the
use of Scrum, Kanban and DevOps. From these initial results, it is evident that
organizations tend towards using hybrid approaches for software development.

The results shown in Table 2 are consistent with the initial survey results
as reported in [3], that large companies face the biggest problems during the
implementation of agility. From the results, there were no significant differences
between the responses from Sweden and Uganda. Many of the respondents gave
justification as to why implementation of agility was a problem. Some of the
views received from the individual respondents were that:

“There is a perceived level of control; deviations identified can lead to dead-
locks and schedule conflicts with other projects; increased need for speed is
slowed down by safety regulations, e.g. traceability, documentation levels, for-
mal reviews; ISO26262 assumed process is pure waterfall and cause problems to
run in an agile setup; conforming to standards from different domains, sometimes

418 J. Nakatumba-Nabende et al.

standards are not easily changed or flexible even when the business environment
points to the need for change.”

Many of these problems highlighted here are consistent with findings from
previous studies on the challenges of agile implementation [1].

Based on these observations, we raise some questions for future research. We
observe that agile methods are less known by Ugandan companies, while they
use iterative development. Similarly DSDM is largely unknown by Swedish com-
panies. By taking more data in future, we hope to understand questions that
relate to any correlations between the used processes and the contextual environ-
ment of the companies including education, maturity of software industry and
nature of projects carried. Other questions relate to re-occurring combinations
of approaches and effect of the observed differences on internationalization and
outsourcing.

4 Conclusion

In this paper, we have provided an overview of the results from the HELENA sur-
vey based on responses from Sweden and Uganda. Particularly, we have focused
on the questions relating to demographics, process use, and processes and stan-
dards. Based on the results received from respondents in Uganda and Sweden, we
carried out a comparative review of the main software development approaches
used in industry. We categorized the company sizes from Uganda and Sweden
while highlighting the roles that the respondents play in these organizations.
We also analyzed the main process models that are used in both countries and
found out that companies do not adhere to one development method but rather
employ hybrid approaches in practice.

The main limitation of this study is the number of data points that were
received from Sweden and Uganda were small and the results presented here
may not provide a generalization of the software development approaches in
Sweden and Uganda. For future work, we aim to get more data points before
the close of the survey period and also survey other research questions and areas
as discussed in the previous section. Furthermore, we also hope to compare our
results with results from other regions.

Acknowledgments. We would like to thank Nauman bin Ali, Rashidah Kasauli,
Grischa Liebel, Kai Petersen for their help in survey design and data collection as well
as all participants in the survey.

References

1. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Soft. 119, 87–108
(2016)

Hybrid Software and Systems Development in Practice 419

2. Kuhrmann, M., Münch, J., Diebold, P., Linssen, O., Prause, C.R.: On the use of
hybrid development approaches in software and systems development: construction
and test of the HELENA survey. In: Proceedings of the Annual Special Interest
Group Meeting Projektmanagement und Vorgehensmodelle (PVM). Lecture Notes
in Informatics, vol. 263, pp. 59–68 (2015)

3. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Prause,
C.R.: Hybrid software and system development in practice: waterfall, scrum, and
beyond. In: Proceedings of the 2017 International Conference on Software and Sys-
tem Process, pp. 30–39. ACM (2017)

4. Vijayasarathy, L.R., Butler, C.W.: Choice of software development methodologies:
do organizational, project, and team characteristics matter? IEEE Soft. 33(5), 86–
94 (2016)

HELENA Stage 2—Danish Overview

Paolo Tell1(B), Rolf-Helge Pfeiffer2, and Ulrik Pagh Schultz3

1 IT University of Copenhagen, Copenhagen, Denmark
pate@itu.dk

2 Copenhagen Business Academy, Copenhagen, Denmark
rhp@cphbusiness.dk

3 University of Southern Denmark, Odense, Denmark
ups@mmmi.sdu.dk

Abstract. Since the early days of software engineering, a number of
methods, processes, and practices to design and develop software systems
have been proposed and applied in industry, e.g., the Rational Unified
Process, Agile Software Development, etc. However, since no silver bullet
exists, organizations use rich combinations of agile and/or traditional
methods and practices, rather than following a single process by the
book. To investigate this reality, an international exploratory multistage
research project named HELENA (Hybrid DEveLopmENt Approaches
in software systems development) was initiated. Currently, the HELENA
survey is conducted globally (second stage of HELENA project). This
short paper presents and discusses the results of the survey in Danmark
compared to the global results based on the data from August 15, 2017.

Keywords: Hybrid development approaches · HELENA

1 Introduction to the HELENA Project

HELENA is an international exploratory multistage survey-based study on
the use of “Hybrid dEveLopmENt Approaches in software systems develop-
ment”. The project aims at: (a) researching the practical application of meth-
ods, processes, and practices in software engineering, and (b) development and
deployment of new systematic processes to enable more efficient and effective
software development. To achieve these goals the project is designed to collect
data through a survey1, which has been refined over several iterations. After
being successfully tested within Europe in project stage one [2], the HELENA
project is currently in stage two, in which the survey is conducted globally in
more than 25 countries. A third and final stage will conclude the project. In
stage three, focus groups will perform in depth research on community-defined
topics of interest, based on the results of stage two.

With this paper, we aim (i) to identify potentially interesting similarities and
differences of the current Danish results compared to the overall global ones;

1 HELENA survey accessible from www.soscisurvey.de/HELENA/.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 420–427, 2017.
https://doi.org/10.1007/978-3-319-69926-4_31

www.soscisurvey.de/HELENA/

HELENA Stage 2—Danish Overview 421

(ii) to assess whether results from stage one can be confirmed focusing on the
Danish population; and (iii) to establish a base for more in-depth research at
the end of the survey, at the end of Sept. 2017.

In particular, Sect. 2 presents and discusses an overview of the results of the
survey in Danmark compared to the global results (including the Danish ones)
based on the data from August 15, 2017. Furthermore, focusing only on the
Danish data set, in Sect. 3 we replicate the analysis performed on the data set
from project stage one [3], and we assess whether the main results of stage one
are in line with the ones collected from Denmark in stage two. Finally, Sect. 4
wraps up the main finding and briefly suggests future directions that the Danish
team will consider.

1.1 The Danish Participation

The Danish HELENA research team consists of 4 members (see Table 1 for
contacts and affiliations). Since the beginning of project stage two, the team
invited 132 individuals via personal email (127) or mailing lists and physical
meetings (5) to answer the survey. Of these, 22 fully completed the survey, i.e.,
response rate of ca. 16.6%. Finally, at least 13 (ca. 9.8%) individuals started the
survey but did not complete it.

Table 1. Danish team—contacts.

Paolo Tell pate@itu.dk IT University of Copenhagen,
Copenhagen

Rolf-Helge Pfeiffer rhp@cphbusiness.dk Copenhagen Business
Academy, Copenhagen

Brad Beach brbe@mmmi.sdu.dk University of Southern
Denmark, Odense

Ulrik Pagh Schultz ups@mmmi.sdu.dk University of Southern
Denmark, Odense

2 Demographics

Except of two, all respondents have at least three years of working experience and
the majority (13 out of 32) are senior with more than ten years of experience, see
Fig. 1. This distribution is similar to the world-wide demographics, see orange
line in Fig. 1.

The Danish respondents are mostly product managers/owners, developers,
and architects, see Fig. 2. That is interesting, as it is firstly, different from the
world-wide population, see orange bars in Fig. 2, and secondly, it suggests a more
agile development environment in those companies as fewer project/team man-
agers participated and no participant selected positions like analyst/requirement
engineer, quality manager, tester, and trainer. Of course, these Danish results

422 P. Tell et al.

Fig. 1. Overview of the experience level as stated by the participants.

Fig. 2. Overview of the roles as stated by the participants.

may be heavily biased by the selection of survey participants (in essence we acti-
vated every practitioner we know) and may be not representative of the entire
Danish software industry.

Nonetheless, Fig. 3 illustrates, that not only small and medium-sized
enterprises are represented—which might favor a more agile development
environment—but that approx. a third of the respondents works in large com-
panies.

The application domain of the companies is very diverse. Most respondents
work in the areas of cloud-, web-applications and services, see Fig. 4. However,
also robotics, home automation, and automotive software is represented, which

HELENA Stage 2—Danish Overview 423

Fig. 3. Overview of the size of the companies as stated by the participants.

Fig. 4. Overview of the application domain of the companies as stated by the partici-
pants. Note: multiple selection was enabled.

is interesting for a country without car manufacturing. Even though existent in
Danmark, there are no responses from the healthcare domain. This particular
domain has been discussed within the ‘safety’ focus point identified during the
first HELENA workshop2 [4].

3 Applied Methods and Practices in Danmark

Currently, our hypothesis is that the Danish software industry is more inclined to
apply agile software development. To investigate this, we focused on the data set
generated by Danish respondents, and we analyzed the list of methods and prac-
tices selected. This section presents the breakdown of the methods and practices
based on the company size and the industry sectors (see Fig. 2).
2 The first international HELENA workshop was held co-located with the 2017 Inter-

national Conference on Software and Systems Process (ICSSP).

424 P. Tell et al.

This analysis was first done on the HELENA data set for stage one [3].
However, this analysis differs in a few ways. First, since stage one, the list of
methods and practices alphabetically listed in the survey has changed to improve
the instrument, and the HELENA team has yet to discuss and agree on a cate-
gorization of both the methods and the practices before the end of project stage
two. Therefore, this analysis relies on a categorization based on prior experience
and previously used classifications (e.g., [1]). Appendix A provides the full cate-
gorization for reference. Second, the scale used for these variables in the survey
changed from being binary to a 7-point Likert scale3. Third, differently from
the analysis performed in stage one, the data aggregation herein performed have
been executed by keeping the methods and the practices separated.

Table 2, shows clearly that the majority of Danish software producers apply
agile methods—on average ≥ 63.0%—independent of company size and sector,
see Fig. 5. A notable exception are companies producing automotive software,
which tend more to apply traditional methods.

On average, more than half of the Danish companies—disregarding size and
sectors—apply agile practices, even those developing automotive software. How-

Table 2. Overview of the relative use of the different approaches based on (a) company
size and (b) industry sector. For each item, the quantity is computed by counting the
number of companies of, e.g., a particular size that have marked, e.g., a traditional
method with at least a 5 (i.e., “we sometimes use it”). Note: while participants had to
select exactly one company size, they could select multiple industry sectors in which
their company is engaged.

3 The survey variables PU09 and PU10 changed scale from project stage one to two.
Earlier they were binary, now they are on a 7-point Likert scale: 1: ‘Do not know
the framework’; 2: ‘Do not know if we use it’; 3: ‘We never use it’; 4: ‘We rarely use
it’; 5: ‘We sometimes use it’; 6: ‘We often use it’; 7: ‘We always use the framework’.

HELENA Stage 2—Danish Overview 425

Fig. 5. Overview of the breakdown provided in Table 2 generated based on the averages.

ever, companies with less than ten employees appear to be less agile in practice,
likely due to the lack of ‘teams’ as such.

Furthermore, the analysis in Table 2 supports one of the main results of
project stage one [3], namely, that hybrid approaches emerge regardless of com-
pany size and industry sector (≥20.2%).

Notably, and differently from earlier results [3], it seems that companies with
less than 50 employees in Denmark do not use ‘traditional’ methods and only
some ‘traditional’ practices. Similarly, it seems that ‘younger’ sectors, such as
media and entertainment, games, and mobile applications are least ‘traditional’
in their practices. Interestingly, financial services report similar low application
of ‘traditional’ practices, all below 10%.

We are aware that this analysis is premature and potentially misleading as
only 22 respondents from Danmark are registered so far. To strengthen our
analysis and to confirm the tendencies we encourage more participants from the
Danish software industry to take the survey.

4 Conclusion and Final Remarks

In this short paper, we have presented and analyzed the current results of the
Danish HELENA stage two survey, based on the data from August 15, 2017.

The trends seem to be in line with the entire data set as well as the results
identified during the first stage of the project: traditional and agile methods and
practices are combined with each other regardless of company size and industry
sector. Nevertheless, some interesting differences are present in both the popu-
lation and the data, which seem to indicate that Danish enterprises might favor
a more agile development environment. The grounds for these differences and
the extend to which methods and practices are combined will be further inves-
tigated once the survey will be closed. To this end, the Danish team will cer-
tainly attempt to promote and advertise more the HELENA survey, as attracting
additional participation will be crucial to reach deeper and statistically sound
insights.

Acknowledgements. We would like to thank—also on behalf of the entire HELENA
team—all those who took part in the survey and that helped us collecting data.

426 P. Tell et al.

A Categorization of Methods and Practices

Variable Categorizationa Description

Methods

PU09 01 Traditional Classic Waterfall Process

PU09 15 Traditional Phase/Stage-gate model

PU09 16 Traditional PRINCE2

PU09 17 Traditional Rational Unified Process

PU09 21 Traditional* Spiral Model

PU09 22 Traditional Structured Systems Analysis and Design Method (SSADM)

PU09 24 Traditional V-shaped Process (V-Model)

PU09 03 Agile DevOps

PU09 05 Agile Dynamic Systems Development Method (DSDM)

PU09 06 Agile eXtreme Programming (XP)

PU09 07 Agile Feature Driven Development (FDD)

PU09 09 Agile Kanban

PU09 10 Agile Large-Scale Scrum (LESS)

PU09 11 Agile Lean Software Development

PU09 13 Agile Nexus

PU09 18 Agile Scaled Agile Framework (SAFe)

PU09 19 Agile Scrum

PU09 20 Agile ScrumBan

PU09 02 Both Crystal Family

PU09 04 Both Domain-Driven Design

PU09 08 Both Iterative Development

PU09 12 Both Model-Driven Architecture (MDA)

PU09 14 Both Personal Software Process

PU09 23 Both Team Software Process

Practices

PU10 01 Traditional Architecture Specifications

PU10 03 Traditional Automated Theorem Proving

PU10 16 Traditional Detailed Designs/Design Specifications

PU10 19 Traditional Expert/Team based estimation (e.g. Planning Poker)

PU10 20 Traditional* Formal estimation (e.g. COCOMO, FP)

PU10 21 Traditional Formal Specification

PU10 24 Traditional Model Checking

PU10 36 Traditional Use Case Modeling (as Requirements Engineering Practice)

PU10 05 Agile Backlog Management

PU10 06 Agile Burn-Down Charts (as Progress Monitoring Practice)

PU10 09 Agile Collective code ownership

PU10 10 Agile Continuous deployment

PU10 11 Agile Continuous integration

PU10 12 Agile Daily Standup

PU10 13 Agile Definition of done/ready

PU10 15 Agile* Destructive Testing

PU10 23 Agile Iteration/Sprint Reviews

PU10 17 Agile Limit Work-in-Progress (e.g., using Kanban board)

PU10 25 Agile On-Site Customer

PU10 28 Agile* Refactoring

PU10 29 Agile Release planning

PU10 30 Agile Retrospectives

PU10 31 Agile Scrum-of-Scrums

PU10 34 Agile User Stories (as Requirements Engineering Practice)

PU10 35 Agile Velocity-based planning

PU10 02 Both Automated Code Generation

PU10 04 Both Automated Unit Testing

PU10 07 Both Code review

PU10 08 Both Coding standards

PU10 14 Both Design Reviews

PU10 18 Both End-to-End (System) Testing

PU10 22 Both Iteration Planning

PU10 26 Both Pair Programming

PU10 27 Both Prototyping

PU10 32 Both Security Testing

PU10 33 Both Test-driven Development (TDD)

aNote that the items which categorization is marked in italic with a * symbol are considered
particularly debatable.

HELENA Stage 2—Danish Overview 427

References

1. Diebold, P., Zehler, T.: The right degree of agility in rich processes. In:
Kuhrmann, M., Münch, J., Richardson, I., Rausch, A., Zhang, H. (eds.) Manag-
ing Software Process Evolution, pp. 15–37. Springer, Cham (2016). doi:10.1007/
978-3-319-31545-4 2

2. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere,
K., McCaffery, F., Linssen, O., Hanser, E., Prause, C.R.: Hybrid software and system
development in practice: waterfall, scrum, and beyond. In: Proceedings of the 2017
International Conference on Software and System Process, ICSSP 2017, pp. 30–39.
ACM, New York (2017)

3. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., McCaffery, F.,
Garousi, V., Felderer, M., Linssen, O., Hanser, E., Prause, C.R.: Hybrid software
development approaches in practice: a European perspective. IEEE Softw. (2017, in
press)

4. Kuhrmann, M., Münch, J., Tell, P., Diebold, P.: Summary of the 1st interna-
tional workshop on hybrid development approaches in software systems develop-
ment. ACM (2017)

http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_2

HELENA Study: Reasons for Combining Agile
and Traditional Software Development
Approaches in German Companies

Jil Klünder1(B), Philipp Hohl2, Masud Fazal-Baqaie3, Stephan Krusche4,
Steffen Küpper5, Oliver Linssen6, and Christian R. Prause7

1 Leibniz Universität Hannover, Software Engineering Group, Hannover, Germany
jil.kluender@inf.uni-hannover.de

2 Daimler AG, Research and Development, Ulm, Germany
philipp.hohl@daimler.com

3 S&N CQM GmbH, Paderborn, Germany
masud.fazal-baqaie@sn-cqm.de

4 Technische Universität München, Munich, Germany
krusche@in.tum.de

5 Technische Universität Clausthal, Clausthal-Zellerfeld, Germany
steffen.kuepper@tu-clausthal.de

6 FOM University of Applied Sciences for Economics and Management,
Essen, Germany

oliver.linssen@fom.de
7 German Aerospace Center, Bonn, Germany

christian.prause@dlr.de

Abstract. Many software development teams face the problem of select-
ing a suitable development approach fitting to their specific context.
According to them, the combination of agile and traditional approaches
seems to be the solution to handle this problem. However, the cur-
rent state of practice with respect to hybrid approaches is not suffi-
ciently examined. Most studies focus either on traditional or on agile
methods, but the combination of both is not well investigated yet. The
“Hybrid dEveLopmENt Approaches in software systems development”
(HELENA) study performs a large-scale international survey in order to
gain insights into the distribution of hybrid approaches. So far, the study
indicates several reasons why companies combine agile and traditional
approaches. The hybrid approaches aim at improving the frequency of
delivery to customers, the adaptability and the flexibility of the process
to react to change. Furthermore, it is the aim to increase the produc-
tivity. In this publication, we present the current state of the German
results and outline the next steps.

Keywords: HELENA study · Hybrid software development · Empirical
study in Germany

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 428–434, 2017.
https://doi.org/10.1007/978-3-319-69926-4_32

HELENA Study 429

1 Introduction

Nowadays, there exist various methods and practices to develop software. The
methods consist of agile and plan-driven processes [6]. However, it seems to
be a best practice to combine both approaches. While the plan-driven process
provides clear process models with an overall project structure, the agile app-
roach enables more flexibility and individuality by focusing on shorter time-
to-market and customer satisfaction [1]. In order to obtain the advantages of
both approaches, hybrid software development seems to increasingly spread into
industry. To investigate this topic in detail, the HELENA study was brought
to life. The study investigates the combinations of agile, traditional, and other
kinds of software development approaches in use. Furthermore, the study exam-
ines how agile methods and practices are integrated into traditional development
approaches and why they are selected.

Currently, 85 researchers from 26 countries contribute to the study of hybrid
development approaches. This paper presents the current state of the data col-
lection in Germany, shows an overview of preliminary results and outlines the
next steps with respect to data analysis.

2 Related Work

There are only a few publications focusing on the prevalence of hybrid
approaches: Boehm and Turner [3] motivate the combination of agile and plan-
driven approaches. They mention that a changing world needs agile and dis-
ciplined development methods. They characterize “home grounds” where the
approaches are most likely to succeed and identify five critical dimensions. With
a classification within the critical dimensions, it is possible to set up a balanced
strategy for a successful combination of agile and plan-driven approaches. The
presented risk-based method takes advantage of the strengths and mitigates the
weaknesses of both approaches.

Diebold and Zehler [4] examine the process of combining agile and traditional
development methods. They distinguish between the revolutionary and the evo-
lutionary approach, which differ in the order of occurrence of the methods. The
authors describe the coexistence of both development methods, but they do not
investigate their distribution.

Kuhrmann and Linssen [5] examine the use of process models in Germany.
They compare the data from 2006 with the data of 2013 and observe the emer-
gence of many different models and approaches. They point out that the com-
bination of traditional process models and agile development approaches is per-
vasive. However, agile approaches are not as dominating as promoted by the
agile community. Theocharis et al. [7] report of a high popularity of hybrid
approaches. They experience the lack of quantitative data representing the use
of development methods. The HELENA study aims at examining this research
gap in detail.

430 J. Klünder et al.

3 Data Collection in Germany

Since May 2, 2017, the questionnaire of the HELENA survey is available online in
German, English, Spanish and Portuguese. The German team of HELENA con-
sists of 14 researchers from 11 different institutions. The researchers encouraged
practitioners from different German organisations including SMEs and compa-
nies to participate in the study. Therefore, they sent personalized emails to con-
tacts within organisations and used mailing lists of software engineering commu-
nities. Like teams from other countries, they also distributed the questionnaire
using social media via Twitter, XING and ResearchGate.

The data points collected until this intermediate report seem to indicate selec-
tion and response biases resulting from the invitation method (personal emails).
To mitigate these biases, the researchers started a Google AdWords campaign
in order to find additional participants without a personal relationship to the
researchers. (Note that the data collected during this campaign is not included
in this report.) After 10 days, advertisements to “participate in the scientific
survey” were displayed 40K times and 300 people clicked through the survey.
Until now, five people completed the questionnaire over this campaign (one of
them from Peru as advertisements were initially not restricted to Germany).

4 Overview of Preliminary Results

Based on the data collection until August 15, 2017, the German team collected
95 complete data records from German software developers. Most of the par-
ticipants (33%) are employed in very large organizations with more than 2500
employees. 31% work in large organisations with more than 250 employees (cf.
Table 1). There have been 45 more responses from larger organisations than from
smaller ones. Among the selection bias, a possible reason might be that hybrid
approaches are more interesting for large companies because they are more likely
to use traditional development processes and aim to speed up development.
Hybrid approaches promise them an improved development process. Small soft-
ware companies tend to apply agile methods and practices right from the begin-
ning. Hence, they often do not think about implementing hybrid approaches
so far.

Table 1. Number of companies using hybrid approaches

Company size # Participants # Companies using
hybrid approaches

<10 10 7 (70%)

10–50 5 5 (100%)

51–250 20 14 (70%)

251–2500 29 22 (76%)

>2500 31 25 (71%)

HELENA Study 431

The HELENA study also asks about the size of the developed software prod-
ucts and the project length. In three of four cases, the product size is more than
one person year (76%). Only 2% of the projects do not last longer than two per-
son months. One third of the teams is not distributed (35%). Half of the teams
is distributed either globally (26%) or nationally (same country) (24%). 15% of
the projects are regionally distributed, i.e. distributed on the same continent.

One third of the participants either works in the automotive domain (16%)
or in the financial sector (15%). The automotive sector is strong in Germany.
Hence, it is plausible that there is a high participation from automotive software
developers. 12% of the participants work in the space domain. However, these
12% do not represent the real-world industry distribution of the space domain
in Germany and hence may indicate skewed representation.

26 project or team managers (27%) and 16 developers (17%) from German
companies participated in the survey. Eleven participants are quality managers
(12%). Most participants have more than ten years of working experience (62%).
The findings in Table 1 show that the combination of agile and traditional devel-
opment methods do not depend from the size of the company. In each com-
pany size category, more than 70% of the interviewed participants use hybrid
approaches.

39 participants in our study (41%) stated that each project within their
company can individually decide which process should be used. 20 participants
(21%) report that decisions are made on business unit level. 38% of the projects
are operated according to a in-house standard process. Projects either decide
about specific practices and methods on demand during the project (37%) or a
project manager tailors the process in the beginning (19%). In 15% of the cases,
the customer is taken into account when selecting the practices and methods.

Figure 1 gives an overview of some goals, companies want to reach by selecting
individual development approaches, such as time-to-market, employee satisfac-
tion and improved delivery pace.

Most very large (>2500 employees) companies combine agile and traditional
approaches to improve the frequency of delivery to customers (64%), to improve
the adaptability and flexibility of the process to react to change (64%) and
to improve the productivity (64%). Large companies (251–2500) also aim at
improving the productivity (81%), the planning and estimation (67%) and the
adaptability and flexibility of the process to react to change (62%). Micro com-
panies (<10 employees) also want to increase the productivity (57%) and the
external product quality (57%). The small companies mostly want to satisfy the
employees (80%), which seems to be less important for companies which are
either smaller (29%) or larger (33% resp. 19%). The very large companies also
want to increase employee satisfaction (50%).

432 J. Klünder et al.

Fig. 1. Reasons for companies to implement hybrid approaches (extract)

5 Future Work

This paper presents ongoing research. So neither the data collection nor the
analysis are complete yet. Next, we present a set of initial research questions for
exploring the distribution of hybrid approaches in Germany and worldwide.

In order to examine the distribution of hybrid development approaches within
different company sizes, we are interested in analysing domain-specific contexts.
In the future, we want to examine, if there is a correlation between organization
size, the implemented new roles and the way of working in order to gain insights
into advantages and disadvantages, difficulties and experiences with more or less
suitable combinations. Therefore, we aim at answering the following research
questions:

RQ1: Are there any domains working with a purely agile approach?

RQ1.1: Are there context factors that enable the implementation of agile?
RQ1.2: Which agile approaches are in use when implementing agile?

HELENA Study 433

RQ2: Are there any domains working with a purely plan-driven approach?

RQ2.1: Are there context factors that inhibit the integration of agile and lead to the
implementation of plan-driven approaches?

RQ3: Which domains primarily use hybrid approaches?

RQ3.1: Which domain-specific context factors support the implementation of hybrid
approaches?

RQ3.2: Which combinations are widely distributed and which ones are less suitable?
RQ3.3: Are there best practices when implementing hybrid approaches?
RQ3.4: Do common practice and best practice differ from each other?

According to Boehm [2], agile and plan-driven software development
approaches have different home grounds, i.e., agile development is favourable
for fast-paced markets, while domains with high failure costs tend to favour
traditional development models.

RQ4: What is the effect of software criticality on the choice of development
approach?

RQ4.1: Is there a clear relationship between the choice of the development approach
and the criticality of developed software?

RQ4.2: Do domains with expected higher failure costs (e.g., aerospace, automotive,
medicine) favour more traditional development approaches?

6 Conclusion

The results of our study indicate a high popularity of hybrid development
approaches in Germany. Independent of the size of the organization, many
project teams combine individually selected development approaches. Most of
the organisations aim at improving the productivity, the customer’s perceived
product quality, planning and estimation as well as the frequency of delivery to
the customer. We plan to extend our data collection and analysis in future work.

References

1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for Agile
Software Development (2001)

2. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
3. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed,

Portable Documents. Addison-Wesley Professional, Boston (2003)
4. Diebold, P., Zehler, T.: The right degree of agility in rich processes. In:

Kuhrmann, M., Münch, J., Richardson, I., Rausch, A., Zhang, H. (eds.) Manag-
ing Software Process Evolution, pp. 15–37. Springer, Cham (2016). doi:10.1007/
978-3-319-31545-4 2

http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_2

434 J. Klünder et al.

5. Kuhrmann, M., Linssen, O.: Welche Vorgehensmodelle nutzt Deutschland? Projek-
tmanagement und Vorgehensmodelle 2014, 17–32 (2014)

6. Kuhrmann, M., Münch, J., Diebold, P., Linssen, O., Prause, C.R.: On the use of
hybrid development approaches in software and systems development: construction
and test of the HELENA survey. Projektmanagement und Vorgehensmodelle 2016,
59–68 (2016)

7. Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.: Is Water-Scrum-Fall real-
ity? On the use of agile and traditional development practices. In: Abrahamsson, P.,
Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS, vol. 9459, pp. 149–166.
Springer, Cham (2015). doi:10.1007/978-3-319-26844-6 11

http://dx.doi.org/10.1007/978-3-319-26844-6_11

Hybrid Software and System Development
in Practice: Initial Results from Austria

Michael Felderer1(✉), Dietmar Winkler2, and Stefan Biffl2

1 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Vienna University of Technology, Vienna, Austria
{dietmar.winkler,stefan.biffl}@tuwien.ac.at

Abstract. The application of software process models in industry includes tradi‐
tional processes, agile processes, and process variants that aim at balancing tradi‐
tional and agile with focus on specific industry needs. To investigate the charac‐
teristics of such hybrid software and system development approaches that
combine agile and traditional approaches the HELENA project was initiated.
HELENA is based on a large international survey. Based on the first HELENA
survey, conducted in 2016, in 2017 a second round of surveys has been launched.
This paper focuses on initial results and discussions of the data from Austria where
22 persons participated. Results showed a good balance of small and medium
enterprises and large organizations. Iterative development processes and Scrum
are widely spread in these organizations where traditional approaches are often
combined with some agile practices.

Keywords: Agile software development · Hybrid development approaches ·
Software process · Survey

1 Introduction

The adoption of suitable software and system development methods and practices has
become essential for business success in the age of digitalization. There are many agile,
e.g., Scrum, or traditional approaches, e.g., Waterfall, with a high number of different
methods and practices available, which are often combined ad-hoc in industry. However,
systematic investigations for their combination in a specific context to a so-called hybrid
software development approach are missing. A hybrid software development approach
(short: hybrid approach) is any combination of agile and traditional (plan-driven or rich)
approaches that an organizational unit adopts and customizes to its own context
needs [1].

To investigate characteristics of hybrid approaches, the research project HELENA1

(Hybrid DEveLopmENt Approaches in software systems development) was initiated.
The first round of surveys has been scheduled in 2016 in a large-scale international
context [1]. The main outcome was that organizations typically use some combinations

1 Helena Survey: https://helenastudy.wordpress.com/.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 435–442, 2017.
https://doi.org/10.1007/978-3-319-69926-4_33

https://helenastudy.wordpress.com/

where traditional processes serve as a framework for agile practices. These combinations
are independent of the size of an organization. The authors concluded that such hybrid
approaches are the results of a natural process evolution, driven by experience and
pragmatism [1, 3]. Based on lessons learned and feedback in 2017 a second round of
improved surveys have been launched. By August 15, 2017 more than 500 participants
from around 20 participating countries all over the world have contributed to this repli‐
cated survey.

In this paper we provide initial results and discussion of the data received from
Austria, where 22 persons participated in the survey. This paper provides a contribution
to in-depth discussions on HELENA at the 2nd Workshop on Hybrid Software and
System Development Approaches collocated with PROFES 2017.

The remainder of this paper is structured as follows. Section 2 presents initial survey
results collected in organizations, located in Austria with focus on organization demo‐
graphics, personal roles of respondents, and applied software engineering frameworks
and methods. In Sect. 3 we discuss the results and provide candidate next steps.

2 Initial Results

In this section we provide an overview of the demographics and initial results from
Austria. Initially, we invited 55 selected individuals covering 40 different organiza‐
tion in Austria. Organizations include small and medium enterprises as well as large
organizations. Overall, we received 22 responses, which corresponds to a response
rate of 40%.

2.1 Company Size, Business Sector, and Industrial Sector

Figure 1 shows demographical data on the size of organizations based on collected data
from Austria.

1

3

8

8

2

0 1 2 3 4 5 6 7 8 9

Micro (<10 employees)

Small (11-50 employees)

Medium (51-250 employees)

Large (251-2499 employees)

Very Large (>2500 employees)

Fig. 1. Company data: distribution of the company size [number of organizations].

436 M. Felderer et al.

Results include 1 micro organization (5%), 11 small and medium enterprises (50%),
and 10 large and very large organizations (45%). Thus, there is a good balance of very
large/large and small/medium enterprises.

Figure 2 illustrates the share of business areas of the related organizations. The
respondents reported 49 different business domains in their organizations. Please note
that multiple business areas are covered especially by large and very large organizations.
The top-three rated business areas are: (a) Customer-specific Software Development (15
responses), (b) Standard Software Development (10 responses), and (c) System Devel‐
opment (8 responses). Furthermore, some organizations focus on supporting and
consulting business areas, such as Project Management Support (5 responses), IT
Consulting, Training, and Services (5 responses), and Software Process Management
(3 responses). One organization declares Research & Development as a core business
area and 2 responses did not provide any details on their businesses.

15

10

8

5

5

3

2

1

0 2 4 6 8 10 12 14 16

SW Development (custom software)

SW Development (standard software)

System Development

Project Management Support

IT Consulting, Training, and Services

Software Process Support

Others

Research & Development

Fig. 2. Company data – distribution of business areas [number of business areas, multiple answers
accepted].

Figure 3 presents the distribution of the industrial sector. Similar to business areas,
multiple answers were possible. The Austrian result set includes 50 industrial sector
nominations. The six most reported industry sectors include (a) financial services (8
nominations), (b) Public Sector, (c) Medical Devices, (d) Energy (6 nomination each),
(e) Web applications, and (f) Automotive Software and Systems (4 nominations each).
In the Austrian results, none of the respondents work in organizations who see Tele‐
communication, Media and Entertainment, Defense Systems, Cloud Applications and
Services, and Aviation as targeted industry sectors.

These analysis results are typically biased by the selection of the survey participants
and responses. However, in context of the application of software processes and prac‐
tices the industry sector this limiting factors have to be considered in the analysis.

Hybrid Software and System Development in Practice 437

0

0

0

0

0

1

1

1

1

2

2

2

3

3

4

4

6

6

6

8

0 1 2 3 4 5 6 7 8 9

Aviation

Cloud Applications and Services

Defense Systems

Media and Entertainment

Telecommunication

Games

Home Automation and Smart Buildings

Robotics

Space Systems

Logistics and Transportation

Mobile Applications

Other Embedded Systems and Services

Business Information Systems

Other

Automotive Software and Systems

Web Applications and Services

Energy

Medical Devices and Health Care

Public Sector/Public Contracting

Financial Services

Top Nominations

Less represented
industry sectors

Fig. 3. Company data – distribution of industrial sectors [number of industrial sectors, multiple
answers accepted].

2.2 Roles and Experiences

To complete the demographic analysis, this section summarizes individual roles and
experiences of respondents. Figure 4 illustrates the distribution of the main role of the
respondents based on 22 responses. Note that participants had to declare their main role
in typical projects. Thus, multiple answers were not possible.

The main roles of the respondents are (a) Project/Team Manager (5 nomination = 23%),
(b) Quality Manager, (c) C-Level Manager, (d) Product Manager/Owner, and (e) Devel‐
opers (3 nominations = 14% each). Note that the respondent group does not include
Analysts/Requirements Engineers and Testers. Again, these results are biased by the selec‐
tion of the survey participants and responses.

438 M. Felderer et al.

In addition, we captured the experience level of the respondents. The results showed
highly experienced survey participants in Austria, i.e., 4 participants (i.e., 18%) with 6–
10 years of professional experience and 18 participants (i.e., 82%) with more than 10
years of experiences.

These experience levels corresponds to the main roles of the respondents as typically
more experienced participants take management tasks and roles.

2.3 Application of Traditional/Agile Software Engineering Best-Practices

Based on standard project activities according to the SWEBOK [2], Fig. 5 presents the
distribution of best-practice nominations of respondents of industry practice data in
Austria. Note that we received an overall number of 17 survey responses (some partic‐
ipants did not provide any data for this evaluation).

The results show a balance of traditional and agile software engineering best-prac‐
tices. Traditional approaches are mainly used for architecture and design, configuration
management, and risk management. Agile approaches are focused on integration and
testing, change management, quality management, and project management. It is also
observable that for architecture and design, requirements analysis/engineering, quality
management, and project management hybrid approaches are used to overcome limita‐
tions of traditional and agile approaches. For transition and operation, change manage‐
ment, and risk management, we received responses, that these best-practices seem to be

0

0

1

1

1

2

3

3

3

3

5

0 1 2 3 4 5 6

Tester

Analyst/Requirements Engineer

Trainer

Scrum Master/Agile Coach

Other

Architect

Developer

Product Manager/Owner

C-Level Management

Quality Manager

Project/Team Manager

Top Nominations

Not represented roles

Fig. 4. Respondents data: distribution of project roles [number of main roles of respondents].

Hybrid Software and System Development in Practice 439

unknown or it is unknown to the respondents how these approaches are applied. Detailed
analysis of these results require further investigations.

2.4 Software Engineering Frameworks/Methods

Figure 6 shows the industrial relevance of different software engineering frameworks
and methods. In the survey response sample from Austria iterative development
approaches and Scrum are widespread and frequently used. Kanban, the waterfall
process approach and the V-shaped process model are also used to some extent. Other
process models (both agile and traditional approaches) are either unknown or less
frequently used.

1

3

3

2

1

2

2

4

5

6

6

2

4

8

5

4

3

4

6

4

1

2

1

6

7

4

2

3

6

6

6

3

4

7

6

1

4

9

3

3

1

1

1

1

2

1

1

4

1

1

1

3

1

3

5

1

0 5 10 15 20

Project Management

Quality Management

Risk Management

Configuration Management

Change Management

Requirements Analysis/Engineering

Architecture and Design

Implementation/Coding

Integration and Testing

Transition and Operation

Maintenance and Evolution

Fully Traditional
Mainly Traditional
Balanced between Traditional and Agile
Mainly Agile
Fully Agile

Fig. 5. Software engineering phases – traditional vs. agile approaches [number of the application
of agile practices]

440 M. Felderer et al.

17

15

5

13

16

13

13

11

12

9

11

7

5

4

7

4

4

6

2

1

1

2

1

1

1

3

1

1

1

2

1

2

1

3

3

1

1

1

5

5

17

8

4

7

5

8

7

9

6

8

11

10

8

8

7

4

8

7

6

3

3

1

1

1

1

2

1

2

2

2

3

2

4

4

6

5

4

2

1

1

1

1

1

2

3

4

5

4

5

5

4

8

4

3

1

1

1

1

2

2

2

7

4

10

9

1

1

2

3

2

1

1

1

1

2

1

5

6

0 5 10 15 20 25

Crystal Family

Nexus

Rational Unified Process

Structured Systems Analysis & Design

Dynamic Systems Development Method

PRINCE2

Team Software Process

Scaled Agile Framework (SAFe)

Personal Software Process

Spiral Model

Phase / Stage-gate model

Feature Driven Development (FDD)

Lean Software Development

Model-Driven Architecture (MDA)

ScrumBan

Large-Scale Scrum (LESS)

Domain-Driven Design

DevOps

eXtreme Programming (XP)

V-shaped Process (V-Model)

Classic Waterfall Process

Kanban

Scrum

Iterative Development

Do not know the framework Do not know if we use it

We never use it We rarely use it

We sometimes use it We often use it

We always use it Not answered

Fig. 6. Used software engineering frameworks and methods [number of applied frameworks/
methods].

Hybrid Software and System Development in Practice 441

3 Conclusion and Future Work

In this paper we summarized some descriptive statistics of the second phase of the
HELENA study based on data collected from 22 respondents in Austria. Note that we
sent out 55 invitations in selected organization which corresponds to a response rate of
40%. The analysis results focus on (a) Company Size where the results showed a balanced
distribution of small/medium and large/very large organizations; (b) Business Areas
with a majority of respondents that focus on custom/standard software and systems
development; (c) Industry Sectors with a focus on financial services, public sector,
medical, energy, web application, and automotive sectors; and (d) Roles and Experi‐
ences of respondents. Most of the respondents work in a management role, e.g., project/
team management, quality management, C-level management, and (senior) develop‐
ment. This is also supported by the analysis of working experience, where we observed
more than 80% with more than 10 years of working experience.

In context of the application of traditional, agile, or hybrid models, we focus on the
applications of software engineering approaches in individual life cycle phases. For
architecture and design, configuration management, and risk management traditional
approaches or combinations with agile practices are favored, while core agile approaches
are used for integration and testing, change management, quality and project manage‐
ment. In context of the usage of software engineering frameworks and methods, most
of the respondents are familiar with iterative development and Scrum, while other
approaches are used if required by the customer.

Based on available data points further analysis is planned, especially with focus on
possible correlations on the usage of practices, methods and frameworks in context of
business area, industry sectors, and company size. In addition, the results represent a
starting point for further analysis in different countries and even continents [3] to inves‐
tigate the impact of software engineering best-practice processes and methods in
industry.

References

1. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere, K.,
McCaffery, F., Linssen, O., Hanser, E., Prause, C.R.: Hybrid software and system development
in practice: waterfall, scrum, and beyond. In: International Conference on Software and System
Processes, pp. 30–39. ACM (2017)

2. SWEBOK: Guide to the Software Engineering Body of Knowledge, Version 3 (2004)
3. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., McCaffery, F., Garousi, V.,

Felderer, M., Linssen, O., Hanser, E., Prause, C.R.: Hybrid Software Development Approaches
in Practice: A European Perspective. IEEE Software. IEEE (2017)

442 M. Felderer et al.

HELENA Study: Initial Observations of Software
Development Practices in Argentina

Nicolás Paez, Diego Fontdevila(✉), and Alejandro Oliveros

Universidad Nacional de Tres de Febrero, Caseros, Argentina
nicopaez@computer.org, {dfontdevila,aoliveros}@untref.edu.ar

Abstract. HELENA Survey is a worldwide initiative that aims to investigate the
use of hybrid software development approaches ranging from agile to traditional
and how they combine. This article presents the initial results and observations
on software development practice in Argentina, and briefly discusses two patterns
of interest related to software development practice usage.

Keywords: HELENA · Software development practices · Practices usage

1 Introduction

HELENA Survey is a multi-national initiative that aims at investigating the current state
of practice in software and systems development. More specifically the goal of this
initiative is to study how different development approaches are used in practice and how
practitioners combine them. It uses a hybrid development perspective integrating agile
and traditional approaches, and ranges from emerging and innovative sectors to regu‐
lated domains [1]. There are currently more than 40 institutions worldwide involved in
the initiative. The study was designed in 3 stages. This article was written during the
second stage that focuses on massive data collection.

In this paper we present initial results and observations of software development
practices in Argentina. We also briefly discuss two patterns of interest related to the
usage of organizational and technical practices, and the relevance of agile practices
usage.

2 Results

At this point, the Argentinian sample contains 53 data points while the global sample
contains 501 data points. Figure 1 shows the results in terms of company size for the
global and Argentinian samples. It is interesting to note that in the Argentinian sample
the highest percentage of respondents corresponds to medium sized companies (51–250
employees).

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 443–449, 2017.
https://doi.org/10.1007/978-3-319-69926-4_34

Fig. 1. Company size distribution.

Figure 2 shows the results in terms of Product size. In this case the Argentinian and
global distributions follow the same pattern.

Fig. 2. Product size distribution.

Figure 3 shows the results in terms of business area. In both samples the main area
is Custom Software Development. At the same time there is a big difference in favor of
the global sample in the Hardware/Embedded Software development area.

444 N. Paez et al.

Fig. 3. Business area distribution: (A) Custom Software Development, (B) Standard Software
Development, (C) Hardware and Software/Embedded Software, (D) Consulting/Project
Management Support, (E) Consulting/Software Process Support, (F) IT Consulting, Training, and
Services.

When looking at roles in the Argentinian sample we see that the two biggest groups
are Developers and Project/Team Managers, the distribution of roles is shown in Fig. 4.

Fig. 4. Respondent’s role distribution in Argentina

HELENA Study 445

Regarding method/framework usage we observe predominance of the agile-related
methods/frameworks, with Scrum being the most frequently used. We have applied a
transformation to the responses to simplify the representation of method/framework
usage:

• not used = we don’t know + we don’t know if we use it + we never use it
• used = we rarely use it + we sometimes use it
• frequently used = we often use it + we always use it

The complete distribution of method/framework usage for the Argentinian sample
is presented in Fig. 5.

Fig. 5. Distribution of methods/frameworks usage in Argentina

Figure 6 shows software development practice usage, we have applied the same
transformation described for methods/frameworks to simplify the description of practice
usage.

When analyzing software development practices shown in Fig. 6, we observe that,
in terms of usage level, 9 of the top 10 practices are strongly related to agile. By “strongly
related to agile” we mean that those practices are explicitly mentioned in the definition
on an agile method/framework or in its reference bibliography. These relations between
practices and methods are shown in Table 1.

446 N. Paez et al.

Fig. 6. Distribution of practices usage in Argentina

Table 1. Relation between practices and agile methods

Practice Method Reference bibliography
Backlog management Scrum Scrum guide [2]
Coding standards XP Extreme programming explained [3]
Iteration/Sprint reviews Scrum Scrum guide
Daily standup Scrum Scrum guide
Iteration planning Scrum Scrum guide
User stories XP Extreme programming explained
Release planning Crystal Crystal clear [4]
Automated unit testing Crystal Crystal clear
Expert/Team based estimation XP Extreme programming explained

HELENA Study 447

3 Discussion

We center our discussion on two particular patterns related to software development
practice usage. The first pattern is based on the categorization of practices into technical
and organizational. When looking at the top 10 practices used in the Argentinian results
of HELENA, we see that most of them are organizational. This is consistent with our
previous study [5]. A right balance between technical and organizational practices seems
reasonable, given that technical practices support product quality and effectiveness,
while organizational practices in general affect cost, schedule and team sustainability.
Projects lacking severely in any of these two aspects are more likely to fail (Chow et al.
identify engineering practices as one of the three main success factors in agile projects
[6]). Furthermore, cost-effectiveness might probably depend heavily on a balanced
approach taking into account costs, quality and productivity. This could mean that tech‐
nical practices are harder to adopt, or that organizational practices are used more in the
earlier stages improvement processes (and that there is a predominance of early stage
improvement initiatives in the sample). This is also consistent with the fact that Scrum,
the most popular method/framework, does not have any technical practices. Researchers
and practitioners have applied this categorization, although it takes different forms:
Meyer uses technical and organizational/managerial [7] while Pantiuchina et al. use
quality and speed [8].

The second pattern we want to focus on is the fact that agile-related practices have
a high level of usage. We consider that this situation may also be influenced by the fact
that Scrum is the most used development method/framework. Even more, 4 of the top
5 methods/frameworks (in terms of usage) are also agile-related: Scrum, Kanban,
DevOps and Extreme Programming.

4 Conclusions

We have described the general characteristics of the Argentinian sample of the HELENA
Survey and briefly presented our initial observations on the state of software develop‐
ment practice. We have also described two patterns that we find interesting, the predom‐
inance of organizational over technical practices, and the relevance of agile practices
usage.

In the short term we plan to continue with data collection in Argentina and compare
the observed trends in Argentina with the global sample. Once the data collection is
completed, further studies may be conducted to identify potential causes and implica‐
tions of the two patterns of interest described in the previous section.

References

1. Kuhrmann, M., et al.: On the use of hybrid development approaches in software and systems
development: construction and test of the HELENA survey. In: Proceedings of the Annual
Special Interest Group Meeting Projektmanagement und Vorgehensmodelle (PVM). Lecture
Notes in Informatics (LNI), vol. 263 (2016)

448 N. Paez et al.

2. Kchwaber, K., Sutherland, J.: Scrum Guide. http://www.scrumguides.org/scrum-guide.html.
Accessed 10 Aug 2017

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley, Boston (2004)

4. Cockburn, A.: Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-
Wesley Professional, Boston (2004)

5. Paez, N., Fontdevila, D., Oliveros, A.: Characterizing technical and organizational practices
in the agile community. In: Proceedings of the CONAIISI, Salta, Argentina (2016)

6. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects. J.
Syst. Soft. 81(6), 961–971 (2008). http://doi.org/10.1016/j.jss.2007.08.020

7. Meyer, B.: Agile!: The Good, the Hype and the Ugly, 2014th edn. Springer, New York (2014)
8. Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P.: Are software startups

applying agile practices? The state of the practice from a large survey. In: Baumeister, H.,
Lichter, H., Riebisch, M. (eds.) Agile Processes in Software Engineering and Extreme
Programming, pp. 167–183. Springer, Cham (2017). doi:10.1007/978-3-319-57633-6_11

HELENA Study 449

http://www.scrumguides.org/scrum-guide.html
http://doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1007/978-3-319-57633-6_11

Workshop: HuFo 2017

3rd International Workshop on Human Factors
in Software Development Processes (HuFo): Measuring

System Quality

Silvia Abrahao1(✉), Maria Teresa Baldassarre2, Danilo Caivano2, Yvonne Dittrich3,
Rosa Lanzilotti2, and Antonio Piccinno2

1 Universitat Politecnica de Valencia (UPV), Valencia, Spain
sabrahao@dsic.upv.es

2 Università degli Studi di Bari “Aldo Moro”, Bari, Italy
{mariateresa.baldassarre,danilo.caivano,rosa.lanzilotti,

antonio.piccinno}@uniba.it
3 IT University of Copenhagen, Copenhagen, Denmark

ydi@itu.dk

Abstract. The two communities of Software Engineering and Human-Computer
Interaction tackle issues related to the software development process differently
although with the same final goal: that of developing high quality software most
effectively. This workshop has reached its third edition and is continuing to pursue
the positive results achieved in previous years. The research question discussed
is: how can we assure high quality software from a HCI and SE perspective?

Keywords: Human factors · System quality · Measurement · Metrics

1 Workshop Theme and Rationale

HuFo workshop is at its third edition. In fact, the success of the first two editions allowed
us to organize this edition in conjunction with PROFES 2017 in Innsbruck, Austria. The
first edition of the HuFo was held in Bozen-Bolzano, Italy, during the 16th International
Conference on Product-Focused Software Process Improvement (PROFES 2015), while
the second HuFo edition was held in Trondheim, Norway, during the PROFES 2017
(for more information see the HuFo workshop website at: http://hufo2015.serandp.com
and http://hufo2016.serandp.com).

The main theme of this edition of the workshop is “measuring system quality” in
order to address aspects both from users’ side (Human-Computer Interaction (HCI)
aspects) and software system (Software Engineering (SE) side). The SE and HCI
communities are collaborating to create better software products, but the two commun‐
ities are still far from being synergic while they could both gain from a better integration.
Recent efforts have contributed to increase the synergy between SE and HCI. Never‐
theless, this has not led to expected results and impacts with respect to the software
development process. Indeed, recent literature has pointed out how in most empirical

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 453–456, 2017.
https://doi.org/10.1007/978-3-319-69926-4_35

http://hufo2015.serandp.com
http://hufo2016.serandp.com

evaluations only a small number of works include human participants. Moreover, there
is still little experience in conducting empirical studies with human participants.

The overall goal of this interdisciplinary workshop is to raise the level of engagement
and discussion about human factors in software product engineering and development
processes. A further goal of the workshop is to identify opportunities to improve the
quality of scientific discourse and progress on human aspects of software development,
as well as to identify opportunities able to educate researchers about how to conduct
sound human-centered evaluations in the context of software engineering.

To achieve these goals, it is important to bring together researchers and practitioners
who face the problem of integrating human factors in software development processes
and have tried effective methods to resolve it. The workshop will provide a forum to
discuss the following research questions:

– What are the key methods that allow the integration of human factors in software
development processes?

– What methods do current software development teams use to engage users in devel‐
opment processes?

– How can the level of human factor involvement be objectively verified during and
after software development?

– How to educate researchers on performing human-centered evaluations in the soft‐
ware engineering processes?

2 Workshop Contributions

Four papers were accepted to be presented for the third edition of the HuFo workshop.
The first paper, titled “Don’t Underestimate the Human Factors! Exploring Team
Communication Effects” and written by Fabian Kortum, Jil Klünder, and Kurt Schneider
of the Leibniz Universität (Hannover, Germany), explores one of the main critical issue
in software development process, i.e. the team communication. The goal of the research
was to increase the awareness for often insufficiently interpreted human factors. Thus,
the authors investigate several team communication effects with data records from an
empirical study with 34 academic software projects. An approach to compare between
conventional linear dependency analyses and a novel technique for automatized char‐
acterization onto team communication effects is described. In other words, the authors
wanted to provide a substantive case study about interpreting communication effects
more accurately through exploratory techniques compared with conventional linear
methods. The results of the study showed that applying the MINE technique revealed
to achieve a higher overall interpretation capability due to its multivariate statistical and
functional property analyses. Visualizing of effects will help project managers and
stakeholders to understand previous team behavior through extensive cognitive percep‐
tion, thus to improve the building conciseness of diagnoses models together with
external analysts.

The second paper, titled “A Systematic Literature Review of Social Network
Systems for Older Adults” and written by Bilal Ahmad, Ita Richardson, and Sarah
Beecham of the University of Limerick (Ireland), investigates what older adults think

454 S. Abrahao et al.

about social network systems in order to identify whether their needs are met. A snow‐
balling approach was performed and 51 primary studies on social network systems for
older adults were analyzed. The results showed that since 2005 there is an evident
increase in social network systems designed for older adults. In addition, the study
revealed that simplicity, ease of use, privacy and access to useful information are the
most important quality aspects of the social network systems for older adults. The
authors conclude their paper highlighting that social network systems remain a potential
way to reduce the social isolation of older adults, and that it is also important to inves‐
tigate important aspects largely unexplored, such as the extent to which social network
systems replace real human contact and whether they can trigger the creation of new
supportive communities.

The third paper, titled “Applying Extreme Engineering and Personality Factors to
Improve Software Development under a Heavyweight Methodology” and written by
Mercedes Ruiz, Germán Fuentes of the University of Cádiz (Puerto Real, Cádiz, Spain),
describes a process improvement proposal for the V-model based on team creation and
task allocation strategies that take into account the personality of workers and its impact
on productivity and quality. The study has been performed in a real company of the
defense sector, where the use of the V-model is mandatory. The results showed that a
possible real application of the improvement designed for the current process model is
possible. The improvement introduces the novel concept of extreme engineering, that
extends the concept of pair-programming to all the phases of the software life cycle,
applies the concept of cross-functional teams to software engineering and pioneers in
the use of the Cattel’s model of 16PF to improve productivity in processes under the V-
model.

The fourth paper, titled “Different Views on Project Success When Communication
Is Not The Same” and written by Jil Klünder, Oliver Karras, Fabian Kortum, Mathias
Casselt, and Kurt Schneider of the Leibniz Universität (Hannover, Germany), describes
the results of a study aiming at examining which factors are perceived to be important
for a successful project execution. A total of 97 student participants and 8 customers
were involved. The results showed that communication is most important for both the
team and the customer for project success, even if the term “communication” has
different meanings. For the customer, a regular information exchange with the devel‐
opment team is mandatory and the most important factor for project success. For the
developers, the collaboration and communication with the customer are less important
than the team-internal communication and collaboration as well as the distribution of
tasks in the team, which are most important to enable project success. Based on these
results, the authors suggest to increase the awareness on both sides, in particular for
newcomers, on the importance of communication between customers and development
team, since “communication” can facilitate collaboration and smooth the way to a
successful project execution.

3rd International Workshop on Human Factors 455

3 Audience and Expected Outcomes

The overall goal of this interdisciplinary workshop has been to raise the level of engage‐
ment and discussion about human factors in software engineering. A further goal of the
workshop has been to promote the synergic encounter between the two communities of
HCI and SE with respect to topics related to human aspects of software evaluation from
both a researcher and practitioner perspective.

Once again, in this year’s edition, the workshop has received a positive response
from both HCI and SE communities with several interesting and valuable contributions.
The submissions were peer-reviewed by international committee members for their
quality, topic relevance, innovation, and potentials to foster discussion.

Acknowledgment. We would like to thank the organizers of PROFES 2017 for giving us the
opportunity to organize this workshop. We are also grateful to our international program
committee of experts in the field for their reviews and collaboration.

456 S. Abrahao et al.

Don’t Underestimate the Human Factors!
Exploring Team Communication Effects

Fabian Kortum(B), Jil Klünder, and Kurt Schneider

Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{fabian.kortum,jil.kluender,kurt.schneider}@inf.uni-hannover.de

Abstract. Team communication addresses a critical issue for software
developments. Understanding human behavior and communication take
an important role for cost optimized scheduling and adjustment of dys-
functional manner. But team phenomena are often not trivial to inter-
pret. Empirical studies can disclose practical information. Many kinds of
research with the focus on human factors justify findings solely through
linear statistics. This leads to an estimation problem of formally inter-
preted effects, in particular for diagnosis models. In this paper, we inves-
tigate several team communication effects with data records from an
empirical study with 34 academic software projects. In general, we want
to increase the awareness for often insufficiently interpreted human fac-
tors. We apply conventional linear correlation statistics in comparison
with the novel exploratory analysis MINE on three sample cases con-
cerning team meetings and communication behavior. Both analyzing
techniques approved to be capable in identifying the relevant team com-
munication effects within the case studies, even though with different
estimation of relevances. The study demonstrates how quickly e.g. group
behavior and communication effects can be insufficiently interpreted with
dangerous gaps for factor estimation in modeling approaches.

Keywords: Team communication · Human factors · Data visualiza-
tion · Exploratory analysis · Interpretation problem

1 Introduction

Software engineering is a discipline that involves human activities and perfor-
mances during the development process. These human factors sometimes cause
dynamic phenomena that are not always trivial to interpret. Especially the way
how teams communicate, collaborate, hold meetings or prioritize next tasks
address critical conditions for the success of innovative software projects [8,15].
Well performing teamwork can smooth the way for innovative software projects
[6]. Vice versa, insufficient communication can negatively influence the final prod-
uct, and therefore the customer’s satisfaction. A better understanding of central
communication behavior in teams can help project associates, team leader, and
even single team members to recognize the inadequate structures earlier [9,12].
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 457–469, 2017.
https://doi.org/10.1007/978-3-319-69926-4_36

458 F. Kortum et al.

Thus, a faster recognition of suboptimal team condition enables adjustments
before destructive habits endanger the project. Empirical studies are suitable to
disclose knowledge about software developers’ practices and project condition
changes over time. The gathered information often provide valuable insides e.g.
for conceptualizing and formalizing of experience based diagnosis or tendency
models. Many of these studies with the focus on human factors thoroughly inter-
pret their findings through linear correlation statistics. However, it often requires
more extensive analyses with more detailed dependency characterizations [7].
But this is often associated as time-consuming without knowing or consider-
ing for modern techniques that could cover additionally required effort while
achieving equivalent or even better interpretations.

This paper describes an approach to compare between conventional linear
dependency analyses and a novel technique for automatized characterization
onto team communication effects. We want to investigate, whether exploratory
analyzing techniques like MINE [17] can keep the analyst’s manual effort low
when interpreting also non-linear effects. Furthermore, we want to qualify if
the exploratory interpretation provides differences compared to solely linearity
results. In particular, we apply both analyzing methods in three case studies
about team communication effects in student software projects. The data orig-
inates from a previously conducted empirical study observing communication
behavior of teams from 34 software projects at university environment. The col-
lected information consists of weekly reports about communication structures,
meeting practices and each member’s mood, elicited from 165 student partici-
pants [18]. Previous studies and related work about early team diagnose [10,11]
revealed the importance of understanding the teams’ behavior in more detail,
and therefore human-centered communication effects [15].

1.1 Motivation

Estimation Problems Through Interpretation Gaps. Empirical studies
are often applied to confirm or understand, e.g. active practices and experiences
[14]. Gathered information about team communication behavior or collaboration
structures can be systematically used to characterize occurring group manners.
Some phenomena appear from social aspects and can be sophisticated for conven-
tional dependency methods. Therefore, they cannot always be solely expressed
through linear correlation methods [17]. Consequently, the strength and signifi-
cances of interpretations may remain lower than their possible maximum.

For instance, the productivity interpretation for the LOC data variable in
Fig. 1 can be described as a strong linear outcome when using standard Pearson
correlation. The linear interpretation fits strong dependency criteria with r =
0.74 and a significance of p< 0.01. However, not every dependency interpreta-
tions seem to be adequate solved in this way. For this particular example, an
exploratory analysis could achieve a better interpretation due to additional e.g.
polynomial property consideration as in Fig. 1. However, the statistical outcome
for the shown exploratory dependency analyses measures a significance p< 0.01
but with a stronger relevance factor r = 0.88.

Don’t Underestimate the Human Factors! 459

Fig. 1. Example for interpretation gaps of data dependencies

This result should set alarm bells ringing since it presents a 14% interpreta-
tion difference for the same data dependency. Such differences can influence the
accuracy of a system-based diagnosis, especially if several estimators consists of
inaccuracies. For the conceptualization of these models, the identification of rel-
evant key factors can be endangered due underestimated or insufficient interpre-
tations. Findings of team communication effects become subsequently visualized
as force-based network diagrams to provide an enhanced overall understanding
of the characterized effects. All study results become in the later on sections
validated, interpreted and summarized.

Case Studies for Analyzing Statistical Interpretation Gaps. We limited
the study scope to the interpretation of team communication effects that cover
the use of digital communication [4], the belief, and the morale of teams in
projects.

(1) Face-to-face communication perceives a higher collaboration inten-
sity compared to communication sessions through digital channels.

(2) The use of digital communication channels decreases a developer’s
belief in the own team and its integrity.

(3) The positive belief of a developer in his team supports an overall
positive team thinking, and also increases his team’s motivation.

Case 1 covers developer’s perceived communication intensity through face-to-
face interaction compared with more decentralized, e.g. digital communication.
Such decentralization indeed tends to have a lower recognized intensity based on
member’s reduced attention or participation through virtual closeness [4].

Case 2 describes the use of digital communication channel that also leads
to a downward slope of team’s atmosphere. Thus, the impressions of members
tend to consist of a more decentralized team belief, which is reasonable due to
the loss of personal contact, compared with face-to-face communication [1,6].

Case 3 concerns on developer’s belief and goals in his or her team and if it
can be positively associated with the team’s satisfaction. This has relevances for

460 F. Kortum et al.

the understanding of human factors since a positive atmosphere in teams also
indicates a good performing group behavior [5] and development condition [18].

2 Related Work

This study relies on concepts and achievements in the field of exploratory analy-
sis, data visualization and human factors in software development.

Reshef et al. [17] established an extensive empirical evaluation of the equi-
tability, power against independence, and runtime of several leading measures of
dependence. They could validate that their MINE technique, and in particular,
the use of Maximal Information Coefficient (MIC) presents an efficient strategy
to identify and classify even complex types of relationships in data sets. The
authors’ algorithm additionally covers conventional linearity statistics. Thus it
provides the maximum information needed to express a particular dependency.

McGuffin [16] presents strategies for data visualization of communities and
system structures. He describes mechanics for basic graph representation, as
well as advanced techniques for visualizing network data for a wide variety of
situations, such as relationships structures as force-based or mutual information
diagrams. Many data sets can be most naturally interpreted and depicted as net-
works [16]. Considering his work helps us to improve the cognitive understanding
and visual representation for statistic measures.

Hoegl et al. [6] established a concept about teamwork quality with relevances
for the success of software projects. The authors clarified a definition of teamwork
and investigated on success factors, like team performance and satisfaction. They
identified six aspects with impact on teamwork: communication, coordination, a
balance of contribution, mutual support, effort, and cohesion. Their results rely
on an empirical study, providing data from 575 developers and project leader in
145 German software development laboratories [6].

In previous studies, Kortum et al. [10,12] started exploring team behavior in
academic software projects and how they differ to practitioners. Schneider et al.
[18] primarily examined factors for the mood and communication in groups. On
behalf of the authors’ findings, we investigated the feasibility of early diagnoses
on team manner during software projects. First models have been established
[10,11] through a set of machine learning classifier and enabled forecasts for key
communication metrics with linearity estimation, likewise to Hoegl et al.’s [6]
research on teamwork. The estimator interpretations for the diagnosis model led
us to the question whether solely linearity expressions are a sufficient method
for modeling approaches, especially when human behavior is involved.

3 Empirical Study

The Software Engineering Group at Leibniz Universität Hannover frequently col-
lects empirical data from teams in yearly offered student software projects [18].
We collected team conditions with typical group sizes of five members developing
a software product for real customers. Towards, the students have to perform

Don’t Underestimate the Human Factors! 461

through all phases of a waterfall oriented development process. This includes
the requirements elicitation, design, implementation, and testing. The products’
fulfillment according to the requirement specification will be verified with cus-
tomer acceptance tests. Every customer was limited in time and availability.
Thus, teams had to arrange interviews and feedback meetings with their client
individually. Teams were responsible to self-manage themselves which was one of
the casual experience goals. At the end of each project, customers were held to
grade the success and progressing of a team, as well as to verify the compliance
of implemented features. In a subsequent retrospective, students’ reflected their
experiences and impressions made during the project.

3.1 Framework Condition of Academic Software Projects

The team communication records used for this approach rely on a data collection
of 165 student participants in 34 teams. The software projects were comparable
due to framework conditions, complexity and had a lifespan of 15 weeks [10,18].
All teams passed quality gates at the end of each phase. This was necessary
for an adequate process assurances of achieved tasks versus the planned. Teams
scheduled and managed e.g. the essential tasks themselves during the project.
The students reported weekly about their team communications and meetings
in categorical rating that have been mainly realized through Likert scales. These
cover 5-stages of agree- or disagreement for a particular condition question. All
weekly reports provide status information about each team’s communication
ambitions, atmosphere conditions, and project progress. The reporting categories
related to human behavior rely on established studies from organizational and
social psychology [6,8]. An overview of all reported categories is shown in Fig. 2.

Fig. 2. Report information in academic software projects

4 Methodology

Team communication is a prerequisite for the success of projects and, due to
human involvement, often difficult to estimate. Some researchers recommend
plotting experience-based information about behavior changes over time for
recognizing effects [3,14]. Others connote interpretations through statistical cor-
relation analyses [2,7]. The former often rely upon linear dependencies that

462 F. Kortum et al.

barely consider more extensive analyses. Since we want to identify potential
interpretation gaps e.g. about team communication effects, MINE is applied to
detect complex factors with relevance for the three team communication cases of
this study, also to express their characteristics and dependency strengths exten-
sively.

4.1 Exploratory Analyses Using MINE

Empirical data in software engineering sometimes require analyzing on hundreds,
thousands or millions of possible dependency combinations. Based on this, infor-
mation often becomes solely studied with linearity measures, such as significance
and correlation between two data variables. Modern solutions with advantages
for dependency interpretations are rarely taken into account. Reshef et al.’s [17]
MINE application supports such a systematic exploration. It uses a maximal
information coefficient (MIC) which is a novel measure for relationships cap-
turing linearity and complex associations between pairs of data variables. The
algorithm interprets mutual information of data pairs, thus each dependencies
functional properties. The resulting MIC score represents statistical measures
that are comparable to the coefficient of determination r2.

Fig. 3. Dependency interpretation: power of MIC algorithm [17]

Figure 3 shows some functional dependency types that are interpretable in
MINE. The MIC algorithm considers several relationship interpretations e.g. by
the Pearson’s linear correlation, mutual information estimation [13], maximal
correlation estimation and curve-based analyses [3]. The systematic processing
of MINE allows an almost automatic analysis of up to 27 different dependency
characteristics and explore even complex associations.

Don’t Underestimate the Human Factors! 463

4.2 Pre-investigation on Team Communication Records

Linearity Analysis. We first analyzed our empirical data set with the Pear-
son’s correlation and Fisher’s exact test for measuring the significance of each
dependency. The data consist of 29 record variables, each with 2475 rows of
each team’s consequently reporting over 15 weeks. We derived with R-statistics
406 = n·(n−1)

2 linearity analyses (Gaussian Sum Formula) covering all possible
combinations of variable pairs.

Exploratory Analysis. We applied the same data information also to MINE.
The exploratory analysis results in a ranked list of variable dependencies sorted
top down by the strongest interpreted MIC due to the identified mutual infor-
mation and functional properties. The MIC scoring is defined as an equivalent to
the coefficient of determination r2 [17]. Thus, considering the square root of MIC√

(MIC) allows a direct comparison with the Pearson correlation coefficient r.

Table 1. Interpretation differences for MIC and Pearson: Observed means

Observations: 406 Pairs of Variables

∅ r coef. ∅ p-value

SQRT(MIC) 0.34196 0.01754

Pearson r 0.09200 0.10926

Δ 0.24996 0.09172

Comparing both the overall mean results of linear correlations and the MIC
scores obtains whether the team behavior records can be adequately interpreted
through solely linear expression or might achieve a better interpretability by
extensive analyses. Table 1 shows the resulted mean differences for both inter-
pretation strategies. However, whether the mean measures also indicate relevant
gaps for our three case studies about decentralized communication behavior
requires a more channelized analyzing scope.

Visualization. We developed a Java application that adapts the MINE algo-
rithm and visualizes results as force-based network graphs through an embed-
ded R-server. The graph relies on an R-library called igraph. Our application
gives the user a simplified understanding about the different communication
dependencies through additional cognitive perception. Furthermore, it provides
a function to channelize investigation scopes to only those variables of interest.
An entire system visualization of all 29 empirical data variables would result in
a system graph covering 29 nodes and 406 edges. Thus it grows extremely com-
plex. This scoping feature allows us to primarily limit the system variables, e.g.
as a sub-system that only provides the top 19 identified team report variables
as in Fig. 4. Our application allows to chose particular variables to identify all

464 F. Kortum et al.

affecting or effected variables within the data records. The node sizes in Fig. 4
depend on the resulted MIC scoring, and so do the edges which vary in the
width, expressing the relevance of interpreted relationship. A force describes
the positive and negative orientation of effect, likewise the course of interpreted
function.

Fig. 4. Force-based sub-network derived from top down ranked MINE findings

4.3 Analyzing Interpretation Gaps of Case Studies

Our case studies consider the use of decentralizing communication and its effects
on the team atmosphere, belief in the team, also the perceived intensity due to
the chosen communication type. The channelize function of our application helps
us to limit the system scope to only those variables with related to the cases.

Case 1 states that face-to-face communications between team member have a
positive effect for perceived communication intensities. We first selected the vari-
able PerceivedIntensity from our ranked MINE list. Subsequently, we wanted
to identify all potential incoming effects for this variable. Running the embedded
exploratory analyses once again results in a new ranked list of all identified influ-
encing factors relating to the PerceivedIntensity. However, this findings require
an additional selection for the variables face-to-face communication (useRoom),
useVideo, useChat, useTelephone and useEmail. The subsequent derive as force-
based sub-network is shown in Fig. 5.

The interpreted PerceivedIntensity dependencies through MINE confirm
the Case 1 statement. All five ingoing edges show positive effects towards the

Don’t Underestimate the Human Factors! 465

Fig. 5. Case study findings from MINE generated as force-based sub-networks

perceived communication intensity in teams. The force between the local face-to-
face communication and the PerceivedIntensity has a stronger width compared
to the four digital communications. This means that a more frequent use of face-
to-face interaction also positively affects the PerceivedIntensity due to the given
information exchange. The MINE results for Case 1 are listed in Table 2.

We repeated the variable selecting procedure as in the previous case, this time
with concern for relevant variables from Case 2. The case describes the use of
digital communication channel, which has an adverse effect on the belief in teams.
The associated force-based network due to the sub-selected variable scope and
MINE analyzing results is shown in Fig. 5. The overall graphical outcome reveals
a weak positive effect on the belief in teams when using digital communication
channel. In particular, the use of emails, chats, and telephone calls have a positive
effect on the belief in the own team. In contrast, the use of video chats has an
adverse influence on the team belief. The statistically measured significances and
dependency strengths are listed in Table 2.

Case 3 states that the belief in teams supports a positive thinking and moti-
vates team members. Once more, we selected only the relevant variable labeled
BeliefInTeams in our Java application. Subsequently, we chose the variables

Table 2. Statistical interpretation differences of Case Studies

466 F. Kortum et al.

of interest from the resulted ranked findings in MINE that captured all ingoing
affects for BeliefInTeams, i.e. the motivation and mood. The associated depen-
dency graph is shown in Fig. 5. The quantitative results confirm the standing of
Case 3. The graph characterizes the BeliefInTeams, that it positively supports
the team’s atmosphere and motivation. The statistic measures for Case 3 reveal
a strong relationship with strong significances level.

For each case study, we also performed the team behavior interpretations
through Pearson correlation. Using both strategies revealed to have no major
significance differences for the interpreted effects. However, the MIC strengths
present distinct differences compared with the linearity coefficient measures.

5 Validity and Discussion of Results

Applying correlation measures for interpreting team behavior in empirical stud-
ies requires an maximal adequate interpretation of investigated effects [5,6].

5.1 Study Results and Interpretation

We compared conventional linear measures in R-statistics and exploratory analy-
ses in MINE. The analyzing subjects were weekly team communication reports
from 34 educational software projects. We derived coefficients of determinations
with both techniques, to identify the interpretation gaps for communication
factors. Each result was applied to Fisher’s exact test for capturing its signif-
icance level. Table 2 lists all results from both strategies, with and particular
scope on communication effects with relevance for the case studies. The Pearson
correlation only detected linearities, whereas the exploratory analyses also char-
acterized more complex effects. Thus, MINE could identify the strengths for 9 of
12 relationships more accurately. The gray-colored fields in Table 2 indicate the
analyzing method with better interpretation outcome for a particular cases rela-
tionship. However, both variants provided strong significances with moderate to
strong findings according to the case studies.

For the qualitative overall validation, we statistically compared both tech-
niques for the entire empirical team records. As shown in Table 1, the MINE
technique achieved an overall stronger mean correlation coefficient r = 0.25 and
a significance improve of p = 0.09. The distribution of all identified data depen-
dencies is shown in Fig. 6. The box-plot characterizes that the Pearson correlation
detects relationship strengths within a weak range, differently to the MIC. Both
findings determined strong significance measures, whereas the p-value of MIC
has a more consistent range with less extreme outliers and p< 0.01.

5.2 Threats to Validity

Construct validity: We interpreted team communication solely through linear
and exploratory statistics; other techniques became not considered. Findings
with strong significances but only weak correlation measures were tolerated.

Don’t Underestimate the Human Factors! 467

Fig. 6. Distribution of interpretation differences: Linear vs. MIC

Internal validity: All interpretations are based on previously elicited empirical
data [18]. The reporting was a volunteer activity. We assume that people freely
replied the truth when submitting information. There were no parallel courses
or gradings for the software projects that would bias the reported data.

External validity: The results might not be overgeneralized since we interpreted
student teams in educational projects. Data from practitioners, industry or other
university software projects may lead to alternative team communication effects.
Due to human factors and unknown other influences, the investigated interpre-
tation of behavior can never completely ensure all real world factors.

Conclusion validity: All interpretations are reliable and statistically verified with
normalized data. Since we focus on human factors, there might be different
reports when repeating the empirical study. Changing framework conditions may
also lead to different results. The exploratory data analyses can be generalized
for plenty other kinds of investigation that provide empirical data [6,17].

6 Conclusion

An early recognition of communication phenomena and dysfunctional habits is
important in software projects [12]. Empirical studies can help gathering data
about team behavior. When building diagnoses models, effect interpretations
throughout linearity correlations often result as an insufficient strategy [17].

We approached the statistical interpretation differences for Pearson linear
correlation and exploratory analyses using MINE. We qualified both strategies
and their capabilities on dependency characterization for three case studies about
team communication effects. We show that both strategies were capable of iden-
tifying all case studies relevant communication effects with statistical significance
p< 0.05. For instance, we show that the use of digital communication channel

468 F. Kortum et al.

has an adverse effect on developer’s perceived interaction intensity, also that the
member’s belief in the team and their goals positively affects the team’s overall
atmosphere. A closer examination of the effect measures reveals, that 9 of 12
effects could be better interpreted through the exploratory analyses. An overall
analysis discloses that MINE resolves a stronger characterization for dependency
strengths with better mean correlation coefficient r = 0.34 and significance level
p< 0.02, compared to the linearity interpretations.

With this study, we wanted to provide a substantive case study about inter-
preting communication effects more accurately through exploratory techniques
compared with conventional linear methods. Applying the MINE technique
revealed to achieve an higher overall interpretation capability due to its multi-
variate statistical and functional property analyses. We follow up with the aim to
enrich the awareness for advanced factor analyses for improved dependency char-
acterizations without extra manual effort. Visualizing of effects will help project
managers and stakeholders to understand previous team behavior through exten-
sive cognitive perception, thus to improve the building conciseness of diagnoses
models together with external analysts.

Acknowledgment. This work was funded by the German Research Foundation
(DFG) under grant number 263807701 (Project TeamFLOW, 2015–2017).

References

1. Ambler, S.W., et al.: Agile modeling (2002)
2. Breiman, L., Friedman, J.H.: Estimating optimal transformations for multiple

regression and correlation. J. Am. Stat. Assoc. 80, 614–619 (1985)
3. Delicado, P.: Another look at principal curves and surfaces. J. Multivar. Anal. 77,

84–116 (2001)
4. Dennis, A.R., Valacich, J.S.: Rethinking media richness: towards a theory of media

synchronicity. In: 1999 Proceedings of the 32nd Annual Hawaii International Con-
ference on Systems Sciences, HICSS-32. IEEE (1999)

5. Hinsz, V., Park, E., Sjomeling, M.: Group interaction sustains positive moods and
diminishes negative moods. In: Annual Meeting of the Midwestern Psychological
Association, Chicago (2004)

6. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12, 435–449
(2001)

7. Houghton, J., Siegel, M., Goldsmith, D., Moulton, A., Madnick, S., Wirsch, A.: A
survey of methods for data inclusion in system dynamics models: methods, tools
and applications (2013)

8. Kauffeld, S., Lehmann-Willenbrock, N.: Meetings matter: effects of team meetings
on team and organizational success. Small Group Res. 43, 130–158 (2012)

9. Klünder, J., Schneider, K., Kortum, F., Straube, J., Handke, L., Kauffeld, S.:
Communication in teams - an expression of social conflicts. In: Bogdan, C., et al.
(eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 111–129. Springer, Cham (2016).
doi:10.1007/978-3-319-44902-9 8

http://dx.doi.org/10.1007/978-3-319-44902-9_8

Don’t Underestimate the Human Factors! 469

10. Kortum, F., Klünder, J.: Early diagnostics on team communication: experience-
based forecasts on student software projects. In: 10th International Conference on
the Quality of Information and Communications Technology. IEEE (2016)

11. Kortum, F., Klünder, J., Schneider, K.: Miscommunication in software projects:
early recognition through tendency forecasts. In: Abrahamsson, P., Jedlitschka,
A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PRO-
FES 2016. LNCS, vol. 10027, pp. 731–738. Springer, Cham (2016). doi:10.1007/
978-3-319-49094-6 62

12. Kortum, F., Klünder, J., Schneider, K.: Characterizing relationships for system
dynamics models supported by exploratory data analysis. In: 29th International
Conference on Software Engineering and Knowledge Engineering. KSI Research
Inc. (2017)

13. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys.
Rev. E 69, 066138 (2004)

14. Madachy, R.J.: Software Process Dynamics. Wiley, Hoboken (2007)
15. McChesney, I.R., Gallagher, S.: Communication and co-ordination practices in

software engineering projects. Inf. Soft. Technol. 46, 473–489 (2004)
16. McGuffin, M.J.: Simple algorithms for network visualization: a tutorial. Tsinghua

Sci. Technol. 17, 383–398 (2012)
17. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G.,

Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel
associations in large data sets. Science 334, 1518–1524 (2011)

18. Schneider, K., Liskin, O., Paulsen, H., Kauffeld, S.: Media, mood, and meetings:
related to project success? ACM Trans. Comput. Educ. 15, 1–33 (2015)

http://dx.doi.org/10.1007/978-3-319-49094-6_62
http://dx.doi.org/10.1007/978-3-319-49094-6_62

Applying Extreme Engineering and Personality Factors
to Improve Software Development Under a Heavyweight

Methodology

Mercedes Ruiz1(✉) and Germán Fuentes2

1 University of Cádiz, Avda. de la Universidad de Cádiz, 10, 11519 Puerto Real, Cádiz, Spain
mercedes.ruiz@uca.es

2 Navantia, Carretera de la Carrraca s/n, 11100 San Fernando, Cádiz, Spain
gfuentesl@navantia.es

Abstract. Companies of the defense sector use heavyweight methodologies such
as the V-model to develop large systems in which reliability is a crucial factor.
This model has well-known disadvantages but the necessity to maintain all the
phases under control and its mandatory use by the public institutions prevent the
companies from altering the methodology. This paper describes a process
improvement proposal for the V-model based on the concepts of Extreme-Engi‐
neering, team creation and task allocation strategies that take into account the
personality of workers and its impact on productivity and quality. The study has
been performed in a real company of the defense sector. The proposal has been
tested and validated using a multiparadigm simulation model that makes use of
the company historical data.

Keywords: V-model · Extreme-Engineering · Team creation · Personality
factors · Process improvement · Simulation

1 Introduction

In an increasingly competitive global market, companies struggle to find their place and
gain business success. There are several factors for this success, but quality and price
are the two factors that mostly determine the success or failure of a product or service.

Since the articulation of the agile manifesto in 20011, agile methods such as XP or
Scrum have transformed the way we build software. However, they do not seem to
penetrate adequately in large projects, where a heavyweight methodology such as the
V-model [1] is usually preferred [2]. This is mainly because the customers of such
projects, usually governments, demand rigid control, with strict plans and abundant
documentation.

Nevertheless, disregarding the use of light or heavyweight methodologies, a common
objective and a widely accepted assumption are shared by all types of projects: (a) to
deliver working software that meets the requirements and quality goals, within a

1 http://www.agilemanifesto.org.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 470–481, 2017.
https://doi.org/10.1007/978-3-319-69926-4_37

http://www.agilemanifesto.org

reasonable time and budget, and (b) the crucial role that teamwork plays to meet this
objective.

Teamwork is considered to have a positive effect on people’s productivity due to the
increase of the synergies among the members of the same team, their sense of fulfillment
and the personal satisfaction, factors that lead to an improvement in work efficiency [3].

However, there are situations in which this general law may not always lead to more
productive teams. Grouping people with opposing or conflicting personalities can lead
to negative synergy, with teamwork producing just the opposite effect to the intended
one. The right thing to do would be to carefully select the right and compatible human
resources before starting a project, but since this is not always possible, we need tech‐
niques to organize people in a project so that we get the most out of them.

In this work, we present the initial results of a process improvement experience
developed in a real company of the defense sector, in which the use of a heavyweight
methodology such as the V-model was compulsory. The solution acts on the strategies
used for team creation and task allocation management, leading to an improvement of
the team productivity and the product quality, without altering the nature of the V-model.
The strategy developed grounds on concepts such as cross-functional teams, personality
factors, team synergy and Extreme-Engineering. The proposal has been validated using
a multiparadigm simulation model that has been created and validated with company’s
historical data. The model allows to compare the results of the existing process and the
improved one without the risks of testing the proposal in the real world.

This paper is structured as follows: Sect. 2 describes the current situation and the
problems found. Section 3 summarizes the published works in the scope of the V-model
improvement. Sections 4 and 5 describe our proposal and its results obtained by simu‐
lation, respectively. Finally, Sect. 6 summarizes the paper, draws our conclusions and
describes our future work.

2 Problem Description

This work describes the experience carried out in a real Spanish company that is a
worldwide reference in the design and construction of military systems solutions. The
company also is specialized in providing technical assistance for the development of
control and combat systems. For confidential reasons, we will refer this company as
SeaVessels. The projects developed by SeaVessels follow the V-model and are very
large and complex, being some of them R&D ones. The projects usually last approxi‐
mately three to six years. The customers of these projects are mostly governments from
different countries. SeaVessels has a team of 30 people working in these projects. The
team is divided into two groups: one for systems engineering, responsible for the analysis
and testing phases of the project, and another group for software engineering, responsible
for the phases of software design, development and unit testing. Each work group has
an area manager who is responsible for the planning of each area, work coordination
and resources balance.

The following subsections describe briefly the V-model followed in SeaVessels
projects and the problems the company encountered in its application.

Applying Extreme Engineering and Personality Factors 471

2.1 The V-Model

The V-model is usually used on very large projects, generally developed for public
organizations or for systems engineering typical of the defense environment [4, 5]. The
V- model for software development can be considered as an extension of the waterfall
model that gives more emphasis to testing. Figure 1 shows the general structure of the
V-model for software development.

Fig. 1. The V-model for software development.

The V-model is mostly characterized by the following features:

• There is a direct relationship between each phase of the project lifecycle with a testing
phase. As a result, each phase is tested at its level of abstraction.

• Each testing phase is a milestone, normally set and controlled by the customer.
• It requires test procedures to be written as soon as possible.
• It gives the same importance to the development and testing phases.
• It provides a simple and easy way to follow the software process.
• It is suitable for projects involving hardware and software development.

2.2 The V-Model Problems in Real-Life Projects

In the application of the V-model to real-life projects, SeaVessels has found several
general problems:

• The V-model lacks flexibility, which is contrary to the nature of software develop‐
ment. The simple fact of not being able to begin the next phase without having
finished the previous one is unreal. It is very common that:
– The customer is not clear about the high-level requirements, normally because the

projects can have a great difficulty.
– The requirements of the customers may not be fully, clearly and unambiguously

described in the software specifications in the first attempt, preventing the
designers/developers from making software that meets the customer expectations.

472 M. Ruiz and G. Fuentes

The level of difficulty of the projects, or the fact that they maybe R&D ones are
the frequent reasons for this lack of quality in the software specifications.

• Inside the company, there is a general belief that the success of the projects that use
this methodology is thanks to the flexibility that the program managers and technical
leaders introduce and allow during the process.

• Due to the crucial importance for both the customer and the program managers of
the start-up and last testing phases of a project, there is a danger of losing control in
the lower phases of the V. This lack of control adds pressure to the managers of those
phases to have the product ready to meet a milestone, giving the false appearance of
control to the customer. This pressure forces sometimes to apply inefficient testing
methods.

• The V-model produces a false belief that everything is under control by running a
testing phase for each process.

• Usually the project team is organized in several groups of people working unrelated,
that is, some analysts generate the highest-level specification that are passed to lower-
level specification by other analysts and developers. The communication between
them occurs mainly through documentation and not through conversations and
discussions.

2.3 Current Process Model

The current process model implemented in SeaVessels strictly follows the V-model and
is the following:

• When a new analysis task arrives, it is assigned to a free analyst. The analyst studies
the available documentation, performs the analysis, and writes the Software Require‐
ments Specification document (SRS).

• Once the SRS is completed, a free designer/programmer performs the Software
Design Document (SDD).

• When the SDD is completed, a free designer/programmer (it can be the same person
who wrote the SDD, depending on the available resources) is assigned to the devel‐
opment and unit testing of the software.

• Once a software version with unit tests is released, it is passed to an available analyst/
tester (it may or may not be the same person who wrote the SRS) that executes the
Engineering Testing and Evaluation (ET&E) procedure.

• After executing the tests, changes in the specification (DCN, Documentary Change
Note) or changes in the code (SCP, Software Change Proposal) may occur, which
makes the task return to its initial phase or to the implementation phase, respectively.

The main problems observed when using this process model are:

• Dead times of some people due to deadlocks between people and phases.
• There is little review of results, as each person is responsible for their work. The work

could be reviewed by the area manager in charge of the phase, but it does not seem
feasible for a single person to review everything.

Applying Extreme Engineering and Personality Factors 473

• There is no team feeling and workers often perceive their task as a whole and not as
an element of a higher set, which negatively affects the subsequent integration of
these elements.

• Having a person per task at each phase can help detect errors more easily. However,
every time a new person is assigned to a new task, some learning time is needed
which, if reduced or eliminated, has an impact on quality.

• During the analysis tasks of complex elements, it can take a lot of time (order of
months) to understand the problem and be able to specify an appropriate solution to
the problem. The single analyst assigned to the task is responsible for expressing with
the maximum quality possible, the results of their analysis. Sometimes, the designers
or/and programmers do not fully understand the problem and the solution posed by
the analyst. Due to time constraints, the necessary re-analysis of the problem cannot
be done and the solution lacks quality or is developed with a significant delay. The
problem is also increased because the analysts and programmers are in two different
groups, leading to some frictions and lack of communication between both groups.
Incidentally, this impacts negatively on the final quality of the product, the fulfillment
of deadlines and the motivation of the people involved.

• The assignment of tasks to people is done according mostly to their availability and
the experience of the person in charge of the assignment. However, no formal model
is used to perform this important activity [6].

3 Improvements to the V-Model

Once the problems that the use of the V-model have been identified, the next step should
be to find what improvements have been proposed to the V-model without altering its
nature.

Not many formal improvements of the V-model can be found in the literature. For
example, Mathur and Malik [7] propose the Advanced V-model. This model improves
the V one by adding a maintenance phase, which it is considered to improve the effi‐
ciency, stability and reliability of the process. Another improvement is presented in [8].
This work proposes the W model for component-based software development. The
improvement consists in a different procedure to validate and verify components and
systems. Finally, Liu et al. [9] introduce inv-V, a development process for automotive
industry that improves the conventional V-model and variants by introducing and insti‐
tutionalizing early and continuous integrated verification. None of these improved
models addresses most of the problems found in SeaVessels.

As already mentioned, the use of the V-model as a heavyweight development meth‐
odology is an obligation in the defense sector. However, in the literature there are some
attempts to apply certain concepts of agile methodologies to these projects without
altering its rigorous use. For example, Fruhling et al. [10] performed an experiment in
a military project where some XP concepts such as incremental developments and short
iterations were successfully applied, whereas other concepts such as pair programming
or test-oriented development did not achieve their purpose. In any case, the authors

474 M. Ruiz and G. Fuentes

conclude that the application of XP had a positive effect on the project in a general way.
This positive effect is, in part, due to emphasizing teamwork in the scope of the V-model.

As mentioned before, in order to get the benefits of teamwork, teams have to be
carefully designed. When designing a team, several aspects need to be taken into consid‐
eration. For example, [11] makes use of the Cattell model [12] to measure the personality
of each worker and thus be able to determine which role within a project to assign to
each one. Gómez, in her dissertation [13], studies the influence of personality and work
climate on software development. It makes use of the Big Five personality model as a
simpler model that integrates other models, including Cattell’s one.

4 Our Proposal

4.1 Assumptions

In order to design a proposal to improve the current results of the process model of
SeaVessels without modifying the development methodology, we considered to act on
the strategies for team creation and task allocation management. Specifically, our
proposal is based on the following assumptions:

• Workers will be more productive if they belong to a well-defined team, so as to
maintain homogeneity, shared leadership, fruitful brainstorming, etc. [14].

• The application of the Extreme Programming (XP) and agile concepts to the analysis,
design and testing phases will lead to an improvement in quality, task completion
times and worker motivation. This concept is called Extreme Engineering (XE). It
improves the communication between different teams as well as the product quality,
since the same people are allocated to the same tasks during the whole task life‐
cycle [15].

• Pairing people for a task according to their personality will provoke positive synergy.
The use of Cattell’s 16PF model is suitable for this purpose as it measures the normal
dimensions (non-pathological viewpoint) of the personality with an ambitious scope
as it encompasses ability, temperament, dynamics, moods and the situations [16].

• All workers, regardless of the team they belong, will feel part of a whole, that is, not
two teams fighting but cooperating for the sake of quality and the proper completion
of tasks [17].

4.2 Using Cattell’s 16 Personality Factors Model

For Cattell, personality is the determinant of behavior in a given situation. The basic
component of personality is its traits. Cattel developed a taxonomy of 16 personality
primary traits, based on the assumption that each person contains all of these 16 traits
to a certain degree. In addition to the 16 primary factors, the taxonomy covers another
group of broader second order factors that are obtained from the decatype scores
obtained on the first-order factors. Cattel’s model the result of psychological research,
with empirical basis of more than 10 years of factorial experimentation on thousands of
elements [12].

Applying Extreme Engineering and Personality Factors 475

For the purpose of this work, we have used 11 decatypes, we considered to be the
most influential decatypes in professional software development. These decatypes were
measured for each worker in the team using Cattel’s 16 PF Personality Questionnaire.
In addition, a cross-matrix representing whether there is a positive, negative or zero
synergy in the union of two workers with all the possible combinations of decatypes has
been developed. The full matrix cannot be included here due to space reasons. As an
example, Table 1 shows the synergy of four decatypes, where a positive/negative sign
stands for positive/negative synergy and a blank cell means neutral synergy.

Table 1. Cross-matrix of synergy per decatype.

Reserve Forthright Unconcerned Submissive
Reserve − + − −
Forthright + − + +
Unconcerned − + −
Submissive − + −

4.3 Improved Process Model

The proposed process model can be broadly defined according to the following charac‐
teristics:

• Workers are grouped by phase, as in the current model, but also by functionality, i.e.,
they belong to a team of people (analysis/test or design/programming), but, at the
same time, to a functional group (data processing, graphical interface or signal
processing). As a consequence, cross-functional teams are formed [18]. Tasks are
assigned to two people, one from each team. Depending on the phase, one worker
will have more workload in the task than the other.

• Workers are allocated to the tasks according to their personality and technical skills.
• When a phase is completed, the task moves to the next phase of the life cycle, but

the same people will continue allocated. It goes without saying that in the Test phase,
the person of the design/programming team should only be there to give support and
not to test. The task performs the cycle of analysis/design/programming/test until it
is proven the task is done. In each iteration, the task is assigned to the same pair of
people at each phase. As a result, at each moment a worker has two tasks allocated,
each one with a different workload depending on the phase and the worker’s technical
skills.

The following algorithm shows how each new task is allocated to a pair of workers:

1. Pre-select workers, from both teams analysts/testers and designers/programmers,
that are available or partially available.

2. Rank and order each pre-selected worker according to their area experience skills in
the functional area the task belongs to.

3. Make pairs of workers, starting from the ones who have more experience.
4. Calculate, for each pair of workers, the synergy of their union according to their

personality. When the union of the two factors of personality of the two workers in

476 M. Ruiz and G. Fuentes

the pair has a positive sign (see Table 1), a value in the range (0,1] will be added to
the synergy factor. Oppositely, if the union of their personalities has a negative sign,
a value will be added to the synergy factor in the range [−1.0). The value that is
added in each case is obtained from the concrete value of the decatypes of each
worker. Table 2 shows the adjustment that is made to the union of each pair of
decatypes according to the individual value of each worker.

Table 2. Adjustment of sinergy.

Very high High Slightly
high

Normal Slightly
low

Low Very low

Very high 100% 90% 70% 60% 50% 30% 10%
High 90% 80% 60% 50% 40% 20% 5%
Slightly
high

70% 60% 50 40% 30% 10% 0%

Normal 60% 50% 40% 30% 20% 5% 0%
Slightly
low

50% 40% 30% 20% 10% 0% 0%

Low 30% 20% 10% 5% 0% 0% 0%
Very low 10% 5% 0% 0% 0% 0% 0%

5. Allocate to the new task the pair of workers who, having the greatest possible expe‐
rience, have the greatest positive synergy points.

If there are no staff available that meets the above criteria, allocate equally according
to the lowest negative synergy possible.

5 Evaluation of the Proposal Through Simulation

5.1 Multimethod Simulation Model

We first built the AS-IS simulation model that represents the current process model used
by the company. This initial model consists of a pure discrete event network of tasks
and resources in which the time needed to perform a task is a function of the experience
of the worker allocated. In this model, as in real life, workers are allocated to tasks based
on who is free at the required moment. The time it takes to perform a task is determined
by the experience of the worker in that type of task. In the AS-IS model the tasks enter
the system as a stream of arrivals defined by the historical data of the company. When
a new task enters, it is directed to the queue representing the Analysis phase and waits
for an available resource in the Analyst_Testers resource pool. Once a resource is avail‐
able, it is allocated to the task for the time needed by that resource to perform that type
of task. Once finished, the task moves to the next phase and so on until either it comes
back for rework or it is done.

The TO-BE simulation model represents the improved process. In this model, the
AS-IS model is extended with an agent-based simulation model. The agent-based model

Applying Extreme Engineering and Personality Factors 477

represents each worker as an individual agent, with their own personality and technical
skills that affect how the workers interact with each other and develop their tasks,
resulting in a more realistic simulation. The agent-based model is represented as a state
transition diagram that describes the workers event- and time-driven behavior. In the
TO-BE model, the algorithm that allocates workers to each new task implements the
steps described in Sect. 4.3.

5.2 Simulation Runs

The base scenario for the simulation is defined with an initial population of 30 agents,
representing each one a member of the real team. Their personality factors, skills profile
and average time needed to develop each type of task are read from a csv file containing
real data from the last three projects developed under the V-model. The scenario simu‐
lates the development of a project with a job creation rate of one a week, starting on July
3, 2009 and finishing on July 31, 2017 (420 weeks duration).

Figures 2 and 3 represent the mean time spent on software analysis tasks in the last
year of the simulated project using the AS-IS and the TO-BE model, respectively. The
tasks have been classified into areas, namely HMI, for Human-Machine interaction
software, SIGNAL, for signal processing software, and Data_Process, for data
processing software.

Fig. 2. Analysis mean time: AS-IS model.

Fig. 3. Analysis mean time: TO-BE model.

In this case, whereas in the AS-IS process the mean time needed for the analysis
tasks was 0.97 weeks, in the improved process was 0.77 weeks, leading to 20% reduction
of the time needed to perform the analysis tasks.

478 M. Ruiz and G. Fuentes

Figures 4 and 5 represent the mean time spent on software development tasks using
the AS-IS model and the TO-BE model, respectively.

Fig. 4. Programming mean time: AS-IS model.

Fig. 5. Programming mean time: TO-BE model.

In this case, the mean time of the development tasks in the current process model
was 1.45 weeks and in the improved process model 1.20 weeks, leading to a reduction
of 17.24% of the time needed to programming tasks.

If we shift our focus to quality, the number of tasks completed with the maximum
quality at the time of finishing the project was the following:

• AS-IS model: 135 finished tasks, with an average of 30.81 weeks duration.
• TO-BE model: 162 completed tasks, with an average of 31.73 weeks duration.

This implies an improvement in the number of tasks of 20%. However, the average
duration of the completed tasks was worsened by 2.98%.

Finally, if we compare the workers’ busy time, in the AS-IS model, 21 out of the 30
workers had 100% occupancy through the project’s lifecycle. In the TO-BE model the
number of workers with full occupancy rose to 24, representing an improvement of
12.5%

6 Conclusions and Future Work

This work describes a process improvement proposal for the V-model based on team
creation and task allocation strategies that take into account the personality of workers
and its impact on productivity and quality. The study has been performed in a real

Applying Extreme Engineering and Personality Factors 479

company of the defense sector, where the use of the V-model is mandatory. The proposal
has been tested and validated using a multiparadigm simulation model that makes use
of the company historical data.

We can tentatively conclude that the results obtained are optimistic about a possible
real application of the improvement designed for the current process model. The
improvement introduces the novel concept of extreme engineering, that extends the
concept of pair-programming to all the phases of the software life cycle, applies the
concept of cross-functional teams to software engineering and pioneers in the use of the
Cattel’s model of 16PF to improve productivity in processes under the V-model.

In this work, the main metrics to assess the results of our proposal have been focused
on the time needed to perform each phase, as a measure of productivity improvement,
and the number of tasks completely done, as a measure of quality. Our future work, is
planned to extend the analysis to the different phases of software development and
include more metrics, such as, the individual level of quality of each task or the number
of iterations necessary to fully complete each one. We will also investigate the effect of
including the worker’s preferences as a factor of the task allocation strategy and its
impact on workers motivation and productivity.

Acknowledgements. This work has been partially supported by the Spanish Ministry of Science
and Technology (grant TIN2016-76956-C3-3-R) with ERDF funds and the Andalusian Plan for
Research, Development and Innovation (grant TIC-195).

References

1. Haskins, C.: Systems Engineering Handbook: A Guide for System Life Cycle Processes and
Activities (ver. 3). International Council on Systems Engineering (2006)

2. Aitken, A., Ilango, V.A.: Comparative analysis of traditional software engineering and agile
software development. In: 46th HICSS, pp. 4751–4760. IEEE Computer Society (2013)

3. Hertel, G.: Synergetic effects in working teams. J. Manag. Psychol. 26(3), 176–184 (2011)
4. Department of Defense of USA: MIL-STD-498 (1994)
5. Department of Defense of USA: Defense Systems Software Development (DOD-

STD-2167A) (1985)
6. André, M., Baldoquín, M.G., Acuña, S.T.: Formal model for assigning human resources to

teams in software projects. Inf. Soft. Technol. 53(3), 259–275 (2011)
7. Mathur, S., Malik, S.: Advancements in the V-model. Int. J. Comput. Appl. 1(12), 30–35

(2010)
8. Lau, K.K., Taweel, F.M., Tran, C.M.: The W model for component-based software

development. In: 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 47–50 (2011)

9. Liu, B., Zhang, H., Zhu, S.: An incremental V-model process for automotive development.
In: 23rd Asia-Pacific Software Engineering Conference, pp. 225–232 (2016)

10. Fruhling, A., McDonald, P., Dunbar, C.: A case study: introducing eXtreme programming in
a US government system development project. In: 41st HICSS, pp. 464–464 (2008)

11. Acuña, S.T., Juristo, N.: Assigning people to roles in software projects. Soft. Pract.
Experience 34(7), 675–696 (2004)

480 M. Ruiz and G. Fuentes

12. Cattell, R.B., Eber, H.W., Tatsuoka, M.M.: Handbook for the Sixteen Personality Factor
Questionnaire (16 PF). Institute for Personality and Ability Testing (1988)

13. Nieves, M.: Estudios experimentales sobre la influencia de la personalidad y el clima en el
desarrollo de software. Guías para gestión de equipos en proyectos de ingeniería del software,
Ph.D. Dissertation (in Spanish). Universidad Autónoma de Madrid (2010)

14. Maslow, A.: Motivation and Personality. Harper & Brothers, New York (1954)
15. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an

industrial context: an exploratory study. In: First International Symposium on Empirical
Software Engineering and Measurement, ESEM 2007, pp. 255–264 (2007)

16. Harrington, H.J., Harrington, J.S.: Total Improvement Management: The Next Generation in
Performance Improvement. McGraw-Hill Professional, New York (1995)

17. Shaw, R.B.: Extreme Teams. AMACOM (2017)
18. Parker, G.M.: Cross-Functional Teams: Working with Allies, Enemies, and other Strangers.

Jossey-Bass, San Francisco (2003)

Applying Extreme Engineering and Personality Factors 481

A Systematic Literature Review of Social
Network Systems for Older Adults

Bilal Ahmad(B), Ita Richardson, and Sarah Beecham

Lero, The Irish Software Research Centre, University of Limerick, Limerick, Ireland
{bilal.ahmad,ita.richardson,sarah.beecham}@lero.ie

Abstract. Background. The proportion of older adults (OAs) is
increasing throughout the developed world. Social isolation is a recog-
nised problem for this sector. Technology is regarded as a possible way
to create a more inclusive society, where for example social network sys-
tems (SNSs) can keep OAs in contact with local communities, create new
communities, reduce adverse impact of geographic separation, reduced
mobility and lifestyle changes. Objective. As end-users of SNSs, this
paper looks at the current state of practice of SNSs for OAs. We explore
what OAs think about SNSs, what they want from SNSs and whether
these needs are met. Method. Taking a snowballing approach, we exam-
ined 51 primary studies on SNSs for OAs. Results. There is a discernible
increase in SNSs designed for OAs since 2005, which claim to meet needs
such as simplicity, ease of use, privacy and access to useful information.
Yet, sustained use over time is unknown. Conclusion. SNSs remain a
potential way to reduce the social isolation of OAs, however the extent
to which SNSs can replace real human contact is largely unexplored, as
is whether SNSs can trigger the creation of new supportive communities.

Keywords: Older adult · User needs · Snowballing · Social isolation ·
Social network systems · Systematic literature review

1 Introduction

The proportion of older adults is increasing throughout the developed world. For
example, in Ireland the proportion of younger OAs - aged over 65, is predicted
to triple between 2006 and 2041 and the proportion of older OAs - aged over 80,
will quadruple in next couple of decades [40]. This projected increase requires
long-term planning to ensure that we have systems, structures and supports
for this segment of population. Social isolation and loneliness are pronounced
challenges for the OAs [5,9,16,31,36,37], and can lead to a low quality of life
[8], which in turn can lead to physical ill-health [6], and depression [12]. OAs
can suffer from a lack of communication and declining interaction [23] which can
lead to social isolation - “the state of having minimal contact and integration
with others and a generally low level of involvement in community life” [33]. This
problem is not limited to OAs, but it is exacerbated with ageing. In general, SNSs
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 482–496, 2017.
https://doi.org/10.1007/978-3-319-69926-4_38

A Systematic Literature Review of Social Network Systems for Older Adults 483

such as Facebook, Twitter and Skype are shown to connect people and create
virtual communities [22]. According to Boyd, SNSs are on-line environments
in which people create a self-descriptive profile and then make links to other
people they know on the site, creating a network of personal connections [2].
These are considered as a potential solution to solve the problem of loneliness
and social isolation [6,12,42]. However, differences in media preferences between
the younger generation and OAs are preventing the older adult from engaging
with the wider community [20]. It appears that OAs are unable to take full
advantage of the stimulus and interaction these SNSs provide [13]. This paper
presents a systematic literature review (SLR) that identifies the SNSs from the
lens of the OA over the last two decades. The main contributions are:

– In-depth sensitivity analysis;
– Elicitation of the requirements for the development of SNSs for OAs as

described in the literature;
– Categorization and characteristics of SNSs used by OAs;
– Comparison between take up of general and special SNSs used by OAs.

The remainder of this paper is organized as follows. Section 2 describes the
systematic literature review protocol. Section 3 presents results of the review.
Section 4 discusses the lessons learned and Sect. 5 presents limitations of this
work, while Sect. 6 concludes this study and gives directions for future work.

2 Literature Review Protocol

Conducting an in depth literature review is a way to gain a broad understanding
of the domain because it provides a balanced and objective summary of research
for a particular topic [3]. We decided to use a snowballing approach to identify
the relevant studies in the literature. Claes Wohlin conducted a comparative
study of systematic literature review (SLR) methods [45] and concluded that
snowballing is an efficient and effective way to identify the studies with less noise
and lower chance of missing a relevant paper than using string-based searches
in electronic databases. These two points motivated us to choose snowballing
over electronic database searches. Also our topic falls in an inter-disciplinary
category, hence there were chances of missing an important study by just looking
at computer science and software engineering venues. Due to space limitations
our full protocol is reported in a technical report [1]. In our case, a quick review
of the related literature revealed that SNS development spanned from 1990’s to
date. We therefore opted to take a forward and backward snowballing approach,
adopting guidelines from Wohlin [45] that calls for several iterations. In our case,
two iterations of snowballing were sufficient as this resulted in a considerable
number of relevant studies and saturation.

2.1 Goals and Research Questions

The goal of this SLR is to identify and document all the SNSs used by OAs,
mentioned in the literature since 1990. We wanted to synthesize the findings to

484 B. Ahmad et al.

create a summary of the typical expectations of OAs from SNSs and whether
these are met or not. Our research questions and associated rationales are:

RQ1. What does the Older Adult look for in SNSs?
Rationale: Elicitation of needs of OA to be met by a social networking system.
RQ2. What are the characteristics of SNSs used by the Older Adult?
Rationale: To understand characteristics of SNSs used by OA, and by impli-
cation, what works for the OA.
RQ3. How are OA using SNSs?
Rationale: To give a level of rigor to the findings, we need to understand the
level to which the SNSs have been used by OA.
RQ4. Is there a difference between the take-up of general SNSs and SNSs devel-
oped specially for the OA?
Rationale: Highlight whether there is a need for more SNSs for OAs.

2.2 Study Selection Process

Search Strings. Search strings validated by a senior researcher and details of the
databases on which they were applied are described in Sect. 2 of the technical
report [1]. An example of a search string applied in ScienceDirect is:
(“social networking service” OR social media* OR SNS*) AND (older adult*
OR OA* OR OAP* OR elder* OR senior*).

Snowballing. A literature review on SNSs for the OAs conducted in 2016 [10] led
to a starter set of papers [6,8,15,16,31,41,43]. However, the 7 review papers,
though a good start, did not address our research questions fully. Being pub-
lished between 1993 to 2013 suggested the need for both forward and backward
snowballing. Also, the sources searched were very narrow. Additionally, this sur-
vey did not use standard SLR guidelines. The need for further studies to be
included was confirmed since we found a further 18 papers post-2013 that pub-
lished research on SNSs used by OAs.

Study Refinement and Data Extraction Process. Inspecting references (217) and
citations (370) of the start set, left 594 studies to be investigated. We followed a
five-step refinement process (detailed in Sect. 4 of technical report [1]) to select
the final set of 51 primary studies as shown in Fig. 1.

3 Results

Section 3.1 identifies the types of studies reporting on SNSs for OAs to uncover
any bias. Sensitivity analyses [38] provides an important context for answer-
ing our research questions by providing information on where the data used
to answer the research questions might be biased. It helps with general-
isation, scoping, sampling, limitations, for example, over representation of
one country, domination by group, or elimination of one gender. After this,
Sects. 3.2, 3.3, 3.4 and 3.5 aim to answer the four research questions presented
in Sect. 2.1.

A Systematic Literature Review of Social Network Systems for Older Adults 485

Fig. 1. Steps for selection of papers

3.1 Sensitivity Analysis

SNSs Used by OAs. There is a growing body of research in SNSs for the OAs
on which we can build. More attention is given to designing technically-oriented
solutions for the so-called baby boomers during the last decade in comparison
with previous years. Figure 2 shows that both general and special SNSs for OAs
have captured the interest of researchers with a slight emphasis on SNSs designed
specially for OAs rather than adopting existing SNSs.

Fig. 2. SNSs used by older adults Fig. 3. Language spoken v/s used in SNSs

Countries Involved. The published literature indicates that the USA and UK are
taking the lead in terms of exploring, understanding and exploiting the potential
of SNSs for OAs. However, this is likely to be in part due to our inclusion criteria
that stipulates that we only include studies written in the English language.

Types of Research. 31 studies use qualitative research methods i.e. 61%, with
16 % using quantitative methods. Mixed methods were observed in the other
studies.

Inclusion of Older Adults. Shannon [40] defines three categories of OAs i.e.
younger (aged > 65), older (aged > 75 and < 85) and oldest OA (aged > 85).

486 B. Ahmad et al.

The oldest OA are at the highest risk of independent living [12,14]. Paradoxi-
cally, it has been observed that they are the most neglected during the elicitation,
analysis, design, development and evaluation of the SNSs for OAs.

Language Spoken v/s Used in SNSs. English is predominantly used in the SNSs
for OAs. Obviously, the countries whose native language is English have used it,
but interestingly, as shown in Fig. 3 other languages are represented.

3.2 What the Older Adult Looks for in SNSs – RQ1

The primary purpose of many of the studies was to describe the design, develop-
ment and evaluation of the SNS for the OA. A list of OA needs extracted from
the studies is shown in Table 1 that presents the most prevalent requirements,
associated references and frequencies. The requirements are classified into func-
tional and non-functional, where functional is considered as “a statement of a
piece of a required functionality or a behaviour that a system will exhibit under
specific conditions” [44] and non-functional as “a property, or quality, that the
product must have, such as appearance, or a speed or accuracy property” [35].

Access to useful information is the top feature that OAs expect from a SNS.
Therefore, SNSs were focused on providing information according to the demands
of OAs e.g. health, horoscope, entertainment [16,20]. Asynchronous communi-
cation allows OAs to reciprocate at their convenience and is the second most
important feature in these SNSs. It was especially useful for OAs suffering from
chronic disease, as there are times when they do not feel well enough to respond
[14,17]. Another important feature is that SNSs should reduce the intergenera-
tional gap. SNS should serve as a medium for communication with peers as well
as with the younger generation which will help OAs to share their stories with
the younger generation and learn from them about new things [18,26].

Table 1. Requirements of older adults

The top non-functional requirement for OAs is ease of use. This means that
the systems should be designed to ensure that they achieve the goals of OAs
effectively and efficiently, leading to satisfactory use, whereas simplicity means
that the SNS should have only those features, which are essential. For exam-
ple Norval et al. [34] developed a simplified version of Facebook by remov-
ing advertisements and apps and by using very easy terminology. Privacy is a
major concern and should be managed in any system developed for OAs [41,43].

A Systematic Literature Review of Social Network Systems for Older Adults 487

They are very sceptical about what they share or write on a system, and are
concerned that it may be accessed by someone other than the intended person.
Cognitive load indicates that the SNSs specially for the OA should require less
mental effort to understand and use. SNSs must not be over-emphasised in the
life of OAs. Rather, they should be designed with liberty or independence of the
OA in mind. This means that OA should be able to operate the SNS without
seeking help and at their own preferred time. Stability of the system is another
important feature that needs to be incorporated in the SNSs for OAs, because
if a system breaks down the motivation level of the OA will reduce significantly.
In addition, the device (e.g. tablet, LED, mobile) should be deployed near the
room of the OA, in order to make it physically accessible.

3.3 Characteristics of SNSs Used by OAs – RQ2

There are two kinds of SNSs for the OAs i.e. general and special SNSs. The term
general is used for those solutions that are exploiting the features of conventional
SNSs such as Facebook and adapting it according to the needs of OAs. On the
other hand, special SNSs are those social networking systems that are novel and
built specially for the OAs. The list of both general and special SNSs selected
as primary studies is presented in Sect. 6 of the technical report [1]. These are
developed in different parts of the world and are targeted towards OA problems
and requirements, which are either taken directly via interviews/focus groups
or based on literature. One important feature that could be generalized from
these SNSs is that all of these have tried to propose an easy and innovative way
for communication. Some researchers have opted for typical computer machines
while others focused on the use of tablets or the daily living objects such as
tables, lamps, books etc. for making technology accessible and familiar to the
older segment of population. There are two types of characteristics of SNSs used
by OAs i.e. functional and non-functional. If we look at the functional aspects,
then text based, audio and video based interaction is provided by these SNSs.
The non-functional characteristics of these applications include multimodality,
ambience, ease of use, source of enjoyment and liberty. Table 2 presents the full
list of characteristics with their frequency and references. Some of the most
important of these include simplicity, usability and privacy. (FoCh is short for
functional and NoFoCh for non-functional characteristics. Their definitions are
same as discussed in the answer of RQ1). It is inferred from here that some of the
expectations of the OAs are met by the current offerings. Although OAs have
used these solutions during the evaluation period of these studies, the motivation
towards using these SNSs keeps on diminishing with the passage of time. This
could be due to a number of factors e.g. lack of interest of the researcher to further
investigate or the evolution of expectations of OAs from the SNSs. Therefore, in
order to incorporate these new ways of communication and engagement with the
society as a part of their daily routine, new ways of thinking and more novel and
holistic approaches are needed that cater for enhancements in the system as well.
We also tested the quality of SNS research via evaluation methods, duration of
evaluation, sample, and data collections methods. Briefly, 21 out of 51 studies

488 B. Ahmad et al.

have used home-deployment for evaluation. 70% of SNSs were evaluated for less
than 3 months and 74% of the sample were female. The top most data collection
method used was interviews. More results along with figures are made available
in the Sect. 7 of the technical report [1].

Table 2. Characteristics of SNSs used by older adults

3.4 Older Adult Experiences with SNSs – RQ3

In order to understand how OAs are using SNSs, we first consider the level of
rigor associated with the findings. The codes that are extracted from the reading
of the literature related to the usage of these SNSs by OAs include the location,
training, classification of participants, integration with existing systems, core
functionality (e.g. communication) and finally the response received. The fol-
lowing 6 subsections elaborate these themes.

Location. In most of the cases OAs were given the opportunity to choose a
location according to their preference [20] e.g. living room and kitchen. They
showed less inclination for SNSs to be in their bedrooms.

Training. OAs were provided training to understand the concept and function-
ality of the SNSs. The methods for guidance used were face-to-face introduction
and recorded training videos [16].

Classification of Participants. The participants involved in the evaluation of the
SNSs are classified into two categories: heterogeneous and homogeneous.

Heterogeneous. If family members, caregivers, friends or younger generation
are involved during the different phases, then these have heterogeneous partici-
pants. The studies that lie in this category include [14,20,26,31,32].

Homogeneous. If only OAs are involved in the evaluation then these stud-
ies have homogeneous participants. One of the examples is the evaluation of

A Systematic Literature Review of Social Network Systems for Older Adults 489

Fridgenet [28], which involved 15 OAs using the system and communicating
with each other for the enhancement of their social wellbeing.

Integration with Existing Systems. The researchers had chosen a pragmatic app-
roach whilst designing and developing SNSs for OAs. They created a simplified
interface for OA, but on the other hand relatives, friends and caregivers can use
their preferred social media technologies to reciprocate e.g. Facebook, Skype.

Core Functionality. The ultimate objective of almost all of these SNSs is to pro-
vide a mechanism for communication that can lead to increased social contact
and overcoming isolation of OAs. Different researchers have opted for different
features according to the needs posed by OAs. Some of the functionalities include
emailing, access to information, sharing of information (e.g. pictures), broadcast-
ing content, posting comments (audio, textual), instant messaging, phone calls,
searching information, private messaging, video conferencing, discussion forum.

Feedback. Almost every study claimed that their solution served the purpose
well for which it was made e.g. social isolation. Some of the assertions made
by the authors with respect to the feedback received by OAs, include electronic
family newspaper [36], which is portrayed as a partial solution to alleviate social
isolation. Building bridges [20] device helped in creating connections outside
the system as well. Tlatoque [14] is known for enhancing asymmetric relations
and face-to-face communication. Sharetouch [42] encouraged users to make more
friends. Pinteresce and Social connector [4,32] facilitated social interaction con-
sequently alleviating the communications breakdown.

3.5 Difference Between General and Special SNSs Used
by OAs – RQ4

In order to understand and analyse the differences between the take up of gen-
eral and special SNSs for OAs several parameters were selected. In general, if
something is used for a longer period of time than the study, this is an indication
that it has a level of longevity. Secondly, the number of people interested in that
SNS also indicates potential interest in the system - hence we selected the num-
ber of OAs using the SNSs for comparison. Thirdly, we selected the age group
under study, as it gives insight as to the popularity of SNSs within a sample of
the population. Lastly, we also wanted to look at whether gender might have an
influence on take-up and interest in SNSs. Table 3 shows the minimum, average
and maximum values for these parameters. It is important to note that the data
presented in this table is extracted from the primary studies only. Although, in
some cases the differences in the level of adoption are very subtle they reveal that
researchers were inclined towards developing special SNSs instead of tweaking
the general ones. A larger number of parameters could prove useful for validation
in our future work.

Difference in Duration of Evaluation. OAs used the general SNSs for a
maximum of 4 weeks in comparison with special SNSs, some of which were used
for 6 months. The average time for usage of general SNSs is 5.6 days while for

490 B. Ahmad et al.

Table 3. Difference in the level of adoption of general and special SNSs

special SNSs it is nearly 3.3 months. The usage time here indicates the evaluation
duration mentioned in the studies, which implies that more attention was paid
by the researchers to evaluate the special SNSs as shown in Table 3.

Difference in Number of OAs. The figures about the number of OAs involved
in the different phases of the SNSs are interesting. The minimum number of OAs
evaluating special SNSs is less than for general SNSs i.e. four compared to eight.
Also, on average, 18.6 OAs contributed in the studies that are presenting general
SNSs while 16.2 OAs evaluated special purpose SNSs. Once again, a threat to
validity could be the correlation between the circumstances under which these
solutions were developed and the number of OAs involved.

Difference in Age Range of OAs. The age range of the OAs who participated
during the course of the general SNSs is between 58 and 92. Special SNSs were
advantaged because, during their progression, the OAs involved were of a broader
age range i.e. from 55 to 95. The average age for the included seniors was 72.8
and 75.8 for general and special SNSs respectively.

Difference in Gender Distribution of OAs. More females were involved for
both general and special purpose SNSs. This could be due to their availability,
paying attention to new advancements in technology or desire to be in touch with
their relatives more than their male counterparts. The number of males involved
in the studies presenting general SNSs ranged from 4 to a maximum of 11. On the
other hand, for special SNSs, the inclusion of males was even less, as indicated
in Table 3. In one study, there was no male involved and the maximum number
in any study was seven. The average number of males involved for general and
special SNSs was 6.4 and 3.4 respectively. Conversely, the average number of
female participation is almost double for both types of SNSs. Therefore, we can
conclude that these studies are gender biased.

A Systematic Literature Review of Social Network Systems for Older Adults 491

It can be concluded from this section that OAs cannot use conventional SNSs
on an as-is basis and they have their special needs due to a number of factors
such as manual dexterity, lack of purpose and fear of technology. Several studies
have tried to modify conventional SNSs and to introduce them to OAs, but the
results did not demonstrate success. Therefore research has been undertaken in
recent years where researchers have gone directly to OAs and ask them about
their needs and create special SNSs for them. Some of the needs of OAs were
met by both general and special SNSs, but they never became part of the daily
lives of OA. One of the reasons was the evaluation period, which was from a few
minutes to a maximum of 6 months. One possible thing that could be done in
the future is to increase that duration. This might serve as a better source of
integration of SNSs in the lives of OAs over the long-term. Another important
point that is highlighted from Table 3 is that special purpose SNSs are now on
the horizon, so this is also an evidence that there exists a need for more inclusion
and special SNSs for OAs.

4 Discussion and Lessons Learned

This study has analysed the collective impact of the growing number of SNSs on
the life of OAs. Most of SNSs are domestic ones developed in native languages.
None have a global influence. This is partly due to a finite social range of the
elderly and partly due to different cultures of different countries [9]. This will be
further investigated during interviews with OAs where we will ask about aware-
ness, familiarity and experience with technology, especially SNSs. The implica-
tions of the existing SNSs include increased social integration and intergenera-
tional communication leading to health benefits. So these factors suggest that
there is a need to develop further tools with new ideas e.g. volunteer hub by
ensuring that things like ease of use, cognitive impairment, visual acuity etc. are
adhered to, which is the ultimate purpose of our research. Following paragraph
presents the lessons learnt through a synthesis of the studies in this review.

SNSs are changing continuously, so a wide variety of barriers to their adoption
might arise in the future [34]. By default, the privacy level of SNSs should be
high and easy to access for the OAs, because this is the most prevalent issue
raised by them [7,21,25,29,46]. An effective SNS for OAs can be designed by
knowing their history, because they are very heterogeneous [39] e.g. how they
acquired education. The included studies were gender biased which means that
the requirements stated earlier may be more relevant for female OAs. If OAs
are provided with right circumstances to use new SNSs, it will be very effective
because OAs are becoming interested in adopting new technologies [27]. SNSs
alone are not the complete solution to overcome social isolation [24]. They must
be augmented with community involvement. Culture is also an important factor
in increasing or decreasing the motivation towards the use of SNSs by OAs [30].
SNSs could be fully adopted by OAs if they are incorporated into objects which
are already used by them e.g. TV, book [11].

Researchers and practitioners can use the results of this study as evidence
to indicate the need of more special and inclusive SNSs for OAs. They can also

492 B. Ahmad et al.

benefit by adopting the top requirements that are presented in this review for
developing SNSs. During evaluation phase, they can use this study’s recommen-
dations by deploying the SNSs in the homes of OAs for a longer duration. This
will provide more accurate results about adoption and diffusion of the system
in their lives. To avoid gender bias, which is observed in existing studies, it is
highly recommended to select subjects in equal numbers from both genders.

5 Threats to Validity

This research also has certain limitations like any other study in the field of
science. The main limitation is that our analysis was based on two iterations of
snowballing, so further assessment is needed. However, the results have provided
some valuable insights and we believe our review met its goal.

External Validity. Forward and backward snowballing was conducted on seven
specific studies. Although these cover a broad range of years, the results might
not be generalizable if a different review protocol is used for conducting further
studies. Also, we cannot be sure that even if we did capture all published work
in the area, that this is a fair reflection of all the SNSs in the market, since it is
likely that some developers of SNSs do not publish their results.

Internal Validity. Snowballing guidelines [45] were applied to a selection of stud-
ies. Snowballing is not an alternative to database searches and ideally a mixed
approach to identifying relevant literature should be used to ensure the best
possible coverage of the literature. Here, the notion was avoidance of noise. Also
key authors were not contacted at the time of writing this paper which could be
a valuable way to check if any study is missed or not.

Reliability. The technique for the extraction and analysis of data was applied
in such a way that others can replicate it. Also, every choice or paper selection
made by the first researcher was validated by a second researcher.

6 Conclusion and Future Work

The 51 studies in the review helped identify what OAs would like from SNSs, and
to what extent current SNSs meet their needs. Desired characteristics of SNSs
such as privacy, simplicity and ease of use were the most frequently mentioned
features. Many studies claim they are providing these, but they were unable to
prove the uptake of their proposed solutions over time [12,20,36]. Indications are
that motivation to use the SNSs drop with the passage of time. It is unclear as
to why this is the case or whether SNSs have in any way solved the problem of
social isolation. We propose therefore that there is a need for more inclusive SNSs
that have the capability to make a positive difference to the lives of OAs, and for
more in-depth and longitudinal studies to be conducted to observe the impact
SNSs have on the lifestyle of the OA. An example of how SNSs could make a
positive impact was presented in a study by Fang et al. [19], who proposed a SNS

A Systematic Literature Review of Social Network Systems for Older Adults 493

that suggested volunteer opportunities for OAs. Through this engagement, OAs
were connected with the local community, and the problem of social isolation
for OAs was solved indirectly. This, in turn, improve their physical and mental
health [19]. This kind of intervention might be useful to propose in future work.
The next step in our research will be to identify a sample of the OA population
and study their current needs regarding SNSs. We plan to develop an SNS to
reflect a local community, and tap into a real need, with the aim that SNSs can
integrate OAs with the wider community. Thus, we propose to prevent a growing
proportion of our population becoming socially isolated due to lifestyle changes.

Acknowledgments. This work was supported, in part, by Science Foundation Ire-
land grant 13/RC/2094 & co-funded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

References

1. Ahmad, B., Richardson, I., Beecham, S.: Protocol for a systematic literature review
of social network systems for older adults. Technical report 3, Lero, The Irish
Software Research Centre, University of Limerick, Ireland (2017). https://goo.gl/
fo4Thx

2. Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship.
J. Comput. Mediat. Commun. 13(1), 210–230 (2007)

3. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from
applying the systematic literature review process within the software engineering
domain. J. Syst. Softw. 80(4), 571–583 (2007)

4. Brewer, R.N., Jones, J.: Pinteresce: exploring reminiscence as an incentive to digi-
tal reciprocity for older adults. In: Proceedings of the 18th ACM Conference Com-
panion on Computer Supported Cooperative Work, CSCW 2015 Companion, pp.
243–246. ACM, New York (2015)

5. Brunette, K., Eisenstadt, M., Pukinskis, E., Ryan, W.: Meeteetse: social well-being
through place attachment. In: CHI 2005 Extended Abstracts on Human Factors
in Computing Systems, pp. 2065–2069. ACM, New York (2005)

6. Burmeister, O.K.: What seniors value about online community. J. Commun.
Inform. 8(1) (2012)

7. Campos, W., Martinez, A., Sanchez, W., Estrada, H., Castro-Sánchez, N.A.,
Mujica, D.: A systematic review of proposals for the social integration of elderly
people using ambient intelligence and social networking sites. Cogn. Comput. 8(3),
529–542 (2016)

8. Chen, Y.: Usability analysis on online social networks for the elderly. Helsinki
University of Thechnology (2009)

9. Coelho, J., Duarte, C.: Socially networked or isolated? Differentiating older adults
and the role of tablets and television. In: Abascal, J., Barbosa, S., Fetter, M.,
Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9296,
pp. 129–146. Springer, Cham (2015). doi:10.1007/978-3-319-22701-6 10

10. Coelho, J., Duarte, C.: A literature survey on older adults’ use of social network
services and social applications. Comput. Hum. Behav. 58, 187–205 (2016)

www.lero.ie
https://goo.gl/fo4Thx
https://goo.gl/fo4Thx
http://dx.doi.org/10.1007/978-3-319-22701-6_10

494 B. Ahmad et al.

11. Coelho, J., Rito, F., Luz, N., Duarte, C.: Prototyping TV and tablet Facebook
interfaces for older adults. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T.,
Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9296, pp. 110–
128. Springer, Cham (2015). doi:10.1007/978-3-319-22701-6 9

12. Cornejo, R., Hernández, D., Favela, J., Tentori, M., Ochoa, S.: Persuading older
adults to socialize and exercise through ambient games. In: 2012 6th International
Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth)
and Workshops, pp. 215–218, May 2012

13. Cornejo, R., Favela, J., Tentori, M.: Ambient displays for integrating older adults
into social networking sites. In: Kolfschoten, G., Herrmann, T., Lukosch, S. (eds.)
CRIWG 2010. LNCS, vol. 6257, pp. 321–336. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15714-1 24

14. Cornejo, R., Tentori, M., Favela, J.: Ambient awareness to strengthen the family
social network of older adults. Comput. Support. Coop. Work (CSCW) 22(2),
309–344 (2013)

15. Cornejo, R., Tentori, M., Favela, J.: Enriching in-person encounters through social
media: A study on family connectedness for the elderly. Int. J. Hum. Comput.
Stud. 71(9), 889–899 (2013)

16. Czaja, S., Guerrier, J., Nair, S., Landauer, T.: Computer communication as an aid
to independence for older adults. Behav. Inf. Technol. 12(4), 197–207 (1993)

17. David, J.M., Benjamin, A., Baecker, R.M., Gromala, D., Birnholtz, J.: Living with
pain, staying in touch: exploring the communication needs of older adults with
chronic pain. In: CHI 2011 Extended Abstracts on Human Factors in Computing
Systems, CHI EA 2011, pp. 1219–1224. ACM, New York (2011)

18. Davis, H., Pedell, S.: Older adults’ use of a novel communication system: client
goals versus participant experiences. In: Proceedings of the Annual Meeting of the
Australian Special Interest Group for Computer Human Interaction, OzCHI 2015,
pp. 269–273. ACM, New York (2015)

19. Fang, W.C., Hsieh, M.C., Yang, P.C., Li, W.G., Chiu, C.J., Chiang, J.H.: iDianNao:
an orange technology that recommends volunteer opportunities to older adults. In:
2015 International Conference on Orange Technologies, pp. 38–41, December 2015

20. Garattini, C., Wherton, J., Prendergast, D.: Linking the lonely: an exploration of
a communication technology designed to support social interaction among older
adults. Univ. Access Inf. Soc. 11(2), 211–222 (2012)

21. Gibson, L., Moncur, W., Forbes, P., Arnott, J., Martin, C., Bhachu, A.S.: Designing
social networking sites for older adults. In: Proceedings of the 24th BCS Interac-
tion Specialist Group Conference, pp. 186–194. British Computer Society, Swinton
(2010)

22. Grosinger, J., Vetere, F., Fitzpatrick, G.: Agile life: addressing knowledge and social
motivations for active aging. In: Proceedings of the 24th Australian Computer-
Human Interaction Conference, pp. 162–165. ACM, New York (2012)

23. Haris, N., Majid, R.A., Abdullah, N., Osman, R.: The role of social media in
supporting elderly quality daily life. In: 2014 3rd International Conference on User
Science and Engineering (i-USEr), pp. 253–257, September 2014

24. Harley, D., Howland, K., Harris, E., Redlich, C.: Online communities for older
users: what can we learn from local community interactions to create social sites
that work for older people. In: Proceedings of the 28th International BCS Human
Computer Interaction Conference on HCI 2014, pp. 42–51. BCS, Swinton (2014)

25. Hope, A., Schwaba, T., Piper, A.M.: Understanding digital and material social
communications for older adults. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 3903–3912. ACM, New York (2014)

http://dx.doi.org/10.1007/978-3-319-22701-6_9
http://dx.doi.org/10.1007/978-3-642-15714-1_24
http://dx.doi.org/10.1007/978-3-642-15714-1_24

A Systematic Literature Review of Social Network Systems for Older Adults 495

26. Hsu, C.-L., Tseng, K.C., Tseng, C.-L., Liu, B.-C.: Design and development
a social networks platform for older people. In: Stephanidis, C. (ed.) UAHCI
2011. LNCS, vol. 6766, pp. 186–195. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21663-3 20

27. Karahasanović, A., Brandtzæg, P.B., Heim, J., Lüders, M., Vermeir, L., Pierson, J.,
Lievens, B., Vanattenhoven, J., Jans, G.: Co-creation and user-generated content-
elderly people’s user requirements. Comput. Hum. Behav. 25(3), 655–678 (2009)

28. Lee, Y., Huang, M.C., Zhang, X., Xu, W.: FridgeNet: a nutrition and social activity
promotion platform for aging populations. IEEE Intell. Syst. 30(4), 23–30 (2015)

29. Lehtinen, V., Näsänen, J., Sarvas, R.: “A little silly and empty-headed”: older
adults’ understandings of social networking sites. In: Proceedings of the 23rd
British HCI Group Annual Conference on People and Computers: Celebrating
People and Technology, pp. 45–54. British Computer Society, Swinton (2009)

30. Michailidou, E., Parmaxi, A., Zaphiris, P.: Culture effects in online social support
for older people: perceptions and experience. Univ. Access Inf. Soc. 14(2), 281–293
(2015)

31. Morris, M.E.: Social networks as health feedback displays. IEEE Internet Comput.
9(5), 29–37 (2005)

32. Muñoz, D., Cornejo, R., Gutierrez, F.J., Favela, J., Ochoa, S.F., Tentori, M.: A
social cloud-based tool to deal with time and media mismatch of intergenerational
family communication. Future Gener. Comput. Syst. 53, 140–151 (2015)

33. Naufal, R.: Addressing social isolation amongst older victorians: an evidence based
approach (2008)

34. Norval, C., Arnott, J.L., Hanson, V.L.: What’s on your mind?: Investigating rec-
ommendations for inclusive social networking and older adults. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp.
3923–3932. ACM, New York (2014)

35. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting
Requirements Right, 3rd edn. Addison-Wesley Professional, Upper Saddle River
(2012)

36. Rodŕıguez, M.D., Gonzalez, V.M., Favela, J., Santana, P.C.: Home-based commu-
nication system for older adults and their remote family. Comput. Hum. Behav.
25(3), 609–618 (2009)

37. Romero, N., Markopoulos, P., Baren, J., Ruyter, B., Ijsselsteijn, W., Farshchian,
B.: Connecting the family with awareness systems. Pers. Ubiquit. Comput. 11(4),
299–312 (2007)

38. Saltelli, A., Chan, K., Scott, E.M., et al.: Sensitivity Analysis, vol. 1. Wiley, New
York (2000)

39. Sayago, S., Santos, P., Gonzalez, M., Arenas, M., López, L.: Meeting educational
needs of the elderly in ICT: two exploratory case studies. Crossroads 14(2) (2007)

40. Shannon, S.: The New Agenda on Ageing - To Make Ireland the Best Country to
Grow Old In. College Green, Dublin (2012)

41. Sillanpää, N., Älli, S., Övermark, T.: Easy-to-use social network service for people
with cognitive or speech and language impairments (2009)

42. Tsai, T.H., Chang, H.T., Chang, Y.M., Huang, G.S.: Sharetouch: a system to
enrich social network experiences for the elderly. J. Syst. Softw. 85(6), 1363–1369
(2012)

43. Waycott, J., Vetere, F., Pedell, S., Kulik, L., Ozanne, E., Gruner, A., Downs, J.:
Older adults as digital content producers. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 39–48. ACM, New York
(2013)

http://dx.doi.org/10.1007/978-3-642-21663-3_20
http://dx.doi.org/10.1007/978-3-642-21663-3_20

496 B. Ahmad et al.

44. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
45. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-

cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2014, pp. 38:1–
38:10. ACM, New York (2014)

46. Xie, B., Watkins, I., Golbeck, J., Huang, M.: Understanding and changing older
adults’ perceptions and learning of social media. Educ. Gerontol. 38(4), 282–296
(2012)

Different Views on Project Success

When Communication Is Not the Same

Jil Klünder(B), Oliver Karras, Fabian Kortum, Mathias Casselt,
and Kurt Schneider

Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{jil.kluender,oliver.karras,fabian.kortum,
kurt.schneider}@inf.uni-hannover.de, m.casselt@stud.uni-hannover.de

Abstract. Software project success has various facets and definitions
ranging from customer satisfaction over software quality to the degree of
implemented vs. not implemented requirements. Customers, developers
and project leaders strive for project success. During the development
process, they try to pay attention to aspects which are perceived to be
important for a satisfying project execution from their individual point
of view. These aspects may vary according to the underlying definition
and understanding of project success. Different views on the importance
of aspects like communication can cause problems and complicate the
collaboration due to different expectations and misunderstandings.

In a study with 97 student participants and eight customers, we exam-
ine which factors are perceived to be important for a successful project
execution. In order to unfold discrepancies, we analyze whether the views
of customers and developers on the relevance of aspects like communica-
tion and fulfilling the requirements specification differ from each other.
According to our results, communication is most important for both the
team and the customer. But they have different ideas of the term: The
correct exchange of information between the team and the customer as
well as the team-internal communication.

In particular rather inexperienced developers and customers should
be aware of different ideas of terms like communication for a success-
ful project execution. It is not sufficient to know that communication is
important. Being aware of different ideas can facilitate the collaboration
and avoid problems due to misunderstandings.

Keywords: Human factors · Communication · Collaboration · Project
success · Student software projects

1 Introduction

The overall goal in software development is a successful project execution. There
are many different approaches to define project success [10]. A software project
may be successful, if the resulting software contains the desired features [5] or
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 497–507, 2017.
https://doi.org/10.1007/978-3-319-69926-4_39

498 J. Klünder et al.

if the software is of high quality [1]. Some approaches also deal with internal or
external influences during the process. Verner et al. [12] identify good require-
ments and their effective management as best criteria of project success. Accord-
ing to Hofmann and Lehner [4], requirements engineering practices also have a
strong influence on the result. Taking the stakeholders into account increases
customer satisfaction due to requirements fulfillment [4].

The underlying definition of success influences the project. Agile teams who
want to satisfy the customer may reveal a higher importance on the collabora-
tion with the customer than teams who primary want to fulfill the requirements
specification. Hence, different definitions of project success may lead to differ-
ent expectations from the team’s and the customer’s point of view. This can
complicate the collaboration between the team and the customer. Hoda et al. [3]
examine the so-called “Lack of Customer Involvement” as one of the biggest diffi-
culties in agile teams. An inadequate information exchange between the team and
the customer and this “Lack of Customer Involvement” may endanger project
success due to misinterpreted and badly communicated information [3]. In con-
trast, being aware of possible different understandings between the team and the
customer may smooth the way towards a successful project execution [3].

To reduce this problem of possibly mistaken issues related to project success,
we want to gain an overview of the different ideas from both the customers’ and
the developers’ point of view. We want to find answers for the following research
question:

RQ: Which factors are perceived to be most important for project completion from
the developers’ and the customers’ point of view?

To clarify and answer our research question from the developers’ point of
view, we conducted a study with 97 participants in twelve student software
projects at a university environment. The student participants resemble potential
newcomers in companies. Their opinion represents the views of new developers
in industry. The customers’ perspective is covered by the expectations from eight
customers from industry of the student projects. Both students and customers
filled in questionnaires at project’s end.

The main contribution of this paper is the insight that developers and cus-
tomers have different views on aspects like communication and fulfilling the
requirements specification as prerequisites for project success. Our results reflect
the importance of increasing the students’, i.e. newcomers’, awareness of differ-
ent understandings of an adequate information exchange during the process.
Communicating in software development teams is more than just team-internal
communication. Increasing the awareness may help to satisfy the customer. This
is very important for project success [4].

This paper is structured as follows: In Sect. 2, we consider related work.
Section 3 presents our study design with the methodology and the results related
to our research question. We interpret our results and present implications for
education and industry in Sect. 4 and conclude our work in Sect. 5.

Different Views on Project Success 499

2 Related Work

Different factors influencing and defining project success, in particular the col-
laboration between the customer and the team, have already been addressed by
some researchers.

Philippo et al. [8] analyze the relevance of requirement ambiguity as a fac-
tor for project success. Based on empirical data, they investigate the relation
between these two aspects. According to their results, there does not exist a
correlation between requirements ambiguity and project success. The ambiguity
does not increase the number of defects during the test phase. They validated
their results by conducting an interview study with experts. These interviews
resulted in a framework outlining factors which have an influence on requirement-
ambiguity risk by increasing or mitigating it [8].

Surian et al. [11] analyze socio-technical aspects of successful and failed
projects to predict the outcome using machine learning techniques. They focus
on the interactions and the collaboration between the involved team members by
considering a so-called “collaboration graph” [11]. For instance, they consider the
number of already finished successful software projects of a team member and
the time the person is part of the team. Using machine learning, they find pat-
terns apparently appearing in successful projects. In contrast to our approach,
Surian et al. [11] focus on rather technical measures which can be quantified.

Keil and Carmel [6] emphasize the relevance of customers or end users for
new products or improvements. In their contribution, they present several pos-
sibilities to link the customer and the developers. The “customer-developer
links” describe various ways of information exchange between customers and
the development team. Resulting from the experiences from 17 companies with
31 projects, they determine three lessons for the collaboration between team and
customer. First, the number of used links increases the value of each link only
up to a specific point [6]. Second, the authors propose to “reduce the reliance
on indirect links” [6, p. 39]. Third, they recommend also to consider new links,
i.e. links which are not traditionally used in the company [6].

Hofmann and Lehner [4] focus on requirements engineering as one determin-
ing factor for project success in software projects. The authors state deficient
requirements as the biggest cause of project failure. Hofmann and Lehner [4]
analyze the importance of different practices in requirements engineering for
project success. They perform a study with 15 requirements engineering teams
focusing on team-internal aspects, but they do not analyze particularly the rele-
vance of the collaboration between the team and the customer for project success.
Nonetheless, they state that the teams often struggle with “adequately involving
customers to identify high-priority requirements” [4, p. 63].

Hoda et al. [3] analyze customer collaboration in agile teams. They increase
the awareness of the importance of an adequate customer collaboration by out-
lining the impact of an inadequate amount of customer involvement. According
to Hoda et al. [3], the “Lack of Customer Involvement” is one of the biggest
difficulties in agile teams. They outline consequences of this lack such as prob-
lems in gathering and clarifying requirements and loss of productivity. In our

500 J. Klünder et al.

contribution, we focus on the problem of missing mutual understanding between
the customer and the team which is not addressed by Hoda et al. [3].

Agarwal and Rathod [1] present developers’, project managers’ and customer
account managers’ views on project success based on an exploratory study. For
the participants, it is most important to fulfill the scope of software projects
including functionality and quality. For external stakeholders, target cost and
time are important. In the end, the criteria for project success of both groups
do not match [1]. Meanwhile Agarwal and Rathod [1] mostly consider “hard”
factors and concrete criteria, we focus on the way to achieve them.

3 Study

This paper is based on an empirical study which was conducted at Leibniz
Universität Hannover using student software projects.

3.1 Student Software Projects

The Software Engineering Group at Leibniz Universität Hannover yearly offers
a course called Software-Project (SWP). The students have to attend in this
course before finishing their bachelor studies. Most of them are in the third year
of their computer science studies.

In the winter term 2016/2017, 97 students participated in the SWP. They
formed 12 teams with seven to ten team members. Within the duration of
15 weeks, each team developed a software for one of the eight customers. Most of
the customers have been externals for example from the Police Department for
Cyber Criminal Affairs in Hannover, a sports club, the medical school in Han-
nover, and industrial environments. They had a real interest in the project being
successful, particularly because the final products should be applied in existing
real life projects or applications and used for a long time. To avoid problems
and to facilitate teamwork, each team was supported by a tutor who helped in
the case of organizational questions. But the tutor was not allowed to help the
team with task-related conflicts.

The software projects followed the waterfall model but also contained some
agile artifacts [7]. The projects had a rather strict timetable with an obligatory
weekly meeting. Based on the concept of the on-site customer, the students
and the customers met once a week to discuss project process and the current
development state. Each of these meetings contained a weekly Scrum: Each
member reported about the progress since the last meeting, the plans until the
next meeting and problems.

The development was divided into four main phases visualized in Fig. 1:
requirements analysis, two iteration phases, and polishing. The first phase was
about clarifying the customer’s requirements and ended in writing a requirements
specification, which was adjusted and granted by the customer. The two follow-
ing phases were the main development iterations for implementing the basic

Different Views on Project Success 501

Fig. 1. Process of the observed student software projects (Color figure online)

functionalities. During the polishing phase, the participants had the opportu-
nity to implement last change requests of the customer as well as to improve the
product’s quality or using the time for fixing bugs. The project ended with an
acceptance test carried out by the customers.

3.2 Study Design

The survey took place right after project completion (see also Fig. 1; the dark
blue dot represents the time slot of the data collection). The survey has been
answered during the weekly meeting of developers and customers and was con-
ducted with a paper-pencil-questionnaire. Due to absence, 94 of 97 students
(97%) and 7 out of 8 customers (87,5%) participated in the survey.

The structure of the survey was adjusted for developers and customers. The
survey consisted of simple checkbox questions and tasks to prioritize prescribed
answers to guarantee a certain amount of easily set up data. Some questions
were also designed to encourage the interviewed person to provide preferably
individually formulated answers for instance with open questions. This allows
receiving new opinions and views. Hence, these kinds of questions were valuable,
but the results required some sort of processing. In this case, manual clustering
[2] was used to extract recurring and hence important factors from the large
gained data set of raw answers.

The objective of the survey was to determine the opinions and views regard-
ing the perceived relevance of different factors for a successful completion of
software projects. Hence, it contained questions about factors leading to or affect-
ing project success. In this paper, we investigate the most important factors of
project success from both points of view in order to compare them.

The survey was conducted anonymously. The aim was to receive better results
in terms of more reliable answers, particularly with critical statements. A trans-
parent answering might have led to biased answers. But due to an individual
identifier, it was possible to provide both anonymity and the ability to analyze
the course of answers.

502 J. Klünder et al.

3.3 Ethics Committee

The ethics committee at Leibniz Universität Hannover authorized the data col-
lection. We informed the students about the further usage of the collected data.
We anonymized all data records before collecting them. The data did not influ-
ence the success of the students passing the course.

3.4 Results

The following results focus on the most important requisites for software project
success.

Both the developers and the customers state that the student projects
are ordinary completed according to the customer requirements. Only one of
the projects was not successful from the customer’s perspective and 7.9% of
the developers have not been fully satisfied with the results. The information
exchange between developers and customers was considered as good (80.6%
developers, 91.7% customers).

More than half of the developers (52.3%) stated that the fulfillment of previ-
ously agreed requirements (in this case in a requirements specification) is suffi-
cient for a successful project completion. Other students stated that the following
aspects are more important: customer satisfaction (20.4%), flexibility and moti-
vation of the developers (17.2%) as well as teamwork (5.4%) and usability of the
software (3.2%).

40% of the customers did not consider the fulfillment of requirements as the
most important and sufficient aspect. For these customers, it was more important
that the developers accept change requests and react on those. Some customers
clarified that a product which simply fulfills the requirements is not valuable if
the customer’s views and ideas changed during the process but have not been
included.

Table 1. Most important aspects for project success from the customers’ point of view.

Aspect Mentioned by

1. Communication 5 out of 7

2. Time management 5 out of 7

3. Preparation for customer meetings 3 out of 7

4. Programming skills of developers 3 out of 7

5. Suitable prioritization of requirements 3 out of 7

The participants were also asked to state the most important factors for
project success according to their perception. The five factors that are perceived
to be most important for both customers and developers are shown in Tables 1
and 2. It should be highlighted that from the developers’ point of view the four

Different Views on Project Success 503

Table 2. Most important aspects for project success from the developers’ point of
view.

Aspect Mentioned by

1. Team-internal communication and collaboration 50 out of 94

2. Distribution of tasks in the team 26 out of 94

3. Motivation and mood 22 out of 94

4. Expertise 18 out of 94

5. Communication and collaboration with the customer 18 out of 94

most important aspects were team-internal ones. Unlike from the view of the
customers, where the most frequent aspect besides time management (71%) was
the communication between customers and developers (71%). In contrast, the
latter was only the fifth most important aspect of the developers with 19.15%
valuing the communication with the customer as important for project success.
But nonetheless, both the developers and the customers revealed communication
as the factor perceived to be most important for project success. They only con-
sider different kinds of communication: the team-internal information exchange
and the information exchange between the team and the customer.

3.5 Study Limitations and Threats to Validity

Due to the limitations of our academical environment with respect to the real
world, there are some aspects which may threaten the validity of our results. In
accordance with the classifications of threats to validity by Wohlin et al. [13],
we consider construct, internal, conclusion and external validity.

Construct validity. The results of this contribution are based on a wider sur-
vey. Although we do not expect any reciprocal effects with the other questions
and items, we are not able to eliminate this problem. Nonetheless, the questions
are formulated in a very general manner and arranged in groups to reduce this
threat.

Internal validity. Any results and newly obtained knowledge are based on the
opinions of the interviewed persons. Hence, the results are subjective and make
no claim for completeness.

Conclusion validity. Using a survey as empirical strategy leads to the problem
of limited possibilities for the validation of the survey results. For instance, it is
not possible to verify the honesty in an answer. Our students had neither advan-
tages nor disadvantages by participating in the study. The students were free to
deny the participation in our study without any consequences. But nonetheless,
there may be incorrectly given answers due to mistaken issues or items which
can lead to wrong results.

External validity. Due to the student subjects, we do not have a representative
sample of developers. But we have a set of subjects representing potential new-

504 J. Klünder et al.

comers in industry. Furthermore, we only considered student software projects
with comparable project scopes. Hence, we are not able to generalize our results
for projects in real world environment. Real-world customers and experienced
developers may answer our questions differently.

4 Interpretation

Our study with 97 students, i.e. developers, and eight customers supported our
impressions of differences in the idea of which aspects are important for project
success from both points of view.

From the customers’ point of view, a continuous exchange of information
between the customer and the team during the project is the most important
aspect to guarantee project success. This includes a close cooperation with a
regular exchange about the current development state. Therefore, according to
the customers’ point of view, it is essential that the developers are flexible and
yield a high amount of motivation, which also means to develop own ideas and
suggestions. Software should not only be developed for the customer but rather
together with the customer. Mostly at the start of software projects, the major-
ity of all involved parties is not completely sure about aspects like structure,
look, and behavior of the final product. Hence, it is important to take customer
wishes and altered requirements into account, especially outside the predefined
specification. The customers clarified that software cannot be used when the
implemented requirements do not fit the customer expectations, which may have
changed during the project process.

According to our results, more than half of the student developers and the
customers think that fulfilling the requirements specification suffices for project
success. The others state that it helps to satisfy the customer, but it is not
a sufficient criterion. Only a few interviewed customers stated that a success-
ful project can be defined by only having a high degree of fulfilled pre-agreed
requirements. In fact, an inflexible focus of the developers on unique discussed
requirements counteracts a successful project closure and may be harmful to the
success of the project in general. The students attach a greater importance to
the requirements specification than the customers. From the developers’ point
of view, the specification contains all customer requirements. They consider the
specification rather as a document of unlimited validity than as a document in
time. For the developers, it is much easier to fulfill the written requirements
than to react on more or less spontaneous change requests like in agile software
development.

Our examination of factors with a large perceived relevance for project suc-
cess revealed a wide difference between the customers’ and rather inexperienced
developers’ point of view. On first sight, communication is the most important
factor from both points of view. But on the second sight, there are differences
in the meaning of “communication”. For the customers, information exchange
between customer and team is the most important aspect. But for the team, the
team-internal communication exchange is most important.

Different Views on Project Success 505

This gap can complicate the collaboration between team and customer – in
particular for inexperienced development teams mostly consisting of newcomers
who are not aware of the problem. Not knowing about the other side may lead
to misunderstandings and misinterpretation which in turn lead to dissatisfaction
on both sides. The customer has to know about the relevance of team-internal
issues. Otherwise, he might be dissatisfied with the collaboration. And the team
needs to know about the relevance of a continuous information exchange between
the team and the customer.

Summarizing, we can answer our research question as follows:

Research Answer:

– For the customers, communication, time management, the preparation of
customer meetings, programming skills and a suitable prioritization for
requirements are the five most important factors. For developers, team-
internal communication and collaboration, the distribution of tasks, moti-
vation, mood, expertise and communication and collaboration with the
customer are the five most important factors.

– For both, communication is very important for project success – but dif-
ferent kinds of communication. For the customers, communicating with
the team is the most important factor for project success. But for the
team, it is the team-internal communication which is most important.

– Fulfilling the requirements specification is less important for the cus-
tomers than implementing changed or new requirements. For the devel-
opers, fulfilling the previously agreed requirements is very important and
may be considered as a mandatory criterion.

4.1 Implications for Education

Our study revealed different views on aspects like communication or the require-
ments specification from the customers and the rather inexperienced student
developers. This is a difficulty, the university teaching should deal with.

In particular, the value of the requirements specification should be trans-
ported to the students in order to avoid the students strictly following the speci-
fication without reacting on the customer’s change requests. This big issue should
be faced in academical lectures. Students and newcomers need to be aware of
the importance of also fulfilling change requests which are not covered by the
specification in order to satisfy the customer.

Within the context of the student software projects, developers perceived
major changes in the requirements along the project process as disruptive – what
led to complications. Otherwise, this freedom in terms of describing wishes and
requirements was very appreciated by the customers. It is recommended to find a
good balance to which extent additional requirements are compatible. Nonethe-
less, the students need to know that they have to fulfill change requests if desired
by the customer – independently from the effort needed to implement them.

506 J. Klünder et al.

According to our experience, a weekly meeting with the customer in student
software projects is a good approach to ensure an adequate exchange of infor-
mation. In addition, it increases the students’ awareness of the importance of
change requests and their relevance for a successful project closure.

4.2 Implications for Industry

Irrespective of whether academical lectures deal with the aforementioned prob-
lems, the responsible persons in industry should also be aware of them in order
to facilitate a newcomer’s start in real software projects and to avoid difficulties.

To increase the awareness of the importance of customer collaboration, a
newcomer may be integrated into the whole exchange with the customer. It is
important that the newcomer does not only know about the in-house develop-
ment process but also to look at the process beyond their own noses. Getting to
know the extent of customer involvement also increases the newcomer’s respect of
the customer. A wrong assessment of change requests can endanger the project.

Polanyi [9] classifies knowledge as tacit, i.e. implicit, and explicit. According
to the definition, most people are not able to verbalize their tacit knowledge.
But most of a person’s knowledge is tacit. It cannot be directly transported to
other persons because it is hardly or even impossibly tangible. Observing people
can help to gain parts of the tacit knowledge. Hence, working with experienced
persons is very important and helpful for newcomers. It helps to gain (tacit)
knowledge about the “right” amount of interaction with the customer, the team
work and the importance of aspects during the whole process. It is highly rec-
ommended to enable team members to learn from the experiences from other
team members. Therefore, having teams with mixed experiences and knowledge
is better than having a team only consisting of newcomers.

5 Conclusion

There are mainly two involved parties in small software projects: the develop-
ment team and the customer: the team having the ability to influence project
success, and the customer deciding in the end whether he is satisfied with the
remaining product or not.

In a study with 97 student developers and eight customers, we examined the
factors which are perceived to be most important for project success from their
points of view. Our results show that there are differences in the prioritization
of these aspects.

For both the teams and the customers, communication is very important for
project success. But the term “communication” has different meanings. For the
customer, a regular information exchange with the team is mandatory and the
most important factor for project success. But for the developers, factors such
as team-internal communication and collaboration as well as the distribution of
tasks in the team are most important to enable project success. The collaboration
and communication with the customer are less important.

Different Views on Project Success 507

While the requirements specification is only a document in time and has not
unlimited validity from the customers’ point of view, the students state that
fulfilling the requirements in the specification ensures project success.

These differences in the prioritization can complicate the collaboration
between both parties due to a missing mutual understanding. Increasing the
awareness on both sides, in particular for newcomers, is very important. A
mutual understanding of the term “communication” from both sides can facili-
tate collaboration and smooth the way to a successful project execution.

Acknowledgment. This work was funded by the German Research Foundation
(DFG) under grant number 263807701 (Project TeamFLOW, 2015–2017).

References

1. Agarwal, N., Rathod, U.: Defining “Success” for software projects: an exploratory
revelation. Int. J. Proj. Manag. 24(4), 358–370 (2006)

2. Forza, C.: Survey research in operations management: a process-based perspective.
Int. J. Oper. Prod. Manag. 22(2), 152–194 (2002)

3. Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer collaboration
on self-organizing agile teams. Inf. Softw. Technol. 53(5), 521–534 (2011)

4. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in soft-
ware projects. IEEE Softw. 18(4), 58 (2001)

5. Karras, O., Klünder, J., Schneider, K.: Indicating potential risks for project success
based on requirements fulfillment - analyzing requirements compliance in student
software projects. In: Gesellschaft fr Informatik, Fachgruppentreffen Requirements
Engineering, Stuttgart (2016)

6. Keil, M., Carmel, E.: Customer-developer links in software development. Commun.
ACM 38(5), 33–44 (1995)

7. Klünder, J., Unger-Windeler, C., Kortum, F., Schneider, K.: Team meetings and
their relevance for the software development process over time. In: Proceedings of
43th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) (2017)

8. Philippo, E.J., Heijstek, W., Kruiswijk, B., Chaudron, M.R.V., Berry, D.M.:
Requirement ambiguity not as important as expected—results of an empirical eval-
uation. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 65–79.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37422-7 5

9. Polanyi, M.: The Tacit Dimension. University of Chicago Press, Chicago (2009)
10. Savolainen, P., Ahonen, J.J., Richardson, I.: Software development project success

and failure from the supplier’s perspective: a systematic literature review. Int. J.
Proj. Manag. 30(4), 458–469 (2012)

11. Surian, D., Tian, Y., Lo, D., Cheng, H., Lim, E.P.: Predicting project outcome
leveraging socio-technical network patterns. In: Proceedings of the 17th European
Conference on Software Maintenance and Reengineering (CSMR). pp. 47–56. IEEE
(2013)

12. Verner, J., Cox, K., Bleistein, S., Cerpa, N.: Requirements engineering and software
project success: an industrial survey In Australia and the US. Australas. J. Inf.
Syst. 13(1), 225–238 (2005)

13. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29044-2

http://dx.doi.org/10.1007/978-3-642-37422-7_5
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

Workshop: QuASD 2017

1st QuASD Workshop: Managing Quality
in Agile and Rapid Software Development

Processes

Claudia Ayala1 , Silverio Martínez-Fernández2(&) ,
and Pilar Rodríguez3

1 GESSI Group, Universitat Politècnica de Catalunya (UPC) - BarcelonaTech,
Barcelona, Spain

cayala@essi.upc.edu
2 Fraunhofer Institute for Experimental Software Engineering (IESE),

Kaiserslautern, Germany
Silverio.Martinez@iese.fraunhofer.de

3 M3S Group, University of Oulu, Oulu, Finland
pilar.rodriguez@oulu.fi

Abstract. Optimal management of software quality calls for appropriate inte-
gration of quality management activities into the whole software (engineering)
life-cycle. However, despite the competitive advantage of ensuring and main-
taining high quality levels, software development methodologies still offer little
support for the integration and management of quality. This is especially true
for, and essential in, agile software development processes and the recent trends
towards rapid and continuous software development. The premise is that faster
and more frequent release cycles should not compromise quality. This workshop
aims to exchange challenges, experiences, and solutions among researchers and
practitioners to bring agile and rapid software processes a step further towards
seamless integration of quality management activities into their practices.

Keywords: Quality � Agile software development � Rapid and continuous
software development

1 Introduction

Welcome to the First International Workshop on Managing Quality in Agile and Rapid
Software Development Processes (QuASD).

The QuASD workshop aims at investigating the current challenges that companies
using agile software development and rapid release cycles face when integrating quality
management activities into their practices. The objective of the workshop is to
exchange experiences and solutions to bring agile and rapid software development
processes a step further towards seamless integration of quality management activities
into their practices. To strengthen this objective, QuASD 2017 has been held in the
context of one of the top-recognized software development and process improvement

C. Ayala, S. Martínez-Fernández and P. Rodríguez—Program Committee Chairs.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 511–514, 2017.
https://doi.org/10.1007/978-3-319-69926-4_40

http://orcid.org/0000-0002-6262-3698
http://orcid.org/0000-0001-9928-133X
http://orcid.org/0000-0002-0618-6104

conferences: the International Conference on Product-Focused Software Process
Improvement (PROFES 2017) on November 29, 2017, in Innsbruck, Austria.

2 Keynote: Agile and Rapid Software Development at Nokia
Base Station R&D

The keynote focuses on the changes and adaptations of agile software development
processes to deal with quality requirements at Nokia. Nokia is a global leader in
technologies that connect people and things. It combines global leadership in mobile
and fixed network infrastructure with software, services, and advanced technologies to
transform how smart devices and sensors tap the power of connectivity. With
state-of-the-art software, hardware, and services for any type of network, Nokia is
uniquely positioned to help communication service providers, governments, and large
enterprises deliver on the promise of 5G, the Cloud, and the Internet of Things.

In this context, Merja Jokiniva (5G R&D Release Manager) shares her experience
on leading content and schedule planning as well as progress follow-up of Base Sta-
tion SW deliveries.

Merja Jokiniva has worked almost 20 years at Nokia Base Station R&D in various
roles in Finland and in the USA. Her most recent role is 5G R&D Release Manager
where she started at the end of 2016. As R&D Release Manager she leads content and
schedule planning as well as progress follow up of Base Station SW deliveries. Before
the current role, she worked seven years as a line manager of 4G R&D Program
Management team and as a 4G R&D Release Manager. Earlier she has worked in
Program, Product and Quality Management. Before joining Nokia, she worked for the
University of Oulu several years. There her last tasks were in area of program man-
agement by teaching the graduate students and by consulting local companies in
program management practices.

3 Accepted Papers

We received a total of eleven contributions in different categories (technical papers,
experience reports, emergent research, vision papers, and practitioner messages). These
contributions were peer reviewed by three members of the Program Committee,
composed of prominent researchers from the community and practitioners. After a
tough revision process, eight high-quality works addressing issues on quality in agile
software development from different perspectives were accepted. The effort and ded-
ication of the Program Committee and the additional reviewers who collaborated in the
revision process were outstanding and deserve recognition (see Sect. 4).

The accepted papers composing the QuASD workshop program are:

• 3 technical papers (12 pages long) describing beyond-state-of-the-art methods,
tools, or techniques in support of the management of quality in agile and rapid
software development and continuous software development contexts:
– Marcus Ciolkowski, Liliana Guzmán, Adam Trendowicz and Felix Salfner:

“Lessons Learned from a research project on the strategical planning of
Technical Debt”.

512 C. Ayala et al.

– Michael Mohan and Des Greer: “MultiRefactor: Automated Refactoring To
Improve Software Quality”.

– Mohammad Abdur Razzak, Sarah Beecham, John Noll and Ita Richardson:
“Transition from Plan Driven to SAFe: Periodic Team Self-Assessment”.

• 4 emergent research papers (8 pages long) describing research endeavors that
have just started. These works present preliminary findings without full-fledged
validation:
– Woubshet Behutiye, Pertti Karhapää, Dolors Costal, Markku Oivo and Xavier

Franch: “Non-functional Requirements Documentation in Agile Software
Development: Challenges and Solution Proposal”.

– Frank Elberzhager, Konstantin Holl, Britta Karn and Thomas Immich: “Rapid
Lean UX Development through User Feedback Revelation”.

– Lidia Lopez Cuesta, Woubshet Behutiye, Pertti Karhapää, Jolita Ralyté, Xavier
Franch and Markku Oivo: “Agile Quality Requirements Management Best
Practices Portfolio: A Situational Method Engineering Approach”.

– Sven Theobald and Philipp Diebold: “Beneficial and Harmful Agile Practices
for Product Quality”.

• 1 practitioner message (4 pages long) that reports on the practitioners’ perspective
of managing quality in agile and rapid software development:
– Michael Klaes and Frank Elberzhager: “Managing Development Using Active

Data Collection”.

4 Program Committee

The program committee was composed of prominent researchers from several uni-
versities and the industrial sector.

Sanja Aaramaa Nokia, Finland
Jan Bosch Chalmers University of Technology, Sweden
Javier Criado University of Almeria, Spain
Xavier Franch Technical University of Catalunya, Spain
Matthias Galster University of Canterbury, New Zealand
Juan Garbajosa Technical University of Madrid, Spain
Lidia López Technical University of Catalunya, Spain
Michael Mlynarski QualityMinds GmbH, Germany
Elisa Nakagawa University of Sao Paulo, Brazil
Anh Nguyen Duc Norwegian University of Science and Technology, Norway
Markku Oivo University of Oulu, Finland
Marc Oriol Hilari Technical University of Catalunya, Spain
Paulo Sérgio Santos Federal University of Rio de Janeiro, Brazil
Dan Tofan UberResearch (Digital Science), Romania
Guilherme Travassos Federal University sof Rio de Janeiro, Brazil
Anna Maria Vollmer Fraunhofer IESE, Germany
Agustin Yague Technical University of Madrid, Spain

1st QuASD Workshop 513

5 Activities

The workshop has been structured to promote discussions and interchange of ideas
among participants from both industry and academia sectors.

The keynote will open the workshop activities and is expected to shake the audi-
ence. It will be followed by presentations of the accepted papers in various sessions. In
the last session, we will organize an open brainstorming space through a wall of ideas,
where the participants will post their key messages on particular topics, followed by a
plenary discussion on the hottest emerging topics.

All these activities are aimed to:

• Scope the current state of quality management in agile and rapid software devel-
opment in both research and practice.

• Compile success and failure experiences.
• Produce a research agenda.
• Establish a community to foster long-term collaboration on this emerging topic.

We hope that the workshop participants will enjoy the topics presented here and
perhaps find the inspiration to push the field a step further, or open the door for new
collaborations.

Finally, we would like to acknowledge all the people who have enabled the
organization of QuASD 2017: the authors, who submitted their papers; the Program
Committee members, who made possible the conference program; Nokia for being
willing to give the keynote and share their experiences on managing quality and quality
requirements in the context of agile and rapid software development; and the orga-
nizing committee members, who handled all the complexity of arranging an event such
as PROFES 2017 and the associated workshops.

514 C. Ayala et al.

Non-functional Requirements Documentation in Agile
Software Development: Challenges and Solution Proposal

Woubshet Behutiye1(✉) , Pertti Karhapää1 , Dolors Costal2 , Markku Oivo1 ,
and Xavier Franch2

1 University of Oulu, Pentti Kaiteran Katu 1, 90014 Oulu, Finland
{woubshet.behutiye,Pertti.karhapaa,markku.oivo}@oulu.fi

2 Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain
{dolors,franch}@essi.upc.edu

Abstract. Non-functional requirements (NFRs) are determinant for the success
of software projects. However, they are characterized as hard to define, and in
agile software development (ASD), are often given less priority and usually not
documented. In this paper, we present the findings of the documentation practices
and challenges of NFRs in companies utilizing ASD and propose guidelines for
enhancing NFRs documentation in ASD. We interviewed practitioners from four
companies and identified that epics, features, user stories, acceptance criteria,
Definition of Done (DoD), product and sprint backlogs are used for documenting
NFRs. Wikis, word documents, mockups and spreadsheets are also used for
documenting NFRs. In smaller companies, NFRs are communicated through
white board and flip chart discussions and developers’ tacit knowledge is priori‐
tized over documentation. However, loss of traceability of NFRs, the difficulty
in comprehending NFRs by new developers joining the team and limitations of
documentation practices for NFRs are challenges in ASD. In this regard, we
propose guidelines for documenting NFRs in ASD. The proposed guidelines
consider the diversity of the NFRs to document and suggest different represen‐
tation artefacts depending on the NFRs scope and level of detail. The represen‐
tation artefacts suggested are among those currently used in ASD in order not to
introduce new specific ones that might hamper actual adoption by practitioners.

Keywords: Non-functional requirements · Quality requirements · NFR · Agile
software development · Non-functional requirements documentation

1 Introduction

Non-functional requirements (NFRs) also referred to as quality requirements [21],
represent software requirements that describe how software should perform [5]. These,
for instance include software requirements about performance, usability, maintaina‐
bility, reliability, and security. NFRs are characterized as vague and hard to define [17]
and quite often result in being under/un-specified and undocumented. In particular, this
is reflected in agile software development (ASD) where working software is prioritized
over comprehensive documentation [2].

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 515–522, 2017.
https://doi.org/10.1007/978-3-319-69926-4_41

http://orcid.org/0000-0002-9015-9941
http://orcid.org/0000-0003-1233-772X
http://orcid.org/0000-0002-7340-0414
http://orcid.org/0000-0002-1698-2323
http://orcid.org/0000-0001-9733-8830

ASD’s focus on “individuals and interaction over processes and tools” encourages
minimal documentation [2]. ASD relies on tacit knowledge of the team and leans
towards reducing the focus on requirements specification and documentation. Addi‐
tionally, ASD is characterized with short iterations and it focuses on the quick delivery
of working software. In such cases, developers face time pressure, mainly focus on
delivery of functionalities and often do not give consideration to NFRs [6]. However,
in such scenarios, neglecting NFRs may result in documentation debt with further
consequences of increase in maintenance cost and effort [16].

NFRs play important role in the success of software systems [5, 9]. In ASD, existing
requirements engineering practices fail short regarding the documentation of NFRs. For
instance, user stories of ASD have limitations in specifying and documenting NFRs [15].
When NFRs are not documented, traceability becomes difficult, the likelihood of forget‐
ting NFRs increases and consequences such as weak user acceptance may also result [7].

The findings from the scientific literature acknowledge the significance of handling
NFRs in ASD [3, 8, 15]. The challenges of NFRs documentation in ASD, the limitations
of ASD for handling NFRs, solution proposals for handling NFRs in ASD and the need
for further investigation of the topic are reported frequently.

In this paper, we present the challenges of NFRs documentation in ASD and NFRs
documentation practices identified from scientific literature and an ongoing empirical
study in the Q-Rapids project1 [10], about managing NFRs in ASD. We also present
guidelines for addressing challenges of NFRs documentation in ASD.

The rest of the paper is structured as follows. Section 2 describes the related work
on challenges of documentation of NFRs and current ASD practices for documenting
NFRs. Section 3 presents analysis of NFRs documentation practices and challenges
identified from the ongoing empirical study about management of NFRs in ASD.
Section 4 presents guidelines proposal for addressing documentation of NFRs in ASD.
Finally, Sect. 5 presents the conclusion.

2 Related Work

2.1 Non-functional Requirements Documentation Challenges and Practices
in Agile Software Development

Research in the documentation and optimal integration of NFRs in ASD has paramount
importance considering the vague nature of NFRs [17] and limitations in documentation
practices of ASD [15]. Consequently there have been many studies investigating the
topic area [8, 14, 15, 20]. In what follows, we present some challenges of NFRs manage‐
ment and current practices for documenting NFRs in ASD.

ASD puts less emphasis on the documentation of NFRs. Instead, its reliance on the
continuous interaction with customers is thought to minimize the need for specifying
NFRs [20]. In ASD, NFRs are ill defined and rarely documented, and there are no formal
acceptance tests for NFRs. As a result, problems arise at later stages of development [14].

1 http://q-rapids.eu/.

516 W. Behutiye et al.

http://q-rapids.eu/

The negligence of NFRs appears to be a major concern of many agile projects and
is reported frequently [4, 14, 17]. For instance, Cao and Ramesh [4] identified the neglect
of NFRs and minimal documentation as major challenges of agile requirements engi‐
neering in an empirical investigation of 16 software development organizations.
According to their findings, NFRs are given less priority in the early stage of ASD as
customers instead prioritize core functionality. Consequently, minimal documentation
and negligence of NFRs in ASD result in challenges of scalability of the software, and
introduce difficulty for new members joining the development team.

Failure to consider NFRs in the early stages of software development may result in
poor quality software, increased maintenance costs and time [5]. Indeed, when NFRs
are omitted in the early stages of development, they result in major issues at later stages.
ASD methods face challenges in addressing specific NFRs such as security [1]. For
instance, Scrum’s lack of consideration for integrating security (NFRs) in the develop‐
ment process opens vulnerability to the software [1]. Absence of documentation for
security, limited amount of time for testing security in sprints, and difficulty for inte‐
grating security related activities are major security issues in Scrum.

ASD mainly utilizes index cards, paper prototypes and storyboards to document
features and requirements [14]. Practices such as user stories are used for documenting
high level requirements [4]. However, they have limitations for specifying and docu‐
menting NFRs [11, 12, 15]. Martakis et al. [15], found that agile developers face chal‐
lenges while using user stories for documenting NFRs such as security and internation‐
alization.

Consequently, there have been proposals for integrating, planning and managing
NFRs in ASD (e.g. AFFINE framework, NORMAP, NORPLAN, security backlog for
Scrum etc.) [3, 8, 15]. Lightweight practices and systematic solutions that integrate
NFRs in ASD without compromising quality of software and agility of the development
process are of high importance.

3 Non-functional Requirements Documentation Practices
and Challenges in ASD Projects

We conducted case studies following [19], in four case companies that are part of the Q-
Rapids project, in order to synthesize knowledge regarding management of NFRs in ASD.
We collected data through semi-structured interviews and applied qualitative analysis on the
transcriptions of the interviews. The four case companies providing the use cases (UCs) for
the project are of varying size and domain. The first company has over 900 employees
while the second has over 600 employees. The third is large scale global company with
over 100,000 employees while the fourth has less than 100 employees. We conducted 12
interviews, with roles that include product owners, project managers, developers and
quality assurance engineers, DevOps Specialist, and Scrum masters.

Agile practices and iterative development are applied in all the UCs, of which three
are close to Scrum. In UC1, the company follows in-house tailored agile and iterative
development. However, they do not have any fixed sprint cycles. In comparison, the
development applied in UC2 and UC4 is the closest to Scrum with daily sprints and

NFRs Documentation in ASD: Challenges and Solution Proposal 517

weekly, or biweekly sprints. In UC3, which is the large-scale company, Scrum, or
variations of it, is applied in some of the development teams at lower levels of the
organization. In UC3, a team can apply any development model they see fit. Continuous
integration is applied in all the UCs.

The interview findings reveal that the companies employ varying practices for docu‐
menting both functional requirements (FRs) and NFRs. UC1 prefers to focus effort on
development and documents requirements in detail only when implementing features
that the developers are unfamiliar with. NFRs are communicated through whiteboards
during meetings. On the other hand, UC2 and UC3 document both FRs and NFRs. Partly
this is enforced through standards that the companies must comply with. In UC2 require‐
ments are documented in epics, features, and user stories, and NFRs are also in the
acceptance criteria and Definition of Done (DoD). Additionally, word documents,
PowerPoints and wikis are used for documentation during the development. Along the
process, the documentation in the wikis becomes more of a technical description of the
software and the connection to the original high level requirements is lost. The inter‐
viewees suggested including more design documentation in the user stories to preserve
this link. Using Word and PowerPoint for documentation is perceived challenging, as
these documents become easily detached from the actual software. This is due to the
fact that it is easy to forget updating a certain document with every change to the code.

In the case of UC3, which is a large and distributed organization, documentation is
important as there are teams in different locations that may be working on the same
feature. There is complex backlog structure and all the requirements are also documented
in features that are broken down into sub features and further into tasks that can be coded.
Additionally, NFRs are documented in DoD and acceptance criteria. At the lower task
level, however, there are no NFRs in the backlog as such, but the tasks need to meet the
DoD including quality criteria. In UC3, documentation of NFRs is identified as prob‐
lematic. Our interviewees find the requirements management tool under use and
complexity of backlogs difficult and stated that they are not able to identify dependent
NFRs. Additionally, internally inherited NFRs such as operability are rarely documented
and prioritized. UC4 documents all the requirements (FRs and NFRs) in the epics and
user stories. DoD and acceptance criteria (at user story, task and ticket levels) are used
for documenting NFRs. Additionally, excel spread sheets, mock-ups, product backlogs
and sprint backlogs are used for documenting NFRs.

In summary, we observe that three of the UCs follow up procedures for documenting
NFRs in ASD. The UCs followed a formal approach to specify and document NFRs.
However, in one UC, NFRs were not documented and were rather communicated in
face-to-face meetings facilitated by whiteboards and flip charts. In such cases, compa‐
nies relied on the tacit knowledge of the developers. These developers discuss NFRs in
meetings (e.g. daily stand-ups, sprint planning meetings) and avoid detailed documen‐
tations. Table 1 summarizes NFRs documentation practices and challenges identified
from the UCs.

Our findings reveal that companies may face challenges when they fail to document
NFRs properly. For instance, in UC1 when relying on tacit knowledge of developers’,
the traceability of NFRs becomes difficult in later stages of development. The inter‐
viewees pointed out that this introduces challenge to new developers joining the team

518 W. Behutiye et al.

as they will have limited visibility of the NFRs. Scientific literature depicts similar
findings [11]. On the other hand, difficulty in identifying interdependent NFRs in
complex backlogs is another challenge identified in UC3.

The significance of NFRs for the success of software projects and specific challenge
of ASD in documenting NFRs that is also reflected in the UCs, prompt us to propose
lightweight and systematic guidelines for documenting NFRs in ASD.

4 Guidelines Proposal for Documenting NFRs in ASD

In order to cope with the diversity of approaches to represent requirements in agile
methods, we take the following assumptions that do not compromise the general applic‐
ability of our approach: (1) FRs are specified using both epics and user stories, (2) user
stories may include one or more acceptance criteria and (3) user stories will be derived
from epics and this link will be recorded.

The system NFRs to document may be quite diverse. Remarkably the scope of NFRs
may vary significantly. A NFR may refer to quality properties of the entire system to be
developed but it also may define quality properties for a particular service, function or
system component [18]. We distinguish three different types of scope for NFRs: system-
wide for those that apply to the entire system, group-wide for those that apply to a set
of user stories (or a group of functionalities) and local for those that apply to a single
user story (or functionality). Additionally, the level of detail in which a NFR is specified
may vary. Accordingly, we distinguish among generic NFRs, i.e., specified at a high
level of abstraction (near to the notion of goal) [13], and detailed NFRs, i.e., specified

Table 1. Summary of NFRs documentation practices and challenges in ASD UC companies

Use case NFRs documentation practice NFRs documentation challenge
UC1 NFRs are not formally documented,

however communicated through white
board and when necessary documented
in word documents

NFRs not documented properly and
resulted in the lack of traceability of
NFRs, difficulty for new developers
joining team

UC2 NFRs documented in epics, features,
and user stories, acceptance criteria and
DoDs, wiki pages, word docs with FRS

Lower-level details are lost in
documentation, word and power point
documents disconnected from actual
software

UC3 NFRs documented in features,
acceptance criteria and DoDs in
complex backlogs

Complexity of backlogs makes it hard
to identify dependent NFRs, internally
generated NFRs are not documented

UC4 NFRs documented in epics, user stories,
in DoD and acceptance criteria (at user
story, task and ticket levels), in product
and sprint backlogs. Mockups,
wireframes, word, spreadsheet are also
used for documenting NFRs while
Whiteboards and flip charts facilitate
communication of NFRs.

Not reported by interviewees

NFRs Documentation in ASD: Challenges and Solution Proposal 519

as a concrete feature or tied to a concrete solution. Quite often, a generic NFR may be
specified in an earlier development stage and, later on, it may be refined into a set of
detailed NFRs that operationalize it (e.g. the generic NFR “The system must be usable”
may be refined into “The system must allow reaching any functionality in no more than
3 clicks” among other detailed NFRs). All combinations of scope and detail are possible
when specifying a NFR. For instance, “The critical functions of the system must take
less than 0.25 s, 90% of the times” is group-wide and detailed while “The functionality
for checking the account balance must have a good response time” is local and generic.

The variability of NFRs both in scope and detail suggests that there is not a single
representation artefact that is adequate to cope with all of them. Therefore, a proposal
for documenting NFRs in ASD should provide different artefacts for representing them
and a set of guidelines to select the most adequate representation depending on the
features of each specific requirement. In our opinion, the artefacts should preferably be
those currently used in ASD in order not to introduce new specific artefacts that might
damage the agility of the process and hamper actual adoption by practitioners. Therefore,
our guidelines proposal, summarized in Table 2, consists of using either acceptance
criteria, user stories or epics to represent NFRs.

Table 2. Guidelines for documenting NFRs according to their scope and detail

Scope Detail Representation
artefact

Observation

Local Generic User story (NFR user
story)

With a link to the functional user story to
which it applies

Detailed Acceptance criteria Appearing in the functional user story to
which it applies

Group wide Generic Epic The description of the epic must clarify to
which group of functionalities it applies (e.g.
“critical functions of the system”)

Detailed (1) User story or (1) The description of the user story must
clarify to which group of functionalities it
applies or include links to the user stories it
applies

(2) Acceptance criteria (2) Appearing in the functional user stories
to which it applies

System wide Generic Epic The description of the epic must clarify it is
system-wide (e.g. by referring to “the
system”)

Detailed User story The description of the epic must clarify to
which group of functionalities it applies (e.g.
“critical functions of the system”)

In the following, we describe the rationale used in our proposal (see Table 2) to select
the adequate representation artefact for a NFR based on the scope and detail of the NFR.

The simplest case is that of local and detailed NFRs. They can be locally represented,
in the affected user story, as acceptance criteria, because these NFRs neither affect the
other user stories nor need further refinements. Conversely, local and generic NFRs

520 W. Behutiye et al.

cannot be documented as acceptance criteria because they are not concrete enough.
Therefore we propose to document them as user stories that should be linked to the
functional user story to which they apply. Then, the acceptance criteria of this latter user
story may refine the generic NFR.

For system-wide NFRs, we propose to use epics if they are generic and user stories
if they are detailed. System-wide and generic NFRs are documented by epics because
they are high level qualities of the whole system and thus they are relevant requirements
that will probably need to be further detailed by means of user stories (derived from that
epic). These latter user stories will then be representing system-wide and detailed NFRs.

For group-wide NFRs, our proposal is similar to that of system-wide NFRs.
However, if they are detailed and the group of functionalities affected by the NFRs is
small, we propose, as an additional option to document them as acceptance criteria of
the user stories to which they apply (like local and detailed NFRs).

5 Conclusion

In this paper, we presented the findings of NFRs documentation practices in ASD
projects. We identified that NFRs are documented together with FRs. The UCs applied
epics, features, user stories, acceptance criteria and DoD of user stories, and backlogs
to document NFRs. Whiteboard and flip charts are used to facilitate the communication
of NFRs in cases where they are not documented. The difficulty in the traceability of
NFRs, problems in identifying interdependent NFRs and detached documentation from
actual software, were among the challenges of NFRs identified in the UCs. Moreover,
we propose guidelines for documenting NFRs in ASD. The proposed guidelines
acknowledge diversity of NFRs and utilize existing ASD artefacts such as epics, user
stories and acceptance criteria for documenting NFRs. In addition, the guidelines
consider different levels for the scope and details of abstraction of NFRs.

Acknowledgments. This work is a result of the Q-Rapids project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agreement
N° 732253.

References

1. Azham, Z. et al.: Security backlog in scrum security practices. In: 2011 5th Malaysian
Conference in Software Engineering, MySEC 2011, pp. 414–417 (2011)

2. Beck, K. et al.: Agile Manifesto. http://agilemanifesto.org/
3. Bourimi, M., et al.: AFFINE for enforcing earlier consideration of NFRs and human factors

when building socio-technical systems following agile methodologies. In: Bernhaupt, R.,
Forbrig, P., Gulliksen, J., Lárusdóttir, M. (eds.) HCSE 2010. LNCS, vol. 6409. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16488-0_15

4. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. Softw.
IEEE 25(1), 60–67 (2008)

5. Chung, L., et al.: Non-Functional Requirements in Software Engineering. Springer, New York
(2000). doi:10.1007/978-1-4615-5269-7

NFRs Documentation in ASD: Challenges and Solution Proposal 521

http://agilemanifesto.org/
http://dx.doi.org/10.1007/978-3-642-16488-0_15
http://dx.doi.org/10.1007/978-1-4615-5269-7

6. Cysneiros, L.M., Yu, E.: Non-functional requirements elicitation. In: do Prado Leite, J.C.S.,
Doorn, J.H. (eds.) Perspectives on Software Requirements, pp. 115–138. Springer, Boston
(2004)

7. Eckhardt, J., Vogelsang, A., Méndez Fernández, D.: On the distinction of functional and
quality requirements in practice. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A.,
Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 31–
47. Springer, Cham (2016). doi:10.1007/978-3-319-49094-6_3

8. Farid, W.M., Mitropoulos, F.J.: NORPLAN: non-functional requirements planning for agile
processes. In: 2013 Proceedings of IEEE, Southeastcon, pp. 1–8 (2013)

9. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements
Engineering Conference, RE 2007, 21–26 (2007)

10. Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can quality
awareness support rapid software development? – A research preview. In: Grünbacher, P.,
Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017). doi:
10.1007/978-3-319-54045-0_12

11. Heikkilä, V.T. et al.: A mapping study on requirements engineering in agile software
development. In: 2015 41st Euromicro Conference on Software Engineering and Advanced
Applications, pp. 199–207 (2015)

12. Inayat, I. et al.: A systematic literature review on agile requirements engineering practices
and challenges. Comput. Hum. Behav. 51, 915–929 (2015). doi:10.1016/j.chb.2014.10.046

13. Van Lamsweerde, A. et al.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of Fifth IEEE International Symposium on Requirements Engineering, pp. 249–
262 (2001)

14. De Lucia, A., Qusef, A.: Requirements engineering in agile software development. J. Emerg.
Technol. Web Intell. 2(3), 212–220 (2010)

15. Martakis, A., Daneva, M.: Handling requirements dependencies in agile projects: a focus
group with agile software development practitioners. In: Proceedings - International
Conference on Research Challenges in Information Science (2013)

16. Mendes, T.S., et al.: Impacts of agile requirements documentation debt on software projects.
In: Proceedings of the 31st Annual ACM Symposium on Applied Computing - SAC 2016,
pp. 1290–1295 (2016)

17. Paech, B., Kerlow, D.: non-functional requirements engineering - quality is essential. In:
Proceedings of 10th Anniversary of International Workshop on Requirements Engineering,
Foundational Software Quality, pp. 237–250 (2004)

18. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

19. Runeson, P. et al.: Case Study Research in Software Engineering, Wiley (2012). doi:
10.1002/9781118181034

20. Sillitti, A., Succi, G.: Requirements engineering for agile methods. In: Engineering and
Managing Software Requirements, pp. 309–326 (2005)

21. Wagner, S.: Software Product Quality Control. Springer, Heidelberg (2013). doi:
10.1007/978-3-642-38571-1

522 W. Behutiye et al.

http://dx.doi.org/10.1007/978-3-319-49094-6_3
http://dx.doi.org/10.1007/978-3-319-54045-0_12
http://dx.doi.org/10.1016/j.chb.2014.10.046
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1007/978-3-642-38571-1

Lessons Learned from the ProDebt Research Project
on Planning Technical Debt Strategically

Marcus Ciolkowski1(✉), Liliana Guzmán2, Adam Trendowicz2, and Felix Salfner3

1 QAware GmbH, Aschauer Str. 32, 81549 Munich, Germany
marcus.ciolkowski@qaware.de

2 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{liliana.guzman,adam.trendowicz}@iese.fraunhofer.de

3 Seerene GmbH, August-Bebel-Str. 26-53, 14482 Potsdam, Germany
felix.salfner@seerene.com

Abstract. Due to cost and time constraints, software quality is often neglected
in the evolution and adaptation of software. Thus, maintainability suffers, main‐
tenance costs rise, and the development takes longer. These effects are referred
to as “technical debt”. The challenge for project managers is to find a balance
when using the given budget and schedule, either by reducing technical debt or
by adding technical features. This balance is needed to keep time to market for
current product releases short and future maintenance costs at an acceptable level.

Method: The project ProDebt aimed at developing an innovative method‐
ology and a software tool to support the strategic planning of technical debt in
the context of agile software development. In this project, we created quality
models and collected corresponding measurement data for two case studies in
two different companies. Altogether, the two case studies contributed 5–6 years
of data, from the end of 2011, resp. mid-2012, until today. Using measurement
and effort data, we trained a machine-learning model to predict productivity based
on measurement data—representing the technical debt of a file at a given point
in time.

Result: We developed a prototype and a prediction model for forecasting
potential savings based on proposed refactorings of key drivers of technical debt
identified by the model. In this paper, we present the approach and the experiences
made during model development.

Keywords: Technical debt · Agile software development · Quality management

1 Introduction

Agile software development (ASD) represents a complex decision-making situation,
which is characterized by short development cycles and a focus on the delivery of
customer-specific software features. Frequent changes of software artifacts (primarily
source code) without corresponding quality assurance measures, however, quickly lead
to a decrease in software quality, with a concurrent increase in the costs for further
development and evolution due to the increase in technical debt (TD). As these features

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 523–534, 2017.
https://doi.org/10.1007/978-3-319-69926-4_42

are of major importance for the product’s end user, however, sufficient quality assurance
is often forgone. This gradually leads to a strong increase in the amount of TD.

Countermeasures are only taken if TD hinders the development of new features. In this
reactive process, as much TD as possible is reduced with as little effort as possible—for
example, through refactoring—so that enough budget (time) can be assigned to the devel‐
opment of new features. If, however, the quality assurance measures employed in the
development iterations are too stringent, they require a substantial proportion of the avail‐
able development budget. This leads to the situation that there is always less budget avail‐
able for the actual development of new product features and that the market is not satis‐
fied. Thus, good balancing between quality assurance measures and the evolution respec‐
tively development of new product features is necessary.

To achieve this, TD must be planned proactively and prospectively. That is,
managers in ASD need tool-supported approaches for identifying TD, precisely esti‐
mating it, and assessing its impact on future development costs. However, current
approaches focus only on the evaluation of the quality of a software product [4] by
measuring violations of predefined quality requirements [3] on software artifacts. Thus,
there is a lack of approaches for properly analyzing and managing TD.

In this paper, we contribute to a comprehensive analysis of TD. First, we will
summarize the state of the art and practice regarding TD. Then we will describe our
approach for analyzing TD, namely the ProDebt approach, and sketch its evaluation.
The ProDebt approach was developed and evaluated in collaboration with three German
companies. It includes a tailorable quality model, which allows differentiated estimation
of the quality and prediction of TD, as well as a cockpit that visualizes both the quality
model and the prediction of TD. The prediction model forecasts potential savings based
on proposed refactoring of key TD drivers. Finally, we will summarize the lessons
learned during the development of the ProDebt approach.

2 Related Work

In 1992, Ward Cunningham introduced the term ‘technical debt’ (TD) to signify imma‐
ture or ‘not really proper’ software source code [1]. TD refers to both unintentional
quality deficits of a software product and intentional quality compromises that are made;
for example, to bring a product to market faster. In practice, TD as a result of conscious
compromises is predominant [5]. The crucial question, particularly in ASD, is: How
much TD can I accept and which compromises should I make now so that I can get my
software to the market on time and can still repay the associated TD in future releases?

From the perspective of a software company, TD is unavoidable—yet the strategic
planning of TD in software projects has not been addressed to date. In recent years,
numerous approaches have been presented for determining the actual degree of imma‐
turity of a software product, but not for the characterization of the resulting TD. Most
approaches focus on the evaluation of the quality of a software product [4] by measuring
violations of predefined internal and external quality requirements [3] on software arti‐
facts such as architecture or code. These requirements are normally defined for static
features of software artifacts such as complexity, coupling, code duplicates, or

524 M. Ciolkowski et al.

commenting. Although quality deficits are associated with incomplete work (either
intentionally or unintentionally), current approaches rarely deal with this association
when it comes to cost estimates for immature products.

Effective planning of TD requires a custom-tailored approach in which project data
and human expertise from a given context are elicited and analyzed to identify TD, to
understand its nature as well as the impact factors, and to predict its development over
time. To reliably assess quality deficits, stakeholder-specific preferences regarding
product quality must be considered; that is, all relevant quality aspects must be quanti‐
fied, measured, and interpreted along a transparent quality model. The impact of context-
specific cost drivers must also be taken into account for the estimation, respectively
prediction, of the costs associated with TD (i.e., principal, interest). Moreover, a contin‐
uous chain of automated tools is needed for collecting relevant information, analyzing
links between the uncompleted work and the resulting immature software products, and
predicting the evolution of the associated debt over time.

3 The ProDebt Approach

3.1 The ProDebt Project

The ProDebt approach was developed as part of the ProDebt research project funded by
the German Federal Ministry for Education and Research. The research project aims at
developing a tool-supported methodology for assessing and proactively managing soft‐
ware quality and technical debt in the context of ASD.

Whereas the ProDebt approach for analyzing TD was developed by Fraunhofer
IESE, the German company Seerene was responsible for implementing the ProDebt tool.
Members from two German small and medium enterprises—QAware and Insiders
Technologies—also took part in the ProDebt project. QAware develops information
systems for customers in several application domains. Insiders Technologies develops
and sells its own range of products, mainly document management solutions for the
public, insurance, and commercial sectors.

3.2 Case Studies

We aimed at analyzing TD in one project of each case study partner, one of QAware
and one of Insiders Technologies:

Case study A (QAware project): The project has been running since mid-2012 using
a Scrum-like process. It focuses on the development of an enterprise search web appli‐
cation using Java, .Net, and Objective-C for the automotive and after-sales domains.
The current development team includes 22 developers working in sprints that last
between three and nine weeks. The software quality is managed using SonarQube. The
project uses JIRA as a ticket system to manage user stories, and spreadsheets for
recording effort. The current software release has approximately 160,000 lines of code
without third-party libraries in 32 components.

Case Study B (Insiders Technologies project): The project has been running since
2000. It focuses on the development of a software for processing, extracting, and

Lessons Learned from the ProDebt Research Project 525

classifying information from any kind of business correspondence for the insurance
domain using C++. The releases have been developed using Scrum since 2009. The
current Scrum team includes nine developers working in sprints of two weeks. Software
quality is managed ad-hoc without any specific tool support. Effort and user stories are
managed with a custom ticket tool. The current software release has approximately one
million lines of code and 50 components.

3.3 Vision and General Approach

Figure 1 illustrates the vision of the ProDebt approach. Its central element is the assess‐
ment of the software quality of relevant quality aspects with a quality profile. Based on
the current and target quality values, the quality gap (quality deficit) is identified. Ideally,
the quality deficit is the source for quantifying TD. The basis for quality assessment is
a so-called quality model, which specifies which aspects of quality are a relevant source
of TD, how to measure them, and how to interpret the respective measurement data. The
cost of quality deficits (i.e., TD) consists of the cost of removing the deficit (principal)
and the additional cost of software development imposed by remaining quality deficits
(interest). The objective is to estimate these costs and thus support software managers
in deciding which quality deficits should be removed and when not to exceed software
development costs and schedule objectives.

Fig. 1. Vision and core elements of the ProDebt approach.

The ProDebt approach implemented within the project runtime focuses on specifying
and measuring a quality model derived from expert input and data analysis. The quality
profile is derived from an analysis of baseline measurement data (approx. 5 years of
project history) corresponding to the quality model. The cost of TD is approximated by
predicting productivity improvement or deterioration based on the measured quality

526 M. Ciolkowski et al.

model—if productivity decreases, the cost for developing new features rises. This will
be explained in the next sections.

3.4 Creating the Quality Model

Managers with different experiences often perform TD assessments multiple times
during a development project and over multiple projects. Thus, one of the critical busi‐
ness requirements on managing TD during the project ProDebt was to reduce the
involvement of human experts and thus the subjectivity and total cost of TD assessments.

We applied a hybrid approach for developing one company-specific quality and TD
prediction model for QAware and one for Insiders Technologies by combining expert
judgment with the analysis of quantitative software project data. For each company, we
proceeded as follows (see Fig. 2):

Fig. 2. Creating the quality and prediction model

First, we developed an expert-based quality model using experts’ knowledge
acquired in on-site workshops and an offline survey with software developers and
managers. We prepared and designed the workshops and survey taking into account the
outcomes of the survey on quality management practices at the project partners. We
compared, related, and integrated the results of the workshops and survey into a quality
model. This step created company-specific quality models.

Second, we collected baseline data by implementing the quality model in the
companies’ case studies. To do so, each case study partner measured historical data and
implemented a continuous measurement process for their case study projects. The
resulting baseline data were used for creating the data-based model as well as for training
a prediction model.

Third, we developed a data-based quality model using the baseline project data
available in the context of case studies A and B. After preparing the data, we analyzed
the available measurement data on software code quality and development cost (meas‐
ured in terms of personal effort) in order to identify which software quality aspects have
the greatest impact on development and maintenance cost; that is, the key TD drivers.
On the one hand, we analyzed measurement data on software quality to find a minimal
set of relevant indicators of software quality (unsupervised analysis using, among others,
attribute, distance-based, and correlation-based clustering). On the other hand, we
analyzed software quality data in relation to software development data in order to
identify those quality aspects that have the greatest impact on development productivity
(supervised learning using random forests).

Fourth, the integrated quality model was derived by combining the outcomes of
expert- and data-based quality modeling and selecting, in particular, those measurable

Lessons Learned from the ProDebt Research Project 527

quality aspects that have the greatest impact on software TD. We integrated the expert-
and data-based quality models using a combination of top-down and bottom-up
approaches. Top-down meant excluding expert-based quality aspects for which no
measurement data were available. Bottom-up meant adding quality aspects represented
by the metrics having a relevant impact on TD.

Finally, we developed a prediction model for TD using the same supervised anal‐
ysis methods as for building the data-based quality model; that is, we applied the random
forest modeling method. We developed the prediction model in several iterations, devel‐
oping a model on part of the data (training set) and evaluating its predictive performance
on the remaining data (testing set). The resulting prediction model forecasts potential
savings based on proposed refactorings of the identified key drivers of TD.

3.5 Measuring Baseline Data

We gained baseline data by implementing the quality models in each case study. In doing
so, we extracted measurements of historical data. In addition, we installed a continuous
integrated measurement process for both case studies from 2016 onwards, which also
included effort data. This measurement process used the following data sources: the
source code itself, the revision system, user stories, and effort tracking systems.

For case study A (the QAware project), the baseline includes historical data from
mid-2012 to the time of this writing (July 2017) with at least one measurement per week
since 2016. In total, we measured the quality model for 145 points in time. Code meas‐
urement is based on SonarQube and on the Seerene measurement tool. Effort data are
contained in spreadsheets and are aligned with user stories managed in JIRA. Effort data
are recorded per day and per feature.

For case study B (the Insiders Technologies case study), the baseline includes histor‐
ical data from the end of 2011, measured at the end of each sprint (i.e., every two weeks).
In total, we measured the quality model for 167 points in time. Code measurement is
based on the Understand tool. Effort data are integrated within a custom ticket system
(storyteller) and refer to the total effort for a user story.

3.6 Creating the Prediction Model

The software’s source code is organized in files. We applied static software analysis
tools to measure the quality model’s metrics in each file of the software. These metrics
also included size-related metrics such as lines of code. Metrics were captured multiple
times at intervals of one sprint (case study B) or one week (case study A) for more than
five years into the past. In Fig. 3, these metrics are indicated by M0, which is the set of
metrics for the present time, M-1 for the metrics obtained at the previous measurement
point, etc.

We also used data about how the software was modified (revision information) and
how much effort had to be invested by the developers for each of their development
tasks (extracted from ticket information). Revision data were obtained from the source
code version control system (e.g., GIT or SVN) and data on the cost of development
were extracted from the ticketing systems (e.g., JIRA). The relationship between files,

528 M. Ciolkowski et al.

revisions, and tickets is depicted in Fig. 3: Commit messages allow alignment of changed
files within revisions to tickets and thus to effort spent on a feature in total or (in case
study A) per week. Simultaneously, changes to the source code can be derived by
comparing, for example, lines of code (LoC) at two different measurement points.

Based on coding effort and changes to the source code, we measured productivity
by

P =
Coding output
Effort invested

=
ΔLoC

reported effort (1)

The basic assumption of our approach is that productivity depends (amongst other
factors) on the quality of the source code. That is, we have a function f :q̄ → P, where
q̄ is the vector of metrics in the quality model. Given that the function f is generally
unknown, we applied machine learning (more precisely, a random forest algorithm) to
approximate f from the collected baseline data. Using the productivity approximator
f , we computed productivity for a hypothetical quality level q̄x, obtained by modifying
one quality metric by x percent and keeping all other quality metrics at the same level.
This approach is depicted in Fig. 4.

Fig. 4. Computing a hypothetical productivity Px by varying one quality metric by x percent

The saved effort (and thus, the approximated TD) for a hypothetical improvement
of x percent can be computed by reformulation of Eq. (1) as follows:

ex = e0

(
1 −

P0

Px

)
, (2)

t

M-2 M-1 M0

File B

tFile A

Re
vi

si
on

 1

Re
vi

si
on

 2

Re
vi

si
on

 3

Re
vi

si
on

 4

Re
vi

si
on

 5

Ticket X: 5d Ticket Y: 7d

Fig. 3. Data sources used to train the prediction model.

Lessons Learned from the ProDebt Research Project 529

where P0 is the productivity with the current quality q̄0, Px is the productivity for the
hypothetical improvement by x percent, and e0 is the overall effort invested into modi‐
fying the code for the last 12 months. The approach can also be applied for time frames
other than 12 months, keeping in mind that the time frame should not be too short, to
ensure that estimations are more solid, and not too long, because of the underlying
assumption that the overall effort invested in the past will also be invested in the future.

It is possible to estimate the overall return-on-invest by including an estimation for
the cost (i.e., investment) involved in improving the quality metric by x percent. This
estimation may stem, for example, from expert estimations or from an effort database.

The resulting prediction models had 12 key drivers for TD and a median relative
prediction error of 7% for case study A, and 10 key drivers with a median relative
prediction error of 31% for case study B. That is, given the training and test sets of data
from the baselines, the prediction model had high to medium precision.

3.7 Applying the Prediction Model

The ProDebt prototype implements the prediction model as follows. First, the user
selects one of the key drivers for productivity variation. Then the prototype uses a tree
map visualization to display the current state of TD regarding this key driver in the
project (see Fig. 5). Each box represents a resource (e.g., module or file); the area of a
box is proportional to the effort invested into the related resource within the last 12
months; and color represents the metric values for the selected key driver of this resource.
The prototype uses a color scale from green to red to identify the minimum and maximum
values of the key driver for the resources displayed in the tree map, respectively. This
map uses a configurable aggregation to compute metric values for each resource based
on metric data per file (e.g., sum or average). In, the key driver “unexplained McCabe
points” has been selected in case study A. This metric computes the number of McCabe
points that are not explained or documented by a method name or inline comment. The
idea of this metric is that unexplained complexity decreases maintainability and thus
increases TD. The range of unexplained complexity for case study A is between 0 and
27, on average, for each file (Fig. 5).

Fig. 5. Tree map visualization of current TD regarding prediction model (Color figure online)

530 M. Ciolkowski et al.

Using this tree map, the user can identify potential investments by investigating, for
example, large red areas: Metric values are below average, and a lot of effort has been
invested within the past year—meaning that most likely, much effort will be invested
again, and thus reducing the TD will most likely pay off. In addition, the user can drill
down into the resources by clicking on the related box, making it possible to focus on
specific resources.

In the next step, the user can compute potential savings for the selected module and
key driver. As outlined in the previous section, the prototype will compute savings in
terms of person-days. Figure 6 shows an example output of the prediction model. In this
case, the model predicts that modifying the key driver “unexplained McCabe points” by
2% (i.e., write comments for code blocks that represent roughly 70 McCabe points in
total) will save two person-days of effort during the next year.

Fig. 6. Potential savings computed with the prediction model

4 Evaluation

We evaluated the ProDebt approach iteratively using the empirical design reported in
[2], i.e., a mixed-method study design. Whereas the first evaluation focused on managing
quality deficits, the second focused on managing TD.

In the first evaluation, eleven subjects used the ProDebt prototype to analyze quality
deficits—six developers and two managers from QAware and two developers and one
manager from Insiders Technologies. The participants rated the information provided
by this prototype—i.e., quality metrics and associated analysis—as understandable and
relevant for analyzing quality deficits and the impact of refactoring tasks. Though the
prototype was considered as easy to use, the participants identified improvement poten‐
tials, in particular with regard to its system quality. For example, they claimed the need
for visualizing quality deficits together with the corresponding source code and other
information sources. A detailed report of the first evaluation design and results can be
found in [2].

In the second evaluation, again eleven participants used the ProDebt prototype to
analyze technical debts—six developers and one manager from QAware, and three
developers and one manager from Insiders Technologies. Analyzing TD in this evalu‐
ation meant identifying possible savings based on proposed refactorings of key drivers
of TD. The participants claimed the information provided by this prototype—i.e., key
drivers of TD and the associated analysis—is understandable and useful for analyzing
potential savings associated with future refactoring tasks. They also confirmed that the

Lessons Learned from the ProDebt Research Project 531

prediction models for managing technical debt are valuable and relevant. They empha‐
sized that the prediction models for managing TD will gain acceptance only if they are
accurate and their findings are easy to interpret. That is, potential savings are easily
traceable to concrete development tasks.

5 Lessons Learned and Conclusions

Although the two project partners were quite different with respect to their organizational
characteristics and the type of software products and services, both were shown to face
very similar challenges with respect to managing TD:

1. Under- and overrepresentation of actual software changes in the measurement
data: Current measurement processes are not capable of properly capturing specific
changes of software at the file or module level. In particular, add-delete, rename, or
move operations on files performed between two measurement points were either
underrepresented (not visible) or overrepresented in the measurement data. As a
lesson, measurement and effort data should be available at a more fine-grained level;
for example, on a daily basis or even for each commit. This is possible if measure‐
ment is integrated into the standard build chain. Let us consider these cases:
– File add-delete: If developers add, modify, and then delete a new file between

two measurement points, this change will not appear in the outcome measurement
data. In such cases, the effort consumed for adding/modifying/deleting the file
will not be traceable to any change in the software code.

– File rename or move: If developers rename or move an existing file to another
location, code measurement tools interpret this change as deletion of the original
file and addition of a new file. In such cases, although the factual change and the
associated effort were small, the change reflected in the measurement data will
be large. In extreme cases, renaming or moving a complete project folder will be
interpreted as deletion and addition of multiple files.

2. Missing traceability between software changes and associated development
effort: The organizations collected software quality data and development effort
(cost) data independent of each other using separate data collection processes and
tools. Software quality was measured for software code across subsequent versions,
whereas development effort was reported for user stories. Yet, because software
changes and user stories were in an n:m relation with each other, it was hardly
possible to associate the exact effort with the observed software changes. On the one
hand, implementing one user story may require performing multiple changes of
multiple files over time; on the other hand, one measured change of a file may actually
result from implementing multiple user stories.

3. Insufficient data quality: The quantitative data suffered from significant quality
deficits, which influenced the applicability of quantitative analyses and the reliability
of the analysis outcomes. Two of the most critical quality deficits were:
– Correctness of data: The data on several attributes did not comply with predefined

business rules or were inconsistent with other attributes. For example, the effort

532 M. Ciolkowski et al.

reported as being actually required for implementing a user story was equal to
zero, whereas the expected value should be greater than zero.

– Completeness of data: Data entries for a number of attributes were missing; for
many of them the rate of missing values ranged from 50% to 100%. Causes for
this are manifold and range from measurement errors to tools storing zero values
(“0”) as missing data for some metrics.

4. Inability to distinguish between new feature development and quality improve‐
ment in the data: Not all organizations distinguish between user stories dedicated
to developing new software features and user stories for improving software quality
(so-called refactoring or bug fixes). According to the “Boy Scout” (or “feature-
driven refactoring”) principle of ASD, quality improvements occur only in associ‐
ation with the development of new features; i.e., code quality is improved only when
the code has to be touched due to development tasks. Consequently, the effort for
quality improvement was included in the total effort for developing a new feature.

5. Diverse challenges in data quality: Every company had specific data quality prob‐
lems. This made it impossible to use the same analysis chain (procedure, algorithms,
parameters, tools). Consequently, context-specific approaches would be needed.

Moreover, we elicited further lessons learned regarding predicting TD:

6. Identification of key drivers of TD: Developers and managers from QAware and
Insiders technologies perceived the identified key drivers of TD as useful for
analyzing possible savings related to refactoring tasks. However, further and contin‐
uous analyses are needed to identify a set of sufficient and reliable key drivers and
keep them up-to-date over time. The identification of key drivers of TD is a complex
task that should (1) consider and analyze several types of files (e.g., code, generated
code, and test cases) differently; (2) take into account the use of different coding
practices (e.g., clean code) over time; and (3) consider and analyze factors besides
static code metrics (e.g., developers’ task load and experience).

7. Credibility of prediction model for TD: On the one hand, developers from QAware
and Insiders Technologies considered the prediction models for forecasting savings
by refactoring key drivers of TD as very important and useful. On the other hand,
managers from both companies claimed they needed support at a higher level of
abstraction, commenting, e.g., that they required further support to allocate plausible
and significant savings to concrete user stories. Developers and managers empha‐
sized that the prediction model for TD is relevant, but will gain acceptance if and
only if it shows very high accuracy and is easy to interpret. Random forests have the
disadvantage of being discontinuous. It may be helpful for the credibility of the
model to investigate whether other types of prediction models may be beneficial.

Overall, the participants from both companies perceived the ProDebt prototype and
approach to have high potential for managing TD. However, in its current state, they
also perceived it to be too immature to use. Yet they stated that it would complement
TD management in both companies. Moreover, we learned through the evaluations
which features are needed in a cockpit for managing technical debt to increase user
acceptance.

Lessons Learned from the ProDebt Research Project 533

Acknowledgments. Parts of this work were funded by the German Ministry of Education and
Research (BMBF) under research grant no. 01IS15008A-D (ProDebt - A Method and Tool for
the Strategic Planning of TD in Agile Software Projects).

References

1. Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN OOPS
Messenger 4(2), 29–30 (1992)

2. Guzmán, L., Vollmer, A.M., Ciolkowski, M., Gillmann, M.: Formative evaluation of a tool
for managing software quality. In: Proceedings of the International Symposium on Empirical
Software Engineering and Measurement, November 2017. (Accepted Full Paper)

3. ISO/IEC 25010:2011, Systems and software engineering – Systems and Software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models. International
Standardization Organization (2011)

4. Kläs, M., Heidrich, J., Münch, J., Trendowicz, A.: CQML scheme: a classification scheme for
comprehensive quality model landscapes. In: Proceedings of the 35th EUROMICRO
Conference (SEAA 2009), Patras, Greece, 27–29 August 2009

5. Lim, E., Taksande, N., Seaman, C.: A balancing act: what software practitioners have to say
about TD. IEEE Softw. 29(6), 22–27 (2012)

534 M. Ciolkowski et al.

Rapid Lean UX Development Through User Feedback
Revelation

Frank Elberzhager1(✉), Konstantin Holl1, Britta Karn2, and Thomas Immich2

1 Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{frank.elberzhager,konstantin.holl}@iese.fraunhofer.de

2 Centigrade GmbH, Science Park 2, 66123 Saarbrücken, Germany
{britta.karn,thomas.immich}@centigrade.de

Abstract. The development of software within short timeframes calls for
concepts like minimum viable products with lean development. An agile devel‐
opment setting allows software products to be put on the market in time. Never‐
theless, quality, especially in terms of user requirements, suffers when the focus
is on the speed of the development. Therefore, we have developed the approach
Opti4Apps, which considers user feedback automatically. This automation
enables rapid user feedback to be revealed, which is needed for lean development
in order to achieve high software quality in accordance with the users’ needs. This
paper shows how the approach can be applied smoothly in agile development
settings by analyzing common agile practices with regard to our user-centric
feedback approach Opti4Apps. It turned out that with most practices, the addi‐
tional effort is low, and the positive influence can be highly beneficial.

Keywords: Quality assurance · User experience · Lean development · User-
centered · Feedback · Agile practices

1 Introduction

With the rise of applications that have a short time to market, quality has often become
subordinated to features. Since it is both relevant for companies to be the first on the
market and to increase the quality of mobile applications, ensuring high quality is
moving into the focus of development to help companies remain competitive. To achieve
this quality, companies need to invest in quality assurance strategies and define new
priorities [1]. This requires the investigation of product and process quality in the context
of agile and rapid software development.

To improve current practices for quality assurance in agile settings, we focus on early
feedback from users in this publication. According to our observations from practical
environments, but also in line with other researchers, users are often not given the
priority they deserve, and companies struggle when it comes to gathering and analyzing
user feedback efficiently [6]. However, on the other hand, feedbacks are a rich source
for improving the software products. In order to make this efficient, automation should
play a role. A reasonable instrument for realizing such a procedure is a semi-automated
feedback elicitation, analysis, and processing framework, so the effectiveness and

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 535–542, 2017.
https://doi.org/10.1007/978-3-319-69926-4_43

efficiency of early user feedback consideration during further development can be
examined with the goal of assuring the quality and acceptance of a mobile application
developed in a minimalistic way [2].

While MVP development enables early feedback and very fast time to market, the
quality of the resulting product suffers in comparison to traditional development. In
contrast, with traditional development, there is no early feedback and time to market is
longer.

Our approach Opti4Apps for automated consideration of user feedback could realize
and extend the benefits of MVP development through the development and use of a
framework based on the automatable elicitation and analysis of feedback as well as
through the use of an effective and efficient quality assurance methodology. This rapidly
focuses the lean development on the user’s requirements. Furthermore, the feedback and
the insights from one development could be reused in parallel or subsequent develop‐
ments.

Nevertheless, in order to reap the benefits of automated consideration of user feed‐
back, compatibility with existing agile processes is required. Therefore, we show the
compatibility of a selected set of common agile practices with our Opti4Apps approach.

This article is structured as follows: Sect. 2 describes the related work, in particular
basic concepts, prior work, and an agile references process. Section 3 presents top-down
the feedback-based lean UX development process followed by the assessment of
selected agile practices. Section 4 wraps up the results and experiences followed by ideas
for future work.

2 Related Work

2.1 Lean UX

The development of mobile apps calls for concepts like minimum viable products
produced in lean development due to short timeframes. The Lean UX approach is a
concept that combines three development methodologies: design thinking, agile devel‐
opment, and Lean Start-up [5].

1. The principles of design thinking show that design methods can be used in every
phase of a project from any discipline. Non-designers should be encouraged to use
design methods based on this approach, as it supports teams in collaborative design
across roles. Furthermore, it is a customer-centered approach as it takes not only the
user needs into account but also the technological possibilities and the business view.

2. The second methodology in Lean UX is agile development. It has been an important
approach for software developers for a long time, especially the Scrum process. The
important elements of Lean UX are the iterative and incremental approach, which
enables the team to respond to change immediately (compared to the waterfall
model), collaboration in teams and with the customer to ensure continuous feedback,
and a strong communication culture.

3. The third methodology is Lean Start-up. The basis of this approach is the “build-
measure-learn” loop, which helps teams to minimize project risks and supports quick

536 F. Elberzhager et al.

feedback and faster completion of projects. This faster completion results from the
Minimum Viable Products (MVPs) that the teams are building to get user feedback
as soon as possible with the help of rapid prototyping. According to Lean UX [5],
an MVP is, on the one hand, the smallest thing that helps to test assumptions with
the help of a prototype or other product developed by the team. In this case, the MVP
is built to learn something and the team benefits from it, but there is no immediate
benefit for the user. On the other hand, an MVP in Lean UX is defined as the smallest
version of the end product that is delivered to the users and addresses a problem or
need the user has. In this case, the focus of the MVP is on the benefit for the user.
In the Opti4Apps context, we define MVP in the latter way: a product that is usable
and valuable for the user who benefits from it.

The Lean UX approach of continuous learning and testing leads to the following
principle, which also defines the start of a Lean UX project: Assumptions before require‐
ments! The first step in the Lean UX process is to declare assumptions that should be
validated along the process.

2.2 Prior Work

Figure 1 provides a conceptual overview of the previously defined user feedback
approach [2]. There is a mobile application as an MVP on a mobile device and users
who use the application. The users can give feedback. This feedback comprises the
application’s usage data (e.g., usage frequency, duration, or misentries), state (e.g.,
installation and online state), and explicit user feedback (reviews, bug reports). Such
feedback can be provided by the user automatically (e.g., via a specific agent running
on the mobile device), semi-automatically (e.g., some data is tracked by the mobile
device and has to be sent manually to a backend), or manually (e.g., users provide some
written feedback in the app store). In other words, feedback can be provided explicitly
by the user or implicitly through measurement by technical means.

Application as
MVP

Optimized
Mobile

Application

Usage of the
Application by a

Crowd

Feedback

Focused Quality Assurance
with FIT4Apps

Inspection
of the

Requirements

Testing of the
Application

Further
Development

Approach

Issues Failure
Patterns

Framework

Agent
for Data

Capturing

Frontend
for Usage &

Control

Backend
for Information

Gathering
Test

Manager

Activity

Artifact

Database

Focused Quality Assurance
with Opti4Apps

Fig. 1. Automated user feedback consideration in the Opti4Apps approach.

Rapid Lean UX Development Through User Feedback Revelation 537

The feedback then has to be edited, analyzed, and provided in a suitable way so that
the company developing the application gets information it can use to improve the
application. A framework is used for this purpose. It uses, for example, the data provided
by the agent integrated into the mobile application, direct feedback, or feedback gathered
by performing data mining analyses to detect existing deficiencies or reveal improve‐
ment ideas. All such data is consolidated by a backend and classified to generate a more
suitable overview.

The analysis of the collected information in the backend via data mining is intended
to enable a fast learning effect with respect to existing deficiencies. Thus, it can provide
a baseline for effective further development as well as for focused quality assurance.
Identified failure patterns (based on mobile-specific failure classes [3]) can increase the
effectiveness of the quality assurance of the current development. Because of the reus‐
ability of failure patterns, these can also be used for parallel and subsequent develop‐
ments.

One of the main aspects of the framework could be the recognition of usage patterns
that may be considered as failures as part of the mentioned failure patterns, which
constitute a collection of typical failure causes and impacts in the area of mobile appli‐
cations.

The control of the framework and the utilization of the produced information result
in several role-specific tools, which form the frontend. A dashboard with different views
depending on the data analysis is used by a test manager. This role is responsible for
taking further actions based on the results of the feedback analysis. The main tasks
include controlling quality assurance (i.e., deriving new test cases based on the identified
problems) or sharing the results with a requirements engineer in case new feature wishes
are identified.

By using the failure patterns during the inspection of the requirements specification
as well as during testing of the mobile application, focused quality assurance is estab‐
lished, thus optimizing the mobile application. Based on the user feedback, the optimized
mobile application is again distributed to the users. This is realized by a distribution
software installed on the device (e.g., HockeyApp, TestFlight).

2.3 Agile Reference Process

Mobile applications are typically developed in short, often agile, development cycles [4].
The agile development process is often performed according to the project management
framework Scrum. The overall objective of Scrum is to enable the development team
to react quickly, simply, and appropriately as part of the development process. Short
time to market can be achieved better than if classical development approaches are used.
Time-consuming activities like updating outdated plans should be avoided.

As part of Scrum, all known requirements are stored in a product backlog. This
provides the input for the sprint backlogs. Development with Scrum occurs in iterations.
These iterations are called sprints. The output of each sprint is intended to be a working
product increment, respectively a potentially shippable product.

Scrum does not prescribe which techniques have to be used during development.
This is mostly up to the development team [7]. Neither does Scrum dictate the types of

538 F. Elberzhager et al.

tests that have to be performed [4]. Independent of the specific technique selected as
part of Scrum (e.g., Extreme Programming, Test First), testing in agile development can
be assigned to the fundamental test process, just like testing in classical software engi‐
neering.

3 Process Integration

3.1 Conceptual Picture of Feedback-Based Lean UX Development

The Lean UX framework is our starting point. The UX team starts an MVP project with
a pre-process. Elements of the pre-process are, e.g., Scoping, User Research, Conceptual
Design, and Design Engineering Workshops. The exact content of this pre-process is
not determined by this model; rather, the objective is to derive user stories from user
needs, which will be the working basis in the following sprint process. Hence, it is
necessary to clarify user needs that are evaluated based on real user feedback. Those
user stories that are most relevant for the current scope are taken into the following
sprints and form the basis for the resulting MVP. It is possible to run parallel processes
for multiple MVPs with different teams as well as to operate sequentially. In addition,
it is possible to develop the same user story in different ways on different tracks, e.g., to
do A/B-testing later on. Of course, it is important to continuously consider the “big
picture”, i.e., the project as a whole, to ensure that it will be possible to consolidate the
results of different MVPs in one overall product or system.

The objective of the lean process for Opti4Apps is to gain user feedback at any time
of the process, which is shown in the area below the model, despite the short timeframe.
The classical feedback approaches make heavy use of concept testing (which serves the
designer) and mostly will not work in this timeframe, as there are too many iterations.
With Opti4Apps, the user feedback is gathered during product testing by a tracking agent
that automatically obtains relevant usage data from users.

Nevertheless, this model is initially an idealization and does not consider all “real-
world circumstances” of projects. The process must be adapted depending on diverse
influencing factors, for example team size and constellation, project domain, “type” of
customer (internal, external), and the take-off point of the project (an all-new develop‐
ment vs. a refinement of an existing product). Many other influencing factors are
conceivable. All these factors determine what a more detailed view of the model would
look like. In order to understand how different instances of agile processes behave when
such a user-centric approach is considered, we analyzed common agile practices with
respect to invasiveness and benefit. The results are presented in the next section.

3.2 Assessment of Selected Agile Practices

In order to make the lean UX process more concrete, we analyzed how common agile
practices cooperate with Opti4Apps and what the potential benefit is when Opti4Apps
is applied in an agile process (i.e., if agile practices are followed). Two experienced
researchers (more than 10 years of experience) performed an evaluation of the most
common agile practices. We addressed 11 top-level topics from Diebold and Dahlem

Rapid Lean UX Development Through User Feedback Revelation 539

[7] (some of the 18 originally mentioned ones have no connection to user feedback, such
as refactoring), and considered a total of 21 concrete agile practices. We evaluated
invasiveness and benefit on a four-point scale (see legend in Table 1):

• Invasiveness: When Opti4Apps is applied, how much is the agile practice influenced
(under the assumption that the agile practice is applied) and how much adaptation
may be necessary (which might result in higher effort to apply the agile practice)?

• Benefit: How strong does the agile practice (and indirectly the overall agile devel‐
opment process) benefit when Opti4Apps is applied?

Table 1. Invasiveness and benefit rating of using agile practices with Opti4Apps

Let’s consider the topic “Quality check” as a first example to understand the rating:
During pair programming, a second person watches what is being programmed, and can
give direct feedback. When the feedback cannot be implemented directly, it can be
documented in the Opti4Apps framework. This requires little effort (=low invasiveness),
but the benefit from such feedback is also rather limited as the amount of such additional
feedback is expected to be low. For a code review, experiences regarding typical issues
stored in the Opti4Apps framework can be used and checked. However, their number
is again expected to be low. During a usability review, defect patterns might be used to
control the review, which makes it more effective. The level of invasiveness is again
low, as just some information is consumed, but the benefit is, on average, medium.

Besides crowd testing, customer involvement is the only agile practice that has a
high level of invasiveness. The reason is that either a new role is needed (a user
researcher who controls the Opti4Apps tasks) or that a role such as the product owner
has to perform it, which also results in some effort. However, the benefit of such a
dedicated role, respectively the product owner who owns the relevant tasks, is highly

540 F. Elberzhager et al.

beneficial, and to a certain extent forms the core of Opti4Apps, as this role controls, for
example, how to handle all the feedback and determines consequences resulting from
the analyzed feedback.

There are also agile practices that have no influence (and usually no benefit), for
instance burn charts. It is simply a mechanism for visualizing the current status, but new
feedback has no direct influence on this practice.

Certain practices support the same benefits. For example, a retrospective, a jour fixe,
and a standup meeting are all influenced in a minimal way by Opti4Apps (mainly due
to some more feedback which needs little extra time to mention), but have at least a
medium positive influence due to new feature ideas or bug indications that may be
revealed. There also exist further agile practices that we did not consider in our analysis;
however, we picked a set of the most common practices [7] to start our analysis.
Table 1 shows the complete evaluation results together with a short explanation of every
agile practice.

Of course, the individual ratings can be further discussed and might lead to adapta‐
tions depending on the concrete context. On purpose, we did not use a number schema,
but tendency arrows, which indicate the general evaluation direction for every agile
practice. The agile practices should also be assessed by other researchers and practi‐
tioners in order to get a more stable evaluation. Moreover, Opti4Apps should be applied
in concrete agile development settings in order to get higher confidence in the initial
rating. The current evaluation is mainly based on arguments and on our own experience
from several development environments, and serves as a starting point for initial discus‐
sions and further evaluations. However, though slight adaptations are reasonable, the
trends will probably mainly remain.

The evaluation results show that Opti4Apps is compatible with many agile practices,
and that the additional effort or need for changes (expressed as invasiveness here) is
rather low. Of course, any new methodology requires some investment effort, but
considering the benefit that customer feedback provides in terms of new features and
features that are really expected by customers, as well as in terms of indications about
quality issues, it is worthwhile the effort.

Practitioners might use the evaluation of these agile practices to check how much
Opti4Apps influences their concrete agile development process, and to get further ideas
regarding which practices to use in order to gain an even higher benefit and get concrete
feedback from customers for further development. Researchers can further analyze agile
practices and check whether our rating fits in other settings.

4 Conclusion and Future Work

In this article, we again took up the challenge of how software-developing companies
can consider user feedback more strongly. To this end, we provided an overview of our
Opti4Apps approach, which gathers user feedback from several sources automatically.
Modern software development tends to become ever faster, with trends such as contin‐
uous delivery and DevOps. At the same time, it still has to ensure high quality and
develop those features that users really demand. To deal with this situation, we

Rapid Lean UX Development Through User Feedback Revelation 541

introduced our Opti4Apps approach and showed its compatibility with several agile
practices. The approach does, of course, require some investment; however, it turned
out that the challenge of really considering the user during development can be highly
supported by our approach without large investments or changes in the agile processes.

In the future, we will substantiate our initial classification and rating of agile practices
by discussing them with more experts, but also by observing real applications of the
Opti4Apps framework in agile developments. We are convinced that this will contribute
to stronger consideration of the user during development, as intended by the Agile
Manifesto, and that our approach will provide specific guidance for practitioners.

Acknowledgments. The research described in this paper was performed in the project Opti4Apps
(grant no. 02K14A182) of the German Federal Ministry of Education and Research (BMBF). We
also thank Sonnhild Namingha for proofreading.

References

1. Buenen, M., Teje, M., Carrel, I.: Testing and SMAC Technologies: Ensuring a Seamless and
Secure Customer Experience. World Quality report 2014–2015, Sixth edn., Capgemini, HP,
Sogeti (2014)

2. Holl, K., Elberzhager, F., Tamanini, C.: Optimization of mobile applications through a
feedback-based quality assurance approach. In: 15th International Conference on Mobile and
Ubiquitous Multimedia, Finland, pp. 1–3 (2016)

3. Holl, K., Elberzhager, F.: A Mobile-specific failure classification and its usage to focus quality
assurance. In: 40th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2014), Italy, pp. 385–388 (2014)

4. Linz, T.: Testing in Scrum: A Guide for Software Quality Assurance in the Agile World, 1st
edn. dpunkt.verlag, Heidelberg (2014)

5. Gothelf, J., Seiden, J.: Lean UX: Applying Lean Principles to Improve User Experience.
O’Reilly, Sebastopol (2013)

6. Fabijan, A., Olsson, H.H., Bosch, J.: Customer feedback and data collection techniques in
software R&D: a literature review. In: Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.)
Software Business ICSOB 2015. LNBIP, vol. 210, pp. 139–153. Springer, Cham (2015). doi:
10.1007/978-3-319-19593-3_12

7. Diebold, P., Dahlem, M.: Agile practices in practice: a mapping study. In: 18th International
Conference on Evaluation and Assessment in Software Engineering (2014)

542 F. Elberzhager et al.

http://dx.doi.org/10.1007/978-3-319-19593-3_12

Managing Development Using Active Data Collection

Michael Kläs(✉) and Frank Elberzhager

Fraunhofer IESE, Kaiserslautern, Germany
{michael.klaes,frank.elberzhager}@iese.fraunhofer.de

Abstract. Problems commonly observed in Big Data and Predictive Analytics
projects that try to provide data-driven innovations motivate the need for a general
paradigm shift from passive to active data collection. A possible active data
collection framework based on Big Data technology is outlined and possible
implications for research are identified.

Keywords: Software development · Big Data · Experimentation · Measurement

1 Motivation for Active Data Collection

Current trends subsumed under Big Data and Predictive Analytics promise interesting
new opportunities for software-developing companies, especially in the context of the
ongoing digitization of products and services. This is not only true for companies devel‐
oping the required technology stack, but also for companies using the new technologies
to enhance their existing products and services or provide new ones.

However, Heudecker argued that most Big Data projects will not be successful [1].
Based on many informal discussions with practitioners from different companies and
first-hand experience with Big Data and Predictive Analytics projects, there are many
reasons for such projects to fail, but most of these fit into one of the following three
categories: (1) unclear analysis goals, (2) serious data quality issues, or (3) lack of user
acceptance.

1. The analysis problem to be solved is not understood or was defined too generically.
(‘Here are our data. Please find some new and useful insights.’)

2. The underlying data suffer from unexpected quality problems jeopardizing or even
negating the applicability of available analysis approaches.

3. The developed solution is not accepted by the intended users (such as the notorious
Microsoft Office assistant Clippit, which most users considered annoying rather than
intelligent or helpful [2]).

This work is being partially funded by the German Federal Ministry for Economic Affairs and
Energy in the context of the technology program “Smart Data - Innovations in Data”, grant no.
01MD15004E and by the Ministry of Education Research in the context of the Abakus project,
grand no. 01IS1550.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 543–547, 2017.
https://doi.org/10.1007/978-3-319-69926-4_44

There are approaches that can support practitioners in identifying these kinds of
problems at an early stage, such as Design Thinking [3], doing a potential analysis in
advance [4], or testing their assumptions with a minimal viable product [5].

Nevertheless, a common issue that occurs in most data-driven innovation projects is
a mismatch between the data collected to date and the data that would actually be needed
to solve the analysis problem. The reason for this mismatch is simple; the existing data
was usually collected for other purposes. For example, sensor data collected in the auto‐
motive industry to optimize the motor control unit are not necessarily the same data that
would be useful for building a predictive maintenance model. Another example are
resellers who collected data to enable smooth sales processes and now want to make use
of these data to provide customer-specific product recommendations. In consequence,
it is rarely possible to solve an innovative analysis problem relying only on existing data
collections. These observations are also in line with Gartner’s prediction that 90% of
deployed data lakes will turn out to be useless [6].

Based on experience from former projects – especially from industry environments
– our first assertion is that companies should focus less on collecting and storing all
kinds of data or making big investments analyzing previously collected data in the hope
of finding some useful new insights, but instead should make efforts to build up an
infrastructure to efficiently define, collect, and analyze data that are relevant for their
current analysis problems. Because the scope of data collection as well as the relevant
analysis problems at a given time may change over time, the infrastructure not only
needs to be scalable but also easy to adjust to emerging information needs.

Our second assertion is that an infrastructure for data collection should not be
designed as a passive monitoring component but as a component that can also actively
influence the data collection situation in order to leverage the full potential of the
collected data. This requirement is motivated by the observation that analysis problems
of the highest relevance commonly address similar types of questions:

• Which is the better option with respect to X, a1 or a2?
• Does the value of A influence X and to what extent?
• How does X change if the values of A, B, and C are changed?

The commonality among all these questions is that they ask about causalities.
However, data analysis approaches, including machine learning, performed on data
collected without any active influence on the data collection situation cannot be applied
to determine such causal relationships. The best thing these analyses can achieve is to
detect and quantify correlations among different variables. The difference between
correlation and causality becomes clearer if we consider an example: The number of
storks was shown to correlate very well with the number of newborns in certain cities.
However, contrary to existing myths, it might not be a good idea to rely on a repopulation
program for storks to increase low fertility rates in industrialized countries.

In contrast to passive data collection, active influence on the collection situation
allows conducting experiments to validate assumptions and quantify causal effects with

544 M. Kläs and F. Elberzhager

a given error probability. Experiments can investigate the variable of interest by system‐
atically varying this variable and measuring changes in the target variable. Further vari‐
ables that might influence the target variable are kept constant during such experiments
or controlled through the experimental design using randomization.

In software companies, experimentation is currently mainly used by large Internet
companies or in online marketing in the form of split-run tests [7], where websites are
presented to the user with different layouts or content and the impact on the conversation
rate or other KPIs is measured and tested for statistically relevant differences.

However, considering the ongoing trend to shorten release cycles using continuous
deployment [8] and software as a service (SaaS), the potential of active data generation
goes beyond simple statistical tests. It allows providing statistically validated answers
to key questions of developers, product and quality managers:

• What are the true needs and requirements of our customers?
• What are missing features and which are used only rarely?
• How can user experience and interaction with the product be improved?
• What is the impact of a specific code change on product quality?
• Are performance and stability of the new release sufficient?

Section 2 illustrates the idea for an open framework supporting active data collection
and experiments in an efficient way. Section 3 concludes the paper with implications
and possible directions we see for future research.

2 Towards a Framework for Active Data Collection

This section provides an overview of a framework for active data collection (see Fig. 1).

Fig. 1. Illustration of an active data collection framework using a Big Data stack.

Managing Development Using Active Data Collection 545

An active data collection study is designed based on analysis questions or hypotheses
of the stakeholders and is then interwoven with other concurrent studies. As soon as a
software version with required changes (e.g., new features) is rolled out on the devices,
the study management component can distribute the respective control information to
the selected devices and monitor further progress of the study.

Data collection and interaction of the device with the user are influenced by the study
control component, i.e., different devices may behave differently depending on the
investigated treatment. Kafka as a highly scalable messaging system writes the collected
study data in a distributed database. The data can then be analyzed using Spark as a
scalable data processing framework and visualized to allow decision-making on the
further development of the software and to derive new questions and hypotheses.

3 Possible Implications for Research

From our point of view, an open framework for active data collection can offer significant
advantages for companies in managing their product development. This is in line with
a current study on experimentation in product development, which can be seen as a
specific application of active data collection. The study found rising interest in industry
and identified technical tools as the success factor mentioned most often [9].

However, several questions arise that require a more detailed investigation: (1) Are
the effect sizes that will be investigated in practice high enough to get reliable feedback
also for companies that are not Google or Microsoft? (2) What designs are most efficient
to quantify effects, and can we use data mining to optimize these designs in advance or
even during runtime based on prior knowledge? (3) How can we interweave a high
number of concurrent studies without invalidating their results and minimizing the
impact on variance and thus their efficiency? (4) Will users accept active data collection
during product usage? They may fear leaks of privacy data, legal issues or ethical reser‐
vations about withholding features or essential updates from a group of users.

References

1. Heudecker, N.N., et al.: Predicts 2015: Big Data Challenges Move from Technology to the
Organization. Gartner report, November 2014

2. Cozens, C.: Microsoft Cuts ‘Mr Clippy’. The Guardian, London (2001)
3. Rowe, G.P.: Design Thinking. The MIT Press, Cambridge (1987)
4. Trendowicz, A.: Analysis of Big Data Potential: How to demonstrate the business value of Big

Data. IESE-Report No. 006.17/E (2017)
5. Ries, E.: The Lean Startup: How Today’s Entrepreneurs use Continuous Innovation to Create

Radically Successful Businesses. Crown Publishing, New York (2011)
6. Gartner Blog Article. http://blogs.gartner.com/merv-adrian/2014/12/30/prediction-is-hard-

especially-about-the-future/. Accessed 25 July 2017
7. Kohavi, R., et al.: Online controlled experiments at large scale. In: Proceedings of International

Conference on Knowledge Discovery and Data Mining, pp. 1168–1176. ACM (2013)

546 M. Kläs and F. Elberzhager

http://blogs.gartner.com/merv-adrian/2014/12/30/prediction-is-hard-especially-about-the-future/
http://blogs.gartner.com/merv-adrian/2014/12/30/prediction-is-hard-especially-about-the-future/

8. Rodríguez, P.P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S.: Continuous deployment of
software intensive products and services: a systematic mapping study. JSS 123, 263–291
(2017)

9. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in
product development. Inform. Softw. Technol. 77, 80–91 (2016)

Managing Development Using Active Data Collection 547

Agile Quality Requirements Management Best Practices
Portfolio: A Situational Method Engineering Approach

Lidia López1(✉), Woubshet Behutiye2, Pertti Karhapää2, Jolita Ralyté3, Xavier Franch1,
and Markku Oivo2

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{llopez,franch}@essi.upc.edu

2 University of Oulu, Oulu, Finland
{woubshet.behutiye,pertti.karhapaa,markku.oivo}@oulu.fi

3 University of Geneva, Geneva, Switzerland
jolita.ralyte@unige.ch

Abstract. Management of Quality Requirements (QRs) is determinant for the
success of software projects. However, this management is currently under-
considered in software projects and in particular, in agile methods. Although agile
processes are focused on the functional aspects of the software, some agile prac‐
tices can be beneficial for the management of QRs. For example, the collaboration
and interaction of people can help in the QR elicitation by reducing vagueness of
requirements through communication. In this paper, we present the initial findings
of our research investigating what industrial practices, from the agile methods,
can be used for better management of QRs in agile software development. We
use Situational Method Engineering to identify, complement and classify a port‐
folio of best practices for QR management in agile environments. In this regard,
we present the methodological approach that we are applying for the definition
of these guidelines and the requirements that will lead us to compile a portfolio
of agile QR management best practices. The proposed requirements correspond
to the whole software life cycle starting in the elicitation and finalizing in the
deployment phases.

Keywords: Quality requirement · Non-functional requirement · Agile
development · Situational Method Engineering

1 Introduction

Agile methods are becoming increasingly popular in the software industry [1–3].
Customer satisfaction through early and continuous delivery of valuable software,
adaptability to late requirements changes, short and iterative development cycles are
some principles of agile software development (ASD) methods [4]. Another important
aspect of software development that has attracted a lot of attention is software quality,
mainly represented by the quality requirements (QRs; also referred to as non-functional
requirements –NFRs) of the product [5]. However, it has been documented that the
management of QRs in software development in general [5] and in ASD in particular
[6] is problematic, e.g. important QRs might be neglected in ASD [7].

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 548–555, 2017.
https://doi.org/10.1007/978-3-319-69926-4_45

One aspect of ASD is that agile principles put emphasis on communication and
linking of people [4]. The closer collaboration between people within a development
team, e.g. requirements engineers and testers, helps in generating an understanding of
the requirements so that development can progress and testing can be conducted properly
despite lower quality of the requirements and lack of documentation [8]. Agile practices
can also help the QR elicitation by reducing vagueness of requirements through commu‐
nication [9], QRs in particular, since defining good, verifiable, and complete QRs is quite
difficult.

Improving the management of QRs in agile projects is the ultimate goal of the Q-
Rapids (Quality-aware Rapid Software Development) project1. In order to achieve this
goal, we aim at defining a set of guidelines for integrating QR management into the ASD
life cycle. There are several methods, techniques and models that can be applied for
managing QRs, making difficult the definition of a unique method to be applied in any
organization. In the context of ASD, Qumer and Henderson-Sellers applied Situational
Method Engineering (SME) to create a software development method combining agile
and formal practices in a large software development organization [10]. Following the
same approach, in this paper we propose using SME to identify, complement, and clas‐
sify a portfolio of best industrial practices in order to define a method for QR manage‐
ment in agile environments.

The rest of the paper is organized as follows. Section 2 introduces the research
approach followed, including the background necessary to apply SME. The construction
of the method is based in the software development process detailed in Sect. 3.
Section 4 includes the definition of the method requirements, and Sect. 5 includes an
example of the guidelines associated to the QRs prioritization. Finally, Sect. 6 concludes
the presentation of the work included in this paper and discusses our future work.

2 Situational Method Engineering

2.1 Background

In this work we apply the assembly-based Situational Method Engineering (SME)
approach [11] as underpinning theory for capitalizing best practices in the domain of
QR management in ASD, and for reusing them in the construction of situation-specific
methods. Following this approach, the knowledge of such methods has to be formalized
in terms of reusable method chunks. A method chunk describes the method process (i.e.,
the guidelines) and its related products (i.e., the concepts and artefacts used/transformed/
created by applying the guidelines). It also specifies the situation in which it can be
applied (i.e., the required input artefacts) and the intention (i.e., the engineering goal)
to be reached. The method chunks are used as building blocks for constructing a situa‐
tion-specific method, which can be a project-specific method or even a configurable
method family including several method chunk variants for each method step. In both
cases, the approach consists of defining method requirements and then selecting and
assembling method chunks satisfying these requirements. Method requirements (also

1 http://q-rapids.eu/.

Agile Quality Requirements Management Best Practices Portfolio 549

http://q-rapids.eu/

called requirements map) are specified as a desired process model by using the Map
process modeling formalism [12], which allows to express methods in terms of inten‐
tions and strategies to reach the intentions. The variability and flexibility of a method is
reached by defining several strategies for achieving an intention.

The sources for engineering method chunks can be various: existing methods, stand‐
ards, templates, and best practices. Depending on their formalization and level of detail,
the creation of method chunks consist in reengineering the existing method knowledge
or defining it from scratch.

2.2 Application

The assembly-based SME approach has been applied in various software and informa‐
tion systems engineering domains. For instance, Ralyté et al. reengineered the RESCUE
Requirements Process into a modular method (a collection of method chunks organized
into a multi-level process map) allowing to assess the quality of the method, to identify
omissions and weaknesses, and to reason about its improvements [13]. This case also
demonstrated the effectiveness of the SME approach for modelling large-scale engi‐
neering processes. In a different domain, López et al. presented the OSSAP method [14],
applying assembly-based SME approach to construct a method for OSS adoption busi‐
ness processes. The OSSAP chunks correspond to the different ways of adopting OSS
and the pieces of processes to be adopted by the organization, depending on the way
they want to be involved with the OSS community producing the OSS.

3 Software Development Process in Agile Projects

In this section, we present the analysis of the software development process employed
in four use cases (UCs) of the Q-Rapids project. The results are based on preliminary
findings of case studies conducted to understand the software development processes
and QR management practices adopted in selected projects of the Q-Rapids industrial
partners. The Q-Rapids industrial partners are representatives of small, medium, and
large sized companies from three different countries (Finland, France and Poland), all
produce software in different domains (telecommunications, secure solutions, modeling
and ad-hoc solutions). Qualitative analysis was done on the 12 semi-structured inter‐
views conducted in the UCs to get an understanding of the development processes.

Our findings reveal that all of the UCs adopt variants of Scrum tailored to their
specific context of development. The UCs operate in predefined release cycles that range
from two weeks to six months. The sprint cycle varied from one to four weeks. Medium
and large companies are characterized by complex backlog structure and multiple teams.
The smaller companies utilized a single backlog and consist of a small sized team.
Additionally, the ASD maturity level applied in the UCs also varied. We observed both
similarities and differences in the practices, roles and tools utilized in the UCs.

During initial stages of the development process, the UCs elicit requirements (both
functional requirements and QRs) mainly based on customer needs. At this stage, high
level features are elicited together with the customer. Features that bring more value to

550 L. López et al.

the customer are prioritized. However, the level of customer involvement, as well as the
practices and roles involved in the process, varies among the UCs. For instance, two
UCs from small and medium sized companies mainly utilize the customer for eliciting
requirements. The other two UCs from medium and large sized companies consider
additional factors such as product roadmaps, the status of the market and problems of
potential customer segments. Roles involved in higher level requirements elicitation
included product owners, product and technical managers, sales team, and usability
experts. Product and technical managers made requirements prioritization decision in
UCs of medium and large companies. On the other hand, smaller companies relied on
the product owners’ decisions for requirements elicitation and prioritization. Elicitation
of the higher-level features considered both functional requirements and QRs.

The higher level features are refined and specified into lower level features or user
stories and tasks. In medium and large organizations, higher level features were refined
in several steps due to the product size. On the other hand, in smaller companies, the
number of refinement steps were fewer.

Communication happens throughout the development process in all of the UCs.
Face-to-face communication serves as the main source of communication in small sized
companies. In such cases, face-to-face communication facilitates the development
process, as the developers are close to each other and usually in the same room. Addi‐
tionally, there was less emphasis on the documentation practices. However, in medium
and large sized companies, documentation and shared tools serve as sources of commu‐
nication. Face-to-face communication was adopted only at lower (local) level.

Fig. 1. Aggregated view of the development processes in the UCs

Agile Quality Requirements Management Best Practices Portfolio 551

All UCs employ continuous integration in their development process. Nightly builds,
integration tests, and acceptance tests are applied in the verification and validation
process. The testing practices also varied with the size of the companies. Figure 1 depicts
the generic view of the development process adopted in the UCs.

4 QR Management Method Requirements

The analysis of the software development process of the UCs, described in the previous
section, uncovered that they do not use a predefined existing method for QR manage‐
ment. The organizations use and combine different methods and techniques in different
ways for setting their own agile oriented development process. The aim of this work is
setting up a portfolio of best practices organizing and complementing these techniques
to improve QR management in the context of ASD processes.

Due to this diversity of methods and techniques, we are developing this portfolio
applying SME, concretely creating a new method constructed from scratch [15]. In order
to identify the needed guidelines, we applied a process-driven strategy to elicit the
method requirements, which is more relevant in the case of a new method construction
[16]. In order to specify the requirements for the method, we need to (1) identify the set
of intentions related to the QR management in the current processes, and (2) identify
the possible strategies for fulfilling these intentions.

During the UCs analysis, we collected the initial set of intentions to be fulfilled by
the new method: Elicit, Specify, Communicate, and Verify and Validate QRs. These
intentions correspond to the underlying goals for each activity of the generic develop‐
ment process depicted in Fig. 1: meetings discussing market roadmap and customer
needs for elicitation, backlogs and whiteboards for specification and communication,
and testing for verification and validation. Then, we complemented the set of intentions
identifying the different strategies to fulfill them. The intentions are represented as nodes
and strategies as edges in the requirements map shown in Fig. 2.

Fig. 2. QR management method requirements map

552 L. López et al.

Most of the strategies included in the requirements map are still generic, except for
the strategies to fulfill the Specify QR intention. The Q-Rapids UC providers (see
Sect. 3), pointed out that we can find different levels of requirements in ASD processes,
from high-level requirements (coming from the elicitation activity) to lower-level
requirements (defined in later stages), which are the refined requirements that can be
translated to user stories, features or tasks to be communicated to the development team.
Therefore, refinement is the strategy to specify new lower-level requirements. Prioriti‐
zation is really important in agile environments, requirements need to be arranged by
priority to be fully specified before they are communicated to the development teams.

5 Example: Chunks for QR Prioritization

In this section, we describe the possible strategies for fulfilling the Prioritize QRs inten‐
tion. From the analysis of the UC processes, we identified the following two situations:
the prioritization by urgency (issue-driven) and prioritization based on value (value-
driven). The prioritization by urgency occurs when some blocking situation arises during
the software development process that affects the expected workflow. For example, if
there is a specific problem/issue in the development of a critical feature, the development
team should reprioritize the work focusing on fixing this situation. On the other hand,
when no critical situations should be handled, the organization can prioritize their
requirements with no specific problem to solve.

For the value-driven strategy, we identified an existing method chunk included in
[17] for cost-value requirements prioritization. This value-driven prioritization chunk
proposes having two criteria for evaluating requirements: relative value and relative
cost, which are used for ranking the requirements. Figure 3 reproduces the process map
for this chunk.

Fig. 3. Cost-value requirements prioritization approach chunk [17]

Agile Quality Requirements Management Best Practices Portfolio 553

We did not find any existing method for the Issue-driven prioritization, so we
envisage that we are going to create one. It could be based on the idea of identifying the
features related to the issue, and then the dependencies for this feature, the features would
be ranked depending on the dependency to the critical issue to solve.

According to SME process, we refined the strategy named “by prioritization” into
two: Value-driven prioritization and Issue-driven prioritization.

6 Conclusions and Future Work

Organizations do not use a predefined existing method for QR management. In this paper
we present the initial findings of our research investigating what industrial practices,
from the agile methods, can be used for better management of QRs in agile software
development.

In this paper, we present how we are using Situational Method Engineering (SME)
to identify, complement and classify a portfolio of best practices for agile QR manage‐
ment. SME is used to construct methods that can be customized to fulfill the organization
needs. The first results reported in this paper correspond to the initial set of intentions
that are leading our method requirements elicitation. The guidelines should include best
practices to fulfill four different intentions: QR elicitation, specification, communication,
and verification and validation, and the three strategies for fulfilling the specification
intention: by refinement, documentation and prioritization. So far, we identified two
concrete strategies for the prioritization: the prioritization by urgency (issue-driven) and
prioritization based on value (value-driven), and the paper includes the method chunk
corresponding to the value-driven strategy.

We are in the initial stages of identification of different strategies to achieve identified
intentions. Our future work is to select current strategies and create new ones to produce
a complete set of chunks that will shape our best practices portfolio.

Acknowledgments. This work is a result of the Q-Rapids project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agreement
N° 732253.

References

1. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of Scrum practices within a global company.
In: IEEE International Conference on Global Software Engineering, ICGSE 2008, pp. 222–
226

2. Hamed, A.M.M., Abushama, H.: Popular agile approaches in software development: review
and analysis. In: 2013 International Conference on Computing, Electrical and Electronics
Engineering (ICCEEE), pp. 160–166 (2013)

3. Matharu, G.S., Mishra, A., Singh, H., Upadhyay, P.: Empirical study of agile software
development methodologies: a comparative analysis. ACM SIGSOFT Softw. Eng. Notes
40(1), 1–6 (2015)

4. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)

554 L. López et al.

5. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of the
Conference on the Future of Software Engineering, pp. 35–46 (2000)

6. Schön, E.M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering: a
systematic literature review. Comput. Stand. Interfaces 49, 79–91 (2017)

7. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inform. Syst. J. 20(5), 449–480 (2010)

8. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking requirements and testing
in practice. In: 16th IEEE International Requirements Engineering, RE 2008, pp. 265–270
(2008)

9. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915–929 (2015)

10. Qumer, A., Henderson-Sellers, B.: Construction of an agile software product-enhancement
process by using an Agile Software Solution Framework (ASSF) and situational method
engineering. In: Annual International Computer Software and Applications Conference
(COMPSAC), pp. 539–542 (2007)

11. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich, K.R.,
Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283. Springer,
Heidelberg (2001). doi:10.1007/3-540-45341-5_18

12. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling. Requir.
Eng. J. 4(4), 169–187 (1999)

13. Ralyté, J., Maiden, N., Rolland, C., Deneckère, R.: Applying modular method engineering to
validate and extend the RESCUE requirements process. In: Delcambre, L., Kop, C., Mayr,
H.C., Mylopoulos, J., Pastor, O. (eds.) ER 2005. LNCS, vol. 3716, pp. 209–224. Springer,
Heidelberg (2005). doi:10.1007/11568322_14

14. López, L., Costal, D., Ralyté, J., Franch, X., Méndez, L., Annosi, M.C.: OSSAP – a situational
method for defining open source software adoption processes. In: Nurcan, S., Soffer, P., Bajec,
M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 524–539. Springer, Cham (2016). doi:
10.1007/978-3-319-39696-5_32

15. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art review. J.
Univ. Comput. Sci. 16(3), 424–478 (2010)

16. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method
engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003). doi:10.1007/3-540-45017-3_9

17. Kornyshova, E., Deneckère, R., Rolland, C.: Method families concept: application to
decision-making methods. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E.,
Schmidt, R., Bider, I. (eds.) BPMDS/EMMSAD -2011. LNBIP, vol. 81, pp. 413–427.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21759-3_30

Agile Quality Requirements Management Best Practices Portfolio 555

http://dx.doi.org/10.1007/3-540-45341-5_18
http://dx.doi.org/10.1007/11568322_14
http://dx.doi.org/10.1007/978-3-319-39696-5_32
http://dx.doi.org/10.1007/3-540-45017-3_9
http://dx.doi.org/10.1007/978-3-642-21759-3_30

MultiRefactor: Automated Refactoring to Improve
Software Quality

Michael Mohan(✉) and Des Greer

Queen’s University Belfast, Belfast, Northern Ireland, UK
{mmohan03,des.greer}@qub.ab.uk

Abstract. In this paper, a new approach is proposed for automated software
maintenance. The tool is able to perform 26 different refactorings. It also contains
a large selection of metrics to measure the impact of the refactorings on the soft‐
ware and six different search based optimization algorithms to improve the soft‐
ware. This tool contains both mono-objective and multi-objective search techni‐
ques for software improvement and is fully automated. The paper describes the
various capabilities of the tool, the unique aspects of it, and also presents some
research results from experimentation. The individual metrics are tested across
five different codebases to deduce the most effective metrics for general quality
improvement. It is found that the metrics that relate to more specific elements of
the code are more useful for driving change in the search. The mono-objective
genetic algorithm is also tested against the multi-objective algorithm to see how
comparable the results gained are with three separate objectives. When comparing
the best solutions of each individual objective the multi-objective approach
generates suitable improvements in quality in less time, allowing for rapid main‐
tenance cycles.

Keywords: Search Based Software Engineering · Automated maintenance ·
Refactoring tools · Multi-Objective optimization · Software metrics

1 Introduction

Search based optimization has been used extensively in various areas of engineering
and in recent years has also been applied to software engineering. Search Based Software
Engineering (SBSE) is an area of research that attempts to apply search heuristics to
solve complex problems in software development [1]. Software maintenance is one of
the more expensive parts of the software development cycle [2]. SBSE applied to main‐
tenance, known as Search Based Software Maintenance (SBSM), is used to assist the
manual aspects of maintaining a software project and minimize the time necessary to
do so. To aid with this research various tools [3–11] have been used to assist with the
refactoring of a software project. An increasing amount of SBSM research is looking at
multi-objective techniques [12–20]. Many multi-objective search algorithms are built
with genetic algorithms, as their ability to generate multiple possible solutions is suitable
for a multi-objective approach. Instead of focusing on only one property, the multi-
objective algorithm will be concerned with a number of different objectives.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 556–572, 2017.
https://doi.org/10.1007/978-3-319-69926-4_46

http://orcid.org/0000-0002-9944-5821

The MultiRefactor tool uses refactorings to improve Java projects using metric
functions to guide the search. Many of the other tools available have a limited selection
of refactorings or metrics available to use. The effort has been made to equip the Multi‐
Refactor tool with a large range of available refactorings and metrics to choose from, in
order to promote maximum configurability within the tool. MultiRefactor combines the
ability to use a multi-objective approach with the more practical ability to improve the
source code itself, while checking the semantics of the refactorings being applied so that
the changes in the code are valid with respect to the application domain.

In order to assess the capabilities of the MultiRefactor approach, a set of experiments
have been set up to compare different procedures available within the tool. Experiments
have previously been conducted comparing the other metaheuristic searches [21], so the
experimentation here focuses on the use of the genetic algorithms in the tool and aims
to find out two things. The first aim is to test the available software metrics within the
tool and discover which are more successful. Some metrics may be more useful than
others in measuring the changes made by the available refactorings. These will be more
helpful when trying to analyze the changes made to a solution and as such, a metric
function made from these metrics may assist in creating a more prosperous solution.
The second aim is to compare the mono-objective approach with the multi-objective
search available and see whether using a multi-objective algorithm to automate main‐
tenance of a software solution is as practical as using a mono-objective algorithm. We
wish to test whether, in a fully automated solution, a multi-objective algorithm using
similar settings can yield comparable results across all the objectives, and whether it is
worth the time taken to do so. The following research questions have been formed to
address these concerns, along with a corresponding set of hypotheses and null hypoth‐
eses for each factor investigated in RQ2:

RQ1: Which set of software metrics have the most variability when used with a mono-
objective genetic algorithm to refactor software?
RQ2: Does a multi-objective refactoring approach give comparable results on all
objectives to corresponding mono-objective refactoring runs?
H1: The overall objective improvements in the multi-objective searches are not
significantly worse than the overall objective improvements in the mono-objective
search.
H10: The overall objective improvements in the multi-objective search are signifi‐
cantly worse than the overall objective improvements in the mono-objective searches.
H2: The overall time taken to run the multi-objective search is no higher than the time
taken to run any of the three mono-objective searches.
H20: The overall time taken to run the multi-objective searches is higher than time
taken to run one of more of the three mono-objective searches.

The remaining sections go into more detail about the capabilities of the MultiRe‐
factor approach and showcase its abilities with the set of experimental studies.
Section 2 discusses the design of the tool as well as the refactorings, metrics and search
techniques available. Section 3 explains the details of the experiments conducted. The

MultiRefactor: Automated Refactoring to Improve Software Quality 557

results are presented in Sect. 4 and discussed in Sect. 5. Section 6 presents related liter‐
ature within SBSE and with multi-objective techniques in SBSM. Finally, Sect. 7 gives
the conclusion.

2 MultiRefactor

The MultiRefactor approach1 is in common with those of Moghadam and O’ Cinnéide
[10] and Trifu et al. [7] in using the RECODER framework2 to modify source code in
Java programs. RECODER extracts a model of the code that can be used to analyze and
modify the code before the changes are applied and written to file. The tool takes Java
source code as input and will output the modified source code to a specified folder. The
input must be fully compilable and must be accompanied by any necessary library files
as compressed jar files. The numerous searches available in the tool have various input
configurations that can affect the execution of the search. The refactorings and metrics
used can also be specified. As such, the tool can be configured in a number of different
ways to specify the particular task that you want to run. If desired, multiple tasks can be
set to run one after the other.

A previous study [22] used the A-CMA [9] tool to experiment with different metric
functions but needed to be modified to produce an output. The tool could only produce
bytecode (likewise, the TrueRefactor [3] tool only modifies UML and Ouni et al.’s [17]
approach only generates proposed lists of refactorings) so the MultiRefactor tool was
developed in order to be a fully automated search-based refactoring tool that produces
compilable, usable code as an output. The tool can therefore be used for research
purposes or for maintaining actual projects, as demonstrated in Sect. 3 where open source
projects are used for experimentation. Along with the Java code artifacts, the tool will
produce an output file that gives information on the execution of the task. The output
gives information about the parameters of the search executed, the metric values at the
beginning and end of the search, and details about each refactoring applied. The metric
configurations can be modified to include different weights and the direction of improve‐
ment of the metrics can be changed depending on the desired outcome. These configu‐
rations can be read in a number of ways including as text files or xml files. There are a
few ways the metrics functions can be calculated. An overall metric value can be found
using a weighted metric sum or Pareto dominance can be used to compare individual
metrics within the functions. Figure 1 gives a brief overview of the process used in the
MultiRefactor tool to generate refactored Java code.

1 https://github.com/mmohan01/MultiRefactor.
2 http://sourceforge.net/projects/recoder.

558 M. Mohan and D. Greer

https://github.com/mmohan01/MultiRefactor
http://sourceforge.net/projects/recoder

Fig. 1. Overview of the MultiRefactor process

2.1 Searches

MultiRefactor contains six different search options for automated maintenance, with
three distinct metaheuristic search techniques available. For each search type there is a
selection of configurable properties to signify how the search will run. For the searches
used in this paper (the genetic algorithm and the multi-objective genetic algorithm) the
details of how they are implemented and the configurable properties available are given
below.

The Genetic Algorithm is based on the process of genetic replication. The represen‐
tation used in MultiRefactor is based on the implementation used by Seng et al. [23] and
further adapted by O’ Keeffe and O’ Cinnéide [24]. The search algorithm stores model
information to represent multiple different genomes in a population, avoiding the expen‐
sive memory costs needed to store multiple different models. The initial population is
constructed by applying a selection of random refactorings to the initial model to create
a single genome, and repeating for the required amount. The crossover process uses the
cut and splice technique, generating two offspring from two different parent genomes.
A single, separate point is chosen for each parent in order to facilitate the technique. The
point is chosen at random along the refactoring sequence in each of the parent solutions,
with at least one refactoring present on each side. For each child, the two sets of refac‐
torings are then mixed together. The first set of refactorings in one parent will be applied
first and then the second set of refactorings from the other parent will be applied. Any
inapplicable refactorings during this process will be left out although the child genome
will still be able to be generated using the remaining refactorings. Mutation will choose
from the new offspring and apply a single random refactoring to the end of the refactoring
sequence for that genome. Crossover will be applied at least once during each generation
and may happen more depending on the input parameters specified. Likewise, mutation
will be applied a certain amount of times each generation depending on the parameters
specified, or may not happen at all.

In order to choose parent genomes for crossover, a rank selection operator is used.
Once the mutation process is complete for a generation, the new offspring is combined
with the current population and the solutions are ordered according to fitness. The
genetic algorithm can either store the entire final population of solutions resulting from
the process, or only the fittest solution. The amount of generations specified will deter‐
mine when the search terminates and the population size will determine how many
genomes are generated during initialization and how many will survive each generation.

MultiRefactor: Automated Refactoring to Improve Software Quality 559

The crossover probability and mutation probability (between 0 and 1) determine the
likeliness of these processes being executed during the search. The refactoring range
will determine the initial amount of refactorings applied to the genomes during the
initialization process. For each initial solution, a random amount of refactorings between
one and the refactoring range will be chosen.

The Multi-Objective Genetic Algorithm is largely identical to the simple genetic
algorithm, and contains the same configuration options (although it must store the whole
population when finished). The algorithm is an adaptation of the NSGA-II [25] algorithm
and as such, differs mostly in how the fitness is calculated. The selection operator used
is the binary tournament operator, in order to avoid the need to rely on ranks during
selection. The multi-objective algorithm allows the user to choose multiple metric func‐
tions as separate objectives to guide the search. The genomes in the population will then
be sorted using a non-dominated approach, allowing each objective to be considered
separately. Unlike the approach used by Ouni et al. [17], the refactorings used will be
checked for semantic coherence as part of the search, and will be applied automatically,
eliminating the need to check and apply the refactorings manually and ensuring the
process is fully automated. There is also a many-objective search available in the tool
to handle problems with more than three objectives.

2.2 Refactorings

The refactorings used in the tool are mostly based on Fowler’s list of refactorings [26],
and consist of 26 field-level, method-level and class-level refactorings, as listed in
Table 1. Each refactoring will initially deduce whether a program element can be refac‐
tored. It will make all the relevant semantic checks and return true or false to reflect
whether it is applicable as a refactoring and whether the code will be able to compile
after it is applied. The checks applied will depend on the refactoring, and are important
in order to exclude elements that are not applicable for that refactoring. These checks,
as well as the refactoring process itself, ensure that the refactorings chosen are behavior
preserving, and that the program will still be compilable after the refactorings are applied
to the solution. The RECODER framework allows the tool to apply the changes to the
element in the model. This may consist of a single change or, as in the case of the more
complex refactorings, may include a number of individual changes to the model. Specific
changes applied with the RECODER framework consist of either adding an element to
a parent element, removing an element from a parent element, or replacing one element
with another in the model. The refactoring itself will be constructed using these specific
model changes.

In some cases new elements will be created for use in the refactoring (for instance,
new imports may need to be created when moving an element to a new class), and where
possible, these will be constructed from existing elements to minimize the potential for
issues. The refactorings can be reversed to undo the changes made in the last instance
of the refactoring. This allows the hill climbing and simulated annealing searches to
check neighboring refactorings from the current state and measure their impact on the
program, before deciding which one to use. For some refactorings, choices have to be
made in relation to how specifically the refactoring is applied. The Move Field Down

560 M. Mohan and D. Greer

and Move Method Down refactorings involve moving program elements down to a sub
class. Here, the subclass to be used needs to be chosen before the refactoring is applied.
Likewise, the Extract Subclass refactoring involves picking a subset of the elements of
a class to extract into a new sub class. Here the elements to be moved will need to be
chosen beforehand.

Table 1. Available refactorings in MultiRefactor tool

Field level Method level Class level
Increase Field Visibility Increase Method Visibility Make Class Final
Decrease Field Visibility Decrease Method Visibility Make Class Non Final
Make Field Final Make Method Final Make Class Abstract
Make Field Non Final Make Method Non Final Make Class Concrete
Make Field Static Make Method Static Extract Subclass
Make Field Non Static Make Method Non Static Collapse Hierarchy
Move Field Down Move Method Down Remove Class
Move Field Up Move Method Up Remove Interface
Remove Field Remove Method

The Increase/Decrease Visibility refactorings change a field or method declaration
up or down one level between public, protected, package and private visibility (where
an increase moves towards private and a decrease moves towards public). The Make
Final/Non Final refactorings will either apply or remove the final keyword from a field,
method or class declaration. Likewise, the Make Static/Non Static refactorings are
concerned with added or removing the static keyword from a global field or method
declaration. Also, Make Class Abstract/Concrete will add or remove the abstract
keyword from a class declaration. The Move Down/Up refactorings will either move the
global field or method declaration to its immediate super class or to one of its available
sub classes. Extract Subclass will choose a selection of local field and/or method decla‐
rations from a class that relate to each other as a distinct unit, and will move them to a
newly created sub class. Collapse Hierarchy is applied by taking all the elements of a
class (except any existing constructors for the class) and moving them up into the super
class. It will then remove the class from the hierarchy. The Remove refactorings will
remove the element related to that type of refactoring.

2.3 Metrics

The metrics in the tool are used to measure the current state of a program and deduce
whether an applied refactoring has had a positive or negative impact. Due to the multi-
objective capabilities of MultiRefactor, the metrics can be measured as separate objec‐
tives to be more precise in measuring their effect on a program. A number of the metrics
available in the tool are adapted from the list of metrics in the QMOOD [27] and CK/
MOOSE [28] metrics suites. Table 2 lists the 23 metrics currently available in the tool
and the metrics not adapted from elsewhere are described below.

MultiRefactor: Automated Refactoring to Improve Software Quality 561

Table 2. Available metrics in MultiRefactor tool

QMOOD based metrics CK based metrics Others
Class Design Size Weighted Methods Per Class Abstractness
Number Of Hierarchies Number Of Children Abstract Ratio
Average Number Of
Ancestors

Static Ratio

Data Access Metric Final Ratio
Direct Class Coupling Constant Ratio
Cohesion Among Methods Inner Class Ratio
Aggregation Referenced Methods Ratio
Functional Abstraction Visibility Ratio
Number Of Polymorphic
Methods

Lines Of Code

Class Interface Size Number Of Files
Number Of Methods

Abstractness measures the ratio of interfaces in a project over the overall amount of
classes. Abstract Ratio gives the average ratio of abstract methods (as well as the class
itself if it is abstract) per class. Static Ratio and Final Ratio give the average ratios of
static and final elements per class (static amount looks at classes and methods, whereas
final amount also looks at fields), and Constant Ratio calculates the average ratio of
elements (classes, methods and global fields) that are both static and final pre class.
Inner Class Ratio calculates the ratio of the amount of inner classes over the amount of
classes in a project. Referenced Methods Ratio finds the average ratio of inherited
methods referenced per class. In each class, the metric measures the amount of distinct
external methods (methods defined outside the current class) referenced amongst the
methods of the class. For each class, the ratio of the amount of these methods that are
inherited by the class over the amount referenced is calculated. Visibility Ratio calculates
an average visibility ratio per class. In a class, each method and global field declaration
(as well as the class itself) is given a visibility value, where a private member has a value
of 0 and a public member has a value of 1. The visibility ratio for that class will calculate
the accumulated visibility values over the amount of elements. The smaller this is, the
more inaccessible the elements of the project are. Finally, Lines Of Code gets the overall
amount of lines of code in a project and Number Of Files counts the amount of Java
files in a project.

3 Experimentation

Five open source programs are used in the experimentation to ensure a variety of
different domains are tested. The programs range in size from relatively small to medium
sized, as shown in Table 3. These programs were chosen as they have all been used in
previous SBSM studies and so there is an increased ability to compare the results and
also because they promote different software structures and sizes. The source code and
necessary libraries for all of the programs are available to download in the GitHub

562 M. Mohan and D. Greer

repository for the MultiRefactor tool. The experiments are run on a PC using an Intel
Core i7 CPU and with 8 GB of RAM. The experimentation is split into two parts. The
first experiment measures the effect of each individual metric available on a range of
inputs using the mono-objective genetic algorithm. The second experiment compares
the more effective metrics in a mono-objective set up against a multi-objective approach.
In order to choose configuration parameters for the genetic algorithms used, trial and
error is used to find the most effective settings. First, the crossover and mutation prob‐
abilities are compared using a baseline metric and input. The largest input, JHotDraw,
is used with a metric assumed to be volatile due to it being directly related to the increase/
decrease visibility refactorings, visibility ratio. Nine different tasks are used to compare
crossover and mutation probabilities of 0.3, 0.5 and 0.8. Each task is run five times to
get an average value. As shown in Fig. 2, the most improved configuration has a mutation
value of 0.8 and a crossover value of 0.2.

Table 3. Java programs used in experimentation

Name LOC Classes
JSON 1.1 2,196 12
Mango 3,470 78
Beaver 0.9.11 6,493 70
Apache XML-RPC 2.0 11.616 79
JHotDraw 5.3 27,824 241

Fig. 2. Mean metric improvement values with different crossover and mutation probabilities

Next, the other configuration parameters are compared using these mutation and
crossover values to find the best tradeoff between software improvement and time taken.
27 different tasks are set up to compare different combinations of generation amounts,
population sizes and refactoring ranges. The generation amounts tested are 50, 100 and
200. The refactoring ranges used are likewise and the population sizes used are 10, 50
and 100. Figure 3 shows the metric improvement values for each permutation of the

MultiRefactor: Automated Refactoring to Improve Software Quality 563

generation, population size and refactoring range genetic algorithm settings. Figure 4
compares them against the time taken to run them. As shown in Fig. 4, one configuration
stands out as having a larger increase in quality without having a similar increase in
necessary time. This configuration with 100 generations, a refactoring range of 50 and
a population size of 50 is used for the experimentation. The final settings are shown in
Table 4.

Fig. 3. Metric improvements for different configuration parameters

0
5

10
15
20
25
30
35
40
45
50

-8.67E-18 0.005 0.01 0.015

Time
(m)

Metric Improvement

Fig. 4. Improvements mapped against time taken for different configuration parameters

564 M. Mohan and D. Greer

Table 4. Genetic algorithm configuration settings

Configuration parameter Value
Crossover Probability 0.2
Mutation Probability 0.8
Generations 100
Refactoring Range 50
Population Size 50

In the first experiment, each metric is run as an individual fitness function with a
genetic algorithm using the configuration parameters outlined in Table 4. The metrics
are run with each of the input programs five times, giving an overall average improve‐
ment value. The average values are then compared for each metric to find the most
volatile metrics with the available refactorings in the tool. In the second experiment, a
set of metric functions are constructed using the results from the first, by excluding the
metrics that have the least effect. The relevant metrics are split into three functions in
order to be used as separate objectives in a multi-objective genetic algorithm. To
compare the multi-objective approach with a mono-objective analogue, the three objec‐
tives are used as separate metric functions in different runs of the mono-objective algo‐
rithm. Each objective with the mono-objective search is run six times for each of the
five inputs, giving 30 runs of the search. Likewise, the multi-objective genetic algorithm
with the three objectives is run six times for each input. Therefore, across all four
different search approaches, there are 120 tasks run.

For each objective, the mono-objective genetic algorithm is run using the configu‐
ration parameters from Table 4 for each input, and the average metric improvement is
calculated for the top solution across the different inputs. For the purposes of this study,
we are not interested in whether the multi-objective approach can generate a single
solution with comparable results across all three objectives, but in whether each separate
objective can be comparable. Therefore, the best solutions in the final population for
each individual objective are found and the average improvements are calculated across
the different inputs. In order to aid in finding the top scores for each objective in the
final population of the multi-objective tasks, the search has been modified in this experi‐
ment to update the relevant results files to state that they contain the highest score for
the corresponding objective, circumventing the need to manually check the scores in
each solution.

The metric changes are calculated using a normalization function. The function finds
the amount that a particular metric has changed in relation to its initial value at the
beginning of the task. These values can then be accumulated depending on the direction
of improvement of the metric and the weights given to provide an overall value for the
metric function or objective. A negative change in the metric will be reflected by a
decrease in the overall function/objective value. In the case that an increase in the metric
denotes a negative change, the overall value will still decrease, ensuring that a larger
value represents a better metric value regardless of the direction of improvement. For
the experiments used in this paper, no weighting is applied to any of the metrics used.
The directions of improvement used for each metric is defined in Table 5, where a plus
indicates a metric that will improve with an increase and a minus indicates a metric that

MultiRefactor: Automated Refactoring to Improve Software Quality 565

will improve with a decrease. Equation 1 defines the normalization function used, where
Cm is the current metric value and Im is the initial metric value. Wm is the applied
weighting for the metric and D is a binary constant that represents the direction of
improvement of the metric. n represents the number of metrics used in the function.

∑n

m=o
D.W

m

(
C

m

I
m

− 1
)

(1)

Table 5. Average metric gains

Metrics Direction Average metric gain
Class Design Size + 0
Number Of Hierarchies + 0
Number Of Files + 0
Average Number Of Ancestors + 0.0009662
Number Of Children + 0.0009662
Aggregation + 0.0028846
Functional Abstraction + 0.00878788
Number Of Polymorphic Methods + 0.00640564
Abstractness + 0.0034176
Inner Class Ratio + 0.0028846
Lines Of Code − 0.0034388
Data Access Metric + 0.07267708
Direct Class Coupling − 0.011253
Cohesion Among Methods + 0.0335982
Number Of Methods − 0.047224824
Weighted Methods Per Class − 0.07551
Abstract Ratio + 0.06006748
Referenced Methods Ratio + 0.02487444
Visibility Ratio − 0.02984252
Class Interface Size + 0.10246376
Static Ratio − 0.17167356
Final Ratio + 0.60217196
Constant Ratio + 0.24485396

4 Results

Table 5 gives the average quality gains conceived by each individual metric across all
of the inputs. They are grouped into metrics that have a similar level of volatility. Three
of the metrics, Class Design Size, Number Of Hierarchies and Number Of Files, showed
no improvement at all. These metrics are more abstract, relating to the project design
and class measurements as opposed to other metrics measuring more low level attributes
like methods and fields. The most volatile metrics captured in the bottom group all relate

566 M. Mohan and D. Greer

to more low level aspects of the code. The metric functions used in experiment two were
taken from the metric groups derived in Table 5. The least volatile metrics from the top
two groups were left out and the remaining metrics were split into three individual
objectives to be used in a multi-objective setup by using the three remaining groupings
of metrics to each represent an objective. These particular groupings are informed by
the average quality gains, with similarly volatile metrics being grouped together,
although these groupings are used more as example objectives for the current experi‐
ment. These three groups of metrics may be combined to represent an overall improve‐
ment function for a generalized measure of software quality, with the average quality
gain values across numerous different input programs informing its composition.
Table 6 gives the list of metrics associated with each objective.

Table 6. Individual objectives derived from metric experimentation

Objective 1 Objective 2 Objective 3
Class Interface Size Data Access Metric Aggregation
Static Ratio Direct Class Coupling Functional Abstraction
Final Ratio Cohesion Among Methods Number Of Polymorphic

Methods
Constant Ratio Number Of Methods Abstractness

Weighted Methods Per Class Inner Class Ratio
Abstract Ratio Lines Of Code
Referenced Methods Ratio
Visibility Ratio

Figure 5 and Table 7 compare the average objective values with the separate mono-
objective runs against the values generated with the multi-objective approach. The
values for objective one were the most disparate with the largest ranges of results. The
mono-objective approach for objective 1 and objective 2 yielded improvements 1.2 and
1.3 times greater than the multi-objective approach, respectively. The other objective
was slightly better with the multi-objective approach, though both improvement values
where relatively small. The objective values for the two search approaches with the first
and second objective were compared using a two-tailed Wilcoxon rank-sum test (for
unpaired data sets) with a 95% confidence level (α = 5%). The multi-objective values
were found to not be significantly lower than the mono-objective values in either case.

The execution times for the two approaches were also compared to analyze how
much more time is needed in the multi-objective approach to handle the three objectives
simultaneously. Figures 6 and 7 compare the overall times taken for the mono-objective
and multi-objective approaches. In Fig. 6, the overall times taken for each individual
objective of the mono-objective search are compared with the overall time taken to run
the three objectives in the multi-objective approach. Figure 7 compares the overall time
taken to run all three objectives in the mono-objective approach against the multi-objec‐
tive counterpart. It stacks the times for each separate objective in the mono-objective
search to show the influence of each one on the time. The average time taken for the
mono-objective algorithm to run for each objective was 3 h, 46 min and 17 s. For the

MultiRefactor: Automated Refactoring to Improve Software Quality 567

multi-objective approach to run for all the inputs it took 3 h, 14 min and 49 s, a reduction
against the mono-objective average of 31 min and 28 s. For the mono-objective approach
to run the inputs for all three objectives would have taken over 11 h, meaning 71.3% of
time is saved running one multi-objective search against running three separate mono-
objective searches.

Fig. 6. Overall time taken to run each objective
of the mono-objective approach and the multi-
objective approach

Fig. 7. Overall time taken for each approach,
with each objective of the mono-objective
approach stacked on top of each other

Table 7. Individual objective metric gains for mono-objective and multi-objective optimization

Objective 1 Objective 2 Objective 3
Mono-Objective 0.8335831 0.2732774 0.028064733
Multi-Objective 0.672707033 0.210753367 0.028501433

Fig. 5. Mean metric gains for each objective in a mono-objective and multi-objective setup

568 M. Mohan and D. Greer

5 Discussion

Of the metrics tested, three of the more abstract metrics showed no improvement.
Although class level refactorings do exist in the MultiRefactor tool, they will be less
likely to be applied due to the conditions necessary to apply them without modifying
the program functionality. Likewise, the most volatile metrics all relate to more low
level aspects of the code. It seems that these types of software metric may be more useful
for driving change in an automated refactoring system due to the increased likelihood
that structure level refactorings will be able to affect them.

To address RQ2 and the answer the hypotheses constructed, statistical tests were
used to decide whether the data sets were significantly different. While the other objec‐
tive was better with the multi-objective approach, the statistical test was run for the first
and second objectives where the multi-objective approach was worse. The values in the
multi-objective approach were not significantly worse than in the mono-objective
approach for either objective, thus rejecting the null hypothesis H10. In none of the three
cases did the multi-objective approach take longer to run than the mono-objective
approach, thus rejecting the null hypothesis H20. The experiments conducted suggest
that this fully automated approach may be feasible and can allow for multiple separate
objectives to be considered in a single run within an acceptable amount of time, although
the improvement of a subset of these objectives may take a hit.

6 Related Work

The term SBSE was first coined by Harman and Jones in 2001 [1]. Further research in
the area was identified, as well as open problems in 2007 [29]. Clarke et al. [30] discussed
ways to apply metaheuristic search techniques to software engineering problems and
proposed other aspects of software engineering to apply them to in 2003. There are
literature reviews on the subject [31, 32]. Numerous tools have been proposed that can
automate the maintenance process of software refactoring to some extent, although many
are limited, and not all are fully automated. Many of the proposed tools isolate design
smells in the code using detection rules [3–8]. Most of the tools using this approach have
focused on a limited amount of detection rules to isolate certain types of design smell,
due to the uncertainty involved in constructing these metric based detection rules. Other
tools use metrics to determine ideal refactorings to make to the code that will improve
the quality and remove design smells as a by-product of the process [9–11].

More recent research has explored the use of multi-objective techniques. White et al.
[12] used a multi-objective approach to attempt to find a tradeoff between the function‐
ality of a pseudorandom number generator and the power consumption necessary to use
it. De Souza et al. [13] investigated the human competitiveness of SBSE techniques in
four areas of software engineering, and used mono-objective and multi-objective genetic
algorithms in the study. Ouni et al. [14] created an approach to measure semantics pres‐
ervation in a software program when searching for refactoring options to improve the
structure, by using the NSGA-II search. Ouni et al. [15] then explored the potential of
using development refactoring history to aid in refactoring a software project by using

MultiRefactor: Automated Refactoring to Improve Software Quality 569

NSGA-II. Ouni et al. [17] also expanded upon the code smells correction approach of
Kessentini et al. [16] by replacing the genetic algorithm used with NSGA-II. Mkaouer
et al. [18] experimented with combining quality measurement with robustness using
NSGA-II to create solutions that could withstand volatile software environments.
Mkaouer et al. [19, 20] also used the successor algorithm to NSGA-II, NSGA-III, to
experiment with automated maintenance. These studies only suggest refactoring
sequences to be applied, and do not check the applicability of the refactorings.

7 Conclusion

In this paper we have presented the MultiRefactor approach and associated automated
refactoring tool containing both mono-objective and multi-objective search techniques.
Six separate search techniques are available as well as 23 different metrics and 26 refac‐
torings. The tool works with Java source code (as well as accompanying library files)
as input and is a fully automated tool that can generate refactored, compilable Java code
as an output, along with information about the refactoring process. The tool is highly
configurable, allowing the user to set up different tasks with different sets of metrics to
use and different refactorings to activate. The available search techniques have numerous
configurable properties to be set, influencing how the search process will work. No other
known refactoring tool currently allows the user to use multi-objective techniques to
improve the software without having to manually apply the refactorings.

Two experiments were run to test various aspects of the approach. The configuration
parameters of the genetic algorithm were tested to analyze the effect that they can have
on the refactoring process and to deduce what settings can have a better tradeoff between
metric improvement and time taken. Each of the available metrics were then tested with
the genetic algorithm across a number of real world, open source Java programs to find
the least volatile metrics interacting with the available refactorings. It was found that
the more low level metrics produced greater average improvements compared to the
more abstract, class level metrics. The results of this experiment were then used to
construct metric functions to compare a mono-objective refactoring approach against a
multi-objective approach. The more volatile metrics were split into three separate objec‐
tives to see if the multi-objective approach could generate comparable results to the
mono-objective counterparts. The individual mono-objective approaches gave better
results for two out of the three objectives but the multi-objective approach managed to
generate suitable improvements for all of the objectives and took less time than each
mono-objective approach, with the single multi-objective run taking 71% less time than
the three combined mono-objective runs.

Acknowledgments. The research for this paper contributes to a PhD project funded by the
EPSRC grant EP/M506400/1.

570 M. Mohan and D. Greer

References

1. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43, 833–
839 (2001). doi:10.1016/S0950-5849(01)00189-6

2. Bell, D.: Software Engineering: A Programming Approach. Addison Wesley, Boston (2000)
3. Griffith, I., Wahl, S., Izurieta, C.: TrueRefactor: an automated refactoring tool to improve

legacy system and application comprehensibility. In: 24th International Conference on
Computer Application in Industry and Engineering, ISCA 2011 (2011)

4. Li, H., Thompson, S.: Refactoring support for modularity maintenance in Erlang. In:
Proceedings of the 2010 10th IEEE Working Conference on Source Code Analysis and
Manipulation, SCAM 2010, pp. 157–166. IEEE (2010)

5. Di Penta, M.: Evolution doctor: a framework to control software system evolution. In: 9th
European Conference on Software Maintenance and Reengineering, CSMR 2005, pp. 280–
283. IEEE (2005)

6. Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A.: JDeodorant: identification and removal of
type-checking bad smells. In: 12th European Conference on Software Maintenance and
Reengineering, CSMR 2008, pp. 329–331 (2008)

7. Trifu, A., Seng, O., Genssler, T.: Automated design flaw correction in object-oriented
systems. In: 8th European Conference on Software Maintenance and Reengineering, CSMR
2004, pp. 174–183. IEEE (2004)

8. Dudziak, T., Wloka, J.: Tool-Supported Discovery And Refactoring Of Structural
Weaknesses In Code (2002)

9. Koc, E., Ersoy, N., Andac, A., Camlidere, Z.S., Cereci, I., Kilic, H.: An empirical study about
search-based refactoring using alternative multiple and population-based search techniques.
In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer and Information Sciences II, pp. 59–
66. Springer, London (2011). doi:10.1007/978-1-4471-2155-8_7

10. Moghadam, I.H., Cinnéide, M.Ó.: Code-Imp: a tool for automated search-based refactoring.
In: 4th Workshop on Refactoring Tools, WRT 2011, pp. 41–44 (2011)

11. Fatiregun, D., Harman, M., Hierons, R.M.: Evolving transformation sequences using genetic
algorithms. In: IEEE International Workshop on Source Code Analysis and Manipulation,
SCAM 2004, pp. 65–74. IEEE Computer Society (2004)

12. White, D.R., Clark, J., Jacob, J., Poulding, S.: Searching for resource-efficient programs: low-
power pseudorandom number generators. In: Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2008, pp. 1775–1782 (2008)

13. De Souza, J.T., Maia, C.L., De Freitas, F.G., Coutinho, D.P.: The human competitiveness of
search based software engineering. In: 2nd International Symposium on Search Based
Software Engineering, SSBSE 2010, pp. 143–152. IEEE (2010)

14. Ouni, A., Kessentini, M., Sahraoui, H., Hamdi, M.S.: Search-based refactoring: towards
semantics preservation. In: 28th IEEE International Conference on Software Maintenance,
ICSM 2012, pp. 347–356 (2012)

15. Ouni, A., Kessentini, M., Sahraoui, H.: Search-based refactoring using recorded code
changes. In: Proceedings of the 2013 17th European Conference on Software Maintenance
and Reengineering, CSMR 2013, pp. 221–230 (2013)

16. Kessentini, M., Kessentini, W., Erradi, A.: Example-based design defects detection and
correction. In: 2011 IEEE 19th International Conference on Program Comprehension, ICPC
2011, pp. 1–32 (2011)

17. Ouni, A., Kessentini, M., Sahraoui, H., Boukadoum, M.: Maintainability defects detection
and correction: a multi-objective approach. Autom. Softw. Eng. 20, 47–79 (2013). doi:
10.1007/s10515-011-0098-8

MultiRefactor: Automated Refactoring to Improve Software Quality 571

http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1007/978-1-4471-2155-8_7
http://dx.doi.org/10.1007/s10515-011-0098-8

18. Mkaouer, W., Kessentini, M., Bechikh, S., et al.: Software refactoring under uncertainty: a
robust multi-objective approach. In: Proceedings of the Companion Publication of the 2014
Annual Conference on Genetic and Evolutionary Computation, GECCO 2014 (2014)

19. Mkaouer, W., Kessentini, M., Bechikh S, et al.: High dimensional search-based software
engineering: finding tradeoffs among 15 objectives for automating software refactoring using
NSGA-III. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, GECCO 2014 (2014)

20. Mkaouer, W., Kessentini, M., Kontchou, P., et al.: Many-objective software remodularization
using NSGA-III. ACM Trans. Softw. Eng. Methodol. 24(3) (2015). Article No. 17

21. O’Keeffe, M., Cinnéide, M.Ó.: Search-based software maintenance. In: Proceedings of the
10th European Conference on Software Maintenance and Reengineering, CSMR 2006, pp.
251–260 (2006)

22. Mohan, M., Greer, D., McMullan, P.: Technical debt reduction using search based automated
refactoring. J. Syst. Softw. 120, 183–194 (2016). doi:10.1016/j.jss.2016.05.019

23. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings for
improving the class structure of object-oriented systems. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 1909–1916 (2006)

24. O’Keeffe, M., Cinnéide, M.Ó.: Getting the most from search-based refactoring. In:
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2007, pp. 1114–1120 (2007)

25. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). doi:
10.1109/4235.996017

26. Fowler, M.: Refactoring: Improving The Design Of Existing Code. Pearson Education, Fort
Collins (1999)

27. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Softw. Eng. 28, 4–17 (2002). doi:10.1109/32.979986

28. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20, 476–493 (1994)

29. Harman, M.: The current state and future of search based software engineering. In: Future of
Software Engineering, FOSE 2007, pp 342–357 (2007)

30. Clarke, J., Dolado, J.J., Harman, M., et al.: Reformulating software engineering as a search
problem. IEE Proc. Softw. 150, 1–25 (2003)

31. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45, 1–64 (2012). doi:
10.1145/0000000.0000000

32. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search Based Software Engineering:
Techniques, Taxonomy, Tutorial. In: Meyer, B., Nordio, M. (eds.) LASER 2008-2010.
LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25231-0_1

572 M. Mohan and D. Greer

http://dx.doi.org/10.1016/j.jss.2016.05.019
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1145/0000000.0000000
http://dx.doi.org/10.1007/978-3-642-25231-0_1

Transition from Plan Driven to SAFe R©:
Periodic Team Self-Assessment

Mohammad Abdur Razzak1(B), John Noll2, Ita Richardson1,
Clodagh Nic Canna3, and Sarah Beecham1

1 Lero, The Irish Software Research Centre, University of Limerick, Limerick, Ireland
{abdur.razzak,ita.richardson,sarah.beecham}@lero.ie

2 University of East London, University Way, London E16 2RD, UK
j.noll@uel.ac.uk

3 Ocuco Ltd., Blanchardstown Corporate Park, Dublin D15 N5DX, Ireland
clodagh.niccanna@ocuco.com

Abstract. Context: How to adopt, scale and tailor agile methods
depends on several factors such as the size of the organization, busi-
ness goals, operative model, and needs. The Scaled Agile Framework
(SAFeR©) was developed to support organizations to scale agile practices
across the enterprise.

Problem: Early adopters of SAFeR© tend to be large multi-national
enterprises who report that the adoption of SAFeR© has led to significant
productivity and quality gains. However, little is known about whether
these benefits translate to small to medium sized enterprises (SMEs).

Method: As part of a longitudinal study of an SME transitioning
to SAFe we ask, to what extent are SAFeR©practices adopted at the team
level? We targeted all team members and administrated a mixed method
survey in February, 2017 and in July, 2017 to identify and evaluate the
adoption rate of SAFeR© practices.

Results: Initially in Quarter 1, teams were struggling with PI/Release
health and Technical health throughout the organization as most of the
teams were transitioning from plan-driven to SAFeR©. But, during the
transition period in Quarter 3, we observed discernible improvements in
different areas of SAFe practice adoption.

Conclusion: The observed improvement might be due to teams merely
becoming more familiar with the practices over-time. However, manage-
ment had also made some structural changes to the teams that may
account for the change.

Keywords: SAFe · Scrum · Inter-team coordination · Global soft-
ware engineering · metrics · Process assessment · Software process
improvement

1 Introduction

Software development is still driven by Infinite Diversity in Infinite Combina-
tions [1]. As a consequence, practitioners ask themselves why they need to adopt a
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 573–585, 2017.
https://doi.org/10.1007/978-3-319-69926-4_47

574 M.A. Razzak et al.

practice, and how to scale a practice. This leads to two challenges: first, recognis-
ing the purpose of a practice and second, scaling practices. Scaling agile continues
to be a challenge in software development where the associated growth calls for
strong coordination among teams as well as within the project [2–4]. Scaling
agile in globally distributed projects adds to the complexity [5] since “Distance”
creates new challenges for successful scaling of agile practices.

A number of frameworks have been proposed for scaling agile across the
enterprise and the Scaled Agile Framework (SAFe R©) is one of the most adopted
of these models according to the Annual State of Agile Report [6]. SAFe R© has
gained rapid attention amongst practitioners and is an important choice for
organisations scaling agile development. Yet, the literature indicates that SAFe R©

is aimed at large-scale organizations. However, small-medium-enterprises (SMEs)
are also interested in SAFe R© as it provides an enterprise roadmap for adopting
agile. As the adoption of SAFe R© increases, little research exists to identify how
SAFe R© is adopted in SMEs. We conducted a study to measure the adoption of
SAFe R© recommended practices at the team level over time, in order to address
the question How can the Scaled Agile Framework be implemented in an SME?.

This paper is organised as follows: Sect. 2 provides a background to scaling
agile frameworks, Sect. 3 presents the method we used in our empirical study,
while Sect. 4 summarises our key findings and Sect. 5 discusses the implications
of these results. Section 6 gives some conclusions to the study.

2 Background

Agile Scaling Frameworks. Scaling agile covers the movement from a few agile
teams to multiple agile development teams, where the number of teams can be
in the hundreds [7]. Scott Ambler [7] pointed out several factors that need to
be considered when scaling agile such as team size, geographical distribution,
entrenched culture, system complexity, legacy systems, regulatory compliance,
organizational distribution, governance and enterprise focus. In general, produc-
tivity and quality are the two main concerns of any organization when adopting
a scaling agile paradigm.

The choice of scaling agile framework which a company adopts or how the
framework is tailored will depend on the organization’s size or on “what works”
based on their own business goals, operative model, and needs. The Agile Scaling
Knowledgebase (ASK)1 developed a matrix of different Agile frameworks namely
Scrum-of-Scrum (SoS)2, Large Scale Scrum (LeSS)3, Scaled Agile Framework
(SAFe)4, Disciplined Agile Delivery (DAD)5, Spotify Model6, Nexus7, and Scrum

1 http://www.agilescaling.org/home.html.
2 https://www.agilealliance.org/glossary/scrum-of-scrums/.
3 https://less.works.
4 http://www.scaledagileframework.com.
5 http://www.disciplinedagiledelivery.com.
6 http://blog.crisp.se/2012/11/14/henrikkniberg/scaling-agile-at-spotify.
7 https://www.scrum.org/resources/nexus-guide.

http://www.agilescaling.org/home.html
https://www.agilealliance.org/glossary/scrum-of-scrums/
https://less.works
http://www.scaledagileframework.com
http://www.disciplinedagiledelivery.com
http://blog.crisp.se/2012/11/14/henrikkniberg/scaling-agile-at-spotify
https://www.scrum.org/resources/nexus-guide

SAFeR© Team Self-Assessment 575

at Scale8. This matrix shows that SAFe R©, launched in 2012 by Dean Leffing-
well [8] focuses on large enterprises and takes a scaled approach to agile adoption.

In comparison to (SAFe R©), the other scaling agile frameworks (e.g.; SoS,
LeSS, Nexus, Spotify) provide few artefacts, roles, and events in addition to
Scrum. SAFe R© provides more roles, events, artefacts and practices compared
to other frameworks that enables SAFe R© to scale on an organization level. The
11th Annual State of Agile report [6] reported that, SAFe R© is the most used
scaling method used by 28% respondents. In contrast, LeSS, DAD, and Nexus
are reported to have a significantly lower take-up rate.

Scaled Agile Framework (SAFe R©). SAFe R© is essentially a container for
several existing agile approaches that is scalable and modular, and is primarily
developed for organizing and managing agile practices in large enterprises. These
qualities allow an organization to apply SAFe R© in a way that suits their needs.
Early adopters of SAFe R© report that the application of the practices contained
in this framework led to significant productivity and quality improvements [9].
The literature also claims that SAFe R© adoption is widespread including sectors
such as manufacturing, software, and financial services [5,9–11]. SAFe R© 4.0 is
organized into four layers: (1) Portfolio – Funding and coordinating programs,
(2) Value Stream – Used when a single Agile Release Train (ART) cannot deliver
the full solution, (3) Program – Contains 5–12 teams working towards a common
goal, and (4) Team – Teams, which practice Scrum and/or eXtreme Program-
ming and/or Kanban.

In SAFe R©, all teams are part of the Agile Release Train (ART) and ARTs
are the central construct of the program level. Teams are collectively responsible
for defining, building and testing software in fixed-length iterations and releases.
The team events (Backlog Refinement, Sprint Planning, Sprint Review) are an
integral part of SAFe R© and help to reduce coordination overhead between teams.
These teams typically consist of 7–9 members and teams operate on identical
cadence and iteration lengths in order to provide better integration among teams
[11]. But, adoption of only Scrum at the team level could lead to additional
problems in task synchronization. To resolve this issue, SAFe R© introduces the
Release Planning meeting to synchronize team tasks after every five iterations [8].
All teams on an ART are synchronized and integrated via common iterations that
provide a valuable increment of new functionality. At the end of each iteration,
the team perform a system demo for ART integration.

3 Methods

The Case Organization. The company we studied, Ocuco, is a medium-sized
Irish-based software company that develops practice and lab management soft-
ware for the optical industry. Ocuco employs approximately seventy staff mem-
bers in its software development organization, including support and manage-
ment staff. Ocuco’s annual sales approach 20 million from customers across
the British Isles, continental Europe, Scandinavia, North America, and China.
8 https://www.scruminc.com/scrum-scale-case-modularity/.

https://www.scruminc.com/scrum-scale-case-modularity/

576 M.A. Razzak et al.

Data Collection. As part of a company-wide longitudinal study, we admin-
istered a SAFe self-assessment survey9 to 70 team members in February, 2017
and in July, 2017. However, before the actual survey, two of the authors took a
participant-observer role by sitting in on each team’s Scrum “ceremonies.” One
of us observed TeamA, daily, from January, 2016 to March, 2017, and TeamB,
from May, 2017 to June, 2017; another of us observed TeamC, daily, from Novem-
ber, 2015 to July, 2016. We observed daily standups, sprint planning meetings,
backlog grooming sessions, and sprint retrospectives. Due to the fact that the
team members are distributed across Europe and North America, the observa-
tions were made by joining the video conference session for each ceremony. The
observers also conducted semi-structured interviews with each member of the
team he was observing, following an interview protocol [12].

Table 1. List of participants.

Role Quarter 1
(n = 26)

Quarter 3
(n = 19)

Project manager (Scrum master) 9 7

Developer 9 6

Quality assurance 2 3

Development manager 1 –

Product manager 2 –

Director of eng. 1 –

Product owner 1 3

Unclear 1 –

The SAFe Self-Assessment survey comprises 25 questions that were sent to
participants in an Excel Spreadsheet format. Each question has both a quantita-
tive element (Likert scale), and an optional qualitative element (comment) that
allowed participants to explain their ranking if needed. The Likert scale has six
possible response options (ranging from ‘never’ to ‘always’ as shown in Table 2)
to measure the frequency of practice use according to each area (Product Own-
ership Health, PI/Release Health, Sprint Health, Team Health, and Technical
Health).

In Quarter 1, we received 28 responses out of 70. Two responses were excluded
as they were incomplete, resulting in a final set of 26, and in Quarter 3 we
received 19 responses. The results represent a range of responses from seven
roles. Table 1 shows a breakdown of the roles of all 26 and 19 respondents (with
one role unclear).

Data Analysis. To analyze the collected survey data, firstly, we extracted all
qualitative and quantitative data. Secondly, we aggregated the 26 and then the
9 http://www.scaledagileframework.com/metrics/#T4.

http://www.scaledagileframework.com/metrics/#T4

SAFeR© Team Self-Assessment 577

Table 2. SAFe Team Self-Assessment scale.

Value 0 1 2 3 4 5

Meaning Never Rarely Occasionally Often Very Often Always

19 data points from Quarter 1 and Quarter 3 to get an overall view of all team
members and to measure the frequency of practices used by teams according to
each area (Product Ownership Health, PI/Release Health, Sprint Health, Team
Health, and Technical Health) within the organization. Finally, we compared
and contrasted across the two data sets to identify any changes over time.

4 Findings

In this section, we present results of the qualitative and quantitative SAFe Team
Self-Assessment. Figure 1 shows the median score across all participants. Of
these, PI/Release health and Technical health were the most weak areas in Quar-
ter 1 but responses to the repeated exercise undertaken in Quarter 3 indicates
that there were marked improvements.

Fig. 1. SAFe Team Self-Assessment (values: 0 - Never, 1 - Rarely, 2 - Occasionally,
3 - Often, 4 - Very Often, 5 - Always).

Product Ownership Health. Product Ownership means ensuring the success
of the product, providing support, making a difficult decision when necessary,
and considering the consequences of that decision [13]. In Scrum, the on-site
customer role is fulfilled by a Product Owner, who represents the interests of the
customer and end-users on a development team. Product Owners are responsible
for communication between the customer and development teams [14]. Product
Owners also maintain the product backlog, a list of user “stories” that define

578 M.A. Razzak et al.

Table 3. Product Ownership Health.

Question Stage Mediana Modea

Q1. Product Owner facilitates user story
development, prioritization and negotiation

Quarter 1 3 3

Quarter 3 4 4

Q2. Product Owner collaborates proactively
with Product Management and other
stakeholders

Quarter 1 4 4

Quarter 3 4 4

Q3. User Stories are small, estimated,
functional and vertical

Quarter 1 2, 5 2, 3

Quarter 3 3 4

Q4. Product owner facilitates development of
acceptance criteria which are used in planning,
review and story acceptance

Quarter 1 3 4

Quarter 3 4 4

Q5. Teams refine the backlog every sprint Quarter 1 3 3

Quarter 3 4 5
aValues: 0 - Never, 1 - Rarely, 2 - Occasionally, 3 - Often, 4 - Very Often,
5 - Always

requirements for the project. Table 3 shows the aggregated two stages result of
Product ownership health at Ocuco.

Table 3 shows that there are three practices improved “Often” to “Very
Often”, one “Occasionally” to “Often”, and one unchanged before and during
operation.

According to quantitative data, at Ocuco (Table 3), the Product Owners use
“User Stories” “Very Often” but turning to the associated qualitative results,
one of the Product Owners mentioned,

. . .We don’t really use User Stories. We do a lot of prioritization and negoti-
ation. We do a slightly more defined conversation/specification and communicate
directly with developers.

As a rationale for not using User Stories, a developer explained,
. . .This is a customer focused project. There is very little user story devel-

opment in it. All we have are big long documents and specifications. However,
they [Product Owners] did a good job in prioritizing and negotiating with the
customer.

This statement results in our concluding that the Product Owner “Very
Often” facilitates prioritization, and negotiation (in Table 3, Q1), and not user
story development.

But, on the other hand, a Project Manager who also acts as a Scrum Master
said,

. . .There is not a lot of negotiation going on for our team as the estimates
are done in advance. Due to nature of contract we don’t work with User Stories.
We have deliverables that have been defined as part of the contract.

PI/Release Health. In SAFe R©, the Program Increment (PI) is the largest
plan-do-check-adjust learning cycle that comprises PI planning, PI execution,
the system demo, and the Inspect & Adapt workshop respectively. Table 4 shows
the aggregated result of PI/Release health at Ocuco.

SAFeR© Team Self-Assessment 579

Table 4. PI/Release Health.

Question Stage Mediana Modea

Q1. Team participates fully in Release
Planning and Inspect and Adapt

Quarter 1 3 3

Quarter 3 4 4

Q2. Product backlog for the PI is itemized and
prioritized

Quarter 1 3 3

Quarter 3 4 4

Q3. Teams proactively interact with other
teams on the train as necessary to resolve
impediments

Quarter 1 3 3

Quarter 3 3 3

Q4. Team participates in system demo every
two weeks, illustrating real progress towards
objectives

Quarter 1 3 3

Quarter 3 4 5

Q5. Team reliably meet 80–100% of
non-stretch PI Objectives

Quarter 1 3 3

Quarter 3 3 3
aValues: 0 - Never, 1 - Rarely, 2 - Occasionally, 3 - Often, 4 - Very Often,
5 - Always

In Table 4, three practices improved from “Often” to “Very Often”, and two
practices were unchanged. In response to release planning, we received contra-
dictory statements from two teams. The Project Manager said,

. . .We do not have a formal release planning, instead we plan continuously
But, a Product Owner said,
. . .All releases are planned. The whole team participates and know what is

required for the version, and what can wait for the next in some cases.

Sprint Health. In Scrum, a sprint is a set period of time during which specific
work has to be done and made ready for review. During the planning meeting,
the Product Owner and Agile team agree upon set of tasks needs to accomplish
within a sprint based on the team bandwidth. Finally, the Product Owner defines
the acceptance criteria for each assigned task to be completed at the end of a
sprint. Table 5 shows the aggregated result of Sprint Health at Ocuco.

Table 5 shows, teams “Often” calculate velocity to plan for the upcoming
sprint. Additionally, teams “Very Often” plans the sprint collaboratively, effec-
tively and efficiently, but one of the team members said,

. . . Sprints are not planned as such as we are at the tail end of the dev cycle.
Almost all open tickets are go into the sprint.

Though teams “Often” calculate velocity to plan for the upcoming sprint,
but due to lack of proper estimation, team cannot meet the sprint goals.

. . .We are often behind on doing the estimates, not taking the needed time
or missing information enough to do a proper estimate

A Project Manager identified, “Over commitment” and QA “Speed” are hin-
dering the team in meeting the sprint goals. But, a Developer said,

580 M.A. Razzak et al.

Table 5. Sprint Health.

Question Stage Mediana Modea

Q1. Team plans the sprint collaboratively,
effectively and efficiently

Quarter 1 4 4

Quarter 3 4 3,5

Q2. Team always has clear sprint goals, in
support of PI objectives, and commits to
meeting them

Quarter 1 3 3

Quarter 3 4 3

Q3.Teams apply acceptance criteria and
definition of done to story acceptance

Quarter 1 3 3

Quarter 3 3 4

Q4. Team has a predictable, normalized
velocity which is used for estimating and
planning

Quarter 1 2.5 2

Quarter 3 3 2,3,4

Q5. Team regularly delivers on their sprint
goals

Quarter 1 3 3

Quarter 3 3 3
aValues: 0 - Never, 1 - Rarely, 2 - Occasionally, 3 - Often, 4 - Very Often,
5 - Always

. . . It’s a bit up and down, sometimes we succeed. It is like it is become com-
mon to always introduce new ‘critical’ issues into current sprint, instead of letting
them wait for the next sprint planning.

Team Health. There are three key roles defined in the Scrum development
approach: the self-organizing development Scrum Team, the Scrum Master, and
the Product Owner [15]. The Scrum Master is responsible for facilitating the
development process, ensuring that the team uses the full range of appropriate
agile values, practices and rules [15]. The Scrum Master conducts daily coordi-
nation meetings and removes any impediments that the team encounters [15].
Table 6 shows the aggregated result of Team health at Ocuco.

According to Table 6, in Ocuco teams “Always” hold collaborative, effective
and efficient planning meeting. Daily meetings are in place where all members
participate, status is given clearly, issues are raised, obstacles are removed, and
information exchanged among team members. Team members are self-organized,
respect each other, “Always” help each other to complete sprint goals, manage
interdependencies, and stay in-sync with each other.

Furthermore, team members are self-organized, respect each other, and help
each other to complete sprint goals. A Product Owner states,

. . .Teams work well together and everyone is providing their part to making
the best product. We just don’t always agree on, which is good!

The Teams “Always” hold collaborative, effective and efficient planning and
daily meetings where all members, including remote team members, participate,
status is given clearly, issues are raised, obstacles are removed and information
exchanged with other team members. But, the teams rarely hold retrospectives
after each sprint:

SAFeR© Team Self-Assessment 581

Table 6. Team Health.

Question Stage Mediana Modea

Q1. Team members are self-organized, respect
each other, help each other complete sprint
goals, manage interdependencies and stay
in-sync with each other

Quarter 1 4 4

Quarter 3 5 5

Q2. Scrum Master attends Scrum of Scrums
and interacts with RTE as appropriate

Quarter 1 3 4

Quarter 3 3 5

Q3. Stories are iterated through the sprint with
multiple define-build-test cycles (e.g. the sprint
is not a waterfalled)

Quarter 1 3 4

Quarter 3 3 4

Q4. Team holds collaborative, effective and
efficient planning and daily meetings where all
members participate, status is given clearly,
issues are raised, obstacles are removed and
information exchanged

Quarter 1 4 4

Quarter 3 5 5

Q5. Team holds a retrospective after each
sprint and makes incremental changes to
continually improve its performance

Quarter 1 3 4

Quarter 3 4 5
aValues: 0 - Never, 1 - Rarely, 2 - Occasionally, 3 - Often, 4 - Very Often,
5 - Always

. . . I can only recall one retrospective during the last 2 years, it was done after
a release and not after each sprint.

Technical Health. The Technical Health part of the survey helps a technol-
ogy transformation team assess the current state of the technical maturity of a
program/product line or organization. It can also be used later to have Agile
teams assess their technical health and see if improvements have happened. The
dimensions of the Technical Health part of the survey are: Continuous Delivery,
Architecture, Technical Excellence, and Metrics. Table 7 shows the aggregated
result of Technical health at Ocuco.

Interestingly, as Table 7 shows, teams “Rarely” adopt automated acceptance
testing and unit testing as part of the story definition of done (DoD)10 [15].

Most of the teams at Ocuco struggle with technical health, especially “test
automation” and “refactoring”. Throughout the organization none of the teams
perform automated testing, but some teams are planning to adopt automatic test
strategies. On the other hand, a Developer mentioned, there is no refactoring at
all, because,

. . . the customer keeps raising new requirements that contradicts with their
previous requirements. Therefore, we kept adding new stuff while keeping the old
one there because they might be worked on by a different developer, and we don’t
really know if they should just be removed/refactored. As a result, I can see quite
10 A list of criteria which must be met before a product increment “often a user story”

is considered “done”.

582 M.A. Razzak et al.

Table 7. Technical Health.

Question Stage Mediana Modea

Q1. Teams actively reduce technical debt in
each sprint

Quarter 1 3 2

Quarter 3 4 5

Q2. Team has clear guidance and
understanding of intentional architecture
guidance, but is free and flexible enough to
allow emergent design to support optimal
implementation

Quarter 1 3 3,4

Quarter 3 4 4

Q3. Automated acceptance tests and unit tests
are part of story DoD

Quarter 1 0 0

Quarter 3 1 0

Q4. Refactoring is always underway Quarter 1 2.5 3

Quarter 3 3 5

Q5. CI, build and test automation
infrastructure is improving

Quarter 1 2 0

Quarter 3 3 0
aValues: 0 - Never, 1 - Rarely, 2 - Occasionally, 3 - Often, 4 - Very Often,
5 - Always

a lot of functionality in the system that previously does the job but now it doesn’t
do anything and nobody is going to take them out as time goes by.

5 Discussion

In software development, teams tailor their practices based on the metrics used
to measure their system and evaluate their performance [8]. Agile teams con-
tinuously assess and improve their processes via a structured or periodic self-
assessment as the first value of Agile Manifesto is to prefer “Individuals and
interactions over processes and tools”. By applying self-assessment, a software
development team can understand its current process maturity, identify practices
to improve, and practices that are missing.

Improving towards expectation? The comparison shown in Table 8
(based on the Likert-scale results presented in Fig. 1) incorporating team
improvement over time (5 months). In general, we observed a convincing
improvement in four areas: Product Ownership Health, PI/Release Health, Team
Health, and Technical Health but there was no discernible improvement in Sprint
Health over the time.

There appear to be several reasons for these observed improvements. As part
of the company-wide longitudinal study three new dedicated Product Owners
have been appointed as Management recognised that this is a full time job. One
new Product Owner has prior knowledge about SAFe R©. According to Ocuco’s
Director of Development, “we realized our Product Owners were being pulled in
different directions by their multiple responsibilities, and as a result their teams
were drifting away from the product roadmap. So we decided to hire additional

SAFeR© Team Self-Assessment 583

Table 8. Comparison.

Area Quarter 1 (n= 26)
February, 2017

Quarter 3 (n = 19)
July, 2017

Improvement
5 months

Product Ownership Health 3 4 +1

PI/Release Health 3 4 +1

Sprint Health 3 3 0

Team Health 3 4 +1

Technical Health 2.5 3 +0.5

staff so the Product Owners could focus solely on Product Ownership and keep
the long-term product vision in-focus.” This could a reason for the improvement
Product ownership health as well as PI/Release health (Product backlog for the
PI is “Very Often” itemized and prioritized).

There is some improvement in technical health moving from between “Occa-
sionally”/“Often” to “Often”. According to Ocuco’s Director of Development,
“One of our new teams is adopting pure SAFe, to include automated test strategy
and continuous improvement technique.” That could be an another reason we
are observing better results in Quarter 2 compared to Quarter 1. Ocuco’s Direc-
tor of Development also mentioned, some teams are building their experience
and learning over time.

A major goal for Ocuco is to standardise their processes across all teams
through transitioning to the SAFe R© framework. They are starting to achieve
this by tailoring SAFe R© practices through modeling their “as-is” processes and
identifying which practices need to be modified or added to achieve their target
set of comprehensive “to-be” processes. Though SAFe R© is primarily developed
for organizing and managing agile practices in large enterprises it is clear that
SME’s are also interested in adopting SAFe R©. However, SAFe R© requires more
roles, events, artefacts and practices compared to other frameworks to enable
SAFe R© to scale on an enterprise level. But, in SMEs it would be challenging if
not impossible to adopt all the different ceremonies as well as fill all dedicated
role such as Release Train Engineer (RTE). So, SME’s need to consider which
of the many ceremonies they want to adopt, and which roles they need to fill
when adopting SAFe R©. They may also need to look at the various levels of Team
Health and consider what level they want to reach that they feel is acceptable,
when assessing how well they are doing against the SAFe R© self assessment survey
results.

6 Conclusions

In this study, we employed a mixed method approach to identifying and evaluat-
ing the adoption rate of agile practices as well as health levels of different process
areas within a medium-sized Irish-based software company. Initially, we found
that teams were struggling with PI/Release and Technical health throughout the

584 M.A. Razzak et al.

organization as most of the teams were transitioning from plan-driven to SAFe R©.
But, during the transition over time, we observed a convincing improvement.

SAFe R© provides more roles, events, artefacts and practices compared to other
frameworks that aim to support organizations to scale on an enterprise level.
But, in smaller organizations, adopting the many different ceremonies as well as
dedicated roles may not be possible or necessary to meet their business goals. The
results gained from the self-assessment at the Team level, may be satisfactory
(there are only two practices in Quarter 3 that were reported as being used
“Always”, most reached a level of being used “Often”). Therefore, as a result
of our longitudinal study, we suggests that successful SAFe R© implementation
teams need to tailor the many SAFe R© practices to understand the:

Purpose of adopting a practice –“Why” – the Team needs to under-
stand “why” they need adopt agile practices.

Implementation of a practice –“How” – the Team needs to learn “how”
to implement a practice to get the best out of it by tailoring SAFe R© practices.

Acknowledgments. We thank the members of TeamA, TeamB, and TeamC for their
generous and thoughtful collaboration on this study, and for allowing us to study their
software development efforts. This work was supported, in part, by Science Foundation
Ireland grant 13/RC/2094 to Lero - the Irish Software Research Centre (www.lero.ie).

References

1. Kuhrmann, M., Fernández, D.M.: Systematic software development: a state of the
practice report from Germany. In: 2015 IEEE 10th International Conference on
Global Software Engineering (ICGSE), pp. 51–60. IEEE (2015)

2. Abrahamsson, P., Conboy, K., Wang, X.: “Lots done, more to do”: the current
state of agile systems development research (2009)

3. Maples, C.: Enterprise agile transformation: the two-year wall. In: Agile Confer-
ence, AGILE 2009, pp. 90–95. IEEE (2009)

4. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. In: Third
International Conference on Extreme Programming and Flexible (2014)

5. Paasivaara, M.: Adopting safe to scale agile in a globally distributed organization.
In: Proceedings of the 12th International Conference on Global Software Engineer-
ing, pp. 36–40. IEEE Press (2017)

6. VersionOne: 11th annual state of agile report. https://explore.versionone.com/
state-of-agile/versionone-11th-annual-state-of-agile-report-2. Accessed 07 July
2017

7. Ambler, S.W.: Agile software development at scale. In: Meyer, B., Nawrocki, J.R.,
Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 1–12. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85279-7 1

8. Leffingwell, D.: Scaled agile frameworkR©4.0 (2015). http://scaledagileframework.
com/. Accessed 15 Apr 2016

9. Laanti, M.: Characteristics and principles of scaled agile. In: Dingsøyr, T., Moe,
N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP,
vol. 199. Springer, Cham (2014)

www.lero.ie
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
http://dx.doi.org/10.1007/978-3-540-85279-7_1
http://scaledagileframework.com/
http://scaledagileframework.com/

SAFeR© Team Self-Assessment 585

10. Pries-Heje, J., Krohn, M.M.: The safe way to the agile organization. In: Proceedings
of the XP2017 Scientific Workshops, XP 2017, pp. 18:1–18:3. ACM, New York
(2017)

11. Turetken, O., Stojanov, I., Trienekens, J.J.: Assessing the adoption level of scaled
agile development: a maturity model for scaled agile framework. J. Softw. Evol.
Process 29(6) (2017)

12. Beecham, S., Noll, J., Razzak, M.A.: Lean global project interview protocol (2017).
http://bit.ly/2nPxaXH

13. Raithatha, D.: Making the whole product agile – a product owners perspective. In:
Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536,
pp. 184–187. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73101-6 33

14. Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer involvement
on self-organizing agile teams. Inf. Softw. Technol. 53(5), 521–534 (2011)

15. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice
Hall, Upper Saddle River (2002)

http://bit.ly/2nPxaXH
http://dx.doi.org/10.1007/978-3-540-73101-6_33

Beneficial and Harmful Agile Practices
for Product Quality

Sven Theobald(&) and Philipp Diebold

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{sven.theobald,philipp.diebold}@iese.fraunhofer.de

Abstract. There is the widespread belief that Agile neglects the product
quality. This lack of understanding how Agile processes assure the quality of the
product prevents especially companies from regulated domains from an adop-
tion of Agile. This work aims to identify which Agile Practices contribute
towards product quality. Hence, data from a survey study is analyzed to identify
Agile Practices which are beneficial or harmful for the quality of the product.
From 49 practices that were used in the survey so far, 36 were perceived to have
a positive impact on product quality, while four practices were rated as being
harmful. The results enrich understanding of how product quality can be
achieved in Agile, and support selection of practices to improve quality.

Keywords: Agile � Agile practices � Product quality � Impacts

1 Introduction and Motivation

Agile already is a well-established software development approach, at least in
non-regulated domains [1]. Its benefits such as more flexibility and a faster time to
market are known. That is why companies from regulated domains such as the auto-
motive or aerospace domains also want to benefit from these advantages. One adoption
barrier is the fear of loosing compliance with regulations or certifications, caused by the
widespread belief that Agile neglects the quality of the product. Boehm et al. [2] used a
dichotomy between agility and discipline, which shows that Agile is not always seen as
a disciplined approach. The Agile Manifesto demands: “Individuals and interactions
over processes and tools” [3]. This can be misinterpreted as having no defined process.
Hence, the quality of the product is often expected to be unpredictable.

This perception is one of many reasons why such companies stick to their tradi-
tional approaches with defined and rigorous verification and validation phases. While
more flexibility and a faster reaction time to changes are one of the main drivers for
Agile adoption [1], dealing with emerging requirements and architectures makes it
difficult to plan quality assurance activities upfront and to achieve certifications.

On the other side, Agile processes are reported to produce higher quality [1, 4], e.g.,
based on focusing on a restricted number of most important requirements which are
implemented with highest quality. Both different views could be explained by the
insight that only the way of assuring quality is different: classical approaches rely on

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 586–593, 2017.
https://doi.org/10.1007/978-3-319-69926-4_48

heavy verification and validation activities, while Agile approaches incorporate the
realization of quality into the process.

Instead of doing some specific practices (formal reviews, acceptance at certain stage
gates, etc.), the contribution towards quality is spread over several practices throughout
the whole development process. Therefore it is more difficult to identify which prac-
tices are contributing towards quality and to evaluate if a set of practices is sufficient to
provide the same trust in the quality as is achieved in traditional approaches. For this
reason, it is necessary to understand the contribution of Agile Practices on quality.

Commonly experienced in practice is the phenomenon that people adopt and adapt
the method Scrum as their new development process during their Agile transition [1, 5].
Scrum is only supposed to be the minimal frame which has to be filled with further
development practices. It therefore lacks a description of technical practices which are
necessary for a disciplined software engineering. Knowing the effects of those single
practices allows to evaluate and improve such a development method. In many cases, a
combination of methods and practices is needed, e.g., the use of Scrum [6] enhanced by
technical practices from XP [7].

The aim of this work is therefore to identify which elements of Agile, namely
which Agile Practices, affect product quality. We use the preliminary results from a
survey to analyze which of the practices were perceived by the survey participants as
having an impact on product quality.

In Sect. 2, we shortly present the survey which is used as data source, as well as the
research questions and analysis approach of this work. The results are presented and
discussed in Sect. 3, and we finally conclude the paper together with some suggestions
for future work (Sect. 4).

2 Research Method

In this work, data from a survey study was analyzed. We first present the background
information about this survey study to clarify the origin of the data. Afterwards, the
research goal is defined and research questions are derived. Finally, the data analysis
approach is discussed.

2.1 Background

The data used for analysis in this work originate from an ongoing survey study [8]. In
this study, the experiences of study participants concerning the impacts of Agile
Practices on certain process improvement goals are collected. This is done using A0
posters with a printed matrix of Agile Practices and improvement goals. Participants
can place sticky dots in the fields of the matrix, describing that there is an impact of the
practice (row) on the improvement goal (column). This impact is rated with the help of
color-coding on a scale from strongly positive (green) to strongly negative (red). More
information about the research method is provided in [8].

In mid of July, the database contained 1846 data points collected at 17 venues with
both academia and industry participants (see Table 1). The aggregated results are
available on our website [9]. The subset of this data included and discussed in this

Beneficial and Harmful Agile Practices for Product Quality 587

paper will be those Agile Practices with a (positive or negative) impact on product
quality, which is only one of several improvement goals considered in this study.

2.2 Research Goal

To overcome the lack of understanding how Agile assures quality, this study aims to
identify Agile Practices that have an effect on product quality. The goal of this study
was formulated using the GQM template [10]:

Identify Agile Practices with respect to their effect on product quality in the context
of an analysis of preliminary data from a survey study from the perspective of Agile
practitioners and researchers.

Based on this goal, three research questions (RQs) are defined:

RQ1: Which Agile Practices have a positive effect on product quality?
RQ2: Which Agile Practices have a negative effect on product quality?
RQ3: Which Agile Practices have been rated without a common agreement?

These three research questions help to identify the beneficial and harmful practices,
as well as those practices where the impact is varying depending on the context or the
implementation of the practice.

Table 1. Events, number of collected impacts and participants’ information.

Events (ordered by date) Impacts (on
Quality/Overall)

Participants
(Background/No. of)

Agile in automotive 2016 15 118 Practitioners 170
Profes 2016 0 143 Mixed 150
OOP 2017 24 76 Practitioners 1500
Lean IT management 2017 7 78 Practitioners 100
AgileXChange 1-2017 31 112 Practitioners 80
AgileLab copenhagen 2017 19 123 Practitioners 50
Q-Rapids meeting 2017 23 83 Mixed 20
Agile in automotive USA 2017 20 99 Practitioners 90
CESI 2017 (@ICSE 2017) 4 22 Practitioners 10
XP 2017 99 513 Mixed 280
ScrumDay 2017 9 68 Practitioners 250
EASE 2017 9 101 Academics 90
AgileXChange 2-2017 13 79 Practitioners 80
SPA 2017 4 26 Practitioners 50
Agile Austria 2017 33 156 Practitioners 250
Agile on the beach 2017 6 37 Practitioners 400
ICSSP 2017 1 12 Academics 35

588 S. Theobald and P. Diebold

2.3 Analysis

The existing data (1846 impacts) [9] was filtered to only include the 317 impacts on
product quality, which is the improvement goal in the focus of this analysis. The
impacts were collected at 16 different events. The reason why one event was missing is
that for the first two events, product quality was not included on the poster. At one of
those events, the Agile in Automotive (2016), a participant added product quality to the
poster in order to report his experiences and we integrated product quality as a standard
answer on future posters afterwards. To facilitate analysis, the scale (strongly positive,
positive, negative, strongly negative) was transformed into a scale of +2, +1, −1, −2.
This enables analysis based on descriptive measures such as the average value.

3 Results and Discussion

In this chapter, the results of the analysis are presented and discussed along the research
questions, followed by a general discussion of results and threats to validity.

From the list of all 49 Agile Practices included in this study, eight practices were
not set in relation with product quality at all. The other 41 practices were rated as
having an impact on product quality: There were four practices with a negative impact
(average <= 0.5), and 36 with a positive impact (average > = 0.5), while one practice,
Backlog, received mixed ratings and ended up with a neutral average.

3.1 RQ 1 – Beneficial Practices

Overall, 36 of the 49 Agile Practices were perceived to have a positive impact on
product quality. Since some of them only received a low number of ratings so far, the
trust in the average value is not given for certain practices. Therefore, we provide only
those Agile Practices with a more reliable average value in Table 2.

Table 2. Most beneficial Agile Practices with at least 10 ratings

Beneficial agile practice Average Count +2 +1 −1 −2

Test driven development 1.93 15 14 1
Pair programming 1.83 12 10 2
Continuous Integration 1.77 13 10 3
Cross-functional team 1.75 28 21 7
Definition of done 1.75 24 18 6
Definition of ready 1.75 12 9 3
Unit testing 1.64 14 9 5
Refactoring 1.58 19 14 4 1
Backlog grooming 1.57 14 10 3 1
Iteration reviews 1.47 19 9 10
Product owner 1.40 15 8 6 1
Retrospective 1.36 14 9 5
Scrum master 1.23 13 7 4 2

Beneficial and Harmful Agile Practices for Product Quality 589

For this selection, only practices which received at least 10 ratings were considered
in order to increase the reliability of the data. All practices from this list origin from
Scrum or XP, most likely because these are the Agile Methods which are most fre-
quently used and known. Sorted by the average rating starting with the practice with
the highest average, the list of all other beneficial practices is provided in the following,
including the average rating and the number of ratings the practice received:

3.2 RQ 2 – Harmful Practices

Four practices ended up with a negative average, most of them based on a limited
amount of ratings (see Table 3). It can be seen that velocity is perceived to have a
negative contribution towards product quality. Participants rated this impact four times
as strongly negative, and three times as negative. In addition, burn charts received a
strongly negative rating (three times). The strongly negative ratings for those two
practices came all from the XP 2017 conference.

A possible reason for the negative rating of velocity and burn charts could be a
misuse of the increased transparency of those practices: If the burn chart shows that the
end of the iteration comes closer, or when the current velocity is not as high as in
previous iterations, quality is neglected in order to be able to show a better perfor-
mance. This happens especially when Management uses burn charts or velocity to track
the efficiency of the team or even individuals, sometimes also to decide on incentives.
This aspect was also mentioned by one of the study participants, when we asked him
why he reports a negative impact.

Collective Ownership (2/6), Continuous Delivery (2/3), Product Canvas (2/1),
Product Vision board (2/2), Work-in-Progress Limit (2/2), Iterative development
(1.75/4), Peer Reviews (1.67/3), Self-organizing team (1.67/3), Story Mapping
(1.67/3), Personas (1.6/5), Architecture Sprint (1.5/2), Automated Builds (1.5/6), Min-
imum Viable Product (1.5/6), Shippable Increment (1.5/8), User stories (1.43/7), Cod-
ing Styleguides (1.4/5), Sign Up (1.4/5), Communities of Practice (1.33/6), Daily
Meeting (1.33/6), Prototyping (1.25/4), Sprint Zero (1/1), Team-Based Estimation
(1/1), Relative Estimation (0.5/2).
Name (Average/Count)

Table 3. Practices with negative impact on product quality

Harmful agile practice Average Count +2 +1 −1 −2

Taskboard −1 1 1
Velocity −1.57 7 3 4
Burn chart −2 3 3
Release planning −2 1 1

590 S. Theobald and P. Diebold

For the other two practices, we cannot tell whether they really have a negative
impact or whether these are opinions by individuals. For further analysis, we have to
wait for more data.

3.3 RQ 3 - Ambiguous Practices

While most practices were rated with a clear trend, there are some practices whose
ratings are ambiguous. A clear trend means that the practice received either only
positive values or only negative ones. In Fig. 1, we list all practices that received
ambiguous ratings (some positive and some negative ratings).

For all practices with a clear trend, we can assume that, given enough data points,
this practice is always beneficial or always harmful for a certain improvement goal, in
our case product quality. We expect the participants of our survey to have various
context, so we assume that these practices are applicable in different contexts with
similar results. Additionally, practices are often adapted to be useable in a certain
context or because of lack of knowledge, e.g., most Scrum practices are used with
adaptations [5]. It seems, given enough data points, that a practice with a clear trend is
always showing certain benefits or drawbacks, independent of the individual imple-
mentation and context.

But if experiences or perceptions of the practices’ impacts vary, these practices
could be dangerous to adapt or use in certain contexts. Therefore, it is necessary to be
aware of those practices during introduction. It is necessary to identify whether those
ambiguous ratings are outliers or whether the impact of the practice is really unsteady
and context-dependent.

From the data in Fig. 1, the negative ratings of the first four practices (Refactoring,
Backlog Grooming, Shippable Increment, Product Owner) can be considered as being
individual outliers. For the last two practices (Relative Estimation and Backlog), not
enough data is available to make any assumption. The Scrum Master received two
negative ratings, which tells us that more than one person perceived this Agile role to

1

1

7

8

6

10

14

4

6

1

3

4

1

2

1

1

1

1

1

0% 20% 40% 60% 80% 100%

Backlog

Relative Estimation

Scrum Master

Product Owner

Shippable Increment

Backlog Grooming

Refactoring

+2 +1 -1 -2
Fig. 1. Practices with ambiguous impact on product quality: Distribution of the amount of
ratings over the scale (+2, + 1,−1,−2).

Beneficial and Harmful Agile Practices for Product Quality 591

have a negative contribution towards product quality. Without knowing the reason why
those participants reported this harmful impact, we cannot tell whether the role was
implemented wrongly, or whether there are certain aspects to this role which really
affect quality negatively.

3.4 Discussion

The fact that most practices (36 out of 49) were reported as beneficial shows that
quality is an important aspect in Agile development. Beside the practices that assure
quality directly, such as Unit Testing, Test-Driven Development, Pair Programming
and (Code) Reviews, there were other practices contributing towards a higher quality in
different ways:

The responsibility for the quality of the product is shared with the help of Agile
Practices, such as Collective Ownership, Sign Up/Pull principle, or Cross-functional
Team. There is a shared understanding of the quality demands, supported by practices
such as Coding Styleguides, Definition of Ready and Definition of Done. Another
important aspect how Agile development achieves better quality is to prioritize
requirements and focus to only build what the user really needs with a higher quality,
using Minimum Viable Product, Product Owner, User Stories, and Personas. To do
this, fast feedback cycles (e.g., with Iteration Reviews, Shippable Increment) and
continuous improvement (e.g. with Retrospectives) are needed.

All those different ways of incorporating quality into the process indicate that Agile
strives for a culture of focusing on the product quality. Discipline is demanded, also to
select the right development practices. Only implementing Scrum as the development
process might neglect quality, since beneficial practices from other methods like XP are
missing.

Not many practices were rated negatively. The only alarming practices were the use
of burn charts and velocity, which are frequently used together with Scrum. Therefore,
many practitioners are affected and should check whether their implementations of
these practices have a negative impact on quality in their specific context.

The threats identified in [8] discuss the validity of the data. The main threat is
converting the ordinal scale to an interval scale for easier comparison using the average
value. Therefore the average values do not have a high explanatory power. Instead of
considering the detailed ranking, only the tendency towards positive or negative impact
should be considered. The proposed practices are by no means complete, since not all
available Agile Practices were covered by the survey. Only a limited amount of ratings
were given so far, so the validity of results needs to be improved by increasing the size
of the data set, which is continuously done with the ongoing survey.

4 Conclusion and Future Work

An analysis of the preliminary results [8] a survey study [8] showed that there exist
many Agile Practices which contribute towards product quality. Out of the 49 practices
used in the survey, 36 practices were reported as beneficial (RQ1). On the other hand,
only four practices were reported with only a few ratings as being harmful for product

592 S. Theobald and P. Diebold

quality (RQ2). Practitioners should especially be careful with the practice Velocity.
There is very little disagreement on which practices contribute positively or negatively
(RQ3). Thus, both academics and practitioners seem to have a common perception of
the impacts of Agile Practices. Despite the assumed individual context variations and
adaptations of practices, most practices show a stable impact.

The identified practices help to better understand how Agile addresses product
quality. This knowledge can be used to select dedicated Agile Practices for adoption.
Knowing which practices contribute to product quality facilitates a mapping of Agile
Practices and certain regulations in order to identify how Agile approaches fulfill the
requirements of such standards concerning the achievement of high quality products.

Since this is a continuous survey study, we rely on support by event organizers or
event visitors who want to place our poster to collect experiences from the participants.
This is your chance to contribute to the Agile community to increase our understanding
of the impacts of Agile Practices. With a growing number of reported impacts, the
validity of our analysis can be increased.

Additionally, qualitative statements have to be collected to provide some potential
reasons for the reported impacts, e.g. in case studies or interviews. Further, the
high-level improvement goals can be further refined to provide insights. In the case of
product quality, future work could investigate which products or product parts and
which refined quality aspects are addressed.

Acknowledgements. This work was partly funded by the German Federal Ministry of Educa-
tion and Research in a Software Campus project (BMBF 01IS12053) and as part of the research
project ProKoB (www.prokob.info) (BMBF 01IS15038).

References

1. VersionOne: 10th Annual State of Agile Development Survey (2016)
2. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed,

Portable Documents. Addison-Wesley Professional, Boston (2003)
3. Beck, K., et al.: Manifesto for Agile Software Development (2001)
4. Komus, A., et al.: Status quo agile 2014 (2014)
5. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What do practitioners vary in using

Scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212,
pp. 40–51. Springer, Cham (2015). doi:10.1007/978-3-319-18612-2_4

6. Schwaber, K., Sutherland, J.: The Scrum Guide (2013)
7. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-

sional, Boston (2000)
8. Diebold, P., Galster, M., Rainer, A., Licorish, S.A.: Interactive posters: an alternative to

collect practitioners’ experience. In: Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering, pp. 230–235. ACM (2017)

9. Diebold, P., Theobald, S.: Collected Impacts of Agile Practices (2017). http://impact.iese.
fhg.de/data.php. Accessed 11 July 2017

10. Basili, V., Caldiera, G., Rombach, D.: The goal question metric approach. Encycl. Softw.
Eng. 2(1994), 528–532 (1994)

Beneficial and Harmful Agile Practices for Product Quality 593

http://www.prokob.info
http://dx.doi.org/10.1007/978-3-319-18612-2_4
http://impact.iese.fhg.de/data.php
http://impact.iese.fhg.de/data.php

Posters and Tool Demonstration Papers

Visual Programming Language for Model Checkers
Based on Google Blockly

Seiji Yamashita1, Masateru Tsunoda1(✉), and Tomoyuki Yokogawa2

1 Department of Informatics, Kindai University, 3-4-1 Kowakae,
Higashiosaka City, Osaka 577-8502, Japan

tsunoda@info.kindai.ac.jp
2 Faculty of Computer Science and Systems Engineering, Okayama Prefectural University,

111 Kuboki, Soja City, Okayama, 719-1197, Japan
t-yokoga@cse.oka-pu.ac.jp

Abstract. Recently, model checkers, such as SPIN, have played an important
role in the enhancement of software reliability. To promote the use of model
checkers, we propose a visual programming language for SPIN model checkers
for educational use. Our prototype is based on Google Blockly.

Keywords: Model checking · Visual programming · Promela

1 Introduction

Recently, formal verification methods, such as model checking, have gained attention
for their role in the enhancement of software reliability. Model checking can verify the
correctness of a software system by checking whether the software system satisfies the
given properties. SPIN [2] is one of the most successful implementations of the model
checking algorithm. To promote the use of model checking, it is necessary to teach
students how to express the system as a modeling language by using model-checking
tools. To help introduce programming languages to students, visual programming
languages, such as Scratch [4], are often used in education. In this paper, we propose a
visual programming language for SPIN model checkers. The proposed language is
developed based on Google Blockly. By using our language, students can express the
model without typing any code. The proposed language has the following advantages:

• Students’ difficulty in understanding a peculiar syntax of the modeling language for
a model checker is reduced.

• The education cost (time and human resources) to correct syntax errors in the models
written by students is reduced.

These advantages ease the teaching of model checking in a software engineering
course. Note that we assumed a visual programming language for model checkers in
this study for educational use and not for professional use.

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 597–601, 2017.
https://doi.org/10.1007/978-3-319-69926-4_49

2 Google Blockly

Google Blockly is a library for building visual programming editors. Demos that work
on a Web browser are provided on the website [1]. We selected a Code Editor of the
demos to convert a visualized program into a textual program such as JavaScript.
Figure 1 shows a screenshot of the Code Editor. A user can create a program by placing
statement blocks. By switching the language tab (such as JavaScript), the editor gener‐
ates a source code described using the selected language. We can define new custom
blocks and associate a source code with those blocks.

Fig. 1. Screenshot of Code Editor created using Google Blockly

The utilization of Google Blockly on model checking education gives us the
following advantages:

• We can easily create visual programming editors for various model checkers.
• By partially concealing specifications of the programming language, students can

easily understand the language.
• Students can create a visualized program on a Web browser. By preparing a model

checker on a Web server, students need not install additional software.

Although there exist some visualized tools for model checkers [3], these advantages
can only be acquired by adopting Google Blockly.

3 Prototype of Visualized Promela

By using Google Blockly, we implemented basic statements of Promela, which is a
specification language for SPIN. We provided a prototype of visualized Promela,
including its fundamental syntax, as we assumed that a teacher may introduce the SPIN
model checker to students for few hours.

When a variable is added to the visual programming editor, its declaration is auto‐
matically added. In our prototype, the variable type is fixed to integer. When a statement
is added, the declaration of the process is automatically added. Figure 2 illustrates a
visualized code and the generated Promela code.

598 S. Yamashita et al.

int x;

active proctype P() {
 x = 1;
}

Fig. 2. Example of the declaration of a variable and process

Figure 3 illustrates a loop statement. In this example, the variable x is iteratively
incremented. In our prototype, a given condition is restricted to true because the condi‐
tion is not an exit condition but an execution condition. That is, the condition is almost
the same as an if statement, and can be written by using the statement. The break state‐
ment is used to finish the loop.

 do
 :: true-> x = x + 1;
 od;

Fig. 3. Example of loop statement 3

Figure 4 illustrates an if statement. In the example, when the value of variable x is
0, it is set to 1. When the value is 2, it is set to 2. When the value does not satisfy the
conditions, the value is set to 0. As shown, the reading and writing conditions are easier
to implement by using the visual programming language than by using Promela for
beginners.

 if
 :: (x == 0) -> x = 1;
 :: (x == 1) -> x = 2;
 :: else -> x = 0;
 fi;

Fig. 4. Example of if statement

The easiest way to check the correctness of the program is by using an assertion.
Figure 5 illustrates an assertion in a loop statement. A Boolean expression in the assertion
represents a specification, which should be satisfied when the assertion is called. In the
example, when x = 0 (or >0) before the loop, the assertion x > 0 is always satisfied in
the loop. If the assertion is evaluated to false, SPIN returns an assertion error.

Visual Programming Language for Model Checkers 599

 do
 :: true->
 x = x + 1;
 assert{x > 0};
 od;

Fig. 5. Example of assertion statement

A linear temporal logic (LTL) expression can also be used for checking the correct‐
ness of the program. An LTL formula can express temporal specifications such as “x is
always larger than 0.” LTL has temporal and Boolean operators. We implemented the
following temporal operators: globally, finally, next, and until. We implemented the
following Boolean operators: not, and, or, implication, and equivalence. We provided
these LTL operators as blocks in our prototype. Figure 6 illustrates the block notation
of the LTL formula expressing “x will eventually become 5.”

 ltl p0 {<>(x == 5)};

Fig. 6. Example of an LTL statement

Preliminary evaluation: Two subjects used the prototype, and we measured the time
taken for developing a very simple code with and without the prototype. The time taken
to develop the code by using the tools was not very different. This is because the
searching blocks consumed more time. Therefore, we should improve the grouping
blocks (In Fig. 1, left-most texts indicate block groups). In contrast, a code developed
by a subject included syntax errors. The result suggests that our prototype suppresses
such errors and reduces time to correct the errors of a lecture.
Other functions: Our prototype comprises the “save” and “SPIN” buttons. The “save”
button can be used to save the visualized Promela code, and the “SPIN” button can be
used to execute the code and obtain a verification result by SPIN. These functions are
implemented by sending generated codes to a Web server. When the “SPIN” button is
clicked, the generated code is also copied to a textbox. Users can modify this code before
execution.

Our prototype is available on http://www.info.kindai.ac.jp/~tsunoda/vpl.

Acknowledgments. This research was partially supported by Japan Society for the Promotion
of Science (JSPS) [Grants-in-Aid for Scientific Research (C) and (A) (No. 16K00113 and No.
17H00731)].

References

1. Google Blockly demos. https://blockly-demo.appspot.com/static/demos/index.html
2. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)

600 S. Yamashita et al.

http://www.info.kindai.ac.jp/~tsunoda/vpl
https://blockly-demo.appspot.com/static/demos/index.html

3. Leue, S., et al.: v-Promela: a visual, object-oriented language for SPIN. In: Proceedings of
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC), pp.
14–23 (1999)

4. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67 (2009)

Visual Programming Language for Model Checkers 601

Improving Communication in Scrum Teams

Marvin Wyrich1(B), Ivan Bogicevic2(B) , and Stefan Wagner2

1 AEB GmbH, Stuttgart, Germany
marvin.wyrich@aeb.com

2 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{ivan.bogicevic,stefan.wagner}@informatik.uni-stuttgart.de

Abstract. Communication in teams is an important but difficult issue.
In a Scrum development process, we use meetings like the Daily Scrum to
inform others about important problems, news and events in the project.
When persons are absent due to holiday, illness or travel, they miss
relevant information because there is no guarantee that the content of
these meetings is documented. We present a concept and a Twitter-like
tool to improve communication in a Scrum development process. We take
advantage out of the observation that many people do not like to create
documentation, but they do like to share what they did. We used the tool
in industrial practice and observed an improvement in communication.

Keywords: Scrum · Agile communication · Activity tracking

1 Introduction

Communication is an essential part of the work in any Scrum team. Many of
the everyday events and activities are communicated orally in the Daily Scrum.
Ratanotayanon et al. [2] even show in a case study that knowledge transfer over
a longer period of time can be managed with extensive communication alone.
However, the larger a team gets, the more difficult is the communication. One
of the most important challenges in large Scrum teams is inter-team coordina-
tion [1]. Coordination requires communication both between teams and within
a team. Important events that occur during development could be relevant to
others and are often not sufficiently documented or communicated [3]. Software
developers do not update relevant documents, do not see their benefits and wish
more automatic generation of documented content [4,5].

1.1 Problem Statement

Every day, a lot of activities and events happen in agile teams and some of them
are really important for other team members to know. Especially when decisions
are taken, new tasks emerge or unexpected incidents happen and team members
are not adequately informed, it can become problematic. The Daily Scrum allows
members of a Scrum team to keep up with the latest activities of their colleagues.

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 602–605, 2017.
https://doi.org/10.1007/978-3-319-69926-4_50

http://orcid.org/0000-0003-2957-7527
http://orcid.org/0000-0002-5256-8429

Improving Communication in Scrum Teams 603

Fig. 1. happening allows individual members of a Scrum team to efficiently track their
activities. The tool then provides a summary of the whole team’s activities.

The problem is that not every team member takes part in all meetings. We have
also observed that not every important activity or event is communicated in the
Daily Scrum. So even a documentation of the Daily Scrum would not cover the
whole team’s activities. The consequence when a team member is absent is that
he or she has to seek for this information in different places and has to ask his or
her colleagues. This costs time of several team members, and it is not guaranteed
that the information seeker gets informed about every important event.

Simple communication tools used by developers like Slack1, FlowDoc2 or
Gitter3 provide basic chatting features, but do not support structuring, prioritiz-
ing, and summarizing adequately important events (and only these). An example
of a tool with at least an automatic summarizer for daily scrum meetings has
been proposed by Park [6].

1.2 Research Objectives and Contributions

The objective of our research is to lower the effort of getting a complete overview
of what recently happened within a Scrum team. In particular we want to develop
a tool for generating a summary based on activities and events tracked by indi-
vidual team members. This summary should contain all relevant information
for an individual team member to eliminate the need for most additional infor-
mation sources. The tool aims to ensure better communication in large Scrum
teams even when developers are absent for a while.

2 Concept and Solution

People usually do not like to create documentation, but they do like to share what
they did. As a consequence happening serves as a documentation tool that gives
1 https://slack.com/.
2 https://www.flowdock.com/.
3 https://gitter.im/.

https://slack.com/
https://www.flowdock.com/
https://gitter.im/

604 M. Wyrich et al.

an individual team member a way to share his or her experiences in short form,
just like they would do on Twitter. Then happening creates the documentation
on demand by generating a summarized representation of the entries (Fig. 1).

Fig. 2. Sample screenshot of the tool happening

The solution consists of two parts: a simple form for inserting individual
events and a page for viewing the summary for a selected time period. The
latter is shown in Fig. 2. It is an example page which summarizes activities and
events of a Scrum team for a selected period of time. In the example, the entry
of Kurt Reinholdt was given a lower priority and thus has a smaller avatar. Any
event entry consists of a description, a manually selected priority and the date
on which the event took place. The priority indicates for what period of time
the event will be relevant to others. Thus the priority of an individual event has
significant influence on what is shown in the summary if the user wants to hide
events that are no longer relevant. Currently the solution is a stand-alone tool
with a web interface and thus can be accessed by its users via any web browser.
We also offer an online demo installation where the tool can be tried out without
installation.4

3 Evaluation

We evaluated the tool in a productive environment of a Scrum team, which used
the previously described tool in its day-to-day work. The team was made up of
eight persons, from which one worked from home, one was located in Sweden and
the others were at the same office in Germany during the evaluation period. The
team members were told to track their activities and events on a daily basis and
to use the summary of the tool as a reminder in their Daily Scrum. At the end of
4 https://github.com/MarvinWyrich/happening.

https://github.com/MarvinWyrich/happening

Improving Communication in Scrum Teams 605

the evaluation period the team members gave their feedback on the usefulness of
the tool. We found that the summarizing presentation of the team’s activities is
not that useful in the Daily Scrum. The selected Scrum team was already used
to have the JIRA task list opened during the Daily Scrum. So the developers
wished to integrate happening as a plugin in JIRA to not have two tools open
at the same time. However, seven out of eight participants said that happening
was useful outside of the Daily Scrum and they think it would be a great help
after a longer period of absence.

4 Conclusion

The concept and tool worked well in practice and helped improving the commu-
nication in agile teams. At first glance the tool contradicts the agile principles
where direct communication is more important than tools and documentation.
But when developers are absent, writing down otherwise missed information is
the only way of replacing direct communication. The costs for using the tool are
low as sharing the important information goes fast. A weakness of the tool is
that it has only been used in a small environment so far, long-term evaluations
are still missing. Further weaknesses of the tool are that there is no possibility
to hierarchically structure the events. Future work on the concept and tool will
try to eliminate these weaknesses.

Acknowledgements. We want to thank AEB GmbH who made this work possible
and who provided the persons for the tool evaluation. We also thank Fujitsu Next who
supported this work with a 5.000 Euro grant and the first prize of its Agile IT -Award
2016.

References

1. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software develop-
ment. SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)

2. Ratanotayanon, S., Kotak, J., Sim, S.E.: After the Scrum: twenty years of working
without documentation. In: Eighteenth International Conference on Software Engi-
neering and Knowledge Engineering (SEKE), 5–7 July 2006, San Francisco, CA,
USA (2006) 200–205

3. Visconti, M., Cook, C.R.: An overview of industrial software documentation prac-
tice. In: Proceedings of the XII International Conference of the Chilean Computer
Science Society, SCCC 2002, pp. 179–186 (2002)

4. Forward, A., Lethbridge, T.C.: A survey. In: Proceedings of the 2002 ACM Sympo-
sium on Document Engineering, DocEng 2002, NY, USA, pp. 26–33

5. Lethbridge, T.C., Singer, J., Forward, A.: The state of the practice. IEEE Softw.
20(6), 35–39 (2003)

6. Park, S.: A daily Scrum meeting summarizer for agile software development teams.
Master thesis. University of Calgary, Canada, August 2007

Tool Support for Consistency Verification
of UML Diagrams

Salilthip Phuklang1, Tomoyuki Yokogawa2(B), Pattara Leelaprute1,
and Kazutami Arimoto2

1 Kasetsart University, 50 Thanon Ngam Wong Wan, Khwaeng Lat Yao,
Khet Chatuchak, Bangkok 10900, Thailand
salilthip.p@ku.th, pattara.l@ku.ac.th

2 Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
{t-yokoga,arimoto}@cse.oka-pu.ac.jp

Abstract. Manual verification of the consistency between UML state
machine diagrams and sequence diagrams is labor-intensive and prone
to make mistakes. We provide an automatic tool written in Java that
performs the verification by translating UML diagrams into a process
description of CSPM language. The tool takes in a PlantUML file and
verifies the consistency with a model-checker FDR.

Keywords: Formal verification · UML · CSP · FDR

1 Introduction

UML is one of the most familiar specification languages and is the de-facto stan-
dard modeling language for object-oriented software. While it is less used in
software development projects [5], it is well used in the model-driven software
development [6]. Software systems are often documented with UML, and its
mechanisms are reviewed on the documents. Such documents comprise multiple
models and views related to each other, and their inconsistencies must be man-
aged in software development [2]. An automatic consistency checking is expected
because developers spend not a little effort to keep the consistency [3].

State machine diagrams and sequence diagrams of UML are widely used for
software development. The automatic consistency checking methods between
them have been proposed [1,8]. However, they adopted different semantics for
modeling the diagrams and missed a formal definition of consistency property.
Thus, we developed a method for inter-model consistency verification of sequence
diagrams and state machine diagrams using model checking [4,7].

This paper describes a tool that implements our method in Java. It translates
UML diagrams written in PlantUML language into a process representation
described by CSPM . Consistencies are checked by feeding it to a model checker
FDR that supports the latest version of Failures-Divergence Refinement (FDR).

A state machine diagram is composed of states, transitions, messages, and
an initial state. For each message m, m! and m? are labels which correspond to
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 606–609, 2017.
https://doi.org/10.1007/978-3-319-69926-4_51

Tool Support for Consistency Verification of UML Diagrams 607

sending and receiving of m, respectively. A transition connects source and target
states and labeled by e? and a! as trigger and action (these labels are described
“e/a” in a diagram). A transition t = 〈x, e?, a!, y〉 is executed if x is activated
and e is received, and then the state machine sends a and y is activated. A
sequence diagram is composed of lifelines, occurrences, messages, a partial order
relation between occurrences, and a labeling function from an occurrence to a
label. Figure 1 shows examples of UML diagrams.

Fig. 1. Examples of UML diagrams

The semantics of the diagrams is defined with a set of computations, which is
a sequence of labels. The state machine M1 has two states and alternately repeats
two transitions t1 = 〈1,−, a!, 2〉 and t2 = 〈2, b?,−, 1〉. M2 repeats one transition
t3 = 〈3, a?, b!, 3〉. Since a? and b? can be respectively executed following a! and
b!, the diagrams have only one computation a!a?b!b?a!a?b!b? The sequence
diagram SQ1 and SQ2 describe two interactions between M1 and M2. SQ1 and
SQ2 has one computation a!a?b!b? and b!b?a!a?, respectively.

The consistency of state machine diagrams and a sequence diagram is defined
as an inclusive relation between the sets of computations [7]. Since a state
machine diagram generally has infinite computations, we compare finite prefixes
of the computation with computations of the sequence diagram. For example,
the state machine diagrams M1 and M2 has a prefix of computation a!a?b!b?,
and it corresponds to the computation of the sequence diagram SQ1. Thus M1
and M2 are consistent with SQ1, but not consistent with SQ2.

FDR can check a trace inclusion of processes by checking traces refinement
relation. By representing state machine diagrams and a sequence diagram as
processes whose traces correspond to their computations, a consistency verifica-
tion can be done by checking traces refinement of the processes using FDR.

2 Tool Overview

Figure 2 shows the framework of consistency verification using FDR. Our tool
reads state machine diagrams and a sequence diagram described in PlantUML
language and then generates a process representation described by CSPM . A
model checker FDR takes in the representation and checks a trace refinement
relation between the processes of the state machine diagrams and the sequence
diagram. Passing the trace refinement check means that the computation of the

608 S. Phuklang et al.

sequence diagram is included by those of the state machine diagrams. Therefore,
it can be said that the consistency of the diagrams is confirmed. In contrast,
failing the check means that the diagrams are inconsistent.

In the case of failure, some computations of the sequence diagram are not
included by those of the state machine diagrams, and FDR generates a counter
example that shows the computation which is not included. The counter example
can help to fix the inconsistency of diagrams.

Fig. 2. The framework of consistency verification using FDR

Fig. 3. Interface of our tool

Figure 3 shows a GUI interface of our tool. The left-side of window shows state
machine diagrams and a sequence diagram. Users can translate the diagrams into
process description by pushing the “Convert to CSP” button. The right-side of
the window shows an obtained process description. The users can check the
consistency of the diagrams by feeding it to FDR.

This tool supports the popular format and hides the tool-chain compris-
ing formal verification tools. It helps a developer to verify consistency without
detailed knowledge of formal methods.

Tool Support for Consistency Verification of UML Diagrams 609

3 Future Remarks

We provided a tool supporting consistency verification of state machine dia-
grams and sequence diagrams. Our tool can translate the diagrams into process
description and the consistency is verified by checking traces refinement using
FDR. Supporting inconsistency fixing using a counterexample is in our future
plan.

References

1. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. IEEE Trans. Softw. Eng. 37, 188–204 (2011)

2. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L.: Consistency problems in
UML-based software development. In: Jardim Nunes, N., Selic, B., da Silva, A.R.,
Rodrigues, A., Toval Alvarez, A. (eds.) UML 2004. LNCS, vol. 3297, pp. 1–12.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31797-5 1

3. Lucas, F.J., Molina, F., Toval, A.: A systematic review of UML model
consistency management. Inf. Softw. Technol. 51(12), 1631–1645 (2009).
http://dx.doi.org/10.1016/j.infsof.2009.04.009

4. Miyazaki, H., Yokogawa, T., Amasaki, S., Asada, K., Sato, Y.: Synthesis and refine-
ment check of sequence diagrams. IEICE Trans. Inf. Syst. E E95–D(9), 2193–2201
(2012)

5. Petre, M.: UML in practice. In: Proceedings on International Conference on Software
Engineering (ICSE 2013), pp. 722–731 (2013)

6. Torre, D., Labiche, Y., Genero, M.: UML consistency rules: a systematic mapping
study. In: Proceedings of the 18th on International Conference on Evaluation and
Assessment in Software Engineering (EASE 2014), pp. 1–10 (2014)

7. Yokogawa, T., Amasaki, S., Okazaki, K., Sato, Y., Arimoto, K., Miyazaki, H.: Con-
sistency verification of UML diagrams based on process bisimulation (fast abstract).
In: Proceedings of the 19th IEEE Pacific Rim International Symposium on Depend-
able Computing (PRDC 2013), pp. 126–127 (2013)

8. Zhao, Xiangpeng, Long, Quan, Qiu, Zongyan: Model checking dynamic UML
consistency. In: Liu, Zhiming, He, Jifeng (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 440–459. Springer, Heidelberg (2006). doi:10.1007/11901433 24

http://dx.doi.org/10.1007/978-3-540-31797-5_1
http://dx.doi.org/10.1016/j.infsof.2009.04.009
http://dx.doi.org/10.1007/11901433_24

Tutorials

Analyzing the Potential of Big Data

A Tutorial for Business and IT Experts

Andreas Jedlitschka(✉)

Fraunhofer Insitute for Experimental Software Engineering (IESE), Kaiserslautern, Germany
andreas.jedlitschka@iese.fraunhofer.de

Abstract. Recent studies report that many Big Data projects fail due to insuffi‐
cient alignment with the organization’s strategic objectives and no consideration
of its operational capabilities. Our method for the analysis of the potentials of Big
Data supports companies in making a rational decision to use Big Data as well as
in systematically conceptualizing and realizing a specific Big Data strategy. The
Potential Analysis helps to find a Big Data solution for a specific business inno‐
vation idea that promises to deliver the best trade-off between the potential busi‐
ness benefits and the investments required for deploying it. The development of
a suitable solution happens in several iterations during which both the anticipated
data-driven business solution and the required Big Data solution concept are
revised. This tutorial addresses experts from business and IT. The participants
will learn a systematic approach for developing a company-specific Big Data
strategy.

Keywords: Big Data · Potential Analysis · Tutorial

1 Introduction

Independent of any domain, all roadmaps and future scenarios clearly show: A service
layer will be established in the future between products and customers. It will be oriented
more towards the business processes of the market participants and will create benefit
especially through the combination of systems and data – for manufacturers, suppliers,
service providers, salespeople, workshops, and end customers [1]. “Data-driven busi‐
ness models” and “Big Data” are the big buzzwords in this context.

However, recent surveys report that 60% of Big Data projects fail to go beyond
piloting and experimentation [2]. Furthermore, less than 50% of the organizations that
have not started yet with Big Data, have sufficiently adjusted their culture or business
model to allow them to benefit from Big Data [3].

One major reason for such failures is that the initiatives were neither aligned with
the strategic objectives nor matched to the operational capabilities of a particular organ‐
ization. Driven by the belief that more data will bring more benefit, organizations focus
on creating data lakes without prior consideration of what they want to achieve with the
data and how; 90% of deployed data lakes end up being useless as they are overwhelmed
with information assets captured for uncertain use cases [3]. As the authors concluded

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 613–616, 2017.
https://doi.org/10.1007/978-3-319-69926-4_52

in their study [3], data and ecosystems are key drivers of future trends in software engi‐
neering and “the challenge isn’t the big data but the organization’s ability to make smart,
timely decisions based on the data”. It is the ability to collect relevant data, analyze it,
and implement data-driven decision making that strongly affect the way a company
functions, its architecture, and its workflows.

The effective use of data from and pertaining to today’s products and services as
well as the goal-oriented combination and analysis of existing and possibly the exploi‐
tation of new data sources do not only open up optimization potential but also new
business opportunities. However, this also entails uncertainties that are difficult to assess,
due to new technologies and analysis processes, frequently ambiguous data quality, and
unverified or implicit assumptions [1].

Thus, the key question today is no longer “whether”, but rather how Big Data can
help an organization to achieve their business objectives. Further questions include:

• How can an organization benefit from Big Data?
• Which data “treasures” are already available in the organization?
• Are there any hidden business potentials in the available data?
• Are the required competencies available?
• Is the quality of the data sufficient to realize the anticipated business benefits?
• What investments are necessary to deploy a Big Data initiative?
• How does Big Data affect existing business models?

The answers should not be given by any specific part of the organization, e.g., solely
by the IT or business unit, but should, in the best case, be developed by a group staffed
from different units with heterogeneous skills. The analysis of the Big Data business
potential offers answers to these questions, ideally, before any investments are made.

2 Analysis of Big Data Potential

The Fraunhofer IESE approach for analyzing the business potential of Big Data (cf.
“Potential Analysis”) [4] covers the ideation, derivation, evaluation, and maturation of
business innovations based on Big Data and minimizing the risk and potential loss due
to investments in Big Data solutions that do not create the expected business value.

The core element of the Potential Analysis is a concrete Big Data business case (see
Fig. 1). It specifies particular Big-Data-driven business innovation, including its context
with the underlying business need, the business solution with its expected benefits
(value), and the Big Data solution including the organizational readiness to implement
it. The Potential Analysis answers key questions that should precede any Big-Data-
driven change: In what context should it happen? What business benefit (value) should
be gained from the use of Big Data? Are the capabilities for implementing the Big Data
solution available? How much will it cost?

The Potential Analysis starts by specifying the organizational scope and current
situation. The purpose is to understand an organization’s internal and external factors
that (1) are the source of potential business challenges and opportunities and (2) influ‐
ence the feasibility of potential Big Data solutions.

614 A. Jedlitschka

The motivation for developing a business solution first is that evaluation and failing at
this stage are cheap, whereas prototyping and testing already require considerable invest‐
ments into infrastructure and staff. Developing a Big Data solution includes deciding about
Big Data methods, infrastructure, and skills required for realizing the business solution.
Similar to a business solution, a Big Data solution evolves through test-feedback-improve
evaluation cycles. In each evaluation cycle, the readiness of the organization to implement
and deploy a specific Big Data solution is assessed and the gap between the required and
available organizational capabilities is determined. A capability gap can be addressed by
either adjusting the business solution and/or the associated Big Data solution (i.e., neces‐
sary data, analysis methods, and infrastructure). As Porter says: “Success requires both the
right strategy and operational effectiveness” [5].

To minimize the risk of failing with Big Data and to reduce potential business losses,
the Big Data solution concept is evaluated and matured in several lab and piloting stages
before being deployed in a productive environment. Each step is followed by an eval‐
uation of the results according to pre-defined criteria (technical and business aspects).
For instance, the accuracy of a prediction algorithm may directly influence the reliability
of forecasts and thus affect customer acceptance of the realized business solution.

At each stage, the Big Data solution concept, the associated business case, and the
organization’s readiness are revised based upon the evaluation outcomes. In the very
first stage, a blueprint of the Big Data solution is evaluated without any practical imple‐
mentation. In the following stages, specific “in-use” aspects of the Big Data solution
concept are implemented in test environments and then evaluated. For example, the
performance and scalability of the selected data analysis approach are evaluated in a lab
environment using simulated (or real) data. Evaluating integration with existing infra‐
structure and processes as well as user acceptance, on the other hand, requires piloting
of the Big Data approach in the target environment. Based on the evaluation results, the
solution concept and the corresponding business solution are revised and re-assessed.
Only if the Big Data solution has successfully run through all intermediate stages will
it be rolled out into a productive environment. Yet this is not the end; as the organiza‐
tional context changes continuously, the effectiveness of the realized data-driven busi‐
ness model should be revised on a regular basis.

Fig. 1. Analysis of Big Data business potentials

Analyzing the Potential of Big Data 615

3 Details About the Tutorial

The goal of this tutorial is to raise the participants’ awareness regarding the necessity
to plan Big Data projects strategically and to align them with business goals.

The tutorial is targeted at experts from companies who are interested in Big Data
and in how to approach their use. In particular, we aim at people who (1) are asking
themselves whether Big Data provides a benefit for their company, (2) just started their
first Big Data project, and (3) have first experience, either from successful or failed Big
Data projects. We connect business (C-Level, Marketing, Portfolio/Product Manage‐
ment, …) with technical experts (IT, BI, …); therefore, no IT background is required.

To start with, the participants will get an overview of current trends in digitization
and Big Data. From there, we will go through a hands-on example to explain the theo‐
retical concepts behind a goal-oriented Big Data strategy. The participants will learn
how to sketch a Big Data business model, estimate its benefits, and derive required
capabilities, as well as how to check the model in terms of its benefits, associated risks,
and technical feasibility. They will be actively involved through exercises and experi‐
ence different moderation methods supporting the development of the strategy.

The Potential Analysis represents the first step of an incremental development and
implementation process. It consists of three parts: scoping, benefit analysis, and readi‐
ness analysis. During the tutorial, the participants will get an introduction to all three
parts. During the exercise, we will develop a common example.

During Scoping, we have a look at the target environment and make the constraints
and success criteria for possible initiatives more concrete. During the subsequent Benefit
Analysis, we identify business opportunities based on existing challenges and data
sources and make them more concrete in terms of their information needs with the help
of scenarios. An assessment of the contribution with regard to superordinate business
goals supports prioritization. During the Readiness Analysis, we develop an initial solu‐
tion concept for selected business opportunities and derive necessary skills. This
provides the basis on which we assess the organization’s readiness to implement this
specific Big Data solution.

References

1. Heidrich, J., Trendowicz, A., Ebert, C.: Exploiting Big Data’s benefits. IEEE Softw. 33(1),
111–116 (2016). doi:10.1109/MS.2016.99

2. Heudecker, N., et al.: Predicts 2015: Big Data challenges move from technology to the
organization, Gartner Report, November 2014

3. Bosch, J.: Speed, data, and ecosystems. The future of software engineering. IEEE Softw.
33(1), 82–88 (2016). doi:10.1109/MS.2016.14

4. Trendowicz, A.: Big Data – Mountains of Gold or Garbage Dumps (Whitepaper). Fraunhofer
IESE, Kaiserslautern (2017). https://bigdata.iese.fraunhofer.de

5. Porter, M.E.: What is strategy? Harv. Bus. Rev. 74(6), 61–78 (1996)

616 A. Jedlitschka

http://dx.doi.org/10.1109/MS.2016.99
http://dx.doi.org/10.1109/MS.2016.14
https://bigdata.iese.fraunhofer.de

Automatic Requirements Reviews - Potentials,
Limitations and Practical Tool Support

Henning Femmer(B)

Qualicen GmbH, Garching bei München, Germany
henning.femmer@qualicen.de

Abstract. Requirements are usually documented, and natural language
is still the primary choice of syntax. However, in particular with natural
language, the quality of the documentation is a key success factor for
projects. To keep this risk in check, projects apply manual quality assur-
ance in the form of reviews. Due to the shortcomings of manual reviews,
more and more companies look into lightweight automatic support mech-
anisms to improve the quality of requirements documents.

1 Description

To document requirements, natural language is still the primary means. Require-
ments in natural language can be created and understood by all stakehold-
ers without additional effort and specific requirements engineering background.
However, natural language poses the risk of being imprecise or ambiguous. Badly
written requirements have an expensive impact on the whole project. Incomplete
or ambiguous requirements generate additional effort due to unnecessary feed-
back loops. In the end, bad requirements lead to misinterpretations and finally
to the wrong product.

Manual reviews are an effective tool to create high quality requirements doc-
uments. Although effective, this method comes with considerable effort. The
manual inspection of the requirements by multiple reviewers and the integration
of review results are time consuming. As one review cycle often takes days or
weeks to complete, the author of the requirements has to wait a long time before
receiving feedback. The result of these problems is that reviews are often only
performed sporadically or only superficially.

2 Potentials

The potential for automatic reviews detection lays in the aforementioned defi-
ciencies of manual reviews; A claim that is also supported by practitioners and
evaluated in practice (see, e.g. [5]).

Automatic reviews are cheap. As we discuss in [3], one of the key challenges
to establishing manual reviews in practice are the high costs that come with
a thorough analysis. Therefore, to have a mechanism that provides feedback
free of charge is a promising advantage. (For the sake of the argument, we
deliberately ignore the costs of setting up and maintaining such an analysis.)

c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 617–620, 2017.
https://doi.org/10.1007/978-3-319-69926-4_53

618 H. Femmer

Automatic reviews are fast. For many quality aspects, feedback can be
given more or less instantaneously. For example, in the current configura-
tion, our requirements scout receives, processes, and renders feedback for a
paragraph in around 500 ms. This enables us to give feedback on-the-fly.

Automatic reviews are consistent. If you hand a requirements artifact to
one reviewer on two different days, you might receive two very different
results. The review process depends on various personal factors, such as the
state of mind or the recent input of the reviewer. While this can be an advan-
tage, for quality factors such as Does the artifact follow a guideline?, this
subjectivity throws the doors wide open for inconsistencies. An automatic
method works in a deterministic way, every day.

In an analysis of an industrial RE artifact guideline in [6], we estimate that
52% of the guideline rules can be automatically checked perfectly or with a good
heuristic. Surprisingly, for detection of quality violations, most rules require just
simple heuristics.

Accordingly, many researchers work on providing automatic support for
REs [1,4,5,7–10].

3 Limitations

Various reasons imply that a quality factor cannot be automatically detected.
This is analyzed in-depth, i.a. in [2] or [6]. The main reasons, why certain quality
factor cannot be automatically detected are:

– Automatic reviews require an explicit quality definition.
– Automatic reviews struggle with noise in industrial data.
– Automatic reviews have no deep semantic understanding of text.
– Automatic reviews have no knowledge of domain and common sense.
– Automatic reviews do not know the goal of the system and the current project

status.

4 Tooling: The Requirements Scout

Tooling for automatic requirements reviews can be seen from three roles: The
central role is, of course, the requirements author, who produces the require-
ments. But there is also the reviewer, who proof-reads and validates the require-
ments. And finally, there is the QA-Engineer, responsible for the overall quality
of all artifacts created during the engineering process. Each of these roles needs
a different view on requirements and different tools in order to do their work
efficiently and achieve a high requirements quality.

The author is interested in direct feedback. In a previous analysis [3], we
found that receiving feedback directly within the tool increases the willingness
of authors to use such a tool. Therefore, the requirements scout comes with
various plugins, e.g. for the widespread RE tool PTC Integrity (see Fig. 1) or
Microsoft Word.

Automatic Requirements Reviews 619

Fig. 1. PTC integrity integration of qualicen scout

The reviewer is interested in focussing on the most relevant quality factors.
For example, he or she wants to analyze whether the specification validly meets
the stakeholders’ goals. Therefore, the scout offers the option to list all findings
that the scout detects, so that the reviewer quickly picks the interesting ones
from the list and then continues focussing on the content.

Lastly, the QA-Engineer (and also management) is interested in the develop-
ment of quality over time. Therefore, the scout enables to set baselines, compare
two versions, and analyze trends and tendencies in order to understand in which
direction the quality is going (see Fig. 2).

Fig. 2. Qualicen scout quality dashboard

620 H. Femmer

5 Summary

Automatic review techniques have matured over the last years: A substantial
set of widespread quality defects in requirements documents can now be found
automatically. Examples of such defects are ambiguous wording or overly com-
plex sentences. Also more complex defects, such as cloning, inadequate levels of
abstraction, or wrong references in documents can be detected automatically.

However, there are also strong limitations to automatic review techniques.
In a recent study [6] we quantified this, estimating that 52% of the guideline
rules can be automatically checked perfectly or with a good heuristic. As a
conclusion, automatic reviews do not replace, but complement manual reviews. It
is assumed, however still remains to be shown, that automatic reviews reduce the
time needed for manual reviews and provide faster and less expensive feedback
for requirements authors.

References

1. Fabrini, F., Fusani, M., Gnesi, S., Lami, G.: Quality evaluation of software require-
ments. In: Software and Internet Quality Week Conference, pp. 1–18 (2000)

2. Femmer, H.: Requirements engineering artifact quality: definition and control.
Ph.D. thesis, Technische Universitat Munchen (2017)

3. Femmer, H., Hauptmann, B., Eder, S., Moser, D.: Quality assurance of require-
ments artifacts in practice: a case study and a process proposal. In: Abrahamsson,
P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.)
PROFES 2016. LNCS, vol. 10027, pp. 506–516. Springer, Cham (2016). doi:10.
1007/978-3-319-49094-6 36

4. Femmer, H., Mendez Fernandez, D., Juergens, E., Klose, M., Zimmer, I.,
Zimmer, J.: Rapid requirements checks with requirements smells: two case studies.
In: RCoSE, pp. 10–19. ACM (2014)

5. Femmer, H., Mendez Fernandez, D., Wagner, S., Eder, S.: Rapid quality assurance
with requirements smells. J. Syst. Soft. 123, 190–213 (2017)

6. Femmer, H., Unterkalmsteiner, M., Gorschek, T.: Which requirements artifact
quality defects are automatically detectable? A case study. In: AIRE, pp. 1–7.
IEEE (2017)

7. Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B., Schaetz, B., Wagner,
S., Domann, C., Streit, J.: Can clone detection support quality assessments of
requirements specifications? In: ICSE. ACM (2010)

8. Krisch, J., Houdek, F.: The myth of bad passive voice and weak words: an empirical
investigation in the automotive industry. In: RE. IEEE (2015)

9. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving
agile requirements: the quality user story framework and tool. Requirements Eng.
J. 21(3), 383–403 (2016)

10. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement
specifications. In: ICSE, pp. 161–171. ACM (1997)

http://dx.doi.org/10.1007/978-3-319-49094-6_36
http://dx.doi.org/10.1007/978-3-319-49094-6_36

Need for Speed – Towards Real-Time Business

Janne Järvinen1(✉) and Tommi Mikkonen2

1 F-Secure Corporation, Helsinki, Finland
janne.jarvinen@f-secure.com

2 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. The Finnish software intensive industry has renewed their existing
business and organizational ways of working towards a value-driven, adaptive
real-time business paradigm. The industry utilizes new technical infrastructures
such as data visualization and feedback from product delivery. These new capa‐
bilities as well as various sources of data and information help in gaining and
applying the deep customer insight. This tutorial has been created and adapted
from 100+ concrete N4S consortia results in public domain with several
successful examples of adjacency towards the new markets and business areas.

Keywords: Real-time value delivery · Deep customer insight · Mercury business ·
Lean Startup · Elastic Enterprise

1 Introduction

The Need for Speed (N4S) [7] program was formed to create the foundation for the
success of the Finnish software intensive businesses in the new digital economy, in spirit
of Lean Startup [9] and Elastic Enterprise [12] ideas. This collaborative, industry driven
research program was executed in 2014–2017, and it was at the time the biggest national
investment in software-related research with a budget over 50 M€.

In this tutorial, we first discuss today’s software development approaches that are
commonly applied in Finnish software companies. Then we proceed to N4S building
blocks and results that are in the focus of this tutorial. We aim to give participants an
overall understanding of N4S and how to utilize its results in practice.

2 Background: Agile and Lean Software Development

Software and software intensive industry have undergone major advances over the last
decades. The transition from slow projects lasting years to the rapid cycles of continuous
development and deployment have been dramatic (Fig. 1a).

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 621–624, 2017.
https://doi.org/10.1007/978-3-319-69926-4_54

Fig. 1. (a) Agile and lean software development, and (b) real-time value delivery, deep customer
insight, and mercury business.

Iterative and incremental development. Ever since (and probably even before) the
introduction of the commonly misunderstood Waterfall process [10], iterative and incre‐
mental development has been used by software developers to manage risks and uncer‐
tainties in software development. By developing software in a piecemeal fashion, where
frequent checkpoints can be used to detect anomalies and misinterpretations, the devel‐
opment effort can be more easily managed than by using a big-bang development
approach. Consequently, while the rational design process can be used to explain how
the development advances [8], in reality it has been customary to conduct at least
experiments before advancing too far in the development.

Agile development. Agile software development approaches [3] consist of a wide
number of practices where delivering value to a customer is the dominant factor in
software development, over following a plan, which once was the prevailing concept in
many software projects. Various agile methodologies exist, like Extreme Programming
[2], Scrum [11], Kanban [1], and Lean software development, and they more or less
share the underlying mindset but implement actual actions differently.

Continuous integration. When numerous developers work on the same project, they
commonly make changes in the same software components in their own workspaces.
When the changes contradict each other, a conflict arises, which need to be resolved by
the developers. The key issue of continuous integration is to minimize such conflicts by
merging developer workspaces with a shared mainline [5].

Continuous deployment. While continuous integration is about creating the ability to
build a system automatically whenever a change is made, continuous deployment is
about creating the ability to deliver the smallest added value to the customers.

To summarize, the evolution of the software development approaches has led
towards approaches where the step between the development and deployment is being
reduced. Hence, an approach referred to DevOps emerges, where development is treated
similarly to operations, and no distinction between the two is made [4]. The promise is
that the tighter cooperation results in rapid development and utilization of the software
products and services. To reach this target, continuous deployment and/or continuous
delivery [6] are commonly used.

622 J. Järvinen and T. Mikkonen

3 N4S Building Blocks

The N4S program has been built around three main themes. These are (1) paradigm
change from product business to delivering value at real-time; (2) deep customer insight
to improve the hit-rate of businesses; and (3) Mercury business which explicitly aims
at finding the new money instead of focusing only on the traditional customers. Next,
these three goals, which are also illustrated in Fig. 1b, are addressed separately.

Real-time value delivery. The key aspect of the program is to catalyze a paradigm change
from the traditional product-based software business to service-based business where
value can be delivered at near real time. Achieving this goal requires careful reconsid‐
eration of the mode of operation as well as seamless integration of businesses and
research and development – the former provides motivation for the latter, whereas the
latter enables new forms of business. To reach the above goals, an architecture and
technical infrastructure that supports the incremental development, integration and
delivery of systems is needed, including introduction and removal of individual features.

Deep customer insight. The goal of deep customer insight is to invent value-creating
solutions, and act as a source of inspiration for new products, features, or services that
create customer value, which typically stems from the customer contexts and not from
the engineering domain. The goal is to quickly gain and assess information regarding
the true customer value of potential services, product features, and other possible aspects
of user interaction with a service or a product. As a prerequisite, understanding of
customer contexts and development opportunities as well as an insight on the ways how
customers live and work are needed. The data for deep understanding of the customers
is gathered continuously from live use of products, enabling also possible weak signals.
Moreover, live experiments enable studying how the users interact with a service or a
product. However, successful collection of usage data requires understanding regarding
what data to collect. Data that is readily available and simple to collect does not neces‐
sarily lend itself to meaningful interpretation in terms of what can be related to the user
value of the features or true needs of the user. Therefore, before running the experiments,
these experiments should have a defined scope and purpose. To reach the ultimate goal
of experimenting and testing ideas and concepts early in the development, there is a
thriving demand for automatic and efficient feedback systems, analytics and visualiza‐
tion.

Mercury business. By mercury business, we refer to companies and societies being able
to behave like “mercury” finding new grooves where to flow to grow new business. The
goal is to enable companies to actively seek new ways to execute their existing busi‐
nesses, and – perhaps even more importantly – also experiment the options to transform
themselves to completely new business areas. The two above goals, real-time value
delivery and deep customer insight, are important prerequisites for Mercury business,
but there are also other factors that must be considered – like company culture, structure,
and leadership for instance – to empower everyone to seek new opportunities. The ways
of working may also change dynamically regardless of the existing organizational struc‐
tures. These changes are possible e.g. in the Finnish individualistic culture, where

Need for Speed – Towards Real-Time Business 623

extremely dynamical changes in the ways of working are possible. Finally, while the
Mercury business model may change existing products and portfolios, we believe that
its ability to totally convert the company into a new business domain is more important.

4 N4S Experiences and Results: A Summary

In the N4S program, 40 leading Finnish software-intensive companies and research
organizations tested real-time business models in practice. The program compiled the
results and experience, forming a large-scale collection of advice and tools accessible
to everyone. This N4S Treasure Chest located at http://www.n4s.fi/en/treasure-chest-
for-business/ helps companies to make use of the possibilities of digitalization and
advises upon post-digitalization activities. The program published 3 guide books and a
total of 268 scientific articles. As a practical engineering result, the efficiency of the
development work of certain N4S program participants has increased up to 250%. The
efficiency of infrastructure improved 50% thanks to cloud services. In addition, depend‐
ency on maintenance from outside sources decreased 50%. Changing over to software
using free source code decreased expenses of licensed products by 30%.

References

1. Anderson, D.: Kanban – Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, Sequim (2010)

2. Beck, K.: Extreme Programming Explained, 2nd edn. Addison-Wesley Professional, Boston
(1999)

3. Cockburn, A.: Agile Software Development, 1st edn. Addison-Wesley Professional, Boston
(2001). 256 pages

4. Debois, P.: DevOps: a software revolution in the making. Cutter IT J. 24(8) (2011). 42 pages
5. Fowler, M.: Continuous integration (2006). http://martinfowler.com/articles/continuous

Integration.html
6. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,

Test, and Deployment Automation. Pearson Education, Boston (2010)
7. Huomo, T., Järvinen, J., Kettunen, P., Kuvaja, P., Koivisto, A., Lassenius, C., Lehtovuori, P.,

Lilja, S., Miettinen, S., Mikkonen, T., Münch, J., Männistö, T., Oivo, M., Partanen, J., Porres,
I., Still, J., Tyrväinen, P.: Strategic research agenda for need for speed. ICT SHOK DIGILE,
22 April 2013. http://n4s.fi/articles/SRIA_Need4Speed_V5_0_April_2015.pdf. Accessed
Jan 2017

8. Parnas, D.L., Clements, P.C.: A rational design process: how and why to fake it. IEEE Trans.
Softw. Eng. 12(2), 251–257 (1986)

9. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. Crown Publishing Group, New York (2011)

10. Royce, W.: Managing the development of large software systems. In: Proceedings of IEEE
WESCON, vol. 26, pp. 1–9, August 1970

11. Schwaber, K.: Scrum development process. In: Workshop Proceedings of Business Object
Design and Implementation, OOPSLA 1995, p. 118. The University of Michigan (1995)

12. Vitalari, N., Shaughnessy, H.: The Elastic Enterprise: The New Manifesto for Business
Revolution. Telemachus Press, Dublin (2012)

624 J. Järvinen and T. Mikkonen

http://www.n4s.fi/en/treasure-chest-for-business/
http://www.n4s.fi/en/treasure-chest-for-business/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://n4s.fi/articles/SRIA_Need4Speed_V5_0_April_2015.pdf

From Zero to Hero: A Process Mining Tutorial

Andrea Janes1, Fabrizio Maria Maggi2(B), Andrea Marrella3,
and Marco Montali1

1 Free University of Bozen-Bolzano, Bolzano, Italy
{andrea.janes,marco.montali}@unibz.it

2 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

3 Sapienza University, Rome, Italy
marrella@diag.uniroma1.it

Abstract. Process mining is an emerging area that synergically com-
bines model-based and data-oriented analysis techniques to obtain useful
insights on how business processes are executed within an organization.
This tutorial aims at providing an introduction to the key analysis tech-
niques in process mining that allow decision makers to discover process
models from data, compare expected and actual behaviors, and enrich
models with key information about the actual process executions. In
addition, the tutorial will present concrete tools and will provide practi-
cal skills for applying process mining in a variety of application domains,
including the one of software development.

1 Introduction

Process mining [2] is a recent research discipline that sits between computational
intelligence and data mining on the one hand, and process modeling and analy-
sis on the other hand. Through process mining, decision makers can discover
process models from data, compare expected and actual behaviors, and enrich
models with information retrieved from data. This, in turn, provides the basis
for understanding, maintaining, and enhancing processes based on reality.

Since process mining has many applications, this tutorial aims at encour-
aging participants to apply it in new fields, in which it has not been applied
so far. In particular, first, we will introduce the process mining framework, the
main process mining techniques and tools, and the different phases of event data
analysis through process mining. Second, we will carry out an hands-on session
using concrete process mining tools, considering business use cases, as well as
the particular scenario of software processes. Finally, we will discuss common
pitfalls and critical issues and will give suggestions on how to mitigate them.

2 Process Mining Framework

The reference framework for process mining is depicted in Fig. 1. On the one
hand, process mining considers conceptual models describing processes, organi-
zational structures, and the corresponding relevant data. On the other hand,
c© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. 625–629, 2017.
https://doi.org/10.1007/978-3-319-69926-4_55

626 A. Janes et al.

Fig. 1. The reference framework for process mining [1]

it focuses on the real execution of processes, as reflected by the footprint of
reality logged and stored by the software systems in use within an enterprise.
For process mining to be applicable, such information has to be structured in
the form of explicit event logs. In fact, all process mining techniques assume
that it is possible to record the sequencing of relevant events occurred within an
enterprise, such that each event refers to an activity (i.e., a well-defined step in
some process) and is related to a particular case [1]. Events may have additional
information stored in event logs. In fact, whenever possible, process mining tech-
niques use extra information such as the exact timestamp at which the event
has been recorded, the resource (i.e., person or device) that generated the event,
the event type in the context of the activity transactional lifecycle (e.g., whether
the activity has been started, canceled, or completed), or data elements recorded
with the event (e.g., the size of an order).

The three main types of process mining techniques are marked by the three,
thick red arrows in the bottom part of Fig. 1. Discovery starts from an event log
and automatically produces a process model that explains the different behav-
iors observed in the log, without assuming any prior knowledge on the process.
The vast majority of process discovery algorithms focus on the discovery of
the process control-flow, towards generating a model that indicates the allowed
sequences of activities according to the log. Conformance checking compares
an existing process model and an event log for the same process, with the aim
of understanding the presence and nature of deviations. Conformance check-
ing techniques take as inputs an event log and a process model, and return
indications related to the adherence of the behaviors contained in the log to the
prescriptions contained in the model. Enhancement improves an existing process
model using information recorded in an event log for that process. The inputs of
enhancement techniques are a process model and an event log, and the output

From Zero to Hero: A Process Mining Tutorial 627

is a new process model that incorporates and reflects new information extracted
from the data. The first important class of enhancement techniques is that of
extension, where the input process model is not altered in its structure, but is
extended with additional perspectives, using information present in the log. A
second important class of enhancement techniques is that of repair, where devi-
ations detected by checking the conformance of the input event log to the input
process model are resolved by suitably modifying the process model.

The presented tutorial will demonstrate that process mining can also be used
in the context of software development [9], trying to focus on aspects that occur
with a certain regularity and with a finite number of possible activities so that
repeating cases within an actual “process” can be discovered. One example will
be the user behavior analysis [9], i.e., the study on how the users interact with
software applications. In particular, we will study an example that can be found
in [3], in which the authors applied process mining to study and to improve the
user interface of an ERP software.

2.1 Process Mining Tools

A plethora of process mining techniques and technologies have been developed
and successfully employed in several application domains1. The process mining
solutions that will be used in the tutorial are ProM (Process Mining framework)2

and Disco3.

– ProM (Process Mining framework) is an Open Source framework for process
mining algorithms [10] based on JAVA. It provides a plug-in based integration
platform [4] that users and developers can exploit to run and deploy process
techniques. This pluggable architecture currently hosts a very large amount
of plug-ins covering all the different aspects of process mining, from data
import to discovery, conformance checking, and enhancement along different
perspectives [2].

– Disco is a commercial, stand-alone and lightweight process mining tool. It
supports various file formats as input, in particular providing native support
for importing CSV files, which can be annotated with case and event infor-
mation prior to the import. Disco has usability, fidelity, and performance as
design priorities, and makes process mining easy and fast [7].

2.2 The XES Standard

In recent years, the XES (eXtensible Event Stream) format emerged as the main
reference format for the storage, interchange, and analysis of event logs. XES,
which is based on XML, appeared for the first time in 2009 [6] as the successor
of the MXML format [5]. It quickly became the de-facto standard adopted by

1 http://tinyurl.com/ovedwx4.
2 http://www.processmining.org/prom/.
3 https://fluxicon.com/disco/.

http://tinyurl.com/ovedwx4
http://www.processmining.org/prom/
https://fluxicon.com/disco/

628 A. Janes et al.

the IEEE Task Force on Process Mining4, eventually becoming an official IEEE
standard in 2016 [8]. This standard will be introduced in the tutorial.

3 Agenda

The tutorial is structured as follows:

– Introduction to the process mining framework
– Designing process models and collecting event logs

• Process modeling: basics of Petri nets and BPMN
• The XES standard and the OpenXES reference implementation

– Mining event logs, discovering processes
• ProM, the open-source jack of all trades
• Choosing a mining algorithm: Alpha, Heuristics miner, Fuzzy miner, or

Multi-phase miner?
• Disco, the user friendly tool

– Interpreting the mined models: discovery, conformance checking, and
enhancement
• Deciding from which perspective to look at the data: choosing a case ID
• On the representational bias of process mining

– Hands-on session
• Process mining success stories for business processes and software

processes
• Walk-through of two process mining examples examining a business

process and a software process, discussing strategies to collect, filter, ana-
lyze, and interpret data

• Discussion on the differences between mining business and software
processes.

References

1. van der Aalst, W., et al.: Process mining manifesto. In: Proceedings of BPM Inter-
national Workshops, vol. 99, pp. 169–194 (2012)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49851-4

3. Astromskis, S., Janes, A., Mairegger, M.: A process mining approach to measure
how users interact with software: an industrial case study. In: ICSSP 2015 (2015)

4. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A., van der
Aalst, W.M.P.: The ProM framework: a new era in process mining tool support,
pp. 444–454 (2005)

5. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data.
In: Proceedings of EMOI - INTEROP, vol. 160. CEUR-WS.org (2005)

6. Gunther, C.W.: XES standard definition version 1.0. Technical report, Fluxicon
Process Laboratories. http://www.xes-standard.org

4 http://www.win.tue.nl/ieeetfpm/doku.php.

http://dx.doi.org/10.1007/978-3-662-49851-4
http://www.xes-standard.org
http://www.win.tue.nl/ieeetfpm/doku.php

From Zero to Hero: A Process Mining Tutorial 629

7. Gunther, C.W., Rozinat, A.: Disco: Discover your processes. In: Proceedings of the
Demo Track of BPM, vol. 940, pp. 40–44 (2012)

8. IEEE Computational Intelligence Society: IEEE standard for eXtensible Event
Stream (XES) for achieving interoperability in event logs and event streams. IEEE
Std. 1849–2016, p. i-50 (2016)

9. Rubin, V.A., Mitsyuk, A.A., Lomazova, I.A., van der Aalst, W.M.P.: Process min-
ing can be applied to software tool. In: Proceedings of the ESEM 2014. ACM
(2014)

10. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES,
XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4 5

http://dx.doi.org/10.1007/978-3-642-17722-4_5

Erratum to: How Accountability
is Implemented and Understood

in Research Tools

A Systematic Mapping Study

Severin Kacianka1(&), Kristian Beckers2, Florian Kelbert3,
and Prachi Kumari4

1 Technical University of Munich, Munich, Germany
kacianka@in.tum.de

2 Siemens, Munich, Germany
kristian.beckers@siemens.com

3 Imperial College London, London, England
f.kelbert@imperial.ac.uk

4 Munich, Germany
prachi.kumari@tum.de

Erratum to:
Chapter “How Accountability is Implemented and Understood
in Research Tools” in: M. Felderer et al. (Eds.):
Product-Focused Software Process Improvement,
LNCS 10611, https://doi.org/10.1007/978-3-319-69926-4_15

The presentation of Table 3 was incorrect in the original version of this chapter.

The correct version is given below:

Table 3. Most influential researchers.

Name Institution Cit.

Siani Pearson HP Labs Bristol, UK 16
David L. Chaum Voting Systems Institute 14
Margo Seltzer Harvard University, Cambridge, MA, USA 13
Jan Camenisch IBM Research, Zurich, Switzerland 13
Markus Kirchberg National University of Singapore, Singapore 11
Kiran Kumar Muniswamy-Reddy Harvard University, Cambridge, MA, SA 9
Lorrie Faith Cranor Carnegie Mellon University, Pittsburgh, PA, USA 9

(continued)

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-69926-4_15

© Springer International Publishing AG 2017
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, pp. E1–E2, 2017.
https://doi.org/10.1007/978-3-319-69926-4_56

https://doi.org/10.1007/978-3-319-69926-4_15
https://doi.org/10.1007/978-3-319-69926-4_15

The original chapter has been corrected.

Table 3. (continued)

Name Institution Cit.

Elisa Bertino Purdue University, West Lafayette, Indiana, USA 8
Uri J. Braun Harvard University, Cambridge, MA, USA 8
Gene Tsudik University of California, Irvine, California, USA 8
Anna Lysyanskaya Brown University, Providence, RI, USA 8
Wade Trappe Rutgers University, Piscataway, New Jersey, USA 7
Ian T. Foster University of Chicago, Chicago, IL, USA 7
Peter Macko Harvard University, Cambridge, MA, USA 7
Susan Hohenberger Johns Hopkins University, Baltimore, MD, USA 7

E2 S. Kacianka et al.

Erratum to: Should I Stay or Should I Go?
On Forces that Drive and Prevent MBSE

Adoption in the Embedded Systems Industry

Andreas Vogelsang , Tiago Amorim , Florian Pudlitz,
Peter Gersing, and Jan Philipps

Erratum to:
Chapter “Should I Stay or Should I Go?
On Forces that Drive and Prevent MBSE Adoption
in the Embedded Systems Industry” in:M. Felderer et al. (Eds.):
Product-Focused Software Process Improvement, LNCS 10611,
https://doi.org/10.1007/978-3-319-69926-4_14

The original version of the paper starting on p. 182 has been revised.
The second part of the title was originally displayed as a subtitle- This has been
corrected.
The ORCIDs of the authors Andreas Vogelsang and Tiago Amorim have also been
added.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-69926-4_14

© Springer International Publishing AG 2018
M. Felderer et al. (Eds.): PROFES 2017, LNCS 10611, p. E3, 2017.
https://doi.org/10.1007/978-3-319-69926-4_57

http://orcid.org/0000-0003-1041-0815
http://orcid.org/0000-0003-0930-2307
https://doi.org/10.1007/978-3-319-69926-4_14
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69926-4_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69926-4_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69926-4_57&domain=pdf
https://doi.org/10.1007/978-3-319-69926-4_14

Author Index

Abrahamsson, Pekka 265
Abrahao, Silvia 453
Ahmad, Bilal 482
Aman, Hirohisa 80
Amasaki, Sousuke 71, 80
Amorim, Tiago 182
Ampatzoglou, Apostolos 165
Arimoto, Kazutami 606
Avgeriou, Paris 165
Ayala, Claudia 511

Baldassarre, Maria Teresa 453
Bass, Julian M. 307
Baum, Tobias 111
Beckers, Kristian 199
Beecham, Sarah 307, 482, 573
Behutiye, Woubshet 515, 548
Berntsson Svensson, Richard 37
Biffl, Stefan 435
Bogicevic, Ivan 602
Bosch, Jan 146, 221, 368
Bosecker, Sascha 351
Brinkkemper, Sjaak 19

Caivano, Danilo 453
Canna, Clodagh Nic 573
Casselt, Mathias 497
Ciolkowski, Marcus 523
Costal, Dolors 515

Dahle, Yngve 265
Diebold, Philipp 397, 586
Dittrich, Yvonne 453

Elberzhager, Frank 535, 543

Fabijan, Aleksander 221
Fazal-Baqaie, Masud 428
Feitosa, Daniel 165
Felderer, Michael 435
Femmer, Henning 617
Fontdevila, Diego 137, 443

Franch, Xavier 515, 548
Fuentes, Germán 470

Genero, Marcela 137
Gersing, Peter 182
Greer, Des 556
Gutbrod, Matthias 297
Guzmán, Liliana 523

Hebig, Regina 404, 413
Heldal, Rogardt 404, 413
Hohl, Philipp 28, 428
Holl, Konstantin 535
Holmström Olsson, Helena 146, 221
Holvitie, Johannes 89
Hornig, Kay 351
Hoschek, Robert 385
Hyrynsalmi, Sami 89

Immich, Thomas 535
Indervoort, Holger 255

Janes, Andrea 625
Järvinen, Janne 621
Jedlitschka, Andreas 613

Kacianka, Severin 199
Kanagwa, Benjamin 413
Karhapää, Pertti 515, 548
Karn, Britta 535
Karras, Oliver 3, 497
Kauppinen, Marjo 55
Kawahara, Minoru 80
Kelbert, Florian 199
Kläs, Michael 543
Klünder, Jil 3, 428, 457, 497
Knauss, Eric 404, 413
Kortum, Fabian 457, 497
Krusche, Stephan 428
Kuhrmann, Marco 351, 397
Kumari, Prachi 199
Küpper, Steffen 428

Lahtinen, Samuel 128
Lanzilotti, Rosa 453
Leelaprute, Pattara 606
Leppänen, Marko 128
Leppänen, Ville 89
Leßmann, Hendrik 111
Linssen, Oliver 428
Liukkunen, Kari 280
Lokan, Chris 71
López, Lidia 548
Lucassen, Garm 19

MacDonell, Stephen 397
Maggi, Fabrizio Maria 625
Mäkinen, Simo 128
Männistö, Tomi 55, 128
Marrella, Andrea 625
Mårtensson, Torvald 368
Martínez-Fernández, Silverio 511
Mattos, David Issa 146
Mikkonen, Tommi 89, 621
Mohan, Michael 556
Montali, Marco 625
Münch, Jürgen 28, 297, 397

Nakagawa, Elisa Yumi 165
Nakatumba-Nabende, Joyce 413
Nguven-Duc, Anh 265
Noll, John 307, 573

Oivo, Markku 280, 515, 548
Oliveros, Alejandro 137, 443
Overbeek, Sietse 19

Paez, Nicolás 443
Pfahl, Dietmar 237, 341, 404
Pfeiffer, Rolf-Helge 420
Philipps, Jan 182
Phuklang, Salilthip 606
Piccinno, Antonio 453
Prause, Christian R. 351, 428
Pudlitz, Florian 182

Rahikkala, Jurka 89
Ralyté, Jolita 548
Ramadani, Jasmin 324
Ramler, Rudolf 385
Razzak, Mohammad Abdur 307, 573
Richardson, Ita 482, 573
Riungu-Kalliosaari, Leah 55
Rodríguez, Pilar 511
Ruiz, Mercedes 470

Salfner, Felix 523
Schneider, Kurt 3, 19, 28, 111, 457, 497
Schultz, Ulrik Pagh 420
Scott, Ezequiel 341, 404
Seppänen, Pertti 280
Sievi-Korte, Outi 128
Stade, Melanie 255
Ståhl, Daniel 368
Steinert, Martin 265
Stupperich, Michael 28

Tell, Paolo 420
Theobald, Sven 586
Tichy, Matthias 297
Trendowicz, Adam 523
Tsunoda, Masateru 597
Tuovinen, Antti-Pekka 128

Vogelsang, Andreas 182

Wagenaar, Gerard 19
Wagner, Stefan 324, 602
Wang, Yang 324
Werner, Jürgen 351
Winkler, Dietmar 435
Wyrich, Marvin 602

Yamashita, Seiji 597
Yin, Huishi 237
Yokogawa, Tomoyuki 80, 597, 606

632 Author Index

	Preface
	Organization
	Contents
	Agile Software Development
	Is Task Board Customization Beneficial?
	1 Introduction
	2 Related Work
	2.1 Task Board: Key Artifact of Agile Software Development
	2.2 Viewers' Consideration of Software Development Artifacts

	3 Task Board: Structure and Content
	3.1 Task Board Customizations
	3.2 Task Board Designs

	4 Eye Tracking Study
	4.1 Study Design
	4.2 Study Procedure
	4.3 Analysis and Results
	4.4 Interpretation
	4.5 Threats to Validity

	5 Discussion
	6 Conclusion
	References

	Influence of Software Product Management Maturity on Usage of Artefacts in Agile Software Development
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Artefacts in Agile Software Development
	2.2 Software Product Management Maturity

	3 Research Method
	3.1 Data Collection
	3.2 Coding
	3.3 Findings
	3.4 Validity

	4 Conclusions and Future Research
	Acknowledgements
	References

	Real-Life Challenges on Agile Software Product Lines in Automotive
	1 Introduction
	2 Related Work
	3 Study Approach
	3.1 Research Questions
	3.2 Research Design
	3.3 Data Collection and Analysis
	3.4 Threat to Validity

	4 Results
	4.1 Research Question 1
	4.2 Research Question 2

	5 Discussion and Conclusion
	References

	Measuring Team Innovativeness: A Multiple Case Study of Agile and Lean Software Developing Companies
	Abstract
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Sample Selection
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Limitations

	4 Results and Analysis
	4.1 Measure Team Level Innovation Capability (RQ1)
	4.2 What Could Be Measured (RQ2)

	5 Conclusions
	References

	Data Science and Analytics
	What Can Be Learnt from Experienced Data Scientists? A Case Study
	1 Introduction
	2 Related Work
	3 Research Process
	4 Lessons Learnt
	4.1 Data Science Process
	4.2 Characteristics of the Data Science Process
	4.3 Challenges

	5 Discussion
	6 Conclusions
	References

	A Virtual Study of Moving Windows for Software Effort Estimation Using Finnish Datasets
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Description of Combined Datasets
	3.2 Modeling Technique
	3.3 Effort Estimation with Chronologically Ordered Projects
	3.4 Performance Measures

	4 Results
	5 Discussion
	5.1 Answer to RQ1
	5.2 Answer to RQ2
	5.3 Comparison to Previous Studies

	6 Threats to Validity
	7 Conclusion
	References

	A Survival Analysis of Source Files Modified by New Developers
	1 Introduction
	2 Survival Analysis and Its Application to Bug Fix
	2.1 Survival Analysis
	2.2 Application of Survival Analysis to Bug Fix

	3 Empirical Study
	3.1 Dataset
	3.2 Procedure
	3.3 Results
	3.4 Discussions
	3.5 Threats to Validity

	4 Conclusion
	References

	Top Management Support for Software Cost Estimation
	1 Introduction
	2 Background
	3 Research Process
	3.1 Research Approach
	3.2 Case Companies and Projects

	4 Findings and Results
	4.1 Project Boundaries: Scope, Cost and Schedule
	4.2 Participation Practices
	4.3 Participation Effort
	4.4 Affected Items
	4.5 Impact on Project Success

	5 Discussion
	5.1 Implications for Practice
	5.2 Implications for Theory
	5.3 Validity, Limitations and Further Research

	6 Conclusions
	References

	Software Engineering Processes and Frameworks
	The Choice of Code Review Process: A Survey on the State of the Practice
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Participant Selection
	3.2 Questionnaire Creation and Pilot Tests
	3.3 Data Collection and Instrument
	3.4 Data Analysis

	4 Results
	4.1 The Dominance of Change-Based Code Review (RQ1)
	4.2 Change-Based Code Review and the Fading of Review Use (RQ2)
	4.3 Rankings of Review Effects as a Mediator in Determining the Review Process (RQ3)
	4.4 Further Convergence in Review Practices?
	4.5 Some Notes on the Use of Reading Techniques

	5 Limitations
	6 Conclusion
	References

	Unwasted DASE: Lean Architecture Evaluation
	1 Introduction
	2 Background
	2.1 Architecture Evaluation Methods
	2.2 Our Architecture Evaluation Experience

	3 Decision and Scenario-Based Architecture Evaluation
	3.1 Pre-work
	3.2 Architecture Evaluation Workshop

	4 Applying the Method
	5 Conclusions
	References

	Towards a Usability Model for Software Development Process and Practice
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	4 A Usability Model for Software Development Process and Practice
	4.1 Analysis of Model Sources
	4.2 The Model

	5 Applying the Model to Scrum
	6 Threats to Validity
	7 Conclusions and Future Work
	Appendix A
	References

	More for Less: Automated Experimentation in Software-Intensive Systems
	Abstract
	1 Introduction
	2 Related Work and Research Process
	2.1 Controlled Experiments in Software Systems
	2.2 Automated Experiments
	2.3 Research Process

	3 Architecture Framework Design Decisions
	3.1 Functional Requirements
	3.2 Problems, Potential Solutions and Decision
	3.3 The Architecture

	4 Evaluation of the Architecture Framework
	4.1 Instantiation of the Framework
	4.2 Cost-Effectiveness

	5 Conclusion
	Acknowledgements
	References

	Industry Relevant Qualitative Research
	The Evolution of Design Pattern Grime: An Industrial Case Study
	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Acknowledgements
	References

	Should I Stay or Should I Go?
	1 Introduction
	2 Background and Related Work
	3 Study Approach
	3.1 Research Questions
	3.2 Research Design
	3.3 Data Collection and Analysis

	4 Results
	4.1 Overview and Definition of MBSE
	4.2 Forces on MBSE Adoption
	4.3 Hindering Force: Inertia
	4.4 Hindering Force: Anxiety
	4.5 Fostering Force: Push
	4.6 Fostering Force: Pull

	5 Discussion
	5.1 Threats to Validity

	6 Conclusions
	References

	How Accountability is Implemented and Understood in Research Tools
	1 Introduction
	2 Methodology
	2.1 Definition of Research Questions
	2.2 Paper Search
	2.3 Screening
	2.4 Keywording
	2.5 Mapping

	3 Findings
	4 Synthesis
	4.1 Definition of Accountability
	4.2 Future Research Directions

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	User and Value Centric Approaches
	Differentiating Feature Realization in Software Product Development
	Abstract
	1 Introduction
	2 Background
	2.1 Business and Design Experimentation
	2.2 Feature Differentiation

	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis
	3.3 Threats to Validity

	4 Empirical Findings
	4.1 Current State of Feature Differentiation
	4.2 Challenges with Feature Differentiation
	4.3 Implications
	4.4 Summary of Our Empirical Findings

	5 Differentiating Feature Realization
	5.1 Feature Differentiation
	5.2 Activity Prioritization

	6 Model Evaluation
	7 Output-Driven vs. Outcome-Driven Development
	8 Conclusions
	References

	A Method to Transform Automatically Extracted Product Features into Inputs for Kano-Like Models
	Abstract
	1 Introduction
	2 Related Work
	3 Research Context and Goal
	4 Method
	4.1 Method Step 1
	4.2 Method Step 2

	5 Method Application Example
	5.1 Application Example for Method Step 1
	5.2 Application Example for Method Step 2
	5.3 Overall Performance of the 2-Step Method
	5.4 Applicability of the Dictionary-Based Method for Sentiment Analysis

	6 Threats to Validity
	7 Conclusions and Future Plan
	Acknowledgement
	References

	Feedback Gathering for Truck Parking Europe: A Pilot Study with the AppEcho Feedback Tool
	Abstract
	1 Introduction
	1.1 User Involvement for Software Evolution
	1.2 Feedback Gathering for Truck Parking Europe and Study Goal

	2 Study Procedure and Data Collection
	2.1 Our Criteria for the Feedback Tool
	2.2 AppEcho – The Chosen Feedback Tool
	2.3 Sampling and Task Alignment
	2.4 Feedback Sender’s Questionnaire
	2.5 Feedback Receiver’s Questionnaire and Discussion Session

	3 Results
	3.1 Number and Characteristics of Feedback Entries (RQ1)
	3.2 Feedback Sender’s Experience (RQ2)
	3.3 Feedback Receiver’s Experience (RQ3)

	4 Discussion
	4.1 Threats to Validity
	4.2 Conclusion and Next Steps

	Acknowledgment
	References

	Software Startups
	Towards Understanding Startup Product Development as Effectual Entrepreneurial Behaviors
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Startups
	2.2 Product Development in Early Stage Software Startups
	2.3 Behavioral Theory of the Entrepreneurial Firm

	3 Research Approach
	3.1 Study Design
	3.2 Data Collection and Analysis

	4 Results
	4.1 RQ1: How Long Does It Take to Transform a Business Idea into a Launching Product in Software Sta ...
	4.2 RQ2: How Can We Explain for Technical Challenges Occurred During the Idea-to-Launch Journey of S ...
	4.2.1 Challenge 1: Vague Prototype Planning
	4.2.2 Challenge 2: Feature Creeps
	4.2.3 Challenge 3: Paradox of Demonstration
	4.2.4 Challenge 4: Sharing Visions Between Business and Technology
	4.2.5 Challenge 5: Insufficient Involvement of Lead Users
	4.2.6 Challenge 6: Evolving Throw-Away Prototypes

	5 Discussion
	5.1 Understanding Entrepreneurial Behavior of Startups
	5.2 Threats to Validity

	6 Conclusions
	References

	Little Big Team: Acquiring Human Capital in Software Startups
	Abstract
	1 Introduction
	2 Prior Research
	2.1 Prior Research on Resource-Based View
	2.2 Prior Research on Human Capital Theory
	2.3 Prior Research on Characteristics of Software Startups

	3 Research Design
	3.1 Case and Subject Selection
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	4.1 Thematic Synthesis Results
	4.2 Company Characteristics
	4.3 Prevalence of Capability-Related Themes

	5 Discussion
	5.1 Answering the Research Questions
	5.2 Findings in the Context of Prior Research
	5.3 Validity Discussion
	5.4 Relevance to Academia and Practitioners

	6 Conclusions and Future Research
	Acknowledgments
	References

	How Do Software Startups Approach Experimentation? Empirical Results from a Qualitative Interview Study
	Abstract
	1 Introduction
	2 Related Work
	3 Research Approach
	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgements
	References

	Scrum
	A Study of the Scrum Master's Role
	1 Introduction
	2 Background
	3 Method
	3.1 Systematic Literature Review
	3.2 Case Study

	4 Findings
	4.1 Systematic Literature Review
	4.2 Case Study

	5 Discussion
	5.1 The Way Ahead

	6 Conclusions
	References

	An Exploratory Study on Applying a Scrum Development Process for Safety-Critical Systems
	1 Introduction
	2 Related Work
	3 STPA and S-Scrum
	4 Case Study
	4.1 Research Context
	4.2 Case Study - Stage 1
	4.3 Case Study - Stage 2

	5 Threats to Validity
	6 Conclusion
	References

	Exploring the Individual Project Progress of Scrum Software Developers
	1 Introduction
	2 Related Work
	3 Method
	3.1 Initial Training in Scrum
	3.2 Software Development
	3.3 Project Progress Measurement

	4 Results
	5 Discussion, Limitations, and Conclusion
	References

	Software Testing
	Is 100% Test Coverage a Reasonable Requirement? Lessons Learned from a Space Software Project
	1 Introduction
	2 Background
	3 Research Design
	3.1 Research Objective and Questions
	3.2 Implementation
	3.3 Analysis Procedures
	3.4 Validity Considerations

	4 Results
	4.1 Quantitative Data
	4.2 Lessons Learned

	5 Related Work
	6 Conclusion
	References

	Exploratory Testing of Large-Scale Systems – Testing in the Continuous Integration and Delivery Pipeline
	Abstract
	1 Introduction
	2 Research Method
	3 Reviewing Literature
	3.1 Criteria for the Literature Review
	3.2 Results from the Literature Review

	4 Exploratory Testing of Large-Scale Systems
	4.1 Characteristics of the Test Method
	4.2 Using the Test Method

	5 Validation
	5.1 The Case Study
	5.2 Validation Interviews
	5.3 Problem Reports and Testing Time

	6 Threats to Validity
	6.1 Threats to Construct Validity
	6.2 Threats to Internal Validity
	6.3 Threats to External Validity

	7 Conclusion
	7.1 Further Work

	References

	Process and Tool Support for Internationalization and Localization Testing in Software Product Devel ...
	Abstract
	1 Introduction
	2 Industry Context
	2.1 System Under Test
	2.2 Internationalization and Localization Process

	3 Automation Support for Localization Testing
	4 Results and Discussion
	4.1 Detected Defects
	4.2 Observations and Lessons Learned
	4.3 Related Work

	5 Summary and Future Work
	Acknowledgments
	References

	Workshop: HELENA 2017
	2nd Workshop on Hybrid Development Approaches in Software Systems Development
	1 Introduction
	2 The HELENA Study: Overview and Current State
	2.1 Current State
	2.2 Selected Results

	3 The Workshop
	3.1 Overview
	3.2 Workshop Organization

	4 Conclusion and Future Work
	References

	Initial Results of the HELENA Survey Conducted in Estonia with Comparison to Results from Sweden and Worldwide
	1 Introduction
	2 Initial Results
	3 Discussion
	4 Conclusions
	Reference

	Hybrid Software and Systems Development in Practice: Perspectives from Sweden and Uganda
	1 Introduction
	2 Initial Results
	2.1 Demographics
	2.2 Process Use
	2.3 Process Use and Standards

	3 Discussion
	4 Conclusion
	References

	HELENA Stage 2---Danish Overview
	1 Introduction to the HELENA Project
	1.1 The Danish Participation

	2 Demographics
	3 Applied Methods and Practices in Danmark
	4 Conclusion and Final Remarks
	A Categorization of Methods and Practices
	References

	HELENA Study: Reasons for Combining Agile and Traditional Software Development Approaches in German Companies
	1 Introduction
	2 Related Work
	3 Data Collection in Germany
	4 Overview of Preliminary Results
	5 Future Work
	6 Conclusion
	References

	Hybrid Software and System Development in Practice: Initial Results from Austria
	Abstract
	1 Introduction
	2 Initial Results
	2.1 Company Size, Business Sector, and Industrial Sector
	2.2 Roles and Experiences
	2.3 Application of Traditional/Agile Software Engineering Best-Practices
	2.4 Software Engineering Frameworks/Methods

	3 Conclusion and Future Work
	References

	HELENA Study: Initial Observations of Software Development Practices in Argentina
	Abstract
	1 Introduction
	2 Results
	3 Discussion
	4 Conclusions
	References

	Workshop: HuFo 2017
	3rd International Workshop on Human Factors in Software Development Processes (HuFo): Measuring Syst ...
	Abstract
	1 Workshop Theme and Rationale
	2 Workshop Contributions
	3 Audience and Expected Outcomes
	Acknowledgment

	Don't Underestimate the Human Factors! Exploring Team Communication Effects
	1 Introduction
	1.1 Motivation

	2 Related Work
	3 Empirical Study
	3.1 Framework Condition of Academic Software Projects

	4 Methodology
	4.1 Exploratory Analyses Using MINE
	4.2 Pre-investigation on Team Communication Records
	4.3 Analyzing Interpretation Gaps of Case Studies

	5 Validity and Discussion of Results
	5.1 Study Results and Interpretation
	5.2 Threats to Validity

	6 Conclusion
	References

	Applying Extreme Engineering and Personality Factors to Improve Software Development Under a Heavywe ...
	Abstract
	1 Introduction
	2 Problem Description
	2.1 The V-Model
	2.2 The V-Model Problems in Real-Life Projects
	2.3 Current Process Model

	3 Improvements to the V-Model
	4 Our Proposal
	4.1 Assumptions
	4.2 Using Cattell’s 16 Personality Factors Model
	4.3 Improved Process Model

	5 Evaluation of the Proposal Through Simulation
	5.1 Multimethod Simulation Model
	5.2 Simulation Runs

	6 Conclusions and Future Work
	Acknowledgements
	References

	A Systematic Literature Review of Social Network Systems for Older Adults
	1 Introduction
	2 Literature Review Protocol
	2.1 Goals and Research Questions
	2.2 Study Selection Process

	3 Results
	3.1 Sensitivity Analysis
	3.2 What the Older Adult Looks for in SNSs -- RQ1
	3.3 Characteristics of SNSs Used by OAs -- RQ2
	3.4 Older Adult Experiences with SNSs -- RQ3
	3.5 Difference Between General and Special SNSs Used by OAs -- RQ4

	4 Discussion and Lessons Learned
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Different Views on Project Success
	1 Introduction
	2 Related Work
	3 Study
	3.1 Student Software Projects
	3.2 Study Design
	3.3 Ethics Committee
	3.4 Results
	3.5 Study Limitations and Threats to Validity

	4 Interpretation
	4.1 Implications for Education
	4.2 Implications for Industry

	5 Conclusion
	References

	Workshop: QuASD 2017
	1st QuASD Workshop: Managing Quality in Agile and Rapid Software Development Processes
	Abstract
	1 Introduction
	2 Keynote: Agile and Rapid Software Development at Nokia Base Station R&D
	3 Accepted Papers
	4 Program Committee
	5 Activities

	Non-functional Requirements Documentation in Agile Software Development: Challenges and Solution Pro ...
	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-functional Requirements Documentation Challenges and Practices in Agile Software Development

	3 Non-functional Requirements Documentation Practices and Challenges in ASD Projects
	4 Guidelines Proposal for Documenting NFRs in ASD
	5 Conclusion
	Acknowledgments
	References

	Lessons Learned from the ProDebt Research Project on Planning Technical Debt Strategically
	Abstract
	1 Introduction
	2 Related Work
	3 The ProDebt Approach
	3.1 The ProDebt Project
	3.2 Case Studies
	3.3 Vision and General Approach
	3.4 Creating the Quality Model
	3.5 Measuring Baseline Data
	3.6 Creating the Prediction Model
	3.7 Applying the Prediction Model

	4 Evaluation
	5 Lessons Learned and Conclusions
	Acknowledgments
	References

	Rapid Lean UX Development Through User Feedback Revelation
	Abstract
	1 Introduction
	2 Related Work
	2.1 Lean UX
	2.2 Prior Work
	2.3 Agile Reference Process

	3 Process Integration
	3.1 Conceptual Picture of Feedback-Based Lean UX Development
	3.2 Assessment of Selected Agile Practices

	4 Conclusion and Future Work
	Acknowledgments
	References

	Managing Development Using Active Data Collection
	Abstract
	1 Motivation for Active Data Collection
	2 Towards a Framework for Active Data Collection
	3 Possible Implications for Research
	References

	Agile Quality Requirements Management Best Practices Portfolio: A Situational Method Engineering App ...
	Abstract
	1 Introduction
	2 Situational Method Engineering
	2.1 Background
	2.2 Application

	3 Software Development Process in Agile Projects
	4 QR Management Method Requirements
	5 Example: Chunks for QR Prioritization
	6 Conclusions and Future Work
	Acknowledgments
	References

	MultiRefactor: Automated Refactoring to Improve Software Quality
	Abstract
	1 Introduction
	2 MultiRefactor
	2.1 Searches
	2.2 Refactorings
	2.3 Metrics

	3 Experimentation
	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

	Transition from Plan Driven to SAFe®: Periodic Team Self-Assessment
	1 Introduction
	2 Background
	3 Methods
	4 Findings
	5 Discussion
	6 Conclusions
	References

	Beneficial and Harmful Agile Practices for Product Quality
	Abstract
	1 Introduction and Motivation
	2 Research Method
	2.1 Background
	2.2 Research Goal
	2.3 Analysis

	3 Results and Discussion
	3.1 RQ 1 – Beneficial Practices
	3.2 RQ 2 – Harmful Practices
	3.3 RQ 3 - Ambiguous Practices
	3.4 Discussion

	4 Conclusion and Future Work
	Acknowledgements
	References

	Posters and Tool Demonstration Papers
	Visual Programming Language for Model Checkers Based on Google Blockly
	Abstract
	1 Introduction
	2 Google Blockly
	3 Prototype of Visualized Promela
	Acknowledgments
	References

	Improving Communication in Scrum Teams
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives and Contributions

	2 Concept and Solution
	3 Evaluation
	4 Conclusion
	References

	Tool Support for Consistency Verification of UML Diagrams
	1 Introduction
	2 Tool Overview
	3 Future Remarks
	References

	Tutorials
	Analyzing the Potential of Big Data
	Abstract
	1 Introduction
	2 Analysis of Big Data Potential
	3 Details About the Tutorial
	References

	Automatic Requirements Reviews - Potentials, Limitations and Practical Tool Support
	1 Description
	2 Potentials
	3 Limitations
	4 Tooling: The Requirements Scout
	5 Summary
	References

	Need for Speed – Towards Real-Time Business
	Abstract
	1 Introduction
	2 Background: Agile and Lean Software Development
	3 N4S Building Blocks
	4 N4S Experiences and Results: A Summary
	References

	From Zero to Hero: A Process Mining Tutorial
	1 Introduction
	2 Process Mining Framework
	2.1 Process Mining Tools
	2.2 The XES Standard

	3 Agenda
	References

	Erratum to: How Accountability is Implemented and Understood in Research Tools
	Erratum to: Chapter “How Accountability is Implemented and Understood in Research Tools” in: M. Felderer et al. (Eds.): Product-Focused Software Process Improvement, LNCS 10611, https://doi.org/10.1007/978-3-319-69926-4_15

	Erratum to: Should I Stay or Should I Go? On Forces that Drive and Prevent MBSE Adoption in the Embedded Systems Industry
	Erratum to: Chapter “Should I Stay or Should I Go? On Forces that Drive and Prevent MBSE Adoption in the Embedded Systems Industry” in: M. Felderer et al. (Eds.): Product-Focused Software Process Improvement, LNCS 10611, https://doi.org/10.1007/978-3-319-69926-4_14

	Author Index

