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Abstract. Audio-visual speaker recognition (AVSR) has long been an
active research area primarily due to its complementary information for
reliable access control in biometric system, and it is a challenging prob-
lem mainly attributes to its multimodal nature. In this paper, we present
an efficient audio-visual speaker recognition approach via deep heteroge-
neous feature fusion. First, we exploit a dual-branch deep convolutional
neural networks (CNN) learning framework to extract and fuse the high-
level semantic features of face and audio data. Further, by considering
the temporal dependency of audio-visual data, we embed the fused fea-
tures into a bidirectional Long Short-Term Memory (LSTM) networks
to produce the recognition result, though which the speakers acquired
under different challenging conditions can be well identified. The experi-
mental results have demonstrated the efficiency of our proposed approach
in both audio-visual feature fusion and speaker recognition.

Keywords: Audio-visual speaker recognition · Deep heterogeneous
feature fusion · Dual-branch deep CNN · Bidirectional LSTM

1 Introduction

Multi-modal biometric person recognition has received a lot of attention in recent
years due to the growing security demands in commercial and law enforcement
applications. In particular, speaker recognition is one of the active research prob-
lems in biometric community, and audio-visual (AV) biometrics generally offer
complementary information sources for speaker identity characterization. Among
them, face and voice features, incorporating the advantages of non-intrusiveness
and easy acquisitions, have become economically feasible, but the appropriate
fusion between these two heterogeneous modalities is still a non-trivial task.

In the past, different kinds of approaches have been exploited to fuse the face
and voice data. In general, the audio-visual integration can be divided into four
categories: sensor-level, feature-level, matching-level and decision-level. Since the
sensor-level based fusion approaches require that the input data types must be
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the same, such that there are more matching-level and decision-level fusions. For
instance, Cheng et al. [2] utilized the proposed IKFD method to obtain the face
recognition scores and employed GMMs to produce the voice recognition scores
then fused the scores. Similarly, Feng et al. [3] utilized the GMM to fuse face
scores and audio scores. Later, Soltane et al. [12] addressed an adaptive Bayesian
method to fuse the scores of face and speech modalities. These matching-level or
decision-level fusion functions could not take full advantage of the information.

To utilize more information, some researchers attempted to fuse the face and
voice in feature level module. In the early years, researchers mainly used com-
mon feature transformation functions. For instance, Bredin et al. [1] utilized the
canonical correlation analysis (CCA) to fuse the audio-visual features for speaker
recognition, while Haghighat et al. [6] proposed discriminant correlation analysis
(DCA) to fuse the audio-visual features for identification. These methods would
cause information loss when transform features.

Recently, deep networks have been successfully applied to unsupervised fea-
ture learning for multimodal deep learning [10]. Benefit from this finding, Hu
et al. [7] and Geng et al. [4] used CNN to fuse face features and audio features
and achieved good results. However, they did not find the position in CNN that
is most suitable for feature fusion. Ren et al. presented a multimodal LSTM
networks for speaker identification, but the features are not fused actually.

In this paper, as shown in Fig. 1, we present an efficient audio-visual speaker
recognition approach via deep heterogeneous feature fusion. The proposed app-
roach first exploits a dual-branch deep CNN learning framework to extract the
high-level semantic features of face and audio data, whereby the learned het-
erogeneous features between these two modalities can be well fused. Further, by
considering the temporal dependency of audio-visual data, we embed the fused
features into a bidirectional Long Short-Term Memory (LSTM) network to pro-
duce the speaker recognition result, featuring more discriminative power. The
experimental results have its outstanding performance.

Fig. 1. The pipline of our proposed speaker recognition framework, in which the face
features and audio features are fused by our proposed dual-branch deep CNN model.
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2 Feature Fusion and Recognition Architecture

In this part, we explore how to use CNN to extract and fuse the features of face
and audio, and further propose a dual-branch CNN model for feature extraction
and fusion. In addition, we utilize the bidirectional LSTM networks associated
with the fused information to get a reliable recognition result.

2.1 Dual-Branch CNN Model for Feature Fusion

In our deep feature fusion learning architecture, face features and audio features
are extracted via the CNN model, which consists of convolutional and pooling
layers and fully connected layers:

hi =

{
P (σ(conv(Wi, hi−1) + bi)), i = 1, . . . ,m,

σ(Wi · hi−1 + bi), i = m + 1, . . . , n,
(1)

where hi is the output of the i-th layer and h0 is the raw input of the networks,
Wi is the weight matrix and bi is the bias term for the i-th layer, σ stands for
the nonlinear activation function, e.g., tanh, sigmoid, or ReLU [9], P represents
the pooling function. To explore the best position for fusion in CNN, four kinds
of dual-branch CNN models are illustrated as shown in Fig. 2.

Fig. 2. Four kinds of dual-branch CNN Models for feature fusion.

CNN-Fuse-Input: In this case, the raw face input and audio input are con-
catenated as the input of CNN:

h0 = concatenate(hface
0 , haudio

0 ) (2)
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CNN-Fuse-FC 1: Convolved face features and audio features are concatenated
as the input of fully connected layers:

hj
i = P (σ(conv(W j

i , hj
i−1) + bji )), i = 1, . . . ,m, (3)

hm = concatenate(hface
m , haudio

m ), (4)

where j represents the modality, i.e. face or audio.
CNN-Fuse-FC mid: Face and audio features extracted by different C&P layers
and FC layers are concatenated as the input of the remaining FC layers:

hj
i =

{
P (σ(conv(W j

i , hj
i−1) + bji )), i = 1, . . . , m,

σ(W j
i · hj

i−1 + bji ), i = m + 1, . . . , m + mid,
(5)

hm+mid = concatenate(hface
m+mid, h

audio
m+mid), (6)

CNN-Fuse-FC n: We first use two CNN models to extract deep face features
and audio features separately, and then concatenate them:

hn = concatenate(hface
n , haudio

n ), (7)

After training, the deep fused features could be extracted from hn directly.

2.2 Bidirectional LSTM Networks for Recognition

In general, the face images are always influenced by the bad image quality,
exaggerated expression, or illumination, which would degrade the recognition
accuracy. To solve this problem, the bidirectional LSTM networks incorporating
the temporal modeling ability is employed. In LSTM networks the hidden units
are LSTM cells. The spirit of the LSTM cell is that for every step the cell
would choose some information to “remember” and some to “forget”, so that
LSTM networks could learn longer information dependencies than simple RNN.
In particular, bidirectional LSTM networks has been proved to be more effective
for recognition [5]. Therefore, BILSTM is employed for recognition purpose.
Specifically, three different methods are employed to get the recognition result:

y′
last = softmax(hn) (8)

y′
vote = max

i
(

n∑
t=1

I(y′
t = i)), i = 1, . . . , c (9)

y′
mean = softmax(W · ( 1

n

n∑
t=1

ht)) (10)

In Eq. (8), we select the last output as the final result. In Eq. (9), the final result
is generated by voting of the outputs of every results. In Eq. (10), we average
the outputs of every step and utilize the softmax to classify the average value.
Our whole feature fusion and recognition framework can be expressed in Fig. 3.
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Fig. 3. Our proposed feature fusion and recognition framework.

3 Experiments and Results

The public available audio-visual dataset collected by Hu et al. [7] are selected for
the evaluation. The face images and audio clips are extracted from nine episodes
of two TV series, i.e. “Friends” and “The Big Bang Theory”(“BBT”), in which
the leading roles are selected for testing, including six actors in “Friends”, i.e.,
Rachel, Monica, Phoebe, Joey, Chandler and Ross, and five actors in “BBT”,
i.e., Sheldon, Leonard, Howard, Raj and Penny. For “Friends”, the faces and
audio are collected from five episodes of different seasons, and we use the data of
S01E03 (Season 01, Episode 03), S04E04, S07E07 and S10E15 for training and
the data of S05E05 for testing. In total, there are 87273 face images involved
for training and 29539 face images for testing. For “BBT”, we choose S01E04,
S01E05, S01E06 for training and S01E03 for testing, and total numbers of faces
for training and testing are 90034 and 28554, respectively.

3.1 Multimodal CNN Model for Feature Fusion

For feature fusion, we first resize all the face images to 50× 50 and convert
them to gray-level images, and dimension of each face vector is 2500. Similar
to the work [7], we utilize the mel frequency cepstral coefficients (MFCCs) [11]
to preliminarily extract audio feature, and we acquire a 375D feature vector for
every audio sample.

After extracting the primary features, we carried experiments on the four
different feature fusion models, all the configurations in CNN are the same in
different models. In addition, we add dropout [13] and batch normalization [8]
to optimize our networks. Table 1 shows the recognition accuracies on “Friends”
dataset and “BBT” dataset of different feature fusion models.

It can be found that the model “CNN-Fuse-Input” performed even worse than
face modality only, which indicates that the raw features of different modalities
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Table 1. Recognition accuracy of different feature fusion models

Model Accuracy(%) on “Friends” Accuracy(%) on “BBT”

Only face 94.0 93.6

CNN-Fuse Input 92.3 92.1

CNN-Fuse-FC 1 94.6 95.0

CNN-Fuse-FC mid 95.6 95.4

CNN-Fuse-FC n 95.0 94.9

are not suitable for fusion directly. Meanwhile, the “CNN-Fuse-FC mid” model
has produced a better result than that of “CNN-Fuse-FC 1” model. That is, the
high-level features extracted by CNN model are suitable for fusion. Note that,
the “CNN-Fuse-FC mid” model also performs better than model “CNN-Fuse-
FC n”, that is because in the last two fully connected layers the concatenated
features are fused better by nonlinear feature transformation. We can conclude
that the middle layer of fully connected layers is the best place for feature fusion.

Table 2. Recognition accuracy of different feature fusion methods.

Method Accuracy(%) on “Friends” Accuracy(%) on “BBT”

PCA+LDA+SVM 84.0 85.4

PCA+MDA+SVM 83.0 83.9

CCA+SVM 82.9 83.4

DCA+SVM 84.5 85.6

Hu et al. 88.5 -

CNN-Fuse-FC mid 95.6 95.4

In order to prove the effectiveness of our model for feature fusion, we also con-
ducted experiments of some common feature fusion methods mentioned above
and contrasted the experimental results, in which the typical SVM [14] was cho-
sen to classify the fused features. The recognition results obtained by different
approaches were listed in Table 2. It can be found that our feature fusion model
is more effective than the common feature fusion methods. The main reason lies
that the deep learning networks has an advantage in automatic feature transfor-
mation and extraction.

3.2 Bidirectional LSTM Networks for Recognition

For speaker recognition, we select to extract the fused features from the last
fully connected layer as the input of bidirectional LSTM networks, in which the
dimension of fused face and its corresponding audio vector is 1000. There are 24
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frames per second in the video, and we choose 0.5 s for temporal characterization.
In the experiments, the fused features extract from the aforementioned four
models are embedded into the bidirectional LSTM networks for recognition.
Meanwhile, we compare the proposed approach with the basic voting scheme,
and the recognition results are shown in Table 3.

Table 3. Recognition accuracy obtained by different fusions and classifiers.

Method Accuracy(%) on “Friends” Accuracy(%) on “BBT”

Only face+BILSTM 96.4 96.1

CNN-Fuse-Input+BILSTM 94.5 94.0

CNN-Fuse-FC 1+BILSTM 97.4 97.4

CNN-Fuse-FC n+BILSTM 97.6 97.2

CNN-Fuse-FC mid+vote 97.3 97.2

CNN-Fuse-FC mid+LSTM 97.8 97.5

CNN-Fuse-FC mid + BILSTM 98.2 97.8

It can be clearly observed that the “CNN-Fuse-FC mid” model associated
with the bidirectional LSTM networks has achieved the best results. That is,
“CNN-Fuse-FC mid” is more discriminative for audio-visual heterogeneous fea-
ture fusion. Under the same fused features, the bidirectional LSTM networks
have produced the better result than ordinary LSTM networks and voting
scheme. As shown in Fig. 4, we also implemented three methods mentioned above
to get the recognition result of bidirectional LSTM networks. From the exper-
imental results, it can be found that the voting scheme and the utilization of
mean value perform nearly and better than selection of last step.

Fig. 4. Performance of the three operations in bidirectional LSTM networks.
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4 Conclusion

In this paper, we have presented an efficient audio-visual speaker recognition
approach via deep heterogeneous feature fusion. The proposed approach exploits
a dual-branch deep CNN learning framework to extract and fuse the face and
voice features in high-level semantic space. Meanwhile, by considering the tem-
poral dependency of audio-visual fused features, a bidirectional Long Short-Term
Memory networks is utilized to produce the recognition result. Accordingly, the
speakers acquired under different challenging conditions can be well identified.
The experimental results have shown that our proposed audio-visual speaker
recognition approach performs well in both feature fusion and speaker recogni-
tion. It is expected that our proposed learning framework would be well exten-
sible for other types of feature fusion, e.g., iris, ear or gait.
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