
Modeling Regulatory Ambiguities
for Requirements Analysis

Aaron K. Massey1(B), Eric Holtgrefe1, and Sepideh Ghanavati2

1 Department of Information Systems, University of Maryland, Baltimore County,
Baltimore, USA

{akmassey,eholtgr1}@umbc.edu
2 Department of Computer Science, Texas Tech University, Lubbock, USA

sepideh.ghanavati@ttu.edu

Abstract. Lawyers and policy makers regularly and intentionally use
ambiguous language in laws, regulations, and other legal texts. Although
ambiguity has important policy benefits, such as interpretive resilience
in an ever-changing world, it frustrates engineers and businesses seeking
to build software systems that are demonstratively compliant with legal
obligations. In this vision paper, we propose a method for modeling legal
texts alongside models of software requirements or design artifacts. Our
approach allows engineers to reason about regulatory ambiguity sepa-
rately from their system under development and then trace interpretive
decisions made about the legal text to affected requirements models.
When a regulation is updated or case law demands a new interpretation
of a regulation, engineers can evaluate the effect of the changes on the
current design and respond appropriately. Inspired by User Requirements
Notation, our proposed method can be implemented as an extension to
Legal-GRL.

Keywords: Requirements engineering · Ambiguity modeling · Regula-
tory compliance

1 Introduction

Regulatory Compliance Software Engineering (RCSE) is an emerging field of
interdisciplinary research focused on the development of systematic approaches
to building, maintaining, and verifying software systems that must comply with
laws and regulations. Laws, regulations, and policy documents, and other legal
texts are simultaneously useful and challenging as a source of requirements for
software engineers [16]. One of the reasons for this challenge is the use of inten-
tional ambiguity as a means of interpretive resilience in rapidly changing tech-
nical environments. For example, specifying a particular encryption algorithm
is less resilient than using an ambiguous phrase like “reasonable encryption”
because if a specified algorithm were broken, then the law would need to be
updated. Unfortunately, any ambiguity in a legal text, whether intentional or
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 231–238, 2017.
https://doi.org/10.1007/978-3-319-69904-2_19



232 A.K. Massey et al.

not, must be identified, classified, and disambiguated during requirements engi-
neering [13]. That is, at some point “reasonable encryption” will have to be
interpreted to identify a particular algorithm prior to implementation.

Current approaches to RCSE focus on performing an interpretation of legal
texts, including the resolution of ambiguity, and linking each interpretation back
to the subsection of the policy document from which it came. On the surface, this
seems to be all that is needed, but interpreting legal texts is more nuanced than
this procedure supports. For example, lawyers cannot give a “definitive” interpre-
tation of a law; they can only give an opinion based on how they believe a court
or regulator would interpret the text for a particular situation. As a result, many
requirements engineering approaches to regulatory requirements fundamentally
require legal domain expertise that is not currently supported by goal modeling,
requirements modeling, or other standard software engineering modeling activ-
ities. New approaches must be developed to support increased participation of
non-legal domain experts, provide flexibility in the face of a changing regula-
tory environment, and incorporate modeling of regulatory requirements in the
software development lifecycle.

In this paper, we propose a method for modeling legal texts alongside models
of software requirements or design artifacts. Our approach allows engineers to
reason about regulatory ambiguity separately from their system under devel-
opment and then trace interpretive decisions made about the legal text to the
affected requirements models. The goal of this approach is to support reanalysis
of ambiguities in the event of regulatory change or updated engineering require-
ments. By identifying, categorizing, and modeling ambiguities, we can document
how those ambiguities are resolved by requirements models or other design arti-
facts. When a regulation is updated or case law demands a new interpretation
of a regulation, engineers can evaluate the effect of the changes on the current
design and respond appropriately.

The remainder of this paper is structured as follows. Section 2 details related
work in regulatory requirements and goal modeling. Section 3 describes our pro-
posed methodology for constructing an ambiguity model and present an example
of its use. Section 4 discusses the implications of our method and details possible
future work.

2 Related Work

Policy makers write abstract, intentionally ambiguous language to ensure the
laws and policies they construct outlast the current generation of technologies.
On the other hand, engineers developing software systems must interpret these
laws and regulations to address their specific cases and to ensure compliance.
Recent research [5,13] demonstrates that ambiguity and vagueness in privacy
policies increase privacy risks and decrease the user trust and willingness to
share the personal data.

Analyzing and resolving ambiguities has been a research topic in requirements
engineering and analysis for decades. Most engineering approaches to analyzing



Modeling Regulatory Ambiguities for Requirements Analysis 233

and resolving ambiguities involve developing tools [8] and techniques based on
natural language processing [14,15,18] or machine learning approaches [17,19].
The goal of these approaches is to resolve—once and for all—ambiguities in
requirements with a single, definitive interpretation (e.g., identify the correct
antecedent to an ambiguous pronoun). Herein, we avoid definitive resolution in
favor of modeling options and supporting reuse and re-examination of interpre-
tive decisions.

In our prior work [13], we developed a taxonomy and a classification method-
ology for legal ambiguities, consisting of seven types of ambiguity: Lexical,
Syntactic, Semantic, Vagueness, Incompleteness, Referential, and Other. Under-
standing an ambiguity’s classification supports disambiguation of that ambiguity.
This taxonomy was designed to be broadly applicable, but it is not guaranteed to
be comprehensive. Our ambiguity taxonomy describes the process of classifying
ambiguities according to their types [13]. Our methodology presented herein can
be adapted to other methods for classifying ambiguities.

We use User Requirements Notation (URN) [9] for modeling ambiguities
derived from our taxonomy. URN combines Goal-oriented Requirements Lan-
guage (GRL) [2–4] with Use Case Maps (UCM) [6] in one single notation and
provides traceability between the two. GRL includes ‘lightweight’ mechanisms
to help extending the language with the help of metadata, rules, concerns, and
links. The Use Case Map notation is used to model scenarios and use cases in
terms of a set of responsibilities assigned to components , which represent
actors, agents, roles, software modules, systems or sub-systems. Paths start with
start points and traverse through elements along the way until they reach the
end points . Paths contain responsibilities which indicate where actions,
activities, or transformations are needed. They can be performed in sequence,
concurrently , or as alternatives . UCM also includes static or dynamic
stubs to model parts of a scenario or a process as a plug-in map. URN has an
open source tool-support, called jUCMNav [1], which is a plugin for the Eclipse
development environment.1

Legal-URN [7] is an extension to the URN framework that helps requirements
engineers analyze the compliance of business and software requirements with
privacy-related regulations. jUCMNav has been extended to capture concepts
from Legal-URN. In our approach, we first model ambiguities with Use Case
Maps and then provide links from the ambiguity models to Legal-URN models
to perform this analysis. The ultimate goal of our approach is to develop a new
form of contribution link that connects regulatory ambiguities with traditional
modeling elements. Although we do not develop the syntax herein, we discuss
how it would support our ambiguity models in Sect. 4.

3 Constructing Ambiguity Models

In this section, we discuss how to develop ambiguity models. We adopt and
extend UCM to model ambiguities in legal statements. First, we identify and
1 http://eclipse.org/.

http://eclipse.org/


234 A.K. Massey et al.

classify ambiguities in the legal text we wish to model. Herein, we employ the
approach introduced in our prior work [13], but we believe similar approaches to
ambiguity identification may also suffice. Regardless of the technique chosen, we
recommend examining the complete text prior to modeling because this prevents
modeling of ambiguities that are resolved or clarified elsewhere in the regulation.

After classification, we follow the process outlined in Algorithm 1. In general,
we use static or dynamic stubs to model legal text. When the legal text
includes an ambiguity, we tag the stub with ambiguity marker as («amb»).
Specifically, the steps of our approach are as follows. First, model each subsection
of a legal statement with a stub. These represent legal statements to be detailed
in a plug-in map. Next, model the plug-in map of each related stub. If modeling
an ambiguity, use a stub with an ambiguity marker. If modeling another sub-
path, use a regular stub. If modeling a non-ambiguous task, use a responsibility

or other appropriate UCM element. Finally, we model the ambiguities tagged
with ambiguity markers using new plug-in maps. The plug-in map includes a
path, AND- or OR- Fork(s), and Join elements depending on the semantics of
the legal text and ambiguity elements .

We illustrate how our approach for modeling ambiguities works using a
section from the Health Insurance Portability and Accountability Act (HIPAA)2.
We selected §164.312, which contains the technical safeguards regulations for
HIPAA, because this article has been used extensively in our prior work [10–12]
examining those systems. To start the modeling process, we construct an outline
of §164.312 with each subsection modeled using a stub because none of them
are ambiguous. After completing this step, we follow the recursive step of the
algorithm to model the first stub in §164.312 which is (a) Access Control.

(a) Access Control contains two subparts, labeled as (1) Standard and
(2) Implementation Specifications. Subpart (a)(1) contains an ambiguity,3 thus

2 Pub. L. No. 104–191, 110 Stat. 1936 (1996).
3 All ambiguity identification is relative to the interpreter. There is no “ground truth”

in ambiguity identification. However, for the sake of simplicity, we refer to Subpart
(a)(1) as “containing” an ambiguity. In reality, without an interpreter, these same
words are neither ambiguous nor unambiguous.



Modeling Regulatory Ambiguities for Requirements Analysis 235

we model it as a stub with ambiguity marker, («amb»). Subpart (a)(2) is mod-
eled as a stub and it includes four separate statements as: (i) Unique User
Identification; (ii) Emergency Access Procedure; (iii) Automatic Logoff, and
(iv) Encryption and Decryption. We further expand the stub for (a)(2) in
another plug-in map. The first three statements of this subpart are ambigu-
ous.4 Thus, these three are modeled with stubs with ambiguity markers. The
fourth statements does not include any ambiguity so it is modeled with a UCM
responsibility element.

During this portion of the modeling, we are only interested in three things:
(1) reflecting the structure of the actual legal text we are modeling, (2) accu-
rately identifying ambiguity stubs, and (3) accurately modeling unambiguous
statements with traditional methods. We are neither resolving nor prioritizing
ambiguities because we want resolution, prioritization, and other analyses to be
independent of identification. If identification and classification are not separated
from other analysis, then the model is not easily reused.

Next, we expand stubs with ambiguity markers into detailed paths with ambi-
guity elements. As mentioned above, statement (a)(2)(ii) was found to be
ambiguous. This statement reads as follows:

(a)(2)(ii) Emergency access procedure: Establish (and implement as
needed) procedures for obtaining necessary electronic protected health
information during an emergency.

Our analysis found two ambiguities, one syntactic and one vagueness. The
phrase and implement as needed allows the whole statement to have multiple
valid meanings. (e.g., A procedure may be ‘established’ or ‘established and
implemented’.) In addition, the phrase during an emergency is vague in that
no definition for an emergency is provided.

At this point, requirements engineers may begin the task of resolving these
ambiguities. Resolution may take many forms, but whatever form it takes for
a given project, the data necessary to perform an ambiguity resolution should
be recorded here as attributes of the ambiguity stubs. In our prior work, we
examined intentionality [13]. That is, did the author of the legal text intend for
this ambiguity to be written as ambiguous in the way that we identified it. For
(a)(2)(ii), we believe the syntactic ambiguity is not intentional (When would
you establish and not implement a procedure?) and the vagueness is intentional
(Emergencies are difficult to define with clarity). Regardless the resolution app-
roach taken, all data necessary for resolution should be recorded as attributes
of the ambiguity stubs. The goal of this step is to support reuse and facilitate
changing legal or engineering requirements.

We model these two ambiguities with ambiguity elements which is added
to UCM models as an extension. To complete the ambiguity model, we must lay
each ambiguity out on the path. Our approach has two options, the ambiguities
are independent or one must be resolved before the other. For (a)(2)(ii), we

4 Again, based on our interpretation.



236 A.K. Massey et al.

decided that both of ambiguities determine the actor and their responsibilities.
As a result, we model them in parallel and with AND-fork paths.

Fig. 1. Ambiguity iden-
tified in §164.312(b)

Figure 1 illustrates modeling the second of these,
including the type of ambiguity, which details our
analysis of §164.312(b) which reads as follows:

Implement hardware, software, and/or proce-
dural mechanisms that record and examine activ-
ity in information systems that contain or use
electronic protected health information.

This legal statement includes four ambiguities: two
syntactic ambiguities, a lexical ambiguity and a vague-
ness, summarized in Table 1. We believe all four ambi-
guities are relatively easy to disambiguate and this text
can be implemented by software engineers. They do,
however, have a strict ordering, as shown in Fig. 1.

Due to space constraints, we now focus our analy-
sis on the lexical ambiguity resulting from the phrase
“. . . that contain or use electronic protected health
information.” The “contain and use” part of this phrase
is confusing. Does “contain” refer to “having access to some data” or “keeping
some data apart from”? No separation of data is explicitly mentioned, so it
would be easy to assume the former meaning is correct. However, in this case
the word “contain” is superfluous. Any “use” of the data would require access
to it. So perhaps the latter meaning of “contain” is correct? This ambiguity is

Table 1. Ambiguities found in 164.312(b)

Type Phrase Rationale

Syntactic “Implement hardware, software,
and/or procedural mechanisms
that. . . ”

Does the “that” clause apply to
the hardware, the software, the
procedural mechanisms or some
combination of them?

Syntactic “. . . that record and examine
activity. . . ”

Do the mechanisms need to be
implemented for a system that
only records activity?

Lexical “. . . that contain or use electronic
protected health information.”

Does contain mean “have access
to” or “keep separate from the
rest of the system”?

Vagueness “Implement hardware, software,
and/or procedural mechanisms
that record and examine activity in
information systems that contain
or use electronic protected health
information.”

The statement is quite broad.
What is actually needed?



Modeling Regulatory Ambiguities for Requirements Analysis 237

also localized and does not affect the meaning of the entire statement. Because
both this lexical ambiguity and the second syntactical ambiguity (see Table 1)
can be resolved independently and without affecting the resolution of the first
syntactical ambiguity, we modeled them in parallel.

4 Discussion and Summary

Although ambiguity has important policy benefits, such as interpretive resilience
in an ever-changing world, it frustrates engineers seeking to interpret their mean-
ing and demonstrate due diligence in complying with legal obligations. In this
vision paper, we proposed a method for modeling ambiguities in legal texts
alongside models of software requirements or design artifacts. We presented an
example model that demonstrate how our approach supports engineers as they
reason about regulatory ambiguity and come to a disambiguation or resolution
strategy. When a regulation is updated or case law demands a new interpretation
of a regulation, engineers can evaluate the effect of the changes on the current
design and respond appropriately.

Because regulations can change over time, interpretations may also change. A
structural model of regulatory ambiguity supports easier change impact analysis
because updates to legal texts are denoted with structural changes. For example,
consider §170.314 and §170.315. These two sections of HIPAA represent the
meaningful use certification criteria for EHR systems for 2014 and 2015, respec-
tively. They are remarkably similar in structure, so if an EHR vendor seeking to
transition from 2014 compliance to 2015 compliance used an ambiguity model,
many of the implications of the changes could easily be identified.

By modeling legal documents as they are structured to support reuse and
reanalysis, we support discussion between the analysts and legal experts as they
seek to resolve ambiguities in system design. If ambiguity identification and clas-
sification were interleaved with ambiguity resolution, then any change in the reg-
ulations may require analysts to either re-identify and re-classify the ambiguities
or to undo the resolution process, whatever it may have been (disambiguation,
prioritization, etc. . . ).

By choosing to model the text in a way that supports multiple interpretations
and without a definitive interpretation or resolution in mind, we can meaning-
fully support analysts seeking to incorporate ambiguity resolution with tradi-
tional modeling approaches. Many ambiguity types can only be resolved with
domain experts, and for these analysts cannot reach a valid conclusion without
a consultation. Unfortunately, by resolving these directly and documenting only
the resolution, requirements engineers risk non-compliance resulting from future
changes, including changes to regulations, changes to customer requirements, or
even simple staff turnover. In essence, the resolved ambiguity has become tacitly
hidden, with no indication that the ambiguity existed at all.



238 A.K. Massey et al.

References

1. Amyot, D.: JUCMNav. http://jucmnav.softwareengineering.ca/ucm/bin/view/
ProjetSEG/WebHome, October (2016)

2. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. Int. J. Intell.
Syst. 25(8), 841–877 (2010)

3. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for
i* modeling. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp.
254–264. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04947-7_31

4. Amyot, D., et al.: Towards advanced goal model analysis with jUCMNav. In: Cas-
tano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds.) ER 2012. LNCS, vol.
7518, pp. 201–210. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33999-8_25

5. Bhatia, J., Breaux, T.D., Reidenberg, J.R., Norton, T.B.: A theory of vagueness
and privacy risk perception. In: 24th International RE Conference, Beijing, China,
September 2016

6. Buhr, R., Casselman, R.: Use Case Maps for Object-Oriented Systems. Prentice-
Hall, Upper Saddle River (1995)

7. Ghanavati, S.: Legal-URN Framework for Legal Compliance of Business Processes.
PhD thesis, University of Ottawa, Ottawa, Canada (2013)

8. Gordon, D.G., Breaux, T.D.: Reconciling multi-jurisdictional legal requirements: a
case study in requirements water marking. In: 20th IEEE International RE Con-
ference, pp. 91–100, September 2012

9. ITU-T. User Requirements Notation (URN) – Language definition. Technical
Report ITU-T Z.151, ITU-T, October 2012

10. Massey, A.K., Otto, P.N., Antón, A.I.: Evaluating legal implementation readiness
decision-making. IEEE Trans. Softw. Eng. 41(6), 545–564 (2015)

11. Massey, A.K., Otto, P.N., Hayward, L.J., Antón, A.I.: Evaluating existing security
and privacy requirements for legal compliance. Requir. Eng. 15, 119–137 (2010)

12. Massey, A.K., Rutledge, R.L., Antón, A.I., Hemmings, J.D., Swire, P.P.: A strategy
for addressing ambiguity in regulatory requirements. https://smartech.gatech.edu/
handle/1853/54573 (2015)

13. Massey, A.K., Rutledge, R.L., Antón, A.I., Swire, P.P.: Identifying and classifying
ambiguity for regulatory requirements. In: 22nd International Conference on RE,
pp. 83–92, August 2014

14. Nigam, A., Arya, N., Nigam, B., Jain, D.: Tool for automatic discovery of ambiguity
in requirements. Int. J. Comput. Sci. Issues 9(5) (2012)

15. Osborne, M., MacNish, C.K.: Processing natural language software requirement
specifications. In: 2nd International Conference on RE, pp. 229–236, April 1996

16. Otto, P.N., Antón, A.I.: Addressing legal requirements in RE. In: 2007 15th IEEE
International RE Conference, RE 2007, pp. 5–14 (2007)

17. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M.: Reducing ambiguities in
requirements specifications via automatically created object-oriented models. In:
Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 103–
124. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89778-1_10

18. Umber, A., Bajwa, I.S.: Minimizing ambiguity in natural language software require-
ments specification. In: 2011 Sixth International Conference on Digital Information
Management, pp. 102–107, September 2011

19. van Bussel, D.: Detecting ambiguity in requirements specifications. PhD thesis,
Tilburg University (2009)

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://dx.doi.org/10.1007/978-3-642-04947-7_31
http://dx.doi.org/10.1007/978-3-642-33999-8_25
https://smartech.gatech.edu/handle/1853/54573
https://smartech.gatech.edu/handle/1853/54573
http://dx.doi.org/10.1007/978-3-540-89778-1_10

	Modeling Regulatory Ambiguities for Requirements Analysis
	1 Introduction
	2 Related Work
	3 Constructing Ambiguity Models
	4 Discussion and Summary
	References




