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Abstract. Goal models have long been regarded to be an effective way
for representing stakeholder goals and how they relate to one another
during requirements engineering. One of the ways goals are connected
in goal models is contribution relationships, which represent how satis-
faction of one goal affects the satisfaction of another. There are several
proposals in the literature on how contributions should be modelled and
used, but little empirical evidence as to which one is more intuitive for
users. We experimentally explore how users interpret numeric contribu-
tion labels in goal models. Experimental participants are exposed to a
number of pre-constructed goal models and are asked what they believe
the satisfaction degree of a goal is given the satisfaction degree of other
goals in the model. We find that users tend to prefer specific aggregation
rules over others, depending, also, on specific factors.
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1 Introduction

Capturing and modeling stakeholder high-level objectives is an important part
of the requirements analysis process. Prior to making any solution decisions
analysts need to understand the general and vaguely defined goals that stake-
holders consider important and use them as criteria for evaluating alternative
solutions. Such high-level goals can be many, with various degrees of importance
and interacting in various ways.

Goal models [1,20,25] have been suggested to be an effective way to represent
goals and the complex interactions between them. Such models consist of various
kinds of intentional elements and relationships between them. A particularly
interesting type of intentional element used in many goal modeling languages is
a goal for which there is no clear-cut criterion for deciding if it is satisfied or
not [21,25]. Examples of such goals are “Happy Customer”, “Improve Patient’s
Experience” or “Ensure Scheduling Fairness”. Such goals have traditionally been
referred to as soft-goals or quality goals [16]. As analysts compare solution ideas
for the elicited stakeholder problems, these goals serve as criteria to assess the
fitness of various possibilities, the latter affecting the former in different degrees.
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In goal modeling languages, contribution relationships are used to show exactly
how satisfaction of one such goal is believed to affect satisfaction of another.

Several approaches exist for modeling contribution links, both qualitative and
quantitative. When devising an approach, language designers are confronted with
the problem of defining what exactly the contribution links mean and how they
can be used, most often in combinations, in order to calculate satisfaction of
goals given the satisfaction status of other goals. Different such semantics have
been proposed in the literature based on different satisfaction propagation and
aggregation rules and techniques. However, given also the abstract nature of the
subject matter that these models are meant to represent, how can one evaluate
which one is best for adoption in practice?

In this paper, we focus on the intuitiveness of choices of contribution link
semantics, understood here as the match between the intended meaning of the
language, devised by its designers, and the meaning that the users of the language
assign to it. We focus on numeric contribution links and distil from the literature
four (4) different theories for contribution link semantics. Then, we perform an
experiment with the following goals: (a) understand whether model users who
are ignorant to any of the theories perceive contribution semantics in a way
that tends to agree (or disagree) to one or more of the theories and (b) identify
potential model- or user-related factors that affect such tenancies.

Specifically, we construct a number of goal models containing quality goals
connected using numeric contribution links, fixing also the satisfaction level for
some of the goals. We present the models to a number of experimental partici-
pants and ask them what they think is the most appropriate satisfaction value for
a specific goal in the model whose satisfaction level is initially unknown. These
are different numbers depending on what contribution semantics one adopts. We
present the choices to the users and ask them which one they think is the most
appropriate. We observe if there is any concentration of responses to any of the
theories and, as such, whether the hypothesis that some semantics match user
expectation better than others, is at all plausible. We do find such effects as well
as some early indications of factors that can affect participant choices.

The paper is organized as follows. Section 2 presents goal models, contribution
links and semantic possibilities thereof in more detail. In Sects. 3 and 4 we present
the design and results of our experiment. Then in Sect. 5 we present related work
and in Sect. 6 we offer our concluding remarks.

2 Background

2.1 Goal Models and Contribution Links

A goal model of the kind we consider in this research can be seen in Fig. 1 –
adapted from Mylopoulos et al. [20]. The model represents a decision problem in
the Meeting Scheduling domain. Design alternatives are represented through an
AND/OR decomposition hierarchy of hard-goals (ovals), rooted in goal Schedule
Meeting. The cloud-shaped elements represent quality goals, i.e., goals whose
satisfaction is generally not defined in a clear-cut manner. Quality goals, written
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here in an unstructured way, form a separate hierarchy that acts as decision
criteria: each alternative of the AND/OR decomposition implies different levels
of satisfaction for each of the criteria. Modeling the level and quality of this
satisfaction is possible through contribution links that originate from hard goals
or quality goals and target (other) quality goals.

Fig. 1. A goal model represented as a diagram

Different approaches can be found in the literature on how contribution links
can be labelled, and what such labels would mean. Most common are qualitative
contribution labels, in which an ordinal scale such as {“– –”, “–”, “+”, “++”}
is used [2,25]. Elsewhere it is proposed that contribution labels can be values
from a real interval such as [0, 1] (as in Fig. 1) or [−100,100] [1,9,17,19]. Most of
these proposals come with concrete semantics as to how the contribution label
is to be interpreted and used to infer satisfaction of goals from the satisfaction
of other goals in the model. In this paper, we focus on quantitative contribution
labels and different proposals for their semantics.

2.2 Quantitative Propagation Semantics

An established approach for modeling and reasoning about quantitative contri-
bution links is offered by Giorgini et al. [9]. The framework they propose first
assumes that each goal is associated with two variables, each representing the
amount of evidence that the goal is satisfied or denied, respectively. The vari-
ables take values from the real interval [0, 1], 1.0 denoting maximum possible
evidence and 0.0 denoting absence of evidence. When two goals are connected
through a contribution link, the label of the link describes how the evidence
of satisfaction and/or denial of the origin goal affects our belief of satisfaction
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and/or denial of the destination goal. Specifically the label is a number in the
interval [0, 1], which denotes the degree of contribution, a subscript S, D or both
(denoted through absence of subscript), denoting which of the two variables is
considered and a sign “+” or “–” denoting that the contribution is positive or
negative with respect to the involved variable.

A second approach to quantitative contribution has been proposed in the
context of URN [1] as well as in efforts to combine reasoning about contribu-
tions with the Analytic Hierarchy Process (AHP) [17,19]. In these approaches
each goal has one satisfaction value. The label of each contribution link that
points toward that goal, denotes the degree by which the satisfaction value of
the origin of the link is interpreted into satisfaction of the destination. When
AHP semantics are considered, where both contribution labels and satisfaction
values can only be positive, the label indicates the share of satisfaction influence
of each origin goal in calculating the satisfaction of the destination goal. In the
Amyot et al. proposal, though, labels can be negative allowing satisfaction of
origin goal to actually subtract from the satisfaction of the destination [1].

Given a goal model with numbers such as that of Fig. 1, the above proposals
can lead to different conclusions as to how satisfaction propagates from one goal
to the other. We look into these differences in more detail below.

2.3 Four Alternative Theories

To allow for a comparison among the contribution modeling frameworks for
our purposes here, we make certain assumptions and simplifications. Firstly, we
consider simple acyclic hierarchies of quality goals such as the one seen in Fig. 1.
Secondly, labels are a real number in the interval [0, 1] without any subscripts
and signs (so assumed to be positive), rounded to two decimal places. Thirdly,
only initial satisfaction values are considered, keeping initial denial values zero,
when denial variables are defined by the theory at all. These restrictions take
away much of the expressiveness of the examined frameworks, but make them
comparable with respect to their core semantics, which is our interest here.

We may, thus, attempt a common formulation of satisfaction propagation,
which will, in turn allow us to perform a comparison. Thus, let G be the set of
all quality goals in the diagram and s : G �→ [0, 1] denote the satisfaction value
for each of them. Let further Og be the set of goals g′ for which there exists
a contribution link from g′ to g. Let also Sg = {s(g′) : g′ ∈ Og} be the set of
satisfaction values of all these quality goals and Wg = {w : g′ w→ g; g′ ∈ Og} the
set of all labels of the corresponding contributions links. Then, the satisfaction
of goal g is a function f of these two sets: s(g) = f(Sg,Wg).

The literature proposals we discussed above, suggest four possible defini-
tions for f . Three of them come directly from the label propagation framework
proposed by Giorgini et al. [9]. According to the proposed algorithm the satis-
faction/denial value of every node is always calculated by maximizing individual
evidence values formed by the satisfaction/denial values of the origin nodes and
the corresponding contribution weights. A generic operator ⊗ is used to denote



User Perception of Numeric Contribution Semantics for Goal Models 455

that the two values (satisfaction values of origins and contribution link weights)
are combined to produce a candidate value for the satisfaction of the destination:
s(g) = s(g′) ⊗ w(g′, g). Note that given our assumptions of zero initial denial
values and positive labels, the denial values are always zero and can, thus, be
ignored. There are at least three ways to interpret ⊗, which will make for our
first three possible definitions of f .

The fourth possible definition of f comes from interpreting how other liter-
ature [1,17,19] addresses combinations of incoming satisfaction evidence. While
label propagation maximizes, these approaches sum-up individual incoming evi-
dence, treating thereby contribution aggregation as a linear combination. Thus,
our four possible definitions of f are as follows.

Bayesian, assumes that the satisfaction value of the origin is multiplied by
the weight of the corresponding contribution link (p1 ⊗ p2 =def p1 · p2). The
function f is then defined as:

fb(Sg,Wg) = MAX
g′∈Og

{s(g′) × w(g′, g)}

Min-Max, assumes that ⊗ denotes the minimum of the satisfaction value of
the origin and the weight of the corresponding contribution link ( p1 ⊗ p2 =def

MIN(p1, p2) ). The function f is then:

fm(Sg,Wg) = MAX
g′∈Og

{MIN(s(g′), w(g′, g))}

Serial-Parallel, proposes that ⊗ combines the satisfaction value and the
weight in a serial/parallel resistance model (p1 ⊗ p2 =def p1 · p2/(p1 + p2)). The
function f is then:

fs(Sg,Wg) = MAX
g′∈Og

{s(g
′) × w(g′, g)

s(g′) + w(g′, g)
}

Linear, is similar to the Bayesian with the difference that candidate values
are not maximized but added up:

fl(Sg,Wg) =
∑

g′∈Og

{s(g′) × w(g′, g)}

Given the above four alternatives, it seems now inevitable to ask what crite-
rion one should use to select a theory for a practical purpose.

2.4 Comparing Theories

We view visually represented conceptual models, such as goal models, as devices
to be used by humans for comprehending and communicating domain knowledge.
Designers of conceptual modeling languages have specific meanings in mind for
the constructs they introduce, often in the form of formal semantics as in our
case. Such semantics define, among other things, what are correct ways to per-
form inferences using the information represented in the visualized model. Users
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of the visualized models, however, may have their own way of interpreting the
model constructs and perform inferences accordingly. In other words, users may
develop a mental model on how the visualization device is supposed to be used
[22,23]. This model can be due to a combination of factors: potentially partial
and incomplete training, experience with similar models and tasks, educational
or cultural background and, importantly, the way the model is visually repre-
sented – the “system image” according to Norman’s discussion on mental models
for user interface designs [22]. While in interface design designers strive to align
their intent on how their devices are supposed to work with the corresponding
perception that users develop, in our case, modeling language designers might
likewise adjust either the semantics or the visual representation of the language
so that the latter evokes correct perception of the former.

In our work we use “intuitiveness” as a working term for describing this level
of a match between the designer’s intended semantics and the user’s assumed
meaning. While the former can be drawn from the formal definitions above, the
latter needs to be observed empirically. Thus, we measure the meaning users
assign to contributions by observing how they perform inferences about goal
satisfaction. We particularly perform a simple test: if we provide a decomposition
such as that of Fig. 1, Frame A to (unsuspecting of any theories) users, how would
they combine the numbers to decide a missing satisfaction value? The result of
such a test is an assessment of users’ expectation of how the numbers presented
to them should be combined in order to perform inferences and, consequently,
what the meaning of the contribution is.

3 Experimental Study

3.1 Study Design

The main objectives of the study are to: (a) assess whether model users who
are oblivious to aggregation theories perceive contribution semantics in a way
that tends to agree (resp. disagree) with one or more of the theories, supporting
the hypothesis that such theories are more (resp. less) intuitive, (b) explore
what factors related to the models or the users affect said agreement (resp.
disagreement).

To fulfill these objectives, we first develop a number of goal models. The
models consist exclusively of hierarchies of quality goals. We construct a total
of nine (9) model structures. The structures are different in a number of ways,
including the number of goals they contain, the depth of the hierarchy and the
number of contributions they contain. Table 1 describes each structure in detail.
As seen in the table, using depth as the primary size measure, we split the goals
into three size levels: small, medium and large. The goals of all structures have
“dummy”names, A, B, C, etc. For each structure we devise four (4) different
concrete models. Each of the four models has a different number-set, i.e. set
of labels for the contribution links and initial satisfaction values for the leaf
level quality goals, the latter presented as an annotation next to the goal. The
resulting models look like what is contained in Frame A of Fig. 1 (depth = 2,
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Table 1. Structure characteristics

Size Depth # Goals # Contributions

Small 1 3 2

1 4 3

1 5 4

Medium 2 5 4

2 7 6

2 6 5

Large 3 7 6

3 9 8

3 10 9

Table 2. Participant demographics

Female Male Total

Business and econ. 8 5 13

Education 3 3 6

Fine arts 2 3 5

Health sciences 1 1 2

Humanities 8 3 11

Science and tech. 3 7 10

Social sciences 6 3 9

Total 31 25 56

num. of goals = 3, num. of contributions = 2). Given a complete model, one can
calculate the satisfaction value of its root using each of the aggregation functions
we introduced earlier (fb, fm, fs and fl), leading to four different corresponding
values.

The choice of number-sets deserves further discussion. All values are ran-
domly sampled, under the following conditions. Firstly, for two (2) out of the
four (4) number-sets devised for each structure, labels of contributions pointing
to the same goal are restricted to necessarily add up to exactly 1.0. For the other
two (2) number-sets, such labels need to add up to more than 1.5. We refer to
these as the two weighting styles: restricted (to 1.0) and unrestricted or free
(to add up to any value above 1.5). Secondly, the four values that result from
calculating the satisfaction value of the root goal using each of the four (4) aggre-
gation functions must have a distance of at least 0.08 between each other – the
number is the maximum we could achieve across all models. It is important to
add that for a given number-set, the satisfaction values that result from applying
each theory are ranked almost consistently, due to their mathematical structure.
Serial-Parallel in all models gives the smallest number, followed by Bayesian
which always is the second smallest. Linear is usually the largest number (∼86%
of times in our models) and MinMax is usually (∼86% of times) the second
largest.

In all, a total of (9 structures) × (2 weighting styles) × (2 number-sets per
style) = 36 distinct models are constructed. The models are used to construct
the experimental instrument. The instrument is a sequence of screens/tasks pre-
sented to the participants using an on-line survey tool (surveygizmo.com). On
each screen the user is presented with one of the 36 models and the four (4)
possible satisfaction values for the root goal that result from applying the four
different aggregation functions; the values are presented in random order. Par-
ticipants are asked to choose the “most appropriate satisfaction value” for the
root goal. The 36 screens are presented in random order.

https://www.surveygizmo.com/
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Prior to performing the tasks, the participants are also asked to provide
demographic information and watch an instructional video. The video introduces
goal models, explains what contributions are about and presents the idea that the
more the contribution weight or the more the satisfaction of the origin, the more
the satisfaction of the destination. It does not, however, provide any information
of the precise method to calculate that value in a way that would bias the
respondents in the subsequent tasks. Prior to beginning the tasks, participants
are also instructed to not use calculator or pen and paper, and try to be quick,
i.e. not spend more than half a minute in each screen. The reason for this request
is to better simulate natural use of a goal model visualization.

A final question presents the participants with a small sample model and a
list of formulae for calculating the satisfaction of the root goal, corresponding to
the four theories under investigation. The participants are asked to choose the
formula that describes the way they worked in the exercises or describe their
own. In a second version of the instrument, this question is replaced with one
in which the participants are asked whether they follow a specific calculation
method, which they are asked to describe, or whether they “just used [their]
intuition”.

Sixty (60) participants are recruited from Amazon’s Mechanical Turk (AMT),
an online crowdsourcing platform. In AMT the experiment is posted as a Human
Intelligence Task (HIT) for members in the platform. Participants are screened
to have at least a bachelor’s degree and respond from North America. Half of
them use the original instrument and the other half the instrument with the last
question changed and at a later time. Data from a total of 56 participants are
analyzed – four (4) are excluded for not passing a reliability test. Participants
demographics can be seen in Table 2.

3.2 Results

More Preferred and Less Preferred Theories. As a first step of our analysis
we test whether the participant responses deviate from the uniform distribution
in each of the models. Thus, for each of the 36 models we collect all 56 responses.
If, for a given model, participants pick each of the four theories randomly, we
expect that the four choices will appear with equal likelihood in each of the 56
ratings. Reversely, if we observe substantial preference (or lack thereof) to one or
more of the four categories, then we can suspect that participants do not respond
randomly but exhibit preference toward (or against) one or more theories.

Running binomial tests for each model gives us this evidence. Figure 2 shows
for how many of the 36 models there was at least one theory choice that was
atypically high or low in preference; atypically meaning so high or low that the
likelihood of it being due to a uniformly random process is very small p < 0.05.
The figure organizes those numbers by model size and weighting style. In all
cases, half or more of the models exhibit some deviation from the random and
the effect is more pronounced for larger models. Figure 3 further shows for each
of those factor configurations, how many times was each theory preferred more
or less than uniformly randomly expected. For example, in large models with
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Fig. 2. Total occurrences of non-random preference to a theory

Fig. 3. More preferred and less preferred theories

free weighting, there were six (6) models in which the MinMax theory was cho-
sen more frequently than expected under the uniform assumption (upper right
chart), and five (5) models in which the Serial-Parallel theory was chosen less fre-
quently than expected (lower right chart). Note that more than one occurrence
of such statistically significant deviations may occur in one model.

We can apply the same logic within the responses of each participant to
investigate whether each of them tends to “adopt” a specific theory by choosing
it more frequently than expected – under a uniform randomness hypothesis.
Indeed, out of the 56 participants only seven (7) seem to respond uniformly
across the four (4) theories – i.e. they could be just selecting at random. All the
other participant responses tend to concentrate on one or more theories. Thus,
for 27, 13, 5 and 2 participants, there is a significant (Binomial test p < 0.05)
concentration of their choices to MinMax, Linear, Bayes and the Serial-Parallel
model, respectively; while for 35, 12, 9 and 4 participants Serial-Parallel, Linear,
Bayes and MinMax theories were, respectively, significantly not chosen.
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Relevant Factors. Let us now have a closer look into some of the factors
that affect choice. We descriptively show these effects (or lack thereof) through
mosaic displays [8]. Such displays are clusters of bars, the height of each in the
vertical dimension show the relative frequency of the corresponding (y) variable,
while the width of each sector within a bar shows the conditional frequency of
the horizontal (x) variable. The color of the sector represents deviation from
expected frequencies measured through Pearson’s residuals ri = (ni −mi)/

√
mi,

where ni is the observed count and mi the expected count, again, in our case,
of the uniform random case. The darker blue the color the higher the residual,
meaning that the observed count was higher than expected; the darker red the
color the lower the residual, hence the observed count is lower than expected.

In Fig. 4 we see two such mosaic plots, displaying the distribution of theory
choices per weighting style (left) and model size (right). The label of each sector
is the number of data points (participant ratings) associated with the sector. We
clearly observe differences between the styles of weightings. Thus, unrestricted
weighting seems to induce a concentration of choices in the MinMax category
to a larger extend than restricted weighting. Importantly while the unrestricted
models attract less choice of the Linear model than expected, the restricted
models do more so. The reverse is observed for Bayes’ models. There is therefore
room for a hypothesis that weights adding up to 1.0 evoke a Linear interpretation.

On the right side of Fig. 4 the effect of model size appears to be less pro-
nounced, yet notable. The Serial-Parallel theory, in particular, becomes less and
less preferred as model size increases. Meanwhile MinMax is slightly more pre-
ferred in larger models. Recalling that the Serial-Parallel interpretation is always
the smallest number and the MinMax is the second largest, one can as well
hypothesize that the larger the model, hence the more the numbers that appear
on the graph, the more users will tend to inflate satisfaction values.

Fig. 4. The effect of style and size



User Perception of Numeric Contribution Semantics for Goal Models 461

A possible suspicion that mathematically-intensive academic background
may affect the choice does not seem to be supported by these data. We omit a
display for the interest of space.

Self Reporting. The results of the last question, in which participants self-
report the method they think they used, strongly indicate that participants are
not completely aware of the method they use. Only 20% of 35 participants who
specified a concrete calculation method either forcedly (version 1 of instrument)
or voluntarily (version 2), state that they use a method that also happens to
be the one they actually used with statistically significant consistency. A higher
26% claim that they follow a theory which, in fact, they used unusually less in
the exercises (chiefly Serial/Parallel). Importantly, of the participants who were
asked if they used their intuition to respond (version 2), 81% states that they
did, i.e., they did not use a specific calculation method.

4 Consequences and Validity Threats

Consequences. The general impression we get from the result is that untrained
users of quantitative goal models may not come without expectations as to how
numbers are supposed to be combined to infer goal satisfaction, and that such
expectations may depend on aspects of the model. More specifically, we believe
that our data seem to support further corroboration of at least four hypotheses.
Firstly, for visual goal models as constructed in this experiment, participants
tend to favour certain ways of inferring satisfaction of goals over others, partic-
ularly MinMax, Linear and, to a lesser extent, Bayesian. Secondly, the amount
to which the weights of incoming contribution links to a goal sum up can affect
the choice of interpretation of satisfaction propagation semantics; if the sum is
1.0 the Linear model becomes more popular. Thirdly, the larger the model is the
more inflated the assessment of goal satisfaction appears to be. Finally, users do
not appear to consciously follow a specific aggregation method but instead work
intuitively.

There are, further, some important experimental validity points that deserve
a closer look, particularly on construct and external validity.

Construct Validity. As we saw, to measure which theory users prefer we mainly
rely on inference from how they use the models rather than on directly asking
them (e.g., “how would you combine these numbers?”). This emphasis was in
part due to practical reasons – on-line administration prevents meaningful open-
ended interaction – but also due to our low confidence that users can provide
valid data. The limited self-reporting we solicited (last questions of instrument)
indeed revealed that participants have limited awareness of the process they
themselves follow. Moreover, the input of those who volunteered to describe the
method they followed in their own words proved difficult to interpret and was
often plain incomprehensible. Thus, we remain unconvinced that there is a trivial
interviewing protocol that can conclusively explain why participants work the
way they do. It is, however, subject for future research.
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Looking now at the observational measure, the substantial deviation from
uniform randomness begs an explanation and supports, we believe, the validity
of the endeavour: why are some theories preferred and some others avoided?
One explanation is that the participants were asked to choose from a fixed set of
values and, thus, naturally leaned toward those that were not extreme, choosing
completely randomly one of them. This could explain why they avoided, for
example, Serial-Parallel. But it would not completely explain why Linear was
not avoided to the same extend, and why there was still concentration to MinMax
versus the Bayesian theory – which both give values which are, generally, in the
middle of the ranking. Future designs could allow for a more solid picture of the
above by asking participants to freely specify satisfaction value that they find
more appropriate, instead of offering a predefined inventory.

External Validity. We treat this study as exploratory, with no intent of making
strong generalization arguments, about e.g. the universal suitability of a specific
theory, our goal being to see if there is any effect. Keeping this in mind, in
appreciating generalizability of the findings one should consider both the chosen
participants and the chosen models. The former are users of MTurk, who are
known to be a good enough proxy for random population samples [5], and might
offer more variability than e.g. University students, especially when the latter
are drawn from a specific department or course. More important is, we find, the
level of representativeness of the models: different sizes, visual properties and
goal contents (e.g. real domain concepts vs. A, B, C etc.) might certainly affect
participants’ reaction to them. Recall also that to enable comparability of the
frameworks certain simplifications were made, such as for example not using
negative contribution measures or not fully utilizing notions of satisfaction and
denial values as defined in the Giorgini et al. framework. Generalizations should
be predicated on these restrictions.

5 Related Work

There is a wealth of proposals for modeling partial goal satisfaction and influence
thereof between goals in the literature, the semantics of which vary in intuitive
meaning and their mathematical/algorithmic treatment (e.g. [3,7,10,14,15,18]
in addition to ones discussed earlier; [12] for further survey). Such proposals are
typically evaluated based on expressiveness standards, amenability to interesting
and efficient reasoning or hypothesized ease of label acquisition.

Nonetheless, the idea of also empirically investigating the way a diagram
elicits by its viewers a certain way of understanding its subject matter is not
new to the conceptual modeling community, either. Several studies, for example,
investigate the comprehensibility of diagrammatic notations such as UML state
diagrams or ER diagrams [6,24]. Similar work has been done with goal models.
Horkoff et al., for example, propose and evaluate an interactive evaluation tech-
nique for goal models [13]. The visual properties of goal modeling languages such
as i* vis-a-vis model comprehensibility have been the target of investigation as
well. Moody et al. offer an assessment of the i* visual syntax based on established
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rules (“Physics of Notations”). An empirical analysis was followed by Caire et
al. [4] in which experimental participants evaluate visualization choices of the
language’s primitives. Elsewhere, Hadar et al. [11] compare goal diagrams with
use case diagrams on a variety of user tasks, including reading and modifying.

The above efforts tell us that there is interest in the community in under-
standing how users interact with diagrams, and even have users define their
visual properties of such, as e.g. Caire et al. demonstrate. Having users go beyond
the visuals and evaluate the semantics of notations seems to be a natural next
step. On that matter, although we could not find work in which interpretation
of satisfaction contribution in goal models is empirically investigated the way we
do here, we believe there is potential for much more research.

6 Concluding Remarks

We presented an exploratory experimental study aimed at assessing the intu-
itiveness of four theories of satisfaction propagation, operationalized through
measuring the frequency by which inferences untrained users perform with the
model match inferences that the theory prescribes. The results suggest that par-
ticipants do not choose at random and tend to favour some theories over others.
The way numbers are chosen as well as the size of the model also seem to affect
selection of theory, a process which, moreover, appears to take place heuristically
rather than through performance of precise calculations.

More investigation will be needed to fully understand how such results may
affect the practice of goal modelers and goal modeling language designers. It is
important to first consider that the results concern a specific diagrammatic way
of visualizing goal models and the kinds of inferences the specific visualization
evokes. If a modeler has compelling theoretical reasons to choose an “unintu-
itive” (vis-à-vis the visualization) propagation theory, e.g. Serial/Parallel if it
eventually proves to be such, use of traditional goal diagrams may be prob-
lematic, as users will likely make goal satisfaction inferences that contravene the
normative values, perhaps even if the latter are explicated in the diagram for the
purpose of exactly preventing erroneous user inferences. We intuitively consider
such situation sub-optimal compared to a situation in which the visualization
and the theory are in alignment. Nevertheless, the impact of misalignment in
practical model use needs to be explored in realistic model use scenarios (e.g.
decision making), prior to elevating intuitiveness measurement to a priority for
language designers.
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