
Heinrich C. Mayr
Giancarlo Guizzardi
Hui Ma
Oscar Pastor (Eds.)

 123

LN
CS

 1
06

50

36th International Conference, ER 2017
Valencia, Spain, November 6–9, 2017
Proceedings

Conceptual Modeling

Lecture Notes in Computer Science 10650

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Heinrich C. Mayr • Giancarlo Guizzardi
Hui Ma • Oscar Pastor (Eds.)

Conceptual Modeling
36th International Conference, ER 2017
Valencia, Spain, November 6–9, 2017
Proceedings

123

Editors
Heinrich C. Mayr
University of Klagenfurt
Klagenfurt
Austria

Giancarlo Guizzardi
Free University of Bozen-Bolzano
Bozen-Bolzano
Italy

Hui Ma
Victoria University of Wellington
Wellington
New Zealand

Oscar Pastor
Valencia University of Technology
Valencia
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-69903-5 ISBN 978-3-319-69904-2 (eBook)
https://doi.org/10.1007/978-3-319-69904-2

Library of Congress Control Number: 2017957732

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-5770-8091
http://orcid.org/0000-0002-1320-8471

Preface

The International Conference on Conceptual Modeling (ER) is the leading global
forum for current research on conceptual modeling (CM) and trendsetting CM appli-
cations. The topics of interest span the entire spectrum of CM: theoretical and onto-
logical foundation, methods and tools for developing and communicating conceptual
models and meta models, techniques for transforming conceptual models into effective
implementations, and the impact of CM techniques on databases, business strategies,
and information systems development. The ER conference series has been held at a
variety of superb locations, rotating in successive years between Europe, the
Asia-Pacific region, and the Americas, and attracting an international community of
scholars.

This volume contains the research and technical papers comprising the main pro-
gram of ER 2017 in its 36th conference edition held during November 6–9, 2017, in the
beautiful city of Valencia, Spain. More than 450 researchers from all over the world
followed our call for papers and submitted 153 papers about their latest research results.
Each paper was carefully reviewed by at least three members of the Program Com-
mittee, which consisted of renowned scientists from more than 40 nations. Finally,
28 papers, i.e., about 18%, were selected as full papers to be presented at the con-
ference and to be included in this volume. An additional 10 submissions were accepted
as short papers. The quality of these 38 papers is a tribute to the authors and also to the
reviewers who guided any necessary improvements.

Focal points of these papers are: (1) CM and ontologies in the context of require-
ments analysis, business processes, and other domains; (2) foundations of CM, for
example, regarding multi-level modeling; (3) CM methodology with a broad spectrum
of innovative answers to interesting research questions; (4) ontologies; and (5) model
efficiency.

This volume would not have materialized without the support of many people. First,
we are very grateful to all the authors for their continuous commitment and intensive
work. Second, we would like to thank the Program Committee members and additional
reviewers for providing timely and in-depth assessments. Furthermore, we thank all the
people and sponsors who helped in the organization of ER 2017. Without all that effort
there would have been no substance for this volume and no success for ER 2017. Last
but not least, we are greatly indebted to the five invited speakers, Prof. Lois Delcambre
(USA), Prof. Josef Mitterer (Austria), Prof. Antoni Olivé (Spain), Francisco
Garcia-Moran (Spain), and Prof. Yair Wand (Canada), for accepting our invitation to
address this conference.

September 2017 Heinrich C. Mayr
Giancarlo Guizzardi

Hui Ma
Oscar Pastor

Organization

Program Committee

Jacky Akoka CNAM and TEM, France
Raian Ali Bournemouth University, UK
Joao Paulo Almeida Federal University of Espirito Santo, Brazil
Yuan An Drexel University, USA
Joao Araujo Universidade Nova de Lisboa, Portugal
Alessandro Artale Free University of Bolzano-Bozen, Italy
Claudia P. Ayala Technical University of Catalunya, Spain
Fatma Başak Aydemir Utrecht University, The Netherlands
Doo-Hwan Bae KAIST, South Korea
Fernanda Araujo Baiao UNIRIO, Brazil
Zhifeng Bao RMIT University, Australia
Judith Barrios Albornoz University of Los Andes, Colombia
Ladjel Bellatreche LIAS/ENSMA, France
Nelly Bencomo Aston University, UK
Kawtar Benghazi Universidad de Granada, Spain
Sandro Bimonte IRSTEA, France
Mokrane Bouzeghoub UVSQ/CNRS, France
Shawn Bowers Gonzaga University, USA
Stephane Bressan National University of Singapore
Cristina Cabanillas Wirtschaftsuniversität Wien, Austria
Diego Calvanese Free University of Bozen-Bolzano, Italy
Maria Luiza Campos Federal University of Rio de Janeiro, Brazil
Luca Cernuzzi Universidad Católica, Asunción, Paraguay
Vinay Chaudhri Independent Researcher, USA
Roger Chiang AIS, USA
Suphamit Chittayasothorn King Mongkut’s Institute of Technology Ladkrabang,

Thailand
Dickson K.W. Chiu The University of Hong Kong, SAR China
Byron Choi Hong Kong Baptist University, SAR China
Isabelle Comyn-Wattiau ESSEC Business School, France
Nelly Condori-Fernández Universidade da Coruña, Spain
Dolors Costal Universitat Politècnica de Catalunya, Spain
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Fabiano Dalpiaz Utrecht University, The Netherlands
Karen Davis Miami University, USA
Valeria De Antonellis University of Brescia, Italy
Sergio De Cesare Brunel University, UK
Jose Luis de La Vara Carlos III University of Madrid, Spain

José Palazzo M. de
Oliveira

Federal University of Rio Grande do Sul, Brazil

Adela Del Río Ortega University of Seville, Spain
Lois Delcambre Portland State University, USA
Gill Dobbie University of Auckland, New Zealand
Johann Eder Alpen-Adria-Universität Klagenfurt, Austria
Vadim Ermolayev Zaporizhzhya National University, Ukraine
M.J. Escalona University of Seville, Spain
Sergio Espana Cubillo Universiteit Utrecht, The Netherlands
Ricardo A. Falbo Federal University of Esprito Santo, Brazil
Hans-Georg Fill University of Bamberg, Germany
Xavier Franch Universitat Politècnica de Catalunya, Spain
Enrico Franconi Free University of Bozen-Bolzano, Italy
Ulrich Frank Universität Duisburg-Essen, Germany
Agnès Front LIG, SIGMA, Grenoble University, France
Frederik Gailly Ghent University, Belgium
Aldo Gangemi Université Paris 13 and CNR-ISTC, France
Faiez Gargouri Institut Supérieur d’Informatique et de Multimédia

de Sfax, Tunisia
Aurona Gerber CAIR, University of Pretoria, South Africa
Sepideh Ghanavati Texas Tech University, USA
Mohamed Gharzouli Constantine 2 University, Algeria
Aditya Ghose University of Wollongong, Australia
Giovanni Giachetti Universidad Tecnológica de Chile INACAP, Chile
Paolo Giorgini University of Trento, Italy
Cesar Gonzalez-Perez Incipit, CSIC, Spain
Jeff Gray University of Alabama, USA
Georg Grossmann University of South Australia
Nicola Guarino ISTC-CNR, Italy
Esther Guerra Universidad Autónoma de Madrid, Spain
Giancarlo Guizzardi Federal University of Espirito Santo (UFES), Brazil;

Free University of Bozen-Bolzano, Italy
Sven Hartmann Clausthal University of Technology, Germany
Martin Henkel Stockholm University, Sweden
Arantza Illarramendi Basque Country University, Spain
Matthias Jarke RWTH Aachen University, Germany
Manfred Jeusfeld University of Skövde, Sweden
Ivan Jureta University of Namur, Belgium
Gerti Kappel TU Wien, Austria
Dimitris Karagiannis University of Vienna, Austria
Kamalakar Karlapalem CDE, IIIT Hyderabad, India
David Kensche SAP, Germany
Vijay Khatri Indiana University, USA
Dimitris Kiritsis EPFL, Switzerland
Agnes Koschmider Karlsruhe Institute of Technology, Germany
Hasan Koç Universität Rostock, Germany

VIII Organization

Mong Li Lee National University of Singapore
Moonkun Lee Chonbuk National University, South Korea
Julio Cesar Leite PUC-Rio, Brazil
Guoliang Li Tsinghua University, China
Stephen Liddle Brigham Young University, USA
Tok Wang Ling National University of Singapore
Sebastian Link University of Auckland, New Zealand
Pericles Loucopoulos University of Manchester, UK
Hui Ma Victoria University of Wellington, New Zealand
Wolfgang Maass Saarland University, Germany
Patricia Martin-Rodilla Institute of Heritage Sciences Spanish National Research

Council, Spain
Paloma Martínez

Fernández
Universidad Carlos III de Madrid, Spain

Beatriz Marín Universidad Diego Portales, Chile
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Raul Mazo Paris 1-Sorbonne University, France
Vitaly Mezhuyev University Malaysia Pahang, Malaysia
Judith Michael Alpen-Adria-Universität Klagenfurt, Austria
Zoltan Micskei Budapest University of Technology and Economics,

Hungary
Lourdes Moreno Universidad Carlos III de Madrid, Spain
Haralambos Mouratidis University of Brighton, UK
John Mylopoulos University of Toronto, Canada
Wilfred Ng HKUST, SAR China
Selmin Nurcan Université de Paris 1, France
Antoni Olivé Universitat Politècnica de Catalunya, Spain
Andreas L Opdahl University of Bergen, Norway
Jinsoo Park Seoul National University, South Korea
Jeffrey Parsons Memorial University of Newfoundland, Canada
Chris Partridge Brunel University, BORO Solutions, UK
Oscar Pastor Universitat Politecnica de Valencia, Spain
Barbara Pernici Politecnico di Milano, Italy
Geert Poels Ghent University, Belgium
Henderik Proper Public Research Centre Henri Tudor, Luxembourg
Ricardo Rafael Quintero

Meza
Instituto Tecnológico de Culiacán, Mexico

Christoph Quix Fraunhofer FIT, Germany
Jolita Ralyté University of Geneva, Switzerland
Sudha Ram University of Arizona, USA
Suwanna Rasmequan Burapha University, Thailand
Iris Reinhartz-Berger University of Haifa, Israel
Manuel Resinas University of Seville, Spain
Daniel Riesco National University of San Luis, Argentina
Stefanie Rinderle-Ma University of Vienna, Austria
Stefano Rizzi University of Bologna, Italy

Organization IX

Genaina Rodrigues University of Brasilia, Brazil
Colette Rolland Université Paris 1, France
Raul Ruggia University of the Republic, Uruguay
Marcela Ruiz Utrecht University, The Netherlands
Antonio Ruiz-Cortés University of Seville, Spain
Keun Ho Ryu Chungbuk National University, South Korea
Sourav S Bhowmick Nanyang Technological University, Singapore
Motoshi Saeki Tokyo Institute of Technology, Japan
Melike Sah Trinity College Dublin, Ireland
Camille Salinesi CRI, Université de Paris 1 Panthéon-Sorbonne, France
Kurt Sandkuhl University of Rostock, Germany
Flavia Santoro NP2Tec/UNIRIO, Brazil
Klaus-Dieter Schewe Software Competence Center Hagenberg, Germany
Daniel Schwabe PUC-Rio, Brazil
Vladimir A. Shekhovtsov Alpen-Adria-Universität Klagenfurt, Austria
Peretz Shoval Ben-Gurion University, Israel
Samira Si-Said Cherfi CEDRIC, Conservatoire National des Arts et Métiers,

France
Guttorm Sindre NTNU, Norway
Monique Snoeck K.U. Leuven, Belgium
Pnina Soffer University of Haifa, Israel
Il-Yeol Song Drexel University, USA
Veda Storey GSU, USA
Stefan Strecker University of Hagen, Germany
Arnon Sturm Ben-Gurion University, Israel
David Taniar Monash University, Australia
Ernest Teniente Universitat Politècnica de Catalunya, Spain
James Terwilliger Microsoft Corporation
Bernhard Thalheim Christian Albrechts Universität Kiel, Germany
Victoria Torres Universidad Politecnica de Valencia, Spain
Juan-Carlos Trujillo University of Alicante, Spain
Jose Turull-Torres Universidad Nacional de La Matanza, Argentina,

and Massey University, New Zealand
Panos Vassiliadis University of Ioannina, Greece
Tanja E.J. Vos Open Universiteit, The Netherlands
Gerd Wagner Brandenburg University of Technology at Cottbus,

Germany
Barbara Weber Universität Innsbruck, Austria
Claudia Werner UFRJ, Brazil
Roel Wieringa University of Twente, The Netherlands
Manuel Wimmer Vienna University of Technology, Austria
Carson Woo University of British Columbia, Canada
Robert Wrembel Poznan University of Technology, Poland
Huayu Wu Institute for Infocomm Research, Singapore

X Organization

Hwan-Seung Yong Ewha Womans University, South Korea
Eric Yu University of Toronto, Canada
Yanchun Zhang Victoria University, Australia
Iyad Zikra Stockholm University, Sweden

Additional Reviewers

Abdelahad, Corina
Artale, Alessandro
Asprino, Luigi
Baek, Youngmin
Bianchini, Devis
Borges, Marcos R.S.
Bork, Dominik
Böhmer, Kristof
Calvanese, Diego
Chu, Lisa
Chuah, Seong Ping
Corman, Julien
Estrada Torres, Irene Bedilia
Feltus, Christophe
Fernandes, Filipe
Fernandez, Pablo
García, José María
Huemer, Christian
Kaczmarek, Monika
Khodabandelou, Ghazaleh
Khouri, Selma
Koh, Judice
Köpke, Julius

Mazak, Alexandra
Melchiori, Michele
Nalchigar, Soroosh
Noguera, Manuel
Oriol, Xavier
Ouhammou, Yassine
Panach Navarrete, Jose Ignacio
Piras, Luca
Pittl, Benedikt
Prince Sales, Tiago
Razo-Zapata, Iván S.
Russo, Alessandro
Sangat, Prajwol
Shin, Donghwan
Silveira, Denis
Souza, Vitor E. Silva
Stertz, Florian
Troya, Javier
Unger, Moshe
Walch, Michael
Wally, Bernhard
Winter, Karolin
Wolny, Sabine

Organization XI

Sponsors

Main Organizers

XII Organization

Invited Talks

Conceptual Modeling?
When We are Awash in Information?

Lois Delcambre

Computer Science Department,
Portland State University

lmd@pdx.edu

Abstract. We challenge the traditional who/what/why of conceptual modeling
of information in a world where structured data is ubiquitous.

Who (defines conceptual models?) Analysts? Developers? Ontology specialists? All
of the above. But non-traditional users such as scientists, journalists, educators, and
almost anyone with data to share are being empowered to define their own information
with easy to use data storage and web management systems.

What (is being modeled?) A database as part of an information system or software
system? Information that supports a business process? Definitely. But some users
define their structured information directly – for display and processing.

Why (is a conceptual model defined?) To describe information and processing of
an information system or a software system? To promote collaboration and commu-
nication? To increase understanding of a domain? To document a system? Certainly.
But let’s consider the goals of people who define and publish their own structured
information directly; perhaps we can use a conceptual model to offer them useful
functionality for their information (e.g., for browsing, mapping, calculations).

We suggest that domain users are doing conceptual modeling. And we believe that
they can relate their conceptual model to a domain model when they are enticed by
sophisticated information widgets that can select, display, and process their informa-
tion. We also highlight a problem that has been present since conceptual models (or
database schemas) were first created: information of interest to a user might be present
in the “data” (such as “Oregon” being part of someone’s address) or in the “schema”
such as “Oregon” or “California” being attribute names (for a sport fishing registry).
Finally, we show that users (who understand their own information) can perform
schema integration, including complex operations such as pivot and unpivot, when
guided with examples (of the widgets) using sample data.

Conceptual Modeling:
Philosophical Considerations

Josef Mitterer

Alpen-Adria-Universität Klagenfurt
josef.mitterer@aau.at

Abstract. The underlying philosophies of Conceptual Modeling vary between
Critical Realism and Ontological Constructivism and fit into the philosophical
panorama: There are distinctions and therefore we make them (Realism) — We
make distinctions and therefore they are (Idealism/Constructivism).

The presupposition of dichotomies between language and world, description
and object, between what we talk and what we talk about, helps to freeze,
dogmatize and fundamentalize the status quo into a “real” world and “its”
representations.

Claims of representing the real world remain irrelevant as long as consensus
prevails. When conflicts arise, the world and other potential decision criteria in a
beyond of discourse stay mute: the criteria fail and the opposing parties get into
a stalemate… In a recent conversation the ontologist Barry Smith said on how
he would deal with competing ontologies: “I try to win.”

Proposing an alternative philosophy of change requires a shift in the
vocabulary and in the direction of discourse: Instead of advocating a dichotomy
between a fixed/independent world and privileged representations, a philosophy
of change favors relations between so far and from now on. The object of a
description relates to the description of the object like the description so far to
the description from now on. Every description of the object changes the object
into a new object of further descriptions.

Philosophical ontologists try to transcend the “here and now” into the past
and future. I opt for transparence rather than transcendence. The world, the
reality is nothing but the present state of things.

IT Professionals and Conceptual Modeling

Francisco Garcia Moran

European Commission, BECH C3/631, Luxembourg
francisco.garcia-moran@ec.europa.eu

Abstract. IT professionals, explicitly or implicitly, develop conceptual models
when trying to produce a high level description of the fundamental principles
and the main functionalities of the “systems” (understood in the most general
way: Enterprise Architecture, Infrastructure Blueprints, Information Systems,
Database Systems, etc.) they want to implement. They do it because they want

1. enhance the understanding of the “users”,
2. facilitate the dialogue among system’s stakeholders,
3. provide system designers with an input to produce system specifications at

different levels, and
4. document the system for future reference and collaboration activities.

There are several relevant questions to IT practitioners about the use of
conceptual modelling that the author will try to cover in his presentation on his
more than 40 years of professional experience in the public sector as well as his
conversations with hundreds of IT professionals in the public and private sectors:

1. Why “conceptual modeling” is considered by many IT professionals as “too
theoretical” or “too heavy”?

2. Which are the barriers and facilitators for its more formal adoption?
3. Is there a contradiction between “being agile” (for instance using agile

development methodologies like Scrum) and the formal use of conceptual
models?

4. What can be done about it?

The author will try to illustrate the answer to some of the above mentioned
questions based on the results on an informal survey filled in by many of his
contacts in public and private sectors.

Classification and Science

Yair Wand

Sauder School of Business, The University of British Columbia,
Vancouver, BC, Canada
yair.wand@ubc.ca

Abstract. Classifying phenomena is deeply intertwined with cognition and
human information processing. Therefore, identifying classes is a central aspect
of information technology (IT). Choosing a “good” set of classes is both the-
oretically and practically important. Two cognitive principles underlie the
cognitive approach to classification. First, classes encapsulate inferences about
the properties of their instances – in other words, knowing a category can “tell”
us more about an instance that required to identify the category it belongs to.
Second, collections of classes should provide economy of storage. This leads to
a view of classes as carriers of domain knowledge in the form of inferences
about situations, which is more than “containers” for information.

We discuss how this view can be used to model scientific theories. We
explain how the principles can be used to guide the choice of collections of
classes. We show how the approach can be used in scientific discourse by
applying it to one of the most well-known areas of physics – the electromagnetic
equations as developed originally by Maxwell. The example shows how the
classification based approach can be generally applied to scientific problems and
that it has two advantages. First, it can provide a simpler and more informative
account of the sample phenomena. Second, the classification principles can lead
to questions to be asked to help resolve differences between observations and
predictions. This means that the resolution of problems can be framed in terms
of changes to classification structures, and to principles suggesting how such
changes might occur.

Contents

The Universal Ontology: A Vision for Conceptual Modeling
and the Semantic Web (Invited Paper) . 1

Antoni Olivé

Conceptual Modeling Methodology

CE-SIB: A Modelling Method Plug-in for Managing Standards
in Enterprise Architectures . 21

Christoph Moser, Robert Andrei Buchmann, Wilfrid Utz,
and Dimitris Karagiannis

A Catalogue of Reusable Context Model Elements Based
on the i* Framework . 36

Karina Abad, Wilson Pérez, Juan Pablo Carvallo,
and Xavier Franch

Modelling Processes with Time-Dependent Control Structures 50
Horst Pichler, Johann Eder, and Margareta Ciglic

Towards Rearchitecting Meta-Models into Multi-level Models 59
Fernando Macías, Esther Guerra, and Juan de Lara

Mining Goal Refinement Patterns: Distilling Know-How from Data 69
Metta Santiputri, Novarun Deb, Muhammad Asjad Khan,
Aditya Ghose, Hoa Dam, and Nabendu Chaki

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? . . . 77
Okhaide Akhigbe, Susie Heap, Sakib Islam, Daniel Amyot,
and John Mylopoulos

An Alternative Approach to Metainformation Conceptualisation and Use 92
Cesar Gonzalez-Perez and Patricia Martin-Rodilla

Schema Evolution and Foreign Keys: Birth, Eviction,
Change and Absence . 106

Panos Vassiliadis, Michail-Romanos Kolozoff, Maria Zerva,
and Apostolos V. Zarras

Conceptual Modelling of Autonomous Multi-cloud Interaction
with Reflective Semantics . 120

Andreea Buga, Sorana Tania Nemeş, and Klaus-Dieter Schewe

http://dx.doi.org/10.1007/978-3-319-69904-2_1
http://dx.doi.org/10.1007/978-3-319-69904-2_1
http://dx.doi.org/10.1007/978-3-319-69904-2_2
http://dx.doi.org/10.1007/978-3-319-69904-2_2
http://dx.doi.org/10.1007/978-3-319-69904-2_3
http://dx.doi.org/10.1007/978-3-319-69904-2_3
http://dx.doi.org/10.1007/978-3-319-69904-2_4
http://dx.doi.org/10.1007/978-3-319-69904-2_5
http://dx.doi.org/10.1007/978-3-319-69904-2_6
http://dx.doi.org/10.1007/978-3-319-69904-2_7
http://dx.doi.org/10.1007/978-3-319-69904-2_8
http://dx.doi.org/10.1007/978-3-319-69904-2_9
http://dx.doi.org/10.1007/978-3-319-69904-2_9
http://dx.doi.org/10.1007/978-3-319-69904-2_10
http://dx.doi.org/10.1007/978-3-319-69904-2_10

Querying Graph Databases: What Do Graph Patterns Mean? 134
Stephan Mennicke, Jan-Christoph Kalo, and Wolf-Tilo Balke

Scaffolding Relational Schemas and APIs from Content in Web Mockups . . . 149
Alfonso Murolo, Sybil Ehrensberger, Zera Asani, and Moira C. Norrie

SourceVote: Fusing Multi-valued Data via Inter-source Agreements 164
Xiu Susie Fang, Quan Z. Sheng, Xianzhi Wang, Mahmoud Barhamgi,
Lina Yao, and Anne H.H. Ngu

Level-Aware Ecosystem Transformations for Industrial
Lifecycle Interoperability . 173

Matt Selway, Markus Stumptner, Michael Schrefl, and Andreas Jordan

Conceptual Modeling: Enhancement Through Semiotics. 182
Veda C. Storey and Bernhard Thalheim

Conceptual Modeling and Requirements

Towards an Ontology for Privacy Requirements
via a Systematic Literature Review . 193

Mohamad Gharib, Paolo Giorgini, and John Mylopoulos

What Happens to Intentional Concepts in Requirements Engineering
if Intentional States Cannot Be Known?. 209

Ivan J. Jureta

Goal Models for Acceptance Requirements Analysis
and Gamification Design . 223

Luca Piras, Elda Paja, Paolo Giorgini, and John Mylopoulos

Modeling Regulatory Ambiguities for Requirements Analysis 231
Aaron K. Massey, Eric Holtgrefe, and Sepideh Ghanavati

An Experimental Evaluation of the Understanding of Safety
Compliance Needs with Models . 239

Jose Luis de la Vara, Beatriz Marín, Clara Ayora,
and Giovanni Giachetti

Foundations

Cardinality Constraints with Probabilistic Intervals 251
Tania Katell Roblot and Sebastian Link

Contextual Keys . 266
Ziheng Wei, Sebastian Link, and Jiamou Liu

XX Contents

http://dx.doi.org/10.1007/978-3-319-69904-2_11
http://dx.doi.org/10.1007/978-3-319-69904-2_12
http://dx.doi.org/10.1007/978-3-319-69904-2_13
http://dx.doi.org/10.1007/978-3-319-69904-2_14
http://dx.doi.org/10.1007/978-3-319-69904-2_14
http://dx.doi.org/10.1007/978-3-319-69904-2_15
http://dx.doi.org/10.1007/978-3-319-69904-2_16
http://dx.doi.org/10.1007/978-3-319-69904-2_16
http://dx.doi.org/10.1007/978-3-319-69904-2_17
http://dx.doi.org/10.1007/978-3-319-69904-2_17
http://dx.doi.org/10.1007/978-3-319-69904-2_18
http://dx.doi.org/10.1007/978-3-319-69904-2_18
http://dx.doi.org/10.1007/978-3-319-69904-2_19
http://dx.doi.org/10.1007/978-3-319-69904-2_20
http://dx.doi.org/10.1007/978-3-319-69904-2_20
http://dx.doi.org/10.1007/978-3-319-69904-2_21
http://dx.doi.org/10.1007/978-3-319-69904-2_22

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 280
João Paulo A. Almeida, Claudenir M. Fonseca,
and Victorio A. Carvalho

Alignment-Based Trace Clustering . 295
Thomas Chatain, Josep Carmona, and Boudewijn van Dongen

Conceptual Modeling in Specific Context

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 311
Rick Evertsz, John Thangarajah, and Michael Papasimeon

Conceptual Modeling for Genomics: Building an Integrated Repository
of Open Data . 325

Anna Bernasconi, Stefano Ceri, Alessandro Campi,
and Marco Masseroli

Towards Thinking Manufacturing and Design Together:
An Aeronautical Case Study. 340

Thomas Polacsek, Stéphanie Roussel, François Bouissiere,
Claude Cuiller, Pierre-Eric Dereux, and Stéphane Kersuzan

OCLUNIV: Expressive UML/OCL Conceptual Schemas
for Finite Reasoning . 354

Xavier Oriol and Ernest Teniente

Conceptual Modeling and Business Processes

Goal Orchestrations: Modelling and Mining Flexible Business Processes 373
Metta Santipuri, Aditya Ghose, Hoa Khanh Dam, and Suman Roy

Configurable and Executable Task Structures Supporting
Knowledge-Intensive Processes . 388

Nicolas Mundbrod and Manfred Reichert

Various Notions of Soundness for Decision-Aware Business Processes 403
Kimon Batoulis, Stephan Haarmann, and Mathias Weske

Data, Control, and Process Flow Modeling for IoT Driven
Smart Solutions . 419

P. Radha Krishna and Kamalakar Karlapalem

Model Efficiency

Determining the Preferred Representation of Temporal Constraints
in Conceptual Models . 437

C. Maria Keet and Sonia Berman

Contents XXI

http://dx.doi.org/10.1007/978-3-319-69904-2_23
http://dx.doi.org/10.1007/978-3-319-69904-2_24
http://dx.doi.org/10.1007/978-3-319-69904-2_25
http://dx.doi.org/10.1007/978-3-319-69904-2_26
http://dx.doi.org/10.1007/978-3-319-69904-2_26
http://dx.doi.org/10.1007/978-3-319-69904-2_27
http://dx.doi.org/10.1007/978-3-319-69904-2_27
http://dx.doi.org/10.1007/978-3-319-69904-2_28
http://dx.doi.org/10.1007/978-3-319-69904-2_28
http://dx.doi.org/10.1007/978-3-319-69904-2_28
http://dx.doi.org/10.1007/978-3-319-69904-2_29
http://dx.doi.org/10.1007/978-3-319-69904-2_30
http://dx.doi.org/10.1007/978-3-319-69904-2_30
http://dx.doi.org/10.1007/978-3-319-69904-2_31
http://dx.doi.org/10.1007/978-3-319-69904-2_32
http://dx.doi.org/10.1007/978-3-319-69904-2_32
http://dx.doi.org/10.1007/978-3-319-69904-2_33
http://dx.doi.org/10.1007/978-3-319-69904-2_33

User Perception of Numeric Contribution Semantics for Goal Models:
An Exploratory Experiment . 451

Norah Alothman, Mehrnaz Zhian, and Sotirios Liaskos

On the Impact of the Model-Based Representation of Inconsistencies
to Manual Reviews: Results from a Controlled Experiment 466

Marian Daun, Jennifer Brings, and Thorsten Weyer

Ontologies

On the Semantics of Ongoing and Future Occurrence Identifiers 477
Nicola Guarino

Ontological Evolutionary Encoding to Bridge Machine Learning
and Conceptual Models: Approach and Industrial Evaluation 491

Ana C. Marcén, Francisca Pérez, and Carlos Cetina

The OntoREA© Accounting and Finance Model: Ontological
Conceptualization of the Accounting and Finance Domain 506

Christian Fischer-Pauzenberger and Walter S.A. Schwaiger

Teleologies: Objects, Actions and Functions . 520
Fausto Giunchiglia and Mattia Fumagalli

Correction to: SourceVote: Fusing Multi-valued Data via Inter-source
Agreements . E1

Xiu Susie Fang, Quan Z. Sheng, Xianzhi Wang, Mahmoud Barhamgi,
Lina Yao, and Anne H.H. Ngu

Author Index . 535

XXII Contents

http://dx.doi.org/10.1007/978-3-319-69904-2_34
http://dx.doi.org/10.1007/978-3-319-69904-2_34
http://dx.doi.org/10.1007/978-3-319-69904-2_35
http://dx.doi.org/10.1007/978-3-319-69904-2_35
http://dx.doi.org/10.1007/978-3-319-69904-2_36
http://dx.doi.org/10.1007/978-3-319-69904-2_37
http://dx.doi.org/10.1007/978-3-319-69904-2_37
http://dx.doi.org/10.1007/978-3-319-69904-2_38
http://dx.doi.org/10.1007/978-3-319-69904-2_38
http://dx.doi.org/10.1007/978-3-319-69904-2_39

The Universal Ontology:
A Vision for Conceptual Modeling

and the Semantic Web
(Invited Paper)

Antoni Olivé(&)

Department of Service and Information System Engineering,
Universitat Politècnica de Catalunya – Barcelona Tech, Barcelona, Catalonia

antoni.olive@upc.edu

Abstract. This paper puts forward a vision of a universal ontology (UO) aim-
ing at solving, or at least greatly alleviating, the semantic integration problem in
the field of conceptual modeling and the understandability problem in the field
of the semantic web. So far it has been assumed that the UO is not feasible in
practice, but we think that it is time to revisit that assumption in the light of the
current state-of-the-art. This paper aims to be a step in this direction. We try to
make an initial proposal of a feasible UO. We present the scope of the UO, the
kinds of its concepts, and the elements that could comprise the specification of
each concept. We propose a modular structure for the UO consisting of four
levels. We argue that the UO needs a complete set of concept composition
operators, and we sketch three of them. We also tackle a few issues related to the
feasibility of the UO, which we think that they could be surmountable. Finally,
we discuss the desirability of the UO, and we explain why we conjecture that
there are already organizations that have the knowledge and resources needed to
develop it, and that might have an interest in its development in the near future.

Keywords: Conceptual modeling � Semantic web � Conceptual schemas �
Ontologies � Universal ontology

1 Introduction

This paper puts forward a vision of a universal ontology aiming at solving, or at least
greatly alleviating, two important problems in the fields of conceptual modeling and the
semantic web.

As a first approximation, by universal ontology (UO) we mean the formal speci-
fication of all the concepts that we use and share. This includes the concepts of general
use, those that are particular to the existing disciplines, and those specific to any kind of
human or organizational activity. The UO specifies the concepts that apply to objects,
to their relationships, and to the actions or events involving those objects.

The UO could be a radical solution to at least two important problems. One of them
is the problem of the semantic integration of information in the fields of information
systems and databases. The problem arises when two or more systems whose

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 1–17, 2017.
https://doi.org/10.1007/978-3-319-69904-2_1

conceptual schemas1 have been developed independently need to exchange messages
or share information. This poses some problems at the physical and syntactic levels, but
the most difficult ones are at the semantic level, in which the systems must agree on the
meaning of the messages and the data. For some authors, despite its pervasiveness and
importance, semantic integration remains an open and extremely difficult problem [1–
5]. If all systems were developed using a global schema, such as the UO, that problem
would not exist [6].

The other problem is more recent, and it is related to the semantic web. Sometimes
it has been called the “tower of Babel” problem [7], but perhaps a more precise name is
the “understandability” problem. The root of the problem is that in the web people can
build their own web page and say whatever they want on it. This feature has been
nicely captured by the AAA slogan: “Anyone can publish Anything on Any topic” [8].
In the case of the semantic web, which is our focus here, we could rephrase the slogan
as “Anyone can publish Any fact instance of Any concept”. However, in order to be
useful to its target audience (people and machines), the facts must be understood.

There is an understandability problem when a publisher cannot publish a fact in a
way that is understood by its full target audience. This happens when the corresponding
concept is not included in any ontology shared by the publisher and that audience.
Sometimes this is due to the absence of ontologies. In other cases, however, the
concept is included in several ontologies, but none of them is shared by all interested
parties. To some authors, for the semantic web to be a success it is almost necessary
that there is a single, comprehensive ontology [9, p. 476], that is, the UO.

Many authors would agree that the UO could be a solution to the above mentioned
problems, but so far it has been assumed that the UO is not feasible in practice. We
believe that this was certainly true in the past, but we think that it is time to revisit that
assumption in the light of the current state-of-the-art. This paper aims to be a step in
this direction.

We try to make an initial, practical proposal of a feasible UO. We describe its
scope, the kinds of concepts that could be defined in it, and the specification of each
concept. We propose a modular structure of the UO consisting of four levels, and we
describe the contents of each level. We argue that the UO requires a powerful mech-
anism for concept composition, and we sketch a few composition operators. We then
tackle a few issues related to the feasibility of the UO and show that currently there are
solid reasons to think that they could be surmountable. Finally, we show that there are
already organizations that might have in the near future an interest in the UO and the
resources needed to develop it.

The rest of the paper is organized as follows. Section 2 presents the scope of the
UO, the kinds of concepts that could be defined, and the specification we propose of
each concept. Section 3 describes the modularization of the UO and the contents of
each module. Section 4 deals with concept composition and explains why it is needed
in the UO. Section 5 tackles the issues of the feasibility and desirability of the UO.
Finally, Sect. 6 presents the conclusions.

1 In the context of this paper, we will consider ontologies and conceptual schemas as synonymous.

2 A. Olivé

2 Concept Specification in the UO

In this section we outline the scope, the kinds of the concepts, and the elements that
could comprise the specification of each concept of the UO. We will not suggest any
particular language construct for the specification of those concepts, focusing instead
on their characteristics.

In general, the scope of an ontology depends on its intended objective [10, 11], and
the UO is not an exception. The initial objective we propose for the UO is to allow the
publication, search, and reading by people and machines of any fact of any domain,
using an integrated set of all existing concepts. We make the usual assumption that
domains consist of entities and relationships between them. The facts of a domain are
the classifications of entities into entity types, and that of relationships into relationship
types. Note that the proposed UO does not aim at developing new concepts, but at
integrating the existing ones.

Initially, the UO could comprise three kinds of concepts: entity types, n-ary rela-
tionship types, and datatypes. Given that n-ary relationship types can be transformed
into a set of binary ones [12], which are simpler, we propose to adopt in the UO the two
relationship concepts (properties) used in the semantic web: entity properties, which
link entities to entities, and datatype properties, which link entities to data values. We
will assume that properties have a direction, from subject (domain) to object (range).

The specification of each concept (entity type, entity property, datatype property
and datatype) should include at least:

• The kind of the concept.
• The concept identifier. Each concept should have a natural language-independent,

unique, and immutable identifier [13]. Among other uses, identifiers are used for
defining facts.

• The name and synonym(s) of the concept in each natural language spoken by the
UO users. The names of the concepts need not be unique. In general, the name of an
entity or data type must be a noun phrase, while the name of a property must be a
verb phrase or a noun phrase [14]. When the name of a property is a noun phrase,
the property is seen as an attribute (characteristic, feature, …) of the subject. For
example, the properties whose names in English are the nouns seller, product, date,
unit cost, total amount, etc. are attributes. We will see that attributes have a special
relevance in the UO.

• The definition of the concept. It may be a natural language description (possibly in
each language) or a derivation rule in some formal language.

• The supertypes of the concept (IsA relationships).
• The analytical constraints that the instances of the concept must satisfy to be

considered universally valid [12]. Such constraints are useful for understanding the
meaning of the constrained concepts. Among these constraints there are the allowed
domain and range of properties, and the disjointness constraints of concepts.

• The (meta-)entity types of which an entity type is an instance (InstanceOf rela-
tionships). In general, the UO would not include instances of entity types. The
exceptions may be immutable instances of general interest like, for example, meter
InstanceOf Unit.

The UO: A Vision for Conceptual Modeling and the Semantic Web 3

As an example, consider the concept whose name in English is dog. Its identifier
could be Q144. It would be defined as an entity type. The concept has one or more
names in each natural language. The definition would be an expression in each natural
language. Q144 is involved in several IsA relationships, such as (in English) Dog IsA
Animal. An analytical constraint could be that the sets of instances of Dog and Cat are
disjoint. The concept Dog may be defined as an instance of Species (Dog InstanceOf
Species), where Species is a meta entity type.

There is a large set of similar properties that are instantiated in many facts. These
are the attributes whose name is the name of an entity or data type. Almost all names of
entity and data types can be in some context the name of an attribute of some subject.
This observation leads us to propose to make in the UO the “assumption of implicit
attributes”, by which we mean that for each entity or data type defined in the UO there
is an implicit attribute property with the same name. The domain of the property is the
top-level entity type (such as Entity) and its range is the corresponding entity or data
type. For example, if Seller is the name (in some language) of an entity type, then we
assume that there is an implicit attribute whose name (in the same language) is seller,
domain Entity and range Seller.

The assumption of the implicit properties is of practical importance because it may
save a great deal of effort in the definition of the UO. As an example, the great majority
of the properties defined in schema.org2 would be implicit in the UO, because their
name would coincide with those of entity and data types, or could be composed from
them, as will be explained in Sect. 4.

We note that in schema.org (and in many other ontologies) the definition of a
property includes its domain and range, which may be different from that assigned by
the above assumption. However, this might not be important in the proposed UO, since
its envisaged objective does not include the control of the validity of facts nor the
reasoning from facts.

3 The Structure of the UO

The UO is huge; therefore, in order to be manageable, it must be modularized [15]. We
distinguish four levels of concepts, and we group the concepts at the same level into a
module [16]. The levels are: Conceptual Model, Foundational, General, and Domain.
Each of these levels is briefly described below. If we arrange vertically the levels, and
populate each level, the result can be seen as a pyramid, which we call the UO pyramid
(Fig. 1).

There must be an organization that has an overall responsibility for the UO. We call
UO regulator to this organization. Other regulators would have a responsibility for
specific parts of the UO. In the description that follows we will indicate the role of each
regulator in each level.

2 http://schema.org/.

4 A. Olivé

http://schema.org/

3.1 The Conceptual Model Level

The conceptual model (or ontology model) level comprises the meta types and the
direct or indirect supertypes of all the concepts in the UO [17, 18]. The concepts at this
level are used to define the rest of the UO. Figure 1 shows two example concepts at this
level, that we have called Entity and EntityType, with an InstanceOf relationship
between them. Entity would be the supertype of all entity types, while EntityType
would be the supertype of all meta entity types.

Each conceptual/ontology model (such as, for example, UML, ER, RDFS or OWL)
includes the concepts needed for this level of the UO. For example, in RDFS the
concepts would be Class, Resource, Datatype, Literal, Property, etc. [19]. In any case,
the number of concepts at this level is very small.

Based on the existing conceptual/ontology models, it should not be difficult to
reach an agreement on the concepts to be included in the proposed UO. The concepts at
this level should be under the responsibility of the UO regulator.

3.2 The Foundational Level

The foundational level, which is also small in size, includes abstract concepts that have
been proposed in the foundational ontologies [20, 21], such as DOLCE [22] or UFO
[23, 24]. The concepts at this level cannot be directly instantiated to publish facts and,
therefore, they are not essential in the proposed UO. However, they may be useful for
clarifying the semantics of other concepts, for defining only once knowledge that is
common to several concepts, and for reasoning purposes. As an example, UFO makes a
fundamental distinction between individuals that are Endurant and Event. Another
example is the concept TangibleThing, a subtype of Entity, shown in Fig. 1. In general,
the definitions and constraints of these concepts are “inherited” by all the concepts that
are defined as their direct or indirect subtypes.

Conceptual model

Foundational

General

Domain

Local ontologies

Entity

Tangible thing

Species

Dog

Catalan
sheepdog

Animal

EntityType

Fig. 1. The levels of the UO pyramid

The UO: A Vision for Conceptual Modeling and the Semantic Web 5

There are several foundational ontologies, each of them useful in some contexts.
A practical approach to the inclusion of such ontologies in the UO could then be the
one proposed in the Wonderweb vision [20]. The basic idea would be that the foun-
dational level consists of a library of selected foundational ontologies. The library
would include the specification of the links between the ontologies and the mapping
(mainly the IsA relationships) of each ontology with the concepts in the general level.

The management of the library would be the responsibility of the UO regulator.
However, each foundational ontology should have a specific regulator, with the
responsibility for proposing the links with the other ontologies and the mappings with
the general level.

3.3 The General Level

Most linguists make a basic, informal distinction between language for general pur-
poses (LGP) and language for special purposes (LSP) [25] and also between their
corresponding dictionaries. General dictionaries contain those words of the language
which are of general use, representing various spheres of life and presenting a complete
picture of the general language. They are meant for the general user of the language.
Special dictionaries either cover a specific part of the vocabulary or are prepared with
some definite purpose [26].

Going from words to concepts, it seems natural to stablish a similar basic, informal
distinction between concepts for general purposes and concepts for special purposes.
We can then include the former in the general level of the UO pyramid and the latter in
the domain level. In the example of Fig. 1, there are three concepts in the general level:
Animal, Dog and Species, with Dog IsA Animal and Dog InstanceOf Species.

The concepts at the general level are subtypes or instance of concepts at the
conceptual model level, and, possibly, of concepts at the foundational level.

There are several ontologies that could provide an excellent basis from which to
build the general level of the UO. Among them, we mention here WordNet [27],
SUMO [7], CYC [28], and BabelNet [29]. For the purposes of illustration, in the
following we will assume WordNet.

WordNet defines noun, verb and adjective synsets that may be the source of the
entity types and properties of the UO. WordNet 3.0 comprises over 80,000 noun
synsets (concepts), which include most (if not all) entity types that have a name in the
English LGP. By the application of the assumption of implicit attributes, there would
also be an implicit attribute for each entity type. There are already “wordnets” in many
languages [30], which include links to the English WordNet.

WordNet comprises also over 13,000 verb synsets, which include most (if not all)
properties that have a name in verb form in the English LGP.

Finally, WordNet comprises also over 18,000 adjective synsets, most of which can
be considered as Boolean properties. For example, the adjective synset local#2, with
the gloss “of or belonging to or characteristic of a particular locality or neighborhood”,
could be considered as a Boolean datatype property, with its own identifier and English
name “is local”.

In order to guarantee the consistency of the general level, its creation and evolution
should be under the responsibility of the UO regulator.

6 A. Olivé

3.4 The Domain Level

In the UO pyramid, the domain level contains the concepts for special purposes cor-
responding to the LSP. Therefore, this level contains all existing domain ontologies.
Since there are many domain ontologies, some of which very big, the domain level
includes in total several millions of concepts. Achieving a satisfactory arrangement of
these ontologies is the main technical challenge of the UO. Figure 1 shows an example
of concept at this level, CatalanSheepdog, which is a subtype of the concept Dog at the
general level.

The concepts at the domain level are subtypes or instance of concepts at the general
level, and, possibly, of concepts at the foundational level.

An ontology can be a part of the domain level of the UO if its mappings with the
rest of the UO are defined. There are two kinds of mappings: vertical and horizontal.
The vertical mappings define the correspondences between that ontology and the
concepts at the general level. The horizontal mappings define the correspondences
between that ontology and the other ontologies at the domain level.

In both mappings, a correspondence is a relationship between two concepts. In
general, it can be an equivalence (the concepts are the same), an IsA (a concept is a
subtype of the other) or a disjointness (no entity -or property- can be an instance of both
concepts) [31]. Equivalent concepts are considered the same and, therefore, the
equivalence correspondences are ignored.

The mappings must preserve the completeness of the UO [12, 32, 33]. In our
context, this implies that the two following conditions are satisfied at any time:

“1. Let C1 and C2 be two concepts in the UO. If in the real-world the instances of C1

must necessarily be also instances of C2, then in the UO there must be a direct or
indirect subtype correspondence between C1 and C2.”
“2. Let C1 and C2 be two concepts in the UO. If in the real-world the instances of C1

cannot be also instances of C2, then in the UO there must be a direct or indirect
disjointness correspondence between C1 and C2.”

Satisfaction of the first condition guarantees, among other things, that users
querying the instances of C2 will get also the instances of C1 even if users are unaware
of the existence of C1 in the UO. Satisfaction of the second condition is mandatory in
an open world assumption of the UO.

Each domain ontology should be under the control of a specific regulator. To
include a new ontology in the domain level, its regulator should provide the vertical
mappings with the concepts at the general level. The UO regulator should review and
approve those mappings before the “official” adoption of the new ontology within the
UO.

The new ontology may overlap with one or more ontologies already existing in the
domain level. Therefore, it is necessary to discover those ontologies and to define the
corresponding mappings. The discovery of the set of potentially overlapping ontologies
can be automated to a great extent by using the previous vertical mappings [34]. For
each potentially overlapping ontology, it will be necessary to define the correspon-
dences with the new ontology. Ideally, this should be done by the regulators of both
ontologies. Existing or future matching systems should be of great help in determining

The UO: A Vision for Conceptual Modeling and the Semantic Web 7

both the potentially overlapping ontologies and their correspondences [31, 35]. A re-
cent example of the use of matching systems for automatically determining the map-
pings between ontologies is described in [36].

3.5 Local Concepts

Local concepts are specializations of concepts defined in the UO, but that are not part
of it. Local concepts are not intended to be generally shared. Through time, a local
concept may evolve and become part of the appropriate level of the UO.

There will always be a strong need of local concepts. However, many of them could
be defined as a composition of other concepts already defined in the UO. If there were a
mechanism for defining and using compound concepts that would not require their
inclusion in the UO, the need of local concepts could be significantly decreased. We
deal with this in the next section.

4 Concept Composition

The UO described above specifies only a limited (even if very large) number of
concepts. However, it is a fact that using an appropriate set of composition operators
we could compose a limitless number of concepts from them. We call core UO the
explicitly defined ontology, and extended UO the set of concepts that could be com-
posed from the core. The full UO would then be the union of the core and extended
parts.

The concepts of the extended UO could be used in the publication and query of
facts, markup of web pages, conceptual schemas, database schemas, and similar places,
like those of the core UO. The crucial point is that such use would be done without the
explicit inclusion of the composed concepts in the core UO. Composed concepts are
defined when and where used.

There is an insightful parallelism between the UO and a human language. Human
languages are usually described as consisting of two parts: a lexicon, a catalogue of a
limited number of words, and a grammar, a system of rules which allow for the
combination of those words into a limitless number of sentences. Applying this par-
allelism, the lexicon would be the core UO, the grammar the set of composition
operators, and the sentences the full UO.

It is surprising that concept composition, as indicated above, has been used so little
in the conceptual modeling and semantic web fields, especially if one takes into
account that some of the languages used in those fields (such as OCL and OWL) allow
the definition of compound concepts.

One of the few exceptions is SNOMED CT [37], which is a controlled vocabulary
for the clinical domain. SNOMED CT provides a mechanism that enables clinical
phrases (facts) to be represented, even when a single SNOMED CT concept does not
capture the required level of detail. This is important as it enables a wide range of
clinical meanings to be captured in a record, without requiring the terminology to
include a separate concept for every detailed combination of ideas that may potentially
need to be recorded.

8 A. Olivé

We believe that the UO could achieve its intended objective only if there is a
powerful set of composition operators that allows defining and using the concepts in
the extended UO. In rest of this section, we sketch only three of these operators: two
inspired in compound nouns (Sect. 4.1) and one based on aggregate functions
(Sect. 4.2).

4.1 Compound Nouns

Word compounding is a mechanism we use to generate a limitless number of words
from an existing, limited, lexicon. Word compounding has been widely studied in
linguistics [38]. Similarly, concept combination is a mechanism we use to generate a
limitless number of concepts from a limited number of existing ones. Concept com-
bination has been studied in cognitive psychology and cognitive science [39].

In linguistics, a compound consists of the concatenation of two or more words.
A compound may be of any syntactic category, but in this paper we will only deal with
compounds that are nouns that correspond to entity types (such as lodging business).
From a morphological point of view, English noun compounds can be open (as in
lodging business), hyphenated (as in world-beater) and closed (as in sheepdog) [40].

There exist several different classes of noun compounds. In this section we will
focus on the endocentric compounds, which are the most frequent in English [41]. An
endocentric compound noun W consists of a head H, which is a noun, and a modifier
M. The noun W is more specific than H, and therefore it holds that W IsA H [36]. In
English, the modifier M is normally a noun, an adjective or a verb, as illustrated by the
following examples from schema.org:

• Noun: Flight reservation, Government organization, Tourist attraction.
• Adjective: Financial product, Local business, Medical organization.
• Verb: Sell action, Send action, Receive action.

Based on this, in the following we propose two concept composition operators of
entity types.

Entity-Property Composition. The entity-property compound is analogous to the
above adjective-noun compound. Let Ei be an entity type and let Pj be a datatype
property whose range is Boolean, and such that Ei is in the domain of Pj. Then we
denote by EP(Ei, Pj) the compound entity type whose instances are the instances of Ei

for which Pj is true.
As an example, consider the entity type that corresponds to a local business. This

type is not defined in WordNet, but we could define it as an EP composition from two
concepts defined in it: the noun synset business#1 and the adjective synset local#2. The
noun synset business#1 corresponds to an entity type, while the adjective synset lo-
cal#2 would corresponds to a Boolean property. Then, EP(business#1,local#2) would
be the compound entity type whose instances are the instances of business#1 for which
local#2 is true.

Note that the EP operator is language independent. We do not suggest here a
user-friendly notation for compound concepts. The point that we want to make here is

The UO: A Vision for Conceptual Modeling and the Semantic Web 9

that the expression EP(Ei,Pj) (or some equivalent notation or name, see below) can be
used like any other entity type of the core UO, even if it is not explicitly defined in it.

The expression EP(Ei,Pj) would be the identifier and the default name of the
compound concept. In general, however, these names are not user friendly. A better
option could be the use of naming functions. There could be a naming function FC for
each composition operator C, such that FC(Cexp,L) gives a name of the concept
obtained by the expression Cexp using the operator C in language L. For example,
FEP(EP(business#1, local#2),English) could give the name “Local business”.

From the definition it follows that EP(Ei,Pj) IsA Ei. On the other hand, if Pj and Pk

are two properties such that Pj IsA Pk then it follows that EP(Ei, Pj) IsA EP(Ei,Pk).
In large ontologies there are many compound concepts that could be defined using

EP compositions from noun and adjective synsets included in WordNet. A prominent
example may be Microsoft Concept Graph (MCG), which contains above five million
concepts, most of which named with a compound [42]. In MCG there are over 1.3
million concepts that could be defined by means of the EP operator, using over ten
thousand adjective synsets.

Entity-Property-Entity Composition. Let E1 and E2 be entity types, and let Pj be an
entity property such that E1 is in the domain of Pj and E2 is in the range of Pj. Then, we
denote by EPE(E1,Pj,E2) the entity type whose instances are the instances of E1 for
which the value of Pj includes instances of E2 [39, 41].

As an illustration, consider the following examples, involving noun and verb
synsets of WordNet:

• Toy store can be defined as EPE(store#1,sell#1,toy#1). Then, an instance of that
compound concept is a store that sells toys.

• Dog magazine can be defined as EPE(magazine#1,deal#1,dog#1). Then, an
instance of that compound is a magazine that deals with dogs.

• Flu virus can be defined as EPE(virus#1,cause#1,flu#1). Then, an instance of that
compound is a virus that causes flu.

From this definition it follows that EPE(E1,Pj,E2) IsA E1. Furthermore, if Pj and Pk

are two properties such that Pj IsA Pk then EPE(E1,Pj,E2) IsA EPE(E1,Pk,E2). Finally, if
E2 IsA E3, then it follows that EPE(E1,Pj,E2) IsA EPE(E1,Pj,E3). For example, EPE
(magazine#1,deal#1,dog#1) IsA EPE(magazine#1,deal#1,domestic animal#1).

The analogous construct in linguistics is the noun-noun compound. However, there
is an important difference: in natural language, the property that connects the two nouns
of a noun-noun compound is not specified. This fact leads to ambiguities in some cases.
We do not suggest here any example of naming function for this operator.

In MCG, there are over three million compound concepts that could be defined
using EPE compositions from noun synsets defined in WordNet. The number of noun
synsets that would be used is over thirty thousand.

4.2 Count Composition

A very large set of frequently used properties give the result of aggregate functions
[43]. For example, the datatype property that gives the number of employees of a

10 A. Olivé

company. It is practically impossible to define all those properties in the core UO, but
they can be easily defined when needed by means of composition operators. In the
following we sketch the operator corresponding to the count function. Others could be
defined similarly.

Let Pj be a property with domain E1 and range E2. Then we denote by Count(Pj) the
datatype property with domain E1 and range Integer that gives the number of instances
of type E2 that are related through Pj to an instance of E1.

For example, assuming the implicit attribute corresponding to the WordNet noun
synset employee#1, the operator Count(employee#1) is the datatype property that gives
the number of employees of a given instance of its domain. The domain of Count
(employee#1) would be Entity, and the range Integer.

Count(employee#1) (or an equivalent notation) would be the identifier and the
default name of the datatype property. A better name could be obtained by the cor-
responding naming function FCount, which in this case could give, for example,
FCount(Count(employee#1), English) = “number of employees”.

5 Feasibility and Desirability of the UO

Once we have analyzed a possible basic structure of the UO and shown how it could be
extended by means of the composition operators, in this section we tackle the issues of
the feasibility and desirability of the UO.

5.1 Feasibility

Terminology. Some authors point out that “different communities of practice use the
same terms with quite different meanings” [13], which can be a problem for the
references to the concepts of the UO. This is the well-known problem of homonymy
and/or polysemy in natural languages. In the proposed UO, each concept has a unique
identifier, which is used in the publication of facts. Each concept has also a name and a
set of synonyms in each language, which can be used in the external references to the
concept. As in, for example, WordNet, the name and synonyms may not be unique, but
people should be able to solve ambiguities by means of the definition of the concept or
its composition expression.

Agreement. Some authors think that it would be very difficult to reach an agreement
on the UO because it is very large and diverse. The following excerpts are represen-
tative of these views:

• “Although some may think the solution is to come up with a single context for the
whole world… in reality this is extremely difficult for any complex organization”
[44]

• “… people will always disagree about what terms to use and how to define them, a
global ontology will always be seen as flawed” [13]

• “It is of course unrealistic to hope that there will be an agreement on one or even a
small set of ontologies” [45]

The UO: A Vision for Conceptual Modeling and the Semantic Web 11

• “Enforcing one centralized global ontology… is impractical to develop an ontology
with consent from the user community at large” [54]

• “A single huge ontology of everything is difficult to accomplish, as the effort of
getting consensus on it becomes unimaginable” [46].

Our general response to these views is that the proposed UO would not be built from
scratch, but it would integrate existing concepts and ontologies. The concepts to be
included in the UO are not new; they have been already agreed, defined, and are
currently used by people and organizations. In the following, we detail this response for
each UO level.

Technically, it should not be difficult to agree on the conceptual model level. The
ambition of the proposed UO is quite limited, and therefore a subset of the existing
conceptual/ontology models would suffice.

In the foundational level, several foundational ontologies could coexist. We have
shown that there is no need to select only one of them. The only requirement is that
each ontology includes the mappings to the other ontologies in the same level, and with
the general level. The addition of foundational ontologies can be done incrementally.

The concepts to be included in the general level have already been specified in
several places, notably in WordNet and in similar ontologies. The names of these
concepts in many languages are known. There are satisfactory definitions of most of
them, and their IsA relationships are known in most cases. It is safe to say that there
exists already a substantial agreement on the concepts of the general level among their
users.

The domain level would include all public domain ontologies. There are many, but
the concepts of each of them have been already defined and agreed by their regulators.
The problem may be the definition of the mappings of these ontologies with the general
level and with the other ones in the same level. As we have mentioned in Sect. 3.4, this
is the main technical challenge of the UO. The addition of domain ontologies can be
done incrementally.

Management. Some authors argue that the management of the UO would be very
difficult: “A huge, central ontology would be unmanageable” [47]; “Even if initial
agreement were reached, there are many maintenance issues to be faced” [13].

The management of the UO may be difficult, but some of the management
approaches that have been applied to successfully build similar artifacts could be
appropriate for a UO with a modular structure. Besides the large ontologies, examples
of such artifacts may be the open source projects [48], the Oxford English Dictionary
(over 600,000 words3), the Encyclopedia Britannica, or UMLS (over 3.4 million
concepts4). Of particular interest could be the approach taken in the development of
schema.org [49].

Redundancy and Usability. There are a few problems in the UO that are also present
in the natural language field. In principle, techniques developed in this field for dealing
with those problems could be adapted in the UO context. Among those problems, we

3 http://www.oed.com/.
4 https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html.

12 A. Olivé

http://www.oed.com/
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html

mention here construct redundancy [50] and usability [51]. Ideally, there should be
little redundancy in the core UO, but it is likely to have more in the extended UO,
because sometimes the same concept can be expressed by means of several combi-
nations of composition operators. A similar problem in natural language is that a
concept may have several compound names.

On the other hand, there may be usability problems, because in a large ontology it
may be difficult to find the most appropriate concept for a particular situation. A similar
problem occurs with the lexicons.

5.2 Desirability

Some authors have expressed in the past the view that a global ontology would be
desirable. The following excerpts are representative of these views:

• “some may think the solution is to come up with a single context for the whole
world” [44]

• “In theory, a good solution to this problem would be to adopt a single global
vocabulary that is widely accepted and embraced by everyone in the organization”
[13]

• “one centralized global ontology prevents semantic heterogeneity since no more
ontology exists and everyone is using the same ontology” [54]

• “for the semantic web to be a success, would it be nice, or almost necessary, that we
could have just one single ontology, which actually covers all the common things in
life?” [9].

We certainly agree that the UO is (highly) desirable but, of course, we must take
into account its cost. Some authors have indicated that “the creation and maintenance
of such an ontology is usually prohibitively expensive” [54]. Socio-economic factors
dictate reality, and therefore the obvious question is “Who will develop the common
ontologies and will they invest the effort and then allow them to be used for free?” [52].

It is not possible to give a precise answer to that question. However, we believe that
there are currently already organizations that might have in the near future an interest in
the UO and the resources needed to develop it. We mention two of them here. The first
are standard organizations that have experience in the development of large standards,
and have a means to get the resources needed. One of these organizations could be the
World Wide Web Consortium (W3C), which is the main international standards
organization for the web. For W3C, the UO would be a natural continuation of the
many standard ontologies and languages that have developed so far. On the other hand,
it could not be difficult for W3C to get the resources from its member organizations.

Search engine companies, which already have the knowledge and experience in
building large knowledge graphs, might also be interested in the development of the
UO. A clear indication of this is schema.org. It was built with the collaboration of the
major search engines Bing, Google, and Yahoo (later joined by Yandex). Schema.org
was launched in 2011 with 297 classes and 187 relations, and since then its size and
adoption level have been increasing continuously [49]. Both webmasters and search
engines have a strong interest in the schema.org markup. The former can publish the
contents of their websites in a way that is understood also by the search engines. The

The UO: A Vision for Conceptual Modeling and the Semantic Web 13

latter can provide much better results to the search requests. The interest might be so
high that “the question often comes up whether schema.org is an end-all solution for
defining terminology for the Semantic Web” [53].

6 Conclusions

We have put forward a vision of a universal ontology (UO) aiming at solving, or at
least greatly alleviating, the semantic integration problem in the field of conceptual
modeling, and the understandability problem in the field of the semantic web. The
semantic integration problem arises when two or more systems, whose conceptual
schemas have been developed independently, need to exchange messages or share
information. The understandability problem arises when the structured data published
in datasets or in webpages cannot be understood by its full target audience (people and
machines).

So far, it has been widely accepted that the UO would be a solution for those
problems, but, at the same time, it has been assumed that it is not feasible in practice. In
this paper, we have challenged that assumption. We have argued that in the current
state-of-the-art it could be feasible to build a UO that solves those problems to a great
extent. We have made an initial proposal of a UO able to achieve a limited objective,
but useful for the (big) problems intended to solve.

We have explained the kinds of concepts that could be defined in the UO, and the
minimum specification we propose of each concept. We have proposed also a modular
structure for the UO, with four levels. We have also shown that the UO needs a
powerful mechanism for concept composition, which we have sketched.

We have tackled a few issues related to the feasibility of the UO, such as termi-
nology, agreement and management, and we have shown that although they are
important, there are solid reasons to think that they are currently surmountable. Finally,
we have discussed the desirability of the UO, and we have shown that there are already
organizations that might have in the near future an interest in the UO, and the
knowledge and resources needed to develop it.

Acknowledgments. The author is greatly indebted to his colleagues Albert Abelló, Jordi Cabot,
Ernest Teniente, and Toni Urpí for their comments to earlier drafts of this paper. This work has
been partially supported by the Ministerio de Economía y Competitividad, under project
TIN2014-52938-C2-2-R.

References

1. Batini, C., Ceri, S., Navathe, S.: Conceptual Database Design: An Entity-Relationship
Approach. Benjamin-Cummings Publishing Company Inc., Redwood City (1992)

2. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann,
Burlington (2012)

3. van Harmelen, F.: Ontology mapping: a way out of the medical tower of babel? In: Miksch,
S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS, vol. 3581, pp. 3–6. Springer,
Heidelberg (2005). doi:10.1007/11527770_1

14 A. Olivé

http://dx.doi.org/10.1007/11527770_1

4. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis
Lectures on the Semantic Web: Theory and Technology, 1st edn., vol. 1, no. 1, pp. 1–136.
Morgan & Claypool (2011)

5. Park, J., Ram, S.: Information systems interoperability: what lies beneath? ACM Trans. Inf.
Syst. 22(4), 595–632 (2004)

6. Uschold, M., Grüninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD
Rec. 33(4), 58–64 (2004)

7. Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the
semantic web. In: Proceedings of AAAI-2002 Workshop on Ontologies and the Semantic
Web (2002)

8. Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist - Effective
Modeling in RDFS and OWL, 2nd edn. Morgan Kaufmann, Burlington (2011)

9. Yu, L.: A Developer’s Guide to the Semantic Web. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-43796-4

10. Gruninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies. In:
Proceedings of Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI 1995
(1995)

11. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology. Stanford University (2001)

12. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007). doi:10.
1007/978-3-540-39390-0

13. Uschold, M.: Creating, integrating and maintaining local and global ontologies. In:
Proceedings of First Workshop on Ontology Learning OL 2000 in Conjunction with the 14th
European Conference on Artificial Intelligence ECAI 2000 (2000)

14. Aguilera, D., Gómez, C., Olivé, A.: A complete set of guidelines for naming UML
conceptual schema elements. Data Knowl. Eng. 88, 60–74 (2013)

15. Spaccapietra, S. (coordinator): Report on Modularization of Ontologies. Technical report,
Knowledge Web Deliverable D2.1.3.1 (2005)

16. Roussey, C., Pinet, F., Kang, M.A., Corcho, O.: An introduction to ontologies and ontology
engineering. In: Falquet, G., et al. (eds.) Ontologies in Urban Development Projects.
Advanced Information and Knowledge Processing, vol. 1, pp. 9–38. Springer, London
(2011). doi:10.1007/978-0-85729-724-2_2

17. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge
about information systems. ACM Trans. Inf. Syst. 8(4), 325–362 (1990)

18. de Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Multi-level
ontology-based conceptual modeling. Data Knowl. Eng. 109, 3–24 (2017)

19. Brickley, D., Guha, R.V.: RDF Schema 1.1. W3C Recommendation (2014). http://www.w3.
org/TR/rdf-schema/

20. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable
D18, Ontology Library (final). ICT Project (2003)

21. Pastor, O.: Conceptual modeling of life: beyond the homo sapiens. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 18–
31. Springer, Cham (2016). doi:10.1007/978-3-319-46397-1_2

22. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WORDNET with
DOLCE. AI Mag. 24(3), 13–24 (2003)

23. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.:
Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey,
V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41924-9_27

The UO: A Vision for Conceptual Modeling and the Semantic Web 15

http://dx.doi.org/10.1007/978-3-662-43796-4
http://dx.doi.org/10.1007/978-3-662-43796-4
http://dx.doi.org/10.1007/978-3-540-39390-0
http://dx.doi.org/10.1007/978-3-540-39390-0
http://dx.doi.org/10.1007/978-0-85729-724-2_2
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1007/978-3-319-46397-1_2
http://dx.doi.org/10.1007/978-3-642-41924-9_27

24. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontological
foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl.
Ontol. 10(3–4), 259–271 (2015)

25. Bergenholtz, H., Tarp, S. (eds.): Manual of Specialised Lexicography. The Preparation of
Specialised Dictionaries. John Benjamins Publishing Company, Amsterdam (1995)

26. Singh, R.A.: An introduction to lexicography. Central Institute of Indian Languages (1982)
27. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge

(1998)
28. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38

(11), 32–38 (1995)
29. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application

of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)
30. Global Wordnet Association. http://globalwordnet.org/wordnets-in-the-world/
31. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE

Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
32. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling.

IEEE Softw. 11, 42–49 (1994)
33. Gómez-Pérez, A.: Evaluation of ontologies. Int. J. Intell. Syst. 16(3), 391–409 (2001)
34. Noy, N.F.: Ontology mapping. In: Handbook on Ontologies, pp. 573–590 (2009)
35. Choi, N., Han, H., Song, I.: A survey on ontology mapping. SIGMOD Rec. 35, 34–41

(2006)
36. Arnold, P., Rahm, E.: Enriching ontology mappings with semantic relations. Data Knowl.

Eng. 93, 1–18 (2014)
37. SNOMED International. SNOMED CT Starter Guide (2017). http://snomed.org/sg
38. Lieber, R., Stekauer, P. (eds.): The Oxford Handbook of Compounding. Oxford University

Press, Oxford (2011)
39. Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge (2004)
40. Wikipedia. https://en.wikipedia.org/wiki/English_compound
41. Nakov, P., Hearst, M.A.: Semantic interpretation of noun compounds using verbal and other

paraphrases. TSLP 10(3), 13:1–13:51 (2013)
42. Microsoft. https://concept.research.microsoft.com/
43. Cabot, J., Mazón, J.-N., Pardillo, J., Trujillo, J.: Specifying aggregation functions in

multidimensional models with OCL. In: ER 2010, pp. 419–432 (2010)
44. Madnick, S.E.: Are we moving toward an information superhighway or a tower of babel?

The challenge of large-scale semantic heterogeneity. In: ICDE 1996, pp. 2–8 (1996)
45. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33

(4), 65–70 (2004)
46. Berners-Lee, T., Kagal, L.: The fractal nature of the semantic web. AI Mag. 29(3), 29–34

(2008)
47. Herman, I.: State of the Semantic Web. Norway (2007). https://www.w3.org/2007/Talks/

0424-Stavanger-IH/Slides.pdf
48. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software

development: apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11(3), 309–346
(2002)

49. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web.
Comm. ACM 59(2), 44–51 (2016)

50. Burton-Jones, A., Wand, Y., Weber, R.: Guidelines for empirical evaluations of conceptual
modeling grammars. J. AIS 10, 1 (2009)

51. Conesa, J., Storey, V.C., Sugumaran, V.: Usability of upper level ontologies: the case of
ResearchCyc. Data Knowl. Eng. 69(4), 343–356 (2010)

16 A. Olivé

http://globalwordnet.org/wordnets-in-the-world/
http://snomed.org/sg
https://en.wikipedia.org/wiki/English_compound
https://concept.research.microsoft.com/
https://www.w3.org/2007/Talks/0424-Stavanger-IH/Slides.pdf
https://www.w3.org/2007/Talks/0424-Stavanger-IH/Slides.pdf

52. Kashyap, V., Bussler, C., Moran, M.: The Semantic Web. Semantics for Data and Services
on the Web. Springer, Heidelberg (2008). doi:10.1007/978-3-540-76452-6

53. Mika, P.: On Schema.org and why it matters for the web. IEEE Internet Comput. 19(4), 52–
55 (2015)

54. Ding, L., Kolari, P., Ding, Z., Avancha, S., Finin, T., Anupam Joshi, A.: Using ontologies in
the semantic web: a survey. In: Sharman, R., Kishore, R., Ramesh, R. (eds.) Ontologies.
Springer, Boston (2007). doi:10.1007/978-0-387-37022-4_4

The UO: A Vision for Conceptual Modeling and the Semantic Web 17

http://dx.doi.org/10.1007/978-3-540-76452-6
http://dx.doi.org/10.1007/978-0-387-37022-4_4

Conceptual Modeling Methodology

CE-SIB: A Modelling Method Plug-in
for Managing Standards in Enterprise

Architectures

Christoph Moser1(&), Robert Andrei Buchmann2, Wilfrid Utz1,
and Dimitris Karagiannis1

1 Knowledge Engineering Research Group,
University of Vienna, Vienna, Austria

{cmoser,wilfrid,dk}@dke.univie.ac.at
2 Business Informatics Research Center,

Babeş-Bolyai University, Cluj-Napoca, Romania
robert.buchmann@econ.ubbcluj.ro

Abstract. In Enterprise Architecture (EA) Management, adoption of standards
brings essential benefits pertaining to compatibility and repeatability but also
raises governance challenges. EA frameworks recommend placing architecture
artifacts under strict governance to control technological diversity towards
reduced costs of operation or business-IT alignment; however, they do not
provide methodological guidance on how to support decision-making for stan-
dards management. Business process management, model-driven software
engineering or IT service management do address such challenges, but fall short
in covering all relevant architectural layers. Driven by industry experience, this
paper proposes a modelling method plug-in (“function block”) to support a
model-based integration of practices for standards compliance management and
their relevant model bases. It also aims for generality, as the proposal is pluggable
through “semantic docking points” to arbitrary EA frameworks. A prototypical
implementation in the form of a modelling tool is discussed as an expository
instantiation, as well as basis for evaluation and learned lessons.

Keywords: TOGAF standards information base � Enterprise Architecture
Management � Standardization � Compliance Evaluation � Metamodelling

1 Introduction

To overcome challenges pertaining to infrastructure heterogeneity and complexity
management, Enterprise Architecture (EA) practitioners (see e.g., [1, 7]) and frame-
works (see e.g., [13, 30, 35]) advocate the adoption and governance of standards.
Generally, standards may be defined at any level of the organization: standard business
processes, standard applications, standard technologies etc.; their relevance and
alignment within EA must be assessed and governed, considering the management
practices already in place.

For example, TOGAF [35] recommends the alignment of EA management activ-
ities with Portfolio, Solution Development or Operations Management methods but

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 21–35, 2017.
https://doi.org/10.1007/978-3-319-69904-2_2

falls short in providing guidance on how to integrate the key information artifacts
produced and exchanged within these management practices. With a focus on standards
management, TOGAF recommends a collection of technical specifications within a
“Standards Information Base” (SIB), as a reference for architecture conformance.
Implementing a system to “ensure compliance with internal and external standards and
regulatory obligations” is considered a key aspect of effective EA governance [7].

The work at hand is motivated by compliance requirements in industry cases. The
contribution, labelled with the acronym CE-SIB (Compliance Evaluation for Standards
Information Bases), is a modelling method function block that can extend EA frame-
works with a model-based dashboard for defining, aligning and communicating
organizational standards. It is designed to be pluggable to arbitrary model-driven
management practices, both to their model bases and underlying modelling methods.
This means that it provides extensions to all the building blocks of a modelling method
and its deployment relies on existing methodologies for agile customization of mod-
elling tools – e.g., the Agile Modelling Method Engineering methodology [22] - and its
technological enablers (the ADOxx metamodelling platform [24]). However, the pro-
posal will be abstracted in order to inspire adoption for other frameworks.

The remainder of the paper is organized as follows: Sect. 2 generalizes the problem
statement from industry experience and contrasts the approach against related works.
Section 3 uses a minimal yet representative example as an explanatory starting point,
then it generalizes the CE-SIB building blocks with respect to the generic notion of a
modelling method. Section 4 discusses an expository instantiation in the form of a
modelling prototype. The paper closes with a summative SWOT evaluation.

2 Problem Statement and Background

2.1 Problem Statement

The SIB catalogue proposed by TOGAF [7, 36] holds descriptions of technology
products and their versions (e.g., “Apache 2.4”) and interoperability standards (e.g.,
“Web Service Definition Language 2.0”) to be used as requirements for procurement.
However, TOGAF does not explain (i) how the standards collude conceptually with the
TOGAF meta-model; (ii) how architecture development and governance processes
should ensure architecture compliance; (iii) what viewpoints should support the
depiction and communication of standards compliance; and (iv) how evaluation can be
ensured by model-based mechanisms or algorithms.

All these are pragmatic requirements identified in TOGAF-driven industry cases (in
banking and public administration sectors) that motivated the work at hand. The major
stakeholders in these cases were the technology/solution architects and the operations
managers. Their commonly employed tools were Excel (for standards description),
Visio and Powerpoint (for communication) with no semantic integration between
contents, between standards and architecture elements, and no on-demand reporting
mechanisms. To overcome limitations, a model-driven solution is hereby proposed for
better maintainability of SIBs and technology portfolios.

22 C. Moser et al.

EA frameworks like TOGAF [35], FEAF [13] and PEAF [30] propose architecture
principles such as “Control Technical Diversity”, “Interoperability”, “Common Use of
Applications”, and “Reuse” to govern the selection and implementation of IT solutions;
however, they also do not explicitly recommend how governance could be exerted
through these principles. The work at hand aims to fill this gap with a Design Science
artifact – the CE-SIB modelling method function block providing extensions to all
building blocks of a modelling method.

2.2 Related Works

Other examples of Standard Information Bases are SAGA, the governmental interop-
erability framework of the German federal administration, and comparable frameworks
like EIF (the European Interoperability Framework) or NISP (NATO Interoperability
Standards Profiles) (see [4] for an overview). Like TOGAF’s SIB, their main contri-
bution is to recommend a catalogue of IT standards, with no explicit methodical
support on how to monitor these standards and their involvement in other EA layers.

Besides the set of standards catalogued within a SIB, there is also a set of char-
acteristics, namely “qualities” that apply across all architecture building blocks [7]:
maintainability, security, reliability and efficiency. According to TOGAF, some of
these qualities are easier to describe in the form of “standards” [7], rather than “met-
rics”. Buckl et al. [9] present an evaluation function using metrics based on proba-
bilistic relations models (PRM), using the quality “availability” for illustration
purposes. In contrast, the contribution at hand focuses on the description of required
standards as semantically rich modelling objects whose alignment to requirements (or
compliance, if we take the internal perspective) is quantified and color-coded in a
model-based dashboard based on specific comparison assessment mechanisms.

In [8], an approach for controlling and measuring the degree of standardization of
an IT landscape, utilizing fuzzy logic concepts and a basic metamodel for representing
the IT landscape, are introduced. The approach allows the calculation of the compli-
ance degree of service categories. In contrast, CE-SIB focuses on standardization
degrees of architecture artifacts; however, the approach in [8] can be combined with the
foundation provided by CE-SIB: it delivers those artifacts (within a service category) to
be recommended as a standard.

The proposal may also be understood as having a more general scope than the EA
monitoring approach proposed by [26] in the form of Archimate extensions. At the
same time, it instantiates the “embrace pragmatics” theory developed by [6], as the
proposal is motivated by case-based requirements of altering standard modelling
methods to achieve a pragmatic goal – here, governance of standards adoption. Con-
sequently, the work is also related to [17], which introduced its own notion of “method
integration” by placing emphasis on socio-technical implications, whereas our proposal
focuses on semantic and functional aspects (some aspects pertaining to the involved
collaborative work will be discussed in Sect. 3.3).

CE-SIB: A Modelling Method Plug-in for Managing Standards 23

3 Design Decisions

3.1 CE-SIB: A Design Science Artifact

EA is typically regarded as a holistic approach which serves as an “umbrella” for
specialized management practices (see e.g. [5, 21, 34, 35]). EA Management view-
points can be anchored in model-driven software engineering (MDSE), business pro-
cess management (BPM), business planning methods (see e.g. [27] for IT-based
scorecards), project portfolio management (see e.g. [10]) and IT service management
(see e.g. [11] for integrating ITILs configuration management process with EA prac-
tices). In a complex environment with an extensive modelling culture, these viewpoints
are supported by different modelling notations and languages (see [2]).

CE-SIB aims to be reusable and pluggable to any of these approaches (and their
hybridizations), therefore it extends the modelling method building blocks defined by
Karagiannis and Kühn [25]. As discussed in [37], a modelling method function block
has the same components as modelling methods:

• A modelling language comprising a modelling notation and a metamodel that
defines the language grammar and vocabulary. CE-SIB defines a metamodel frag-
ment (see Sect. 3.2) for “semantic docking” to modelling methods that support the
above mentioned management practices. The integration itself relies on the Agile
Modelling Method Engineering methodology [22] which facilitates the agile tai-
loring of modelling methods/tools in response to pragmatic requirements (e.g.,
those derived from the problem statement in Sect. 2.1);

• A modelling procedure comprising the required processes for creating and main-
taining a model base. CE-SIB defines a socio-technical procedure for monitoring
the standards compliance of architecture building blocks, aiming to replace legacy
procedures with a diagrammatic model analysis environment (see Sect. 3.3);

• Model-based mechanisms/algorithms: CE-SIB defines quantitative evaluation
mechanisms for standards compliance criteria (see Sect. 3.4).

3.2 The CE-SIB Language Fragment: Semantic Docking

The CE-SIB metamodel relies on semantic docking points that can be identified in
EA-supporting modelling languages or in language hybridizations (e.g., between
models expressing EAM, BPM, MDSE, business planning or service management
viewpoints). To ensure understandability, we will focus on a simplified yet represen-
tative example derived from experience with two viewpoints expressed through two
popular modelling languages - Archimate and UML.

A “semantic docking point” is a recurring pattern identified in TOGAF as follows:
TOGAF defines a building block as “a package of functionality defined to meet the
business needs across an organization” [7] and differentiates between: (i) Architecture
Building Blocks (ABBs) representing the required architecture capabilities (functional
view); and (ii) Solution Building Blocks (SBBs) representing the concrete components
that will be used to implement required capabilities – e.g. concrete application

24 C. Moser et al.

components and technology products. TOGAFs Architecture Development Method
cycle refines ABBs into one or more SBBs (see [35], phase G).

An example is Archimate’s recommendation to refine application components and
application interfaces (both ABBs, mapped to “application co-operation” viewpoints
and “infrastructure usage” viewpoints) into “UML components” (SBBs mapped on
modular parts of a software system). Figure 1 shows an implementation and deploy-
ment viewpoint including the used application components, further refined in the
corresponding UML (specification level) deployment diagram. The application com-
ponents (an Archimate concept, here acting as ABB) are refined into technical artifacts
which in turn are deployed on nodes (UML concepts, here acting as SBBs). In a
modelling tool, this “refinement” will manifest in the form of a machine-readable
relation (e.g., visual connectors or hyperlinks across models) subjected to constraints
(e.g., domain, range, cardinality etc.) and possibly enriched with its own attributes
(input for mechanisms and algorithms). In the same figure, at metamodel level the
ABB-to-SBB relation forms the semantic docking point for the CE-SIB language
block.

MFB METAMODEL: CE-SIB

Standard
- Name
- Statement
- Rationale
- Implication
- Standard Type

ABB

SBB

realized by
1..*

1..*

applies to

1..* 1..*

1..*

1..*

stated SBBs
- State

METAMODEL ArchiMate
(excerpt/tailored)

METAMODEL UML
(Excerpt)

Application
component

System
Software

used by

Deployment artifact

Node

operates

METAMODEL
MODEL

contains

§
Web/Mobile

Ready

applies to

stated SBB

Simplified example

Legend

Abstract
class

Concrete
class

Semantic docking

Relation instance

Instantiation

1..*

1..*

Financial
Application

Apache
Tomcat 7.0

uses

<<device>> Windows Server
IP: 127.0.0.1

<<JSPServer>> Apache Tomcat 7.0
Port: 8080

used by

deployed

Application A

Fig. 1. CE-SIB metamodel block “plugged” to an Archimate-UML hybrid method.

CE-SIB: A Modelling Method Plug-in for Managing Standards 25

Other examples of docking points to which this may be generalized are: the
refinement of data objects into UML classes/objects, the refinement of business pro-
cesses into UML activity diagrams, the refinement of Archimate nodes into UML nodes
(see [3] for a more detailed discussion). In this particular example, CE-SIB enriches the
Archimate-to-UML semantic docking point with a modelling concept “Standard” and
two semantically-rich relations, namely “Stated SBB” and “Applies to”.

The relation “Stated SBBs” specifies all valid and standard-conforming architecture
elements specified by a certain standard. Contrasting from TOGAF, in CE-SIB the
Standard Information Base is not only a list of SBBs serving as standards. A bundle of
SBBs can be assigned to the “Standard” plus qualities such as “Statement” and
“Rationale”. An example instance for this could relate to “Web Application Server
Technologies”: the standard might specify the set of concrete web server technologies
(SBBs such as Apache Tomcat 7.0, Java Glassfish 4.1) as the technology components
(i.e., nodes) an organization’s application components can use. These SBBs have their
own lifecycle and pass through a series of status in the context of a standard. A status is
defined via the attribute “State” of the relation class “Stated SBBs”; while an SBB
might be stated as an active standard for the as-is architecture it might be non-
conformant for future architectures. The CE-SIB metamodel recognizes this require-
ment – see the attribute “Standard Lifecycle” with values in conformity with TOGAF:
Trial Standard, Active Standard, Deprecated Standard, and Obsolete Standard.

The relation “Applies to” assigns standards to those architecture building blocks
which need to adhere to the standards – e.g., the application component “Financial
Application” must adhere to the standards “Database Management Systems”, “Web
Server Technologies”, and “Operating Systems”. Standards will typically be defined on
any level of the EA - they might be used to restrict the set of underlying technology
products, utilized for developing, testing, and operating application components; or, if
the architecture principle “Interoperability” must be described, the standard would
define appropriate interoperability protocols (see architecture principle no. 21 in
TOGAF 9, [35]). These standards do not necessarily have to be transferred to a
technical level. An architecture principle on business architecture level can be for-
mulated such as “Common Use Applications” (see architecture principle no. 5, [35]).
Organizations adhering to this principle try to avoid the introduction of similar and
duplicative applications supporting their business processes. In this case applications
that are already in place are stated as the standard for certain capabilities or processes.

The modelling class “Standard” is oriented towards the structure of architecture
principles (refer to TOGAF’s content metamodel in [35]), supporting the formulation
of a business case and/or business rationale for each standard in terms of some editable
properties: Name; Statement (concise definition of the standard including the list of
stated SBBs); Rationale (listing of the business benefits adhering to the standard);
Implication (listing of the requirements, both for the business and IT, for adhering to
the standard in terms of resources and costs); Standard Type (required level of con-
formance - may adhere to TOGAF’s conformance schema [35]).

26 C. Moser et al.

3.3 The CE-SIB Procedure: Managing Standards Compliance

Since it is a method function block, CE-SIB also defines its application procedure steps
to be assimilated by in-place management practices:

Step 1. Adopt and maintain standards. In this step the set “STD” of standards is
formulated (i.e., their attributes relevant for EA standards management are described)
and promoted within the organization. Standards must be derived from the organiza-
tions strategy – i.e., architecture principles [7, 33] and business goals. This is a col-
laborative effort between subject matter experts and a cross-organizational architecture
board to oversee the quality and the strategic/tactical impact of the standards. Each
standard is described based on the presented metamodel. Let S be the set of SBBs
stated by a standard – i.e., the set of architecture artifacts assigned to a standard via the
relation class “Stated SBB”, and U be the set of solution building blocks an ABB uses
(i.e. is implemented on). The predicate “uses” is represented in the metamodel through
the “Realized by” relation assigning SBBs to ABBs, with a variety of possible
implementation-level manifestations in a modelling tool (e.g., visual connectors,
hyperlinks). Figure 2 illustrates a Standard (Web Application), an ABB (Financial
Application), and the sets S and U of solution building blocks (SBBs) - ensured by the
standard and used by the ABB, respectively.

The financial application ABB runs on the following SBBs: Apache Tomcat 7.0,
Windows Server 2013 and MS SQLserver 2013. The standard “Web Application”
assigned to the financial application states the following SBBs: Oracle 11 g, Apache
Tomcat 7.0, and Windows Server 2013. The usage of MS SQLserver 2013 is not in
conformance with the standard. In order to identify the relevant SBBs (in Fig. 1 the
artifacts of modelling class “node”) CE-SIB provides mechanisms for evaluating the
graph “Application Component > Artifact > Node” and the degree of compliance
relative to the compliance types in Table 1.

Step 2. Weigh standards. The defined standards are weighted according to their
importance for the organization. Like the weighing of architecture principles (proposed
in [23]) each standard is weighted from 1 (minor importance) to 5 (high importance),
i.e., xðstdÞ 2 f1; 2; 3; 4; 5g.
Step 3. Stipulate SBBs and set lifecycles. Subject matter experts continuously define
SBBs best supporting a standard, ensuring that only valid, up-to-date and available
SBBs are postulated by the standards. In case of technology standards, non-functional

Standard
„Web Applica on“

Financial
Applica on

Apache
Tomcat 7

Windows
Server
2013

Oracle
11g

U
S

MS
SQLserver

2013

Fig. 2. Example of comparison assessment

CE-SIB: A Modelling Method Plug-in for Managing Standards 27

requirements such as costs, functionality, usability, reliability, supportability [12] need
to be considered. A more sophisticated approach is discussed in [8], where categories
of services are standardized.

Typically, the owner of the standard will assign appropriate SBBs, by scanning the
market for new appropriate (versions of) SBBs. Valuable information sources for
technical infrastructures are the mentioned SIBs (SAGA, EIF, NISP, also see [4] for an
overview), official vendor support policies like the “Oracle Lifetime Support Policy”
(see [28]) as well as existing service level agreements concluded with suppliers. Cri-
teria such as information on internal skills for the support and maintenance of the SBBs
are also considered. Based on this information one of the status “Trial Standard”,
“Active Standard”, “Deprecated Standard”, or “Obsolete Standard” is assigned:
statusðsbb; stdÞ 2 ftrial; active; deprecated; obsoleteg.
Step 4. Define atomic scoring values. Each type of lifecycle state (trial, active,
deprecated, obsolete) is assigned to ratings on a scale as recommended in [23]: r(active)
∶= 1, r(trial) ∶= 2, r(deprecated) ∶= 3 and r(obsolete) ∶= 5. An ABB receives a (desired)
low standardization degree (SD), if it primarily uses active SBBs. The scoring can be
adapted as required by the EA board when deploying the method.

Table 1. Types of standards compliance

Type Explanation

Non-conformant Fulfilment Requirements: S \U ¼ ;
Description: SBBs which are explicitly not allowed to be used by an ABB
Example: No application component shall be implemented on a certain
technology component (e.g. technology products which reached
end-of-life and vendor-support is not guaranteed anymore)

Compliant Fulfilment Requirements: U� S
Description: A number of SBBs are endorsed by the standard – at least one
of these SBBs must be used
Example: A standard “Web Server Technologies” states “Apache 2.4” and
“IIS 10” as technology components an application component can be
implemented on

Conformant Fulfilment Requirements: U � S
Description: All stated SBBs are to be used by an ABB, but the ABB
might use additional solution building blocks (not stated by the standard)
Example: The standard “Allowed Web Application Technologies” might
state SBBs such as “Apache Tomcat” and “Unix”. Hence, a web
application shall use both of these SBBs, however, the developing team
has the freedom to use any further technology components

Fully compliant Fulfilment Requirements: S ¼ U
Description: Full conformance between stated SBBs and used SBBs is
required
Example: An application component needs to use exactly the stated SBBs.
Usage of a subset of these SBBs, as well as usage of additional SBBs is not
allowed

28 C. Moser et al.

Step 5. Assess compliance. Compliance levels can be calculated from the perspective
of the standards (i.e., the compliance level of a concrete standard along the entire EA)
as well as from the perspective of the ABBs (i.e., the compliance level of an ABB
along the set of standards it must adhere to). In order to calculate the standardization
degree SDða; stdÞ of an ABB abb in the context of a standard std (and vice versa) we
decompose the set of SBB in the subsets indicated by Fig. 3:

SA is the set of SBBs scored “active” but not used by the abb. M is the set of SBBs
stated by the standard and at the same time used by the abb independent of their
scoring in context of the standard. U’ is the set of SBBs used by the abb but not stated
by the standard. Based on these subsets the standardization degree (SD) of an ABB can
be calculated for each type of standard (conformant, compliant etc.). Take the running
example of the financial application and the standard “Web Application” (see Fig. 2):

SA ¼ Oracle 11gf g; M ¼ Appache 2:4; Windows Server 2013f g; U 0

¼ SQLserver 2013f g

Depending on the type of standard, the weighing of the applied standards, the status
of the used SBBs, and the applied atomic scoring values, the standardization degree per
standard and per ABB can be calculated. Depending on the type of standard, usage of
Oracle 11 g instead of MS SQLserver 2013 might lead to a bad rating of the stan-
dardization degree. The standardization degree calculations are performed by
model-based assessment mechanisms to be detailed in Sect. 3.4.

Step 6. Address exceptions. Goodhue et al. [18] consider standards without gover-
nance to be useless. Peterson [29] discusses the necessity of the institutionalization of
monitoring processes in terms of diagnosing IT governance effectiveness and value
contribution. CE-SIB recognizes these requirements and proposes evaluating the
standardization degree on an ongoing basis. In cases of non-compliance, change
requests to improve the architecture need to be raised. However, Gartner [16] rates
over-standardization, as one of the worst practices in EAM. Hence, in cases of iden-
tified non-compliance, mechanisms for interim conformance are provided. These are
exceptions that must be corrected within a granted lifespan of the exception. The
CE-SIB method allows exceptions for the tuple of an ABB and its used SBBs, in case
of non-compliant SBBs (e.g., SBBs in state “obsolete”). CE-SIB reflects exceptions by
neutralizing bad ratings via exceptions. Thus, the value r(obsolete) ∶= 5 for
non-compliant SBBs is mitigated by subtraction of the value 4 (see next section).

Fig. 3. Decomposing the SBB set

CE-SIB: A Modelling Method Plug-in for Managing Standards 29

Step 7. Create viewpoints for decision support. As the CE-SIB method is meant to
be framework-agnostic, no concrete viewpoints are stipulated - graph-based diagrams
(with nodes and edges), matrices etc. can be used. Current deployments have been
coupled with the CE-HM (Compliance Evaluation Featuring Heat Maps) mechanisms
introduced in [23], which enables color-coding mechanisms (“heatmaps”) in arbitrary
modelling notations, while also propagating such visual cues to superordinated levels
of the EA (e.g., superordinated business processes, business capabilities).

3.4 The CE-SIB Mechanisms: Computing Standardization Degrees

Based on the existing model base (set of ABBs, assigned SBBs, and defined standards)
the following metrics compute standardization degrees, relative to Fig. 4. The numbers
depicted within the subsets present the ratings of SBBs in context of the particular type
of standard (fully conformant, conformant, compliant etc.).

The formulas for degrees are marked with the corresponding letters from the
figures:

SDfully abb; stdð Þ :=
P

sbb2M r status sbb; stdð Þð Þþ 5� jSAj þ 5� jU0 j
jMj þ jSAj þ jU0 j ðaÞ

SDconformant abb; stdð Þ :=
P

sbb2M rðstatus sbb; stdð ÞÞþ 5� jSAj
jMj þ jSAj ðbÞ

SDcompliant abb; stdð Þ :=
P

sbb2M r status sbb;stdð Þð Þ
jMj ; if jMj[0

5; else

(

ðcÞ

SDnon-conf abb; stdð Þ :=
P

sbb2M r status sbb; stdð Þð Þþ jU0 j
jMj þ jU 0 j ðdÞ

Fig. 4. Sets and scores for different compliance types

30 C. Moser et al.

Note, that in case of required non-conformance all stated SBBs will be scored r(ob-
solete) as usage of any of the stated SBBs should be avoided. All other used SBBs are
scored with a value of 1.

From the viewpoint of an ABB abb, the standardization degree SD(abb) of the
ABB is the weighted average of the standardization degrees of the tuples of the ABB
and its assigned standard, i.e.:

SDðabbÞ :¼
P

i2STD SDðabb; stdiÞ � xðstdiÞP
i2STD x stdið Þ

where STD is the set of standards assigned to an ABB.
From the viewpoint of a standard std, the standardization degree SD(std) is the

average of the standardization degrees of the tuples of the standard and the ABBs it
applies to:

SDðstdÞ :¼
P

j2ABB SDðabbj; stdÞ
jABBj

Situation (e) in Fig. 4 illustrates how exceptions are considered for a standard
requiring full-compliance (E is the set of obsolete SBBs with granted exceptions):

SDfully;ex abb; stdð Þ := SDfully abb; stdð Þ � jEj � 4

jMj þ jSAj þ jU0 j ðeÞ

4 Implementation and Evaluation

The proof-of-concept depicted in Fig. 5 was implemented on the metamodelling
platform ADOxx - made available as part of the Agile Modelling Method Engineering
framework [22] by the Open Models Initiative Laboratory [24]. It integrates a hybrid of

4

Degree of Standard Compliance

1

Business Service

2

Applica on Component

3

Standard1

2 3

2 3 4

Fig. 5. Exemplary viewpoints: (a) compliance clustermap, (b) compliance matrix

CE-SIB: A Modelling Method Plug-in for Managing Standards 31

Archimate viewpoints and a subset of UML (namely class/object diagrams, component
diagrams, and deployment diagrams) extended with the CE-SIB plug-in, following
Shneiderman’s visualization “mantra” overview first, zoom and filter, and details on
demand [32]. Figure 5a and b exemplarily depict two viewpoints. The clustermap
(Fig. 5a) is an EA viewpoint recommended by [14] for communicating standards
conformity and exceptions. In Fig. 5a the worst score is propagated to the “higher”
levels (from application components to superordinate business processes). Within the
application components the relevant standards are depicted. This viewpoint is intended
to give an “overview first” on weak spots within the EA.

The matrix view in Fig. 5b is recommended by TOGAF [35] to communicate
relationships between architecture artifacts, giving insight to scorings of ABBs in
context of the assigned standards. On the x-axis standards such as “Authorization
Services” and “Database Management Systems” are depicted. Based on the discussed
thresholds and metrics matrix cells are color-coded.

As the CE-SIB method block was introduced here as a Design Science artifact, it
can be subjected to the wide tableaux of evaluation criteria surveyed by [31]. The
current implementation was driven by requirements from industrial cases (a banking
institution and an organization from the public administration sector) therefore certain
criteria gained priority:

Generality: CE-SIB is reusable for any semantic “docking points” (as defined in
Sect. 3.2) identified between arbitrary metamodels. This relies on the Agile Modelling
Method Engineering framework [22] - the key enabler for agilely plugging the CE-SIB
block to existing modelling method implementations (where relevant concepts can
fulfill the ABB and SBB roles).

Consistency with organization (fit with organization requirements): The imple-
mentation was tailored for the mentioned industrial cases to replace legacy Excel-based
methods and to support already in place model-based management practices. The
generality factor mentioned above ensures that similar requirements from organizations
of different domain-specificity may be agilely satisfied. By building on the existing
model base, efforts for maintaining the SIB could be dramatically reduced by
approximately 70% (based on stakeholder feedback). Additionally, standards compli-
ance reports are delivered up-to-the-minute, as opposed to the annual basis reporting of
the legacy data acquisition project.

Consistency with people (usability): ADOxx was employed as the underlying
implementation platform to benefit from its built-in usability and understandability
facilitators: the basic task of creating a new version of a standard was reduced to 5
clicks only; the change history is written automatically and all owners of affected ABBs
are informed automatically; reports such as in Fig. 5a and b are updated automatically
without any additional manual modelling efforts.

5 Concluding SWOT Analysis

A SWOT evaluation summarizing the key learned lessons was derived from hands-on
experience with the implementation and interviews with key stakeholders in their
respective organizations.

32 C. Moser et al.

Strengths: CE-SIB allows nonambiguous definition and communication of standards
and can be integrated in commonly used EA frameworks. Adherence to these standards
becomes measureable. In the course of the evaluation it was shown that usage of the
method and communication of standards compliance degrees (based on modelling
viewpoints) lead to comprehensible results. Understandability and acceptance were
assessed through qualitative interviews with major EA stakeholders, where the pro-
posal was deployed in modelling tools agilely extended through the Agile Modelling
Method Engineering methodology.

Weaknesses: One major restriction of CE-SIB is that it requires a model-based system
engineering (MBSE, see [15]) approach to EA management (in contrast to a traditional
document-based approach). Thus the EA documentation must be available as a dia-
grammatic model base, with models depicting different EA facets under an overarching
metamodel (for which CE-SIB acts as integrator).

Opportunities: Standards are defined from the point of view of different domains and
organizational units and different standards may be conflicting in their statements
regarding SBBs. Providing means to uncover these inconsistencies will add another
valuable feature to CE-SIB. The strict focus on the MBSE can be relaxed by applying
data integration and clearance mechanisms from the fields of business analytics as
discussed in [19]. For this, future work will focus on a Data Integration and Cleansing
Environment (DICE) (see [20]) implemented on the same metamodelling platform.

Threats: The stakeholder involvement has shown that the definition of standards
throughout an organization requires strong negotiating skills, persuasiveness, and
political savviness. The main touch points, contrasted to TOGAFs ADM the phases
B-D (where the architectures are designed), phase E (where the best solution is chosen),
and H (evaluation) have to be clearly defined. Currently CE-SIB does not address these
touch-points in detail. Evaluation results clearly show that more detailed guidance on
implementing the CE-SIB procedures in the organization is required.

Acknowledgment. The work of Dr. Robert Buchmann is supported by the Romanian National
Research Authority through UEFISCDI, under grant agreement PN-III-P2-2.1-PED-2016-1140.

References

1. Accenture: Architecture frameworks for client/server and netcentric computing. In: Myerson,
J.M. (eds.) Enterprise Systems Integration, pp. 39–78 (2002)

2. Anaby-Tavor, A., et al.: An empirical study of enterprise conceptual modeling. In: Laender,
A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol.
5829, pp. 55–69. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04840-1_7

3. Armstrong, C., et al.: Using the ArchiMate Language with UML (2013). http://cdn2.
hubspot.net/hub/183807/file-1805596253-pdf/site/media/downloads/W134.pdf?t=
1418385713847

4. Beauftragte der Bundesregierung für Informationstechnik (BfIT): SAGA-Modul Grundlagen
Version de.bund 5.1.0 (2011)

CE-SIB: A Modelling Method Plug-in for Managing Standards 33

http://dx.doi.org/10.1007/978-3-642-04840-1_7
http://cdn2.hubspot.net/hub/183807/file-1805596253-pdf/site/media/downloads/W134.pdf%3ft%3d1418385713847
http://cdn2.hubspot.net/hub/183807/file-1805596253-pdf/site/media/downloads/W134.pdf%3ft%3d1418385713847
http://cdn2.hubspot.net/hub/183807/file-1805596253-pdf/site/media/downloads/W134.pdf%3ft%3d1418385713847

5. Bernard, S.A.: An Introduction to Enterprise Architecture. AuthorHouse, Bloomington
(2012)

6. Bjeković, M., Proper, H.A., Sottet, J.-S.: Embracing pragmatics. In: Yu, E., Dobbie, G.,
Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 431–444. Springer, Cham (2014).
doi:10.1007/978-3-319-12206-9_37

7. Boh, W.F., Yellin, D.: Using enterprise architecture standards in managing information
technology. J. Manag. Inf. Syst. 23(3), 163–207 (2006)

8. Brückmann, M., et al.: Evaluating enterprise architecture management initiatives-how to
measure and control the degree of standardization of an IT landscape. In: Mendling, J.,
Rinderle-Ma, S., Esswein, W. (eds.) EMISA, pp. 155–168 (2009)

9. Buckl, S., et al.: A pattern based approach for constructing enterprise architecture
management information models. In: Wirtschaftinformatik Proceedings 2007, p. 65 (2007)

10. Colombo, A., et al.: The use of a meta-model to support multi-project process measurement.
In: 15th Asia-Pacific Software Engineering Conference, APSEC 2008, pp. 503–510. IEEE
(2008)

11. Correia, A., e Abreu, F.B.: Integrating IT service management within the enterprise
architecture. In: Fourth International Conference on Software Engineering Advances, ICSEA
2009, pp. 553–558. IEEE (2009)

12. CIO Council: A Practical Guide to Federal Enterprise Architecture, Version 1.0 (2001)
13. CIO Council: Federal Enterprise Architecture Framework, Version 1.0 (1999)
14. Ernst, A.M.: Enterprise architecture management patterns. In: Proceedings of the 15th

Conference on Pattern Languages of Programs, pp. 7:1–7:20. ACM, New York (2008)
15. Fisher, A., et al.: 3.1. 1 model lifecycle management for MBSE. In: INCOSE International

Symposium, pp. 207–229. Wiley Online Library (2014)
16. Gartner: Thirteen worst enterprise architecture practices, Report No. G00164424 (2009)
17. Goldkuhl, G., Lind, M., Seigerroth, U.: Method integration: the need for a learning

perspective. IEE Proc.-Softw. 145(4), 113–118 (1998)
18. Goodhue, D.L., et al.: The impact of data integration on the costs and benefits of information

systems. MIS Q. 16(3), 293–311 (1992)
19. Grossmann, W.: A conceptual approach for data integration in business analytics. Int.

J Softw. Inform. 4, 53–67 (2010)
20. Grossmann, W., Moser, C.: Big data—integration and cleansing environment for business

analytics with DICE. In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific
Conceptual Modeling, pp. 103–123. Springer, Cham (2016). doi:10.1007/978-3-319-39417-
6_5

21. Hanschke, I.: Strategic IT Management: A Toolkit for Enterprise Architecture Management.
Springer Science & Business Media, Heidelberg (2009). doi:10.1007/978-3-642-05034-3

22. Karagiannis, D.: Agile modeling method engineering. In: Proceedings of the 19th
Panhellenic Conference on Informatics, pp. 5–10. ACM, New York (2015)

23. Karagiannis, D., Moser, C., Mostashari, A.: Compliance evaluation featuring heat maps
(CE-HM): a meta-modeling-based approach. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 414–428. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31095-9_27

24. Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Fundamental
conceptual modeling languages in OMiLAB. In: Karagiannis, D., Mayr, H., Mylopoulos,
J. (eds.) Domain-Specific Conceptual Modeling, pp. 3–30. Springer, Cham (2016). doi:10.
1007/978-3-319-39417-6_1

25. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: EC-Web, p. 182 (2002)

34 C. Moser et al.

http://dx.doi.org/10.1007/978-3-319-12206-9_37
http://dx.doi.org/10.1007/978-3-319-39417-6_5
http://dx.doi.org/10.1007/978-3-319-39417-6_5
http://dx.doi.org/10.1007/978-3-642-05034-3
http://dx.doi.org/10.1007/978-3-642-31095-9_27
http://dx.doi.org/10.1007/978-3-319-39417-6_1
http://dx.doi.org/10.1007/978-3-319-39417-6_1

26. Lara, P., Sánchez, M., Villalobos, J.: Bridging the IT and OT worlds using an extensible
modeling language. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki,
M. (eds.) ER 2016. LNCS, vol. 9974, pp. 122–129. Springer, Cham (2016). doi:10.1007/
978-3-319-46397-1_10

27. Lichka, C., et al.: IT-based balanced scorecard. In: WISU Wirtschaftinformatik, p. 31 (2002)
28. Oracle: Oracle Lifetime Support Policy: Oracle and Sun System Software (2012). http://

www.oracle.com/us/support/library/lifetime-support-hardware.pdf
29. Peterson, R.: Crafting information technology governance. Inf. Syst. Manag. 21(4), 7–22

(2004)
30. Pragmatic EA Ltd.: Pragmatic EA Framework Version 2.0 (2010)
31. Prat, N., et al.: Artifact evaluation in information systems design-science research-a holistic

view. In: PACIS 2014 Proceedings - Pacific Asia Conference on Information Systems, p. 23
(2014)

32. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of IEEE Symposium on Visual Languages, pp. 336–343.
IEEE (1996)

33. Stelzer, D.: Enterprise architecture principles: literature review and research directions. In:
Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave-2009. LNCS, vol. 6275,
pp. 12–21. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16132-2_2

34. The Open Group: ArchiMate 3.0 Specification (2016)
35. The Open Group: TOGAF Version 9.1 (2011)
36. Varnus, J., Panaich, N.: TOGAF 9 enterprise architecture survey results. In: 23rd Enterprise

Architecture Practitioners Conference (2009)
37. Zivkovic, S., et al.: Facilitate modelling using method integration: an approach using

mappings and integration rules. In: ECIS 2007 Proceedings, pp. 2038–2049 (2007)

CE-SIB: A Modelling Method Plug-in for Managing Standards 35

http://dx.doi.org/10.1007/978-3-319-46397-1_10
http://dx.doi.org/10.1007/978-3-319-46397-1_10
http://www.oracle.com/us/support/library/lifetime-support-hardware.pdf
http://www.oracle.com/us/support/library/lifetime-support-hardware.pdf
http://dx.doi.org/10.1007/978-3-642-16132-2_2

A Catalogue of Reusable Context Model
Elements Based on the i* Framework

Karina Abad1, Wilson Pérez1(&), Juan Pablo Carvallo2,
and Xavier Franch3

1 University of Cuenca, Cuenca, Ecuador
{karina.abadr,wilson.perez}@ucuenca.edu.ec

2 University of Azuay, Cuenca, Ecuador
jpcarvallo@uazuay.edu.ec

3 Universitat Politècnica de Catalunya, Barcelona, Spain
franch@essi.upc.edu

Abstract. The definition of the context of a system is one of the most relevant
activities in the early phases of information systems engineering. It allows
system engineers to narrow the system scope, by defining well established
system boundaries. In practice, outlining a system context model is complex and
cumbersome. In order to support context modeling, in this paper we propose a
catalogue of context model elements expressed in i*, which can be reused as
building blocks in the construction of context models for new systems. We
describe the process used for the identification of a set of actors and depen-
dencies recurrently appearing in several academic and industrial cases, and the
process to store them into a catalogue of reusable i* context dependencies.

Keywords: Goal-oriented model � Model reuse � iStar framework � Context
model

1 Introduction

The definition of the context of a system is one of the most relevant activities in the
early phases of information system engineering [1]. It allows system engineers to
narrow the system scope, by defining well established boundaries in relation to the
actors placed in its context (organizations, people, cyber-technical systems, etc.) and
the interactions (processes) that it must support to communicate with them. The defi-
nition of system context requires at least four facets to be considered [1]:

• Use: the kind of users that will interact with the system and their abilities and
limitations (physical or mental).

• Object: the system-to-be and its functional coverage.
• System: the platform, protocols and technologies required to run and support

system operation.
• Development: standards and tools used to drive system construction.

In practice, modeling a system context is complex and cumbersome. It requires
continuous and fluid communication among system designers, stakeholders and

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 36–49, 2017.
https://doi.org/10.1007/978-3-319-69904-2_3

managers visualizing and defining business strategy, but also notations and tools
required to support and document their interaction and agreements in the form of a
Context Model (CM).

In order to support this process, in the last few years we have been intensively using
the i* framework [2] to model system contexts, and proposed the DHARMA [3]
method to discover the system architecture departing from these models. The appli-
cation of DHARMA in a good dozen of cases led us to propose some patterns aiming at
improving CM construction [4], by reusing some elements that repeatedly appeared in
several of these cases. Although these patterns proved to be useful in practice [4], after
conducting over 36 academic and industrial experiences, we concluded that, due to the
creative nature of both managers and organizations, even in the same industry, the
patterns tend to structure and behave in very dissimilar ways, making their application
highly difficult. These cases also proved that that reuse of more atomic sets of elements
was not only feasible, but also a way to more efficiently construct CM [5].

In this paper, we present a catalogue of reusable CM elements expressed in i* to be
used as building blocks in the construction of CM for new systems. We describe the
process used to identify a set actors and related dependencies, which frequently
occurred in these cases, and the process to store them into a catalogue of reusable i*
context dependencies. Dependencies can be independently reused as atomic patterns or
together, in subsets of dependencies selected in relation to labels assigned to actors.
These subsets of dependencies structure larger “dynamically constructed” patterns or
CM chunks, which can be parametrized in relation to the specific domain.

The rest of the paper is structured as follows. Section 2 presents the background,
including the DHARMA method, and some related work on pattern-based reuse.
Section 3 shows the process followed for the catalogue construction. Section 4 sum-
marizes the contents of the final catalogue. Section 5 shows how the catalogue can be
used to automatize the construction of CM. Finally, Sect. 6 presents some conclusions
and future work.

2 Background and Related Work

2.1 The DHARMA Method

The DHARMA (Discovering Hybrid ARchitectures by Modelling Actors) method [3]
aims at the definition of enterprise architectures using the i* framework [2], which
allows representing, modeling and reasoning about socio-technical systems through
graphical models based on a set of modeling constructs. DHARMA relies upon two
concepts defined by Porter [6]: (1) the model of market forces designed to reason about
potential available strategies and how to make them profitable and helpful in the
analysis of the influences of market forces; and (2) a value chain that includes primary
and support activities. The process consists in four activities (see Fig. 1). Activity 1
models the enterprise context; the organization and its strategy are carefully analyzed,
to identify its role inside the context, making evident the Context Actors (CA) and the
Organizational Areas (OA) structuring the organization. i* SD models are built and
used to support reasoning and represent results from this activity. Activity 2 places a

A Catalogue of Reusable Context Model Elements Based on the i* Framework 37

system-to-be into the organization and analyzes the impact that it has over the elements
in the CM. Strategic dependencies identified in the previous activity (internal and
context), are inspected to determine which of them may be totally or partially satisfied
by system. In Activity 3, dependencies included in the CM are analyzed and decom-
posed into a hierarchy of goals required to satisfy them. The goals represent the
services that the system must provide, to support interaction with CA and OA activities.
An i* SR diagram for the system is built. Finally, Activity 4 is used to identify the
generic architecture of the system (system actors that structure the system, the services -
goals- that must be covered by each of them and the relationships among them).

2.2 Related Work on Reuse Through Patterns

The reuse of requirements through patterns has been proposed and used broadly in the
field of requirements engineering [7]. Most of them focus on non-functional require-
ments (NFR) as in [8, 9], where a set of defined patterns is presented; these patterns aim
to capture and reuse some specific aspects linked to data security. The PABRE
framework [10] makes use of patterns in order to define requirements expressed in
natural language. The catalogue used by PABRE was grounded on real software
requirement documents and applies to both functional requirements and NFRs.

In the i* community, we find several approaches too. In [11] an evaluation was
carried out around the application of patterns over i* models, trying to find out if those
patterns improve CM construction, finding that their application allow to define ele-
ments with a broader coverage. Nevertheless, their construction requires a deep
understanding and effort; therefore, in this work it was not possible to demonstrate that
their application decreases the complexity of the construction of CM. With a similar
aim of exploring pattern application, in [4] we proposed a set of patterns based in the
Porter’s model and some strategies, specifically the CRM strategy, and we formulated
patterns for this strategy, which are formally described and oriented to industrial

Fig. 1. The DHARMA method

38 K. Abad et al.

applicability. In [12], we have proposed a first approach for reusing elements through a
catalogue of CM elements and showed how to automate the construction of i* SD
based-CM, starting the construction of CM from a solid base instead of departing from
scratch.

In this work, we aim to provide guidance in early phases of the Enterprise Engi-
neering process, providing artifacts to bridge communication gaps among technical
Enterprise Engineering staff and administrative staff, starting from previous works and
improving them. In relation to [10], our contribution is focused in the exclusive use of
the i* notation instead of natural language (which provides an adequate level of
abstraction for modeling CM). We improved the catalogue of common elements pre-
sented in [12] to include more CM to the analysis, this paper presents the process to
construct such catalogue; we also introduce and show the use of parametric actors and
dependencies.

3 Catalogue Construction

In this section, we present the process performed to construct the catalogue of CM
elements. The process starts with the data collection, then we analyze separately actors
and dependencies. Due to the large number of CM elements, each analysis was per-
formed in many steps, as explained below.

3.1 Data Collection

The models upon which we based this analysis were constructed by university students
in their final grade project, acting as junior consultants in 36 organizations. The students
were trained in the construction of CM, specifically in the i* notation and the DHARMA
method, according to the scope, objectives and activities proposed in such method.
Since DHARMA is relatively new in the context of its application, we consider usable
the CM constructed by the students according to the study carried out in [13], where the
authors concluded that the performance observed in students and professionals is similar
when the approach is new. The models were created for the organizations through
formal agreements among them and the University of Cuenca. In the study, 27 orga-
nizations were small sized, 6 medium sized and 3 large sized. This distribution largely
corresponds with the reality of the country where the studies were conducted, whose
industrial network is composed by small companies as majority (97, 94%) [14]. The
organizations were classified according to NACE Rev2’s domains [15] identifying: 12
manufacturing, 16 wholesales, 2 human health, 4 education, 1 transportation and 1
financial.

In each organization, the modelling process started with the construction of CM and
finished with the identification of the system architecture required to support its
operation. The junior consultants worked in pairs in order to complete each DHARMA
activity. To perform Activity 1 of the DHARMA method, an interview with the
interlocutor assigned by each organization was conducted; its objective was to get
information enough as to allow the identification of actors inside and outside the
organization, and to discover the relations among them. The junior consultants

A Catalogue of Reusable Context Model Elements Based on the i* Framework 39

performed the process manually and the final product of this activity was a set of i*
diagrams and its tabular representation according to DHARMA. Each group was able
to identify around 31 actors and 58 dependencies per organization in average, with a
maximum of 50 actors and 113 dependencies and a minimum of 17 actors and 20
dependencies.

3.2 Actors Analysis

The analysis of actors started by considering two generic groups as defined by Porter
[6], namely: 8 external context actors (Suppliers, Consumers, Strategic Partners,
Distributors, Financial Institutions, Regulatory Agencies, Control Agencies and
Competitors) and 9 internal context actors (Inbound Logistics, Operations, Outbound
Logistics, Marketing and Sales, Services, Infrastructure, Human Resources Manage-
ment, Technology Development and Procurement). To define the catalogue of actors
extending this initial group, we followed a three-step process, described below.

First, the 36 CM were integrated into a single data space, where each actor in a CM
was classified as one of the 8 external or 9 internal context actors enumerated above
(see results in Table 1).

A total of 1109 actors were found, from which 886 are external and 223 are
internal. The most common types of actors are Suppliers and Customers with a 38.89%
appearance rate. On the other hand, the least common actor is Services, included only
in 5 organizational models.

Second, we proceeded to unify all the actors duplicated in the models, so that we
obtained a set of instances for each internal and external actor. Table 2 shows an
excerpt of actors identified as Supplier instances and their occurrences in the 36
organizations. We can see instances like Basic services supplier, Technology supplier,
etc. Summarizing, from the 886 external actors, only 203 were unique instances and
from the 223 internal actors, only 77 were unique instances.

Third, after getting the instances, we realized that some of them had common
characteristics, being able to group them into categories, obtaining a hierarchical
structure; the categories are called dimensions and are composed by the specific
instances found in the previous step. As an example, consider actors categorized under
the Supplier generic actor, which defines three dimensions (see Table 3): Type (Goods,
Hardware, Basic services, Technology, etc.); Volume (Wholesaler and Retailer); and
Location (Local, International and National).

3.3 Dependencies Analysis

The analysis of dependencies was focused on their description and type in order to
define a catalogue of dependencies. This process was performed in two steps, as
described below.

First, similarly to actors’ identification, the CM corresponding to the 36 organi-
zations were integrated into a single data space and the dependencies of each orga-
nization were analyzed based on their type (goal, softgoals, resources and tasks).
Results are shown in Table 4. A total of 2095 dependencies were found (1351
dependencies related to external actors and 744 dependencies related to internal actors);

40 K. Abad et al.

from them, 862 dependencies are goals, 537 softgoals, 619 resources and 77 tasks. The
scarce use of task dependencies is probably due to their high level of prescriptiveness,
which is something that does not match well with the activity of context modeling.

Table 1. Actors identified per organization. Organization size (S – Small, M – Medium and L -
Large). Domain classification (M - Manufacturing, E - Education, T - Transportation, H - Human
Health, W - Wholesale and F - Financial activities)

Id Si
ze

Do
m

ain

Su
pp

lie
rs

Co
ns

um
er

s

Co
nt

ro
l A

ge
nc

ies

Re
gu

lat
or

y
Ag

en
cie

s

Di
str

ib
ut

or
s

St
ra

teg
ic

Pa
rtn

er
s

Co
m

pe
tit

or
s

Fi
na

nc
ial

 In
sti

tu
tio

ns

To
ta

l

In
bo

un
d

lo
gi

sti
cs

Ou
tb

ou
nd

 lo
gi

sti
cs

Op
er

ati
on

s

Se
rv

ice
s

Fi
rm

 In
fra

str
uc

tu
re

Te
ch

no
lo

gi
ca

l d
ev

elo
pm

en
t

Pr
oc

ur
em

en
t

Hu
m

an
 R

es
ou

rc
e

M
ar

ke
tin

g
an

d
sa

les

To
ta

l

Org1 S M 9 3 7 3 0 0 0 0 22 1 1 1 0 1 0 1 1 1 7
Org2 S M 5 3 7 3 1 2 3 0 24 1 0 1 0 1 0 0 1 2 6
Org3 S M 3 5 7 5 2 3 0 1 26 1 1 1 0 0 0 0 0 1 4
Org4 S M 8 5 6 3 2 1 0 1 26 1 1 1 1 0 1 0 1 2 8
Org5 S W 6 7 2 3 1 2 1 1 23 0 0 0 0 0 0 0 0 0 0
Org6 S W 5 6 2 2 1 1 0 1 18 1 1 1 1 0 0 0 0 1 5
Org7 S W 4 7 3 2 1 0 1 0 18 1 1 0 0 0 0 0 1 2 5
Org8 S E 4 4 3 2 1 2 0 1 17 0 0 0 0 0 0 0 0 0 0
Org9 S W 6 7 4 3 2 1 2 2 27 1 1 1 1 0 0 0 1 2 7

Org10 S W 3 5 4 4 0 0 0 0 16 1 0 0 0 1 1 0 0 1 4
Org11 S W 10 12 7 3 4 3 2 3 44 1 0 1 0 2 0 0 1 1 6
Org12 S W 4 3 2 1 2 0 0 1 13 1 1 1 1 0 0 0 1 2 7
Org13 S M 3 6 5 2 3 0 3 2 24 1 0 1 0 1 0 0 0 1 4
Org14 S W 8 5 6 3 2 1 0 1 26 1 0 1 0 2 0 0 0 1 5
Org15 M W 8 9 7 3 3 4 2 2 38 1 1 0 0 2 0 1 1 3 9
Org16 M W 7 5 6 3 2 1 0 0 24 2 1 0 0 2 0 2 0 3 10
Org17 S W 7 5 3 4 2 2 1 1 25 0 0 1 0 2 0 2 1 1 7
Org18 S M 5 7 2 2 1 1 1 1 20 1 1 1 0 0 0 0 1 2 6
Org19 S W 9 3 7 3 0 0 0 0 22 0 0 0 0 1 0 1 0 1 3
Org20 S W 8 5 6 3 2 1 0 1 26 1 1 1 0 1 0 0 1 2 7
Org21 M E 9 8 6 3 4 4 2 2 38 0 0 0 0 2 3 0 0 0 5
Org22 S F 8 3 7 3 0 0 0 1 22 0 0 1 0 3 1 0 1 2 8
Org23 S W 6 5 5 2 3 0 3 1 25 1 0 2 0 1 1 0 1 1 7
Org24 S W 8 3 7 3 0 0 0 0 21 0 0 1 0 1 0 0 0 1 3
Org25 S M 7 5 6 3 3 4 2 2 32 1 0 1 0 2 0 0 1 1 6
Org26 S E 5 6 2 3 1 2 1 1 21 0 0 3 0 1 0 0 0 2 6
Org27 L M 7 7 5 3 4 4 2 1 33 1 1 1 0 4 0 1 1 1 10
Org28 S E 9 8 6 3 4 4 2 2 38 0 0 3 0 1 0 0 1 0 5
Org29 S M 6 6 2 2 1 0 1 0 18 1 1 8 0 2 0 0 1 1 14
Org30 S M 8 5 6 3 2 1 0 1 26 1 1 2 0 1 0 0 1 2 8
Org31 S W 5 4 2 1 2 0 1 1 16 1 0 0 0 4 1 0 1 0 7
Org32 M M 8 3 7 3 0 0 0 0 21 1 0 0 0 3 0 0 0 0 4
Org33 M H 5 4 2 1 2 0 0 0 14 1 0 3 0 0 0 0 0 1 5
Org34 M H 7 7 5 3 4 4 2 1 33 1 0 2 1 2 1 1 1 4 13
Org35 L M 6 7 6 3 2 1 1 0 26 2 0 2 0 3 1 1 1 2 12
Org36 L T 8 5 6 3 0 0 1 0 23 0 0 0 0 0 0 0 0 0 0

234 198 176 99 64 49 34 32 886 28 14 42 5 46 10 10 21 47 223

External Context Actor Internal Context Actor

Total

Organization

A Catalogue of Reusable Context Model Elements Based on the i* Framework 41

Second, we proceeded to group the 2095 dependencies with their respective generic
actors. In this step, the duplicated dependencies were omitted, finding 994 depen-
dencies (408 dependencies linked to external actors and 586 to internal actors).
Summing up, from the 862 goal dependencies identified in the previous step (Table 4),
449 are unique instances; from the 537 softgoals, 249 are unique instances; from the
619 resources, 254 are unique instances; and from the 77 tasks, 42 are unique instances.

Table 2. Excerpt of actors identified and their occurrence in the 36 cases conducted

Generic
Actor Actor

O
rg

1
O

rg
2

O
rg

3
O

rg
4

O
rg

5
O

rg
6

O
rg

7
O

rg
8

O
rg

9
O

rg
10

O
rg

11
O

rg
12

O
rg

13
O

rg
14

O
rg

15
O

rg
16

O
rg

17
O

rg
18

O
rg

19
O

rg
20

O
rg

21
O

rg
22

O
rg

23
O

rg
24

O
rg

25
O

rg
26

O
rg

27
O

rg
28

O
rg

29
O

rg
30

O
rg

31
O

rg
32

O
rg

33
O

rg
34

O
rg

35
O

rg
36

To
ta

l
Pe

rc
en

ta
ge

Hardware X X X 3 8%

Basic services X X X X X X X X X X X X X X 14 39%

Technology X 1 3%

Transport X X X 3 8%

Wholesale X 1 3%

Local X X X X X X X 7 19%
National X X X X X X X X X 9 25%

International X X X X X X X 7 19%

Supplier

Table 3. Dimensions found for the Supplier generic actor.

Generic actor Dimension Actor instances

Supplier Type Goods
Hardware
Basic services
Technology
…

Transport
Volume Wholesaler

Retailer
Location Local

National
International

Table 4. Dependencies identified per organization

42 K. Abad et al.

3.4 Synonyms in Actors and Dependencies

During the data analysis, we found some actors and dependencies representing the
same entity or idea but written differently, that is, synonyms. An example is the
occurrence of two actors, Final client and Final customer, in two different organiza-
tions; for dependencies, consider the dependencies Timely delivery and On-time
delivery found in two different organizations. In summary, we found 13 synonyms in
external actors, 51 in dependencies linked to external actors, 32 synonyms in internal
actors and 86 in dependencies linked to internal actors. For dependencies, 68 were
goals, 48 softgoals and 21 resources. To simplify the catalogue, we decided to create a
section focused in those findings. The main idea is that in later stages, through the use
of semantic technologies, analyze the actors and dependencies entered by the user as
part of a CM and inform him that a similar actor or dependency has been previously
defined with different words (if that is the case), and let him decide which of them is the
best option.

Figure 2 shows graphically how the total number of actors and dependencies
shrank little by little after each step described in Sects. 3.2 and 3.3, including the results
of synonyms, obtaining a total of 235 actors, from them 190 are external context actors
and 45 internal context actors. Additionally, 857 dependencies were identified (381
goals, 201 softgoals, 233 resources and 42 tasks).

3.5 Parametric Actors and Dependencies

Even after the consolidation of actors and dependencies as explained in the previous
subsections, we found groups of actors or dependencies identified in different orga-
nizations but all those sharing similar characteristics. To make explicit this similarity
and also to make the catalogue more compact, we incorporated parameters to the
definition of actors and dependencies. As an example of parametric actors, consider an
organization where the actor Primary Students has been identified, and a second
organization where the actor High School Students emerged, both of them with similar
relationships in their respective organization. That allowed us to group them in one
category, with the possibility to parametrize them, that is, the parametric actor is

0
100
200
300
400
500
600
700
800
900

Initial
model

After
removing
duplicates

After
unifying

synonimous

External actors
Internal actors

0
100
200
300
400
500
600
700
800
900

Initial
model

After
removing
duplicates

After
unifying

synonimous

Goal
So goal
Resource
Task

(a) (b)

Fig. 2. Number of elements shrunk on each step. (a) Actors, (b) Dependencies

A Catalogue of Reusable Context Model Elements Based on the i* Framework 43

defined as <type-of-student> Students, where the parameter <type-of-student> can be
instantiated as Primary or High school. Other possible case of parametrization can be
found with actors sharing characteristics as the sector, but differing in the industry, it
means, the parametric actor could be Supplier of <services> and the tag <services> can
be parametrized as basic services, telecommunications, security, etc.

The same occurs in dependencies. For instance, let’s consider the dependency
<Products> acquired; the parameter <Products> can be replaced by furniture, clothes,
equipment, etc., according to the industry of the depender or dependee. Sometimes,
parametric dependencies can be associated to parametric actors, for example, the
parametric actor Supplier of <services> (mentioned in the paragraph above) is asso-
ciated to the parametric dependency <Specific documents>, if the actor is instantiated as
Supplier of transport services, the dependency has to be instantiated asWaybill or if the
actor is Supplier of medical services, the dependency has to be instantiated as Medical
record.

A total of 41 actors in the catalogue were identified as parametric (22 external and
19 internal) and 63 dependencies (35 dependencies linked to external actors and 28 to
internal actors), where 25 are goals, 6 softgoals, 28 resources and 4 tasks.

4 The Catalogue of Context Model Elements

After organizing the data and identifying unique instances, parameters and synonyms
of actors and dependencies, we provided structure to the catalogue. It was organized
into two sections, one for actors and a second one for dependencies. The actors’ section
has a total of 235 instances, from which 190 are external context actors and 45 internal
context actors, structured in 4 hierarchical levels as explained below:

• Fist level: composed by the 17 Porter generic context actors, 8 external and 9
internal, introduced in Sect. 3.2.

• Second level: Each internal and external actor is decomposed into subactors (de-
fined as “Dimensions” in Table 3). From them, 17 are dimensions of external
context actors, and 7 are dimensions of internal context actors.

• Third level: Contains a total of 39 instances on external context actors and 9
instances on internal context actors (see column “Actor instances” in Table 3).

• Fourth level: This level contains the parameters that can be used as instances of
parametric actors defined in the third level and has 190 external context actors and
45 internal context actors.

From the point of view of the dependencies, the catalogue contains a total of 857
dependencies, from which 381 are goals (126 dependencies linked to external actors
and 255 to internal actors); 201 softgoals (107 dependencies linked to external actors
and 94 to internal actors); 233 resources (109 dependencies linked to external actors
and 124 to internal actors); and 42 tasks (15 dependencies linked to external actors and
27 to internal actors).

44 K. Abad et al.

Table 5. Catalogue excerpt

Generic
actor

Dimension Actor instances Dependency Type Direction

Customer Frecuency or
volume

Potential Widespread promotions Goal >
Promotional samples Resource <

New Membership card provided Goal >

Special introduction prices
provided

Softgoal >

Membership card Resource >
Personal information registered Goal <

Important VIP benefits granted Goal >
Personalized attention Softgoal >
VIP card Resource >

Important high volume order placed Goal <
Distribution
channel

Wholesaler Product availability guaranteed Goal <

Product distribution agreement
signed

Softgoal <

Increase sales through the
distribution chain

Softgoal <

Product distribution agreement Resource <
Product distribution chain achieved Softgoal >

Retailer Restocking in small quantities
provided

Goal >

Approach consumers through a
specific location

Softgoal <

Increase sales through individual
stores

Softgoal <

Specificmarket
segment

Specialized customer service
infrastructure

Softgoal >

Trained stuff for specific needs Softgoal >

Specific documents Resource >
Payment
method

Credit Deferred payments Goal >
Credit flexibility Softgoal >

Acceptance of various credit cards Softgoal >
Voucher Resource >

Warranty documents Resource <
Cash Cash rebates Goal >

Money Resource <

Supplier Type Goods Health service obtained Goal >
Services Home service Goal >

Volume Wholesaler Large purchase orders Goal >
Retailer Restocking in small quantities

provided
Goal <

Location Local Cash payment discounts Goal >
National Deferred payments Goal >

International

A Catalogue of Reusable Context Model Elements Based on the i* Framework 45

The catalogue (currently in Spanish only) can be accessed at a given URL address1.
Table 5 shows an excerpt of the catalogue, presenting the dimension, actors and
dependencies identified for the Customer and Supplier actors.

5 Catalogue Use

In this section, we show a use case were the catalogue of CM elements was applied, the
example shows how the catalogue was applied over a small organization which
included some of the elements listed in the catalogue (see Sect. 5.1) and Sect. 5.2
shows some statistics about the reusability level achieved when applying the catalogue.

5.1 Use Case

To validate the catalogue, we proceeded to model a small organization of the academic
sector that develops scientific, professional and technical activities. The modeling
process was performed in 4 phases, where, each phase was modeled using the
catalogue:

1. Identification of Internal Actors: We performed an interview with the manager of
the organization, asking him to check the internal actors from the catalogue that
represent departmental areas in the organization. This step exposes all the actors
inside the organization.

2. Identification of External Actors: Each internal actor identified in Step 1 was
interviewed and asked to identify the external actors from the catalogue with which
it interacts in a daily basis.

3. Establishing dependencies between Actors: Once identified both, external and
internal actors, we checked the dependencies from the catalogue that included each
pair of actors, obtaining a set of dependencies validated by the internal actor being
interviewed.

4. Constructing the i* diagrams: we generated a set of i* diagrams that included actors
and dependencies identified for the organization. The i* diagrams resulting were
validated with the manager of the organization.

The results obtained in this use case contain a total of 39 actors (33 external and 6
internal context actors) and 185 dependencies (101 goals, 34 softgoals, 44 resources,
and 6 tasks). In each phase were identified new elements (actors and dependencies),
this elements were added to the catalogue. Regarding actors, 33 out of 39 are included
in the catalogue (30 external and 3 internal) and 6 actors were identified during the
interviews (3 external and 3 internal). Regarding dependencies, 176 out of 185
dependencies were included in the catalogue (97 goals, 34 softgoals, 42 resources and 3
tasks) and 9 dependencies were identified during the interviews (4 goals, 2 resources
and 3 tasks). Figure 3 show the catalogue usage statistics.

1 https://www.dropbox.com/sh/7jnwsv7vqwwhnv8/AADqaiHx_vDj-gi6mk_5pg_Ca?dl=0.

46 K. Abad et al.

https://www.dropbox.com/sh/7jnwsv7vqwwhnv8/AADqaiHx_vDj-gi6mk_5pg_Ca%3fdl%3d0

The use of the catalogue in this use case facilitated the identification of actors and
dependencies through the reuse of elements already identified, where the consultants
selected the elements of the catalogue that matched those of the organization. In this
way, it allowed to streamline and create stable models taking advantage of the
knowledge base, compared to the time it would take to model from scratch.

5.2 Reusability

As stated by Porter [6], organizations share common elements in their context (e.g.
external actors derived from the model of market forces and internal actors derived
from the value chain) it can be considered as fact that some activities performed by
these actors share commonalities, this is the reason why we have decided to analyze
many academic and industrial cases. The analysis leads us to confirm our beliefs, many
global activities were the same among different organizations. However, as we drilled
down to more specific industry segments, more specific elements started to emerge,
which, at some point, required an exhaustive analysis about including them or not in
the catalogue, at the end, we decided to create parametric actors and dependencies.
Although the construction of the catalogue was very laborious, the final result is
satisfactory since after making a first use (explained in previous section) we noticed
that its application helps to create CM with the following characteristics:

1. Due to the wide range of industry segments of the organizations analyzed in this
work, we consider that the catalogue is representative, almost complete, and the
consultant can select elements from a wide variety of possibilities.

2. As actors and dependencies are categorized and include definitions of type, it is
easier for the consultants to clarify concepts regarding to types and hierarchies.

3. When performing the interview with the responsible of each organization area, the
consultant will have a solid knowledge base that will help him to understand the
organizational context without starting from scratch and reusing elements identified
in the catalogue.

0%

25%

50%

75%

100%

New 3 3

Catalogue 3 30

Internal External
0%

25%

50%

75%

100%

New 4 0 2 3

Catalogue 97 34 42 3

Goal So goal Resource Task

(a) (b)

Fig. 3. Use of the catalogue

A Catalogue of Reusable Context Model Elements Based on the i* Framework 47

6 Conclusions and Future Work

In this work, we have presented the study performed in over 36 industrial IS archi-
tectural in which junior consultants used the i* language, in particular Strategic
Dependency models (SD), to build organizational context models. The models were
analyzed, classified and organized in order to get a catalogue of reusable context model
elements to serve as a basis for the construction of i* SD-based CM in future case
studies. The results obtained in this study are important; the catalogue contains a total
of 235 actors (190 external context actors and 45 internal context actor) and 857
dependencies (381 are dependencies of type goal, 201 are dependencies of type soft-
goal, 233 dependencies of type resource, and 42 dependencies of type task). Also, we
validated the catalogue through its application in a small organization, finding that most
of the elements included in the final CM (>80%) are contained in our catalogue.

Work in progress includes the further refinement of the existing catalogue; we plan
to conduct a similar study focused on i* SR models, which are used in later phases of
the DHARMA method, analyzing goal decomposition, means-end links, etc. Also, it is
worth mentioning that we have created an ontology network [16] to add semantics to
our catalogue and we also have developed a tool to support the application of the
catalogue [17]; the tool makes easier the application of the catalogue, filtering its
elements and generating i* models automatically; nevertheless, we aim to improve the
ontology and the tool to support the construction of CM avoiding synonyms in actors
and dependencies.

References

1. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

2. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis, University
of Toronto, Department of Computer Science, Canada (1995)

3. Carvallo, J.P., Franch, X.: Descubriendo la arquitectura de sistemas de software híbridos: un
enfoque basado en Modelos i*. In: WER (2009)

4. Carvallo, J.P., Franch, X.: Building strategic enterprise context models with i*: a
pattern-based approach. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E., Sanz, Jorge L.
(eds.) PRET/TEAR -2012. LNBIP, vol. 131, pp. 40–59. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34163-2_3

5. Abad, K., Pérez, W., Carvallo, J.P., Franch, X.: i* in practice: identifying frequent problems
in its application. In: ACM SAC (2017)

6. Porter, M.: Competitive Strategy. Free Press, New York (1980)
7. Withall, S.J.: Software Requirement Patterns. Microsoft Press (2007)
8. Supakkul, S., Hill, T., Chung, L.: An NFR pattern approach to dealing with NFR. In: RE

(2010)
9. Ruiz-López, T., Garrido, J., Supakkul, S., Chung, L.: A pattern approach to dealing with

NFRs in ubiquitous systems. In: CEUR-WS (2013)
10. Renault, S., Méndez, O., Franch, X., Quer, C.: Constructing and using software requirement

patterns. In: RCIS (2009)

48 K. Abad et al.

http://dx.doi.org/10.1007/978-3-642-34163-2_3
http://dx.doi.org/10.1007/978-3-642-34163-2_3

11. Strohmaier, M., Horkoff, J., Yu, E., Aranda, J., Easterbrook, S.: Can patterns improve i*
modeling? Two exploratory studies. In: Paech, B., Rolland, C. (eds.) REFSQ 2008. LNCS,
vol. 5025, pp. 153–167. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69062-7_16

12. Abad, K., Carvallo, J.P., Peña, C.: iStar in practice: on the identification of reusable SD
context models elements. In: iStar (2015)

13. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of professionals in
software engineering experiments? In: ICSE (2015)

14. Instituto Nacional de Estadísticas y Censos. Ecuador en cifras. http://aplicaciones2.
ecuadorencifras.gob.ec/dashboard2/pagina3.php

15. Office for Official Publications of the European Communities. NACE Rev 2. Statistical
classification of economic activities in the European Community (2008)

16. Pérez, W., Abad, K., Carvallo, J.P., Espinoza, M., Saquicela, V.: Ontología DHARMA para
la construcción de Arquitectura de Sistemas Empresariales. Revista Maskana 7, 177–185
(2016)

17. Abad, K., Pérez W., Carvallo, J.P.: Managing i*-based reusable context models elements
through a semantic repository. In: iStar (2016)

A Catalogue of Reusable Context Model Elements Based on the i* Framework 49

http://dx.doi.org/10.1007/978-3-540-69062-7_16
http://aplicaciones2.ecuadorencifras.gob.ec/dashboard2/pagina3.php
http://aplicaciones2.ecuadorencifras.gob.ec/dashboard2/pagina3.php

Modelling Processes with Time-Dependent
Control Structures

Horst Pichler, Johann Eder(B), and Margareta Ciglic

Department of Informatics-Systems, Alpen-Adria Universität Klagenfurt,
Klagenfurt, Austria

{horst.pichler,johann.eder,margareta.ciglic}@aau.at
http://isys.uni-klu.ac.at

Abstract. The modeling of processes with temporal constraints suffers
from a mismatch between more procedural process models and more
declarative formulations of temporal constraints. We propose the intro-
duction of temporal conditions in the formulation of conditional con-
structs, in particular XOR-splits and loops to give process designers
explicit control over the temporal behaviour of the processes they model.
We define syntax and semantics of temporal splits and temporal loops
and propose the notion of controllability for defining the (temporal) cor-
rectness of process definitions with temporal control structures.

1 Introduction

Compliance to temporal constraints like deadlines, reaction times, process dura-
tions rank among the most important quality measures [1,10] for (business)
process management. To speed up processes, decrease the number of deadline
violations, and pro-active avoidance of temporal constraint violations should
therefore be among the major objectives in this field. Since the late 1990s a
lot of research was devoted to modeling temporal constraints and checking cor-
rectness of temporally constrained process definitions. But what is the current
situation? We have elaborate concepts for expressing temporal constraints in a
declarative way [2,6,13] and checking correctness of process definitions with tem-
poral constraints according to the notion of (dynamic) controllability is already
well established for acyclic workflows [4,6,8,12].

However, the current situation has shortcomings: (i) the separation of con-
cerns between mismatching proscriptive control structures and declarative tem-
poral constraints, (ii) missing temporal control of loops, and (iii) constructs for
addressing temporal aspects in process enactment systems are mostly too low
level (timer events, exception handling) and needs to be raised to the level of
conceptual modeling of processes.

Within process models a designer is typically confronted with a mix of pro-
scriptive and declarative elements. This is hardly avoidable as some temporal
constraints are preferably defined in form of declarative constraints. But con-
sider the following example “if the process is late (more than 100 time units
old) proof reading and layout improvement are rather done in parallel than in
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 50–58, 2017.
https://doi.org/10.1007/978-3-319-69904-2_4

Modelling Processes with Time-Dependent Control Structures 51

sequence” or “repeat resubmission of the paper as often as you like until the dead-
line”. Current processes modelling languages do not allow to easily and directly
express these scenarios. We argue that a better support for explicitly influenc-
ing the time-dependent run-time behaviour of processes would make designing
processes with temporal aspects much more intuitive.

In this paper we propose improvements for this situation in form of explicit
temporal control structures together with an apparatus for supporting process
modeling and checking of process definitions. In particular, we propose the use
of temporal conditions such as “elapsed time ≤ constant” in xor-gateways and
loops, complemented by algorithms for design time checking of the temporal
properties of process definitions: checking correctness and controllability of the
process definition, computing minimum and maximum duration of processes,
computation of schedules in form of execution intervals for process execution to
respect all temporal constraints, and the identification of flaws in process models.

Caveat: In this paper we focus on the proposed temporal control structures
and on controllability. The present approach, however, extends naturally to the
inclusion of other temporal constraints.

2 Temporal Control Structures

The extended BPMN-notation in Fig. 1 shows a simplified critical support and
maintenance process of Machine Inc., a company that builds, installs, and main-
tains machines. The process was specifically designed for customers with a ser-
vice level agreement that obligates Machines Inc. to limit each problem-related
downtime of their machines to 120 (δ = 120) h, or, otherwise, face severe penalty
payments.

The process is started by the customer or by specific error codes reported
online by the machine’s diagnostic component. It begins with activity A:Problem
Analysis based on error description and diagnostic log data which may last
between 10 and 20 h.

Depending on the outcome of A either B:Reconfiguration and Software
Update for problems that can be solved rather fast on-line by support personal or
programmers, or C:Repair Task for severe problems that require more time and
a repair team on-site (journey to site included). The duration of diamond-shaped
control nodes is assumed to be [0, 0].

Fig. 1. Process graph with temporal controls

52 H. Pichler et al.

Machine Inc. reduces future problems and down times by applying thorough
tests and machine maintenance whenever possible. Thus, subsequently two qual-
ity assurance measures are taken in two parallel branches (after node +).

The upper parallel branch executes as many L:Automated Diagnostic Test
Suites as possible, where each test suite will run between 10 and 20 h. We propose
temporal loops to express this kind of temporal behavior, represented as an
activity augmented with a loop-icon and a clock-icon. It repeatedly executes L
while elapsed ≤ 100 h, stating that L will start another iteration if the elapsed
time is less or equal 100 (L may represent a sub-process).

The lower parallel branch is dedicated to on-site maintenance, which will
either be V:Regular Service or a W:Quick Service if the process is late. To rep-
resent behavior we propose the temporal xor-split, represented by a diamond
augmented with a clock-icon, which exclusively chooses one out of two paths as
follows: if elapsed ≤ 40 h then V else W , which means that a slow process will
save time by choosing W (quick service) instead of V (regular service).

Finally, when quality assurance is done, the process is concluded by D:Review,
Monitored Operation and Clearance.

Based on this temporal information and the control flow semantics it is pos-
sible to calculate (implicit) temporal properties of process models and to com-
pute schedules for the correct execution of processes. In the following sections
we introduce temporal control structures in process definitions, formally define
the semantics of the new constructs and develop an algorithm for checking the
controllability of processes with temporal control structures.

3 Process Model with Temporal Control Structures

We use a simple workflow process metamodel, which focuses on the standard
minimum workflow control patterns [19]. However, our definitions and algorithms
can be easily extended to other control flow patterns.

Time points and duration intervals are represented by natural numbers N.
Time is measured in an atomic time unit (chronon), like minutes, hours or days.
A point in time marks a point on an increasing time axis and represents the
temporal distance to a given reference point, for instance the start of a process.

The maximum process duration is constrained by a deadline, that must not be
exceeded. Activity instances start at a certain point in time (start event) and end
at a certain point in time (end event). The distance between these two points is
the actual execution duration of this activity instance. Contingent activities have
a duration between their best-case (fastest) and worst-case (slowest) duration
which can only be observed (but not controlled). In the following we regard all
activities as contingent.

Definition 1 (Process Graph). A process graph G = (N,E, δ) with a set of
nodes N connected by a set of edges E with a deadline δ forms a directed acyclic
graph, where n.type = activity | start | end | xor-split | xor-join | and-split | and-
join, which have the usual semantics, or a temporal node with n.type = t-split |
t-join | t-loop.

Modelling Processes with Time-Dependent Control Structures 53

n.db is the minimum and n.dw maximum duration of a node n ∈ N such that
0 ≤ n.db ≤ n.dw and n.db, n.dw ∈ N.

Each edge (n1, n2) ∈ E, n1, n2 ∈ N, describes a precedence constraint between
nodes n1 and n2. The predecessors and successors of a node n are denoted
n.Succ = {m|(n,m) ∈ E} and n.Pred = {m|(m,n) ∈ E} respectively.

There is exactly one start activity and one end activity. The number of prede-
cessors |n.Pred| per node-type n.type is as follows: 0 for start, 2 for xor-joint|t-
join, >1 for and-join, and 1 for all other types. And the number of successors
|n.Succ| per node-type n.type is restricted as follows: 0 for end, 2 for xor-split|t-
split, >1 for and-split, and 1 for all other types.

A temporal split node ts ∈ N , ts.type = t-split is a special form of an xor-
split with a temporal condition ts.cond = (elapsed ≤ c). The variable elapsed
represents the distance between the start of the process and a point in time. A
temporal loop tl ∈ N, tl.type = t-loop has a loop body tl.B = G′ where G′ is a
process graph, and a loop condition l.cond = [P∧](elapsed ≤ c), c ∈ N with the
optional predicate P . The duration interval for one iteration over the loop-body
is represented by l.bb and l.bw. We write tsplit(n,c,u,d) for a t-split node n with
threshold c, true successor u and false successor d and tloop(n,P,c,B) for a t-loop
node n with predicate P , threshold c, and loop body B.

We assume that a process graph is full-blocked (proper nesting of matching
pairs), and that Xor-joins and t-joins are of type simple merge [5]. Without loss of
generality in this paper we only consider the temporal conditions (elapsed ≤ c).
A temporal split tsplit(n, c, u, d) compares the temporal variable elapsed against
a constant c ∈ N. If the condition is true the true successor u will be activated,
otherwise the false successor d. A temporal loop tloop(n, P, c,B) iterates over its
body B as long as the condition is true. A temporal loop’s condition specifies an
upper bound in addition to a regular loop-condition. The body of a loop is again
a process graph and might include temporal control structures. The variable
elapsed is always defined relative to the start node of the (sub-)process graph.

4 Schedule and Controllability

To formalize the semantics of the proposed temporal control structures and to
reason about the correctness of a given model we now introduce the concepts sce-
nario, schedule, and controllability. In a nutshell: A scenario is a timed instance
of process. It is correct, if the time stamps of the start and end events of the activ-
ities satisfy all explicit (modelled) and implicit (derived) temporal constraints.
A schedule assigns start and end time intervals to each activity. A process is
controllable, if it admits a schedule, such that all scenarios are valid if start and
end-time are within the bounds defined in the schedule.

In a scenario time stamps for the start and the end are assigned to each node
representing one out of many possible process executions.

Definition 2 (Scenario). A scenario S̄ for a process graph P (N,V, δ) asso-
ciates each n ∈ N and the body l.B of each t-loop l with two time stamps

54 H. Pichler et al.

ts, te ∈ N, representing the start time and end time of n respectively. We call
(n, ts, te) ∈ S̄ a scenario entry.

We define a valid scenario as formalization of the conceptual semantics of
control flow structures described in Sect. 3.

Definition 3 (Valid Scenario). A scenario S̄ for a process graph P (N,E, δ)
is valid, iff:

(1) ∀n ∈ N : n.ts ≤ n.te ≤ δ
(2) ∀n ∈ N,n.type �= t-loop : n.ts + n.db ≤ n.te ≤ n.ts + n.dw
(3) ∀(m,n) ∈ E,m.type �= t-split : m.te ≤ n.ts
(4) ∀tsplit(n, c, u, d) : n.ts ≤ c ⇒ n.te ≤ u.ts; c < n.ts ⇒ c < n.te ≤ d.ts
(5) ∀tloop(n, True, c, B) : n.ts ≤ c ⇒ c < n.te ≤ c+n.bw; n.ts > c ⇒ n.ts = n.te
(6) ∀tloop(n, P, c,B): n.ts ≤ c ⇒ n.ts ≤ n.te ≤ c + n.bw; n.ts > c ⇒ n.ts = n.te

For the new control structures the following must hold: (4) If a t-split starts
after the threshold c, the start of the false-successor must occur after the end
of the t-split and therefore after c. The start time of the true-successor is not
further constrained as it will not be executed. If the t-split starts before or at
c, the true-successor has to start after the end of the t-split. In this case the
start time of the non-executed false-successor is not further constrained. (5) If a
temporal loop with the condition (elapsed ≤ c) starts before or at c, it will run
through the loop body at least until c is reached, plus one final loop-iteration
(worst-case duration of the loop body). The end of the loop is always after the
cut-off point c. If the loop starts after c, the loop body will not be executed
(duration is 0). If the body of the loop is executed, its last iteration does not
start before the beginning of the loop, and it does require at least the minimum
duration of the body as distance between start and end of the loop. For the end
of the loop we require that it can accommodate all durations of the loop body
between best-case and worst-case duration. And finally, (6) states that t-loops
with the condition P ∧ (elapsed ≤ c) can finish anytime before c due to the
condition P , but they can last until c + duration of the loop body.

An example for one possible (valid) scenario, based on the process presented
above, is visualized in Fig. 2. In this particular scenario A starts at 0 and ends at
15, and B starts at 20 and ends at 32, and so on. The t-split U ends at 80, and
as elapsed ≤ 40 the false-successor W will be chosen over V (which is given but
can be neglected in this scenario, hence its start is set to 40). The loop L was
not entered, as the start time of L is 80 and the condition of the temporal loop
is while (elapsed ≤ 100). The process ends before the deadline of 120 at 112.

A schedule defines possible execution intervals for nodes in a process graph.
F (from) and T (to) represent intervals with upper bound and lower bound, of
the start (s) respectively the end (e) of a node.

Definition 4 (Schedule). A schedule S for a process graph P (N,E, δ) asso-
ciates each n ∈ N with execution intervals for the start and the end event of n:
We write (n, [Fs, Ts], [Fe, Te]) ∈ S for a schedule entry.

Modelling Processes with Time-Dependent Control Structures 55

Fig. 2. Valid scenario

Fig. 3. Process graph with a correct schedule

An example of a (correct, controllable) schedule is shown in Fig. 3, which
defines the execution intervals of activities as follows: activity A can start at 0
(between 0 and 0) and end between 10 and 20, B can start at 20 and end between
30 and 40, and so on.

The property of controllability of a process requires that there is a schedule
for the process, such that all scenarios are valid for which the time-stamps of
the scenarios are taken from the respective intervals of this schedule.

Definition 5 (controllability). A process P (N,V, δ) is controllable, if it has
a schedule S, such that all scenarios S̄ are valid, iff ∀n ∈ N : n.Fs ≤ n.ts ≤ n.Fe

and n.Ts ≤ n.te ≤ n.Te.

Dynamic controllability [11] allows that the start time of an activity may
depend on all observed execution details (actual start and end times of activi-
ties, decisions at xor-splits) that happened before this activity. For general tem-
poral constraints the notion of dynamic controllability is strictly more relaxed
than controllability. However, for the process definitions presented here dynamic
controllability is equivalent to controllability.

5 Related Work

A general overview of related work in time management for workflows and busi-
ness process management are given in [3,7]. We concentrate here on related

56 H. Pichler et al.

work with respect to formulating temporal constraints involving control struc-
tures, checking correctness and other properties of process definitions with such
temporal constraints. With our proposal we extend the work on time patterns
[2,13], which brought a much needed consolidation in the area of temporal con-
straints for process models, with the usage of temporal variables in flow-deciding
conditions. BPMN [16] allows to use time information in conditions, however the
specification is kept on a rather abstract generic level. More precise expression
definition is offered by some system vendors, e.g. Oracle BPM [17]. To con-
figure a timer event in Oracle BPM, the expressions can be written using a
simple expression builder or an XPATH expression builder. [9] extended BPMN
with graphical elements for temporal concepts with defined temporal semantics,
mainly to express inter-task constraints and more complex timed triggers. Sev-
eral papers (e.g. [14,15]) propose the use of timed automata and model checking
for analysing properties of BPMN processes. However, neither of them consid-
ers the type of temporal conditions in expressions we propose, nor do they use
controllability as correctness notion. Controllability and dynamic controllability
are the most elaborated notions of correctness of temporally constrained process
definitions. Recently, controllability and dynamic controllability for more expres-
sive network models like Conditional Simple Temporal Network with Uncertainty
(CSTNU) provide new sophisticated means to check the properties of tempo-
rally constrained process definitions [11]. However, they are not able to express
the kind of temporal controls structures we propose here.

6 Conclusion

We proposed time dependent control structures for modeling processes as a way
to better combine temporal constraints and process control modeling. We defined
the semantics for temporal splits and temporal loops and defined the correctness
of process models by means of the notion of controllability which is well estab-
lished in temporal constraint networks. Since it is possible to calculate schedules
based on the given definitions we can analyse computed schedule to indicate
flaws in the process model. We conclude that this apparatus supports designers
in modeling correct process respecting the temporal constraints.

Our approach offers proactive time management features in the design phase,
such that temporal intervention strategies [5,6,18] aiming at the avoidance of
time constraint violations can be implemented in an intuitive manner. E.g.
(1) optional execution by skipping optional activities, (2) parallelization of a
sequence:, (3) alternative faster path:, or (4) early termination of a late process
aiming at avoiding the increase of sunk costs resulting from further process exe-
cution and exception-handling actions at the end.

This was a first expedition into the properties induced by explicit temporal
control structures which opens avenues for further exploration, in particular the
combination with declarative temporal constraints like upper-bound and lower-
bound constraints [7].

Modelling Processes with Time-Dependent Control Structures 57

References

1. Cardoso, J., Sheth, A., Miller, J.: Workflow quality of service. In: Kosanke, K.,
Jochem, R., Nell, J.G., Bas, A.O. (eds.) Enterprise Inter- and Intra-Organizational
Integration. ITIFIP, vol. 108, pp. 303–311. Springer, Boston, MA (2003). doi:10.
1007/978-0-387-35621-1 31

2. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Toward a time-centric
modeling of business processes in BPMN 2.0. In: Proceedings of International Con-
ference on Information Integration and Web-Based Applications & Services, p. 154.
ACM (2013)

3. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspec-
tive in business process modeling: a survey and research challenges. SOCA 9(1),
75–85 (2015)

4. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow
schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03848-8 6

5. Eder, J., Gruber, W., Pichler, H.: Transforming workflow graphs. In: Konstantas,
D., Bourrières, J.P., Léonard, M., Boudjlida, N. (eds.) Interoperability of Enterprise
Software and Applications, pp. 203–214. Springer, London (2006). doi:10.1007/
1-84628-152-0 19

6. Eder, J., Panagos, E., Pozewaunig, H., Rabinovich, M.: Time management in work-
flow systems. In: Abramowicz, W., Orlowska, M.E. (eds.) BIS 1999, pp. 265–280.
Springer, London (1999). doi:10.1007/978-1-4471-0875-7 22

7. Eder, J., Panagos, E., Rabinovich, M.: Workflow time management revisited.
In: Bubenko, J., Krogstie, J., et al. (eds.) Seminal Contributions to Informa-
tion Systems Engineering, pp. 207–213. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36926-1 16

8. Eder, J., Tahamtan, A.: Temporal consistency of view based interorganizational
workflows. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) UNIS-
CON 2008. LNBIP, vol. 5, pp. 96–107. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78942-0 11

9. Gagne, D., Trudel, A.: Time-BPMN. In: IEEE Conference on Commerce and Enter-
prise Computing, CEC 2009, pp. 361–367. IEEE (2009)

10. Gillmann, M., Weikum, G., Wonner, W.: Workflow management with service qual-
ity guarantees. In: Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, pp. 228–239. ACM (2002)

11. Hunsberger, L., Posenato, R., Combi, C.: The dynamic controllability of condi-
tional STNS with uncertainty. arXiv preprint arXiv:1212.2005 (2012)

12. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware
processes at run time. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellah-
sene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185,
pp. 39–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41030-7 4

13. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information
systems. Requir. Eng. 19(2), 113–141 (2014)

14. Mallek, S., Daclin, N., Chapurlat, V., Vallespir, B.: Enabling model checking for
collaborative process analysis: from BPMN to ‘network of timed automata’. Enterp.
Inf. Syst. 9(3), 279–299 (2015)

15. Mendoza Morales, L.E., Monsalve, C., Villavicencio, M.: Application of for-
mal methods to verify business processes. In: Ribeiro, L., Lecomte, T. (eds.)
SBMF 2016. LNCS, vol. 10090, pp. 41–58. Springer, Cham (2016). doi:10.1007/
978-3-319-49815-7 3

http://dx.doi.org/10.1007/978-0-387-35621-1_31
http://dx.doi.org/10.1007/978-0-387-35621-1_31
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1007/978-3-642-03848-8_6
http://dx.doi.org/10.1007/1-84628-152-0_19
http://dx.doi.org/10.1007/1-84628-152-0_19
http://dx.doi.org/10.1007/978-1-4471-0875-7_22
http://dx.doi.org/10.1007/978-3-642-36926-1_16
http://dx.doi.org/10.1007/978-3-642-36926-1_16
http://dx.doi.org/10.1007/978-3-540-78942-0_11
http://dx.doi.org/10.1007/978-3-540-78942-0_11
http://arxiv.org/abs/1212.2005
http://dx.doi.org/10.1007/978-3-642-41030-7_4
http://dx.doi.org/10.1007/978-3-319-49815-7_3
http://dx.doi.org/10.1007/978-3-319-49815-7_3

58 H. Pichler et al.

16. ObjectManagementGroup: Business Process Model and Notation (BPMN), Ver-
sion 2.0 (2011). http://www.omg.org/spec/BPMN/2.0

17. OracleFusion: Adding delays, deadlines, and time based cycles to your process.
http://docs.oracle.com/cd/E25178 01/doc.1111/e15176/timers bpmpd.htm. Acc-
essed 15 Apr 2017

18. Pichler, H., Wenger, M., Eder, J.: Composing time-aware web service orchestra-
tions. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol.
5565, pp. 349–363. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02144-2 29

19. van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

http://www.omg.org/spec/BPMN/2.0
http://docs.oracle.com/cd/E25178_01/doc.1111/e15176/timers_bpmpd.htm
http://dx.doi.org/10.1007/978-3-642-02144-2_29

Towards Rearchitecting Meta-Models
into Multi-level Models

Fernando Maćıas1, Esther Guerra2(B), and Juan de Lara2

1 Western Norway University of Applied Sciences, Bergen, Norway
2 Universidad Autónoma de Madrid, Madrid, Spain

esther.guerra@uam.es

Abstract. Meta-models play a pivotal role in Model-Driven Engineer-
ing, as they are used to define the structure of instance models one level
below. However, in some scenarios, organizing meta-models and their
instances in multi-level models spanning more than two levels yields sim-
pler solutions. This fact has triggered the proposal of different multi-level
modelling tools and approaches, although each one of them supports
small variations of the multi-level concepts.

In order to benefit from multi-level technology, existing meta-models
and their instances could be migrated manually, but this is error prone,
costly, and requires expertise for choosing the most appropriate tool and
approach. Hence, we propose an automated migration process. This way,
starting from a meta-model annotated with multi-level “smells”, our app-
roach creates a neutral multi-level representation, and recommends the
most appropriate tool according to the required multi-level features. We
present an initial prototype, and a preliminary evaluation on the basis
of meta-models developed by third parties.

1 Introduction

Modelling in Model-Driven Engineering (MDE) has traditionally adopted a two
meta-level approach, where meta-models define the set of admissible models one
level below. Instead, multi-level modelling (MLM) [3], also called deep mod-
elling [5], is a modelling proposal that permits the use of an arbitrary number
of meta-levels, not necessarily two. This may lead to simpler solutions – with
less accidental complexity and a clear specification of classification levels – in
situations where the type-object pattern or some of its variants arise [3,6].

While the dominant practice nowadays follows two-level approaches, our pre-
vious studies show that there is a considerable amount of meta-models that
could benefit from multi-level technology [6]. In particular, the occurrence of the
type-object pattern is common in domains like software architecture or process
modelling. For example, in the latter domain, it is frequent the need to model
both task types and instances, resource types and instances, agent types and
instances, and so on. Using MLM would make such meta-models simpler. How-
ever, a manual rearchitecture of a large meta-model into a multi-level version is
costly, tedious and error-prone.
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 59–68, 2017.
https://doi.org/10.1007/978-3-319-69904-2_5

60 F. Maćıas et al.

Several tools and approaches for MLM have emerged along the years, such
as DeepTelos [11], the DPF Workbench [12], Dual Deep Modelling [15], Mela-
nee [1], MetaDepth [5], MultEcore [13], OMLM [9], SLICER [16], XMF [4]
and XModeler [7]. Each one of them has its own strengths and limitations, while
many implement small variations of multi-level concepts, like attribute potency
or leap potency [8]. Deciding on the tool or approach to use in order to more
optimally describe the concepts in a domain can be challenging for novices, and
may hamper the adoption of MLM.

To facilitate the migration of standard meta-models into a multi-level setting,
we propose automated support for the rearchitecture process and the decision
of the most suitable MLM approach given the problem characteristics. For this
purpose, first the meta-model to be migrated needs to be annotated to indi-
cate occurrences of multi-level modelling “smells” [6]. Then, this meta-model
is automatically transformed into a multi-level neutral representation that is
able to accommodate some of the most prominent MLM approaches. From this
representation, a number of heuristics recommend the best suitable MLM tool
for the given problem, for which a serializer synthesizes the multi-level artefact.
In this short paper, we present an overview of the steps in the process, and a
preliminary evaluation on some meta-models developed by third parties.

Paper organization. Section 2 introduces background on MLM and a running
example. Then, Sect. 3 describes the rearchitecture process, and Sect. 4 shows a
preliminary evaluation. Finally, Sect. 5 compares with related work, and Sect. 6
concludes.

2 Background and Motivation

This section illustrates the main concepts of potency-based multi-level modelling,
based on an example in security policies and its encoding using either two or
multiple levels.

Mouelhi et al. [14] propose a meta-model to represent access control languages
(like RBAC or OrBAC) and security policies described with them. An excerpt
of it is shown in Fig. 1(a). Hence, the meta-model contains elements to represent
both RuleTypes and Rules, and parameter types (class ElementType) and parameter
instances (class Parameter). These are two occurrences of the type-object pattern,
and arise due to the need to model both types and instances at the same meta-
level. In this way, the conformity relation between instances and types is reified
by the three associations named type.

This solution uses classes to represent both types and instances because it
assumes just one instantiation level below. Instead, should we be able to use more
than two meta-levels, a simpler solution like the one in Fig. 1(b) would suffice.
This model has potency 2 (indicated by the “@” symbol), which means that it
can be successively instantiated at the two subsequent meta-levels. Each element
inside the model receives the potency of its container element, if no specified
otherwise. For example, ElementType has potency 2, and so it can be successively
instantiated at the two next meta-levels. In contrast, ElementType.hierarchy has

Towards Rearchitecting Meta-Models into Multi-level Models 61

@1

userRole:RuleType
name= “UserRole” user:ElementType

name= “User”
hierarchy= false

role:ElementType
name= “Role”
hierarchy= true

rbac:PolicyType
name= “RBAC”

policy:Policy
name= “LibraryRBAC”

rule:Rule
name= “R1”

p2:Parameter
name= “Student”

p1:Parameter
name= “Romain”

:type

:type

:type

:type

:rules

:ruleTypes

:p
ar

am
et

er
s

:p
ar

am
et

er
s

userRole:RuleType
name= “UserRole”

user:ElementType
name= “User”
hierarchy= false

role:ElementType
name= “Role”
hierarchy= true

rbac:PolicyType
name= “RBAC”

roles:ruleTypes

rparam:
parameters

@0rule:userRole
name= “R1”

p2:role
name= “Student”

p1:user
name= “Romain”

policy:rbac
name= “LibraryRBAC”

1..1

uparam:
parameters

1..1

:rparam

:uparam

*

:roles

PolicyType
name: String

RuleType
name: String

ElementType
name: String
hierarchy: bool

1..*

parameters
ruleTypes 1..* elementTypes 1..*

Rule
name: String

Parameter
name: String

Policy
name: String

type
type

parameters
1..*

rules * elements *

type

children
*

(a) “flat” meta-model (b) mul -level specifica on

PolicyType
name: String

RuleType
name: String

ElementType
1..*

parameters 1..* elementTypes 1..*

@2

ruleTypes

children@(2)

name: String
hierarchy@1: bool

(c) “flat” model (d) mul -level model

Fig. 1. Security policies: (a, c) two-level solution, (b, d) multi-level solution.

potency 1, so it can only be instantiated one level below. This multi-level model
specification is roughly half the size than the flat meta-model (3 vs. 6 classes, 4
vs. 7 attributes, 4 vs. 10 associations, and 3 vs. 0 potency marks).

Figure 1(c) shows an instance of the meta-model in Fig. 1(a). It contains a
small part of the definition of the RBAC language and an example of use. Hence,
it defines rule type UserRole, and one instance of it named R1.

Figure 1(d) shows the equivalent multi-level version making use of two meta-
levels. The upper model (with potency 1) contains the definition of the RBAC
language, while the lower model (with potency 0) defines the RBAC instance.
The elements in the multi-level model (e.g., rbac) are instances of a type (e.g.,
PolicyType), and types w.r.t. other elements (e.g., policy). This way, they have
both a type and an instance facet, and so they are called clabjects (merging of
the words class and object) [3]. This duality also applies to associations. This
way, in the model with potency 1, associations rparam and uparam can declare
cardinalities which (by default) apply to the next meta-level only. This possibility
of defining cardinalities leads to a more precise model.

Altogether, in this case, the multi-level solution yields a simpler language
definition (see Fig. 1(a–b)). Moreover, it permits organising models across meta-
levels (see Fig. 1(c–d)), hence providing separation of concerns between language
designers (e.g., the RBAC language designer within the security policies domain)
and language users.

62 F. Maćıas et al.

While this example is small and easy to refactor into a multi-level solution
by hand, meta-models may be large, and then, their refactoring into multi-level
becomes error-prone. Hence, the next section describes our approach for their
automated refactoring.

3 Rearchitecting Meta-Models into Multi-level Solutions

Figure 2 shows our process to rearchitect a meta-model into multi-level. First,
the meta-model needs to be analysed to discover “smells” that indicate the
convenience of migrating into a multi-level solution. These smells include the
type-object pattern, and others identified in [6]. Although we currently perform
this analysis by hand, it could be semi-automated using heuristics. The presence
of smells is signalled by annotating the involved meta-model elements.

Fig. 2. Our process to rearchitect a meta-model into multi-level

In a second step, we transform the annotated meta-model into an instance of
a multi-level neutral meta-model. A recommendation system analyses this model
to detect the features supported, not supported, or which can be emulated by a
number of MLM tools. The result is a ranked list of candidate tools. When one
of such tools is selected, the neutral model is serialized into the specific format
of the tool. The overall process is extensible with new smells and MLM tools.

PolicyType

RuleType ElementType 1..*
parameters

ruleTypes 1..* elementTypes 1..*

Rule Parameter

Policy

type type

parameters

1..*
rules * elements *

type

«type»

«instance» «instance»

«type»

«instance»

«type»

«typing» «typing»
«instance»

«type»

«typing»

«type» «type»

«instance» «instance»

Fig. 3. Annotated meta-model

Next, we explain the steps of the process.

(1) Discovery of multi-level smells. The
first step is to annotate the occurrences of
multi-level patterns in the meta-model. We
take as a basis the patterns identified in [6].
These include the type-object pattern, where
a class plays the role of type, another the role
of instance, and a relation between them the
role of typing. As Fig. 3 shows, the running
example contains three of such occurrences.
The pattern also applies to associations, in
which case, their source and target classes should be in a type-object relation.

Towards Rearchitecting Meta-Models into Multi-level Models 63

Figure 3 contains three occurrences, like association RuleType.parameters which
plays the role of type for Rule.parameters.

Several heuristics are possible to automatically detect occurrences of the
type-object pattern, e.g., based on naming conventions (see pairs 〈Name〉Type /
〈Name〉 in Fig. 3). However, at this stage, we have focussed in the translation of
different variations of this pattern into a MLM setting, leaving pattern detection
heuristics for future work.

One of such variations is the static types [6], where a superclass plays the
role of type for a subclass, and the typing relation is reified as inheritance. In
this case, refactoring into multi-level enables the dynamic creation of instances
of the type class.

(2) Transformation into a multi-level neutral representation. We trans-
form the annotated meta-model into an instance of the multi-level neutral meta-
model shown in Fig. 4(a). It is “neutral” as it captures generalizations of multi-
level concepts found in MLM tools like Melanee, MetaDepth or MultEcore.

DeepElement Potency
start: int=1
end: int=1
depth:int=1

potency
0..1

TypedElement
name: String

Model Model
Element

Cardinality
min: int=0
max: int=-1

elements
*

card
*

instances

types
*
*

Clabject
isAbstract: bool=false
isMul Type: bool=false

Feature
supers

subs

*
*

Reference A ribute
target

Type

Instance

:Clabject

:Potency
depth=2

:potency

«type»

«instance»

«typing»

«type»

«instance»

1..5
1..*

tref
iref

:Reference
name=“tref”

:Potency
depth=2

:potency

:Cardinality
min=1
max=5

:Cardinality
min=1
max=-1

:Potency

:Potency
start= 2
end=2
depth=1

:potency

:potency

:card

:card

(a)

(b)

(d)

name=“Type”

type: DataType

Type

Instance

«type»

«instance»

«typing»
*

:Clabject

:Potency
depth=2

:potency

name=“Type”
isMul Type=true

:Clabject

:Potency
start=2
end=2
depth=1

:potency
name=“Instance”

(c)

Fig. 4. (a) Multi-level neutral meta-model. Transformation of: (b) basic type-object
pattern; (c) type-object with optional, multiple typing; (d) type-object of references

In this neutral meta-model, each element may have a potency governing its
instantiation. In order to account for different semantics, our potency extends
the classical notion [3] (explained in Sect. 2) with an interval [start..end]. This
specifies a range of meta-levels where it is possible to create direct instances of
the element. The number of subsequent instantiations of these instances is gov-
erned by depth, as in classical potency. The default value for the potency interval
is [1..1], and the default depth is 1, which means that the element can be instan-
tiated in the next meta-level but these instances cannot be instantiated further.
This corresponds to standard two-level modelling. An interval [2..2] means that
the element can be instantiated starting two levels below, and its combination
with depth 1 corresponds to the notion of leap potency [6]. We will explain further
combinations of values in the recommending step.

Transforming a meta-model into our multi-level neutral representation may
yield a model spanning oneor several meta-levels. These are reified using

64 F. Maćıas et al.

the Model class. Models can hold Clabjects and Features. To account for MLM
approaches supporting elements with multiple types, TypedElement declares the
multi-valued reference types, and Clabject defines the flag isMultiType. Model ele-
ments can have zero or more Cardinality restrictions, constraining the number of
instances that can be created at a certain level (not necessarily the next one, as
in two-level modelling). The level to which the cardinality restriction applies is
indicated by assigning a potency to it.

Figure 4(b), (c) and (d) show the transformation of the meta-model anno-
tations for some representative variants of the type-object pattern. Figure 4(b)
corresponds to the base case, where the instance class has a single class type.
This is transformed into a clabject for the type, with default potency interval
[1..1] and depth 2. This captures the possibility of creating types in the next level,
and instances of them two levels below. The running example has three occur-
rences of this base case. Figure 4(c) tackles the situation where the instance class
can have multiple, optional typing. Multiple typing is handled as the base case,
but the isMultiType attribute of the produced clabject is set to true. Optional
typing requires producing another clabject for the instance, with potency inter-
val [2..2] and depth 1. This enables the leap instantiation of instances two levels
below, thus emulating instances with no type. We also support other variations
in the direction and cardinality of the typing relation, as well as its realization as
an attribute identifier. The static types variant aforementioned, where the type
and instance classes are related through inheritance, is also supported. This case
leads to one model for the type class and another for the instance class, which
are related through instantiation.

The transformation also handles the type-object pattern applied to refer-
ences, as Fig. 4(d) shows. This creates one Reference with potency depth 2, owned
by the clabject declaring the reference. Moreover, the cardinality bounds get
transformed into two Cardinality objects. The first one captures the cardinality of
the type reference and has potency 1, being enforced one level below. The second
one comes from the instance reference and has leap potency 2, being applied two
levels below.

As regards to the meta-model elements with no annotation, they are trans-
formed into clabjects or features with default attribute values.

(3) Recommendation of MLM approach. After transforming the meta-
model into a multi-level neutral model, we analyse it to identify the multi-level
features required for the problem at hand, and which tools provide support
for them. For this purpose, we have built a recommender that recognizes the
required multi-level features by detecting certain patterns on the configuration of
element potencies, and then counts how many of such features are either natively
supported, can be emulated, or are unsupported in each tool. The recommender
yields a ranking according to the number of features natively supported, and in
case of tie, by the number of features that can be emulated. It also reports the
unsupported required features.

Table 1 contains a summary of the patterns sought by the recommender
(columns multi-level feature, start, end and depth). The last three columns show

Towards Rearchitecting Meta-Models into Multi-level Models 65

whether these features are supported, unsupported or can be emulated by three
representative tools: Melanee, MetaDepth and MultEcore.

Table 1. Support of MLM concepts by tools: native support (+), emulated (∼), unsup-
ported (−).

All tools support or can emulate standard potency, while MetaDepth
natively supports leap potency, which is necessary for models like the one
in Fig. 4(c). Our multi-level neutral meta-model supports other variations of
potency like replicability, where an element can be instantiated in a range of lev-
els with depth 1, deep replicability, where in addition the created instances can
be further instantiated, or deep leap potency, where instantiation starts after a
level gap and can be iterated. Interestingly, none of the three tools fully support
the last two options.

Regarding attributes, durability indicates how many levels below an attribute
is instantiated, and mutability the range of levels where an attribute can be
modified. Melanee natively supports both, while they can be emulated with the
other two tools.

As for reference cardinalities, none of the tools permit their specification for
levels beyond the next one, although MetaDepth can emulate this via OCL. All
tools support abstract types (Melanee emulates them via clabjects with potency
0), while multiple types are possible in MetaDepth and MultEcore.

4 Experiments

We have developed a prototype tool with a recommender for Melanee,
MetaDepth and MultEcore. We have used the tool to perform an initial evalu-
ation of our process by rearchitecting the running example and four third-party
meta-models which contain occurrences of the type-object pattern, as identi-
fied in [6]. Table 2 shows the size metrics before and after the rearchitecture,
as well as the reduction percentage in the number of elements (clabjects, refer-
ences and attributes) required to express the same information. The reduction
ranges between 2% (HAL) and 50% (running example). The small reduction size
for HAL and Agate is because these are the biggest meta-models and have few
type-object occurrences. The reduction gain in the rest of cases is considerable.

66 F. Maćıas et al.

Table 2. Results of applying our rearchitecting process to some of models analysed
in [6].

The table also includes the number of type-object occurrences in each meta-
model, and the ranking of recommended tools based on their support of the
features in Table 1. This score adds 2 points for each required multi-level feature
that the tool supports natively, 1 point if the feature can be emulated, and −1
if it is unsupported. We have marked with a cross the cases in which a tool does
not support some required feature.

The recommended tool for the running example is Melanee, as it sup-
ports mutability for the three attributes name, and it can emulate leap potency
(required for reference children). MetaDepth appears in second place because it
has native support for leap potency, but mutability needs to be emulated. Mul-
tEcore is in third place as it does not support attribute mutability as required
in this case.

More details on the evaluation can be found at http://miso.es/MLeval.

5 Related Work

We are not aware of any effort for the automatic rearrangement of meta-models
into multiple levels. There are just some works on manual rearchitecture [6,9], or
introducing concrete multi-level elements [10]. In [6], we identified patterns where
using MLM may have benefits. In [9], a standard in the oil and gas industry is
recasted into multiple levels. In [10], some evolution operators allow applying
the powertype pattern in models, which may imply reorganizing elements across
levels. Hence, to our knowledge, ours is the first proposal towards an extensible,
automated process to migrate to multi-level (though currently only the refactor-
ing into multi-level is fully automated, but the discovery of multi-level smells is
manual).

Regarding our level-neutral meta-model, the main contribution with respect
to other meta-models (e.g., in MetaDepth [5] or Melanee [2]) is the general-
ization of potency, the possibility to specify cardinalities for levels beyond the
immediate lower one, and the capability to indicate multiple typings.

6 Conclusions and Future Work

We have presented an approach for the automated rearchitecture of meta-models
into multi-level specifications. The approach is based on the identification of

http://miso.es/MLeval

Towards Rearchitecting Meta-Models into Multi-level Models 67

multi-level smells, and their translation into a neutral multi-level model that
can be analysed to recommend the most suitable MLM tool to transform to. We
have created prototype tool support, and performed a preliminary evaluation
obtaining promising results.

In the future, we plan to define annotations for other multi-level smells, and
heuristics to induce them. We also plan to refine the recommendation process
(e.g., to consider the cost of emulating non-native features), to migrate models
together with their meta-models, and to perform a large scale evaluation.

Acknowledgements. Work supported by the Spanish MINECO (TIN2014-52129-R)
and the R&D programme of the Madrid Region (S2013/ICE-3006).

References

1. Atkinson, C., Gerbig, R., Fritzsche, M.: A multi-level approach to modeling lan-
guage extension in the enterprise systems domain. Inf. Syst. 54, 289–307 (2015)

2. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In:
Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 266–275.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19440-5 16

3. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models.
SoSyM 7(3), 345–359 (2008)

4. Clark, T., Sammut, P., Willans, J.S.: Super-languages: developing languages and
applications with XMF, 2nd edn., CoRR, abs/1506.03363 (2015)

5. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13953-6 1

6. de Lara, J., Guerra, E., Sánchez Cuadrado, J.: When and how to use multi-level
modelling. ACM Trans. Softw. Eng. Methodol. 24(2), 12 (2014)

7. Frank, U.: Multilevel modeling - toward a new paradigm of conceptual modeling
and information systems design. Bus. Inf. Syst. Eng. 6(6), 319–337 (2014)

8. Gerbig, R., Atkinson, C., de Lara, J., Guerra, E.: A feature-based comparison of
melanee and metadepth. In: Proceedings of MULTI@MODELS. CEUR, vol. 1722,
pp. 25–34 (2016)

9. Igamberdiev, M., Grossmann, G., Selway, M., Stumptner, M.: An integrated multi-
level modeling approach for industrial-scale data interoperability. SoSyM 1–26
(2016, to appear)

10. Jahn, M., Roth, B., Jablonski, S.: Remodeling to powertype pattern. In: Proceed-
ings of PATTERNS, pp. 59–65 (2013)

11. Jeusfeld, M.A., Neumayr, B.: DeepTelos: multi-level modeling with most general
instances. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki,
M. (eds.) ER 2016. LNCS, vol. 9974, pp. 198–211. Springer, Cham (2016). doi:10.
1007/978-3-319-46397-1 15

12. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench:
a multi-level language workbench for MDE. Proc. Est. Acad. Sci. 62(1), 3–15
(2013)

13. Maćıas, F., Rutle, A., Stolz, V.: MultEcore: combining the best of fixed-level and
multilevel metamodelling. In: MULTI@MODELS. CEUR, vol. 1722, pp. 66–75
(2016)

http://dx.doi.org/10.1007/978-3-642-19440-5_16
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-319-46397-1_15
http://dx.doi.org/10.1007/978-3-319-46397-1_15

68 F. Maćıas et al.

14. Mouelhi, T., Fleurey, F., Baudry, B.: A generic metamodel for security policies
mutation. In: Proceedings of ICST, pp. 278–286. IEEE Computer Society (2008)

15. Neumayr, B., Schuetz, C.G., Jeusfeld, M.A., Schrefl, M.: Dual deep modeling:
multi-level modeling with dual potencies and its formalization in F-Logic. SoSyM
1–36 (2016, to appear)

16. Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann, G., Schrefl, M.:
A conceptual framework for large-scale ecosystem interoperability and industrial
product lifecycles. Data Knowl. Eng. 1–27 (2017, in press)

Mining Goal Refinement Patterns: Distilling
Know-How from Data

Metta Santiputri1, Novarun Deb2, Muhammad Asjad Khan3,
Aditya Ghose3(B), Hoa Dam3, and Nabendu Chaki2

1 Department of Informatics, State Polytechnic of Batam, Batam 29461, Indonesia
metta@polibatam.ac.id

2 Department of Computer Science and Engineering, University of Calcutta,
Kolkata, India

novarun@acm.org, nabendu@ieee.org
3 Decision Systems Lab, School of Computing and IT, University of Wollongong,

Wollongong, NSW 2522, Australia
{aditya,hoa}@uow.edu.au

Abstract. Goal models play an important role by providing a hierarchic
representation of stakeholder intent, and by providing a representation
of lower-level subgoals that must be achieved to enable the achievement
of higher-level goals. A goal model can be viewed as a composition of a
number of goal refinement patterns that relate parent goals to subgoals.
In this paper, we offer a means for mining these patterns from enterprise
event logs and a technique to leverage vector representations of words
and phrases to compose these patterns to obtain complete goal models.
The resulting machinery can be quiote powerful in its ability to mine
know-how or constitutive norms. We offer an empirical evaluation using
both real-life and synthetic datasets.

Keywords: Goal model mining · Goal refinement · Know-how

1 Introduction

Goal models play a critical role in requirements engineering, by providing a
hierarchic representation of statements of stakeholder intent, with goals higher
in the hierarchy (parent goals) related to goals lower in the hierarchy (sub-goals)
via AND- or OR-refinement links. Goal models encode important knowledge
about feasible, available alternatives for realizing stakeholder intent represented
at varying levels of abstraction. A number of prominent frameworks leverage
goal models, including KAOS [8], i* [25] and Tropos [4].

There is a growing realization that data analytics (this term being liberally
interpreted to denote a broad repertoire of machine learning, data mining and
natural language processing techniques) have an important role to play in soft-
ware engineering in general, and requirements engineering in particular. In that
spirit, this paper addresses the question: can enterprise goal models be mined

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 69–76, 2017.
https://doi.org/10.1007/978-3-319-69904-2_6

70 M. Santiputri et al.

from readily available enterprise data? It is useful to distinguish, at this point,
the exercise of mining goal models from the exercise of mining goals. That lat-
ter problem is arguably more difficult, since user goals or stakeholder intent are
often never manifested in enterprise data, and are often not explicitly articulated
either. Knowledge about how a goal might be refined into lower-level sub-goals is
a different matter altogether. Goal refinements that have been deployed before
(either explicitly or implicitly) are ultimately manifested in operational data.
Our intent in this paper is to leverage data of this form.

Mining goal models adds value in a number of ways. First, it offers a way
around the model acquisition bottleneck (where the high investments associated
with careful modeling often prevents businesses from leveraging the full value of
goal modeling). While our approach does not guarantee that all models mined
will be correct and accurate, it does ensure that the goal models (or model
fragments) that are mined can be quickly deployed with minimal editing (the
requirement for oversight and editing by analysts remains). Overall, the app-
roach improves the productivity of modelers/analysts; instead of starting with a
“blank sheet”, our machinery generates “first draft” models or model fragments
that can be composed to obtain usable models. Second, our approach could
potentially improve model quality, by mining execution histories from which
“undesirable” executions have been filtered out. Third, model anti-patterns can
be mined from “undesirable” execution data. Fourth, this machinery can be used
for goal conformance checking.

Goal models can also be viewed as statements of know-how, where an AND-
decomposition provides the know-how for achieving a parent goal by satisfying a
set of sub-goals. Mining know-how patterns is independently useful. In particular,
it permits us to use goal models as effectors, where a goal model is used to specify
the desired state of the enterprise while decomposition via a sequence of know-
how patterns enables us to identify the operational interventions which would
help realize the desired state of the enterprise.

AND-refinement patterns can also be viewed as constitutive norms [3]. A
constitutive norms specifies how the act of achieving conditions c1, c2, cn counts
as achieving condition c (we can also, without loss of generality, replace condi-
tions with goals or actions). For instance, the acts of putting a tea bag in a cup
followed by puring hot water into the cup counts as making tea. The account we
offer in this paper can thus be also viewed as an account of constitutive norm
mining.

We address two problems in this paper. First, we address the goal refine-
ment pattern mining problem, where a goal refinement pattern is of the form
sg1, sg2, . . . sgn → G where G is the parent goal while each sgi is a sub-goal,
and where the statement is that the act of achieving each sub-goal conjointly
leads to the achievement of the parent goal. These latter are referred to as
AND-refinement patterns, and are the main focus of this paper (OR-refinement
patterns can be mined via small variants of the techniques discussed here, but
a full discussion is omitted due to space constraints). Second, we address the
problem of composing individual goal refinement patterns into goal trees (more

Mining Goal Refinement Patterns: Distilling Know-How from Data 71

generally goal graphs) which describe not only how a goal is refined into sub-
goals, but also how these subgoals can be further refined into sub-subgoals and
so on.

We present the general approach in Sect. 2. The identification of goal refine-
ment patterns involves mining event logs (partitioned by levels of abstraction)
that leverage temporal correlation patterns between goals and subgoals (recall
that an event log is a collection of time-stamped events). The composition of
goal refinement patterns relies on matching subgoal in one refinement pattern
with the parent goal of another such pattern - we use word2vec [20] to identify
semantic similarity between words and phrases that appear in the goals and
subgoals for this purpose. We briefly summarize the empirical evaluation con-
tained in the full version of the paper in Sect. 3, and position this proposal in
the context of related work in Sect. 4.

2 General Approach

Temporal correlation patterns relating goals and subgoals: A goal and
its subgoals are typically related via temporal correlation patterns which impose
temporal constraints on the achievement of the parent goal relative to the
achievement of the subgoals. One such pattern (and the one we will leverage in
the empirical evalation in this paper) requires that event denoting the achieve-
ment of the parent goal occur immediately or soon, after the events denoting
the achievement of the subgoals (the event denoting the making of a cup of
tea occurs immediately after the events denoting the placing of a teabag in a
cup and the pouring of hot water into the cup). We shall call these sequential
correlations. Other examples of temporal correlation patterns leverage relations
from Allen’s Interval Algebra [2]. In some settings, we might require the interval
over which each subgoal is achieved be included entirely (using the during rela-
tionship from the Interval Algebra) in the interval over which the parent goal
is achieved. In some settings it might make sense to relate these intervals using
the meets, finishes or is equal to relations from Interval Algebra.

Mining goal refinement patterns from multi-layered event logs: Inde-
pendent of which temporal correlation pattern applies in a given setting, it is
critical that the input event logs are partitioned into layers based on different
levels of abstraction. A key assumption underpinning this proposal is that events
denoting the achievement of parent goals appear in a log of more abstract events,
while events denoting the achievement of subgoals appear in logs of more refined
(or lower-level) events. In other words, we assume a hierarchy of levels L1, L2, . . .
such that Li is always at a higher level of abstraction than Li+1. The idea is that
goal refinement always occurs between goals manifested by events in adjacent
levels in this hierarchy. The key question to address now is: How do we obtain
this partitioning/hierarchy? Possible strategies include:

– Leveraging part-whole relationships between objects: We know that a photo,
a front page, an embedded chip, a visa or an expiry date are parts of a more

72 M. Santiputri et al.

abstract object called a passport. Any event involving the passport photo,
or a visa etc. will belong to a lower level in the hierarchy than any event
involving the passport.

– Leveraging the source of the data: We know that any event from a process log
is likely to be lower in an abstraction hierarchy than any event in a message
log. Similarly, events that manifest in the IT infrastructure are typically lower
in abstraction than events that involve applications, which in turn are lower
level than events concerning business services.

– Leveraging the organizational hierarchy: We know that events associated with
roles lower in the organizational hierarchy will likely be lower in the abstrac-
tion hierarchy than events associated with roles higher in the organizational
hierarchy. The intuition is that employees in a business unit are usually
tasked with achieving lower-level goals than the manager of that business
unit. Indeed, the goals of the manager rely on the achievement of the sub-
goals that the employees in that unit are tasked to achieve. The employee-level
goals can thus be viewed as AND-refinements of the manager-level goals.

With the abstraction hierarchy of events thus obtained, our task in now to
mine (temporal) sequential correlations between events in adjacent levels of the
abstraction hierarchy. Thus a passport photo check, a passport validity check,
a visa check and a passport stamping event would be followed soon after by a
higher-level event indicating that an immigration check has been completed. We
would expect to see this pattern repeated frequently. If this frequency meets a
user-specified threshold, we conclude that it is indicative of a goal refinement
pattern.

Composing goal refinement patterns: The challenge in composing goal
refinement patterns to obtain goal models (or goal trees) is the difficulty in
relating semantically similar, but syntactically highly distinct, specifications of
goals and subgoals. For instance, a subgoal might be represented in natural lan-
guage as: log labour hours for billing. Quite separately, we might find a mined
goal refinement pattern for a parent goal represented textually as: track techni-
cian time for charging the customer. Human intuition suggests that these two
goals are semantically quite similar, and any available know-how for the latter
would also be useful for the former. Our strategy is to use a state-of-the-art
machinery for vector encoding of words and phrases, called word2vec [20] which
is effective in identifying semantic similarity. Word2vec learns vector represen-
tations of words and phrases such that semantically similar ones are projected
in close proximity to each other in the vector space. Given a pair of phrases,
word2vec returns a real-valued measure of semantic similarity (the higher the
value, the more similar the phrases are). By setting an appropriate threshold
for the similarity measure (this will require domain-specific tuning), we can con-
nect a phrase describing a subgoal in one goal refinement pattern with a phrase
describing a parent goal in another goal refinement pattern.

Mining Goal Refinement Patterns: Distilling Know-How from Data 73

3 Evaluation

In this section, we briefly summarize the empirical evaluation results presented
in the full version of the paper.

Two distinct strategies were evaluated: (1) Sequential pattern mining for
leveraging temporal correlations patterns (specifically sequential correlation pat-
terns) between goals andsub-goals and (2) word2vec for evaluating goal-subgoal
similarity.

Two distinct datasets were used for the evaluation:

– A synthetic dataset consisting of an event log of a telephone repair process1

– A real-life dataset consisting of data from the BPI Challenge 2015 (BPIC’15)2

which features building permit application process in five Dutch municipali-
ties from year 2010 until 2015.

The BIDE+ algorithm was used for sequential pattern mining.
The evaluation using Google’s pre-trained word2vec model was particularly

interesting [20]. Word2vec includes word vectors for a vocabulary of 3 million
words and phrases that has been trained on approximately 100 billion words
from a Google News dataset. Although for this evaluation, we used a pre-trained
model, training a model with a smaller but more targeted and domain-specific
corpora is not hard. We have done this but have not achieved results thus far
that surpass the results we have obtained using the pre-trained model. We took
the goal refinement patterns obtained in the evaluation using the phone repair
scenario described above (8 in total), and extended these with a repertoire of
40 additional goal refinement patterns (this was necessary to be able to further
refine the sub-goals initially obtained from the mining of a 2-level event log.

The Word2Vec metric tends to place two words close to each other if they
are semantically similar. We found, for instance, that ‘Print repair receipt for
the customer’ and ‘Print customer service repair order’ have a high similarity
score even though the phrases use different vocabulary to explain the same sub-
goal. The notion of similarity used here is just cosine distance (dot product
of vectors). It is closer to 1 if the phrases are semantically similar. For two
completely dissimilar phrases, the similarity is closer to 0. For instance, update
issue status to “in repair” and “dissemble the phone components” refer to two
very different goals and are very far apart semantically thus receiving a score
of 0.130887. In some cases like’log labor hours for billing’ and’Track technician
time for charging the customer’ the score is neither too high nor too low. We
can use a certain threshold e.g. (0.60) to filter cases where we not fully confident
of a semantic match.

Overall, the results of the empirical evaluation (contained in the full version
of the paper and ommitted here due to space constraints) suggest that the com-
bination of techniques proposed here provide a promising basis for goal model
mining.

1 http://www.processmining.org/ media/tutorial/repairexample.zip.
2 https://www.win.tue.nl/bpi/doku.php?id=2015:challenge.

http://www.processmining.org/_media/tutorial/repairexample.zip
https://www.win.tue.nl/bpi/doku.php?id=2015:challenge

74 M. Santiputri et al.

4 Related Work

A considerable amount of research has been reported applying data mining tech-
niques in requirements engineering. Zawawy et al. have proposed a root-cause
analysis framework [26] that mines natively generated log data to establish the
relationship between a requirement and the pre- and post-conditions associated
with that requirement. In [13], the authors have proposed techniques for mining
dependencies from message logs and task-dependency correlations from process
logs. There have been very interesting industrial and commercial applications of
mining requirements from event logs. Formal verification of control systems have
been performed by mining temporal requirements from simulation traces [16].
REQAnalytics [10], proposed by Garcia and Paiva, mines the usage statistics
of a website and provides a roadmap for the evolution of the website’s require-
ments specification. ACon [17] is another data mining technique that tries to
address the inconsistencies that affect the contextual requirements of a system
at runtime.

Sequential pattern mining has been frequently used for extracting statisti-
cally relevant patterns or sequences of values in data sets. StrProM [15], for
instance, uses the Heuristics Miner algorithm to generate prefix-trees from the
data stream and continuously prunes these trees to extract sequences of events.
Sohrabi and Ghods use bit-wise compression techniques to represent the data
sequence as a 3-dimensional array and extract frequently occurring patterns
from this compressed array [23]. Hassani et al. have proposed the PIVOTMiner
[14] which considers activities as interval-based events rather than the conven-
tional single-point events. Some researchers have also tried to improve the legacy
sequential mining algorithm PrefixSpan (like [5,21]). Sequential pattern mining
has also been used in interesting applications that range from detecting user
behavior from online surveys to mining electronic medical records and inferring
the efficacy of medicines [24]. A detailed survey of sequential pattern mining
algorithms is available in [1].

Previously workflow logs used to be mined for extracting the control flow
within an organization and, hence, extensively used for developing process mod-
els. Schönig and his group have proposed a framework to extract the organ-
isational structure of business processes by mining human resource allocation
information from event logs [22].

Also in prior work, non-functional requirements have been extracted from
text [7].

5 Conclusion

The ability to mine goal models has important implications for requirements
engineering, as well as a wide variety of other settings that benefit from goal
modeling. The machinery that we present can therefore provide useful direc-
tions for future research and development. This machinery can also be used to
mine know-how which can support enterprise innovation strategies in significant

Mining Goal Refinement Patterns: Distilling Know-How from Data 75

ways. The empirical evaluation presented in the paper is preliminary in nature,
but provides evidence that suggests that there is merit in pursuing this gen-
eral approach. This work can be extended in a number of interesting ways. For
instance, evidence of goal update in operational data could be used to reverse
engineer goal models from data using intuitions from belief revision [6,11] or
belief merging [18,19]. Viewing softgoals as optimization objectives (as has been
done in [9]) could provide the basis for correlating goals and softgoals. Tech-
niques for discovering process designs from legacy artefacts [12] could form the
basis for an alternative approach to mining goal models.

References

1. Abbasghorbani, S., Tavoli, R.: Survey on sequential pattern mining algorithms.
In: 2nd International Conference on Knowledge-Based Engineering and Innovation
(KBEI), pp. 1153–1164 (2015)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

3. Boella, G., Broersen, J., van der Torre, L.: Reasoning about constitutive norms,
counts-as conditionals, institutions, deadlines and violations. In: Bui, T.D.,
Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS, vol. 5357, pp. 86–97. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89674-6 12

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agent. Multi-Agent
Syst. 8(3), 203–236 (2004)

5. Chaudhari, M., Mehta, C.: Extension of prefix span approach with GRC con-
straints for sequential pattern mining. In: International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), pp. 2496–2498 (2016)

6. Chopra, S., Ghose, A., Meyer, T.: Non-prioritized ranked belief change. J. Philos.
Logic 32(4), 417–443 (2003)

7. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification
of non-functional requirements with application to early aspects. In: 14th IEEE
International Conference on Requirements Engineering, pp. 39–48. IEEE (2006)

8. Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A.: GRAIL/KAOS: an
environment for goal-driven requirements engineering. In: Proceedings of the 19th
International Conference on Software Engineering, pp. 612–613. ACM (1997)

9. Dasgupta, A., Ghose, A.K.: Implementing reactive BDI agents with user-given
constraints and objectives. Int. J. Agent-Oriented Softw. Eng. 4(2), 141–154 (2010)

10. Garcia, J.E., Paiva, A.C.: Maintaining requirements using web usage data. In:
International Conference on ENTERprise Information Systems/International Con-
ference on Project MANagement/International Conference on Health and Social
Care Information Systems and Technologies, CENTERIS/ProjMAN /HCist. Pro-
cedia Comput. Sci. 100, 626–633 (2016)

11. Ghose, A., Goebel, R.: Belief states as default theories: studies in non-prioritized
belief change. In: ECAI, vol. 98, pp. 8–12 (1998)

12. Ghose, A., Koliadis, G., Chueng, A.: Rapid business process discovery (R-BPD). In:
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol.
4801, pp. 391–406. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75563-0 27

http://dx.doi.org/10.1007/978-3-540-89674-6_12
http://dx.doi.org/10.1007/978-3-540-75563-0_27

76 M. Santiputri et al.

13. Ghose, A., Santiputri, M., Saraswati, A., Dam, H.K.: Data-driven requirements
modeling: Some initial results with i∗. In: Tenth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM), pp. 55–64 (2014)

14. Hassani, M., Lu, Y., Wischnewsky, J., Seidl, T.: A geometric approach for mining
sequential patterns in interval-based data streams. In: IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE), pp. 2128–2135 (2016)

15. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from
event streams using sequential pattern mining. In: IEEE Symposium Series on
Computational Intelligence, pp. 1366–1373 (2015)

16. Jin, X., Donze, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 34(11),
1704–1717 (2015)

17. Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A.: ACon:
a learning-based approach to deal with uncertainty in contextual requirements at
run time. Inf. Softw. Technol. 70, 85–99 (2016). Elsevier

18. Meyer, T., Ghose, A., Chopra, S.: Social choice, merging, and elections. In:
Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS, vol. 2143, pp. 466–477.
Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4 41

19. Meyer, T., Ghose, A., Chopra, S.: Syntactic representations of semantic merging
operations. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol.
2417, p. 620. Springer, Heidelberg (2002). doi:10.1007/3-540-45683-X 88

20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

21. Patel, R., Chaudhari, T.: A review on sequential pattern mining using pattern
growth approach. In: International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET), pp. 1424–1427 (2016)

22. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational
perspective in agile business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S.,
Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 37–52. Springer,
Cham (2015). doi:10.1007/978-3-319-19237-6 3

23. Sohrabi, M.K., Ghods, V.: CUSE: a novel cube-based approach for sequential pat-
tern mining. In: 4th International Symposium on Computational and Business
Intelligence (ISCBI), pp. 186–190 (2016)

24. Uragaki, K., Hosaka, T., Arahori, Y., Kushima, M.: Sequential pattern mining on
electronic medical records with handling time intervals and the efficacy of medi-
cines. In: IEEE Symposium on Computers and Communication (ISCC), pp. 20–25
(2016)

25. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the Third IEEE International Symposium on
Requirements Engineering, pp. 226–235. IEEE (1997)

26. Zawawy, H., Mankovskii, S., Kontogiannis, K., Mylopoulos, J.: Mining software
logs for goal-driven root cause analysis. In: The Art and Science of Analyzing
Software Data, pp. 519–554 (2015)

http://dx.doi.org/10.1007/3-540-44652-4_41
http://dx.doi.org/10.1007/3-540-45683-X_88
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1007/978-3-319-19237-6_3

Goal-Oriented Regulatory Intelligence:
How Can Watson Analytics Help?

Okhaide Akhigbe(&), Susie Heap, Sakib Islam, Daniel Amyot,
and John Mylopoulos

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

{okhaide,sheap069,sisla062,damyot,

jmylopou}@uottawa.ca

Abstract. Regulations are introduced by governments to ensure the well-being,
safety, and other societal needs of citizens and enterprises. Governments also
create programs aiming to improve awareness about and compliance with reg-
ulations. Goal models have been used in the past to conceptualize regulations
and to measure compliance assessments. However, regulators often have diffi-
culties assessing the performance of their regulations and programs. In this
paper, we model both regulations and regulatory programs with the Goal-
oriented Requirement Language. Using the same conceptualization framework
enables asking questions about performance and about the evidence-based
impact of programs on regulations. We also investigate how Watson Analytics,
a cloud-based data exploration service from IBM, can be used pragmatically to
explore and visualize goal satisfaction data to understand compliance issues and
program effectiveness. A simplified example inspired from a Canadian mining
regulation is used to illustrate the many opportunities of Watson Analytics in
that context, and some of its current limitations.

Keywords: Data analytics � Data visualization � Goal models � Goal-oriented
Requirement Language � GoRIM � Regulatory compliance � Regulatory
intelligence � Watson Analytics

1 Introduction

Based on government policy objectives, regulations are introduced to ensure the
well-being and safety of citizens and enterprises. Regulations aim to constrain
behaviors of citizens and enterprises alike to achieve desired societal outcomes [1].
Governments also introduce and manage regulatory programs, which consist of events,
items, activities, or processes for ensuring compliance to regulations. Regulatory
programs improve awareness about and compliance with regulations by educating
regulated parties about obligations and rights in relation to a regulation, and by pro-
moting and monitoring compliance through inspections and other means [2]. While
regulations routinely evolve throughout their lifetime to ensure they continue to address
societal needs, it is often unclear whether they actually achieve intended societal
outcomes. Do regulatory programs result in improved compliance? What do observed

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 77–91, 2017.
https://doi.org/10.1007/978-3-319-69904-2_7

compliance levels tell us about a regulation or its supporting programs? Are they
meeting their intended objectives? Over the years, governments, citizens, and interest
groups have been actively involved in answering such questions, often with incon-
clusive results [3–5]. Current trends, including climate change and cyber threats, are
driving an increased interest to quantitatively link programs and regulations with
societal outcomes.

Goal models have been used successfully in the past to conceptualize and analyze
regulations. Goal models capture the structure and intent of regulations, and enable
compliance measurements and assessments [6, 7]. In this context, goal models put
different compliance scenarios in proper perspective for stakeholders to visualize rel-
evant regulations, laws, processes, and objectives. If we could model regulatory pro-
grams in the same manner, we could then exploit a uniform modelling framework to
ask questions about performance and the evidence-based impact of programs on reg-
ulations. Such an approach will support the monitoring, analysis, and assessment of
regulations and their supporting regulatory programs. Regulators collect and use much
data while administering (i.e., introducing, enforcing, reviewing, and evolving) regu-
lations. Judging from the numerous regulated parties a regulation can influence, these
data exhibit the three V-properties of Big Data (velocity, variety, volume) [8]. Goal
models used in regulatory contexts collect data from numerous sources that also have
velocity, variety, and volume. Visualizing and deriving insight from such Big Data is
very challenging today because of the dimensions required for proper analysis,
including conventional ones such as time, location, and organizations, but also
domain-specific ones such as the structure of regulations and programs. Towards this
end, we investigate the use of IBM Watson Analytics [9], a cloud-based Big Data
technology, to explore and visualize these different dimensions of data in order to
understand compliance issues and program effectiveness at the heart of many chal-
lenges faced by regulators [10].

One contribution of this article is our proposal to use the same conceptualization
framework to model both regulations and their supporting regulatory programs. This
approach enables us to obtain homogeneous goal satisfaction data from the goal models
of regulations and regulatory programs. The other contribution of this paper is an
extended method for regulatory intelligence that exploits Watson Analytics to explore
and visualize the evaluated goal satisfaction data to obtain useful insight on the reg-
ulatory process. Here, the dimensions of data analysis are the structure of the regulation
and program, location, and time. We demonstrate our method using an illustrative case
study inspired from the Canadian mining sector to show the potential of this
tool-supported conceptualization for supporting and enhancing regulatory practices.

The rest of the paper is as follows. Section 2 provides background on the use of
goal models for regulatory compliance. Section 3 discusses regulatory intelligence and
how it relates to the regulatory ecosystem. Section 4 introduces the Goal-oriented
Regulatory Intelligence Method, while Sect. 5 uses an illustrative case study inspired
from a real regulation to describe its applicability. We present lessons learned in Sect. 6
and limitations in Sect. 7. We conclude with a summary and future work in Sect. 8.

78 O. Akhigbe et al.

2 Background

Goal models are often used to show compliance of information systems and business
processes with one or more regulations. Here, goal models exploit various concepts
(such as goals, links, and actors) to assess compliance and explore what-if scenarios to
address non-compliance. The rationale is that if goal models are a useful conceptual-
ization for eliciting, modeling, and analyzing requirements in order to capture alter-
natives and conflicts between stakeholder objectives [6], they can also help explore
and analyze compliance [7]. The Nòmos framework [11], including its variations
(Nòmos 2 [12] and Nòmos 3 [13]), is a goal-based modeling framework used to
systematically generate law-compliant requirements and support requirements analysts
in dealing with the problem of requirements compliance. Secure Tropos [14] is another
goal-based conceptualization that has been used to support the consideration of laws
and regulations during the development of secure software systems. Finally, the User
Requirements Notation (URN) [15], a standard modeling language used to model and
analyze requirements with two complementary views, namely the Goal-oriented
Requirement Language (GRL) and the Use Case Map (UCM) notation, has been used
to model and study the compliance of enterprises goals and business processes against
regulations [16, 17]. As of 2012, the URN standard includes an indicator concept that
enables enhanced compliance analysis [18, 19], and regulator-oriented reasoning about
the suitability of regulations and opportunities for their evolution [20, 21].

However, these goal modelling approaches have taken into consideration neither
regulatory programs nor the Big Data aspects involved in the regulatory process.
Administering regulations involves more than enforcing compliance. As such, regu-
lators, citizens, and enterprises need to get insight from the data involved in the
regulatory process. Data analytics technologies such as Watson Analytics can facilitate
this. Watson Analytics is a pioneering software system that uses cloud computing and
multiple machine learning algorithms to analyze high volumes of data [9, 22]. Using a
simple intuitive user interface, Watson Analytics enables the user to ask questions on
the collected data in natural language and returns results mined from the data across
different dimensions of interest. Watson Analytics understands complicated and diffi-
cult questions asked in natural language, gives evidence-based results in an appropriate
visualization, and proposes related questions of potential interest about patterns, trends,
and correlations. There is growing acceptance and use of Watson Analytics, and some
companies have recently started using it in a regulatory compliance context [23].
However, to our knowledge, Watson Analytics has not been used from a regulator’s
perspective, nor has it been used with goal models, until now.

3 Regulatory Intelligence

The concept of regulatory intelligence has its origins in the heavily regulated phar-
maceutical industry [24]. The motivation for regulatory intelligence is to enable
pharmaceutical companies to remain locally and globally compliant to existing and
new regulations. As such, definitions of regulatory intelligence revolve around con-
tinuously obtaining and processing data and information from multiple sources and

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 79

analyzing them in the relevant context. It also includes generating and communicating
meaningful outputs from these data in line with an organization’s regulatory strategy
[24, 25]. This implies that with regulatory intelligence, information relating to a given
compliance context and its implication can be obtained, analyzed, and communicated.
The regulatory ecosystem is also monitored to identify opportunities where insight
obtained from the collected information can be utilized to influence future regulations.
This application of regulatory intelligence is to improve decisions making and planning
for pharmaceutical companies. It enables them to make and maintain their products
compliance with regulations [26].

Beyond the pharmaceutical industry, in other domains, the interactions between
regulators, citizens, and enterprises already involve some sort of data gathering,
analysis, and communication about regulations and the regulatory process. Hence,
regulatory intelligence is conducted by regulators using feedback from citizens and
enterprises, and compliance enforcement information to administer regulations [21]. As
such, from the regulator’s perspective, regulatory intelligence can be used to enhance
the regulatory process with data-driven support for decision-making towards intro-
ducing, enforcing, reviewing, and evolving regulations. Regulatory intelligence facil-
itates monitoring and assessing regulations and can be used to influence the regulatory
process and ecosystem. Furthermore, analyzed data and information can be used to
ascertain the relevance, effectiveness (e.g., in terms of goal satisfaction), or efficiency
(e.g., in terms of costs/benefits) of regulations and their supporting regulatory pro-
grams. The regulator-oriented view of regulatory intelligence is the one adopted in this
article.

4 A Method for Regulatory Intelligence

The concept of regulatory intelligence alludes to a feedback loop in the use of data
from and within the regulatory ecosystem to administer regulations. In 2013, Badreddin
et al. [21] proposed a regulatory intelligence method based on GRL that enables
reasoning about regulations and compliance with regulation as a dimension. As dis-
cussed in Sect. 2, this method did not take regulatory programs and the amount of Big
Data involved in the regulatory process, into consideration. We extend this method by
incorporating a step that exploits Watson Analytics to provide a pragmatic way to
explore and visualize regulations and regulatory programs as dimensions for data
analysis. In addition, we explore the use of Watson Analytics to analyze the Big Data
resulting from the evaluated goal models of regulations and regulatory programs to
gain insights about the regulatory process. Our proposal, the Goal-oriented Regulatory
Intelligence Method (GoRIM), shown in Fig. 1, is inspired from the method introduced
by Tawhid et al. [20] for managing outcome-based regulations.

As a starting point, in the first step (Build), GRL models of the regulation and of the
regulatory program are built using jUCMNav, a free Eclipse-based plugin for URN
modeling and analysis [19, 20]. These models are built using the semi-automatic
method for creating goal models of regulations from tables described by
Rashidi-Tabrizi et al. [27]. The same GRL concepts are used for both types of models:
goals, indicators, contribution/decomposition links, actors (optional), and dependencies

80 O. Akhigbe et al.

to resources for conditional parts of regulations/programs (optional). Contribution
levels and indicators are added manually by experts to the tabular representation of the
regulations/programs as they are typically not found in the original documents.
jUCMNav creates goal models by importing the tabular representation (comma-
separated value file created with Excel), a format commonly used by regulators [27].

In the second step (Select), questions to be answered by inspectors/auditors (or
regulated parties themselves in case of self-reporting) during periodic compliance
enforcement activities for the regulation, as well as evaluations of the regulatory
programs, are selected from predefined questions so that data can be fed to the
indicators in the goal models. In the third step (Input Data), the data collected are
input to the goal models as GRL strategies. Using GRL evaluation algorithms [28],
satisfaction levels for both the regulation and program goal models, which indicate
compliance and performance levels, are computed for all goals. In the fourth step
(Output), snapshots of different computed compliance and performance levels can be
produced for different regulated parties (companies, provinces, etc.) at different times,
and stored in a database. In the fifth step (Extract), the data is extracted from the
database and input into a data visualization engine (such as Watson Analytics in our
case). Visualizations and further analysis can be done on large datasets to enable
reporting on computed compliance and performance levels and what they mean
relative to the regulation and regulatory program. Based on these computed levels,
the needs for reinforcements or reevaluations can be highlighted in the sixth step
(Periodic Enforcement/Evaluation). Decisions can be made on specifics to focus

Our Approach

Regulation & Regulatory
Program

4
Output

Database

5
Extract

Data Visualization &
Further Analysis

7
Evolve

1
Build

Scoped Model

2
Select

3
Input Data

Enforcement/Evaluation

Start

6 - Periodic
Enforcement
/Evaluation

Evaluated Model

Fig. 1. The Goal-oriented Regulatory Intelligence Method (GoRIM)

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 81

on during the next rounds of enforcement or evaluations. In the seventh step
(Evolve), the needs for evolution (addition, change, or repeal) of the regulation
and/or program can be triggered based on the insight gained in the fifth step.

5 Illustrative Case Study

To illustrate GoRIM, we apply it to an example inspired from the Canadian Metal
Mining and Effluent Regulation (MMER) [29]. A fragment of MMER is shown in
Fig. 2.

The MMER, which aims to protect aquatic life, is the Canadian regulation that
directs metal mines to conduct Environmental Effects Monitoring (EEM) as a condition
when depositing effluents resulting from mining activities [29]. The government sup-
ports this activity through an EMM program (EMMP). Consider a situation where
Environment and Climate Change Canada (ECCC), the corresponding federal regu-
lator, wants to review and report on the performance of MMER (a regulation) and of
EEMP (a program), and interesting relationships between these two artefacts. With a
scenario where four provincial metal mines (in Manitoba, Nova Scotia, Ontario, and
Quebec) are reviewed between 2014 and 2016, we use GoRIM and Watson Analytics
to describe how this can be achieved.

Building the Goal Models: To apply GoRIM, we first build goal models for MMER
and EEMP using jUCMNav. An example for MMER, based on several fragments
similar to the one shown in Fig. 2, is illustrated in Fig. 3. The structure of goal models
enables us to capture the regulation/program structure (part/section, subpart/subsection,
rule statements, etc.), and show different relationships (contributions and decomposi-
tions). A layer of indicators at the bottom enables the measurement of various aspects
of rule statements, and some indicators can contribute to many rules. The model in
Fig. 3 is a simplified version of MMER; the real GRL model for this regulation is much
larger, but the selected subset is sufficient to illustrate GoRIM and investigate the
functionalities of Watson Analytics. A similar model exists for the supporting program
(EEMP, see Fig. 4).

Fig. 2. A fragment of the MMER

82 O. Akhigbe et al.

Data Input, Evaluation, and Output: Next, we input data into the indicators of the
regulation and program goal models via GRL strategies. We used sample compliance
data for the four metal mines and evaluation data for EEMP activities from 2014 to
2016. The data we use here is synthetic as the real data and goal evaluations are
confidential. GRL evaluation strategies representing each month of a year for each
provincial mine were created. These GRL strategies define a set of initial values for the
indicators of the MMER and EEMP goal models. Each indicator converts real

Part/Section

Subpart/Subsection

Rule Statement

Contributions
Decompositions

Indicators

Fig. 3. Simplified MMER goal model

Fig. 4. Evaluated simplified EEMP goal model

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 83

observation data (e.g., 35 parts per million) into a satisfaction level on a [0–100] scale
through a comparison with target, threshold, and worst-case parameters.

We then used the GRL propagation algorithm to obtain compliance/performance
satisfaction levels for the higher-level goals of the MMER and EEMP models. The
sample EEMP goal model is shown with an evaluation for one of the mines at a specific
time in Fig. 4. The computed satisfaction levels of the MMER and EEMP goal models,
for different mines and months, are exported using jUCMNav’s export function, and
can then be stored in a database for further analysis.

Data Visualization and Further Analysis: In our example, we exported the com-
puted satisfaction levels as Comma Separated Value (CSV) files, imported as is into
Watson Analytics. CSV files can be explored in Watson Analytics individually to
provide more insight on the mines’ state of compliance with MMER and performance
of EEMP between 2014 and 2016. However, much more value is offered when we
combine both datasets. While this can be done using the query facilities in databases (if
the data is stored in a database), in our example, we manually combined both CSV
files, as illustrated in Fig. 5. The combination is based on shared dimensions of interest,
for example, the months between 2014 and 2016 (time), the provinces where the mines
exist (location), and the structure of the MMER and EEMP goal models (regulation &
regulatory program). Each row in Fig. 5 stores the satisfaction value of each goal of
the regulation and program models for a given provincial mine and a given month.

Upon uploading the CSV file, Watson Analytics reviews the data and attempts to
recognizes automatically its nature. For example, it understands the meaning of the
month, year, and province columns. It also uses multiple machine learning algorithms
in parallel to analyze possible relationships in the data, leading to suggestions of
questions and visualizations to be explored by the analyst. Figure 6 present six such
starting points. Natural language questions in English can also be asked explicitly, as
illustrated at the top of Fig. 6. When we asked the question “What is the relationship
between MMER and EEM Program by year and province”, Watson Analytics
analyzed our question (relationships in Watson are mainly quantitative correlations),
automatically selected an appropriate visualization, and suggested further related
questions based on our data. The suggested questions were sorted according to their
computed relevance, as outlined in Table 1. These questions reflected correctly the
time and location dimensions from the dataset. However, Watson Analytics does not
understand the goal-oriented structure of regulations and programs, which is a

Data from the MMER Data from the EEM Program
Time Dimension

Location Dimension Regulation & Regulatory Program Dimension

Fig. 5. Extract of the combined dataset for MMER and EEMP evaluations

84 O. Akhigbe et al.

domain-specific dimension. Although this limitation hurts the use of default navigation
features at the user interface level (e.g., drilling up or down along this structure
dimension), the aggregate satisfaction along such structure is still available as it was
computed explicitly in the goal model by jUCMNav. For example, as shown in Fig. 4,
the program satisfaction (34) combines the satisfactions of P1 (37) and P2 (30).

The Watson Analytics offering of related questions is necessary for exploring data as
it provides opportunities to refine questions concerning insights desired from satis-
faction data. Some proposed questions may actually have results supported by strong
evidence, but still be irrelevant. Minimizing such noise still needs to be explored in
future work.

Upon selecting the question “How do the values of EEM Program and MMER
compare by Provinces across Year?”, Watson Analytics offered the visualization
shown in Fig. 7. Such a visualization offers an opportunity to analyze MMER and the
EEM program together along dimensions unavailable prior to this article. For example,
the regulator (ECCC) can observe that while the performance of the EEM program (the
bar charts) is fairly consistent across years on average, the yearly average compliance
with MMER (the trend lines) has been inconsistent. From 2014 to 2016, the metal

Fig. 6. Watson Analytics suggested questions, and interface to ask others based on the data

Table 1. Further questions suggested by Watson Analytics based on the initial question

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 85

mines in the provinces of Manitoba and Quebec have had a growing increase in their
compliance levels while there has been a decrease in Ontario for the same period. The
metal mine in the province of Nova Scotia had an increase in its compliance level
between 2014 and 2015 and a decrease in 2016 close to its level in 2014.

With this information, the ECCC can investigate possible explanations for these
observations, including what drives the MMER (Fig. 8) and the EEM program (Fig. 9).

This analysis indicates that while “R3.2.1_AvgMonthlyFlowRate” (from the goal
model in Fig. 3) and “Month” is the main driver of the MMER with 46%, while
“P1_ComplianceEnforcement” (from the goal model in Fig. 4) and “Province” is the
main driver for the EEM program with 57%. The ECCC could explore these candidate

Fig. 7. Visual comparison of the EEM program and MMER by province, across years

Fig. 8. Visualization showing what drives the MMER

86 O. Akhigbe et al.

explanations even further or explore other visualizations or questions within Watson
Analytics. Note that some proposed drivers have a low level of relevance in our context.
For example, a contribution from R.3.2.1 to R3 is something known from the very
structure of the goal model. How to prune out such known drivers inWatson is still under
study.

6 Lessons Learned

Our exploration of GoRIM to analyze and report on compliance with a regulation
(MMER) and the performance of a companion program (EEMP) were done by a Ph.D.
student and two undergraduate students, under the supervision of two professors. All
are co-authors of this article. The undergraduate students had no experience whatsoever
with goal modelling or regulatory intelligence, whereas the PhD student and both
professors had advanced knowledge. None of the participants had used Watson
Analytics.

We have found Watson Analytics easy to learn and intuitive in visualizing and
exploring compliance levels of regulations and performance levels of programs.
While GRL offers appropriate tool-supported concepts for modeling regulations/
programs and for analyzing them for one regulated party at one moment in time,
Watson Analytics adds a form of analysis that was unavailable until now. Watson
Analytics enables, out of the box, a combined analysis of data coming from multiple
models (regulation and program), for many regulated parties and many moments in
time, with opportunities for slicing, dicing, and drilling along several conventional
dimensions (time and location). Suggestions for visualizations and related questions are
also useful features.

Fig. 9. Visualization showing what drives the EEM program

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 87

During our exploration, we have learned the following lessons:

(a) GoRIM: We can use a uniform goal-based modelling technique for regulations
and regulatory programs. Opportunities exist to use this conceptualization to
model more regulatory elements such as risks or intended societal outcomes.

(b) GoRIM: Our method has the potential to accommodate the Big Data involved in
the regulatory domain. Based on questions inquiring on how regulations and
programs perform, indicators can be structured to collect data and feed goal
models whose evaluations are further explored using data visualization tools.

(c) Watson Analytics: We can ask many types of questions based on different
dimensions in our data using natural language. This is in addition to the relevant
“starting point” questions Watson Analytics provides upon loading data.

(d) Watson Analytics: This tool is simple to learn and easy to use, requiring no data
analytics, business intelligence, or specialized IT skills hence. This is a huge
improvement upon the use of a conventional and heavyweight business intelli-
gence tool (e.g., IBM Cognos) for regulatory intelligence, which was partially
explored in [21]. This can lead to reductions in training costs and increased
efficiency.

(e) Watson Analytics: We also like the suggestions on how to visualize and analyze
data through a variety of visualization alternatives that can be tailored to suit the
types of questions being asked. This is in addition to user-defined functions,
which can enable regulators to explore relationships not supported by default.

7 Limitations

Although we could create and analyze goal models of regulations (MMER) and
programs (EEMP) using GoRIM, we are yet to evaluate GoRIM in a real-life context.
We used fake data for our analysis and have not yet obtained feedback on the
usefulness of GoRIM from the regulator who provided the example used here. There
are also scalability and usability concerns to be addressed due to the size of real
regulations. For example, the main section of the MMER goal model, excluding the
eight different schedules that further explain the regulation, already contains 273
goals. We have not yet explored the usability of Watson Analytics in the presence of
hundreds of goals, as well as the impact of changes to the goal models themselves
(e.g., with the addition or deletion of goals, and hence of values in the database) on
the analysis features of this tool. We are also yet to explore a more complete set of
functionalities from Watson Analytics for exploring regulatory intelligence data.
Finally, we have observed several limitations in that technology (e.g., Watson
Analytics currently understands months but not quarters, and countries/provinces/
states but not cities), and there might be other such limitations affecting regulations
and programs in specific domains.

88 O. Akhigbe et al.

8 Conclusion and Future Work

To administer regulations effectively, a feedback loop involving data from and within
the regulatory process is necessary. This information exhibits the properties of Big
Data, creating the need for advanced tools and technologies to enable analysis and
visualization providing the insight required to make informed decisions when admin-
istering regulations and their supporting programs. This paper proposed and illustrated
the Goal-oriented Regulatory Intelligence Method (GoRIM), which uses the same
conceptualization (goal models) to capture and analyze regulations and regulatory
programs, and supports a robust analysis of compliance data. Moreover, the method
exploits Watson Analytics to analyze and report on observed compliance levels,
explore what they mean relative to the regulation, and determine how supporting
regulatory programs contribute to observed compliance. As such, GoRIM can offer
much value to regulators who want to assess the performance of their regulations and
programs. The simplicity to learn and use Watson Analytics offers an attractive,
pragmatic, out-of-the-box solution to support regulatory intelligence activities.

In the near future, we plan to use GoRIM to model real regulations and programs
and use real data to explore concrete relationships in the regulatory process. In addition
to addressing some of the limitations from the previous section, a usability study would
also help determine the parts of GoRIM and of Watson Analytics that are really usable
and of value to regulators.

Acknowledgements. This work was supported financially by the National Science and Engi-
neering Research Council of Canada (NSERC) Discovery program. We are much thankful to
Colette Lacroix and IBM Canada for access to Watson Analytics. We also thank Prof. Greg
Richards, Dr. Randy Giffen, and Nick Cartwright for useful discussions, as well as the reviewers
for their insightful suggestions.

References

1. OECD: Recommendation of the Council on Regulatory Policy and Governance. OECD
Publishing, Paris (2012)

2. OECD: The Governance of Regulators, OECD Best Practice Principles for Regulatory
Policy. OECD Publishing, Paris (2014)

3. Coglianse, C.: Measuring regulatory performance: evaluating the impact of regulation and
regulatory policy. OECD Expert Paper No. 1, OECD Publishing, Paris (2012)

4. Nielsen, V.L., Parker, C.: Is it possible to measure compliance? Legal Studies Research
Paper No. 192, Faculty of Law, The University of Melbourne (2006). SSRN https://ssrn.
com/abstract=935988

5. Parker, D., Kirkpatrick, C.: Measuring regulatory performance. The economic impact of
regulatory policy: a literature review of quantitative evidence. OECD Expert Paper No. 3,
OECD Publishing, Paris (2012)

6. Horkoff, J., Aydemir, F.B., Cardoso, E., Li, T., Maté, A., Paja, E., Giorgini, P.:
Goal-oriented requirements engineering: a systematic literature map. In: 24th International
Requirements Engineering Conference (RE), pp. 106–115. IEEE CS (2016). doi:10.1109/
RE.2016.41

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 89

https://ssrn.com/abstract=935988
https://ssrn.com/abstract=935988
http://dx.doi.org/10.1109/RE.2016.41
http://dx.doi.org/10.1109/RE.2016.41

7. Akhigbe, O., Amyot, D., Richards, G.: Information technology artifacts in the regulatory
compliance of business processes: a meta-analysis. In: Benyoucef, M., Weiss, M., Mili, H.
(eds.) MCETECH 2015. LNBIP, vol. 209, pp. 89–104. Springer, Cham (2015). doi:10.1007/
978-3-319-17957-5_6

8. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int.
J. Inf. Manag. 35(2), 137–144 (2015). doi:10.1016/j.ijinfomgt.2014.10.007

9. IBM: IBM Watson Analytics: Analytics Made Easy. https://www.ibm.com/analytics/
watson-analytics/us-en/index.html. Accessed 23 Apr 2017

10. Akhigbe, O., Amyot, D., Mylopoulos, J., Richards, G.: What can information systems do for
regulators? A review of the state-of-practice in Canada. In: IEEE 11th International
Conference on Research Challenges in Information Science (RCIS). IEEE CS (2017)

11. Siena, A., Perini, A., Susi, A., Mylopoulos, J.: A meta-model for modelling law-compliant
requirements. In: Requirements Engineering and Law (RELAW), pp. 45–51. IEEE CS
(2009). doi:10.1109/RELAW.2009.1

12. Ingolfo, S., Siena, A., Perini A., Susi, A., Mylopoulos, J.: Modeling laws with Nòmos 2. In:
6th International Workshop on RE and LAW (RELAW), pp. 69–71. IEEE CS (2013).
doi:10.1109/RELAW.2013.6671350

13. Ingolfo, S., Jureta, I., Siena, A., Perini, A., Susi, A.: Nòmos 3: legal compliance of roles and
requirements. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824,
pp. 275–288. Springer, Cham (2014). doi:10.1007/978-3-319-12206-9_22

14. Islam, S., Mouratidis, H., Jürjens, J.: A framework to support alignment of secure software
engineering with legal regulations. Softw. Syst. Model. 10(3), 369–394 (2011). doi:10.1007/
s10270-010-0154-z

15. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten
years. J. Softw. (JSW) 6(5), 47–768 (2011)

16. Ghanavati, S., Amyot, D., Peyton, L.: Compliance analysis based on a goal-oriented
requirement language evaluation methodology. In: 17th IEEE International Requirements
Engineering Conference (RE 2009), pp. 133–142. IEEE CS (2009). doi:10.1109/RE.2009.42

17. Ghanavati, S., Amyot, D., Rifaut, A.: Legal goal-oriented requirement language (Legal
GRL) for modeling regulations. In: 6th International Workshop on Modeling in Software
Engineering (MiSE), pp. 1–6. ACM (2014). doi:10.1145/2593770.2593780

18. Shamsaei, A., Pourshahid, A., Amyot, D.: Business process compliance tracking using key
performance indicators. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66,
pp. 73–84. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20511-8_7

19. Amyot, D., et al.: Towards advanced goal model analysis with jUCMNav. In: Castano, S.,
Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds.) ER 2012. LNCS, vol. 7518, pp. 201–
210. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33999-8_25

20. Tawhid, R., Braun, E., et al.: Towards outcome-based regulatory compliance in aviation
security. In: 20th IEEE International Requirements Engineering Conference (RE), pp. 267–
272. IEEE CS (2012). doi:10.1109/RE.2012.6345813

21. Badreddin, O., Mussbacher, G., et al.: Regulation-based dimensional modeling for
regulatory intelligence. In: 6th International Workshop on Requirements Engineering and
Law (RELAW), pp. 1–10. IEEE CS (2013). doi:10.1109/RELAW.2013.6671340

22. Aggarwal, M., Madhukar, M.: IBM’s Watson Analytics for health care: a miracle made true.
In: Cloud Computing Systems and Applications in Healthcare, pp. 117–134. IGI Global
(2017). doi:10.4018/978-1-5225-1002-4.ch007

23. Anderson, F.: Watson Analytics sessions at World of Watson 2016. https://www.ibm.com/
communities/analytics/watson-analytics-blog/event-watson-analytics-sessions-at-world-of-
watson-2016/. Accessed 23 Apr 2017

90 O. Akhigbe et al.

http://dx.doi.org/10.1007/978-3-319-17957-5_6
http://dx.doi.org/10.1007/978-3-319-17957-5_6
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
https://www.ibm.com/analytics/watson-analytics/us-en/index.html
https://www.ibm.com/analytics/watson-analytics/us-en/index.html
http://dx.doi.org/10.1109/RELAW.2009.1
http://dx.doi.org/10.1109/RELAW.2013.6671350
http://dx.doi.org/10.1007/978-3-319-12206-9_22
http://dx.doi.org/10.1007/s10270-010-0154-z
http://dx.doi.org/10.1007/s10270-010-0154-z
http://dx.doi.org/10.1109/RE.2009.42
http://dx.doi.org/10.1145/2593770.2593780
http://dx.doi.org/10.1007/978-3-642-20511-8_7
http://dx.doi.org/10.1007/978-3-642-33999-8_25
http://dx.doi.org/10.1109/RE.2012.6345813
http://dx.doi.org/10.1109/RELAW.2013.6671340
http://dx.doi.org/10.4018/978-1-5225-1002-4.ch007
https://www.ibm.com/communities/analytics/watson-analytics-blog/event-watson-analytics-sessions-at-world-of-watson-2016/
https://www.ibm.com/communities/analytics/watson-analytics-blog/event-watson-analytics-sessions-at-world-of-watson-2016/
https://www.ibm.com/communities/analytics/watson-analytics-blog/event-watson-analytics-sessions-at-world-of-watson-2016/

24. Hynes, C.: Regulatory intelligence: implications for product development. In: 2014 TOPRA
Module: Strategic Planning in Regulatory Affairs. http://bit.ly/2pr5UiY. Accessed 23 Apr
2017

25. Felgate, T.: What is regulatory intelligence? http://www.regulatory-intelligence.eu/2013/02/
what-is-regulatory-intelligence.html. Accessed 23 Apr 2017

26. Maguire, P.: What is ‘regulatory intelligence?’. Regulatory Affairs Professional Society.
http://bit.ly/2oWKrNe. Accessed 23 Apr 2017

27. Rashidi-Tabrizi, R., Mussbacher, G., Amyot, D.: Transforming regulations into performance
models in the context of reasoning for outcome-based compliance. In: 6th International
Workshop on Requirements Engineering and Law (RELAW), pp. 34–43. IEEE CS (2013)

28. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., Forster, A.J.:
Business process management with the user requirements notation. Electron. Commer. Res.
9(4), 269–316 (2009). doi:10.1007/s10660-009-9039-z

29. Justice Laws Website: Consolidated federal laws of Canada, Metal Mining Effluent
Regulations. http://laws-lois.justice.gc.ca/eng/regulations/SOR-2002-222/. Accessed 23 Apr
2017

Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help? 91

http://bit.ly/2pr5UiY
http://www.regulatory-intelligence.eu/2013/02/what-is-regulatory-intelligence.html
http://www.regulatory-intelligence.eu/2013/02/what-is-regulatory-intelligence.html
http://bit.ly/2oWKrNe
http://dx.doi.org/10.1007/s10660-009-9039-z
http://laws-lois.justice.gc.ca/eng/regulations/SOR-2002-222/

An Alternative Approach to Metainformation
Conceptualisation and Use

Cesar Gonzalez-Perez(&) and Patricia Martin-Rodilla

Institute of Heritage Sciences (Incipit), Spanish National Research Council
(CSIC), Santiago de Compostela, Spain

{cesar.gonzalez-perez,

patricia.martin-rodilla}@incipit.csic.es

Abstract. The growing needs to analyse and interpret large amounts of com-
plex information has generalised the use of information about information, often
called metainformation (or metadata). Metadata approaches and standards have
proliferated in fields as diverse as medicine, meteorology, geography, cultural
heritage or education, among others. These approaches are supposed to assist us
in documenting our information by recording who has documented what, when
and how, among other concerns, making the tasks of interpreting the data much
easier. However, metadata approaches often suffer from a number of issues. To
start with, there are too many, and users are often daunted by the task to choose
among them. Secondly, metadata approaches seem to re-invent the wheel by
assuming that metadata is essentially different to data (or metainformation to
information) and for this reason needs a new and different set of languages and
tools. Finally, many metadata approaches mix together conceptual concerns and
implementation issues, thus violating well-known engineering principles of
modularity and layering.
This paper presents a review of existing metadata approaches from a con-

ceptual modelling perspective, identifies the major issues with them, and pro-
poses a new approach based on the ConML conceptual modelling language.
This new approach starts from the basis that metainformation is a particular kind
of information and, as a consequence, everything that we know about infor-
mation can also be applied to metainformation.

Keywords: Metadata � Metainformation � Conceptual modelling � ConML

1 Introduction

In recent decades, the increasing amount of data available for analysis and interpre-
tation has generalised the need for rigorous approaches to express the various prop-
erties of the data being analysed. Some examples of this include registering who has
created some data (i.e. its author), in which precise moment (i.e. its time of creation),
for what purpose (i.e. intent), with which quality criteria (i.e. reliability), where the data
comes from (i.e. provenance), etc. Data that describes other data has been called
“metadata”, and has been vaguely defined as “data about data” or “data that describes
other data” [13, 22]. Sometimes, the term “information” is used instead of “data”, and
“metainformation” defined as “information about information”. Although some

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 92–105, 2017.
https://doi.org/10.1007/978-3-319-69904-2_8

distinctions may be drawn between data and information in this regard, we consider
them equivalent to all effects in this paper. In addition, the term “metadata” (or
“metainformation”) has been used to mean very different things. At least, two separate
meanings of the term are clearly visible in the literature:

• “Metadata” as the structure of other data. For example, the specification of a
database table (which columns it has, which data type is used for each, etc.) is often
referred to as “metadata”.

• “Metadata” as a characterisation of other data. For example, the labelling of a data
record (such as a row in a database table) with its author, creation date and relia-
bility factor is usually referred to as “metadata”.

In the first case, metadata is describing the structure of the data and, therefore, what
scope it covers. In fact, by stating what columns a database table has, or what tables
exist in the database, we are not only specifying how data is structured, but also what
data we are considering to start with. In other words, metadata of the first kind
determines what the domain of discourse is as much as its structure. And, in this regard,
metadata of this kind is inextricably linked to the data it describes; we cannot strip a
dataset of its metadata. In the second case, contrarily, metadata is an “additional layer”
that we can add on top of existing data. We can enrich a dataset by capturing some
properties about the data, but even if we don’t, the dataset is still there. Given these
major differences, we advise against using the term “metadata” to refer to the first kind
of situations as described above, and prefer to use it only for the second kind. The
structure and domain scope of the data is given by a data schema, information structure,
type model, or an equivalent artefact; not by metadata. Metadata refers to properties of
the data that are documented to aid with its analysis and interpretation. In this paper, we
will only deal with “true metadata”, i.e. metadata of the second kind.

In addition to this terminological problem, three additional issues exist with
metadata approaches. Firstly, a very large number of metadata approaches have
appeared over the last few decades. Some target a very specific domain, whereas others
are general in their scope. There are metadata approaches focusing on multimedia web
elements [27]; online educational environments [6]; genetic, biological and medical
information [29], astronomy or meteorology [19], geography [9] or cultural heritage
[8]. Approaches in these areas are extremely heterogeneous as to what they encompass,
and make adoption decisions a very difficult task for tentative users. In this regard, we
have reviewed 28 well-known metadata approaches as described in the literature, and
selected the most common two for a detailed analysis.

Secondly, most metadata approaches start from the assumption that metadata is
essentially different from plain data, and therefore whole new modelling, encoding and
communication approaches are needed. In fact, as we will describe in detail in further
sections, many well-known metadata approaches contain data modelling specifications
that are highly redundant with already existing, “non-meta”, data modelling approa-
ches. We start from a different premise: if the “meta-” prefix in “metadata” is a qualifier
of “data”, then metadata must be a particular kind of data. And, applying a basic
definition of subsumption (or Liskov’s substitution principle [12]), we must conclude
that everything we know about data, and every technology that we can employ on it,
we also know, and we also can employ, on metadata. From this perspective, metadata

An Alternative Approach to Metainformation Conceptualisation and Use 93

may pose challenges that are marginally different to those of data, but we should be
suspicious of apparently revolutionary deviations of metadata from plain data.

Finally, most metadata approaches contain a mixture of conceptual-level abstrac-
tions and implementation-level specifications, thus producing a “full stack” solution
that ties conceptual decisions (such as whether to document the provenance of certain
kinds of information) to technological and implementation ones (such as whether to
store it as Unicode or ASCII, for example). Modularity, separation of concerns, and
layering are well-known engineering principles that have been shown to produce more
robust and maintainable products. We argue in this paper that metadata approaches
should observe these principles too.

2 Existing Metadata Approaches

A large number of metadata approaches exist. Here we try to provide a glimpse of the
breadth and complexity of existing approaches through the review of existing studies in
which metadata approaches are compared and analysed according to different domains
and uses. Firstly, we considered the semantic web as an area where metadata
approaches seem to be especially popular. A relevant analysis is presented in [28]
(shown as S henceforth), with a compilation of 34 standards for semantic web
including also the MUSCLE compilation for multimedia elements [27], as well as de
facto standards such as Schema.org [30]. Secondly, standardisation bodies also
maintain their own aggregation works to register existing metadata approaches. The
most representative is the NISO report [18] (N henceforth), which brings together 7
general standards for metadata representation, and which has worked as the seed for the
ISO/IEC 11179 [10] international standard.

Thirdly, and given that metadata is, after all, about describing data, we looked at
how specialists in digital humanities and information documentation (including
archives and libraries, translation and language studies, communication areas and
humanities and social sciences researchers) approach metadata needs. A reference work
for these communities is Riley’s glossary [25] (R henceforth), which indexes, visu-
alises and briefly describes 104 metadata standards used by these professionals. This
glossary also includes other previously commented catalogues such as MUSCLE [27].
Finally, many other domains possess their own metadata initiatives, such as earth
sciences, biology, medicine or physics. In this regard, the Research Data Alliance
(RDA) [24] is an international organisation sponsored by the European Commission as
well as some American and Australian government agencies pursuing research on
data-driven initiatives, and currently having over 5100 members from 122 countries.
RDA maintains an active community project [23] (D henceforth) for the indexation,
implementation and maintenance of metadata approaches in multiple knowledge areas,
with 39 registered metadata approaches in their catalogue [2].

We have used these aggregate studies as a basis for the review of existing metadata
approaches. Some overlap exists between studies, a number of metadata approaches
being included and described by multiple studies. However, this overlap is not too
significant: only one approach appears in all four studies, and most pairs of studies
have four to six approaches in common of a grand total of 156 in total. Such a low

94 C. Gonzalez-Perez and P. Martin-Rodilla

degree of overlap indicates a considerable fragmentation as well as a notable prolif-
eration of different metadata approaches. To make the review manageable and focused,
we have considered the approaches that appear in at least two of the mentioned
aggregate works, adding up to 28. Although there are many works that index or
catalogue metadata approaches, works that carry out a comprehensive classification and
review are less far common. One of the most complete in terms of classification criteria
is [16], which proposes a classification of metadata approaches based on granularity
and application domain. Application domain is indicated as domain independent (I) or
domain dependent (D). In addition, granularity is quantified as the number of hierar-
chical levels in the metadata approach, but is further simplified as Global (G;
general-purpose metadata approach), Local (L; domain-specific approach), Container
(C; metadata aggregator) or Conceptual (CC; approach containing a rigorous schema
definition). Table 1 shows the results of the review of metadata approaches.

Note that only one approach (ISO 15836) is present in all the aggregate works
consulted, and only two of those classified as being of conceptual granularity (ISO

Table 1. Reviewed metadata approaches. Sources are indicated as R, N, S or D as per the text.

Name Application domain Gty. Specific field Source

AGLS I: Semantic web C Government resources on the web RS
Darwin Core D: Biology L Biodiversity RD

DCAT I: Semantic web C Catalogue interoperability SD
DIF D: Earth sciences L Paleoclimate RD
DIG35 D: Images L Images RS

EAD D: Humanities C Record description RS
EML D: Ecology L Ecology RD

FGDC D: Geography L Geospatial features RD
FOAF I: Semantic web G People RND
FRBR I: Humanities CC Bibliography RS

ISO 15836 (Dublin core) I CC Anything RNSD
ISO 19115 D: Geography L Geospatial features RSD

ISO/IEC 11179 I CC Organisational information NS
ISO/IEC 13250 (topic maps) I CC Topical knowledge RS
Linked Data I: Semantic web G Anything RS

LOM D: Education L Educational resources RS
MARC D: Humanities C Bibliography RS

METS I: Humanities C Data collection RS
OAI I: Semantic web G Resource exchange formats RSD
OAIS D C Preservation protocols RS

ONIX D: Book industry C Published material RND
OWL/RDF I: Semantic web C Machine-readable semantics NSD

PMH I: Semantic web C Data collection RS
PREMIS I: Humanities G Preservation of objects RSD
RDA I: Humanities CC Bibliography RS

SKOS I: Humanities G Taxonomies RND
TEI I: Text-based L Text mark-up RS

An Alternative Approach to Metainformation Conceptualisation and Use 95

15836 and ISO/IEC 11179) are included in most of the aggregate works. These two
constitute the approaches with larger disciplinary scope and are amongst the most
widely used [16]. For these reasons, both ISO 15836 and ISO/IEC 11179 represent
good candidates to be analysed in depth. The following subsections present the results
of this analysis.

2.1 ISO 15836 (Dublin Core)

ISO 15836, also known as Dublin Core, comprises a set of works carried out by the
Dublin Core Metadata Initiative (DCMI), launched in 1995 to develop specialised
metadata vocabularies that enable the construction of more advanced information search
systems. Initially, Dublin Core specified 15 information descriptors that should be
considered when documenting metadata for anything, such as Creator, Date or Lan-
guage. The initial success of Dublin Core led the DCMI to promote the creation of an
abstract model as well as a language specification to express Dublin Core-compliant
metadata. This language is specified as a metamodel expressed in UML, as the DCMI
was targeting developers, designers and software scientists as relevant stakeholders.
Since 2003, the term “Dublin Core” refers to the ISO 15836 international standard [21]
for the description of information resources across domains; all types of resources are
describable regardless of their format, area of expertise or cultural origin. Such a wide
purpose and scope explains its presence in all the revised aggregate works and its wide
adoption across disciplines [20]. Some domains where Dublin Core has been used
include health systems [26], Earth sciences [17], social sciences [15] or humanities [14].

The DCMI metamodel is defined in three parts: the DCMI Resource Model, the
DCMI Description Set Model, and the DCMI Vocabulary Model (Fig. 1). In the DCMI
metamodel, Resources are linguistic entities (as per their relations to terms and
vocabularies) and thus correspond to information entities about things in the world that
are to be described. For example, a bibliographic catalogue entry in a library is a
resource under DCMI. However, resources are defined in DCMI as “anything that
might be identified, i.e. an image, a service, and a collection of other resources, human
beings, corporations, etc.”. This definition is alluding to the entities in the world, rather
than to information records about them. However, metadata is supposed to be data
about data, rather than data about entities in the world. This is a significant contra-
diction and a potential source for confusion with the DCMI metamodel. Metadata itself
corresponds to Descriptions, which are defined as “one or more statements about one,
and only one, resource”. This captures the essence of metadata satisfactorily, albeit
being based on a poor definition of Resource. Finally, Vocabularies correspond to the
words and terms that we use when constructing descriptions.

In addition to the confusing definition of Resource, there are some other conceptual
weaknesses in the DCMI metamodel. Firstly, the organisation of the metamodel in
three parts indicates that information about entities in the world (i.e. data) is being
treated separately from the information gathered about it (i.e. metadata). In other words,
the Resources vs. Descriptions dichotomy shows the differential treatment of metadata
as essentially different to data, in contrast with our argument in the previous section.
Consequently, under DCMI something is either data or metadata. This poses some
serious problems that are discussed in the next section.

96 C. Gonzalez-Perez and P. Martin-Rodilla

Secondly, the DCMI metamodel incorporates implementation-level constructs,
such as URI-related classes, together with highly abstract ones, such as Resource or
Description. This is exemplified by the definition of the Literal Value class: “A value
which uses the Unicode string as a lexical form, together with an optional language tag
or datatype, to denote a resource (i.e. “literal” as defined by RDF)” [21]. Making the
definition of a conceptual-level class depend on specific implementation choices such
as Unicode or RDF clearly contravenes the layering and separation of concerns prin-
ciples in software engineering.

2.2 ISO/IEC 11179 (Metadata Registry)

ISO/IEC 11179 Metadata Registry (MDR hereafter) is an international standard
developed between 2005 and 2015 [10]. It aims at the representation of metadata
structures in organisations as well as their exchange and integration in heterogeneous
environments. As with Dublin Core, it is a general-purpose standard with applications
in a range of disciplines. The metamodel of the standard is defined in UML as in the
previous case. Good examples of ISO/IEC 11179 applications exist in e-government
(including national health systems, legal or quality of service) or smart cities (including
urban transport systems) [1].

The MDR metamodel is defined in six parts: ISO/IEC 11179-1:2015 Framework,
ISO/IEC 11179-2:2005 Classification, ISO/IEC 11179-3:2013 Registry metamodel and
basic attributes, ISO/IEC 11179-4:2004 Formulation of data definitions, ISO/IEC

Vocabulary Term

Vocabulary
Encoding Scheme

Syntax Encoding
Scheme Class Property

*

1

Resource

1..*

* Instance OfMember Of 1..*

*

Has Range

Has Domain

1..*

1..*

0..1

0..1

Resource

Described
Resource Value

Literal Value

Non-Literal Value

Property-Value
Pair

Property

1

1*

*
Described Using

1

Record

Description Set

Description

Statement

Value Surrogate

Described
Resource URI

Described
Resource

Property URI Property
Iden fies

Iden fies

Literal Value
Surrogate

Non-Literal Value
Surrogate

Value URI

Value String

Non-Literal Value

Literal Value

Iden fies

Encodes

Represents

Describes

1

1

1

1

1

1

Fig. 1. Overall structure of the DCMI metamodel, including the three class families defined in
the standard. Classes highlighted in grey work as connectors between the families.

An Alternative Approach to Metainformation Conceptualisation and Use 97

11179-5:2015 Naming and identification principles and ISO/IEC 11179-6:2015
Registration. The first part maintains a registry of standard components and modifi-
cations. Use recommendations, naming and information management issues are
explained in parts 2, 4 and 5, while part 3 corresponds to the formal specification of the
standard metamodel. This constitutes the focus of our conceptual analysis here. Due to
the large size of the metamodel, we will focus only on the Data_Description package,
which contains the classes that enable the description of specific metadata objects.

From a conceptual perspective, and as in the case of Dublin Core, some weaknesses
appear for MDR. Firstly, metadata is conceived as a separate thing to the data that it
describes. This is evident by looking at the Data_Description package (Fig. 2) and
some areas in the Registration package. To start with, the standard is providing a
complex and large metamodel to represent information, despite the fact that a number
of information modelling languages and approaches such as UML [11] or ConML [7]
already exist. Reinventing the wheel by including information representation elements
in MDR (i.e. most of the constructs in Fig. 2) is therefore redundant with UML or
ConML, and we argue that either of these languages will always do a better job at
expressing information modelling concerns than MDR, which treats them as a small
and non-central aspect. Furthermore, the fact that MDR provides its own mini-
metamodel to represent data on which metadata will be gathered indicates that data and
metadata are treated, like in the case of Dublin Core, as separate and different things.

In summary, Dublin Core and MDR are very different metadata approaches, but
they suffer from very similar problems. In the following section, we elaborate on these
problems and describe the design principles for a better approach to metadata (or
metainformation) management.

Object_Class

Data_Element_Concept

Property

Conceptual_Domain

dimensionality

Data_Element

precision

Described_Conceptual_Domain

description

Enumerated_Conceptual_Domain

0..1
0..*

0..*

1

0..*

0..1

0..*

0..*

Value_Meaning

begin_date
end_date

Permissible_Value

permitted_value
begin_date
end_date

Value_Domain

datatype
maximum_character_quantity
format
unit_of_measure

0..* 1

Enumerated_Value_Domain

Described_Value_Domain

description

0..*

1
0..1

1

0..*

1

Fig. 2. Excerpt of the metamodel of the Data_Description package in MDR.

98 C. Gonzalez-Perez and P. Martin-Rodilla

3 Metadata as a Conceptual Problem

The two metadata standards described in the previous section exemplify the major
issues discussed in the introduction, and which are shared by the vast majority of the 28
reviewed approaches. In this section, we confront the evidence obtained from this
analysis with the theoretical principles sketched in the Introduction, and which are
elaborated here. First of all, there is a significant terminological and scope problem. For
example, and as we discussed in the previous section, Dublin Core considers metadata
to be the description of resources, where resources are physical entities in the world;
but if this is metadata, what is plain data? In addition, the 28 reviewed approaches
constitute very different kinds of artefacts, ranging from genuine metadata schemata to
data modelling languages to process recommendations. To clarify this confusion, we
suggest the following terminology and associated scopes (Fig. 3):

• A data item is anything stored in a computer system, and which describes some
entity in the world.

• A metadata item is a data item that describes a data item.
• A metadata schema is a specification of the structure that metadata items about a

particular data item must follow. In this manner, every metadata item conforms to a
metadata schema.

• A metadata language is a formal language that allows us to construct metadata
schemata. In this manner, every metadata schema is expressed in a particular
metadata language.

• Metadata management is the process of using metadata languages to construct
metadata schemata and/or to define metadata items conforming to the latter.

According to this conceptualisation, the DCMI described in the previous section
(Fig. 1) is a metadata language, although the original Dublin Core 15 information
descriptors constitute a metadata schema. Similarly, the Data_Description package in
MDR (Fig. 2) constitutes a metadata language, whereas most of its Registration
package constitutes a specification of a metadata management approach. Of the 28
reviewed approaches in the previous section, most of them constitute metadata sche-
mata and metadata languages.

It is worth noting that the conceptualisation proposed above is very permissible as
to what may constitute a data item. In this regard, data items may correspond to M0

Metadata
Management

Metadata Item

Metadata Schema

Metadata
Language

Data Item

is expressed in

conforms to

describes

Fig. 3. Major concepts and relationships related to metadata.

An Alternative Approach to Metainformation Conceptualisation and Use 99

data (using OMG’s parlance) such as objects or records in a database, but also to M1
data such as data structures, classes or other type-level specifications. Actually, data
items may correspond to data at any M level. This makes sense as any kind of data
maybe susceptible to being documented and described.

In addition, the relationship between the definitions of data item and metadata item
has the consequence that every metadata item is also a data item. In other words,
MetaDataItem may be seen as a subtype of DataItem. This fits the logic described in
previous sections that metadata is not essentially different to (plain) data, but a par-
ticular kind of it. What’s more, we argue that metadata is not even a subtype of data,
but a role that data may take in certain situations. Consider the following scenario.
A team of librarians catalogue a number of books in a computer system. The data that
they enter constitutes plain data, since it describes entities in the physical world, the
books. The librarians also record some metadata, such as who entered each book
record, when it was done, and whether data was obtained by looking at the physical
book or from a pre-existing catalogue. All these data items describe the book data, and
hence we call them “metadata” (Fig. 4A). However, imagine that, at some point in the
future, an information sciences student decides to carry out a research project on book
cataloguing practices, and takes the metadata entered by the librarians as his/her object
of study. In other words, metadata items about the books constitute the research pro-
ject’s primary data. The student may subsequently add his/her own metadata about it;
for example, he/she may record what quality or reliability each metadata item has, what
kind of process was followed by the librarian who entered it, etc. These are, in fact,
meta-metadata items in relation to the original book data (Fig. 4B). In other words, the
“meta-” prefix is relative, and we can easily conceive chains of meta-relationships
between data items of arbitrary length.

In Fig. 4B, object mb is both plain data and metadata, depending on how we look at
it. For the librarians, it is metadata about their book data; for the research student, it is
data being described by further metadata. Hence our argument that metadata is not a
base type (in terms of [5]), but a role. In terms of Fig. 3, this means that all the “meta”
concepts in the figure can be seen as roles that their “plain data” counterparts may play.
For example, we argue that a metadata schema is not essentially different from a plain
data schema, but just a data schema for which the conforming data plays the role of
metadata in some scenarios. Similarly, a metadata language is just a data language for
which the resulting schemata happen to be used for metadata. We must conclude, then,
that having a “meta” stack like in Fig. 3 does not make much sense and that, as hinted
at from the beginning of this paper, metadata is just a particular role that data may
play in specific scenarios.

b: Book

Title = “Moby Dick”
Year = 1851

mb: BookMetaDataItem

Author = “Alice”
Date = 8 June 2016
Source = Book

Describes b: Book

Title = “Moby Dick”
Year = 1851

mb: BookMetaDataItem

Author = “Alice”
Date = 8 June 2016
Source = Book

Describes mmb: BookMetaMetaDataItem

Reliabi lity = Good
ProcessKind = BatchEntry

Describes

BA

Fig. 4. Metadata and meta-metadata items. In A, mb constitutes metadata about b. In B, a third
data item, mmb, is added, which constitutes metadata about mb.

100 C. Gonzalez-Perez and P. Martin-Rodilla

According to this, we state the following design principles for a better metadata
management approach:

1. Since metadata is not essentially different from data, specifically-designed complete
metadata languages are not necessary. Regular data languages should suffice, per-
haps complemented by some specific mechanisms to capture the “describes” rela-
tionship in Fig. 3.

2. Since data items in Fig. 3 may exist at any M level, metadata should be applicable
to all of them. In particular, metadata should be applicable to any data regardless of
whether it is a type (M1) or an instance (M0).

3. Since metadata is a role that data plays in some scenarios, the context of data must
be taken into account. For this reason, we prefer to raise the level of abstraction and
discuss “describes” relationships in terms of information rather than data.

4. Since the “describes” relationship captures a conceptual link between a piece of
information and another piece of information describing the latter, we claim that
implementation issues on how to encode, store, transmit or process this information
should be treated as a separate concern and excluded from a metainformation
management approach. In addition, and since metadata is just data, the usual
encoding, storage, transmission and processing mechanisms that are used for data
should be applicable to metadata as well.

Based on these design principles, we developed the metainformation features of
ConML, which constitute our proposal, as described in the next section.

4 Proposed Solution

ConML [3, 7] is a conceptual modelling language especially designed to be affordable
to non-specialists in information technologies, free from implementation details, and
supportive of “soft” aspects such as temporality, vagueness and subjectivity, which are
very relevant to the humanities [4]. Superficially, ConML resembles other well-known
object-oriented modelling languages such as UML [11], having as major modelling
primitives those of Class, Attribute, Association and Object. ConML is capable of
capturing information in any domain at a conceptual level, very much as UML does for
software and systems specifications. A comprehensive description of ConML is out of
the scope of this paper.

The proposal here described builds on top of ConML by adding the minimum set of
language features so that the modelling of metainformation is fully supported according
to the design principles described in the previous section. Only one extra association is
required in the metamodel to implement metainformation (Fig. 5).

As shown in Fig. 5, a Describes association has been added from Object to Model
Element. This association captures the fact that, in ConML, an object may describe a
number of model elements, whether they are types or instances. Adding this association
has two interesting consequences. Firstly, it “reuses” a class in the metamodel (namely,
Object) to implement metadata items. In other words, metadata items (as per Fig. 3) are
objects in ConML, very much like (plain) data items. This satisfies principle number 1
in the previous section, i.e. that metadata is not essentially different from data.

An Alternative Approach to Metainformation Conceptualisation and Use 101

Secondly, it allows for chained metadata relationships (as shown in Fig. 4B), because
the model element described by an object can be another object which, in turn,
describes another one, and so on and so forth. Principle 2 is also satisfied, since the
target of the Describes association, ModelElement, is a very abstract class from which
both types and instances specialise. This means that objects acting as metainformation
may be applied to anything in a model regardless of its M level, including other objects,
particular values, classes, attributes, associations, etc.

In addition, design principles 3 and 4 in the previous section are also satisfied.
Principle 3 is fulfilled since the Describes association happens between high-level,
conceptual model elements (such as objects and other instances of ModelElement)
rather than individual data atoms. This allows for a better contextualisation of the data
being described as well as the metadata itself as compared to other approaches less
conceptual and more implementation-oriented. Also in this regard, principle 4 is sat-
isfied since no extra constructs are introduced in the language to describe how
metainformation is encoded, stored, transmitted or processed. Since metainformation in
our proposal is composed of instances of Object, it is open to being treated as any other
collection of objects, and stored in databases, encoded as XML, or processed in any
meaningful manner. Our metainformation proposal does not limit this.

It is also important to note that, in this proposal, metainformation objects may be
embedded in the same model being described, or exist as part of a different model. The
extension mechanisms of ConML [7, Sect. 5.9] allow for a model to refer to model
elements in another model. Although metainformation objects can exist in the same
metamodel being described, using a separate model results in better modularity.

So far, we have been using regular link notation to depict instances of the Describes
association (e.g. in Fig. 4). However, we must realise that Describes in the ConML
metamodel (Fig. 5) is not the same as a link. In fact, a link between objects captures the
fact that the entities represented by the connected objects are linked, whereas Describes
captures the fact that the connected model elements themselves, rather than the rep-
resented entities, are connected (Fig. 6).

In Fig. 6A, the Wrote link means that the person represented by object p wrote the
book represented by object b. In Fig. 6B, however, Describes means that the object mr
itself describes the object b itself. In other words, links happen between entities in the

Model ModelElement

Type

Class Feature Association

Attribute SemiAssociation

Instance

Link ObjectFacetSet

ValueSet ReferenceSet

Describes0..*

0..* M
et

ai
nf

or
m

a
on

Fig. 5. ConML metamodel augmented with the Describes association to implement
metainformation.

102 C. Gonzalez-Perez and P. Martin-Rodilla

world and are represented in a model through the associated formal constructs, whereas
metainformation Describes relationships happen between model elements themselves,
without a counterpart that is external to the model. To highlight this difference, we
propose that a special graphical device is used to depict Describes relationships. In
Fig. 6C, the same Describes relationship is shown, but using a line connecting the
involved model elements, plus a small circle overlapping the target one. This circle can
be read as “applies to”. Hence, Fig. 6C can be read as “the mr metainformation record
applies to object b”.

We said earlier in this section that Describes relationships connect metainformation
objects to the model elements that are being described. These model elements may be
objects, but also of many other types (see Fig. 5). Thus, the notation just described can
be easily employed in a variety of situations involving not only objects as targets, but
also classes, values or elements of other kinds. Figure 7 shows some examples.
Metainformation object mr1 in Fig. 7 applies to the Book class, metainformation object
mr2 applies to the b object, and metainformation object mr3 applies to the Year = 1851
value. Note how the latter is displayed with the small circle next to the attribute value,
rather than intersecting the object box border.

5 Discussion and Conclusions

The proposed solution in the previous section provides several advantages to existing
metadata/metainformation approaches. First of all, it satisfies the design principles
described in Sect. 3 and, by doing so, avoids the abundant terminological issues in
other approaches, allows for uniform treatment of information and metainformation,
permits arbitrary-length chains of metainformation levels, allows the description of
information elements of any kind, and avoids implementation issues. In addition, the

b: Book

Title = “Moby Dick”
Year = 1851

mr: MetainfoRecord

Author = “Alice”
Date = 8 June 2016
Quality = 3

Describes

B

b: Book

Title = “Moby Dick”
Year = 1851

p: Person

Name = “Herman Melvi lle”
Nationality = “American”

A

Wrote

Author Metainforma on

b: Book

Title = “Moby Dick”
Year = 1851

mr: MetainfoRecord

Author = “Alice”
Date = 8 June 2016
Quality = 3

C

Fig. 6. Semantics of links and Describes relationships. In A, a link is shown. In B, a Describes
relationship is shown using link notation. In C, the same Describes relationship is shown, but
using special notation.

b: Book

Title = “Moby Dick”
Year = 1851

mr2: MetainfoRecord

Author = “Alice”
Date = 8 June 2016
Quality = 3

Book

Title: string
Year: date

mr1: MetainfoRecord

Author = “Bob”
Date = 18 April 2016
Quality = 2

mr3: MetainfoRecord

Author = “Alice”
Date = 12 June 2016
Quality = 2

Fig. 7. Metainformation being applied to a class (mr1), an object (mr2) and a value (mr3).

An Alternative Approach to Metainformation Conceptualisation and Use 103

proposed approach is of minimal size and impact: adding only one metamodel asso-
ciation plus an accompanying graphical notation device, metainformation can be
expressed with flexibility in the context on ConML models. We are aware that some of
the metadata approaches reviewed in Sect. 2 address very specific needs of metadata
modelling, such as constrained domain data in DCMI. However, these needs arguably
pertain to overall data/information modelling rather than to the specific case of
metadata/metainformation. For example, one could argue that DCMI is superior to the
approach presented here because it supports constrained domain data and ConML
doesn’t. However, we argue that, if metadata modelling really needs constrained
domain specifications, then this feature is likely to be necessary for data modelling in
general and not only for metadata modelling. Augmenting ConML with this feature (or
any other) would automatically make it available for use in (plain) data as well as
metadata modelling.

We conclude that a simple, unified and implementation-independent approach to
metadata/metainformation management, like the one proposed here, is superior to the
plethora of options currently existent which, in addition, segregate metadata from other
data and pollute its conceptual modelling with implementation noise.

References

1. Bargmeyer, B.E., Gillman, D.W.: Metadata standards and metadata registries: an overview.
In: International Conference on Establishment Surveys II, Buffalo, New York (2000)

2. DCC, 004-2017: Digital Curation Centre, University of Edinburgh. http://www.dcc.ac.uk/
resources/metadata-standards/list

3. Gonzalez-Perez, C.: A conceptual modelling language for the humanities and social
sciences. In: Rolland, C., Castro, J., Pastor, O. (eds.) 2012 6th International Conference on
Research Challenges in Information Science (RCIS), pp. 396–401. IEEE Computer Society
(2012)

4. Gonzalez-Perez, C.: Modelling temporality and subjectivity in ConML. In: Wieringa, R.,
Nurcan, S. (eds.) 7th IEEE International Conference on Research Challenges in Information
Science (RCIS 2013), pp. 1–6. IEEE Computer Society, Paris (2013)

5. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in
business modeling. In: Missikoff, M. (ed.) Enterprise Modelling and Ontologies for
Interoperability, CEUR Workshop Proceedings, p. 125. CEUR-WS.org (2004)

6. Hodgins, W., Duval, E.: Draft standard for learning object metadata. IEEE 1484.12.1-2002
(2002). https://biblio.educa.ch/sites/default/files/20130328/lom_1484_12_1_v1_final_draft_
0.pdf

7. Incipit: ConML Technical Specification. Incipit, CSIC (2016). http://www.conml.org/
Resources_TechSpec.aspx

8. ISO: ISO 21127:2006 Information and Documentation – A Reference Ontology for the
Interchange of Cultural Heritage Information (2006). https://www.iso.org/standard/34424.
html

9. ISO: ISO 19115-1:2014 Geographic information – Metadata (2014). https://www.iso.org/
standard/53798.html

10. ISO: ISO/IEC 11179, Information Technology – Metadata Registries (MDR) (2015). http://
metadata-standards.org/11179/

104 C. Gonzalez-Perez and P. Martin-Rodilla

http://www.dcc.ac.uk/resources/metadata-standards/list
http://www.dcc.ac.uk/resources/metadata-standards/list
https://biblio.educa.ch/sites/default/files/20130328/lom_1484_12_1_v1_final_draft_0.pdf
https://biblio.educa.ch/sites/default/files/20130328/lom_1484_12_1_v1_final_draft_0.pdf
http://www.conml.org/Resources_TechSpec.aspx
http://www.conml.org/Resources_TechSpec.aspx
https://www.iso.org/standard/34424.html
https://www.iso.org/standard/34424.html
https://www.iso.org/standard/53798.html
https://www.iso.org/standard/53798.html
http://metadata-standards.org/11179/
http://metadata-standards.org/11179/

11. ISO/IEC: Information Technology – Object Management Group Unified Modeling
Language (OMG UML) Part 1: Infrastructure. ISO/IEC 19505-1:2012 (2012)

12. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16(6), 1811–1841 (1994)

13. Digital Publications LLC: Glossary of Software Engineering Terms (2005). http://www.
shellmethod.com/refs/seglossary.pdf

14. Macêdo, D.J., Shintaku, M., De Brito, R.F.: Dublin core usage for describing documents in
Brazilian government digital libraries. In: International Conference on Dublin Core And
Metadata Applications, pp. 129–135 (2015)

15. Malta, M.C., Baptista, A.A., Parente, C.: A DCAP for the social and solidarity economy. In:
2015 Proceedings of International Conference on Dublin Core and Metadata Applications,
DCMI, pp. 20–29 (2015)

16. Mendez, E., Van Hooland, S.: Metadata typology and metadata uses. In: Handbook of
Metadata, Semantics and Ontologies, vol. 1 (2013)

17. Mougenot, I., Desconnets, J.-C., Chahdi, H.: A DCAP to promote easy-to-use data for
multiresolution and multitemporal satellite imagery analysis. In: International Conference on
Dublin Core and Metadata Applications, pp. 10–19 (2015)

18. NISO: Understanding metadata. National Information Standards, p. 20 (2004)
19. Olsen, L.: Directory Interchange Format (DIF): writer’s guide
20. Park, J.-R., Childress, E.: Dublin core metadata semantics: an analysis of the perspectives of

information professionals. J. Inf. Sci. 35(6), 727–739 (2009)
21. Powell, A., Nilsson, M., Naeve, A., Johnston, P.: DCMI Abstract Model (2007)
22. Radatz, J., Geraci, A., Katki, F.: IEEE standard glossary of software engineering

terminology. IEEE Std. 610121990(121990), 3 (1990)
23. RDA: RDA Metadata Directory (2017). http://rd-alliance.github.io/metadata-directory/

standards/
24. RDA: Research Data Alliance (2017). https://www.rd-alliance.org/
25. Riley, J.: Glossary of Metadata Standards. Indiana University Libraries (2010)
26. Robertson, W.D., Leadem, E.M., Dube, J., Greenberg, J.: Design and implementation of the

national institute of environmental health sciences Dublin core metadata schema. In:
International Conference on Dublin Core and Metadata Applications, pp. 193–199 (2001)

27. Salvetti, O., Pieri, G., Di Bono, M.: WP9: a review of data and metadata standards and
techniques for representation of multimedia content. MUSCLE. Network of Excellence FP6-
5077-52 (2004)

28. Sicilia, M.-A.: Handbook of Metadata, Semantics and Ontologies. World Scientific,
Singapore (2013)

29. Taylor, C.F., Field, D., Sansone, S.-A., Aerts, J., Apweiler, R., Ashburner, M., Ball, C.A.,
Binz, P.-A., Bogue, M., Booth, T.: Promoting coherent minimum reporting guidelines for
biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 26(8), 889–
896 (2008)

30. Tort, A., Olivé, A.: A computer-guided approach to website Schema.org design. In: Yu, E.,
Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 28–42. Springer,
Cham (2014). doi:10.1007/978-3-319-12206-9_3

An Alternative Approach to Metainformation Conceptualisation and Use 105

http://www.shellmethod.com/refs/seglossary.pdf
http://www.shellmethod.com/refs/seglossary.pdf
http://rd-alliance.github.io/metadata-directory/standards/
http://rd-alliance.github.io/metadata-directory/standards/
https://www.rd-alliance.org/
http://dx.doi.org/10.1007/978-3-319-12206-9_3

Schema Evolution and Foreign Keys: Birth,
Eviction, Change and Absence

Panos Vassiliadis1(B), Michail-Romanos Kolozoff2, Maria Zerva1,
and Apostolos V. Zarras1(B)

1 Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece
{pvassil,mzerva,zarras}@cs.uoi.gr

2 Upcom, Athens, Greece
libathos@hotmail.com

Abstract. In this paper, we focus on the study of the evolution of
foreign keys in the broader context of schema evolution for relational
databases. Specifically, we study the schema histories of a six free, open-
source databases that contained foreign keys. Our findings concerning
the growth of tables verify previous results that schemata grow in the
long run in terms of tables. Moreover, we have come to several surprising,
new findings in terms of foreign keys. Foreign keys appear to be fairly
scarce in the projects that we have studied and they do not necessarily
grow in sync with table growth. In fact, we have observed different cul-
tures for the handling of foreign keys, ranging from treating foreign keys
as an indispensable part of the schema, in full sync with the growth of
tables, to the unexpected extreme of treating foreign keys as an optional
add-on that twice resulted in their full removal from the schema of the
database.

Keywords: Schema evolution · Patterns of change · Foreign keys

1 Introduction

Software evolution is an inherent part of the lifecycle of software, and schemata,
carrying the architecture of a relational database are no exception to the gen-
eral pattern. Schema evolution is necessary for schemata to align the informa-
tion capacity of a database with user requirements, albeit with a cost: as the
schema changes, the surrounding applications are affected both syntactically and
semantically. Understanding the fundamental mechanisms and patterns behind
schema evolution is of great significance as it can allow us to see problems on
how databases are used, predict the change of tables in the future and adapt
application development, maintenance and resource management to the forth-
coming trends. Foreign keys are mechanisms that constrain data entry in rela-
tional tables, imposing that the domain of the contents of a table’s attribute

M.-R. Kolozoff—Work done while in the Univ. Ioannina.

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 106–119, 2017.
https://doi.org/10.1007/978-3-319-69904-2_9

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 107

is a subset of the contents of an attribute of another, lookup, table. Thus, for-
eign keys, being integrity constraints for the data of a database, are part of the
schema of the database, and as such, they are unavoidably amenable to change,
too. The main driver of our research is to answer the question: how do foreign
keys evolve over time?

To the best of our knowledge, until the present paper, the question was
without any answer. There are several works on the study of schema evolution
[1–6,10], which mostly focus on the macroscopic study of how the schema size
grows in terms of its tables and how the surrounding code of an application
relates to the underlying database (see Sect. 2). Yet, despite the importance of
foreign keys as an integrity constraint that guarantees consistency among the
values of different tables, the study of their evolution is a topic that –to the best
of our knowledge– has never been studied in the literature before.

In this paper, we study schema evolution by placing the focus on foreign keys,
rather than tables. We have collected the schema histories of a six free open-
source databases that contained foreign keys, and processed them to discover the
changes that occurred between subsequent releases (see Sect. 3). These data sets
were the only ones containing foreign keys, out of a larger collection of schema
histories of Free Open Source Software (FOSS) projects from different domains
with adequately long stories and schema sizes. Subsequently, we studied the
characteristics of foreign key evolution. Our findings, detailed in Sect. 4, include
both expected and unexpected phenomena. Schemata grow over time in terms
of tables. Growth is smooth and slow, with several periods of calmness. This is
a well-known result from the existing literature that is also verified by our study
too. Foreign keys do not necessarily grow in synch with table growth. In fact, we
have observed different “cultures” for the handling of foreign keys. In two cases
concerning scientific databases (Atlas, Biosql), foreign keys are an integral part
of the schema, span a vast percentage of tables and co-evolve with them. In two
other cases, also of scientific nature (Egee and Castor), only a subset of tables
were involved in foreign key relationships and their evolution is biased: Egee
(with a very small schema size) has a strong correlation of table and foreign key
evolution, whereas Castor (with a small percentage of tables being involved in
foreign keys) has mixed behavior throughout its history. Unexpected results came
from the data sets of Content Management System (CMS) nature, SlashCode
and Zabbix, where foreign keys involved only a small minority of tables. To
our big surprise, foreign keys in these projects, after a period of growth, are
completely removed from the schema with (a) a steep removal in the first case,
and, (b) a slow but constant removal rate in the latter. We make a detailed
discussion on the absence and extinction of foreign keys in specific environments
in Sect. 5. Our data indicate that, with the exception of few environments with
a strict adherence to the dictations of relational theory, foreign keys are scarce
and occasionally unwanted.

All our data sets and software are openly available to the research community
at our group’s site at Github (https://github.com/DAINTINESS-Group).

https://github.com/DAINTINESS-Group

108 P. Vassiliadis et al.

2 Related Work

The related work on schema evolution is not abundant and, in effect, quite recent.
Prior to the proliferation of Free Open Source Software (FOSS), researchers were
unable to get access to the histories of schemata that they could study. To our
knowledge, the only early study that exists is [5], which reports on the growth
and change breakdown of the schema of a health system. Late ’00s signaled
the slow appearance of a set of works [1–4,10] that continued down this road. A
consistent finding in all these works is the slow expansion of the size of the schema
in terms of tables, albeit with reports of a decreasing growth rate [4]. Frequently,
the surrounding application is not in sync with the underlying schema (which, as
a side note, signifies the importance of understanding the mechanics of schema
evolution) [3,10]. In line with these works, in [6,7], we have assessed whether
Lehman’s laws of evolution apply to the case of schema evolution, and confirmed
the growth of schemata over time, via the alternation of periods of concentrated
modifications (mostly table insertions and occasionally including table removals)
and periods of calmness with slow, or even zero growth. In [8,9], we report on
patterns of how properties of individual tables (rather than of the schema) like
duration, number of attributes, or, version of birth relate to the survival or
update profile of a table.

In all previous attempts, the object of study was the schema size as well as
the heartbeat of change, and only lately, tables. To the best of our knowledge,
the current paper is the first comprehensive effort in the literature to study the
evolution of foreign keys.

3 Experimental Setup

In this section, we begin with fundamental concepts for our study. Then, we
introduce the datasets that we have collected and processed using Parmenidian
Truth1, an open source tool we created for the purpose of this study.

3.1 Fundamentals

We treat a relational database schema as a set of relations, along with their
foreign key constraints. A relation is characterized by a name, a set of attributes
and a primary key. A foreign key constraint, is a pair between a set of attributes
S in a relation, RS , called the source of the foreign key, and a set of attributes T
in a relation RT , called the target of the foreign key. The foreign key constraint
requires a 1:1 mapping between S and T . As usual, at the extensional level, the
semantics of the foreign key denote a subset relation between the instances of
the source and the instances of the target attributes.

We model a database schema as a directed graph G(V,E), with relations
as nodes and foreign keys as directed edges, originating from their source and

1 https://github.com/DAINTINESS-Group/ParmenidianTruth.

https://github.com/DAINTINESS-Group/ParmenidianTruth

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 109

targeted to their target. Both nodes and edges are annotated with the respective
information mentioned in the previous paragraph. If two relations have more
than one foreign key with the same direction, the single edge that connects
them is annotated with all the foreign key pairs involved. The Diachronic Graph
of the history of a schema is the union of all the nodes and edges that ever
appeared in the history of the schema.

The evolution history, H = {v1, . . . , vn}, of a database schema can be thought
of as (a) a sequence of versions, but also as (b) a sequence of revisions. Unless oth-
erwise specified, we will treat the term history under the semantics of the former
of the two representations. Each version of the schema vi is a graph Gi(V i, Ei).
A transition between two subsequent versions of the history includes a set of
changes, involving (a) additions and deletions of relations and foreign keys, and,
(b) relation updates in the form of changes of primary keys, modifications of
attribute data types, and, attribute additions or deletions.

3.2 Datasets

The main characteristics of the six data sets that we considered in our study are
given in Fig. 1. We classify the data sets in three categories as follows.

Fig. 1. The main characteristics of the data sets.

Scientific Applications. Atlas is a particle physics experiment at the Large
Hadron Collider at CERN, the European Organization for Nuclear Research
based on Geneva, Switzerland. Atlas is notably known for its attempt to find
the Higgs boson, although its scientific aims are much broader. Trigger is one of
the software modules used in the Atlas project and it is responsible of filtering
the very large amounts of data collected by the Collider and storing them in
its database. Biosql is a generic relational schema that provides unified access

110 P. Vassiliadis et al.

to data from various sources, such as GenBank or Swissport that store genomic
data like sequences, features, for the BioPerl, BioPython, BioJava, and BioRuby
open source toolkits.

Computational Resource Toolkits. Egee is a data set from the homonymous
EU funded project, whose goal is to provide access to computational grids. Egee
is the smallest data set, frequently serving as a testbed, with a small number of
releases and a small schema size. Castor is a hierarchical storage management
(HSM) system developed at CERN, to store physics production files and user
files, via command-line tools and APIs.

Content Management Systems. SlashCode, a software framework for web
sites development; it is widely known for supporting the Slashdot website. Zabbix
is an open source distributed monitoring solution that can be used for the moni-
toring of networks, servers and virtual machines. We have used the PostgreSQL
version of the schema that includes foreign keys.

3.3 Data Processing

Based on our tool, Parmenidian Truth, we have parsed, internally represented,
visualized and measured the evolution of the studied schemata. Given the history
of a database, expressed as a sequence of data definition files, and consequently,
a sequence of differences between subsequent versions, our tool visualizes each
version of the database schema as a graph, with tables as nodes and foreign keys

Fig. 2. The story of Egee and its diachronic graph.

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 111

as edges and produces a PowerPoint presentation, with one slide per version
(appropriately annotated with color to highlight the tables affected by change).
Along with the appropriate visualization provisions, the result is practically a
movie on how the schema of the database has evolved. Then, the tool was also
extended with measurement collection capabilities. Thus, all our measurements
are also produced by the very same tool.

As an example, the evolution history of the Egee dataset is presented in
Fig. 2. The first graph represents Egee’s diachronic graph. The following graphs
represent versions with deletions and additions that shaped the diachronic graph.
In terms of coloring, our tool uses red for deleted nodes, green for added nodes,
and yellow for nodes with internal updates (e.g., attribute additions, deletions
or data type changes).

4 Growth and Heartbeat of Foreign Key Evolution

4.1 Total Number of Tables and Foreign Keys

In this section we quantitatively assess the evolution of the datasets that we
study, with respect to the total number of tables and foreign keys throughout
their entire lifetime. Figure 3 depicts the evolution of these two measures.

The different categories of schemata expose very different behaviors with
respect to their growth, and especially with respect to the growth in terms of
foreign keys. The first group of schemata, involving scientific databases, like
Atlas and Biosql expose growth that has expansion periods, shrinkage actions,
and periods of calmness in terms of both tables and foreign keys. The schema
is of moderate size for Atlas (from 56 at start, to 73 tables at end) and of small
size for Biosql (starting with 21 and ending with 28 tables), and the growth of
nodes and edges is practically in sync.

Concerning the category of computational resource toolkits, Egee is very
small in size and history and mostly serves as a demo example. Castor, on
the other hand, has a very large percentage of nodes without edges (observe
the difference of values in the y-axis). The number of tables grows from 62 to
74 tables (with the occasional removals and periods of calmness), whereas the
number of foreign keys is relatively stable (from 6 to 10).

Concerning the case of the two CMS’s (SlashCode and Zabbix), both CMS’s
go through a clear trend of expansion. Slashcode started without foreign keys at
all and obtained its first set of foreign keys in version 74. Both CMS’s end up with
zero foreign keys, however! For Slashcode there is a clear phase of progressive
removal, whereas for Zabbix, there is an abrupt removal of almost the entire
set of foreign keys in a single transition. The fact that developers can resort in
full removal of foreign keys at some point in the lifetime of a schema is a real
surprise. We devote a dedicated discussion on this in the sequel of the paper.

112 P. Vassiliadis et al.

Fig. 3. Number of nodes (tables) and edges (foreign keys) over time (x-axis: version
id) for the 6 studied data sets

4.2 Heartbeat of Changes

How Do Foreign Keys Germinate and Die? A first question that we wanted
to explore is how does the generation and removal of foreign keys takes place. We
have classified births and deaths of foreign keys in four categories. An addition
of a foreign key is considered as born with table, when either the source or the
target table is born along with the foreign key, while an explicit addition happens,
when a foreign key is added to two existing tables. Respectively, in the case of
deletions, a deletion of a foreign key is considered as died with table, when either
the source or the target table is removed along with the foreign key, while an
explicit deletion takes place when neither of the source or target tables gets
deleted and only the foreign key is removed. In Fig. 4, we present the statistical
breakdown of the creation and removal of foreign keys and we can see that
different cultures for handling foreign keys exist.

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 113

Fig. 4. Statistical breakdown on the creation and removal of foreign keys

The scientific data sets, Atlas and BioSQL, deal with foreign keys as a regular
part of the schema. Thus, foreign keys are overwhelmingly born along with tables,
and are very rarely added explicitly to existing tables (the latter percentage
ranges between 10–12%), while, at the same time, they are mainly removed
when one of the involved tables is removed too. Egee, coming from the category
of computational resource toolkits behaves similarly.

Castor and Slashcode deal with foreign keys as an ad-hoc add on. In these
two data sets, a very large part of the schema is without foreign keys (compare
the first two data rows of Fig. 4). In Slashcode, foreign keys are introduced in
v. 74. In both cases, foreign keys are added to existing tables three times more
often than they are created with new tables. The death of foreign keys is also
taking part without the removal of the tables: in the very few such occasions in
Slashcode, the two removal methods are evenly split, but in Slashcode, explicit
removals are 4:1 over removals along with table death. Remember, of course,
that Slashcode is a data set were eventually all foreign keys were removed.

Zabbix is a mixture of the above behavior with a sudden change of style. It
is clear that Zabbix started by dealing with foreign keys as a regular part of
the schema: foreign keys were present at the beginning, they were mostly born
with the birth of new tables and additions to existing tables were rare. Towards
the end of the schema’s history, however, between revision 1.150 and 1.151 all
foreign keys are explicitly commented out and never restored back. This means
that an intentional decision of treating foreign keys as a disposable add-on to
the schema has been taken.

114 P. Vassiliadis et al.

What are the Characteristics of the Heartbeat of Change of the For-
eign Keys? In Fig. 5, (a) the number of foreign keys in each version of the
schema history is depicted as a solid line, and, (b) the number of foreign key
births and deaths is depicted via the respective bars. The bars belong to the
aforementioned four categories of change.

A common theme in all the data sets is the consistent scarcity of foreign key
changes (Fig. 6). Apart from the scientific data sets, where the number of foreign

Fig. 5. Heartbeat of foreign key creation and removal

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 115

Fig. 6. Percentage of transitions containing schema change of foreign keys

key changes is high, the rest of the datasets demonstrate a small percentage of
transitions with foreign key change. As already mentioned, scientific data sets
treat foreign keys as an integral part of the schema and table births and deaths
come along with the respective changes. Thus the frequency of change is high.
In the rest of the datasets, the additions are too few and explicit (see Fig. 4). In
the case of Slashcode, if the phase of mass deletions was not part of the history,
the activity would be even less.

In terms of time spread, in most of the data sets, the events are proportionally
spread in time. Atlas is an exception to this pattern. We occasionally see (a) do-
undo actions (in Atlas, Slashcode and Castor), where a revision of the schema is
undone in the following commit and, (b) restructuring due to table renamings
(4 times in Biosql, and twice in Zabbix).

The volume of change is also low: most changes do not exceed one foreign key,
with the exceptions of explicit mass additions and deletions, as well as do-undo
actions.

5 Where Did the Foreign Keys Go?

5.1 The Strange Case of the Disappearing Foreign Keys

Slashcode and Zabbix are our two CMS’s that displayed the phenomenon of
eventually losing all their foreign keys. Whereas for Zabbix, all our efforts for
retrieving any documented reasons for the removal have been fruitless, Slashcode
has an abundance of records on the removals of foreign keys. In the sequel, we
report on this story.

In the first occurrence of massive foreign key removals (at version rev 1.120),
22 foreign keys were deleted. This mass removal took place due to a problem
with the compatibility of the attribute types that the foreign keys referred to.
The Data Definition file contains an explanatory comment for this removal:

“Commented-out foreign keys are ones which currently cannot be
used because they refer to a primary key which is NOT NULL
AUTO INCREMENT and the child’s key either has a default value
which would be invalid for an aut increment field, typically NOT NULL
DEFAULT ‘0’. Or, in some cases, the primary key is e.g. VARCHAR(20)

116 P. Vassiliadis et al.

NOT NULL and the child’s key will be VARCHAR(20). The possibility of
NULLs negates the ability to add a foreign key. ⇐ That’s my current the-
ory, but it doesn’t explain why discussions.topic SMALLINT UNSIGNED
NOT NULL DEFAULT ‘0’ is able to be foreign-keyed to topics.tid SMALL-
INT UNSIGNED NOT NULL AUTO INCREMENT”

In the second deletion (at version rev 1.151), 10 foreign keys were removed,
because some tables changed their storage engine to InnoDB from MyISAM.
There was also an explanatory comment inside the corresponding sql file:

“Stories is now InnoDB and these other tables are still MyISAM, so no
foreign keys between them.”

The rest of the deletions happened because the foreign keys caused too many
problems to the system that could not debugged, resulting in the decision to
leave the schema without any foreign keys. We have retrieved several comments
for these removals. At version re 1.174, where 3 foreigns keys were deleted the
following comment was found:

“This doesn’t work, makes createStory die. These don’t work, should check
why. . . ”

At version’s rev 1.189 file the comments mention:

“This doesn’t work, since in the install pollquestions is populated before
users, alphabetically”

Finally, at version rev 1.201 the following comment was found:

“This doesn’t work, since discussion may be 0.”

At the end of this process, the schema is left with zero foreign keys. Interestingly
enough, the schema also contained no foreign keys at its start. Quite importantly,
Slashcode’s behavior holds both foreign key additions and deletions mostly hap-
pening explicitly (i.e., without the addition or removal of the involved tables).
In other words, it appears that foreign keys are treated as a disposable add-on
that was removed when problems occurred.

What do we make out of these removals? The main problem seems to be the
difficulty that developers had to face with fine details in the tuning and handling
of the foreign keys. Practically, it appears that the easiest way out of this kind
of problems is to comment out the respective foreign key. We acknowledge the
difficulties that occur e.g., in the case of different storage engines and the per-
formance constraints that can drive such decisions. However, the fact that the
removals of foreign keys went on as a regular practice, instead of attempting
to fix the problems (some of which can be considered fairly easy fixes, like for
example changing the order of table population) simply states that the essence
of the contribution of foreign keys in the consistency of the schema does not
seem to outweigh the need to quickly get things done.

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 117

5.2 Are Foreign Keys Unwelcome in CMS’s?

One could easily suggest that the removal of foreign keys from our two CMS’s
is just a coincidence. Although this can certainly be the case - and we cannot
verify the problem unless more studies by independent groups are performed -
there is evidence to suggest that the case of CMS’s suffers from an “unfriendly”
attitude towards foreign keys.

In summer of 2013, we collected twenty data sets to support our work on
mining evolution patterns in the history of open-source databases. The term
“data set” refers to the history of the schema of a software project, represented
as a sequence of files, sorted in terms of their commit timestamp, with the
Data Definition Language commands that create the schema of the project’s
database. We have worked with the main branch of these projects. The collection
includes two datasets from the biomedical domain (Ensembl and Biosql), 5 data
sets from CERN (Atlas, Egee, DQ2, Castor2 and Dirac) and 13 data sets from
the CMS domain (Slashcode, Zabbix, Coppermine, Dekiwiki, E107, Joomla 1.5,
Mediawiki, Nucleus, phpBB, phpwiki, Tikiwiki, Typo3, Xoops).

When we turned our attention to the study of foreign keys, we came up
with a surprising discovery: only two of the 13 CMSs included foreign keys (!)
in contrast to all the biomedical and CERN-oriented data sets that came with
foreign key usage. In the latter two families, Atlas, Castor and BioSQL are really
useful for analysis. Egee is a smaller data set, in number of tables, foreign keys,
and in number of revisions, as already mentioned. DQ2 comes with 55 versions in
its mySQL version, out of which only the first 19 contain foreign keys. The data
set starts with 2 foreign keys and ends with 1, only to be permanently dropped
in the 20th version. DIRAC is quite similar case to Egee, comes with 42 versions
over a very small schema, as it starts with 9 tables and 10 foreign keys at first
version and ends with 15 tables and 8 foreign keys (less than in the beginning).
The only data set that hides a - yet unclear - potential is Ensembl, where we
have not yet managed to link the 529 files with table creation statements to the
18 files containing foreign key declarations.

In terms of the CMSs, we believe that the absence of foreign keys in the
schema declaration of their database is systematic. Even the two of the 13
CMS’s that adopted foreign keys at some point, eventually dropped them. We
attribute the phenomenon to the combination of two factors. First, in a CMS
environment, the population of the table columns where foreign keys ought to
be present, mostly comes from drop-down listboxes with values. This creates the
- dangerous, in our opinion - impression to the developers that the data con-
sistency is attainable via the application. Of course, this opinion overlooks the
possibility of integrity violation due to the actions of a DBA independently of
the surrounding application, as well as the possibility of a bug in the population
of the drop-down listboxes. Second, foreign keys impose a time lag in terms of
efficiency, which developers decide not to pay, especially if they operate under
the aforementioned impression of data consistency.

118 P. Vassiliadis et al.

6 Conclusions

Summary. Our findings can be summarized as follows. For all the studied data
sets, schemata grow in the long run in terms of tables. The usual pattern of
alternation between periods of slow growth, calmness periods, spikes of exten-
sion, and occasional cleanups of the schema is present [7]. In some cases, mainly
in projects of scientific nature, foreign keys are treated as an integral part of
the system, and they are born and evicted along with table birth and eviction.
At the same time, we have observed cases where foreign keys are treated as a
second-class add-on. In these cases, there is a small subset of the tables involved
in foreign keys, while birth and eviction of foreign keys is rarely performed in
synch with the respective table events. In the case of CMS’s we have seen a dis-
inclination towards having foreign keys as part of the schema. In the data sets
that we have collected, the mere existence of foreign keys is too scarce. More-
over, in the case of the two CMS’s that had foreign keys in their lifetime, both
ended-up with their complete removal. To the best of our understanding this
removal was chosen due to difficulty of managing technical issues with foreign
keys, that discouraged developers from trying to solve the encountered prob-
lems. The heartbeat of foreign key change is mostly rare and small in volume:
changes of foreign keys are not really frequent and they are typically small in
volume (with the exception of do-undo pairs of commits and the aforementioned
massive removals).

Threats to Validity. The scope of our study is restricted to databases that are
part of FOSS projects (and not closed ones) that have even moderate amounts
of versions published on-line and also pay the price for data consistency via for-
eign keys. The reader should avoid over-generalizing findings to closed projects,
or projects with a strict management plan. The external validity of our results
is, of course restricted within the scope of the study. Whenever we report an
observed pattern, we make clear whether it is ubiquitous in our data sets, or to
what subset of the data sets it applies. We have a set of data sets from differ-
ent domains (occasionally with characteristics that are domain-dependent and
which we comment upon) with adequately long stories and schema sizes. Thus,
we believe that patterns that appear to be either omni-present or strictly charac-
teristic to a domain can indeed be generalized. In terms of measurement validity,
we have tested our tools with black box testing and we have fixed any identified
problems during their operation. Any processing of the input data is reported
above. Although one can never exclude the possibility of occasional errors, we
are confident with our results in terms of their measurement validity. We are
also very sensitive to the fact that this is the first - to our knowledge - study of
its kind, and consequently, it is strictly of exploratory nature. Internal validity
concerns are covered by the fact that we restrain ourselves to the retrieved evi-
dence and common knowledge. Still, more targeted experiments are needed to
increase our confidence.

Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence 119

Importance of This Work. To the best of our knowledge, this is the first
time that the study of the evolution of foreign keys is performed, and, quite
importantly, at a large scale, in terms of data sets. Apart from the increase of
our understanding of how schemata evolve over time with solid evidence, the
study noteworthily reveals unexpected results. Although it is important not to
over-generalize our findings outside the area of Free, Open Source Software that
defines the scope of the study, we have now significant evidence that, unless
specifically curated, foreign keys in a FOSS database can potentially be unwel-
come (and thus, rare) or even completely removed by the developers. This is a
clear warning that we, as a community, need to do better (a) in terms of making
systems easier at handling foreign keys and their implications, especially at the
deep technical details, as well as, (b) in terms of better educating developers on
the benefits and necessities behind the usage of foreign keys in their databases.

Follow Up. Future work can continue in many directions. More studies, prefer-
ably by other groups, over other data sets, need to be performed in an attempt to
be able to establish common patterns of evolution. The particularities of unusual
behaviors concerning foreign keys need to be further investigated too. Mining
patterns of graph evolution in the graph of foreign keys is also another path for
future work.

References

1. Cleve, A., Gobert, M., Meurice, L., Maes, J., Weber, J.H.: Understanding database
schema evolution: a case study. Sci. Comput. Program. 97, 113–121 (2015)

2. Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution in Wikipedia:
toward a web information system benchmark. In: Proceedings of ICEIS 2008. Cite-
seer (2008)

3. Lin, D.Y., Neamtiu, I.: Collateral evolution of applications and databases. In: Pro-
ceedings of Joint International and Annual ERCIM Workshops on Principles of
Software Evolution (IWPSE) and Software Evolution (Evol) Workshops, IWPSE-
Evol 2009, pp. 31–40 (2009)

4. Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and code
in database applications. In: Proceedings of 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pp. 125–135 (2013)

5. Sjøberg, D.: Quantifying schema evolution. Inf. Softw. Technol. 35(1), 35–44 (1993)
6. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside, or

beyond Lehman’s laws of software evolution? In: Proceedings of 26th International
Conference on Advanced Information Systems Engineering - CAiSE 2014 (2014)

7. Skoulis, I., Vassiliadis, P., Zarras, A.V.: Growing up with stability: how open-source
relational databases evolve. Inf. Syst. 53, 363–385 (2015)

8. Vassiliadis, P., Zarras, A., Skoulis, I.: Gravitating to rigidity: patterns of schema
evolution - and its absence - in the lives of tables. Inf. Syst. 63, 24–46 (2017)

9. Vassiliadis, P., Zarras, A.V., Skoulis, I.: How is life for a table in an evolving
relational schema? Birth, death and everything in between. In: Proceedings of 34th
International Conference on Conceptual Modeling (ER 2015), Stockholm, Sweden,
19–22 October 2015, pp. 453–466 (2015)

10. Wu, S., Neamtiu, I.: Schema evolution analysis for embedded databases. In: Pro-
ceedings of 2011 IEEE 27th International Conference on Data Engineering Work-
shops, ICDEW 2011, pp. 151–156 (2011)

Conceptual Modelling of Autonomous
Multi-cloud Interaction with Reflective

Semantics

Andreea Buga, Sorana Tania Nemeş, and Klaus-Dieter Schewe(B)

Johannes Kepler University, Linz, Austria
{a.buga,t.nemes}@cdcc.faw.jku.at, kd.schewe@gmail.com

Abstract. Distributed systems that exploit software services from mul-
tiple clouds provide opportunities for software systems that address prob-
lems associated with systems of systems. In this paper we present an app-
roach for the conceptual modelling of such systems, which is grounded in
a distributed middleware that coordinates the client access to multiple
clouds through a concept of mediator. Furthermore, each component of
the middleware constitutes an abstract machine that is realised by three
layers: a layer for normal operation, a layer for monitoring and detec-
tion of critical situations, and an adaptation layer, which in case of an
identified anomaly changes the normal behaviour. The semantics of this
autonomous system can be captured by linguistic reflection, for which
reflective Abstract State Machines will be exploited.

1 Introduction

Distributed adaptive systems have recently attracted a lot of attention in
research as evidenced by several surveys on adaptive systems [15,23]. Such sys-
tems consist of several components that interact concurrently and are usually
distributed over a network. Components are supposed to enter or leave the col-
lection at any time; they may also be subject to change. In order to provide
guarantees for the functioning of the distributed system as a whole the empha-
sis is therefore on adaptivity that is realised by monitoring components that
observe the execution of the system, and adaptation components that change
components in case of anomalies identified by the monitoring [11]. Run-time
monitoring has been addressed in various disguises focusing on the network [25],
the servers [26] or the workload distribution [9,10], or using specific languages
[22]. Likewise adaptation emphasises reliability [9], workload re-allocation [10],
run-time optimisation [21], and runtime verification [18].

In this paper we focus on distributed adaptive systems that rely on cloud
services. That is, we emphasise that the distributed systems are service-oriented
exploiting software services from multiple clouds. The services themselves can

The research reported in this paper has been supported by the Christian-Doppler
Society in the frame of the Christian-Doppler Laboratory for Client-Centric Cloud
Computing.

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 120–133, 2017.
https://doi.org/10.1007/978-3-319-69904-2_10

Conceptual Modelling of Autonomous Multi-cloud Interaction 121

be modelled as abstract state service [19] comprising a hidden internal layer and
a visible and accessible view layer on top of it. The service model has been spec-
ified using Abstract State Machines (ASMs) [4]. The services can be integrated
using a mediator model [20], which can be seen as providing general skeletons
for the distributed systems that can be instantiated by concrete services that are
selected according to a service ontology comprising functional, categorical and
SLA-based properties. The concrete interaction of a mediator instance with the
service providing clouds is subject of a middleware system that handles the inter-
action with the clouds [5,7] and even supports the interaction between different
systems through the clouds [6]. For the rigorous specification of this middleware
an ambient extension of ASMs [3] has been exploited. This allows the complete
model to be validated by simulation [13] and verified by model-checking [1].
Based on this work we emphasise the extension of the abstract machine model
of the middleware by monitoring and adaptation layers. That is, in normal oper-
ation mode a mediator instance will be executed, for which the middleware will
be exploited to realise the interaction with the clouds and the integration of the
individual services. This execution is then observed by the middleware layer, for
which techniques for client-side cloud monitoring will be utilised [16,17].

There are many possibilities for “critical situations” to be detected by the
monitoring layer. A service may have become unavailable or may simply not
react anymore. A service may still be available, but not performing well. A
service may have been updated thereby changing its characteristics. A service
may have become erroneous or show Byzantine behaviour. It may also be the
case that a better instantiation may have become available. These are the kinds
of situations we will pay mostly attention to, though there are many others,
in particular in connection with security and privacy. The adaptation layer acts
whenever one of these situations has been recognised. The adaptation can simply
take the form of a service replacement or a replacement of a set of services,
by means of which a new mediator instance will be created [8]. Our approach
to adaptation is grounded in linguistic reflection, i.e. the ability of a system to
change its own behaviour. For this we exploit concurrent, reflective ASMs, which
provably capture all concurrent, evolving systems [24] and integrate the theories
of sequential algorithms [14], unbounded parallelism [12], concurrency [2] and
reflection.

The remainder of this article is organised as follows. In Sect. 2 we review the
mediator model as the basis for multi-cloud interaction. In Sect. 3 we briefly look
into the architecture of the middleware. Section 4 is then dedicated to the exten-
sions concerning monitoring and adaptation. We conclude with a brief summary
and outlook in Sect. 5.

2 Multi-cloud Interaction

In our conceptual specification we adopt an abstract model of software services
as provided by Abstract State Services (AS2) [19]. We assume that each service
is provided by a cloud, but we leave open who owns the service. That is, it

122 A. Buga et al.

is possible that a service is provided by a public cloud through a third-party
SaaS offer. It is also possible that the service is owned by the client running the
application process, in which case it could have been uploaded to a public cloud
using a IaaS or PaaS offer or it could even reside on a private server/cloud.

2.1 Abstract State Services

The key characteristic of an AS2 is its composition of two layers: a data layer and
a view layer on top of it, both combining static and dynamic aspects. The data
layer consists of a set S of states, together with a subset I ⊆ S of initial states,
a wide-step transition relation τ ⊆ S × S, and a set T of transactions, each of
which is associated with a small-step transition relation τt ⊆ S × S (t ∈ T)
satisfying the postulates of a database transformation over S.

A run of the data layer is an infinite sequence S0, S1, . . . of states Si ∈ S
starting with an initial state S0 ∈ I such that for all i ∈ N (Si, Si+1) ∈ τ holds,
and there is a transaction ti ∈ T with a finite run Si = S0

i , . . . , Sk
i = Si+1 such

that (Sj
i , Sj+1

i) ∈ τti holds for all j = 0, . . . , k − 1.
As views in general are expressed by queries, i.e. read-only database trans-

formations, we can assume that a view on a state Si ∈ S is given by a finite run
Si = Sv

0 , . . . , Sv
� of some database transformation v with Si ⊆ Sv

� . We can use
this to define the view layer assuming that each state S ∈ S is composed as a
union Sd ∪V1 ∪· · ·∪Vk such that each Sd ∪Vj is a view on Sd. As a consequence,
each wide-step state transition becomes a parallel composition of a transaction
and an operation that “switches views on and off”.

Let V be a finite set of (extended) views. Each view v ∈ V is associated with
a finite set Ov of (service) operations o1, . . . , on such that for each i ∈ {1, . . . , n}
and each S ∈ S there is a unique state S′ ∈ S with (S, S′) ∈ τ . Furthermore,
if S = Sd ∪ V1 ∪ · · · ∪ Vk with Vi defined by vi and o is an operation associated
with vk, then S′ = S′

d ∪ V ′
1 ∪ · · · ∪ V ′

m with m ≥ k − 1, and V ′
i for 1 ≤ i ≤ k − 1

is still defined by vi.
The AS2 model has been formally defined in [19]. In a nutshell, in an AS2

we have view-extended states, and each service operation associated with a view
induces a transaction on the database, and may change or delete the view it
is associated with, and even activate other views. These service operations are
actually what is exported from the database system to be used by other systems
or directly by users.

2.2 Plots and Mediators

For the model of distributed service-oriented systems suitable sequences of ser-
vice operations are required. While sequencing of service operations is only
implicit in the AS2 model, algebraic expressions called plots will make them
explicit. The service operations give rise to elementary processes of the form
ϕ(x) op[z](y) ψ(x,y,z), in which op is the name of a service operation, z
denotes input for op selected from the view v with op ∈ Opv, y denotes addi-
tional input from the user, and ϕ and ψ are first-order formulae denoting

Conceptual Modelling of Autonomous Multi-cloud Interaction 123

pre- and post-conditions, respectively. The pre- and postconditions can be void,
i.e. true, in which case they can be simply omitted. Furthermore, also simple for-
mulae χ(x) – interpreted as tests checking their validity – constitute elementary
processes. With this we obtain the following definition.

The set of process expressions of an AS2 is the smallest set P containing
all elementary processes that is closed under sequential composition ·, parallel
composition ‖, choice +, and iteration ∗. That is, whenever p, q ∈ P hold, then
also pq, p‖q, p + q and p∗ are process expressions in P. The plot of an AS2 is
a process expression in P. The concept of service mediators [20] captures the
plot of a composed AS2. In other words, it defines a plot of an application that
is yet to be constructed. The key issue is that such mediators specify service
operations to be searched for, which can then be used to realise the problem at
hand in a service-oriented way.

Therefore, the definition of a plot is relaxed in such a way that service oper-
ations do not belong to the same AS2. In elementary processes we use prefixes
to indicate the corresponding AS2, so we obtain ϕ(x) X : op[z](y) ψ(x,y,z),
in which X denotes a service slot, i.e. a placeholder for an actual service. Apart
from this we leave the construction of the set of process expressions as above
with the only difference that also �-op〈p〉 is a process expression, whenever p is
one. Here 〈·〉 denotes a finite multiset constructor, i.e. we consider an arbitrary
number of processes running in parallel, and �-op denotes a multiset operation,
which aggregates the query results of the different processes in the multiset.

A service mediator is a process expression with service slots. Furthermore,
each service operation is associated with input- and output-types, pre- and post-
conditions, and a concept in a service terminology.

2.3 Matching Services

We now need exact criteria to decide, when a service matches a service slot in a
service mediator. According to [20] we can assume service clouds to be available,
each of which providing a finite collection {Ai | i ∈ I} of AS2s together with
their plots and a service terminology T , such that the defining queries of views
and the associated service operations of these AS2s define an instance of T . The
service terminology T of a service cloud (enabling to search for suitable services
that match the slots of a service mediator) is given by a TBox of an appropriate
service ontology. It comprises three parts:

– a functional description of input- and output-types as well as pre- and post-
conditions telling in technical terms, what the service operation will do,

– a categorical description by inter-related keywords telling what the service
operation does by using common terminology of the application area, and

– a quality of service (QoS) description of non-functional properties such as
availability, response time, cost, etc.

The QoS description – usually associated with SLAs – is not needed for ser-
vice discovery and merely useful to select among alternatives, but neither func-
tional nor categorical description can be dispensed with. As for the categorical

124 A. Buga et al.

description, the terminology has to be specified. This defines an ontology in the
widest sense, i.e. we have to provide definitions of “concepts” and relationships
between them, such that each offered service becomes an instantiation of one or
several concepts in the terminology. In this way we adopt the fundamental idea
of the “semantic web”. Formal details of such a service terminology are provided
in [20] and shall not be repeated here.

The guideline for service matching is that the placeholder in the mediator
must be replaceable by matching service operations. Functionally, this means
that the input for the service operation as defined by the mediator must be
accepted by the matching service operation, while the output of the matching
service operation must be suitable to continue with other operations as defined
by the mediator. This implies that we need supertypes and subtypes of the
specified input- and output-types, respectively, in the mediator, as well as a
weakening of the precondition and a strengthening of the postcondition. Cate-
gorically, the matching service operation must satisfy all the properties of the
concept in the terminology that is associated with the placeholder operation, i.e.
the concept associated with the matching service operation must be subsumed
by that concept.

However, the matching of service operations is not yet sufficient. We also
have to ensure that the projection of the mediator to a particular slot X results
in a subplot of the plot p of the matching AS2, i.e. a process expression q such
that there exists another process expression r such that p = q + r holds in the
equational theory of process expressions. The projection of a mediator m is a
process expression pX such that pX = πX(m) holds in the equational theory of
process expressions, where πX(m) results from m by replacing all placeholders
Y : o with Y
= X and all conditions that are irrelevant for X by 1.

It would still be too simplistic to require that the projection of a mediator
should result in a subplot of a matching service, as order may differ and certain
service operations may be redundant. If for a condition ϕ(x) appearing in a
process expression p the equation ϕ(x) = ϕ(x)op[y](z) holds, then op[y](z) is
called a phantom of p.

That is, if the condition ϕ(x) holds, we may execute the operation op[y](z)
(or not) without changing the effect. Whenever p = q holds in the equational
theory of process expressions, and op[y](z) is a phantom of p with respect to con-
dition ϕ(x), we may replace ϕ(x) by ϕ(x)op[y](z) in q. Each process expression
resulting from such replacements is called an enrichment of p by phantoms.

Then an AS2 A matches a service slot X in a service mediator m iff the
following two conditions hold:

1. For each service operation X : o in m there exists a service operation op
provided by A such that

– the input-type Iop of op is a supertype of the input-type Io of o,
– the output-type Oop of op is a subtype of the output-type Oo of o,
– preo ⇒ preop holds for the preconditions preo and preop of o and op,
– postop ⇒ posto holds for the postconditions posto and postop of o and op,

and

Conceptual Modelling of Autonomous Multi-cloud Interaction 125

– the concept Co associated with o in the service terminology subsumes the
concept Cop associated with op.

2. There exists an enrichment mX of m by phantoms such that building the
projection of mX and replacing all service operations X : o by matching
service operations op from A results in a subplot of the plot of A.

Once matching services for all slots in a mediator have been found, we can
build an instantiation of the mediator with real services, which serves as a high-
level specification of a process that exploits several services.

3 Middleware Architecture

It is clear from the definition of mediators that an instantiated mediator is a
high-level specification of a distributed application that runs several services at
the same time. Refining and implementing such a specification requires several
add-ons. The involved services have to be started and terminated, which usu-
ally involves a log-in and authentication process. Then data have to be passed
from the mediation process to the individual services, which bypass the user
interaction, i.e. a control component associated with the process is needed. Fur-
thermore, output from several services is combined, and a selection made by
a user is passed back to the originating services, while non-selection leads to
service termination. This must also be handled by the control component, for
which we employ the client-cloud interaction middleware (CCIM) defined in [7].

3.1 Client-Cloud Interaction Middleware

The CCIM has been specified using ambient ASMs in order to describe formal
models of distributed systems incorporating mobile components in two abstrac-
tion layers. While the algorithms of executable components are specified in terms
of ASMs, their communication topology, locality and mobility are described with
the terms of ambient calculus. Each ambient ASM specification can be trans-
lated into a pure ASM specification [3]. The approach provides a universal way to
handle client-cloud interaction independent from particularities of certain cloud
services or end-devices, while the instantiation by means of particular ambi-
ents results in specifications for particular settings. Thus, the architecture is
highly flexible with respect to additional end-devices or cloud services, which
would just require the definition of a particular ambient. The architecture of the
CCIM integrates all novel software solutions such as Service Plot-Based Access
Management, Client-to-Client Interaction (CTCI) Feature, Identity and Access
Management (IdMM), Content Adaptivity, SLA Management and Security Mon-
itoring Component into a compound single software component.

Figure 1 gives a sketch of the general architecture, in which the middleware is
replicated by several components, each connected to one or more service clouds,
but each cloud is connected to exactly one middleware component. Thus, there

126 A. Buga et al.

Cloud1

S ... S ...

Cloudi

S ... S

Cloudi+1

...S ... S

Cloudn

S ... S

Middleware Component Middleware Component ...

User ... User User ... User

Fig. 1. General middleware architecture

are three modes of interaction: (1) interaction of users with a middleware com-
ponent, (2) interaction of a middleware component with a service in one of its
clouds, and (3) interaction among several middleware components.

The challenge is to keep users oblivious about the interaction among mid-
dleware components to locate individual services and to manage the transfer of
results among the participating services. This challenge is addressed by the prop-
agation of service requests among the middleware components. That is, when a
middleware component receives a request for access to a particular service from a
client or another middleware component, it will route the request to the middle-
ware component owning the service, i.e. being the component that connects to
the cloud, on which the service resides. Thus, a service request always comprises
also routing information.

In addition to the routing of requests to access individual services each mid-
dleware component will exploit the features of the mediator model and analyse
how to execute a particular mediator by extracting services that it can handle
itself and those parts that have to be forwarded to other components. This
is captured by an ambient ASM specification of the distributed middleware
emphasizing the normal execution model. The resulting architecture for a mid-
dleware component is illustrated in Fig. 2. The normal execution mode requires
the abstract machine, i.e. the ambient ASM specification, the service interfaces,
the request handler that links to the users and other middleware components,
and the communication handler that handles the interaction among middleware
components.

3.2 CCIM Interaction Scenarios

The CCIM provides a cloud service infrastructure that permits a transparent and
uniform way for clients to interact with multiple clouds. It permits to access and
combine the available functions of cloud services, which may belong to various
owners, and it leaves the full control over the usage of their services in the
hands of the service owners. If a registered cloud user intends to subscribe to a
particular service, a subscription request is sent to the cloud, which may forward

Conceptual Modelling of Autonomous Multi-cloud Interaction 127

Middleware Component

Service
Interface

Dynamic
Deployment

Service
Monitor

Request
Handler

Abstract
Machine

Communication
Handler

Rollback
Engine

Restart
Engine

Optimizer

Abstract Machine

Adaptation
Layer

Monitoring &
Assessment Layer

Execution
Layer

Failure
Detection

Availability &
Assessment
Network
Diagnosis

Event
Storage

Alternative
Meta Storage

Data Storage

Fig. 2. Middleware components

it to such a special client corresponding to the service owner. This client responds
with the service plot, which defines how the service can be used by the user and
determines the permitted combination of service operations.

The received service plots are collected together with other available cloud
functions in a personal user area by the cloud – see Fig. 3a. When the subscribed
user sends a service request, it is checked whether the requested service opera-

a) Scenario I.

I

n

t

e

r

f

c

e

a
Client l

2 3 O4 O5O1 O O2 3 O4 O5O1 O O Om m+1

...

...

Client l

I
n
t
e
r
f
a
c
e

Om m+1

2 3 O4 O5O1 O O

2 3 O4 O5O1 O O

Cloud (nowadays)

S1

S1

Sj

Outer Firewall

Client−Cloud Interaction Controller

. . .

. . .

Infrastructure Services
Rn

Ri

R1

Outer Firewall

Cloud

. . .

S1 S1 Sj

Infrastructure Services

. . .

. . .

R1 Ri Rn

b) Scenario II.

Legend:

.

..

O

.

..

O

Service OwnerW
Contact Point of

Contact Point of
Service OwnerV

. . .

Service OwnerV
Contact Point of

Contact Point of
Service OwnerW

Ri : Cloud Resource

Sj : Service

 Area
 : Firewall Protected

 Protected Area
 : Credential

abstract...

abstract...

abstract...

abstract...

Protected Area
of UserX

Specific Functions
for UserY

Specific Functions
for Service OwnerW

Specific Functions
for Service OwnerV

Specific Functions
for UserX

Specific Functions
for UserY

Specific Functions
for Service OwnerW

Specific Functions
for Service OwnerV

Specific Functions
for UserX

Protected Area
of UserX

Fig. 3. Application of the CCIM according to different scenarios

128 A. Buga et al.

tions are permitted by any service plot. If a requested operation is permitted,
then it is triggered to perform, otherwise it is blocked as long as a plot may
allow to trigger it in the future. Each triggered operation request is authorized
to enter into the user area of the corresponding service owner to whom the
requested service operation belongs. Here a scheduler mechanism assigns to the
request a one-off access to a cloud resource on which an instance of the corre-
sponding service runs. Then the service operation request is forwarded to this
resource, where the request is processed by an instance of the service whose oper-
ation was requested. Finally, the outcome of the performed operation returns to
the area of the initiator user, where the outcome is either stored or sent further
to a given client device.

In this way, the service owners have direct influence on the service usage
of particular users via the provided service plots. If a user subscribes to more
than one service, he or she may have access to more than one plot. These plots
are independent from each other and they can be applied concurrently. If a
service owner makes available more than one service for a user, the owner has
the choice either to provide independent plots for the user or to combine some
functions of various services into a common service plot. This conceptual solution
shows a transparent and uniform way how to provide an advanced access control
mechanism for cloud services without giving up the flexibility of heterogeneous
cloud access to these services.

Furthermore, due to the ambient concept, the relocation of system com-
ponents is trivial, and the model can be applied to different scenarios. For
instance, all our novel methods including our client-cloud interaction solution
can be shifted to the client side and wrapped into a middleware software which
takes place between the end users and cloud in order to control the interac-
tions of them – see Fig. 3b. Note that the specified communication among the
distributed system components remains the same in both scenarios.

4 Monitoring and Adaptation

As indicated in the introduction the purpose of the monitoring and assessment
layer in Fig. 2 is to observe the execution of a mediator instantiation, and to
identify, whether the chosen instatiation is working properly or whether an adap-
tation is required. Our focus is on the following critical situations:

– unavailability of a service, which is indicated by a failure to respond within
a specified time limit (aka ping);

– unacceptable performance of a service indicated by the response time exceed-
ing a specified threshold;

– service updates indicated by failure to call the service or changes to the service
ontology;

– erroneous or Byzantine behaviour of a service as discovered by multiple equiv-
alent usage with different results;

– identification of a better mediator instance according to the service selection
criteria.

Conceptual Modelling of Autonomous Multi-cloud Interaction 129

As aforementioned, in case of an identified critical situation the adaptation
layer replaces one or several services, i.e. it replaces the given mediator instantia-
tion by a new one. Its role is, therefore, essential in reconfiguring the system from
a deficient execution to a normal working state. Together with the monitoring
layer, it handles the internal mechanisms for problem detection and resolution.

4.1 Monitoring Ground Model

Figure 4 illustrates the interaction of the monitoring layer with the clouds. For
each service there are several dedicated monitors. For the observation of the
behaviour of these services, sensors are deployed across multiple clouds in order
to collect environmental data that are reported to the middleware. The moni-
toring is part of an abstract machine as indicated in Fig. 2, which is specified
using the ASM method [8]. It is important to consider that monitors are also
components of the distributed system, so they can also exhibit failures. This is
taken care of by assigning a trustworthiness measure to each monitor. Monitor-
ing components with trustworthiness below a specified threshold are removed
from the network of monitors.

Figure 5 shows a control-state ASM [4] for the monitors. Monitors collect
data from the nodes. When starting the system, each monitor is initialized by the
middleware in the Active state, from where it submits a heartbeat request to the
node it monitors. The monitor advances afterwards to the Wait for response
state, where it checks two guards. First, it verifies if a response to its request
is received. If so, it verifies if the delay of the response is acceptable. If this
condition holds, the monitor moves to the Collect data state. If no response
is received or if the response has a big delay, the monitor moves to the Report

Provider1

S11 ... S1n ...

m1
... mi mi+1

...mk

Provider2

S21 ... S2n ...

mj+1
...mk mk+1

...ml

Providers

Ss1 ... Ssn

ml+1
...mp mp+1

...mr

Client

Providers

Monitoring Layer

Adaptation Layer

Laptop Phone Computer

Abstract Machine

—
—
O
bs
er
ve

—
—
O
bserve

—
—
O
bs
er
ve

—
—
O
bserve

—
—
O
bs
er
ve

—
—
O
bserve

—
—
O
bs
er
ve

—
—
O
bserve

—
—
O
bs
er
ve

—
—
O
bserve

—
—
O
bs
er
ve

—
—
O
bserve

—
—

Se
nd

—
—
re
qu

es
t —

—
R
eply

Client-provider interaction middleware

Requestdata Su

bm
it
da
ta

Fig. 4. Architecture of monitoring and adaptation layers

130 A. Buga et al.

Inactive Monitor deployed Yes Assign to node Active

Send request
Wait for
response

Reply arrivedYes

No Timeout Yes

Stop request

Process
responseCollect dataGather metrics

Retrieve
information

Repository
available

Yes
No

Query database Assign diagnosis Interpret data Problem discovered

Yes
No

Report
problem

Gossip issueLog dataLog
Monitor

trustworthyYes

No

Fig. 5. Control-state ASM for the monitoring ground model

problem state. In the Collect data state the monitor gathers low level metrics
(CPU, memory and storage usage, bandwidth) and then moves to the Retrieve
information state, where it checks local storage for past monitoring data. If
the repository is available, the monitor queries it. The monitor moves to the
Assign diagnosis state, where it interprets the available data. If it discovers a
problem, it moves to the Report problem state, otherwise it moves to the Log
data state, where meaningful data and operation are logged. When an issue
is identified, the monitor modifies a constraint that triggers a request towards
the leader of the observe node, further described in Sect. 4.2, to inquire all his
monitoring counterparts and carry out a collaborative diagnosis. After reporting
the issue, the monitor moves to the Log data state. Here, the confidence degree
of the monitor is checked, and if the monitor is still trustworthy, it starts a new
monitoring cycle. Alternatively, it moves to the Inactive state and waits to be
deployed again in the system.

Code 1, defined using ASMeta toolset, complements this specification by a
control-state ASM of the leader module, which is responsible for collecting the
diagnoses from every monitor assigned to a node. Its activity is triggered by the
middleware, which reacts to a guard of monitor modules and moves the leader
to the Evaluate state. From this state, the leader requests diagnoses from all
the monitors assigned to the node it is responsible for and moves to the Assess
state. In the assessment process, the diagnosis supported by the majority of the
monitors is chosen. At the end of the evaluation, the leader moves to the Idle
leader state, from where it clears previous data. If a new assessment is required,
the leader moves to the Evaluate state and restarts the cycle.

Conceptual Modelling of Autonomous Multi-cloud Interaction 131

module Leader

import Monitor

export ∗
signature:

enum domain Leader States = {IDLE LEADER |
EVALUATE | ASSESS}

controlled leader state : Leader −> Leader States

controlled assessment: Leader −> Diagnosis

definitions:

rule r AssessNode ($l in Leader) =

if (max(failed diagnoses($l), critical diagnoses($l))

= failed diagnoses($l)) then

if (max(failed diagnoses($l), normal diagnoses($l))

= failed diagnoses($l)) then

assessment ($l) := FAILED

else

assessment ($l) := NORMAL

endif

else

if(max(critical diagnoses($l),normal diagnoses($l))

= critical diagnoses($l)) then

assessment ($l) := CRITICAL

else

assessment ($l) := NORMAL

endif

endif

rule r RequestData ($l in Leader) = skip

rule r ClearData ($l in Leader) = skip

rule r LeaderProgram =

par

if (leader state (self) = EVALUATE) then

par

r RequestData [self]

leader state(self) := ASSESS

endpar

endif

if (leader state (self) = ASSESS) then

par

r AssessNode [self]

leader state(self) := IDLE LEADER

endpar

endif

if (leader state (self) = IDLE LEADER) then

seq

r ClearData [self]

if (is evaluation needed(self)) then

leader state (self) := EVALUATE

endif

endseq

endif

endpar

Code 1. Leader ASM module

4.2 Leader ASM

The control-state ASMs require to be specified in more details by ASM rules. The
Leader module consists of three main rules shown in Fig. 6. We abstract from
the protocol of requesting data from the monitors and how the data used for an
evaluation is removed. The assessment process verifies the individual diagnoses
and chooses the diagnosis established by the majority of the monitors.

Evaluate Request data Assess Assess node Idle leader Clear data

Evaluation requested

Fig. 6. Leader ASM

By analysing decisions from different counterparts we aim to improve the
reliability of the process and reduce the side-effects of possible random failures of
any of the monitors. In a future refinement, weights equal to the trustworthiness
will be added to the contribution of each monitor. Thus, monitors that show a
lower accuracy will have a smaller impact on the final evaluation.

132 A. Buga et al.

5 Conclusion

In this paper we described an approach to the modelling of distributed, (self-)
adaptive systems that are based on services supported by mutiple clouds. The
general model for service-oriented systems that exploit cloud-enabled services
is the mediator model from [20], which permits various instantiations of service
slots by concrete services. The selection of such services is driven by a service
ontology comprising functional, categorical and SLA-based characteristics. The
concrete interaction with multiple clouds is realised by a middleware architecture
[7]. We extend this middleware by monitoring and adaptation layers that identify
the need for a change of a mediator instantiation and provide an updated one.

All parts of our approach have been specified using Abstract State Machines
including the extensions covering ambient computing [3], concurrency [2] and
linguistic reflection [24]. In this way the specification of any application can be
subjected to rigorous simulation and model-checking using the ASMeta tools.

Our research is ongoing concerning the specification of details of the moni-
toring and adaptation layers, refinements towards verified implementations, and
in particular concrete case studies with ASMeta.

References

1. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41(2), 155–166
(2011)

2. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Informatica
53(5), 469–492 (2016)

3. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with
applications. J. Comput. Syst. Sci. 78(3), 939–959 (2012)

4. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)
5. Bósa, K.: Formal modeling of mobile computing systems based on ambient abstract

state machines. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol.
7693, pp. 18–49. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36008-4 2

6. Bósa, K.: An ambient ASM model for client-to-client interaction via cloud com-
puting. In: Proceedings of 8th International Conference on Software and Data
Technologies (ICSOFT), pp. 459–470. SciTePress (2013)

7. Bósa, K., Holom, R.M., Vleju, M.B.: A formal model of client-cloud interaction. In:
Thalheim, B., Schewe, K.D., Prinz, A., Buchberger, B. (eds.) Correct Software in
Web Applications and Web Services. A Series of the Research Institute for Symbolic
Computation, pp. 1–61. Springer, Cham (2014). doi:10.1007/978-3-319-17112-8 4

8. Buga, A., Nemeş, S.T.: Towards an ASM specification for monitoring and adapta-
tion services of large-scale distributed systems. In: 41st Annual Computer Software
and Applications Conference, COMPSAC Workshops 2017, Torino, Italy, 4–8 July
2017. IEEE (2017, to appear)

9. Calzarossa, M., Della Vedova, M.L., Massari, L., Petcu, D., Tabash, M.I.M.,
Tessera, D.: Workloads in the clouds. In: Fiondella, L., Puliafito, A. (eds.) Prin-
ciples of Performance and Reliability Modeling and Evaluation. Reliability Engi-
neering. Springer, Cham (2016). doi:10.1007/978-3-319-30599-8 20

http://dx.doi.org/10.1007/978-3-642-36008-4_2
http://dx.doi.org/10.1007/978-3-319-17112-8_4
http://dx.doi.org/10.1007/978-3-319-30599-8_20

Conceptual Modelling of Autonomous Multi-cloud Interaction 133

10. Calzarossa, M., Massari, L., Tessera, D.: Workload characterization: a survey revis-
ited. ACM Comput. Surv. 48(3), 48:1–48:43 (2016)

11. Cheng, B.H.C., de Lemor, R., Giese, H., Inverardi, P., Magee, J. (eds.): Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02161-9

12. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theoret. Comput. Sci.
649, 25–53 (2016)

13. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and
a simulation engine for abstract state machines. J. Univ. Comput. Sci. 14(12),
1949–1983 (2008)

14. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. Comput. Log. 1(1), 77–111 (2000)

15. Huebscher, M., McCann, J.: A survey of autonomic computing - degrees, models,
and applications. ACM Comput. Surv. 40(3), 7 (2008). Article No. 7

16. Lampesberger, H.: Technologies for web and cloud service interaction: a survey.
SOCA 10(2), 71–110 (2016)

17. Lampesberger, H., Rady, M.: Monitoring of client-cloud interaction. In: Thalheim,
B., Schewe, K.D., Prinz, A., Buchberger, B. (eds.) Correct Software in Web Appli-
cations and Web Services. A Series of the Research Institute for Symbolic Compu-
tation, pp. 177–228. Springer, Cham (2015). doi:10.1007/978-3-319-17112-8 6

18. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

19. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software
services. SOCA 3(4), 263–283 (2009)

20. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoper-
ability of service clouds. SOCA 6(3), 189–205 (2012)

21. Mirandola, R., Potena, P., Scandurra, P.: An optimization process for adaptation
space exploration of service-oriented applications. In: Proceedings of 6th IEEE
International Symposium on Service-Oriented System Engineering (SOSE 2011),
pp. 146–151. IEEE (2011)

22. Nusayr, A., Cook, J.: Extending AOP to support broad runtime monitoring needs.
In: Software Engineering and Knowledge Engineering, pp. 438–441 (2009)

23. Salchie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14 (2009). Article No.14

24. Schewe, K.D., Ferrarotti, F., Tec, L., Wang, Q., An, W.: Evolving concurrent
systems - behavioural theory and logic. In: Proceedings of Australasian Computer
Science Week (ACSW 2017), pp. 77:1–77:10. ACM, Deakin University, Victoria,
31 January – 3 February 2017

25. Shin, K.S., Jung, J.H., Cheon, J.Y., Choi, S.B.: Real-time network monitoring
scheme based on SNMP for dynamic information. J. Netw. Comput. Appl. 30(1),
331–353 (2007)

26. Zeng, W., Wang, Y.: Design and implementation of server monitoring system based
on SNMP. In: JCAI, pp. 680–682 (2009)

http://dx.doi.org/10.1007/978-3-642-02161-9
http://dx.doi.org/10.1007/978-3-319-17112-8_6

Querying Graph Databases: What Do Graph
Patterns Mean?

Stephan Mennicke1(B), Jan-Christoph Kalo2, and Wolf-Tilo Balke2

1 Institut für Programmierung und Reaktive Systeme, TU Braunschweig,
Braunschweig, Germany

mennicke@ips.cs.tu-bs.de
2 Institut für Informationssysteme, TU Braunschweig, Braunschweig, Germany

{kalo,balke}@ifis.cs.tu-bs.de

Abstract. Querying graph databases often amounts to some form of
graph pattern matching. Finding (sub-)graphs isomorphic to a given
graph pattern is common to many graph query languages, even though
graph isomorphism often is too strict, since it requires a one-to-one cor-
respondence between the nodes of the pattern and that of a match. We
investigate the influence of weaker graph pattern matching relations on
the respective queries they express. Thereby, these relations abstract
from the concrete graph topology to different degrees. An extension of
relation sequences, called failures which we borrow from studies on con-
current processes, naturally expresses simple presence conditions for rela-
tions and properties. This is very useful in application scenarios dealing
with databases with a notion of data completeness. Furthermore, fail-
ures open up the query modeling for more intricate matching relations
directly incorporating concrete data values.

Keywords: Graph databases · Query modeling · Pattern matching

1 Introduction

Over the last years, graph databases have aroused a vivid interest in the database
community. This is partly sparked by intelligent and quite robust developments
in information extraction, partly due to successful standardizations for knowl-
edge representation in the Semantic Web. Indeed, it is enticing to open up the
abundance of unstructured information on the Web through transformation into
a structured form that is usable by advanced applications. A good example is the
Knowledge Graph by Google, supporting sophisticated features in Web search.
Other examples are the growing number of special interest graph databases cre-
ated as part of the Linked Open Data (LOD) initiative. Most of these graphs
provide entity-centric data from diverse domains: entities are represented as
nodes connected by labeled edges (relations) to other entity nodes or attribute
nodes (literals). Thereby, the nodes of a graph database are often referred to as
graph database objects. Graph database query languages let the user query these

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 134–148, 2017.
https://doi.org/10.1007/978-3-319-69904-2_11

Querying Graph Databases: What Do Graph Patterns Mean? 135

graph structures in an SQL-like fashion. Examples are SPARQL as a W3C stan-
dard for querying Semantic Web data1, Cypher as the standard query language
for Neo4J2, and Gremlin3. Basically, all these languages rely on the idea of graph
pattern matching, complemented with suitable node substitutions. A matching
mechanism common to all these query languages is graph isomorphism [12].

Unfortunately, structural identity in the sense of graph isomorphism often is
too restrictive for many applications, see e. g., [4,5]. Imagine a user query for
actors being children of other actors. One possibility to model this query as
a graph pattern is depicted in Fig. 1(a). A1 and A2 are two nodes being connected
by a childOf relationship, both having an actedIn relationship to either node
M1 or M2. Thereby, it is intended that nodes A1 and A2 represent the desired
actors from the query while M1 and M2 are representatives for movies they acted
in. Considering isomorphic matches to the graph pattern, an answer is required
to have only actors acting in at least two different movies. Isomorphic matches
of the pattern depicted in Fig. 1(b) are thus ruled out.

Fig. 1. Example graph patterns

Since the query in the previous paragraph is sufficiently vague, we may
assume that matches to both graph patterns of Fig. 1 are intended. The reason
why a single pattern is insufficient to cover the whole query is that graph iso-
morphism relies on a one-to-one-correspondence between the nodes of the graph
pattern and that of a match. However, it would be quite sufficient to require that
an object of a match incorporates in relation actedIn and a sequence of rela-
tions childOf and actedIn, abstracting from the concrete pattern structure.
Sequences over relation symbols are henceforth called traces. Whether or not
both actors took part in the same movies is not subject to the trace represen-
tation of the graph pattern. In fact, the patterns of Fig. 1 are indistinguishable
up to traces, thus represent the same set of trace matches.

From Sect. 3 on, we study the influence of different graph pattern matching
relations to the queries they express. All these notions are based on graph data-
bases and graph patterns, introduced in Sect. 2. To the best of our knowledge,
trace-based relations have not been investigated in the context of graph pat-
tern matching for database querying to which we contribute so-called failures
1 https://www.w3.org/TR/rdf-sparql-query/.
2 https://neo4j.com/.
3 http://tinkerpop.apache.org/.

https://www.w3.org/TR/rdf-sparql-query/
https://neo4j.com/
http://tinkerpop.apache.org/

136 S. Mennicke et al.

originating from studies on equivalence of concurrent processes [3]. Beyond a
purely topological analysis, failures express simple presence conditions for rela-
tions and properties associated with the database objects. This allows for strong
correspondences in databases enjoying data completeness, still without the strict
requirements of graph isomorphism. Therefore, we incorporate object properties
in our notion of graph patterns and graph pattern matching. We include simula-
tion semantics as an interesting complementation to failures, since these notions
constitute incomparable matching relations, i. e., there are simulating matches to
patterns that are not failure matches and vice versa. Thus, the choice in favor for
failures/simulation semantics is left to the concrete application scenario. More-
over, different kinds of simulation have already been applied in several graph
database tasks [1,15,17].

Since graph databases are still concerned with data in terms of attributes
attached to the database objects, we propose a preliminary extension of our
graph pattern model by data predicates and apply them to simulation-based
semantics in Sect. 4. In Sect. 5, we discuss related work. We conclude our work
by Sect. 6.

2 Graph Databases and Graph Patterns

This section is devoted to the database model we use throughout the paper,
being an RDF-style graph database. For a survey on graph database models, we
refer to Angles and Gutierrez [2]. Objects in a database stem from an infinite
set of object identifiers O. In Fig. 2, an excerpt from a graph database is given.
The object identifiers used there are “Will Smith”, “Jaden Smith”, and “The
Pursuit of Happiness”. Database objects are related to other objects or concrete
data values (i. e., literals) by attributes, being triples over objects, relations or
properties, and objects or data values. We separate the relations between objects
from properties relating an object with a concrete data value to simplify the
presentation of further concepts. Object relations and properties together form
the attributes of a graph database.

⊥

Fig. 2. A small graph database excerpt

For a fixed set of objects O ⊆ O, relations between objects are given in terms
of a directed labeled edge relation −→⊆ O × Σ × O, where Σ is a finite set of

Querying Graph Databases: What Do Graph Patterns Mean? 137

relation symbols. As an example, reconsider Fig. 2 where nodes “Will Smith”
and “Jaden Smith” are connected via relation childOf. Properties of database
objects are referenced by projection functions πp : O → D, where p is a property
from a finite set of properties P , and D is a usually infinite set of possible data
values [2]. In Fig. 2, properties of objects are listed in an equation style within the
boxes attached to each object node. Value ⊥ ∈ D denotes the absence of an asso-
ciation of property p with object o, e. g., πalias(“JadenSmith′′) = ⊥ in Fig. 2. We
usually leave ⊥-valued properties implicit, e. g.,πreleaseYear(“WillSmith′′) = ⊥,
although not explicitly mentioned in Fig. 2. As a consequence, our database
model is a directed edge- and node-labeled graph structure.

Definition 1. Let Σ and P be finite alphabets such that Σ ∩ P = ∅. A graph
database is a 5-tuple DB = (O,Σ,P,−→, (πp)p∈P) where O ⊂ O is a finite set
of objects and −→⊆ O × Σ × O together with πp : O → D (p ∈ P) form the
attributes of DB.

Relation symbols range over a, a1, a2, . . . while we use p, p1, p2, . . . for properties.
We abbreviate families of property functions by Π,Π ′, Ψ with respective projec-
tions πp, π

′
p, ψp. We write o

a−→ o′ if (o, a, o′) ∈−→ and o
a−→ if there is an o′

with o
a−→ o′. Likewise, o 	 a−→ denotes the absence of an o′.

Paths from one database object to another represent fingerprints of the topol-
ogy of the database that, upon traversal, define object reachability. Capturing
only the sequence of relation symbols along a path forms a trace.

Definition 2. Let DB = (O,Σ,P,−→,Π) be a graph database. Relation −→
extends to relation sequences σ ∈ Σ∗ inductively as follows: (1) o

ε−→ o′ iff
o = o′ and (2) o

σ·a−→ o′ iff there is an object o′′ ∈ O with o
σ−→ o′′ a−→ o′.

A trace of o ∈ O is a word σ ∈ Σ∗ if there is an o′ ∈ O with o
σ−→ o′. The

set of all traces of o is denoted by TDB(o). The traces of DB are defined by
T (DB) :=

⋃
o∈O TDB(o).

For arbitrary graph databases A1 and A2, we denote by A1
T A2 that T (A1) ⊆
T (A2), defining the so-called trace preorder. The symmetric closure of
T is
called trace equivalence and is denoted by ≡T.

Given a graph database DB = (O,Σ,P,−→,Π). A mechanism answering a
query to DB tries finding subgraphs of DB, matching the query. A subgraph of DB
is a database A = (O′, Σ, P,−→′,Π ′) where O′ ⊆ O, −→′⊆−→ ∩(O′ × Σ × O′),
and π′

p = πp � O′ (i. e., πp restricted to inputs from O′). We write A � DB if A
is a subgraph of DB.

Structurally, a query to a graph database DB is given in terms of a graph
pattern with nodes from some universe of nodes N . Note that for some graph
query applications, it holds that N ⊆ O or even N ⊆ O, as is the case for
exemplar queries [17]. A graph pattern Q is itself a graph database with a finite
set of nodes NQ ⊆ N , relation alphabet Γ ⊆ Σ, a directed Γ -labeled edge
relation −→Q, and a family of property functions ψp : NQ → D, referred to as
Ψ . We call the elements of NQ nodes, since, without relating them to an actual
database, they refer to abstract objects. An answer to a query w. r. t. graph

138 S. Mennicke et al.

pattern Q is a subgraph matching Q. The most common matching mechanism
in the realm of graph-based models is graph isomorphism, which we introduce
here as a base-line for the matching relations to come.

Definition 3. Let DB = (O,Σ,P,−→,Π) be a graph database. A graph pattern
is a graph database Q = (NQ, Γ, P,−→Q, Ψ) where NQ ⊂ N is a finite set of
nodes and Γ ⊆ Σ. A subgraph A = (O′, Σ, P,−→′,Π ′) of DB is isomorphic to
Q, denoted A ∼= Q, iff there is a bijective function ν : NQ → O′ such that for
all n1, n2 ∈ NQ, n1

a−→Q n2 iff ν(n1)
a−→′

ν(n2). If Q ∼= A, A is called an
isomorphic match of Q. �Q�

∼=
DB denotes the set of all isomorphic matches of Q.

We refer to the example patterns given in Fig. 1 by Qa and Qb. While the graph
depicted in Fig. 2 is an isomorphic match of Qb, it is not of Qa, since the bijec-
tivity requirement cannot be fulfilled in this case. Since graph isomorphism is an
equivalence relation, it holds that whenever we have two isomorphic subgraphs
A1 and A2 of DB, A1 is an isomorphic match of Q iff A2 is (for every graph
pattern Q).

Besides isomorphic matches, we directly derive another query answering
mechanism based on traces (cf. Definition 2). The set of all trace equivalent
matches of Q is defined by �Q�≡T

DB := {A � DB | Q ≡T A}. As already men-
tioned, the graph patterns Qa and Qb are indistinguishable by traces. Hence,
both include the graph depicted in Fig. 2 as a trace equivalent match. Isomorphic
matches show structural identity, rather than an actual similarity. Trace-based
matches may be seen as the other side of the spectrum, since they are the coars-
est relations discussed in this paper. It can be shown that for every graph pattern
Q, each isomorphic match also is a trace equivalent match, but not vice versa [8].

3 Failures in Relations and Properties

We have already seen two different matching relations. In this section, we lift
our considerations from a purely topological matching by step-wise incorporat-
ing properties due to the notion of failures. We then complement failures by
simulation whose matches show to be incomparable with those of the failures
matching relation. We introduce both notions by means of an example and by a
formal definition. In the end of this section, we discuss benefits and drawbacks
for each of the relations. The (counter-)examples given throughout this section
are inspired by standard examples in process theory, e. g., as presented by van
Glabbeek [8].

3.1 Failures

As the query graphs Qa and Qb of Fig. 1 have shown, graph isomorphism is
sensitive to even small structural changes. In contrast, the notion of traces shows

T (Qa) = {ε, actedIn, childOf, childOf · actedIn} = T (Qb),

Querying Graph Databases: What Do Graph Patterns Mean? 139

implying that both patterns allow for the same trace matches, as e. g., the one
depicted in Fig. 2. However, matching by trace equivalence does not allow for a
clear differentiation of objects with different relations they participate in. Traces
only require that the required relations are present in a subgraph, no matter
how distributed they are over the graph. Consider the small database excerpt of
Fig. 3(a) together with the graph pattern depicted in Fig. 3(b). Intuitively, the
graph pattern represents the query for an actor (A) being resident of country
(C), who studied in some facility (U). An exact, i. e., isomorphic, match is given
by “Jada P. Smith”. However, trace equivalence matching also allows for the
combination of “Will Smith” and “Edgar F. Codd”, since the former features
relation actedIn while the latter takes part only in a studiedIn relation. Trace
equivalence misses that “Will Smith” is not in a studiedIn relation and “Edgar
F. Codd” is not part of an actedIn relationship. As long as both traces resident·
studiedIn and resident ·actedIn are present, a subgraph is considered a trace
equivalence match. If, however, we include that after relation resident, neither
actedIn nor studiedIn is missing, we rule out the combination of “Will Smith”
and “Edgar F. Codd”. This is what failures are for.

Fig. 3. (a) Another graph database excerpt with indicated studiedIn

and actedIn relations such that πyearOfDeath(“Edgar F. Codd”) = 2003 and
πyearOfDeath(“Jada P. Smith”)= ⊥. (b) Another example graph pattern.

The central idea of failures, originating from studies on equivalence of con-
current processes [3], is the notion of failure pairs. A failure pair of an object
o consists of a trace σ ∈ TDB(o) and a set of relation symbols X ⊆ Σ such
that for at least one object o′ with o

σ−→ o′, o′ does not participate in any rela-
tions a ∈ X, i. e., o′ 	 a−→. Intuitively, o′ fails in participating in relations from
set X, also called failure set. By this representation, we naturally obtain the
ability to observe that objects like “Edgar F. Codd” do not have an actedIn
relation. In fact, the graph pattern contains no failure pair (resident,X) such
that actedIn ∈ X or studiedIn ∈ X, i. e., in every match, if an object is tar-
get of a relation resident, then it features both, an actedIn and a studiedIn
relation. Thus, subgraphs containing “Edgar F. Codd” or “Will Smith” are not
considered a failures equivalence match.

Often, not every characteristic of an object is expressed in terms of an inter-
relationship with other objects, but as associations with actual data values,

140 S. Mennicke et al.

e. g., numerical properties like the year of birth or the Erdős number. If we omit
the actedIn relation from the graph pattern of Fig. 3(b), we could ask for res-
idents A of country C, who studied in facility U. Based on this pattern, we are
now interested in all those people being still alive. We model this in the query
graph Q by stating that ψyearOfDeath(A) = ⊥, i. e., the property yearOfDeath is
undefined for an object matching A. Therefore, “Jada P. Smith” would belong to
a match of Q, but “Edgar F. Codd” should not. In order to make failures aware
of relation symbols and the (non-)existence of an association between an object
and a property, we include properties in failure sets.

Definition 4. Let DB = (O,Σ,P,−→,Π) be a database and o ∈ O. A failure
pair of o is a pair (σ,X) ∈ (Σ∗ × 2Σ∪P) where σ ∈ TDB(o) such that there is an
object o′ ∈ O with o

σ−→ o′ and ∀a ∈ X∩Σ : o′ 	 a−→ and ∀p ∈ X∩P : πp(o′) = ⊥.
FDB(o) denotes the set of all failure pairs and F(DB) :=

⋃
o∈O FDB(o) defines

the failure pairs of DB. For a query graph Q, define the set of failure matches
by �Q�≡F

DB := {A � DB | F(Q) = F(A)}.
Failures still only take the topological structure of a graph pattern into account,
since our family of property functions may easily be included in a graph-like
representation, having also concrete data values (literals) as nodes in the graph
database representation (cf. RDF). Equality of sets of failure pairs for differ-
ent graph databases induces an equivalence relation called failures equivalence,
denoted by ≡F. Failures equivalence easily implies trace equivalence, as all the
traces of an object and/or database are also enumerated within the respective
sets of failure pairs, i. e., it holds that T (DB) = {σ | (σ,X) ∈ F(DB)}.

Matching by failures equivalence comes with limitations. Consider the two
graphs depicted in Fig. 4, which are, in fact, equivalent up to failures. The dif-
ference between these two graphs is that in Fig. 4(a), the movie having won an
Academy Award (Goldfinger) was directed by a writer, while in Fig. 4(b), only
the movie director of the movie without any prizes attached (Quantum of Solace)
also is a writer. The reason why failures equivalence does not recognize the dif-
ference is that a failure set X only accounts for exactly one step in the graph
database. In order to make failures aware of the difference in Fig. 4, we would

Fig. 4. Two failures equivalent graph databases, i. e., either both are failure matches
of a graph pattern or none.

Querying Graph Databases: What Do Graph Patterns Mean? 141

need that X also contains that after actedIn an object (here, Dr. No) does
not account for the traces won and directedBy · wrote. For this representation,
the graph database in Fig. 4(b) is not a match, since after trace actedIn either
trace won or directedBy · wrote may be observed. Failures may be adapted
by introducing for each k ∈ N so-called k-failure pairs which allow for strings of
relation symbols in X of length at most k. In practice, this seems infeasible, since
respecting k-failures amounts to a lot of bookkeeping. Moreover, for each k, a
counterexample like the one given in Fig. 4 exists. A more elegant approach may
be found in different notions of simulation, being subject of the next subsection.

3.2 Simulations

Simulations are not based on traces but rather follow the idea of relating nodes
mimicking the behavior of one another. Each graph traversal step must be
reflected by some step in the simulating graph. For graph simulation equiva-
lence, it is necessary that one graph simulates the other and vice versa. Let us
reconsider the example graphs in Fig. 3. The graph database depicted in Fig. 3(a)
is a simulation equivalence match of the respective graph pattern if, for now, we
ignore the properties attached to the objects. To establish this relationship, we
need to show that the graph database (Fig. 3(b)) is capable of simulating the
pattern (Fig. 3(a)) and vice versa. The respective simulations are represented in
Table 1, where S1 represents the former direction and S2 the latter.

Table 1. Two simulations showing simulation equivalence of the graph database in
Fig. 3(a) and the pattern in Fig. 3(b).

S1: from Fig. 3(a) to Fig. 3(b) S2: from Fig. 3(b) to Fig. 3(a)

USA C C USA

Will Smith A

Jada P. Smith A A Jada P. Smith

Edgar F. Codd A

F1 M

F2 M M F2

U1 U U U1

U2 U

S1 is divided into two columns, reading a first column entry is simulated
by the second column entry. Whatever relation object “USA” is in, node C is
capable of simulating it by a respective relation, here resident leading to one
of three persons, in turn all simulated by node A. Consider first “Will Smith”
which is in an actedIn relationship with some movie object (F1, F2, U1, U2 are
placeholders). Also node A has an outgoing edge labeled by actedIn, targeting
node M. Furthermore, also the studiedIn relationship of the other two objects

142 S. Mennicke et al.

is simulated by node A, this time targeting node U. In fact, S1 proves that the
graph database is simulated by the graph pattern, since every relation in the
graph is reflected by an according step in the pattern.

For the converse direction, S2, we observe that not every node from the
graph database is present in this part of the table. This is due to the simulation
requirement that every node in the pattern must be simulated by some, not every
possible, node in the graph database. Therefore, it is sufficient to only consider
a subgraph as simulator. The edge C

resident−→ A is simulated by “USA” resident−→
“Jada P. Smith”. Likewise, the other relations of A are simulated by the object
“Jada P. Smith”. Hence, also the graph database simulates the pattern, proving
that both graphs are simulation equivalent. When reintegrating the requirement
that ψyearOfDeath(A) 	= ⊥, object “Edgar F. Codd” needs to be excluded from a
match.

Formally, a simulation between two graph databases, e. g., a graph pattern
and a subgraph, is a relation over the nodes of the first graph database and that
of the second. For each pair of nodes (n1, n2) in that relation, two conditions
must hold. First, if n1 has a defined value for property p, i. e., πp(n1) 	= ⊥, n2

also has a defined value for p. Second, if n1
a−→ n′

1, then there must be a node
n′
2 such that n2

a−→ n′
2 and n′

2 simulates n′
1.

Definition 5. Let DB be a graph database, A = (O,Σ,P,−→,Π) a subgraph
of DB, and Q = (NQ, Γ, P,−→Q, Ψ) a graph pattern. A simulates Q, denoted
Q
S A, iff there is a relation S ⊆ NQ ×O such that (a) for every n ∈ NQ there
is an o ∈ O with (n, o) ∈ S and (b) for every (n, o) ∈ S, it holds that (1) for all
p ∈ P, ψp(n) 	= ⊥ implies πp(o) 	= ⊥ and (2) n

a−→Q n′ implies that there is
an o′ ∈ O such that o

a−→ o′ and (n′, o′) ∈ S. If A
S Q and Q
S A, A and
Q are simulation equivalent, denoted A � Q. The set of simulation equivalence
matches of Q is defined by �Q�

DB := {A � DB | A � Q}.

Compared to the original definitions (cf. [3,8]), we require that each node n of
the graph pattern is simulated by at least one object o of the match. Omitting
condition (a) entails simulation equivalence trivially holds between every two
graphs, e. g., by means of the empty simulation. Others [15,17] avoid this issue
by requiring maximality of simulation S, which means every other simulation is
a subset of S. This requirement is unnecessarily restrictive for our purposes.

Please note, for establishing simulation equivalence, the respective simula-
tions S1, S2 do not need to coincide in that S1 = S−1

2 . Our example simulations
in Table 1 already feature two very different simulations. If, however, there is a
simulation S such that S−1 is also a simulation, then S is called a bisimulation. If
between two graph databases there exists a bisimulation, we call them bisimilar
(�). So far, all the relations introduced throughout this paper are interrelated
as depicted in Fig. 5. A matching relation with a left-to-right path to another
matching relation implies that other matching relation. It also means that the
sets of matches of graph pattern Q are ordered by set inclusion. Graph isomor-
phism is primed (∼=′), since the hierarchy is only properly reflected if also graph

Querying Graph Databases: What Do Graph Patterns Mean? 143

∼=′ �

�

≡F

≡T

Fig. 5. The hierarchical order of the presented matching relations from [8]

isomorphism handles undefined properties. Therefore, we simply require for an
isomorphism ν that for each p ∈ P , ψp(n) 	= ⊥ iff πp(ν(n)) 	= ⊥.

As already mentioned, simulation equivalence and failures equivalence are
incomparable matching relations. We have shown the graphs depicted in Fig. 3
to be simulation equivalent by simulations S1 and S2 (cf. Table 1). As discussed in
the previous subsection, these two graphs differ in their sets of failures, since the
graph database contains the failure pair (resident, {actedIn}) while the graph
pattern does not demonstrate this failure pair. Furthermore, the graph data-
bases depicted in Fig. 4 are equivalent up to failures, but simulation tells them
apart, as none of the graphs simulates the other. Suppose there is a simulation
S showing that the graph in Fig. 4(b) simulates the graph in Fig. 4(a). Since
none of the graphs is empty, there must be an object o simulating “Goldfinger”,
i. e., (“Goldfinger”, o) ∈ S. There is only one candidate for o, namely “Sky-
fall”, since only then relations directedBy and won may be reflected properly.
But then also “Sam Mendes” ought to simulate “Guy Hamilton”, which cannot
be fulfilled. Thus, the graphs are not equivalent up to simulation, showing the
incomparability of simulation equivalence and failures equivalence.

In practice, the choice of the matching relation depends strongly on the
underlying data model. For traditional relational databases, usually a closed-
world is assumed, thus information not being in the database can be seen as
false [10]. As an example, the absence of the studiedIn relation for “Will Smith”
in Fig. 3(a) means that “Will Smith” did not attend university. Therefore, a fail-
ure query using this information can only return matches with actors that did
not attend any university. In the Semantic Web, on the other hand, data is usu-
ally interpreted as incomplete [16]. The absence of information does not imply
that it cannot be true, but just that the information is not known, at least to
the current state of the database. As a consequence, querying an open-world
assumption-based database by failures would not be meaningful. In such a sce-
nario, a simulation-based matching relation is preferable. It is even advisable to
lose the equivalence matching, resulting in the requirement that a match should
only simulate the query, but not vice versa. Without care, the set of matches
becomes quite large and, again, less meaningful. Applications and adjustments
to the simulation requirement yields reasonable matching sizes [15,17].

144 S. Mennicke et al.

4 Beyond Structural Similarity: Query Patterns

In the previous section, we respected properties in the sense that we distinguish
value ⊥ from any other data value, i. e., a Boolean decision. In this section, our
goal is to handle concrete data values alongside the graph pattern matching
relations, letting the presented framework appear in a relational interpretation
of graph database knowledge. We exemplify two ways to achieve this goal by
means of simulation, which can easily be adapted to bisimulations and graph
isomorphism. First, predicates over properties expressing attribute comparisons
are directly attached to the nodes of the query graph. Second, global query
predicates are introduced in order to express attribute comparisons between
different nodes. Finally, we give a brief discussion on data integration into trace-
based matchings.

Consider the example from the introduction with the graph pattern Qa in
Fig. 1(a). We extend the query, now asking for actors being children of other
actors, who acted in movies released after the year 2000. Therefore, the
graph pattern needs to be associated with the requirement that a match for M1
has a release year greater than or equal to 2000, which may be expressed by
the first-order formula ϕ = releaseYear ≥ 2000 attached to node M1. Intu-
itively, the graph database depicted in Fig. 2 constitutes a match for simulation
equivalence and the aforementioned property. Formally, however, we need to
establish some assumptions before being able to integrate data values into the
query matching, yielding two notions of query pattern.

The key assumption is that each property p ∈ P has a type t, denoted p � t,
e. g., releaseYear � Z. For concrete data values c ∈ D, c � t also denotes that
c is a constant of type t. Furthermore, each type t is equipped with a set of
binary predicates Θt, e. g., for type Z we have ΘZ = {=, 	=, <,≤, >,≥} with the
expected meaning. As a base, we allow for comparisons of properties p ∈ P with
constants c ∈ D by predicates θ ∈ Θt as p θ c whenever p and c have type t. Also
properties p1, p2 ∈ P may be compared by θ, i. e., p1 θ p2 whenever p1, p2 � t. We
allow the usual propositional connectives of conjunction (∧) and disjunction (∨)
as well as the constant True with the usual meaning. The following grammar
summarizes the set of formulas we allow for query predicates (QP):

ϕ ::= True p θ c p1 θ p2 ϕ ∧ ϕ ϕ ∨ ϕ

where c ∈ D and p, p1, p2 ∈ P with c, p, p1, p2 � t and θ ∈ Θt. Please note that
the language QP contains features of first-order logics established in the context
of graph pattern matching (e. g., [6]) or graph query languages (e. g., SPARQL).

Let Q be a graph pattern with set of nodes NQ. Then function Φ : NQ →
QP associates a formula ϕ with every node n ∈ NQ. We denote by ϕn that
Φ(n) = ϕ. A local query pattern is a pair (Q, Φ). A simulation equivalence match
A = (O,Σ,P,−→, Ψ) of Q features one simulation S ⊆ NQ × O showing that
A simulates Q. We evaluate the formulas ϕn alongside this simulation S. A is
a simulation equivalence match of (Q, Φ) iff (1) A is a simulation equivalence
match of Q and (2) for all (n, o) ∈ S, o |= ϕn. Thereby, the satisfaction relation
is defined inductively over ϕn as follows:

Querying Graph Databases: What Do Graph Patterns Mean? 145

– o |= True
– o |= p θ c if ψp(o) 	= ⊥ and ψp(o) θ c,
– o |= p1 θ p2 if ψp1(p) 	= ⊥, ψp2 	= ⊥, and ψp1 θ ψp2 ,
– o |= ϕ1 ∧ ϕ2 if o |= ϕ1 and o |= ϕ2, and
– o |= ϕ1 ∨ ϕ2 if o |= ϕ1 or o |= ϕ2.

In our example, we would associate every node except for M1 with predicate
True and ϕM1 = releaseYear ≥ 2000. Indeed, the graph database depicted in
Fig. 2 is a simulation equivalence match for the query pattern (Qa, Φ), because
the match of M1 satisfies the required property of the release year.

Sometimes it is necessary to compare properties of different nodes in a match,
e. g., when we ask for actors that were born in the same year. Works on
data path querying, see Libkin et al. [14] for an overview, included comparisons
of data values alongside regular path queries by so-called binding operators. Such
a binding operator stores a data value at some point of the path, which may later
be compared with another data value in another part of the path. Since our set-
ting features a whole graph pattern Q, we may directly access the properties of
pattern nodes and compare them. The syntax of such a global query predicate
is the same except for the access of properties. Instead of referencing p, p1, p2
directly, we now access them via the node identifiers. Suppose we have nodes
A1 and A2. Then predicate A1.birthYear = A2.birthYear states the aforemen-
tioned global requirement. As a consequence, a query pattern is a triple (Q, Φ, ϕg)
where Q is a graph pattern, Φ a function assigning local predicates to nodes in
Q, and ϕg is a global query predicate. The local predicates as well as the global
predicates need to be satisfied. Please note that by global predicates the local
ones get obsolete, formally. However, we believe that from a query modeling
perspective, local predicates deserve their existence in our framework.

For bisimilarity and graph isomorphism, the adaptations for simulation
equivalence directly carry over to the respective mechanisms in these matching
relations, i. e., bisimulations S and isomorphisms ν. In contrast, for trace-based
semantics as matchings by failures, integration is not as easy as for simulation-
based matchings. One way is surely the already mentioned extensions of regular
path queries [13,14]. For failure pairs (σ,X), integrating not only relations and
properties in X, but also local predicates that must (not) be satisfied by an
object with o

σ−→ o′ seems feasible. Alternatively, the local predicates approach
could also be integrated. We strongly believe that path queries can be adapted
to work like failures equivalence matching, whose proof of effectiveness shall be
subject to future work.

5 Related Work

Graph Pattern Matching is an extensively studied topic in various domains of
computer science [7]. Its applications range from social network analysis, over
structural analysis of chemical entities to various applications in the database
domain, particularly in graph databases. In these domains, graph pattern match-
ing is usually based on the idea of (sub-)graph isomorphism. Recently, emerging

146 S. Mennicke et al.

applications showed a trend of studying and using other graph pattern match-
ing relations with the goal of reducing structural requirements of the answer
graphs. For example, recent works have implemented the idea of simulation for
graph pattern matching [4,5]. Indeed, experiments have shown advantages of
simulation-based matching relations when analyzing social network patterns, as
they offer the possibility to collapse several nodes into one node and vice versa.

With regard to graph databases, graph isomorphism has become the most
common principle for query answering [12]. Almost every graph query language
is built on graph pattern matching, using homomorphisms such as graph iso-
morphism, for retrieving results from the database. Recently, also in this field,
different forms of simulation with lower runtime complexity compared to sub-
graph isomorphism have been analyzed to improve performance. On the down-
side, this performance improvement comes with a loss of topology for graph
queries as criticized by Ma et al. [15]. Therefore, topologically more restrictive
matching relations, also based on simulation, have been introduced [6,15]. On
the one hand there is dual simulation, a form of simulation that also considers
ingoing edges of nodes. Thereby, source and target of a relation are rigorously
handled equally important. However, as in the case of simulation, if a graph
database contains one dual simulating match, the whole database may be seen
as a match. Strong simulation overcomes this issue by extending dual simula-
tion in such a way that (1) the size of a match is bounded by the diameter of
the pattern and (2) all occurring nodes and edges to match nodes and edges
in the pattern [15]. Trace-based relations and, thereupon, comparative studies
w. r. t. the expressed queries have not been performed.

Similar to the graph queries considered in our work, approximate graph
queries are not restricted to returning structurally and semantically identical
results. Many approximate graph query models rely on measures of pattern sim-
ilarity by graph edit distances [18,19]. In comparison to our work, approximate
queries might return results with a totally different structure than the query,
leading to answers fulfilling only a fraction of the requirements of the original
graph pattern. Also, node label similarity is studied for approximate queries [11].

6 Conclusion

We compared the meaning of failures and simulation, both originating from the
studies of concurrent processes, compared to the standard matching relations,
for graph database querying. Based on an overview of the restrictions arising
from isomorphic matching, we showed the advantages and semantic differences
of failures and simulation. Furthermore, we extended our query model by the
possibility of also comparing data values, originally motivated by the findings
on failures. From a modeling perspective, we provided an interplay of global and
local query predicates.

Although not the focus of a conceptual model, we briefly discuss the combined
complexity (database and pattern as input) of the presented relations. Compared
to graph isomorphism, boiling down to the well-known np-complete problem of

Querying Graph Databases: What Do Graph Patterns Mean? 147

subgraph isomorphism, simulations may be computed in Ptime [9]. For the trace
preorder as well as the failures preorder we are facing the problem of language
inclusion for nondeterminstic automata, thus rendering the respective matching
problems Pspace-complete.

Many more matching relations exist, summarized in the linear-time
branching-time spectrum by van Glabbeek [8]. We believe that the existing knowl-
edge on these relations may be used to get new insights on graph database
querying, even if only to locate new relations in the spectrum. Since relations
in the spectrum are mainly concerned with process equivalence, the domain of
graph database queries may also produce insights, giving birth to not yet studied
matching relations. Strong simulation [15] is such a new relation. We strongly
believe, the key to include more relations is the value a matching relation holds
beyond complexity considerations.

Graph patterns as we use them include a design-decision influencing every
theory about graph pattern matching, namely the pattern relation symbols (Γ)
are graph database symbols. Foremost in the Semantic Web, queries are stated
without knowledge of the database internals, especially the names of the relations
and properties. An extension of our work may assume a similarity relation of
relation symbols such that traces do not have to be identical but character-wise
similar. Furthermore, the notions discussed in this paper may be a starting point
for a typing method, helping to align relation and property names.

References

1. Abriola, S., Barceió, P., Figueira, D., Figueira, S.: Bisimulations on data graphs.
In: KR 2016, pp. 309–318. AAAI Press (2016)

2. Angles, R., Gutierrez, C.: Querying RDF data from a graph database perspective.
In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 346–360.
Springer, Heidelberg (2005). doi:10.1007/11431053 24

3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

4. Brynielsson, J., Högberg, J., Kaati, L., Mårtenson, C., Svenson, P.: Detecting social
positions using simulation. In: ASONAM 2010, pp. 48–55 (2010)

5. Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT
2012, pp. 8–21. ACM, New York (2012)

6. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from
intractable to polynomial time. PVLDB Endow. 3(1–2), 264–275 (2010)

7. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. In: Papers from the AAAI FS 2006, pp. 45–53 (2006)

8. van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer,
Heidelberg (1990). doi:10.1007/BFb0039066

9. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and
infinite graphs. In: FOCS 1995, pp. 453–462. IEEE Computer Society (1995)

10. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

11. Khan, A., Wu, Y., Aggarwal, C.C., Yan, X.: NeMa: fast graph search with label
similarity. PVLDB Endow. 6(3), 181–192 (2013)

http://dx.doi.org/10.1007/11431053_24
http://dx.doi.org/10.1007/BFb0039066

148 S. Mennicke et al.

12. Lee, J., Han, W.S., Kasperovics, R., Lee, J.H.: An in-depth comparison of subgraph
isomorphism algorithms in graph databases. PVLDB Endow. 6(2), 133–144 (2012)

13. Libkin, L., Martens, W., Vrgoč, D.: Querying graph databases with XPath. In:
ICDT 2013, pp. 129–140. ACM, New York (2013)

14. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2),
14:1–14:53 (2016)

15. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Strong simulation: capturing topology
in graph pattern matching. ACM Trans. Database Syst. 39(1), 4:1–4:46 (2014)

16. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: WWW 2007, pp. 807–816. ACM, New York (2007)

17. Mottin, D., Lissandrini, M., Velegrakis, Y., Palpanas, T.: Exemplar queries: a new
way of searching. VLDB J. 25(6), 741–765 (2016)

18. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search
over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015)

19. Zheng, W., Zou, L., Peng, W., Yan, X., Song, S., Zhao, D.: Semantic SPARQL
similarity search over RDF knowledge graphs. PVLDB Endow. 9(11), 840–851
(2016)

Scaffolding Relational Schemas and APIs
from Content in Web Mockups

Alfonso Murolo(B), Sybil Ehrensberger, Zera Asani, and Moira C. Norrie

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{alfonso.murolo,norrie}@inf.ethz.ch

Abstract. Web developers often use an interface-driven design process
where mockups are gradually refined before being implemented using a
platform or framework. We propose a tool, DataMockups, that supports
the creation of digital mockups and then generates a relational schema
automatically based on sample content and some assumptions on its
structure. This aims at reducing development effort, and the database
knowledge required by developers. Sample content may be entered manu-
ally or automatically using data extracted from similar existing websites.
A relational schema is inferred from the data content, and then translated
to an SQL database definition before generating a server-side API. To
support schema evolution, the generated API provides schema abstrac-
tions that offer robustness to future schema modifications. We report on
a case study for the schema inference and a performance evaluation of
the data detection algorithm.

Keywords: Schema generation · Digital mockups · Interface-driven
development · Scaffolding · Relational schema

1 Introduction

The research community has proposed model-driven approaches to web devel-
opment that support automatic code generation and improved maintenance.
However, as confirmed by a recent survey [1], many practitioners have no formal
education in computer science or software engineering and are unfamiliar with
data modelling techniques and database technologies. They instead tend to use
an interface-driven approach, starting from a mockup that depicts the visual
look of the website, its layout and navigation as well as how the content will be
presented. Mockups come in many forms and have many uses including require-
ments analysis, graphical design and obtaining customer feedback, especially
when real content is used to create the mockups [2]. For example, Protostrap1

offers interface prototyping to simulate the real application, with real data.
Hence, methods such as AppForge [3], RAINBOW [4] and Mavo [5] have been

proposed to allow application designers to generate database models or code
from interface prototypes. However, many existing methods either restrict their
1 http://protostrap.ch/.

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 149–163, 2017.
https://doi.org/10.1007/978-3-319-69904-2_12

http://protostrap.ch/

150 A. Murolo et al.

analysis to specific types of prototypes, or require extensive annotations following
a specific set of rules which could impose cognitive load on the developers.

We therefore decided to investigate techniques to automatically generate code
from high-fidelity web mockups. This paper presents DataMockups, a design tool
for creating digital mockups and then generating database code from real sam-
ple content. Based on some assumptions and minimal annotations by the user,
DataMockups uses a combination of structural and visual cues to generate a
relational database schema together with an API for managing data. It is also
possible to populate the generated database with data items extracted from the
sample content. Further, by integrating the general web data extraction tool
DeepDesign [6], developers can reuse data published on similar existing websites
as an alternative to manually providing their own content samples. This work
represents a significant advance over earlier work where we generated custom
post types for WordPress based on the detection, extraction and management of
individual entities [7]. In contrast, DataMockups generates full relational data-
base schemas together with an API to manage entities and relationships. This
is done using a bottom-up clustering algorithm and analysing the occurrences of
elements in the clusters as well the containment relationships between clusters.

2 Background

The web engineering research community has tended to focus on model-driven
web engineering (MDWE) using automatic code generation to reduce the devel-
opment effort, while ensuring quality and consistency in websites [8–10]. While
MDWE has had its successes, interface-driven approaches based on mockups
are commonly used in practice. DENIM [11] was an early research project that
generated HTML from mockups of web pages at different levels of detail. Since
then, commercial tools such as Balsamiq2 and Mockingbird3, which offer UI
prototyping and wireframing, have become widely used.

Other recent research has considered how automated website composition
and code generation can be brought to the mockup design stage. MockAPI [12]
introduces a metamodel for user-defined annotations that drive the derivation of
an API prototype, with the goal of supporting agile methods in the creation of
RESTful APIs for web services. ELECTRA [13] is a follow-on project which still
targets the generation of APIs for web services but proposes an alternative hybrid
approach combining agile methods, mock-up driven development and coding.
MockupDD [14] took this further by translating annotations to MDWE models,
or to code generated automatically. They have shown that development using
MockupDD is faster and less error-prone than traditional MDWE processes. We
note that all of these approaches rely on extensive use of annotations according to
a metamodel to generate the necessary models and/or code. Mavo [5] introduces
additional properties and expressions to HTML5 for schema-specific annotations
in the markup, with the goal of defining data schemas and data-driven behaviour.
2 https://balsamiq.com/.
3 https://gomockingbird.com/.

https://balsamiq.com/
https://gomockingbird.com/

Scaffolding Relational Schemas and APIs from Content in Web Mockups 151

In contrast to these approaches, our aim was to investigate the extent to
which database code could be generated automatically based on real content
used in high-fidelity mockups and with a minimum of user input. Based on an
analysis of the structure and styling of the sample content, a database schema is
derived and then used to generate a database together with an API to manage it.
Optionally, the database may be populated with data items extracted from the
sample content, and the sample content may come from existing websites as well
as high-fidelity mockups. The user provides minimal annotations by labelling
groups of fields with a name.

The database community has also proposed methods to generate schemas
from UIs or their prototypes. GUAVA [15] generates schemas from forms
of standalone applications. AppForge [3] allows developers to define schemas
through the creation of web-based forms and views in a WYSIWYG editor.
While this approach allows the inference of complex schemas, its views can only
be designed in the form of nested tables, lists or charts. RAINBOW [4] also uses
forms to support a two-way inference between interfaces and relational schemas.

Our methods build on extensive previous research addressing web data
extraction, including the specific problem of wrapper induction. However, the
main difference to much of this research is that we perform the analysis in the
browser at runtime, taking into account modern web design and development
practices, and relying on a single sample page. Most of the methods used for
web data extraction use either structural cues based on the Document Object
Model (DOM) or a series of visual cues such as the position of bounding boxes
or typographic information, or some combination of both. One of the most effec-
tive measures used to detect similarities based on structural cues is the tree edit
distance [16] and its variants, such as the pq-gram distance [17].

RoadRunner [18] and IEPAD [19] are systems that use structural analysis to
extract data from a set of pages and a single page, respectively, while ViDE [20]
is an example of a system that focuses on the use of visual cues. The latter
works purely on the rendered web page and extracts first records and then fields
using similarity clustering based exclusively on visual cues. While the authors
acknowledge that this approach is too expensive for real-time use, we were able
to build on some of their ideas while keeping our approach more tied to HTML
and CSS to avoid complex visual processing. Similar to ViDE, our approach
makes use of a content-rich area, which is indicated by the user in our case.

DataMockups is integrated with a Chrome extension called DeepDesign [7],
which we created to extract data from arbitrary web pages in order to create
custom post types within a theme editor for WordPress [6]. DeepDesign also uses
a mixed analysis of structural, visual and content-related cues but, in contrast
to the DataMockups extraction algorithm, works in a top-down rather than
bottom-up manner. We compare the approaches in detail later in the paper.

3 The DataMockups Tool

The DataMockups design tool allows users to create mockups for different projects
(see Fig. 1). Being a web application, it runs in a general-purpose browser and

152 A. Murolo et al.

Fig. 1. DataMockups tool showing a high-fidelity mockup of a boat rental website from
the case study, with a control panel (left) and elements that can be inserted (top).

exploits CSS positioning, customisations and capabilities of automatic arrange-
ment using flexible box layout (Flexbox). We will now introduce the various fea-
tures of the design tool and the development support provided by the system.

Mockup Design. There is a page switcher at the top, together with the option
to create new mockups in the current project. Via the tabs on the left, the user
can customise the mockup pages, the design viewport and the CSS rules for
the page and individual elements. Elements can be inserted using drag-and-drop
from the palette of elements located above the mockup. Although any HTML
element could be supported, we currently offer only headings, paragraphs, lists,
blocks, tables and pictures which are the most common elements in web pages
and, in our opinion, best suited for hosting content in a mockup scenario.

It is important to note that mockups are responsive and hence an element
dropped into a mockup is not assigned an absolute or relative position using
pixel-based offsets from reference points, but instead is inserted into the docu-
ment flow using a novel approach based on Flexbox. When an element is dragged
onto the page, a purple overlay on a hovered target element is used to indicate
where the inserted element will be placed if released. In the case of Fig. 2, the
new element would be introduced on the left side of the existing one.

Content Editing. The content of dropped elements can be modified as in any
WYSIWYG editor. On a double-click, elements can be given style customisations
or transformed into links to other pages.

Scaffolding Relational Schemas and APIs from Content in Web Mockups 153

Fig. 2. A screenshot of the mouse overlay for positioning.

Fig. 3. Clusters detected by DataMockups in a mockup containing publications. In the
screenshot, the user is hovering on the yellow cluster (Cluster 2), and corresponding
elements in the mockup are highlighted. (Color figure online)

Since it can be tedious to enter sample data content, we offer the possibil-
ity for users to reuse data from existing similar websites using the integrated
DeepDesign tool [7]. For example, if a website for a research group is being cre-
ated, the developer will want to include a list of publications in the mockup.
Instead of entering the list manually, they could for example go to their DBLP
page and extract publication data from there. This would be done by running
the DeepDesign browser plugin in a separate browser tab containing the DBLP
page. The user would be required to label the fields of an example publication
within that page, execute a matching process and then click on a button to send
the data to the DataMockups tool. A new element would then appear in the
palette at the top of the DataMockups window, which could be dragged into the
design causing the entire set of matched publication records to be inserted in
the mockup, reusing the style information of the source website.

Schema Formation. Once content has been placed into the mockups, the
process of generating a database schema can begin. The first step involves detect-
ing groups of similar data items within a page and is accessed via the Detection
tab. Although technically not required, the user is asked to first select the area
within the page where the content to be analysed is located as this reduces the
processing costs significantly. Elements in the selected area are clustered together
by visual and structural similarity, with the goal of having elements with similar
meaning in the same cluster. Figure 3 shows an example with publications where
titles, authors, pages and the publications themselves form different clusters.

154 A. Murolo et al.

Fig. 4. A schema detected (left) which can be modified by the user (right).

The different clusters are listed on the left of Fig. 3 and hovering on the cluster
name highlights all the elements in the mockup belonging to that cluster which,
along with the visual cue of colour-coding, allows users to easily see how data
has been matched. Users are required to give the clusters names, for example
author, title and publication. The system then stores the clusters for use in the
schema formation step. If data comes from an external website via DeepDesign,
it is already clustered and labelled so this first detection step is skipped.

Schema formation is performed via the Schema & Data tab. An entity-
relationship (ER) schema is inferred iteratively and automatically through analy-
sis of the saved clusters and content from one mockup at a time. Some tuning
of the generated schema may be required, for example to refine the type of an
attribute or the cardinality of a relationship. This can be done through customi-
sation options as shown in Fig. 4. To generate the database code, DataMockups
prepares an XML representation of the schema in terms of the entities, relation-
ships and attributes, together with their associated data types.

Database and API Generation. Once the ER schema has been finalised, a
user can start the final step of generating the database. They first have to specify
a few parameters such as the database name, the address of the database server
and access credentials. Then the ER schema is mapped into a relational schema
and the corresponding SQL generated.

Scaffolding Relational Schemas and APIs from Content in Web Mockups 155

Everything until this point is done on the client. The DataMockups server is
responsible for generating the database and API, as well as managing projects
and exporting the HTML and CSS files of the mockups. An overview of the
architecture is given in Fig. 5. If the database server is reachable from the Data-
Mockups server machine, the database can be created directly. Otherwise, the
user exports SQL scripts and executes them manually. The user also receives an
object-oriented PHP-based API that is able to manage the entities and relation-
ships in the schema as well as the HTML and CSS of the mockups for further
development. Since it is likely that a website under development and its schema
will be modified in the future, our aim was to provide an object-oriented API
which would be as change-proof as possible. We achieved this by making all calls
to the API go through a so-called Naming Service that keeps track internally of
the structure of the schema. When the database and naming service go out of
sync, e.g. the developer tries to access a field which was added to the database
after the code was generated, our API performs a query on the INFORMA-
TION SCHEMA table of the database to resynchronise the naming service and
allow the API to access the new fields. In the case that more entities are added
(i.e. tables), the API offers a class that provides similar interface abstractions to
access any table in the database. While this means that newer entities will not
have their own database management class, developers will still be able to use
the generated API to interact with the database.

DataMockups Interface DataMockups Server

Schema (XML)

DB-API
Generator

Schema (XML)

SQL Schema + API

PHP Population Script
(1)

(2)

(3)

(4)

Fig. 5. The generation flow across the architecture of DataMockups. The XML defines
the generated schema and API, and is used to create the database.

4 Data Detection and Schema Formation

The detection process performs a clustering of all the elements contained in the
selected area of the web page, based on the assumption that the granularity of
the DOM elements is enough to distinguish different tuples, entities and fields
in the design. Each clustered page can contribute to the detected schema. The
first parent element containing the selected area is also included in the clus-
tering. Visually hidden elements are excluded from the clustering, i.e. elements
with CSS properties such as visibility:hidden or display:none. Clearly, the overall
assumption is that designed elements to be analysed are representative of the
complexity of the schema being modeled.

All of these elements are used as input to a hierarchical clustering algorithm
implemented with an external library4. The distance metric is the pq-gram edit
4 http://harthur.github.io/clusterfck/.

http://harthur.github.io/clusterfck/

156 A. Murolo et al.

distance [17] implemented in a library called JQGram5 since it has performance
advantages over the tree-edit distance. The labels of the nodes in the tree are
the node names, e.g. div, p, and span. Children of the nodes in the pq-gram
input tree are the children of the nodes in the DOM tree, joined with the set of
associated CSS classes. This allows visual rules to be taken into account without
having to compare the entire set of CSS rules, thereby reducing runtime costs.
The parameters for the pq-gram algorithm are left at the default (p=2, q=3).

The pq-gram edit distance returns a distance value in the interval [0,1].
The stopping criterion for the hierarchical clustering is set to 0.8, meaning that
the clustering will stop if all clusters are at least at a distance of 0.8 or more
from each other. Clusters are assigned an ID and labelled by the user. The
elements in a cluster are assigned a data-cluster property with the name as the
value. This enables multiple clusters with the same naming scheme to be easily
merged. Elements extracted from external websites using the DeepDesign tool
are imported with these properties already assigned.

The schema formation makes two assumptions. The first is that links between
clusters (such as membership or connection through relationships) are reflected
in the mockup through a containment relationship in the DOM. The second
assumption is that if elements of the same cluster contain identical content (e.g.
the same author name) then they are matched as the same value.

The schema formation is done in two steps. First, for each mockup page, we
add all the elements with a data-cluster attribute (called cluster elements) to
a tree called the data tree to store the cluster contents of the mockups for the
schema formation, with the goal of collapsing duplicates. Once all the clusters
have been added, each cluster across the whole website can be classified as an
entity, a separate entity in a relationship with its parent, or an attribute of its
parent, with their content extracted from the page and stored accordingly.

The first step in adding a mockup examines all cluster elements in the
mockup. For each cluster element c, we add it to the tree, creating node cn.
Cluster elements added to the tree follow the hierarchical structure that comes
from the mockups: for example, if a cluster element publication contains many
cluster elements of authors, the tree will contain a node for the publication with
many children belonging to cluster authors (see Fig. 6). Each node cn will also
hold the reference to the corresponding cluster element c in the mockup page.

If an element e similar to cn already exists in the tree (in terms of content
and of the cluster they belong to), we mark them as mergeable. Once all the
cluster elements for a mockup have been added to the tree, we iterate over the
mergeable elements and mark the tree node for cn as merged with e through a
reference as long as their children do not conflict content-wise (naive merge). The
same is attempted for the parents of e and cn. Furthermore, in a merge operation
from m to t, the children of m are merged with those of t and removed from m.
Nodes which have been previously merged cannot then be targeted for a merge.
Therefore, the data tree realises a graph, where all nodes can be bidirectionally

5 https://github.com/hoonto/jqgram.

https://github.com/hoonto/jqgram

Scaffolding Relational Schemas and APIs from Content in Web Mockups 157

Linda Di Geronimo, Alfonso Murolo, Michael Nebeling, Moira C. Norrie:
Mixing and Mashing Website Themes.

Alfonso Murolo, Moira C. Norrie:
Deriving Custom Post Types from Digital Mockups.

Root

Pub
0

Pub
1

{cluster:publications,
content:”Linda Di…”}

{cluster:publications,
content:”Alfonso…”}

Auth
0

Auth
1

Title
0

Title
0

Auth
0

Auth
1

{cluster:authors,
content:”Linda Di…”} {cluster:title,

content:”Mixing…”}
{cluster:authors,
content:”Alfonso…”}

{cluster:title,
content:”Deriving…”}{cluster:authors,

content:”Alfonso…”}

merged

Fig. 6. A simplified example of a single mockup housing publications and the cor-
responding data tree. Borders show the publications (solid), authors (dashed), and
titles (mixed). For simplicity, we hide the second merge that would occur. The two
publications cannot be merged, since the title nodes are conflicting.

navigated in the parent-children relationship (as in a classic tree), but augmented
with the merging references, which can only be navigated unidirectionally.

Once the data tree is constructed, the second step starts: the graph is
analysed to distinguish which clusters should become entities, entities in rela-
tionships, or attributes. Iterating over the list of clusters, for each cluster cl,
we identify all the parent clusters p which have cl as a child. For each cl and
respective parent p (if any) in the data tree, we define clp as the elements of cl
which have p as a parent cluster in the data tree. We then consider:

– whether cl is a child of other clusters in the data tree (hasParentCluster)
– whether, following merge links, the ratio of unique contents in clp to the total

count of contents of clp is below a certain threshold (isSpread)
– whether any element in clp has any siblings of the same cluster (isRepeated)
– whether any of the nodes of cl has children clusters (hasChildClusters)

The decision tree leading the classification of each cluster is shown in Fig. 7.
Our implementation uses a threshold of 0.95 in the isSpread function, since
our goal was to flexibly allow some content to appear a few times and still be
considered as an attribute. If a cluster is spread, we consider it an entity in a
relationship with its parent. Every time the user adds a new mockup to the
data tree, the schema is re-inferred using the new information, and the resulting
schema can be viewed directly. The evolution of the schema depends on the
order in which the mockups are added, even though the final result will be
the same.

158 A. Murolo et al.

hasParentCluster
No

Yes
isSpread entity

isRepeated isRepeated

1-N relationshipN-1 relationshipN-N relationship
hasChildClusters

1-1 relationship attribute

Yes

Yes Yes

Yes

No

No No

No

Fig. 7. The decision tree that leads to the classification of clusters.

5 Evaluation

We report on two evaluations of DataMockups. The first was a case study to
evaluate the quality of the generated schemas. The second was a performance
evaluation of the element detection component executed on different websites.

5.1 Case Study for Schema Formation

We aimed at assessing the quality of the schema formation algorithm by creating
projects with data from 10 different data-intensive application domains related to
online databases, shops and rental platforms, which are typical targets of data
extraction systems. For each project, we designed multiple list pages showing
results of different queries together with mockup pages showing the detailed
information for some single items in these lists. An exception was the application
known as FoodCASE which presents all details in the list pages.

To test the schema inference in isolation, an MSc student created and anno-
tated these 49 mockups manually and directly fed them to the schema formation,
with the default threshold for isSpread of 0.95. We list the projects in Table 1,
and have made them available online6 together with the resulting schemas in
the form of SQL statements. As a metric, we considered the number of major
mismatches (e.g. cardinality mismatches, mis-identified entities), and of minor
mismatches (e.g. fields of the wrong data type) when comparing the generated
schema with ones produced by a PhD student (with several years of experience
in database design) while considering the same mockups.

The projects were generally correctly analysed and produced meaningful
schemas. No minor mismatches occurred, with DataMockups being able to
analyse the content and detect dates, integers, and floating point numbers in
the content. Two projects, Movies and Blog, were inferred correctly with no
mismatches detected. These two projects were quite interesting in terms of the
schemas involved.
6 http://dev.globis.ethz.ch/datamockups/DataMockups casestudy.zip.

http://dev.globis.ethz.ch/datamockups/DataMockups_casestudy.zip

Scaffolding Relational Schemas and APIs from Content in Web Mockups 159

Table 1. All the projects used for the case study. We also report the total number of
mockups compared to the number of mockups after which the schema inference reached
a stable condition and did not alter the inferred schema (order dependent). The last
column reports the number of major (M) and minor (m) mismatches.

Project Domain description Mockups Mism.

Recipe
website

Recipes with instructions, categories, times of
preparation and ingredients

4/3 1M

Movie
DB

Movies (with title, rating, date, description), genres,
actors

7/4 0

Blog Posts with categories, comments, authors 5/1 0

Clothes
shop

Products (with title, a picture, prices, categories,
description, etc.), different sizes of dresses

5/2 3M

Job
search

Jobs (with title, salary, description), job types,
qualification requirements, company offices in different
locations

5/2 2M

Book
Store

Books (with title, picture, description, genre, date,
publisher) and authors

4/2 3M

Boat
rental

Boat with picture, price, name, cabins, year of
construction and sleeping berths

5/2 1M

Laptop
shop

Products with a name, picture, price, description,
RAM, color, model code, hard drive size, operating
system and manufacturer

5/3 1M

Flat
rental

Apartments with picture, price, name, address, size,
additional information, amount of rooms and the
district where they are located

6/2 1M

Food
CASE

Food composition database (subset). Foods can have
categories and sub-categories, and various composition
measurements which vary by measurement unit

3/1 3M

In the Movies project, Movies have M-N relationships with both Genres and
Actors. Other clusters such as the picture, the title, the movie rating, the release
date, and the description were identified as attributes of the Movie entity.

In the Blog project, which was of similar complexity, the entities recog-
nised were Posts (with attributes of title, content and date), Authors (with the
name), Comments (with the comment date and the comment text), and Cate-
gories (with the category name). The pair (Posts, Authors) was recognised as
a 1-N relationship, similarly to (Posts, Comments) and (Comments, Authors).
(Posts, Categories) was correctly identified as an M-N relationship.

In the other projects, two main types of major mismatches occurred:

– Type 1: (a) an attribute wrongly modeled into a different entity or (b) vice
versa

– Type 2: the wrong multiplicity being determined for a relationship between
two entities

160 A. Murolo et al.

Type 1a occurred in various cases: the preparation times of Recipes, the sleep-
ing berths in the boats of the Boat rental, hard drive sizes for the Notebook
shop, the number of rooms for the Flat rental. All of these projects were oth-
erwise inferred correctly. Type 1b occurred for the publisher and the genre fields
in the Book Store, the city in the Job Search, and the category field in the
Clothes shop due to a lack of sample data. Type 1 mismatches occurred a total
of 8 times.

The second type of mismatch, the wrong multiplicity, occurred 5 times: once
in the Clothes project, once in the Job Search, once in the Book Store and
twice in the FoodCASE project. Almost all of these (the exception being the
Clothes and FoodCASE projects which will be discussed later) were connected to
a lack of representative sample data, which was connected to a total of 7 major
mismatches across the whole experiment. This highlights how critical the sample
data is to the process of schema formation. We now discuss some mismatches in
specific projects which are especially interesting for our schema inference.

Clothes: As previously mentioned, in this shop project, a Type 2 mismatch
occurred: the Size of the clothes was generated as a separate entity involved in
a 1-N relationship with Products. This case is particularly interesting since it
highlights two critical aspects of the approach: the dependency on the labelling
(and therefore on the mockup design), and the complexity of the schemas sup-
ported. In these mockups, the size and the availability were designed with a text
label (i.e. “Size: S,M” and “In stock”). In reality, an expert database designer
may separate the sizes and have the dresses in an M-N relationship (a dress
can have many sizes, and a size can apply to many dresses). However, since
the finest granularity in the DOM for DataMockups was the single text element
“S,M” being annotated as “size”, this became a 1-N relationship. This suggests
that the system should, in some cases, also have a finer granularity than DOM
elements to support the recognition of such lists and interpret these as multiple
elements. Also, the availability could apply to the relationship (dress,size), but
DataMockups does not yet support the detection of relationships with attributes,
accounting for an additional major mismatch.

FoodCASE: To test schema formation on a more complex example, we used
it with a subset of data from the application FoodCASE7 which was developed
within a European project on food sciences. Since members of our research group
were responsible for developing the database behind it, this enabled us to com-
pare the inferred schema with the real one. The generated schema has foods in
an M-N relationship with the composition measurements (Type 2 error), which
in turn are in a 1-N relationship with a measurement unit, e.g. kcal, or kJ, and
with the component which is a string describing the type of measurement, such
as “Energy, kiloJoule”. Foods are also in a 1-N relationship with a subcategory
which in turn is in a 1-N relationship with a parent category. While such a
schema can be complicated in terms of querying, it is almost semantically cor-
rect. In reality, the database designers show a major difference in having an N-ary

7 http://www.foodcase.ethz.ch/index EN.

http://www.foodcase.ethz.ch/index_EN

Scaffolding Relational Schemas and APIs from Content in Web Mockups 161

relationship to easily relate different foods to different measurement types and
measurement units, adding relationship attributes. In addition, the real schema
allows foods to belong to more categories, which is the second mentioned Type
2 mismatch, possibly related to the limitation of our sample data.

Summarising, the experiments show promising results and also two main
types of errors which need to be addressed. To tackle errors of Type 1a, it is
possible to lower the isSpread threshold, with a level of success that depends on
the sample data provided. Providing more data for a mis-classified cluster will
also affect the calculations for isSpread. While this shows room for improvement,
we plan to experiment with some questions the user could be asked to refine the
defined schema if the confidence in the decision for isSpread is insufficient. In our
experiments, most errors of Type 1b and Type 2 were connected to a limitation
of the sample data, so providing representative data is important to avoid these;
however, tuning the isSpread threshold may also have an effect, depending on the
data. Alternatively, we also allow users to fine tune the detected multiplicities
to address Type 2 mismatches. Finally, some unsupported cases still need to be
addressed, namely the detection of N-ary relationships, of relationship attributes,
and the handling of content which is more fine grained than the DOM.

5.2 Performance Evaluation

We evaluated the performance of the element detection component on live web-
sites using four pages: a publications page similar to the one in Fig. 3, a DBLP
page, a Google search results page and a results page from Twitter. The goal
was to assess the feasibility of the element detection approach on external web
pages, without selecting any area, then introducing a selection of a content-rich
area and finally introducing some code optimisations (e.g. filtering hidden ele-
ments). Results on these four pages showed that the technique without selecting
a content-rich area on external web pages is practically infeasible (93 s on the
Google page, while it did not terminate in Twitter and DBLP within two minutes
and the browser became unresponsive). Introducing area selection and optimi-
sations could make it feasible (3.7 s of total runtime on Google). In this case, the
mockup publication page only took 141 ms while the DBLP page took almost
2 s. The only page which was still very expensive was Twitter, which took 71 s.
This technique may therefore only be suitable for the smaller pages occurring in
mockups where it performs well, while DeepDesign performs much better when
extracting data from live web pages.

6 Conclusion

We have shown how DataMockups can be used to create digital mockups and
automatically generate database code from sample content. The system clusters
content based on structural and style-related cues, and then generates a schema
by analysing it to detect relationships between the clusters. The inferred schema
is sent to a generation service that creates an SQL database definition and

162 A. Murolo et al.

a PHP-based server-side API, which can be used to optionally populate the
database with the content from the mockup. As an alternative to manually
providing sample content, data can be extracted from existing websites.

Our inspection of a number of cases in our case study showed that the quality
of the generated schemas was generally good, but identified a number of cases
where the methods require refinement. The comparison of the DataMockups
approach to data detection with that of DeepDesign [7], suggests that our hybrid
approach of using the former for content created manually and the latter for
the importation of content from external sites with larger volumes of data is
justified. Finally, we cannot claim that our approach is completely general: we
plan to improve the freedom in the design by introducing a recursive merging
strategy, and to experiment with more complex datasets and designs to improve
the performance as well as the quality of the schemas.

Acknowledgments. We would like to thank Loris Diana for his work on the realisa-
tion of the DB-API-Generator.

References

1. Norrie, M.C., Geronimo, L., Murolo, A., Nebeling, M.: The forgotten many? A
survey of modern web development practices. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 290–307. Springer, Cham (2014).
doi:10.1007/978-3-319-08245-5 17

2. Blakeley-Silver, T.: WordPress 2.8 Theme Design: Create Flexible, Powerful, and
Professional Themes for Your WordPress Blogs and Websites. Packt Publishing
Ltd. (2009)

3. Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G., Shanmugasun-
daram, J.: WYSIWYG development of data driven web applications. Proc. VLDB
Endow. 1(1), 163–175 (2008)

4. Ramdoyal, R., Cleve, A.: From pattern-based user interfaces to conceptual schemas
and back. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol.
6998, pp. 247–260. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24606-7 19

5. Verou, L., Zhang, A.X., Karger, D.R.: Mavo: creating interactive data-driven web
applications by authoring HTML. In: Proceedings of 29th Annual Symposium on
User Interface Software and Technology, pp. 483–496. ACM (2016)

6. Murolo, A., Norrie, M.C.: Deriving custom post types from digital mockups. In:
Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 71–80. Springer, Cham (2015). doi:10.1007/978-3-319-19890-3 6

7. Murolo, A., Norrie, M.C.: Revisiting web data extraction using in-browser struc-
tural analysis and visual cues in modern web designs. In: Bozzon, A., Cudre-
Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 114–131.
Springer, Cham (2016). doi:10.1007/978-3-319-38791-8 7

8. Hennicker, R., Koch, N.: A UML-based methodology for hypermedia design. In:
Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424.
Springer, Heidelberg (2000). doi:10.1007/3-540-40011-7 30

9. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (WebML): a modeling
language for designing web sites. Comput. Netw. 33(1–6), 137–157 (2000)

http://dx.doi.org/10.1007/978-3-319-08245-5_17
http://dx.doi.org/10.1007/978-3-642-24606-7_19
http://dx.doi.org/10.1007/978-3-319-19890-3_6
http://dx.doi.org/10.1007/978-3-319-38791-8_7
http://dx.doi.org/10.1007/3-540-40011-7_30

Scaffolding Relational Schemas and APIs from Content in Web Mockups 163

10. Houben, G.-J., Barna, P., Frasincar, F., Vdovjak, R.: Hera: development of seman-
tic web information systems. In: Lovelle, J.M.C., Rodŕıguez, B.M.G., Gayo, J.E.L.,
Puerto Paule Ruiz, M., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 529–
538. Springer, Heidelberg (2003). doi:10.1007/3-540-45068-8 99

11. Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: an informal web site
design tool inspired by observations of practice. Hum.-Comput. Interact. 18(3),
259–324 (2003)

12. Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: an agile app-
roach supporting API-first web application development. In: Daniel, F., Dolog, P.,
Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 7–21. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39200-9 4

13. Rivero, J.M., Heil, S., Grigera, J., Robles Luna, E., Gaedke, M.: An extensible,
model-driven and end-user centric approach for API building. In: Casteleyn, S.,
Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 494–497. Springer,
Cham (2014). doi:10.1007/978-3-319-08245-5 35

14. Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F., Gaedke, M.: Mockup-
driven development: providing agile support for model-driven web engineering. Inf.
Softw. Technol. 56(6), 670–687 (2014)

15. Terwilliger, J.F., Delcambre, L.M.L., Logan, J.: The user interface is the conceptual
model. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp.
424–436. Springer, Heidelberg (2006). doi:10.1007/11901181 32

16. Tai, K.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
17. Augsten, N., Böhlen, M., Gamper, J.: Approximate matching of hierarchical data

using Pq-grams. In: Proceedings of 31st International Conference on Very Large
Data Bases, VLDB Endowment (2005)

18. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: towards automatic data
extraction from large web sites. In: Proceedings of 27th International Conference
on Very Large Data Bases. Morgan Kaufmann (2001)

19. Chang, C., Lui, S.: IEPAD: information extraction based on pattern discovery. In:
Proceedings of 10th International Conference on World Wide Web. ACM (2001)

20. Liu, W., Meng, X., Meng, W.: Vide: a vision-based approach for deep web data
extraction. IEEE Trans. Knowl. Data Eng. 22(3), 447–460 (2010)

http://dx.doi.org/10.1007/3-540-45068-8_99
http://dx.doi.org/10.1007/978-3-642-39200-9_4
http://dx.doi.org/10.1007/978-3-319-08245-5_35
http://dx.doi.org/10.1007/11901181_32

SourceVote: Fusing Multi-valued Data via
Inter-source Agreements

Xiu Susie Fang1(B), Quan Z. Sheng1, Xianzhi Wang2, Mahmoud Barhamgi3,
Lina Yao4, and Anne H.H. Ngu5

1 Department of Computing, Macquarie University, Sydney, Australia
xiu.fang@students.mq.edu.au, michael.sheng@mq.edu.au

2 School of Information Systems, Singapore Management University,
Singapore, Singapore

sandyawang@gmail.com
3 LIRIS Laboratory, Claude Bernard Lyon1 University, Villeurbanne, France

mahmoud.barhamgi@liris.cnrs.fr
4 School of Computer Science and Engineering, UNSW, Sydney, Australia

lina.yao@unsw.edu.au
5 Department of Computer Science, Texas State University, San Marcos, USA

angu@txstate.edu

Abstract. Data fusion is a fundamental research problem of identify-
ing true values of data items of interest from conflicting multi-sourced
data. Although considerable research efforts have been conducted on this
topic, existing approaches generally assume every data item has exactly
one true value, which fails to reflect the real world where data items with
multiple true values widely exist. In this paper, we propose a novel app-
roach, SourceVote, to estimate value veracity for multi-valued data items.
SourceVote models the endorsement relations among sources by quantify-
ing their two-sided inter-source agreements. In particular, two graphs are
constructed to model inter-source relations. Then two aspects of source
reliability are derived from these graphs and are used for estimating
value veracity and initializing existing data fusion methods. Empirical
studies on two large real-world datasets demonstrate the effectiveness of
our approach.

Keywords: Data integration · Data fusion · Multi-valued data items ·
Inter-source agreements

1 Introduction

Last few years have witnessed a sheer amount of data produced and commu-
nicated among numerous sources over the Web. Unfortunately, these sources
possess varying qualities and in many cases provide conflicting information on
the same data items. This poses great challenges to data integration research on

The original version of this chapter was revised: Acknowledgment section has been
added in the chapter. The correction to this chapter is available at https://doi.org/10.
1007/978-3-319-69904-2 40

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 164–172, 2017.
https://doi.org/10.1007/978-3-319-69904-2_13

https://doi.org/10.1007/978-3-319-69904-2_40
https://doi.org/10.1007/978-3-319-69904-2_40

SourceVote: Fusing Multi-valued Data via Inter-source Agreements 165

discovering true values from multi-sourced data, or the data fusion problem [7].
Considerable research efforts have been conducted to resolve this issue [8]. How-
ever, most of them assume that every data item has exactly one true value, i.e.,
single-valued assumption. This assumption fails to reflect the reality where many
data items have multiple true values [15], e.g., the authors of a book. Given a
data item, although we can simply concatenate and regard the values provided
by the same source as a single joint value, like what previous methods do, the
sets of values provided by different sources may overlap and implicitly support
one another, making the concatenation unreasonable. For example, a source may
claim “Charlie Booty, Lily James, Tim Roth” while another source may claim
“Charlie Booty, Lily James” as the cast of the film “Broken”. Apparently, the
latter set is covered by the former set and therefore partially supports the former
set. Since neglecting this hint may greatly impair the data fusion accuracy on
multi-valued data items, we define and conduct focused study on a new topic
called the multi-valued data fusion problem.

To the best of our knowledge, few research efforts have been devoted to the
multi-valued issue in the field of truth discovery. We identify the challenges of
multi-valued data fusion and the disadvantages of existing approaches as follows.
Firstly, all existing methods require initializing source reliability, and for many
of them, source reliability initialization impacts their performance in terms of
convergence rate and accuracy. Secondly, there are implicit endorsement rela-
tions among sources when they provide some values in common. Intuitively, a
source endorsed by more sources is regarded more authoritative and its pro-
vided values can be more trusted. Unlike other widely studied source relations
such as copying relations, endorsement relations among sources are neglected by
the previous work. Thirdly, sources may exhibit different behavioral features on
multi-valued data items: some sources may provide erroneous values, leading to
false positives, while some other sources may provide partial true values with-
out making mistakes, leading to false negatives. While these two types of errors
are equivalent for single-valued data items, for multi-valued data items, differ-
entiating these errors is crucial for identifying the complete true value set. In a
nutshell, our work makes three main contributions: (i) we propose a graph-based
model, called SourceVote, as a solution to the multi-valued data fusion problem.
It uses two graphs, i.e., ±Agreement Graph, to model the two-sided endorse-
ment relations among sources. Random walk computations are applied on both
graphs to derive two-sided vote counts of sources and to finally estimate value
veracity; (ii) we further derive two-sided source reliability from the two graphs to
better estimate sources’ quality and initialize existing data fusion methods; (iii)
we conduct extensive experiments on two large real-world datasets. The results
show that SourceVote consistently outperforms the baselines.

2 Related Work

Except uniformly initializing source reliability as 0.8 [10], most previous work
helps data fusion methods to initialize source reliability based on prior knowl-
edge, which is obtained by either semi-supervised methods [2] or leveraging an

166 X.S. Fang et al.

external trustful information source [3]. In comparison, our approach automati-
cally derives source reliability by capturing source endorsement relations without
using any prior knowledge. The Web-link based data fusion methods [6,9] are
the closest to our method. They compute the trustworthiness of sources and the
truthfulness of values by using PageRank, where each link between a source and
a value represents the source provides that value. However, they make single-
valued assumption. To the best of our knowledge, multi-valued data fusion is
rarely studied by the previous work. LTM (Latent Truth Model) [15] and the
method proposed by Wang et al. [13] are two probabilistic models that take
multi-valued objects into consideration. Waguih and Berti-Equille [10] conclude
with extensive experiments that this type of models make strong assumptions
on the prior distributions of latent variables, which render the modeled problem
intractable and inhibitive to incorporating various considerations, and cannot
scale well. Wang et al. [11] analyze the unique features of MTD and propose an
MBM (Multi-truth Bayesian Model). However, they make strong assumptions on
the copying of false information among sources and the independent provisioning
of correct information by sources. It also requires initialization of several parame-
ters including source reliability and copy probabilities of copiers. Recently, Wang
et al. [12] design three models for enhancing existing truth discovery methods.
Their experiments show that those models are effective in improving the accu-
racy of multi-truth discovery using existing truth discovery methods. However,
LTM and MBM still performed better than those enhanced methods. None of the
above methods takes the endorsement relations among sources into considera-
tion. Different from them, our approach assumes no prior distribution or source
dependency and requires no initialization of source reliability. Therefore, it is
robust to various problem scenarios and insensitive to initial parameters.

3 The SourceVote Approach

The multi-valued data fusion problem involves three explicit inputs: (i) a set of
multi-valued data items, denoted as O. Each o ∈ O may have multiple true values;
(ii) a set of data sources, denoted as S. Each s ∈ S provides potential values
on a subset of O; (iii) claimed values, denoted as V . Each v ∈ V represents
a value claimed by a source on a data item. Given a data item o, we denote
the set of sources that provide values on it as So, and the set of all claimed
values on it as Vo. In addition, we can derive several implicit inputs from the
explicit inputs. Suppose the source s provides some specific values on item o
(i.e., positive claims), denoted as Vso

+. By incorporating the mutual exclusion
assumption, we believe s at the same time disclaims all the other values of o
(i.e., negative claims), denoted as Vso

−, satisfying Vo − Vso
+.

To differentiate false positives and false negatives made by sources and to
model source quality more precisely in multi-valued scenarios, our model focuses
on two aspects of source reliability: positive (resp., negative) precision, the prob-
ability of the positive (resp., negative) claims of a source being true (resp., false).
Note that the truth and source reliability are closely related. We formally define
the multi-valued data fusion problem as follows:

SourceVote: Fusing Multi-valued Data via Inter-source Agreements 167

Definition 1. Multi-Valued Data Fusion Problem. Given a set of data
items (O) and the conflicting values (V) claimed by a set of sources (S), the goal
is to identify a set of true values (Vo

∗) from V for each data item o, satisfying
that Vo

∗ is as close to the ground truth as possible. �

For multi-valued data items, sources may provide the same, overlapping, or
totally different sets of values from one another. Generally, values agreed by
the majority of sources are more trustworthy. Therefore, if the positive claims of
a source are agreed by the majority of other sources, this source is likely to have
high positive precision; likewise, if the negative claims of a source are disclaimed
by the majority of sources, this source would be of high negative precision. That
means the agreements among sources indicate endorsement, which further moti-
vates us to model the quality of a source by quantifying the agreements and
endorsement relations among data sources.

Given a data item o, we formally define the common values claimed by two
sources as inter-source agreement. We consider two-sided inter-source agree-
ments based on mutual exclusion. In particular, +agreement, the agreement
between two sources (e.g., s1 and s2) on their positive claims of o, (denoted by
Ao

+(s1, s2)) is calculated as:

Ao
+(s1, s2) = Vs1o

+ ∩ Vs2o

+ (1)

Similarly, –agreement, the agreement between two sources on their negative
claims of o (denoted by Ao

−(s1, s2)) is calculated as:

Ao
−(s1, s2) = Vs1o

− ∩ Vs2o

− = Vo − (Vs1o

+ ∪ Vs2o

+) (2)

The positive (resp., negative) precision of a source is endorsed by the +agreement
(resp., –agreement) between this source and the other sources.

In this section, we present a graph-based approach, called SourceVote, as a
solution to multi-valued data fusion, which is a two-step process: (i) creating two
graphs based on agreements among sources (Sect. 3.1), and (ii) assessing two-
sided source quality based on the graphs and further use the assessment results
to estimate value veracity or initialize data fusion methods (Sect. 3.2).

3.1 Creating Agreement Graphs

By quantifying the two-sided inter-source agreements, we can construct two
fully connected weighted graphs, namely ±agreement graphs. In each graph,
vertices represent sources, each directed edge depicts that one source agrees
with/endorses another source, and the weight on each edge denotes the endorse-
ment degree between the two sources. In particular, +agreement (resp., –
agreement) graph models the +agreement (resp., –agreement) among the
sources.

To construct the +agreement graph, we first formalize the endorsement from
one source to another (e.g., s1 → s2) on their positive claims. Specifically, for
each data item that they both cover, we calculate the endorsement based on the

168 X.S. Fang et al.

+agreement between the two sources. Then, we sum up the endorsement on all
their overlapping data items as follows,

E+(s1, s2) =
∑

o∈Os1∩Os2

|Ao
+(s1, s2)|
|Vs2o

+| (3)

where Os denotes the set of data items covered by s. Then, we calculate the
weight on the edge from s1 to s2 as:

W+(s1 → s2) = β + (1 − β) · E+(s1, s2)
|Os1 ∩ Os2 |

(4)

In Eq. (4), we add a “smoothing link” with a small weight between every
pair of vertices, where β is the smoothing factor to guarantee the graph’s full
connectivity and the convergence of random walk computations. For our exper-
iments, we simply set β = 0.1 (empirical studies [5] show this setting generally
yields more accurate estimation). Finally, we normalize the weights of all out-
going links of each vertex by dividing each weight by the sum of weights on all
out-going links from this vertex. This normalization allows us to interpret the
edge weights as the transition probabilities in random walk computations. We
construct the –agreement graph in a similar way.

3.2 Estimating Value Veracity and Source Reliability

To derive two-sided source reliability (positive and negative precision) from the
two graphs, the measurements should capture two features: (i) vertices with more
input edges are assigned higher precision because those sources are endorsed by
a large number of sources and should be more trustworthy1; (ii) endorsement
from a source with more input edges should be more trusted because both the
authoritative sources and the sources endorsed by authoritative sources are more
likely to be trustworthy. We adopt Fixed Point Computation Model (FPC) to
capture the transitive propagation of source trustworthiness through agreement
links based on the ±agreement graphs [1].

By applying FPC, we obtain the ranking scores of the two-sided precision
of each source among all the sources. Specifically, we refer to each agreement
graph as a Markov chain, where vertices serve as the states and the weights on
edges as transition probabilities between the states. We calculate the asymptotic
stationary visiting probabilities of the Markov random walk, where for each
graph, all visiting probabilities sum up to 1. Although, in this way, the visiting
probabilities may not reflect the sources’ real positive and negative precision,
such feature renders the visiting probabilities of each source in the two graphs
comparable. For this reason, we can count the visiting probability of each source
in the +agreement (resp., –agreement) graph as the vote for its positive (resp.,
negative) claims being true (resp., false). We denote the corresponding vote count
1 Here we neglect the smoothing links, i.e., no link would be there between two sources

in the graphs if no common value exists between the two sources.

SourceVote: Fusing Multi-valued Data via Inter-source Agreements 169

of each source as V+(s) (resp., V−(s)) and further estimate the veracity of each
claimed value as follows:

V eracity(v) =

{
True; if

∑
s∈Sv

+ V+(s) > α · ∑
s∈Sv

− V−(s)
False; otherwise

(5)

where α is the source confidence factor, Sv
+ (resp., Sv

−) represents the set of
sources that claim (resp., disclaim) v regarding o. Given a single-valued data
item, if a source claims a value, the source certainly disclaims all the other
potential values. However, sources may not know the number of true values
on the data items and thus do not necessarily reject negative claims on multi-
valued data items. Therefore, we adopt a new mutual exclusion definition [11] and
further add a source confidence factor, α ∈ (0, 1), to differentiate the confidence
of each source on its positive claims and negative claims.

To further quantify the two-sided source reliability based on the calculated
visiting probabilities, we apply a two-step normalization process: (i) given the
source which has the highest visiting probability in the +agreement graph (resp.,
–agreement graph), we first manually evaluate the positive precision (resp., neg-
ative precision) of the source, and then divide the evaluated positive precision
(resp., negative precision) by the visiting probability to derive the normalization
rate; (ii) normalizing the visiting probabilities of all sources as positive precision
or negative precision, by multiplying the corresponding normalization rates.

Note that most existing methods start with initializing source reliability as
a default value, e.g., set source reliability as 0.8 [10]. Such initialization may
fundamentally impact the convergence rate and precision of methods. According
to Li et al. [7], “knowing the precise trustworthiness of sources can fix nearly half
of the mistakes in the best fusion results”. As constructing and computing our
agreement graphs can be easily realized and require no initialization of source
reliability, our approach can be applied to existing methods for more precise
source reliability initialization.

4 Experiments

We used two real-world datasets, including the Parent-Children Dataset [9] and
the Book-Author Dataset [14]. To compare our method with traditional data
fusion algorithms, we investigated the existing approaches that can be modified
to tackle the multi-valued data fusion problem. As a result, we identified six
methods as baselines: Voting, Sums (Hubs and Authorities) [6], Average-Log [9],
TruthFinder [14], 2-Estimates [4], LTM [15], and MBM [11].

4.1 Comparison of Data Fusion Methods

Table 1 shows the performance of different approaches on the two datasets. The
results show that our approach consistently achieved the best recall and F1 score
among the methods. Compared with the two existing multi-valued data fusion

170 X.S. Fang et al.

Table 1. Comparison of different methods: the best and second best performance
values are in bold.

Method Book-Author dataset Parent-Children dataset

Precision Recall F1 score Time(s) Precision Recall F1 score Time(s)

Voting 0.84 0.63 0.72 0.07 0.90 0.74 0.81 0.56

Sums 0.84 0.64 0.73 0.85 0.90 0.88 0.89 1.13

Avg-Log 0.83 0.60 0.70 0.61 0.90 0.88 0.89 0.75

TruthFinder 0.84 0.60 0.70 0.74 0.90 0.88 0.89 1.24

2-Estimates 0.81 0.70 0.75 0.38 0.91 0.88 0.89 1.34

LTM 0.82 0.65 0.73 0.98 0.88 0.90 0.89 0.99

MBM 0.83 0.74 0.78 0.67 0.91 0.89 0.90 2.17

SourceVote 0.81 0.77 0.79 0.63 0.90 0.92 0.91 0.91

methods (LTM and MBM), SourceVote had the lowest execution time. This
is because LTM conducted complicated Bayesian inference over a probabilistic
graphical model, and MBM includes time-consuming copy detection. Moreover,
Both LTM and MBM are iterative approaches; in contrast, our approach is based
on a simpler graph-based model. Although our approach achieved no significantly
superior precision, the recall was improved drastically. For F1 score, SourceVote
consistently achieved the highest values for both datasets. The results reveal
that our approach performs the best overall among all these baseline methods,
which is consistent with our expectation because it makes no prior assumption
and considers the endorsement relations among sources by combining with the
graph-based method.

4.2 Empirical Studies of Different Concerns

We conducted experiments on the aforementioned baselines2, to validate the fea-
sibility of modeling source reliability by quantifying two-sided inter-source agree-
ments and the feasibility of using SourceVote to initialize the existing data fusion
methods. Figure 1(a) describes the performance comparison of the SourceVote
initialized methods with their original versions on the Book-Author dataset. The
results show that initializing source reliability by applying SourceVote almost led
to better performance of all methods, indicated by higher precision and recall,
and lower execution time. This reflects that the source reliability evaluated by
SourceVote is more accurate than the widely applied default value of 0.8. With
precise initialization, all methods achieved faster convergence speed. We also
investigated the performance of SourceVote by tuning the values of the source
confidence factor α from 0 to 1 on both datasets. Figure 1(b) shows the impact
of α on the performance of SourceVote on the Book-Author dataset. The overall

2 Note that we did not apply SourceVote to Voting, because Voting assumes all sources
are equally reliable.

SourceVote: Fusing Multi-valued Data via Inter-source Agreements 171

(a) (b)

Fig. 1. (a) Comparison between the original versions of representative existing data
fusion methods and the versions that apply SourceVote for precise source reliability ini-
tialization. The latter versions are marked by suffix “-s”. (b) Performance of SourceVote
under varying source confidence factor, i.e., α.

performance of SourceVote peaked at the point of α = 0.6 with an F1 score
of 0.79, which is consistent with our intuition that source confidence on posi-
tive claims should be more respected. For α ∈ [0.3, 0.9], the lowest F1 score of
SourceVote is 0.76, which is still higher than the other baseline methods. The
experimental results on Parent-Children dataset showed the similar results.

5 Conclusion

In this paper, we have proposed a novel approach, SourceVote, to address the
multi-valued data fusion problem. Our approach models the endorsement rela-
tions among sources by quantifying the agreements among sources on their pos-
itive and negative claims. Two aspects of sources reliability are derived from the
modelled relations. Due to the compact feature of SourceVote, it can be lever-
aged to initialize and improve the existing data fusion methods. Experimental
results on two large real-world datasets show that our approach outperforms the
state-of-the-art data fusion methods.

Acknowledgment. This work was supported in part (for the co-author Mahmoud
Barhamgi) by the Justice Programme of the European Union (2014-2020) 723180,
RiskTrack, under Grant JUST-2015-JCOO-AG and Grant JUST-2015-JCOO-AG-1.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

2. Dong, X.L., et al.: Less is more: selecting sources wisely for integration. VLDB
Endow. (PVLDB) 6(2), 37–48 (2013)

3. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowl-
edge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD 2014), New York, USA (2014)

172 X.S. Fang et al.

4. Galland, A., et al.: Corroborating information from disagreeing views. In: Proceed-
ings of the Third ACM International Conference on Web Search and Data Mining
(WSDM 2010), New York, USA (2010)

5. Gleich, D.F., et al.: Tracking the random surfer: empirically measured teleportation
parameters in pagerank. In: Proceedings of the 19th International World Wide Web
Conference (WWW 2010), Raleigh, NC, USA (2010)

6. Kleinberg, J.: Authoritative sources in a hyper-linked environment. J. ACM 46(5),
604–632 (1999)

7. Li, X., et al.: Truth finding on the deep web: is the problem solved? VLDB Endow.
(PVLDB) 6(2), 97–108 (2013)

8. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on
truth discovery. ACM SIGKDD Explor. Newsl. 17(2), 1–16 (2015)

9. Pasternack, J., Roth, D.: Knowing what to believe (when you already know some-
thing). In: Proceedings of the 23th International Conference on Computational
Linguistics (COLING 2010), Stroudsburg, PA, USA (2010)

10. Waguih, D.A., Berti-Equille, L.: Truth discovery algorithms: an experimental eval-
uation. arXiv preprint (2014). arXiv:1409.6428

11. Wang, X., et al.: An integrated Bayesian approach for effective multi-truth dis-
covery. In: Proceedings of the 24th ACM International Conference on Information
and Knowledge Management (CIKM 2015), Melbourne, Australia (2015)

12. Wang, X., et al.: Empowering truth discovery with multi-truth prediction. In: Pro-
ceedings of the 25th ACM International Conference on Information and Knowledge
Management (CIKM 2016), pp. 881–890 (2016)

13. Wang, X., et al.: Truth discovery via exploiting implications from multi-source
data. In: Proceedings of the 25th ACM International Conference on Information
and Knowledge Management (CIKM 2016), pp. 861–870 (2016)

14. Yin, X., et al.: Truth discovery with multiple conflicting information providers on
the web. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2007), San Jose, California, USA
(2007)

15. Zhao, B., et al.: A Bayesian approach to discovering truth from conflicting sources
for data integration. The VLDB Endow. (PVLDB) 5(6), 550–561 (2012)

http://arxiv.org/abs/1409.6428

Level-Aware Ecosystem Transformations
for Industrial Lifecycle Interoperability

Matt Selway(B), Markus Stumptner, Michael Schrefl, and Andreas Jordan

Advanced Computing Research Centre, University of South Australia,
Adelaide, Australia

{matt.selway,andreas.jordan}@unisa.edu.au, mst@cs.unisa.edu.au,

schrefl@dke.uni-linz.ac.at

Abstract. Interoperability between heterogeneous software ecosystems
at increasing scale remains a major challenge. The automated transla-
tion of data between the data models and languages built around official
or de facto standards is best addressed using model-driven engineering
techniques, but requires handling both data and multiple levels of meta-
data within a single model. In this paper we demonstrate the use of the
SLICER multi-level modelling framework as the basis for creating con-
ceptual and executable mappings between diverse data and metadata
across multiple levels. We show how an interoperability designer can
abstract from the details of specific models, enrich them with SLICER
semantics, and develop mappings between them. We present a case study
in the industrial plant engineering domain to map plant information for
lifecycle information management, demonstrating how the methodology
produces alignment across highly heterogeneous standards.

Keywords: Metamodelling · Conceptual models · Multilevel mod-
elling · Ecosystem interoperability

1 Introduction

Lack of interoperability between computer systems remains one of the largest
challenges of computer science and costs industry tens of billions of dollars each
year [4,15]. Continued efforts to solve interoperability through standards for
data exchange have failed as heterogeneous ecosystems form around different
standards. These ecosystems comprise large groups of software systems built
around different standards that must interact to support the entire system life-
cycle and where, even within a given industry, the standards are not universally
applied. Therefore, the issue of interoperability remains for both intra- and inter-
ecosystem interactions.

To enable sensor-to-boardroom reporting, the effort to establish and main-
tain interoperability solutions must be drastically reduced. This can be achieved
using model transformations based on high-level conceptual models. However,
the traditional approach using two-level models as the starting point for inte-
gration is inadequate as they can lead to omission or distortion of domain level
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 173–181, 2017.
https://doi.org/10.1007/978-3-319-69904-2_14

174 M. Selway et al.

relationships, even for deceptively simple problems such as the classic Lassie-
Dog-Breed example [1]. This significantly increases the burden on the mapping
designer, possibly leading to more complex mappings with hidden weaknesses,
and makes maintenance and updates more laborious. This is particularly relevant
since an interoperability solution is affected by changes in any of the systems
involved.

Instead, the development of high-level conceptual models and model trans-
formations is best suited to multi-level modelling (MLM) approaches, which
can express the multi-level nature of the domain without imposing a traditional
two-level structure. For example, in the creation of an engineering part or plant
in the Oil & Gas industry, different concepts are considered primitive objects
during different lifecycle stages: during design, the specification for a (type of)
pump has its own lifecycle (e.g. creation, revisions, obsolescence), while in oper-
ations the same object is considered a type with respect to physical pumps that
have their own lifecycle (e.g. manufacturing, operation, end-of-life). Moreover,
the same objects are viewed differently at the organisational level: e.g., through
concepts providing cross-classifications of objects at other levels. Hence, there
appear to be three levels of data: business, specification, and physical entity.
These domain properties should be reflected in a flexible conceptual framework
that simplifies the creation of mappings by the interoperability designer.

One such approach is SLICER [12], a flexible MLM-based conceptual frame-
work for building joint (meta)models that encompass the heterogeneities of dif-
ferent information ecosystems and serve as the common representation of infor-
mation transferred across an ecosystem (cf. Fig. 1). SLICER allows interoper-
ability designers to factor out the meaning of the models being studied, assisted
by automated inference and consistency checking, allowing their successful inte-
gration and interoperability. In this paper we leverage SLICER to create exe-
cutable mappings between models consisting of multiple levels of (meta)data.
The interoperability designer first abstracts from the details of a specific source
or target model. The system then assists in identifying the SLICER distinctions
to enrich the models and reformulate them into consistent multi-level models.
The designer then develops the mappings between the models. We present a
case study in the industrial plant engineering domain to map plant information
for lifecycle information management and demonstrate how the methodology
produces alignment across highly heterogeneous standards.

The remainder of this paper is structured as follows: Sect. 2 briefly intro-
duces the SLICER framework on which we build our model mappings; we then
use a simplified industrial case study to describe the methodology for creating
mappings using SLICER, in which the model undergoes multi-level enrichment
Sect. 3 followed by the definition of mappings Sect. 4; finally, we conclude and
discuss future directions in Sect. 5.

Level-Aware Ecosystem Transformations 175

Fig. 1: Ecosystem interoperability through a joint metamodel (numbers refer to
sections of this paper).

2 Brief Introduction to SLICER

SLICER is based around five core relations (two with two sub-relations each)
and the use of explicit descriptions (i.e. sets of constraints) for an object: the
full definition of SLICER can be found in [13]. The relations include: Stan-
dard Instantiation (InstN) and Instantiation with Extension (InstX), Special-
isation by Refinement (SpecR) and Specialisation by Extension (SpecX), Sub-
set by Specification (SbS), Categorisation (Cat), and Membership (Member) A
summary of the SLICER relationships, their features, and notation is shown
in Table 1. In contrast to other MLM approaches—such as Melanee [2] and
FMMLX[5]—SLICER has unique characteristics, including:

– Existence and subordination of levels is dynamic, determined by the relations:
i.e. no a priori specified levels or potency values for the depth of instantiation.

– Instantiation determined by value assignment to attributes defined at the
higher-level: InstN assigns all attributes of an object, otherwise InstX .

– Specialisation determined by the addition of new attributes to the sub-
concept: a specialisation that introduces new attributes is SpecX , otherwise
SpecR.

– Model levels are not levels of instantiation: non-instantiation relations, such
as SpecX , introduce new model levels.

– Incorporates the power type pattern [10] through SbS : a specification concept
is linked to a partitioned concept (its base type) such that the instances of the
former are subclasses of the latter (but not necessarily the inverse). Allows
constraints to be defined across instantiation levels. Multiple SbS relations
may refer to the same base type, supporting restricted multiple-inheritance.

176 M. Selway et al.

Table 1: Summary of SLICER notation (adapted from [13])

aWhere φ(x, y), φ ∈ {SpecX ,SpecR, InstX , InstN ,Cat ,Member , SbS}.

– Differentiates categorisation from instantiation: categorisation is basic set
membership, where an object can have multiple categories (if it conforms
to the membership criteria), while instantiation is generally limited to a sin-
gle type and imposes value assignment to attributes defined by the type. Cat
links a category to its base type, Member links an object to a category.

– Includes explicit descriptions of constraints with intuitive propagation across
multiple levels of instantiation: e.g., a constraint between a specification con-
cept and its base type is propagated firstly to the instances of the specification
type (which are subclasses of the base type) and again to their instances.

3 Multi-level Enrichment

Complex standards typically comprise a data model and reference data contain-
ing instances of multi-level patterns (see [8]) as a workaround for being defined in
a two-level language. Therefore, the source/target models must undergo semantic
and multi-level enrichment at both the linguistic (i.e. data model/schema) and
ontological dimensions (i.e. reference data instances) [6]. In Fig. 1, the thick grey
arrows labelled with numbers identify the steps and their corresponding sections
below. After the initial conversion into SLICER, instances of specific SLICER
relations are identified to help identify hidden semantics, improve model com-
parisons, and assist the definition and structuring of the joint metamodel [13].
We demonstrate this process in the context of the OGI Pilot—an instance of
the Open Industry Interoperability Ecosystem (OIIE) initiative1 that aims for
the automated, model-driven transformation of data during the asset lifecycle

1 http://www.mimosa.org/open-industrial-interoperability-ecosystem-oiie.

http://www.mimosa.org/open-industrial-interoperability-ecosystem-oiie

Level-Aware Ecosystem Transformations 177

between two of the major data standards in the Oil & Gas industry ecosystem.
MIMOSA CCOM [9], one of the major standards, is a two-level domain model
defined in UML using XML for information exchange, exhibiting many of the
multi-level patterns. For brevity, we focus on the concept Asset (representing
individual assets such as a physical pump) and their types (i.e. AssetType), of
which a simplified extract is illustrated in Fig. 2a. The upper box illustrates the
MIMOSA CCOM data model, while the lower box contains its instances.

3.1 Mapping the Linguistic Dimension to SLICER

Mapping the linguistic dimension requires transformation of both the imple-
mentation language and linguistic metamodel. This requires mapping them to
SLICER primitives—e.g. objects, attributes, instantiation, and specialisation—
using knowledge of the model and analysis of its constructs. For MIMOSA
CCOM, its definition in UML is converted: its classes, attributes, associations,
etc. are mapped to SLICER primitives. We then identify aspects of the CCOM
metamodel (i.e. specific attributes, etc.) that also map to SLICER primitives:
e.g., the type association (see Fig. 2a) maps to SLICER instantiation, superType
maps to specialisation, and the Attribute and AttributeType concepts become
SLICER attributes. Moreover, the CCOM concept Model represents both spe-
cific (revisions of) models of assets, through the model association, and the def-
inition of attribute specifications for AssetTypes, through modelTemplate. The
attributes of an Asset merge those of the modelTemplates and the model. There-
fore, we infer specialisation between the Model of an Asset and its AssetTypes
and the model association is another instantiation relation. The result is a uni-
fied view of objects that enables the enrichment of non-SLICER models with
SLICER distinctions.

3.2 Enriching the Ontological Dimension

Next, instances of general relations in the ontological model, i.e. the reference
data, are classified according to their subrelations (InstN , InstX , SpecR, and
SpecX) in an automated fashion. Only the ontological attributes are analysed to
prevent unexpected extension relations between objects that implement differ-
ent linguistic types, e.g., when comparing an instance of Model to an AssetType.
The bottom of Fig. 2a illustrates the enriched version of the CCOM example:
bracketed attributes are from linguistic instantiation, attributes prefixed by ‘/’
are derived from a mapping rule. After identifying the semantic distinctions,
level assignment is performed automatically. Level stratification aids the inter-
operability designer by showing the alignments of separate model hierarchies
as objects are mapped. Such alignments can be a simple indicator of correct
mappings, while level (and other constraint) violations indicate possibly missing
concepts and/or incorrect mappings as levels are determined dynamically from
the content of the models.

178 M. Selway et al.

Fig. 2: CCOM → joint metamodel mapping example. (For clarity, instantiation
relations between mappings are omitted.)

4 Multi-level Mappings

SLICER is extended with conceptual relations allowing the interoperability
designer to define mappings between elements of different models. Unlike typical
model transformation languages, such as those surveyed in [7], we define trans-
formations at the conceptual level by leveraging SLICER’s object descriptions to
specify declarative mappings that enable cross-model consistency checking while
providing execution semantics along the lines of transformation operators [3,14].

4.1 Semantic Mapping Relations

Conceptual and semantic relations for interoperability, such as those described by
[11] in a two-level modelling context, have been known for a long time. Rather
than being defined at a single meta-level and used by a single instance level,
mappings in a multi-level context can occur at any level and can instantiate
higher-level mappings. Using SLICER we define a taxonomy of mapping rela-
tions along the lines of [3,11,14]. To flexibly handle model variations, individ-
ual mapping relations are not necessarily bidirectional nor are inverse relations

Level-Aware Ecosystem Transformations 179

implied. Moreover, mappings can be composed to form a pattern that can be
reused in the identification of mappings from the joint model to other targets.

This taxonomy includes, but is not limited to, the following relations (for
brevity we do not discuss attribute, association, or functional mappings):

Equivalent(x, y) x and y represent the same thing (concept or object). For
concepts, this implies they have the same extension (i.e. instances) across the
integrated model; different models may have different sets of instances at any
one time, but they can be transformed from one to the other. The description
of the relation specifies the attribute level equivalences.

Subconcept(x, y) x is an (unknown) subconcept of y ; the extension of x
may completely overlap that of a known subconcept of y without implying equiv-
alence as the extensions may differ. Moreover, x may overlap multiple known
subconcepts: during transformations, the generated instances are classified using
the descriptions. The inverse, superconcept(y , x), is not implied (nor vice versa).

Partial mappings (partEquivalent(x , y), partSubconcept(x , y), etc.) some
part (defined by the description of the relation instance) of x is equivalent/sub-
concept/etc. to (possibly part-of) of y . Applies when an element of one model
conceptually covers only some part of another, either because the model excludes
some aspect or because it maps to multiple objects/concepts.

Group mappings (inverse of the partial relations) map a group of elements
to an element, or multiple elements, of another model.

4.2 Defining Joint Model Mappings

Figure 2 illustrates the mapping between the CCOM example (left) and a sim-
ple joint (ontological) model (JM) that was created, in part, by also examining
ISO15926-based models. At the top, CCOM Asset has a (bidirectional) partial
equivalence to JM Equipment, with a similar mapping between Model and Equip-
mentModel. This reveals the SbS nature of the relationship between Asset and
Model since the instances of Model are subtypes of Asset through instances of
AssetType. This is shown by C12 Rev. 1 of the enriched CCOM model and its
equivalent in JM. Grouping Pump with its modelTemplate provides an equiv-
alence to JM Pump. The inverse relations identify how Pump would be split
between the asset type and model template during a reverse transformation.

FluidPump, which has no equivalent in the CCOM model, is mapped using
the partSubconcept relation indicating that it (and its subtypes) are a subtype of
CCOM Pump. This mapping could be automatically determined by the equiv-
alence of its supertype in the JM with CCOM Pump; however, additional con-
straints can be added for consistency when transforming unmapped subtypes.

Using the AssetType/modelTemplate pattern, C12 Pump is groupEquivalent to
C12 Pump Model. Although seemingly inconsistent (C12 Pump Model only refines
its super type), the extension in the hierarchy to their common parent (i.e. Pump)
maintains consistency. Importantly, this mapping clarifies the instantiation of
/MaxTemp from Pump Model, otherwise undefined in the CCOM model.

180 M. Selway et al.

The mappings and their descriptions allow C12Pump#1 of the CCOM model,
for example, to be transformed into its equivalent in the JM. Similarly, C12 Rev.
2 could be instantiated in the CCOM model, replacing the partSubconcept to
C12 Pump with equivalence relations to the newly instantiated elements. Such
generated relations denote instances of mappings of a higher level.

5 Conclusion

We have presented a SLICER-based conceptual modelling approach to designing
model transformations between complex, multi-level models and demonstrated
its use for defining conceptual and executable mappings between diverse data and
metadata across multiple levels. Using the approach an interoperability designer
can abstract from the details of a specific source or target model and develop
mappings between them using enriched semantics provided by SLICER. We give
a case study in the industrial plant engineering domain in which we transform
the linguistic and ontological models of MIMOSA CCOM into SLICER and then
use the mapping relations to link them to a joint (meta)model, demonstrating
how to produce alignment across highly heterogeneous standards. Future work
will address mappings related to categories and specification types, which are
basic concepts in SLICER that would facilitate identification of mappings.

Acknowledgements. This research was funded in part by the South Australian Pre-
mier’s Research and Industry Fund grant no. IRGP 37.

References

1. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001). doi:10.1007/3-540-45441-1 3

2. Atkinson, C., Gerbig, R.: Flexible deep modeling with melanee. In: Modellierung
(Workshops). LNI, vol. 255, pp. 117–122. GI (2016)

3. Berger, S., Grossmann, G., Stumptner, M., Schrefl, M.: Metamodel-based infor-
mation integration at industrial scale. In: Petriu, D.C., Rouquette, N., Haugen, Ø.
(eds.) MODELS 2010. LNCS, vol. 6395, pp. 153–167. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16129-2 12

4. Fiatech: Advancing interoperability for the capital projects industry: a vision
paper. Technical report, Fiatech, Feburary 2012

5. Frank, U.: Multilevel modeling. Bus. Inf. Syst. Eng. 6(6), 319–337 (2014)
6. Igamberdiev, M., Grossmann, G., Selway, M., Stumptner, M.: An integrated multi-

level modeling approach for industrial-scale data interoperability. Softw. Syst.
Model. 16, 1–26 (2016)

7. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger,
W.: Reuse in model-to-model transformation languages: are we there yet? Softw.
Syst. Model. 14(2), 537–572 (2015)

8. de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol. 24(2), 12:1–12:46 (2014)

http://dx.doi.org/10.1007/3-540-45441-1_3
http://dx.doi.org/10.1007/978-3-642-16129-2_12

Level-Aware Ecosystem Transformations 181

9. MIMOSA: Open Systems Architecture for Enterprise Application Integration
(2014)

10. Odell, J.J.: Power types. JOOP 7, 8–12 (1994)
11. Schrefl, M., Neuhold, E.J.: Object class definition by generalization using upward

inheritance. In: Proceedings of ICDE, pp. 4–13. IEEE Computer Society (1988)
12. Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann, G., Schrefl, M.: A

conceptual framework for large-scale ecosystem interoperability. In: Johannesson,
P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol.
9381, pp. 287–301. Springer, Cham (2015). doi:10.1007/978-3-319-25264-3 21

13. Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann, G., Schrefl, M.:
A conceptual framework for large-scale ecosystem interoperability and industrial
product lifecycles. Data Knowl. Eng. 109, 85–111 (2017). Online first

14. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Surviving the heterogeneity jungle with composite mapping oper-
ators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13688-7 18

15. Young, N., Jones, S.: SmartMarket report: interoperability in construction indus-
try, Technical report. McGraw Hill (2007)

http://dx.doi.org/10.1007/978-3-319-25264-3_21
http://dx.doi.org/10.1007/978-3-642-13688-7_18

Conceptual Modeling: Enhancement
Through Semiotics

Veda C. Storey1 and Bernhard Thalheim2(&)

1 Computer Information Systems, J. Mack Robinson College of Business,
Georgia State University, Atlanta, GA, USA

vstorey@gsu.edu
2 Department of Computer Science,

Christian-Albrechts-University, Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract. Conceptual modeling uses languages to represent the real world.
Semiotics, as a general theory of signs and symbols, deals with the study of
languages and is comprised of syntax, semantics, and pragmatics. Pragmatics
includes the explicit representation of the intentions of users. A common
assumption is that all levels of database design (user, conceptual, logical, and
physical) can be modeled using the same language. However, languages at the
conceptual level are often enhanced by concepts that attempt to capture inherent
pragmatics. This research proposes that concepts from semiotics can provide the
background needed to understand an application. Specifically, pragmatics and
semantics are considered at both the user and conceptual level, based on pro-
posed constraints.

Keywords: Conceptual modeling � Languages � Semiotics � Semantics �
Constraints

1 Introduction

Conceptual models act as mediators between the application and an implementation
[11]. Conceptual modelers often attempt to model situations that occur in the real world
using one language as a construction mechanism, and a model for a schema. Repre-
senting how the world operates must be described at the right level of specification.
This tends to be done, for example, using an entity-relationship diagram as a modeling
tool. However, it is difficult to expect one language to be able to handle all phases of
modeling. Semantic issues need to be captured and modeled during both the design
phases. The objective of this research, therefore, is to understand how to create better
conceptual models by considering these different levels of abstraction and how they
might be addressed. Although language is usually the main vehicle for modeling,
additional understanding is needed for collaboration among stakeholders. Semiotics, as
a general theory of signs and symbols, deals with the study of languages, and could
serve as the needed background. The contributions are to: propose that models should
be defined from the perspective of semiotics, and propose an additional set of
constraints.

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 182–190, 2017.
https://doi.org/10.1007/978-3-319-69904-2_15

2 Modeling Challenges in Conceptual Modeling

Levels of Abstraction. Many modeling languages are applied at different levels of
abstraction. Business issues might be applied at the application level. Prescription
issues for implementation are at a detailed level of specification. Although different,
they are often all represented by an entity-relationship diagram.

Semantics. Semantics (meaning of terms) is challenging [5]. Constraints are often
used as a surrogate for business rules [6]. Attempting to capture and represent
semantics in terms of first-order predicate logic seems restrictive. Implicit or lexical
semantics contribute to complete semantics.

Inclusion Constraints. These could be class-based; for example, a student is a person.
The person identification is reused for student as a co-existence constraint, expressible
via identification (becoming a foreign key constraint in the relational model). Then an
enforcement mechanism can be: (1) canonically declared based on reference existence
and reference enforcement; or (2) expressed by the on-event-if-condition-then-action
(ECA) paradigm. The enforcement can be refined for control, application, optimization,
and exception handling. If the inclusion constraint is not class-based, but value-based,
then support and enforcement become more challenging. For example, the Student type
may use an attribute Name, which corresponds to a person’s Name in a type Person.

Cardinality Constraints. These have two main approaches to define their semantics:
look-up and participation. Look-up works well for binary associations without rela-
tionship attributes. Participation constraints mix two different kinds of semantics with
rigidity for extreme cases, despite the need to represent normal cases. ‘Min/Max’
captures the absolute extreme for all potential cases. The ‘min’ captures a (generalized)
inclusion constraint; ‘max’ is intended to capture a (generalized) multiplicity constraint.
For a relationship where the minimum participation could be ‘0’ (someone is a student
but not taking courses yet), a null value would be allowed in an implementation.
However, a “normal” interpretation of the relationship is that a student must be reg-
istered for at least one course (null not allowed). Cardinality constraints impact other
constraints in the schema [3].

Implicit Constraints. Constraints can be implicit or hidden due to syntax construc-
tion. The eER modeling language uses relationship types with inherent (construction)
inclusion and existence constraints as based-on constraints. Relationship objects ref-
erence their component objects; for example, entity objects. Therefore, the relationship
objects can only exist if the corresponding entity object exists, making the semantics
implicit, based upon the way in which relationships are constructed and used. They
become explicit in the corresponding SQL specification.

Type Semantics. eER modeling uses a Salami-slice strategy, oriented on the homo-
geneity of types and thus on decomposition into small, meaningful semantic units.
Things in the application domain are multifaceted. A human is represented via a Person
type that is separated from the Student type, which is associated via an IsA relationship
(or subclass), to the Person type. At the same time, Student can be associated with other
types, such as: student_engagement, student_facilities, dormitory, etc. Depending upon

Conceptual Modeling: Enhancement Through Semiotics 183

the view, a student might best be considered using the notion of a student or the notion
of the more general object, person. Research has analyzed classification challenges [4].

Implicit Representation of Viewpoints. At the application level, it might be bene-
ficial to consider user viewpoints that are represented as views [11]. For instance, a
student might best be considered, including more general objects, e.g. person.

Separation of Syntax and Semantics. The separation of syntax and semantics is
generally problematic. Most modelers learn a language using simple problems. How-
ever, real world problems are complex, so one language, or modeling technique, is not
appropriate for all. It is impossible to represent a business problem at an application
level of abstraction and implementation issues based on a singleton diagram. The
problem is understanding and representing semantics.

Restricted and Mixed Semantics. Instead of general constraint frames, specific cases
are often considered; e.g., mapping ratios (1:N, N:M, 1:1) to capture some binary
relationship semantics. Sometimes, N:M ratios declare the maximum to be higher than
1. Look-up and participation cardinalities may be used with the same syntactic notion.

3 Models, Expressions, and Stakeholder Levels

Models and Conceptual Models. The notion of a model is complex and not neces-
sarily well understood; similarly, for the process of modeling. Consider four per-
spectives: (1) the origins to be considered by the model; (2) the profile of the model
(e.g. its function, purpose, or goal); (3) the stakeholders or the community of practice
that the model must satisfy; and (4) the context within which the model and the origins
are considered. The first two perspectives are internal; the second two, external.

A model is guided on its background [10]: the grounding of the model (paradigms,
postulates, theories, culture, and conventions); and the basis for the model (e.g. lan-
guages used, concepts and conceptions, community, and commonly accepted prac-
tices). The basis of a model may change on demand. The perceptions of users might
need to be represented in a model. Multiple coherent perceptions, a description of a
system, or an augmented system might also be useful. A model can have many different
purposes: to describe or explain a situation; specify and represent a concept someone
has in mind; to aid in communication among stakeholders; or to decompose complex
situations. A model is a well-formed, adequate and dependable artifact, commonly
accepted by its community of practice within a given context [10, 11].

Semiotics of Signs: Icons, Symbols and Indexes. Semiotics, the study of the theory
of signs, emphasizes the properties of things in their capacity. It is reasonable to apply
semiotics to aid in this understanding since, before using a modeling language, it is first
necessary to understand the language and its inherent bias.

Syntax refers to the arrangement of words in sentences and phrases. Syntax should
be simple, parsimonious, and harmonic.

184 V.C. Storey and B. Thalheim

Semantics is concerned with the meaning of sentences and defines the interpretation
of a sentence in the real world, depending on its context. It refers to the meaning of
signs and what they represent in the real world.

Pragmatics considers the relationship between parts of sentences or signs and their
users within a situation and context. It is user-dependent.

Although language is the main vehicle for modeling, semiotics is the background
needed for understanding so that collaboration among stakeholders can result. Syntax,
semantics, and pragmatics may follow different paradigms, leading to some effective
use. The strictness of first-order predicate logic might be inappropriate during mod-
eling. It is, however, needed in the final result. For example, natural utterances use the
connective “and/or” with the meaning of logical OR. Similar observations can be made
for all connectives, especially, for quantifiers.

Syntax has been well investigated for formal languages. Semantics can be defined
in a variety of ways; e.g. for evaluation of variables, incorporation of context, scope of
states, exceptions, and matching between syntactic language and semantic structure [8].
Problems arise when pragmatics is taken into consideration because the pragmatic
interpretation depends on the community of practice, its culture, scope and attention.

Syntax, semantics and pragmatics of models are all important issues, and depend
upon the needs of a model and its context.

Abstraction Levels of Stakeholders. At the application level, the perceptions of the
users must be considered and combined with the context. At the conceptual modeling
level, the resulting conceptual model must be based on what was developed at the
application level. The logical level is typically based on an understanding of the
platform, with the best practice being to use models that are mappings or compilations
of the conceptual model.

4 Illustrative Example

A conceptual database model consists of a conceptual schema and a number of view
schemata [11]. The view schemata are the result of transformations [1, 9] that map the
viewpoints of the application level to sub-schemata of the conceptual schemata.

Consider a student-dormitory-course schema in Fig. 1. Suppose a student is
enrolled in several programs at a university. The dormitory association is dependent
upon the program that a student takes. Specifically, a student lives in a dormitory that
corresponds to the program (business, music, etc.) in which the student is enrolled.
A student might obtain some financial support from a program, depending upon the
level of completion of the program. A student makes courses that are required for a
given program. The credit hours assigned to a course, may vary across courses,
depending upon whether the course is intended for one program, or whether it is a
mandatory or elective course. Any course can only be counted one time towards one
program. A student is required to take a minimum number of classes per term. If a
student fails a course, then the student may retake the course, up to a maximum of three
times. A course has an associated tuition fee that must be within the limits of a given
term, which may vary from term to term.

Conceptual Modeling: Enhancement Through Semiotics 185

There are, however, some aspects of this situation that are difficult to model.

• A student can only take a course a maximum of three times. This might be over-
come by adding a separate entity, called class or section, and a relationship; Course
has Classes, with min/max cardinalities of (0, 3) from student to class.

• A course can have different credit hours depending upon the program.
• A student can have multiple majors, which requires a decision about the dormitory

to which a student should be assigned.
• The normal case for enrolled in does not capture freshmen who are not enrolled.
• The student must take courses that are required by the program.

These problems are at the application level. Someone must represent the university
situation correctly and implement the corresponding results into a database. Also,
involved is the end-user, a student. The database designer must attempt to models these
in one conceptual model.

5 Semiotics Reconsidered

Semantics and Pragmatics at the Application Level. Models at the application level
have their own origins that they represent, profile, context, and community. The origins
are consolidated perception models, enhanced by situation models that are commonly
accepted in the application domain. Each community has a community-specific model;
that is, a “local-as-design” approach. Objects under consideration are not homoge-
neous, for example, a department is considered together with its department head. Or, a
student view incorporates all of the classes a student takes and refers to a university
program class view from the university administration. A student is typically enrolled
in one and only one program. There might be other students. Generalization and
specialization follow natural semantics.

Fig. 1. Entity-relationship model of student-dormitory application

186 V.C. Storey and B. Thalheim

Models at this level of abstraction can be used at the conceptual level for com-
munication and negotiation within and between communities of practice. Semantics
and pragmatics differ based on the perception and understanding within the commu-
nities. Models may not be complete. Semantics may not be rigid. Objects are often
considered to be holistic; for example, students together with their courses based on
their programs. Therefore, we are not bound to normal data type construction. Con-
straints typically consider normal cases instead of extreme ones. Class planning might
not require that students take classes, but student planning is based on the minimum
and maximum credit hours a student must acquire in a given term.

Models at the application level have their own coherence. The underlying model
allows us to integrate the different models. Models at the user level are typically not
denotative but connotative, and follow cultural or community interpretations. For this
reason, ontologies are appropriate for specifying domain-specific content [2].

Model Semantics at the Conceptual Level. A conceptual data model reflects, inte-
grates and harmonizes the user views. Types specify homogeneous classes and are
decomposed accordingly. The functionality definition is based on an entity-relationship
algebra and given only after the structure model is complete. Constraints refine the
structure; that is, semantics are defined only after the syntax is complete. The
entity-relationship schema uses a diagram that is assumed to be complete, and repre-
sents its component at the same level of granularity and precision. Pragmatics tend to
be hidden in a conceptual model, even though it is, in essence, an underlying model. It
is assumed to be defined though external views.

Constraints at the Application Level and Conceptual Level. Constraints are gen-
erally considered valid for all of an application. However, a user’s community might
consider the ‘normal’ case or abstract (generalize) from exceptions, or omit them. Users
use different scope, context, origins, and purposes. E.g., cardinality constraints repre-
sent some aspect, within specific semantics and pragmatics.

The Nature of Constraints. At the conceptual level, pragmatics must be handled by
syntax and semantics. Cardinality constraints can do so, but are rigid and based on
participation or lookup definition [7]. In the participation approach, extreme cases are
included, in an attempt to represent exceptional cases. For example, an (1, N) con-
straint states that a corresponding relationship must exist for all entity classes. One
solution is to use a harmonization of all user models and integrate them into the
conceptual model. In this “global-as-design” approach, user views represent the
external views of users, resulting in the challenge of properly representing finer
semantics and pragmatics of these views. Due to the “local-as-view” design, constraints
are introduced from the user’s point of view. A conceptual model should harmonize all
of these views to provide a holistic view of all constraints. A similar harmonization can
occur at the logical level.

In Fig. 1, a freshman could be enrolled in a program or not. If the freshman is
enrolled, then a dormitory can be assigned based on the program enrolled. Later the
freshman might also take courses. Then, a student is either a normal student, a student
who does not take courses, or a student who does not have yet a dormitory. At the
logical level, we can use tables for each of these specific cases and define a view that

Conceptual Modeling: Enhancement Through Semiotics 187

combines them. At the logical level, horizontal decomposition can be applied [10].
A relation type can be decomposed by selection expressions E1, …, En into separate
types, provided this decomposition forms a partition on the class for this type.
Therefore, we might also use a conceptual type, made up of conceptual base types. The
base type has semantics without any context, but all subclasses are identified.

Objectives for Developing Better Constraints. Semantics can vary, depending on
the user. This results in problems when mapping to a conceptual model, so the con-
ceptual model should be more flexible. In most practices, normalization deals with the
exceptional case where semantics causes a change of structure and the schema. That is,
semantics drives syntax, in contrast to “semantics follows syntax.” DBMS provide a
much finer means for integrity maintenance. Maintenance can be deferred (eager or
lazy integrity enforcement). Consistency can be supported at the row level. Integrity
constraints can be maintained at the application level. Integrity can be made through
views. Finally, flexible strategies may be used, besides the no-action and rollback
approach; for example, on the basis of triggers or stored procedures.

These observations show that conceptual integrity constraints can be more elabo-
rated if we can map the constraints to DBMS features. Here, we simply aim to show
how semantics and syntax can be developed in a holistic approach. We further assume
that pragmatics is defined at the application level, based on views, leading to the
following observations and requirements.

(1) DBMS technology must provide a better way of treating syntax and semantics at
the conceptual level, which captures pragmatics at the user level.

(2) A holistic view is needed for integrated usage of syntax together with semantics.
(3) Flexibility is required for changes needed to accommodate new technology.
(4) A mapping procedure for advanced integrity constraints should be supported.

Proposed Extensions of Integrity Constraints by Context as Part of Semantics.

1. Actions on a database are insert, delete and update for: a single object, one class, or
objects tightly bundled via class inclusion constraints. Actions might be defined as
an action pattern. This extends single-object actions to a complex object action
while disabling the basic actions whenever a complex pattern exists.

2. The scope pattern is a view-defining query. This query defines either a single type
view or, in general, the view schema on the conceptual schema.

3. Enforcement style pattern is for constraints that are timed as eager (default) or lazy
(with(out) delay) enforcement, after an action (default), or as control before an
action, with a level statement (e.g. DBMS, transaction, and interface levels).

4. Reaction pattern is for immediate enforcement or exception handling with a timed
exit sub-pattern or timed enforcement, based on an enforcement obligation.

The above illustrates the need to deal with structure versus semantics. They can be
formally defined and implemented. Then, in contrast to traditional approaches in which
“semantics follows syntax,” syntax and semantics may be treated as a whole.

Holistic View. A conditional integrity constraint is a pair of a context and a constraint.
Constraints can be combined to partition a problem based on a scope pattern. For
example, cardinality constraints Card(R, R’) = (1, 1) are for R = enrolled_in, and

188 V.C. Storey and B. Thalheim

R’ = Student with a selection predicate for: freshmen, a student who does not yet have
an assigned dormitory, and students who did not yet take courses. The cardinality
constraint is only valid for “normal” students. Adding an attribute term to the type takes
could ensure that a student has not taken a course more than three times.

For example, for freshman with a dormitory, we may use a relaxed enforcement
style. For freshman without a dormitory, we might use an interface style. That is, an
insertion of such a student is only possible by an encapsulated insertion of the student,
the programs, and the dormitory with a temporary insertion into the corresponding
basic types; and a transfer of the object to another basic class whenever additional data
are inserted. However, problems that exist or can be deduced for these constraints are
not usually considered. All user needs cannot be represented by semiotics. View
integration is difficult with global constraints, and usually completed based on user
views. From a semiotics perspective, the user view should be considered as much as
possible.

6 Conclusion

Many problems arise from the need to carry out modeling at multiple levels, depending
upon the stakeholders. Since semiotics deals with language, it is proposed as an
underlying basis from which to understand and capture semantics at different levels of
abstraction. Additional conditional constraints are needed to model context, namely,
action, scope, enforcement style and reaction.

Acknowledgements. This research was supported by the J. Mack Robinson College of Business,
Georgia State University. Thanks to Melinda McDaniel for her assistance.

References

1. Embley, D.W., Mok, W.Y.: Mapping conceptual models to database schemas. In: Embley,
D., Thalheim, B. (eds.) Handbook of Conceptual Modeling, pp. 123–163. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-15865-0_5

2. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5
(2), 199–220 (1993)

3. Hartmann, S.: On the characterization and construction of entity-relationship database
populations obeying cardinality constraints. Ph.D. thesis, University Rostock (1996)

4. Parsons, J., Wand, Y.: Using cognitive principles to guide classification in information
systems modeling. MIS Q. 32(4), 839–868 (2008)

5. Storey, V.C.: Relational database design based on the entity-relationship model. Data
Knowl. Eng. 7(1), 47–83 (1991)

6. Storey, V.C.: Understanding semantic relationships. VLDB J. 2(4), 455–488 (1993)
7. Storey, V.C.: Comparing relationships in conceptual modeling: mapping to semantic

classifications. IEEE Trans. Knowl. Data Eng. 17(11), 1478–1489 (2005)
8. Schewe, K.-D., Thalheim, B.: About semantics. In: Schewe, K.-D., Thalheim, B. (eds.)

SDKB 2010. LNCS, vol. 6834, pp. 1–22. Springer, Heidelberg (2011). doi:10.1007/978-3-
642-23441-5_1

Conceptual Modeling: Enhancement Through Semiotics 189

http://dx.doi.org/10.1007/978-3-642-15865-0_5
http://dx.doi.org/10.1007/978-3-642-23441-5_1
http://dx.doi.org/10.1007/978-3-642-23441-5_1

9. Thalheim, B.: Entity-Relationship Modeling-Foundations of Database Technology.
Springer, Berlin (2000)

10. Thalheim, B.: Syntax, semantics and pragmatics of conceptual modelling. In: Bouma, G.,
Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 1–10.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31178-9_1

11. Thalheim, B., Tropmann-Frick, M.: Enhancing entity-relationship schemata for conceptual
database structure models. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L.,
López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 603–611. Springer, Cham (2015). doi:10.
1007/978-3-319-25264-3_47

190 V.C. Storey and B. Thalheim

http://dx.doi.org/10.1007/978-3-642-31178-9_1
http://dx.doi.org/10.1007/978-3-319-25264-3_47
http://dx.doi.org/10.1007/978-3-319-25264-3_47

Conceptual Modeling and Requirements

Towards an Ontology for Privacy Requirements
via a Systematic Literature Review

Mohamad Gharib1(B), Paolo Giorgini2, and John Mylopoulos2

1 DiMaI, University of Florence, Viale Morgagni 65, Florence, Italy
mohamad.gharib@unifi.it

2 DISI, University of Trento, 38123 Povo, Trento, Italy
{paolo.giorgini,john.mylopoulos}@unitn.it

Abstract. Privacy has been frequently identified as a main concern for
systems that deal with personal information. However, much of exist-
ing work on privacy requirements deals with them as a special case
of security requirements, thereby overlooking key aspects of privacy. In
this paper, we address this problem by proposing an ontology for pri-
vacy requirements. The ontology is mined from the literature through
a systematic literature review whose main purpose is to identify key
concepts/relationships for capturing privacy requirements. In addition,
identified concepts/relations are further analyzed to identify redundan-
cies and semantic overlaps.

Keywords: Privacy ontology · Privacy requirements · Privacy by
Design (PbD) · Requirements engineering

1 Introduction

Increasing numbers of today’s systems deal with personal information (e.g., infor-
mation about citizens, customers, etc.), where such information is protected by
privacy laws [1]. Accordingly, privacy has become a main concern for system
designers. In other words, dealing with privacy related concerns is a must these
days because privacy breaches may result in huge costs as well as long-term
consequences [2]. Privacy breaches might be due to lack of appropriate security
policies, bad security practices, attacks, data thefts, etc. [1,3]. However, most
of these breaches can be avoided if privacy requirements of the system-to-be
were captured properly during system design (e.g., Privacy by Design (PbD))
[3,4]. Nevertheless, most existing work on privacy requirements often deal with
them either as non-functional requirements (NFRs) with no specific techniques
on how such requirements can be met [5], or as security requirements (e.g., [4,6],
etc.), i.e., focusing mainly on confidentiality and overlooking important privacy
aspects such as anonymity, pseudonymity, unlinkability, unobservability, etc.

On the other hand, privacy is an elusive and vague concept [4,7]. Although
several efforts have been made to clarify the concept by linking it to more refined
concepts such as secrecy, personhood, control of personal information, etc., there
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 193–208, 2017.
https://doi.org/10.1007/978-3-319-69904-2_16

194 M. Gharib et al.

is no consensus on the definition of these concepts or which of them should be
used to analyze privacy [7]. This has resulted in much confusion among designers
and stakeholders, and has led in turn to wrong design decisions. In this context,
a well-defined privacy ontology that captures privacy related concepts along
with their interrelations would constitute a great step forward in improving the
quality of privacy-aware systems.

Ontologies have proven to be a key success factor for eliciting high-quality
requirements, as they facilitate and improve the job of requirements engineers
[8]. Privacy is a social concept. Accordingly, a privacy ontology should conceptu-
alize privacy requirements in their social and organizational context. Since most
systems these days are socio-technical systems, consisting not only of technical
components but also of humans along with their interrelations, where different
kinds of vulnerabilities might manifest themselves [1,9].

This paper applies systematic review techniques to survey available literature
to identify key concepts/relationships for capturing privacy requirements1. Then,
we further analyze these concepts/relations to identify the key ones in order to
propose a novel ontology that can be used to capture privacy requirements. This
paper is therefore intended to be a starting point to address the problem of
identifying a core privacy ontology.

The rest of the paper is organized as follows; Sect. 2 describes the review
process and the protocol underlining this systematic review. We present and
discuss the review results and findings in Sect. 3. In Sect. 4 we propose a novel
ontology for privacy requirements engineering. We discuss threats to validity in
Sect. 5. Related work is presented in Sect. 6, and we conclude and discuss future
work in Sect. 7.

2 Review Process

Following [10,11], the review process (depicted in Fig. 1) consists of three main
phases: 1- planning the review, 2- conducting the review, and 3- reporting the
results of the review.

1.2. Formulating the
research questions

2. Conducting the review

Identify the
search sources

2.1. Search strategy

Conduct the
search process

2.2. Study
selection
Primary
selection

Quality
assessment

3. Reporting
the results

3.2 Results
and discussion

1. Planning the
review

3.1 Data
Synthesis

1.3. Defining the
review protocol

Identify the
search terms

1.1. Identifying the
need for the review

Fig. 1. The systematic review process

1 A detailed version of the systematic literature review can be found at [12].

Towards an Ontology for Privacy Requirements 195

2.1 Planning the Review

This phase is very important for the success of the review, for it is here that we
define the research objectives and the way in which the review will be carried
out. This includes three main activities:

1.1 Identifying the need for the review, which can be done by identifying
and reviewing any existing systematic reviews related to privacy ontologies2.

1.2 Formulating the research questions, which is a very critical activity
since these questions are used to derive the entire systematic review methodology
[10]. Therefore, we formulate the following four Research Questions (RQ) to
identify the main privacy concepts that have been presented in the literature:

RQ1: What are the privacy concepts/relations that have been used to capture
privacy requirements?

RQ2: What are the key concepts/relations that have been used for capturing
privacy requirements?

RQ3: Do existing privacy studies cover the key privacy concepts/relations, i.e.,
what is the degree of coverage of each study with respect to a gold standard
defined by the union of all concepts proposed in the literature.

RQ4: What are the coverage limitations of existing privacy studies?

1.3 Defining the review protocol that specifies the methods to be fol-
lowed while conducting the systematic review. Based on [10,11], a review pro-
tocol should specify the following: the strategy that will be used to search for
primary studies selection; study selection criteria; study quality assessment cri-
teria; data extraction and dissemination strategies. In the rest of this section,
we discuss how we specify and perform each of these activities.

2.2 Conducting the Review

This phase is composed of two main activities: 1- search strategy; and 2- study
selection, where each of them is composed of several sub-activities.

Search Strategy. The search strategy aims to find as many studies relating
to the research questions as possible using an objective and repeatable search
strategy [10]. The search activity consists of three main sub-activities: 1- identify
the search terms, 2- identify the literature resources, and 3- conduct the search
process.

Identify the Search Terms. Following [10,11], we derived the main search
terms from the research questions. In particular, we used the Boolean AND
to link the major terms, and we use the Boolean OR to incorporate alternative
synonyms of such terms. The resulting search terms are: (Privacy AND (ontology
OR ontologies OR taxonomy OR taxonomies) OR (Privacy requirements).

2 Secondary studies can be found in the related work section.

196 M. Gharib et al.

Identify the Literature Resources. Five electronic database sources were
used to primarily extract data for this research. These include: IEEE Xplore,
Springer, ACM library, Google Scholar, and CiteSeerX. The selection criteria
for the studies sources are based on the opinion of the authors of this work as
experts in both ontological and requirements engineering. In particular, IEEE
Xplore and Springer are the publishers of the main journals and conferences
concerning requirements engineering such as RE journal, SoSym, ICSE RE, ER,
CAiSE, etc. While ACM library, Google Scholar and CiteSeerX index the main
scientific publications in the field of computer science and information science.

Conduct the Search Process. The search process (shown in Fig. 2) consists
of two main stages:

Search stage 1. We have used the search terms to search the six electronic
database sources, and only papers with relevant titles have been selected;

Search stage 2. The reference lists of all primary selected papers were carefully
checked, and several relevant papers (25 papers) were identified and added to
the list of the primary selected papers.

IEEE
Xplore

Springer

ACM
Library

Google
Scholar

Citeseerx
library

35

43

40

62

60

240 papers

34 papers

+25

Search
stage 1

References

remove
duplicated papers

search
references

apply QA
criteria

207 papers

apply primary
selection criteria

107 papers

132 papers

Selection
stage 1

Search
stage 2

Selection
stage 2

-33

-100 -98

Fig. 2. Paper search and selection process

Study Selection. The selection process (shown in Fig. 2) consists of two main
stages.

Selection stage 1 (primary selection). Searching the electronic database
source returned 240 relevant papers, among which we have identified and
removed 33 duplicated papers. Next, we have applied the primary selection
criteria on the remaining 207 papers. In particular, we have read the abstract,
introduction, and then we skimmed through the rest of paper. We removed all
the papers that are not published in the English language, and we excluded
all papers that are not related to any of our research questions. Moreover,

Towards an Ontology for Privacy Requirements 197

when we were able to identify multiple version of the same paper, only the
most complete one was included. Finally, we excluded any paper that has been
published before 1996, since we were not able to find any concrete work related
to our research before 1996. The primary selection inclusion and exclusion
criteria are shown in Table 1. The outcome of this selection stage was 107
papers, i.e., we have excluded 100 papers.

Table 1. Primary selection inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

a. Papers related to at least one of the
research questions

a. Papers that are not published in the
English language

b. Relevant papers that are published
from 1996 to 2016

b. If a paper has several versions only
the most complete one is included

Selection stage 2 (Quality Assessment (QA)). At this stage, the QA crite-
ria have been applied to the papers that have resulted from the first selection
stage (107 papers) along with the papers that have resulted from the second
search stage (25 papers), for a total of 132 papers. In order to identify the
most relevant studies that can be used to answer our research questions, we
formulated five QA questions (shown in Table 2) to evaluate the relevance,
completeness, and quality of the studies, where each question has only two
answers: Yes = 1 or No = 0. The quality score for each study is computed by
summing the scores of its QA questions, and the paper is selected only if it
scored at least 4. As a result, 98 papers were excluded and 34 were selected.

Table 2. Quality assessment questions

Quality assessment questions

Q1 Are the objectives of the proposed work clearly justified?

Q2 Are the proposed concepts/relations clearly defined?

Q3 Does the work propose sufficient concepts/relations to deal with privacy aspects?

Q4 Have the concepts/relations been applied to project/case study, or have they
been justified by appropriate examples?

Q5 Does the work add value to the state-of-the-art?a

aEvaluated based on the number of citations taking into consideration the year of
publication.

2.3 Reporting the Results

The final phase of the systematic review involves summarizing the results, and it
consists of two main activities: 1- data synthesis; and 2- results and discussion.

Data Synthesis is described as follows: Data related to RQ1 were extracted
directly from the list of selected papers (shown in Table 3). To answer RQ2, the

198 M. Gharib et al.

Table 3. Summary of the privacy related concepts and relations identified in the studies

[1
3
]

[3
]

[1
4
]

[1
5
]

[1
6
]

[1
7
]

[9
]

[1
8
]

[1
9
]

[2
0
]

[2
1
]

[2
2
]

[2
3
]

[2
4
]

[4
]

[5
]

[7
]

[2
5
]

[2
6
]

[2
7
]

[2
8
]

[2
9
]

[3
0
]

[3
1
]

[3
2
]

[3
3
]

[6
]

[3
4
]

[3
5
]

[3
6
]

[3
7
]

[2
]

[3
8
]

[3
9
]

O
rg

a
n
iz
a
ti
o
n
a
l

actor X

A
g
en

ti
v
e

role X
agent X
user - - - - -

stakeholder - - - - -
person -
is a X
plays X

In
te

n
ti

o
n
a
l goal X X X X X X X X X X X X X X X X X X X

objective - - - -
task - - - - - - - - - - - -

action - - - - - - -
refinement X

In
fo

rm
a
ti

o
n
a
l

asset - - - - - - - - - - - - - -
information X

data - - - - - -
resource - - - - - - - -

personal info X
sensitive info - - -

part of X
own X

In
te

ra
ct

io
n

obj deleg. X
perm. deleg. X
info provision X

monitor X
obj trust X

perm trust X

R
is
k

risk - - - - - - - - - - -
threat X X X X X X X X X X X X X X X X X X

inten. threat X
casual threat X
vulnerability X X X X X X X X X X X X X X X X X X X

attack - - - - - - - - - - -
attacker X X X X X X X X X X X X X X X X X X

attack method X
impact X
threaten X
exploit X

T
re

a
tm

e
n
t

countermeasure - - - - - - - - - - - - - - -
mitigate X
control - - - - - -

treatment -
s/p goal X X X X X X X X X X X X X X X

s/p constraint X
s/p policy X

s/p mechanism X

P
ri
v
a
c
y

sec/priv req. X X X X X X X X X X X X X X X X
confidentiality X

integrity - - - - - - - - - - - - -
availability - - - - - - - - - - - -

non-repudiation X
notice X

anonymity X
transparency X
accountability X

contents of the 34 selected studies were further analyzed to identify privacy
related concepts/relations, and list them in a comprehensive table (Table 3),
which has been used to identify the key concepts/relations for capturing privacy

Towards an Ontology for Privacy Requirements 199

requirements. To answer RQ3, data were derived from the percentage of the
key concepts/relations categories that each selected study cover. RQ4 can be
answered by categorizing the studies into four groups based on the concepts
categories that they do not cover.

3 Review Results and Discussion

This section presents and discusses the findings of this review.
RQ1: What are the privacy concepts/relations that have been used to capture

privacy requirements? The review has identified 34 studies that can be used for
capturing privacy requirements. The list of the selected studies that answers our
first research question is presented in the upper part of Table 3.

RQ2: What are the key concepts/relations that have been used for capturing
privacy requirements? RQ2 is intended to capture the key concepts for a privacy
ontology, taking into account overlap in meaning among concepts found in the
34 studies, which ensures that the ontology is not too fine-grained, in the sense
that it includes many similar concepts that might confuse modelers. Each of the
34 selected studies has been carefully investigated to identify concepts/relations
that can be used for capturing privacy requirements. The result is shown in
Table 3, where 55 concepts and relations have been identified3, which have been
grouped into four main groups based on their type: 27 Organizational concepts
(8 agentive entities, 5 intentional entities, 8 informational entities, 6 entities’
interaction), 10 risk, 8 treatment, and 9 privacy concepts. Among the 55 identi-
fied concepts and relations, we have selected 38 key concepts and relations (17
organizational, 9 risk, 5 treatment, and 7 privacy) that can be used for captur-
ing privacy requirements in their social and organizational context, and they are
shown in Bold typeset in Table 3. Each of the selected concepts and relations
has been chosen based on the authors’ experience taking into consideration two
main criteria: (1) its importance for capturing privacy requirements; and (2) the
frequency of its appearance in the selected studies4.

RQ3: Do existing privacy studies cover the key privacy concepts/relations?
We answer RQ3 by comparing the privacy related concepts/relations presented
in each selected study with the key privacy concepts/relations identified while
answering RQ2. In Table 3, we use (�) when the study presents a key privacy con-
cept/relation, and (-) when the study presents a normal privacy concept/relation.
In addition, we use (X) to mark when a study misses a key concept/relation.
Considering Table 3, it is easy to note that most studies miss key privacy con-
cepts/relations5.

RQ4: What are the coverage limitations of existing privacy studies? We
answer this question by categorizing the studies into four non-mutually exclu-
sive groups (G1-4) based on the concepts categories (e.g., organizational, risk,
treatment, and privacy) that studies do not appropriately cover. Based on the
3 In the case of multiple synonyms, some were omitted.
4 The frequency of appearance for each concept/relation can be found in [12].
5 The percentage of the concepts/relations covered by each study can be found in [12].

200 M. Gharib et al.

previous categories, we have 15 studies that do not appropriately cover all the
four concepts categories, and 13 studies that do not appropriately cover three
categories. 5 studies do not appropriately cover two categories, and one study
does not appropriately cover only one category.

4 A Novel Privacy Ontology

Several recent studies stress the need for addressing privacy concerns during the
system design (e.g., Privacy by Design (PbD) [3,4]). Nevertheless, based on the
results of this review, it is easy to note that no existing study covers all the
key privacy concepts and relations that have been identified in the review, and
without such ontology it is almost impossible to address main privacy concerns
during the system design. Therefore, proposing such ontology would be a viable
solution for this problem. To this end, we propose a novel privacy ontology
based on the key privacy concepts and relations identified in Table 3. Figure 3
presents the meta-model of the ontology as a UML class diagram. For reasons of
readability, multiplicity and other constraints have been left out. The concepts
of the ontology are organized into four main dimensions:

(1) Organizational dimension. This dimension includes the organizational
concepts of the system in terms of its agentive entities, their objectives and infor-
mational entities, their social dependencies and expectations concerning such
dependencies.

Agentive entities: represent the active entities of the system, we have selected
three concepts along with two relations: Actor represents an autonomous entity
that has intentionality and strategic goals, and it cover two entities, a role that
is an abstract characterization of an actor in terms of a set of behaviors and
functionalities, and roles can be a specialization (is a) of one another. An agent
that is an autonomous entity, which has a specific manifestation in the system,
and it can plays a role or more.

Intentional entities: the behavior of actors is determined by the objectives
they aim to achieve. Therefore, we adopt the goal concept to represent such
objectives. A goal is a state of affairs that an actor intends to achieve, and
it can be refined through and/or-decompositions of a root goal into finer sub-
goals. And-decomposition implies that the achievement of a root-goal requires
the achievement of all its sub-goals. While in Or-decomposition the achievement
of any of its sub-goals is enough.

Informational entities: information represents any informational entity with-
out intentionality. Information can be composed of several parts, and we adopt
the part of concept to capture the relation between an information entity and its
sub-parts. In the context of this work, we differentiate between two main types of
information: personal information, any information that can be related (directly
or indirectly) to an identified or identifiable legal entity (e.g., names, addresses)
[14,39]; and public information, any information that cannot be related (directly

Towards an Ontology for Privacy Requirements 201

pl
ay

s

1.
.n 1.
.n R

ol
e

A
ge

nt

an
d/

 o
r

de
co

m
po

se
d

2.
.n

1

pa
rt

of

1 delegator
delegatee

1 . . n

1 . . n1 D
el

eg
at

io
n

1.
.n

de
le

ga
tu

m

is
_a

aims

1
pr

ov
id

eT
o

pr
ov

id
ed

B
y

of

0.
.n

1.
.n

In
fo

rm
at

io
n

1.
.n

1
1 trustor

trustee

1.
.n

1.
.n

[N
on

-]
re

de
le

ga
te

1.
.n

Tr
us

t
1.

.n
[d

is
]t

ru
st

{X
O

R}

1

1

tr
us

tu
m

tr
us

tu
m

1.
.n

A
ct

or

1.
.n

Pr
ov

is
io

n
[N

on
-]

C
on

fi
de

nt
ia

l T
oP

:[
P]

[R
][

M
]

{X
O

R}

1.
.n

de
le

ga
tu

m
[N

on
-]

re
pu

di
at

io
n

ha
s

1

1

ov
er

1

1
0.

.n

{X
O

R}

1.
.n

0 . . n

of
m

on
it

or
1.

.n

of
1.

.n

1.
.n

M
on

ito
r

m
on

it
or

ee

Pe
rm

is
si

on

1
1.

.n
U

se
T

oU
:[

P]
[R

][
M

]

Pu
bl

ic

In
fo

rm
at

io
n

Pe
rs

on
al

In

fo
rm

at
io

n
ow

n

ov
er

G
oa

l

1

0 . . n

11.
.n

ac
qu

ir
e

re
la

te
d

Th
re

at

In
te

nt
io

na
l

Th
re

at

C
as

ua
l

Th
re

at

threaten

Im
pa

ct
se

ve
ri

ty
 le

ve
l

im
pl

ie
s

m
it

ig
at

es

V
ul

ne
ra

bi
lit

y

exploits

ha
s

1
n..0

11

0.
.n

0.
.n

1

1

0.
.n

1.
.n

Pr
iv

ac
y

G
oa

l
1

0.
.n

ai
m

s
1.

.n

A
tta

ck

M
et

ho
d

1 1

Pr
iv

ac
y

M
ec

ha
ni

sm

C
on

fid
en

tia
lit

y

N
ot

ic
e

Pr
iv

ac
y

C
on

st
ra

in
t

re
al

iz
ed

B
y

A
no

ny
m

ity

Tr
an

sp
ar

en
cy

A
cc

ou
nt

ab
ili

ty
Pr

iv
ac

y
Po

lic
y

1.
.n

Pr
iv

ac
y

R
eq

ui
re

m
en

t

F
ig
.
3
.
T

h
e

m
et

a
-m

o
d
el

o
f
th

e
p
ro

p
o
se

d
p
ri

va
cy

o
n
to

lo
g
y

202 M. Gharib et al.

or indirectly) to an identified or identifiable legal entity, or personal information
that has been made public by its legal entity [3].

Information type of use: actors may use information for achieving their goals.
The ontology adopts three relationships between goals and information: Produce,
Read, and Modify that indicate a goal achievement depends on creating, con-
suming, and modifying such information respectively.

Information ownership and Permissions: own concept relates personal
information to its legitimate owner, who has full control over its usage, which can
be controlled depending on permissions. A permission is consent of a particular
use of a particular object in a system. The ontology considers three different
types of permissions ((P)roduce, (R)ead, (M)odify) to cover the three relations
between goals and information.

Entity interactions: actors may depend on each other for achieving their
objectives. Therefore, the ontology adopts three types of interactions. Informa-
tion provision indicates that an actor has the capability to deliver information
to another one. Information provision has one attribute that describes the pro-
visioning type, which can be either confidential or non-confidential, where the
first guarantee the confidentiality of the transmitted information while the last
does not. Goal delegation indicates that one actor delegates the responsibility
to achieve a goal to other actors.Permissions delegation indicates that an actor
delegates the permissions to produce, read and/or modify over a specific infor-
mation to another actor.

Entity social trust: the need for trust arises when actors depend on one
another for some objectives since such dependency might entail risk [40]. There-
fore, our ontology adopts the notion of trust and distrust to capture the actors’
expectations of one another concerning their delegations. Trust indicates the
expectation of trustor that the trustee will behave as expected considering the
trustum; while distrust indicates the expectation of trustor that the trustee will
not behave as expected.

Monitoring: is defined as the process of observing and analyzing the perfor-
mance of an actor in order to detect any undesirable performance [6], we rely on
monitoring to compensate the lack of trust and distrust in a trustee concerning
the trustum.

(2) Risk dimension. We define risk-related concepts along with their interrela-
tions as follows: A threat is a potential incident that threaten personal informa-
tion (asset) by exploiting a vulnerability concerning such information [15,21,32].
Each threat implies an impact that is the consequence of the threat over infor-
mation, and it can be characterized by a severity attribute that captures the
level of the impact (e.g. high, medium or low) [8,16]. A threat can be either
natural, accidental, or intentional [8,17,25]. Therefore, the ontology differenti-
ates between two types of threat, casual threat (natural or accidental): a threat
that does not require a threat actor nor an attack method. Intentional threat : a
threat that require a threat actor and a presumed attack method [22,34]. Threat

Towards an Ontology for Privacy Requirements 203

actor is an actor that aims for achieving the intentional threat [23,31,32], and
attack method is a standard means by which a threat actor carries out an inten-
tional threat [8,28,32]. Finally, a vulnerability is a weakness related to personal
information that can be exploited by a threat [15,31,32].

(3) Treatment dimension. This dimension introduces countermeasure con-
cepts to mitigate risks, we adopted a high abstraction level countermeasure con-
cepts to capture the required protection/treatment (e.g., privacy goal), which
can be refined into concrete protection/treatment constraints (e.g., mechanisms
or policies) to be implemented. The concepts of the treatment dimension are: a
privacy goal defines an aim to counter threats and prevents harm to personal
information by satisfying privacy criteria concerning such information. A pri-
vacy constraint is defined as a design restriction that is used to realize/satisfy a
privacy goal, constraints can be either a privacy policy or privacy mechanism. A
privacy policy is a privacy statement that defines the permitted and/or forbidden
actions to be carried out by actors of the system toward information. A privacy
mechanism is a concrete technique to be implemented for helping towards the
satisfaction of privacy goal (attribute).

(4) Privacy dimension. The concepts of this dimension are: Privacy require-
ment that is used to capture owner/data subject privacy needs at a high abstrac-
tion level, and it is specialized from the privacy goal concept. Moreover, privacy
requirement is further specialized into five more refined concepts:

1- Confidentiality, means personal information should be kept secure from
any potential leaks and improper access [3,7,33]. We rely on the following prin-
ciples to analyze confidentiality: (i) Non-disclosure, personal information can
only be disclosed if the owner’s consent is provided [3,14,33]. Moreover, non-
disclosure covers information transmission that is why we differentiate between
two types of information provision (confidential and non-confidential). (ii) Need
to know, an actor should only use information if it is strictly necessary for com-
pleting a certain task [3,38]. (iii) Purpose of use, personal information should
only be used for specific, explicit, legitimate purposes and not further used in a
way that is incompatible with those purposes [7,33,39].

2- Notice, data subject should be notified when its information is being col-
lected [7,33,39]. Notice is considered mainly to address situations where personal
information related to a legitimate entity is being collected without her knowl-
edge.

3- Anonymity, the identity of owner should not be disclosed unless it is
required [7,33], i.e., the identifiers of owner (e.g., name, social security number,
address, etc.) should be removed if they are not required and information still
can be used for the same purpose after their removal. In other words, if the iden-
tifiers are not required for the task, they can be easily removed, and information
can be used without linking it back to its owner/data subject (unlinkability).

4- Transparency, owner should be able to know who is using her information
and for what purposes [21,33,39]. We rely on two principles to analyze trans-
parency: (i) Authentication, a mechanism aims at verifying whether actors are who

204 M. Gharib et al.

they claim they are [38]; and (ii) Authorization, a mechanism aims at verifying
whether actors can use information in accordance with their credentials [33].

5- Accountability, owners should have a mechanism available to them to hold
information users accountable for their actions concerning information [21,33].
We rely on two principles to analyze accountability: (a) Non-repudiation, the
delegator cannot repudiate she delegated; and the delegatee cannot repudiate she
accepted the delegation [21,38]; (b) Non-re-delegation, the delegatee is requested
by the delegator not to re-delegate the delegatum [38].

5 Threats to Validity

Following Runeson and Höst [41], we classify threats to validity under four types:

1- Construct threats: is concerned with the extent to which a study measures
what it claims to be measuring [41]. We have identified the following threats: (i)
Poor conceptualization: occurs when few factors are considered to analyze
the subject of the study. To avoid this threat, we followed the best practices in
the area to define the criteria while searching for and selecting the related studies
(e.g., inclusion and exclusion criteria, QA criteria, etc.). (ii) Systematic error:
may occur while designing and conducting the review. To avoid such threat, the
review protocol has been carefully designed based on well-adopted methods, and
it has been strictly followed during the different phases of the review.

2- Internal threats: is concerned with factors that have not been considered
in the study, and they could have influenced the investigated factors [41]. One
internal threat has been identified, Publication bias: refers to a situation where
positive research results are more likely to be reported than negatives ones [11].
Our review focused on identifying privacy related concepts/relations, and there
are no positive nor negative research results in such case. Despite this, we have
specified clear inclusion and exclusion criteria, and QA criteria while searching
for/selecting the studies.

3- External threats: is concerned with to what extent the results of the study
can be generalized [41]. One internal threat has been identified, Completeness:
it is almost impossible to capture all related studies, yet our review protocol and
search strategy were very carefully designed to cover as much as possible of the
related studies. To mitigate this limitation, we performed a manual scan of the
references of all the primary selected studies in order to identify those studies
that were missed during the first search stage. However, we cannot guarantee
that we have identified all the main available studies, which can be used to
answer our research questions.

4- Reliability threats: is concerned with to what extent the study is dependent
on the researcher(s). The search terms, search sources, QA questions, etc. are all
available, and any researcher can repeat the review and she should get similar
results. However, the researcher should consider the time when the search was
performed (March 2016).

Towards an Ontology for Privacy Requirements 205

6 Related Work

There are few systematic reviews concerning privacy ontologies. For instance,
Souag et al. [42] performed a systematic review that proposes an analysis and
a typology of existing security ontologies. While Blanco et al. [43] conducted
a systematic review with a main aim for identifying, extracting and analyzing
the main proposals for security ontologies. Fabian et al. [44] present a concep-
tual framework for security requirements engineering by mapping the diverse
terminologies of different security requirements engineering methods to that
framework. Finally, a security ontology for capturing security requirements have
been presented in [8]. However, the focus these studies was security, rather than
privacy.

7 Conclusions and Future Work

We have conducted a systematic review with a main purpose of identifying the
key concepts/relations for capturing privacy requirements. The objectives of the
research were considered to have been achieved since the research questions posed
have been answered. Moreover, we used the identified concepts/relations for
proposing a privacy ontology to be used by software engineers while dealing with
privacy requirements. This ontology can be used to search among alternative
ways of fulfilling privacy requirements and choose ones that do best with respect
to stakeholder-defined objective functions, such as cost or risk. For future work,
we aim to develop core privacy ontology to be used by software/security engineers
while dealing with privacy requirements. To achieve that, we are planning to
contact the authors of the selected studies to get their feedback concerning the
proposed privacy ontology. Finally, we plan to evaluate the completeness and
validity of the ontology by deploying it to capture privacy requirements for two
real case studies that belong to different domains.

References

1. Gharib, M., Salnitri, M., Paja, E., Giorgini, P., Mouratidis, H., Pavlidis, M., Ruiz,
J.F., Fernandez, S., Della Siria, A.: Privacy requirements: findings and lessons
learned in developing a privacy platform. In: The 24th International Requirements
Engineering Conference (RE), pp. 256–265. IEEE (2016)

2. Hong, J.I., Ng, J.D., Lederer, S., Landay, J.A.: Privacy risk models for design-
ing privacy-sensitive ubiquitous computing systems. In: Proceedings of the 5th
Conference on Designing Interactive Systems: Processes, Practices, Methods, and
Techniques, pp. 91–100. ACM (2004)

3. Labda, W., Mehandjiev, N., Sampaio, P.: Modeling of privacy-aware business
processes in BPMN to protect personal data. In: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pp. 1399–1405. ACM (2014)

4. Kalloniatis, C., Kavakli, E., Gritzalis, S.: Addressing privacy requirements in sys-
tem design: the PriS method. Requirements Eng. 13(3), 241–255 (2008)

206 M. Gharib et al.

5. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the
tropos methodology. J. Softw. Eng. Knowl. Eng. 17(2), 285–309 (2007)

6. Zannone, N.: A requirements engineering methodology for trust, security, and pri-
vacy. Ph.D. thesis, University of Trento (2006)

7. Solove, D.J.: A taxonomy of privacy. Univ. Pa. Law Rev. 154, 477–564 (2006)
8. Souag, A., Salinesi, C., Mazo, R., Comyn-Wattiau, I.: A security ontology for

security requirements elicitation. In: Piessens, F., Caballero, J., Bielova, N. (eds.)
ESSoS 2015. LNCS, vol. 8978, pp. 157–177. Springer, Cham (2015). doi:10.1007/
978-3-319-15618-7 13

9. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within
a social setting. In: 11th International RE Conference, pp. 151–161. IEEE (2003)

10. Kitchenham, B.: Procedures for performing systematic reviews. UK Keele Univ.
33, 1–26 (2004)

11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical report, Keele University (2007)

12. Gharib, M., Giorgini, P., Mylopoulos, J.: Ontologies for privacy requirements engi-
neering: a systematic literature review. arXiv preprint arXiv:1611.10097 (2016)

13. Van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: Proceedings of the 26th International Conference on Soft-
ware Engineering, pp. 148–157. IEEE Computer Society (2004)

14. Braghin, S., Coen-Porisini, A., Colombo, P., Sicari, S., Trombetta, A.: Introducing
privacy in a hospital information system. In: Proceedings of the Fourth Inter-
national Workshop on Software Engineering for Secure Systems, pp. 9–16. ACM
(2008)

15. Singhal, A., Wijesekera, D.: Ontologies for modeling enterprise level security met-
rics. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Infor-
mation Intelligence Research, p. 58. ACM (2010)

16. Wang, J.A., Guo, M.: OVM: an ontology for vulnerability management. In: Pro-
ceedings of the 5th Annual Workshop on Cyber Security and Information Intelli-
gence Research, p. 34. ACM (2009)

17. Velasco, J.L., Valencia-Garćıa, R., Fernández-Breis, J.T., Toval, A., et al.: Mod-
elling reusable security requirements based on an ontology framework. J. Res.
Pract. Inf. Technol. 41(2), 119 (2009)

18. Souag, A., Salinesi, C., Wattiau, I., Mouratidis, H.: Using security and domain
ontologies for security requirements analysis. In: Computer Software and Applica-
tions Conference Workshops (COMPSACW), pp. 101–107. IEEE (2013)

19. Tsoumas, B., Gritzalis, D.: Towards an ontology-based security management. In:
20th International Conference on Advanced Information Networking and Applica-
tions (AINA), vol. 1, pp. 985–992. IEEE (2006)

20. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security require-
ments through ownership, permission and delegation. In: 13th International Con-
ference on Requirements Engineering, pp. 167–176. IEEE (2005)

21. Kang, W., Liang, Y.: A security ontology with MDA for software development.
In: 2013 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), pp. 67–74. IEEE (2013)

22. Massacci, F., Mylopoulos, J., Paci, F., Tun, T.T., Yu, Y.: An extended ontology for
security requirements. In: Salinesi, C., Pastor, O. (eds.) CAiSE 2011. LNBIP, vol.
83, pp. 622–636. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22056-2 64

23. Elahi, G., Yu, E., Zannone, N.: A modeling ontology for integrating vulnerabilities
into security requirements conceptual foundations. In: Laender, A.H.F., Castano,

http://dx.doi.org/10.1007/978-3-319-15618-7_13
http://dx.doi.org/10.1007/978-3-319-15618-7_13
http://arxiv.org/abs/1611.10097
http://dx.doi.org/10.1007/978-3-642-22056-2_64

Towards an Ontology for Privacy Requirements 207

S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
99–114. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04840-1 10

24. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requirements Eng. 10(1), 34–44 (2005)

25. Fenz, S., Ekelhart, A.: Formalizing information security knowledge. In: Proceedings
of the 4th International Symposium on Information, Computer, and Communica-
tions Security, pp. 183–194. ACM (2009)

26. Asnar, Y., Moretti, R., Sebastianis, M., Zannone, N.: Risk as dependability met-
rics for the evaluation of business solutions: a model-driven approach. In: Third
Conference on Availability, Reliability and Security, ARES 2008, pp. 1240–1247.
IEEE (2008)

27. den Braber, F., Dimitrakos, T., Gran, B.A., Lund, M.S., Stølen, K., Aagedal, J.:
The CORAS methodology: model-based risk assessment using UML and up. UML
Unified Process 332–357 (2003)

28. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering
framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requirements Eng. 15(1), 41–62 (2010)

29. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). doi:10.1007/3-540-45800-X 32

30. Matulevičius, R., Mayer, N., Mouratidis, H., Dubois, E., Heymans, P., Genon,
N.: Adapting secure tropos for security risk management in the early phases of
information systems development. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 541–555. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69534-9 40

31. Røstad, L.: An extended misuse case notation: including vulnerabilities and the
insider threat. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality, pp. 33–34. Springer (2006). doi:10.1.1.106.8353

32. Mayer, N.: Model-based management of information system security risk. Ph.D.
thesis, University of Namur (2009)

33. Dritsas, S., Gymnopoulos, L., Karyda, M., Balopoulos, T., Kokolakis, S., Lambri-
noudakis, C., Katsikas, S.: A knowledge-based approach to security requirements
for e-health applications. J. E-Commer. Tools Appl. 2, 1–24 (2006)

34. Lin, L., Nuseibeh, B., Ince, D., Jackson, M., Moffett, J.: Introducing abuse frames
for analysing security requirements. In: 11th Requirements Engineering Interna-
tional Conference, pp. 371–372. IEEE (2003)

35. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

36. Asnar, Y., Giorgini, P., Massacci, F., Zannone, N.: From trust to dependability
through risk analysis. In: The Second International Conference on Availability,
Reliability and Security, ARES 2007, pp. 19–26. IEEE (2007)

37. Asnar, Y., Giorgini, P., Mylopoulos, J.: Risk modelling and reasoning in goal mod-
els, DIT-06-008. Technical report, Universitá degli studi di Trento (2006)

38. Paja, E., Dalpiaz, F., Giorgini, P.: STS-tool: security requirements engineering for
socio-technical systems. In: Heisel, M., Joosen, W., Lopez, J., Martinelli, F. (eds.)
Engineering Secure Future Internet Services and Systems. LNCS, vol. 8431, pp.
65–96. Springer, Cham (2014). doi:10.1007/978-3-319-07452-8 3

39. Van Blarkom, G., Borking, J., Olk, J.: Handbook of privacy and privacy-enhancing
technologies. Privacy Incorporated Software Agent Consortium, The Hague (2003)

http://dx.doi.org/10.1007/978-3-642-04840-1_10
http://dx.doi.org/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1007/978-3-540-69534-9_40
http://dx.doi.org/10.1007/978-3-540-69534-9_40
http://dx.doi.org/10.1007/978-3-319-07452-8_3

208 M. Gharib et al.

40. Gharib, M., Giorgini, P.: Analyzing trust requirements in socio-technical sys-
tems: a belief-based approach. In: Ralyté, J., España, S., Pastor, Ó. (eds.)
PoEM 2015. LNBIP, vol. 235, pp. 254–270. Springer, Cham (2015). doi:10.1007/
978-3-319-25897-3 17

41. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

42. Souag, A., Salinesi, C., Comyn-Wattiau, I.: Ontologies for security requirements:
a literature survey and classification. In: Bajec, M., Eder, J. (eds.) CAiSE
2012. LNBIP, vol. 112, pp. 61–69. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31069-0 5

43. Blanco, C., Lasheras, J., Valencia-Garćıa, R., Fernández-Medina, E., Toval, A.,
Piattini, M.: A systematic review and comparison of security ontologies. In: 3rd
Conference on Availability, Reliability and Security, pp. 813–820. IEEE (2008)

44. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requirements Eng. 15(1), 7–40 (2010)

http://dx.doi.org/10.1007/978-3-319-25897-3_17
http://dx.doi.org/10.1007/978-3-319-25897-3_17
http://dx.doi.org/10.1007/978-3-642-31069-0_5
http://dx.doi.org/10.1007/978-3-642-31069-0_5

What Happens to Intentional Concepts
in Requirements Engineering if Intentional

States Cannot Be Known?

Ivan J. Jureta(&)

Fonds de la Recherche Scientifique – FNRS and Namur Digital Institute,
Université de Namur, Namur, Belgium

ivan.jureta@unamur.be

Abstract. I assume in this paper that the proposition “I cannot know your
intentional states” is true. I consider its consequences on the use of so-called
“intentional concepts” for Requirements Engineering. I argue that if you take
this proposition to be true, then intentional concepts (e.g., goal, belief, desire,
intention, etc.) start to look less relevant (though not irrelevant), despite being
the focus of significant research attention over the past three decades. I identify
substantial problems that arise if you use instances of intentional concepts to
reflect intentional states. I sketch an approach to address these problems. In it,
intentional concepts have a less prominent role, while notions of time, uncer-
tainty, prediction, observability, evidence, and learning are at the forefront.

Keywords: Requirements engineering � Goals � Intentionality � Foundations

1 Introduction

In this paper, I assume that the proposition “I cannot know your intentional states” is
true. I call this the Non-Verifiable Intentionality Proposition (NVIP hereafter). I ana-
lyze its consequences on conceptualizations proposed and used for representation and
reasoning about system requirements.

What does it mean exactly that I cannot know your intentional states? Here, it
means that I cannot know accurately what you want, need, desire, or more broadly,
your exact emotions, moods, beliefs, etc. I can talk and make assumptions about your
intentional states. Based on communication and other cues, I may believe to have
evidence that some of my assumptions are true. But ultimately, I have no reproducible
means to ascertain in a clear-cut way if any of those assumptions I have, about your
intentional states, are right or wrong. All I have is my own internal cognitive apparatus.
While I may be making these assumptions, and doing the usual things we do when
thinking about what others might think, I cannot ascertain that I am right or wrong.

The reason NVIP matters is that so-called “intentional concepts” have a central role
in Requirements Engineering (RE) research for several decades now. The basic and
persistent idea in RE is that requirements need to reflect the purpose of the
system-to-be, and that purpose originates in the intentional states of system stake-
holders. Roughly, if stakeholders desire that system does something, then we will carry

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 209–222, 2017.
https://doi.org/10.1007/978-3-319-69904-2_17

this over to a requirements model as an instance of an intentional concept, namely
“goal”, and that goal will one of the goals that the system-to-be should be engineered to
achieve.

In this paper, I am concerned with what happens to intentional concepts if we
assume that intentional states cannot be known. My argument is structured as follows:

1. I start from the observation that intentional concepts, such as “goal”, “desire”,
“intention”, “belief”, have played, and continue to play a central role in many
research contributions in Requirements Engineering for almost three decades so far.
Section 2 identifies some of these concepts, recalls their role and common defini-
tions in RE research, and what they have been proposed for in RE practice.

2. I argue that if you use intentional concepts in RE, then you must make additional
assumptions. I call these Requirements Intentionality Assumptions (RIA). I identify
them in Sect. 3 and relate them to long-standing topics in philosophy, on folk
psychology and social cognition, and on metarepresentations in psychology and
linguistics.

3. In Sect. 4, I identify six problems which arise if you take NVIP to be true and you
want to use intentional concepts for RE. I argue that these problems exist when
instances of intentional concepts are used to convey assumed intentional states.
I further argue that the presence of these problems leads to the conclusion that
instances of intentional concepts give low quality requirements.

4. Assuming you agreed with me that the problems identified in Sect. 4 should be
taken seriously, or that you at least remain open to further debate, I use Sect. 5 to
sketch an alternative requirements concept to address the problems.

5. In Sect. 6, I discuss limitations, summarize conclusions, and identify some of many
open questions.

Motivation for this paper comes from the tension I experience between the research
I do in RE and my practice of it as participant in software product design and devel-
opment teams over the last ten years. I have helped design and launch about a dozen
software products and businesses. Despite my own arguments in RE research in favor
of intentional concepts, some of these ventures have suffered from taking requirements
to convey predominantly intentional states. It looked consequently worth exploring the
consequences of NVIP being true.

2 Intentional Concepts in Requirements Engineering

This Section uses well-cited prior research to recall common ideas on intentional
concepts in RE, and the “goal” concept specifically. The goal concept and the ideas
around it are so influential, that there exists Goal-Oriented RE, a field on its own within
RE. In a survey of Goal-Oriented RE [1], we have the following.

“A goal is an objective the system under consideration should achieve. Goal formulations thus
refer to intended properties to be ensured; they are optative statements as opposed to indicative
ones, and bounded by the subject matter.

Goals may be formulated at different levels of abstraction, ranging from high-level,
strategic concerns (such as ‘serve more passengers’ for a train transportation system or ‘provide

210 I.J. Jureta

ubiquitous cash service’ for an ATM network system) to low-level technical concerns (such as
‘acceleration command delivered on time’ for a train transportation system or ‘card kept after 3
wrong password entries’ for an ATM system).

[…] The system which a goal refers to may be the current one or the system-to-be; both are
involved in the RE process. High-level goals often refer to both systems. The system-to-be is in
essence composite; it comprises both the software and its environment and is made of active
components such as humans, devices, and software. As opposed to passive ones, active com-
ponents have choice of behavior; henceforth we will call them agents. Unlike requirements, a
goal may in general require the cooperation of a hybrid combination of multiple agents to
achieve it.

[…] Goal identification is not necessarily an easy task. Sometimes they are explicitly stated
by stakeholders or in preliminary material available to requirements engineers. […] In our
experience, goals can also be identified systematically by searching for intentional keywords in
the preliminary documents provided, interview transcripts, etc.”

In everyday language, a goal is the object of a person’s ambition, something that
they act to achieve. In Goal-Oriented RE, there are goals of (or held by) people or
systems. A system can have a goal in the sense that the system, with all the machines,
software and people involved, should achieve that goal. Goals come from people
related to the system. They are generically called “stakeholders” in this paper.

But are these goals used to reflect intentional states of system stakeholders? If yes,
then these goals are what is called “intentional concepts”; if not, they are something
else. Consider that question more carefully and four cases turn up.

In Case A, I say that the system should do something because I want it, and I want
the system to do it with me, or on its own for me. I want the automated thermostat to
regulate temperature in my home based on my past settings, inside and outside tem-
perature, air quality, etc. In this case, it is me who wants that, and the system will have
that goal because I had that desire, and I want the system to be designed to satisfy that
desire. Case A is me who defines system’s goals to reflect, and because of my own
understanding of my intentional states. In this case, I am the requirements engineer and
I am the system stakeholder. This makes for a short route - relative to other cases below
- from intentional states to requirements. Clearly, “goal” is in this case an intentional
concept.

In Case B, I may prefer to deal with my thermostat without the system, but I
happen to be the one who should design requirements for a system which regulates
home temperature automatically on behalf of its users. In this case, I conclude through
requirements elicitation that there are people who want to have temperature automat-
ically regulated. It is not me who is in or has the intentional states which are reflected in
the goal. It is someone else. I believe they have these intentional states, and since I
should design a system to act accordingly, I give that system the goal which reflects
these intentional states. Case B is a longer route (than Case A) from intentional states to
requirements. I form beliefs about stakeholders’ desires, and I give the system goals to
reflect desires.

In Case A and Case B, goals are intentional concepts, owing their content and
existence to the need to capture something about intentional states.

Now, you may argue that goals are nothing but a different and more practical name
for (some types of) requirements, and that there is no need to worry so much about their
relationship to intentional states. That is a possible reading of Goal-Oriented RE. We

What Happens to Intentional Concepts in Requirements Engineering 211

could say that it is more useful to get requirements from talking about goals, and that
this is because system stakeholders may find goals to be a more convenient concep-
tualization, a better abstract tool, or easier to talk about, when trying to identify what a
system should do with and for them.

Let us call that reading Light Intentionality. It consists of using nouns such as
“goal” to talk about requirements, while at the same time not explicitly relating them to
intentional states. There are problems with that view. Take some goal instance and ask
why it exists in a requirements model or specification. The likely answer is that
someone wants the system to do something and the goal represents that. If the goal
reflects stakeholders’ goals, then you are talking about intentional states.

There is a way to distance oneself from intentional states and hold on to Light
Intentionality. It consists of focusing not on intentional states as the origin of goals, but
on what stakeholders communicate. This Case C is the view from Zave and Jackson
[2], who argued that requirements come from “optative statements”:

“Statements in the ‘optative’ mood describe the environment as we would like it to be and as we
hope it will be when the machine is connected to the environment. Optative statements are
commonly called ‘requirements.’”

In this third case, we find goals or requirements in optative statements.1 That is, she
is the recipient of communication, and treats optative statements as a cue to document
goals which reflect what the optative statements are conveying.

So far, in Case A and Case B, an instance of a goal concept is a representation of
something about intentional states. In Case C, a goal instance is a representation of
something communicated in a specific way.

Observe that you could hold the view that there are no substantial differences
between Case B and Case C, if you assume that communication reflects intentional
states. This is an argument Mylopoulos, Faulkner, and I presented in the so-called Core
Ontology for Requirements [3]: there, we said that there are intentional states, they are
conveyed by system stakeholders to requirements engineers via communication, that
the requirements engineer look for speech acts to identify instances of different types of
information used when doing RE. For goals specifically, we said that they are a record
of desires expressed through specific kinds of speech acts.

The strongest relationship of intentional states to requirements seems to be in Yu’s
iStar modeling language [4]. This is the foundation for Tropos [5], and was an
important influence on Techne [6]. In iStar models, goals always belong to agents.
Some agents are people, others are (parts of) machines (software and hardware). The
language has more than goals, with its notion of intentional dependency, tasks, and the
modeling of the rationale of agent’s actions using intentional concepts: i.e., agents do
things because they hold goals, know means to achieve goals, and these means are
tasks they can perform and resources they have access to. An important notion in iStar
is that we are modeling the rationale that agents have for collaborating with others,
using intentional concepts.

1 As a side note, Zave and Jackson’s requirements are van Lamsweerde’s goals (even if van
Lamsweerde’s uses “requirement” as something else, namely a goal which a single agent is
responsible for; that makes no difference in this paper).

212 I.J. Jureta

If Case C is Light Intentionality, then Case A and Case B fall under something we
can call Hard Intentionality, where requirements are closely tied to intentional states.

If unhappy with these cases, you could argue that whatever intentional states may
be, we should focus on understanding how the system-to-be will be used and we can
leave the debate of the why as somehow separate. Which business processes, use cases,
scenarios, standard operating procedures should the system do or support? This is
Case D, in which - for the purposes of this paper - I put all scenario and process-based
conceptualizations of requirements. There, requirements reflect ways of doing things.

But isn’t Case D Light Intentionality too? If the system should be made to do as is
done now, those current processes are still done for some purpose, and that purpose
must have been desired, wanted, needed, etc. by someone at some point in the past. If
the system needs to do something in ways not done now, these new ways reflect, again,
what someone must be wanting, needing, etc. Case D looks like Light Intentionality.

The role of the notion of system purpose is in fact critical in RE. A major change, as
far as I can tell, between system design and engineering before RE set itself up as a
discipline of research and industry, and after, is that with RE, we should first identify
and specify the system’s purpose before anything gets made.

The discussion in this section circles back to the observation that requirements need
to ensure a system is made to fit its purpose, and that purpose originates in what is
wanted, needed, desired, etc. by those who have a say when that system is being
designed. Seems non-controversial.

To be clear, not all requirements originate in a system’s purpose, some originate in
the properties of the environment where the system should run. These properties can be
neutral to intentional states: gravity on Mars is weaker than on Earth, whatever we may
desire about that. But these neutral environment properties still should, so to speak, go
through intentional states of stakeholders: what if I need to design a shuttle to land on
Mars for stakeholders who do not believe that gravity there is different from here? So
not only goals matter, there are other intentional states to consider. The point here is
that, again, intentional states matter for RE.

3 Requirements Intentionality Assumptions

Goal-oriented RE, especially in Yu’s work and our own Core Ontology for Require-
ments and Techne, uses the language of folk psychology. That language appears clearly
elsewhere in computer science, in some strands of artificial intelligence. Bratman [7]
suggested an explanation of rational behavior through notions of belief, desire, and
intention. The so-called BDI model [8] was one of the foundational ideas in research on
Multi-Agent Systems for instance. Intentional notions play an important role in
research from Levesque [9], Halpern [10], and others on knowledge, belief, awareness,
etc., in a computational context. What is folk psychology?

“Folk psychology is a network of principles which constitutes a sort of common-sense theory
about how to explain human behavior. These principles provide a central role to certain
propositional attitudes, particularly beliefs and desires. The theory asserts, for example, that if
someone desires that p, and this desire is not overridden by other desires, and he believes an
action of kind K will bring it about that p, and he believes that such an action is within his

What Happens to Intentional Concepts in Requirements Engineering 213

power, and he does not believe that some other kind of action is within his power and is a
preferable way to bring it about that p, then ceteris paribus, the desire and the beliefs will cause
him to perform an action of kind K. The theory is largely functional, in that the states it
postulates are characterized primarily in terms of their causal relations to each other, to per-
ception and other environmental stimuli, and to behavior.” [11, 12]

Using intentional concepts for RE means subscribing to the ideas outlined above. It
means seeing human behavior in a certain way, as propositional attitudes and causal
links between them. It means, for example, that actions are explained in terms of an
interplay of beliefs, desires, choices, and commitments.

For illustration, consider how Cohen and Levesque [9] use the language of folk
psychology when defining the notion of “intention” of a computational agent.

“Intention will be modeled as a composite concept specifying what the agent has chosen and
how the agent is committed to that choice. First, consider the desire that the agent has chosen to
pursue as put into a new category. Call this chosen desire, loosely, a goal. By construction [in
their formal framework], chosen desires are consistent. We will give them possible world
semantics, and hence the agent will have chosen a set of worlds in which the goal/desire holds.
Next, consider an agent to have a persistent goal if he has a goal (i.e., a chosen set of possible
worlds) that will be kept as long as certain conditions hold. […] Persistence involves an agent’s
internal commitment to a course of events over time. Although a persistence goal is a composite
concept, it models a distinctive state of mind in which agents have both chosen and committed
to a state of affairs. We will model intention as a kind of persistent goal.”

The first quote in this Section illustrates the language that folk psychology uses for
describing, explaining, and making predictions of human behavior. The second quote is
an illustration of how that language becomes a tool for motivating, describing, and
explaining design choices when we make formal models of computational agents.

Folk psychology is used in the same way in RE. We need concepts and relation-
ships, and we need to construct specialized (formal or not) languages for the repre-
sentation and reasoning about requirements. We can use the language of folk
psychology to motivate and justify our designs of these abstract toolsets. For instance,
we can say that goal instances capture conditions which are desired by stakeholders,
which amounts to defining goals by appealing to intentional states. We can then say
that goals can be inconsistent if there are beliefs that they cannot be achieved together;
we can define a concept, such as “domain assumption” in the Core Ontology for
Requirements, to capture conditions that are the object of such beliefs. By drawing on
folk psychology, we can construct conceptualizations of requirements which are
inspired by and grounded in various folk psychology ideas. As discussed in Sect. 2,
this has already been done in RE, specifically in Goal-Oriented RE.

If we do that in RE, we should assume that there is something to folk psychology.
That at the very least it is a useful language for describing internal dynamics of
individual human behavior as well as of social or collective behavior, even if that
language may prove to be deficient in constructing valid explanations of human
behavior, as Churchland [13] and others have argued (see debates in, e.g., [11, 12]).

If requirements capture intentional states, then intentional states justify the presence
of requirements.

The first part of Requirements Intentionality Assumptions (RIA hereafter, both in
singular and plural) are, then, assumptions that folk psychology makes about

214 I.J. Jureta

mechanisms producing human behavior. It is, for example, that actions are a function
of beliefs and desires.

The second part of RIA is that the language used in folk psychology is useful for
describing, explaining, predicting, generalizing patterns of human behavior and its
causes. This means that it is useful to talk of desires, beliefs, intentions, and such, when
communicating with others about human behavior.

The third part of RIA is the proposition that we can explain why there is such and
such requirement on grounds of there being, and being communicated, intentional
states of those who have a stake in the system-to-be. That is, some requirements exist
because some intentional states exist and have been conveyed by stakeholders to
requirements engineers.

The fourth part of RIA is that we should talk about requirements of systems using
folk psychology concepts, that there are important relationships between folk psy-
chology concepts and requirements concepts. They are connected in that it is unclear
what the latter are, if we untie them from the former.

What I have argued so far, is that if you use intentional concepts in RE, then you
should take either the Weak Intentionality or the Hard Intentionality stance. More
importantly, whichever of those two you take, you should take RIA seriously. You can
see RIA as that batch of ideas that tie conceptualizations of requirements to the broad
and malleable folk psychology conceptualizations of human behavior.

Accepting RIA seems indeed to make sense when doing RE, if we see RE as a
collective activity where the ability of a requirements engineer to identify (the right)
requirements depends strongly on their ability to “read other people’s minds”, that is, to
make assumptions about others’ intentional states. The following passage is a neat
description of what seems to be going on when RE is done too, even if it is taken from
a contribution to cognitive science on how intentional states may be shared.

“[H]uman beings, and only human beings, are biologically adapted for participating in col-
laborative activities involving shared goals and socially coordinated action plans (joint inten-
tions). Interactions of this type require not only an understanding of the goals, intentions, and
perceptions of other persons, but also, in addition, a motivation to share these things in
interaction with others - and perhaps special forms of dialogic cognitive representation for
doing so. The motivations and skills for participating in this kind of ‘we’ intentionality are
woven into the earliest stages of human ontogeny and underlie young children’s developing
ability to participate in the collectivity that is human cognition.” [14]

All that I said so far in this section may seem like common sense or common
knowledge. Folk psychology, despite vocal critics (Churchland, Stich and others),
remains an important conceptualization of individual human behavior (i.e., an impor-
tant body of theories of mind), as well as an important part of models of how people
collaborate. It is also taken seriously in pragmatics.

“Pragmatic studies of verbal communication start from the assumption […] that an essential
feature of most human communication, both verbal and non-verbal, is the expression and
recognition of intentions. On this approach, pragmatic interpretation is ultimately an exercise in
metapsychology, in which the hearer infers the speaker’s intended meaning from evidence she
has provided for this purpose. An utterance is, of course, a linguistically-coded piece of evi-
dence, so that verbal comprehension involves an element of decoding. However, the decoded

What Happens to Intentional Concepts in Requirements Engineering 215

linguistic meaning is merely the starting point for an inferential process that results in the
attribution of a speaker’s meaning.” [15]

The case for making the assumptions in RIA seems strong, if we take it that RE
involves communication in the above sense, that it involves collaboration, and that
requirements reflect intentional states.

Taking intentional concepts in RE seriously means, I have argued, taking RIA
seriously. And that means subscribing to many other things, namely specific theories of
mind, collective action, and communication. As I illustrated above, intentional con-
cepts are a gateway to theories which seem to be widely shared in their respective
research communities. Subscribing to them does not look controversial. You could
even argue that it is not clear how we would talk about requirements, if we could not
speak in terms of what stakeholders may think, want, need, believe, or know.

4 Problems

According to NVIP, I cannot know your intentional states. In more precise terms, I
have no reproducible way to verify if my assumptions about your intentional states are
true. “True” here means correspondence of what I assume your intentional states to
be to the actual intentional states you are in. The best I can do is have assumptions
about your intentional states, and search for cues in communication if I am right or
wrong [15].

If I see you ordering a cup of coffee with a friend, I may believe that you want to
drink coffee. But you may in fact be ordering coffee as a courtesy to your friend who
wanted to have a chat over coffee. Did you desire coffee, or was it the chat with the
friend, or both, or something else? How can I find evidence that supports my
assumptions about why you want to have that coffee? I can ask you, I can observe, I
might ask others their beliefs about your intentional states, infer from answers and
observations, update my current beliefs, and then do it all over again. Looking for
evidence this way is consistent with assumptions in RIA.

But if you take NVIP to be true, then there is no procedure which can move you
from assumptions about others’ intentional states to knowledge of their intentional
states. No evidence will ever get you to know my true intentional states. While that
may seem a strong statement, it is consistent with criticisms of the existence of
intentional states for example. It is not a new idea.

Why does that matter for RE? It matters because if you use intentional concepts and
you take NVIP to be true, then you should conclude that you can never know that you
got the right requirements from stakeholders. The right ones being those which
accurately reflect their true intentional states. Indeed, you cannot know stakeholder’s
intentional states. Therefore, instances of your intentional concepts are at best your bets
that you got their intentional states right (and that you got metarepresentations [16] of
those intentional states right). If they are not the right requirements, then solving these
requirements, i.e., designing a system which is expected to satisfy them, will give a
system that is solving the wrong problem.

216 I.J. Jureta

If, instead, you use intentional concepts and take NVIP to be false, then you seem
to be capable of actual mind-reading. I will not take line of argument seriously in the
rest of the paper.

One reason why NVIP should be taken seriously, and intentional concepts less than
they are, is that this makes us recognize that instances of intentional concepts do not
correspond and do not reflect something we know. At best, they reflect what we believe
to have understood that stakeholders were communicating. We fall back to the Zave
and Jackson’s idea that requirements are due to optative statements.

Unfortunately, it gets worse. Remember that above, the “right” requirements are
those that fit stakeholders’ true intentional states. It turns out that these are probably not
the right requirements.

When we ask stakeholders what they want, or if we introspect what we may want
from a system (or what they may want), we make assumptions not about our (their)
current intentional states, but about our (their) future intentional states. Looks like a lot
of mental work, especially when there is innovation in the system-to-be.

If you ask me what I expect from a driverless car (which I have not experienced at
the time of writing), I must tell you what I will desire in that future, in which I will have
that driverless car that you are designing for me. I must imagine some pieces or aspects
of that future. I must imagine myself in it. I must imagine that which you have yet to
design and build for me, and I must imagine how I would feel about it, what I would
believe about it, and so on. Notice that as I do so, while operating with only bounded
rationality [17], I am focusing on imagining an isolated experience (being driven in a
driverless car), and am disregarding any other experience which I could have also
imagined, and which may be related to my imagined intentional states about that
system. What if I also imagined that driverless cars were in fact moving not on roads,
but in the air, yet I am afraid of flying?

Now that’s a mess. If I cannot know your current intentional states, can I know
better your future intentional states? Do you know better your future intentional states?
From personal experience, I cannot claim to know what I will like or dislike in a few
months or years. Can you?

It is worse than that if there is innovation in the system’s design. Not only am I
asking you about your future intentional states, I am asking you about your future
intentional states about phenomena which you have never experienced. Would you
have known in 1995 if you would desire an iPhone made in 2017? Would you have
known in 1995 if you would prefer one button or two buttons on the front face of a
smartphone? Could you have experienced a smartphone in 1995? No. Unless you just
came back from the future. As Marty McFly says in a “Back to the Future” movie: This
is heavy.

Taking NVIP seriously leads to the conclusion that if we want to get requirements
from intentional states, we are trying to get them from current intentional states which
are about hypothesized future intentional states, which themselves can be about phe-
nomena we may never have experienced. What are, then, the right requirements?

The unavoidable conclusion is that there are several substantial problems which
arise if we are looking for the right requirements in intentional states.

What Happens to Intentional Concepts in Requirements Engineering 217

• Non-Verifiable Intentionality Problem: Instances of intentional concepts are
about intentional states, yet NVIP tells us we cannot know these intentional states.

• Uncertain Intentionality Problem: Because the system-to-be does not exist yet at
the time its requirements are being specified, instances of intentional concepts are
about future intentional states. These seem even less amenable to being known than
present intentional states. These are not intentional states experienced when
requirements are elicited.

• Speculative Intentionality Problem: Because the system-to-be may generate new
experiences, and these experiences are not known by system stakeholders at the
time stakeholders communicate their intentional states, instances of intentional
concepts are about intentional states that would arise in the future if stakeholders in
that future have lived these presently unknown experiences.

There is more bad news. Time passes from when requirements are elicited and
specified, to when the system-to-be is made and runs and can be experienced (used) by
its stakeholders. Intentional states conveyed at requirements elicitation time may have
expired, or at least changed enough that they are in fact no longer satisfied (to the same
extent) by the system-to-be. I call this the Expiring Intentionality Problem.

There are even more problems. What if what is said is not entirely true? Or more
broadly, what if there is no reason to trust that what is communicated genuinely reflects
true intentional states? What if both the mode and content of communication of
intentional states are distorted, for example, to provide partial information? What if
what is said is, so to speak, cheap talk (i.e., it is said but has no bearing on what is
done)? I call all such cases the Distorted Intentionality Problem; there are interesting
nuances between these cases, but are not important for this paper.

Even if there are only the best intentions, people forget to mention information which
may turn out to be critical for making sense of intentional states that they may be in. They
may omit important conditions, observations, remarks. They may fail to mention what is
obvious to them, even if it may not be apparent at all to aliens coming from other
domains. This is called the Incomplete Intentionality Problem in this paper.

In short, requirements which originate in intentional states come together with
six problems: non-verifiability, uncertainty, speculation, expiry, distortion, and
incompleteness.

Do these problems matter? The success of RE has two dimensions. One is that the
system runs according to its requirements specification. The other is that it meets
expectations of its stakeholders. These are called, respectively, engineering quality and
service quality (as in quality of services that the system provides to its stakeholders).

Engineering quality can be high, yet the delivered system may fail to deliver service
quality. This is because engineering quality is fitness to a specification, while service
quality critically depends on how well the specification satisfies the right requirements.
If the six problems are present, we cannot know if we have the right requirements. The
specification, even if precise, comprehensive, and clear, will involve the risk that the
system satisfies the wrong, or perhaps only a subset of the right requirements.

As an aside, note that this risk is solved partly through RE methods, and partly by
freezing and requiring formal approval of the frozen the specification. But freezing the
specification does not imply that intentional states will also be frozen.

218 I.J. Jureta

5 Sketching a Solution

By demoting intentional states among lesser sources of requirements, we should
answer two questions. Where do we preferably get requirements from, if not from
intentional states? How do these other sources deal with problems identified in Sect. 4?

The first step is to avoid the language of folk psychology and use the word “re-
quirement” instead of “goal” for top-level, most abstract requirements. The next step is
to identify necessary properties for the requirement concept.

Non-Verifiable Intentionality Problem exists because the content of a requirement
is a statement about something that cannot be observed, and thus, whose relationship to
that statement cannot be reproducibly verified. We therefore need requirements to be
statements which are verifiably reproducible. This also means that the statement that
makes the requirement should be treated as a hypothesis which needs to be verified. It
follows that, for each requirement we need to answer the following questions.

• Hypothesis: Which hypothesis is/are stated in the requirement?
• History: How was the hypothesis formulated? Where did the hypothesis originate?
• Verification: How can the hypothesis be reproducibly verified?
• Instrument: What is used to establish the hypothesis-experience relationship?

In a venture where I took part, a high-level requirement was that the system will
remove the bias that brokers introduce in the price of road freight transportation. The
hypothesis is that prices paid by shippers to carriers, via the system, will be system-
atically lower than historical broker-set prices for comparable shipments (similar
freight, routes, etc.). The entire system was in fact designed to verify that hypothesis.
The history of the hypothesis was the observation by the founders, that freight brokers
charge inconsistent prices for similar freight and routes, that is, that prices do not reflect
market conditions, but broker’s ability to exploit information asymmetries. Verification
amounts to the entire lifecycle of the system, while the system itself is the instrument.
Another requirement, which has a more modest scope, was that market participants will
perform the onboarding of their resources (freight, equipment, drivers, etc.) by them-
selves. The history was that it requires less resources to have the customers provide, by
themselves, the required information about resources. Verification process involves
building a prototype of the onboarding process, then having a small sample of select
prospects use that prototype. The prototype was only part of the instrument, the other
part being a questionnaire filled out by observing how customers did it, and by
interviewing customers about the experience of using the prototype.

For verification to be reproducible, its steps and instruments need to be accessible
to others. It follows, for example, that neither one’s own mind can be the instrument,
nor one’s own thinking the verification process. This makes prototypes more inter-
esting instrument than, say, a textual specification.

Uncertain Intentionality Problem exists because requirements are about the future.
The problem with the future is that we must wait to experience it. Waiting costs. If what
we say about the future matters today, then our current actions depend on that which
we expect in the future. A requirement thus involves the risk of being a wrong pre-
diction. That risk is proportional to the cost of waiting to verify the prediction. It

What Happens to Intentional Concepts in Requirements Engineering 219

follows that we should minimize the time to verify the prediction. A requirement’s age
is thus an input to the estimation of the risk it carries of being wrong. Age and Risk
become necessary properties of any requirement. Risk is in two parts, as it is necessary
to describe the outcomes expected in case the hypothesis does not fit experience, and a
description (probability?) that this happens. If waiting costs, then risk will be a function
of a requirement’s age.

Speculative Intentionality Problem can be addressed by approximating to stake-
holders sooner the unknown future experience that they speculate about. Stakeholders
should learn requirements, rather than get them from speculation, through use of
instruments which approximate the new experience. Moreover, this needs to happen in
a proxy environment which provides conditions resembling as much as possible the
conditions in which the stakeholders expect to use the system-to-be. Requirements
should originate in observable phenomena which requirements engineers can experi-
ence in similar ways in which stakeholders already do. It is practices and conditions in
an environment that clash with the elusive internal ambitions and motives of stake-
holders, leading them to have requirements in the first place.

When trying to learn requirements for a system which should match shippers in
need of freight transportation, with carriers, go to shippers to do the work they do now,
and go to carriers to do what they do, and finally, go to brokers who mediate most
transactions in the freight transportation market. When trying to design a system which
uses AI to provide instructions for improving one’s running, take time to become even
a novice running coach and work under an expert. This is hard to do, it takes significant
time, it requires interested parties in proxy environments, who are willing to open their
practices to newcomers. It also places a greater burden on requirements engineers, who
can no longer take interviews and distant observation too seriously, but have to apply
themselves to doing that which in fact generates requirements in the first place.

To reduce speculation, requirements engineers learn by doing stakeholders’ actions
in the proxy environment, while stakeholders learn through changing their past actions
using instruments designed to validate hypotheses. Each requirement comes with its
own set of Practices that requirements engineers need to be interested in, in that the
system will rely on and change these practices, and Proxy Environments in which
these practices can be realized in approximate conditions.

Expiring Intentionality Problem is due to the unknown lifetime of a requirement.
This is addressed in several ways. One is by minimizing the Age of the requirement by
which we do a first verification of the hypothesis. Another is by repeating verification,
if we observe cues that the requirement may be expiring. In the earlier example, of the
hypothesis that market participants will on-board by themselves their resources, an
Expiry Cue was that some of the stakeholders asked for features that would enable the
operations department of the firm to on-board customers’ resources on their behalf
(suggesting that stakeholders are predicting that not all customers are willing to per-
form on-boarding on their own).

To address the Distorted Intentionality Problem, there are distortion cues to monitor
for. For example, inconsistencies in the information that stakeholders provide are such a
cue. But the main direct means to identify distortion is, as above, early verification, since
it confronts stakeholders with an approximation of their future experience. Same applies

220 I.J. Jureta

to the Incomplete Intentionality Problem, in that there are cues to look out for, while
early verification should help stakeholders identify incompleteness.

6 Discussion and Conclusions

At best, this paper is an exploratory identification and analysis of six problems which
arise if intentional concepts are used to represent stakeholders’ intentional states, under
the assumption that intentional states are an important source of requirements. The
arguments laid out are theoretical claims, supported only by personal experience, but
not by rigorous reproducible research. Despite these important drawbacks, the argu-
ment is worth considering, given that it reaches novel conclusions, yet starts from
non-controversial and well known premises.

I started from the assumption that I cannot know your intentional states. This led
me to identify a set of properties of a “requirement” concept which distances itself from
intentional concepts. To the best of my knowledge, the properties have not been tied to
the requirement concept in the past, and have not been used to describe intentional
concepts in RE.

The paper raises many new and interesting questions. What does it mean exactly to
learn requirements? How can that be facilitated? How do we elicit information useful
for the formulation of the hypotheses? How can we verify these hypotheses, and what
are the merits and limitations of alternative verifications? What are the consequences of
the need for early verification on how we refine requirements? Which instruments to
use for verification, and how do they compare? And so on.

References

1. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of Fifth IEEE International Symposium on Requirements Engineering,
pp. 249–262 (2001)

2. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol. 6(1), 1–30 (1997)

3. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in
requirements engineering. In: Proceedings of 16th IEEE International Requirements
Engineering Conference RE 2008, vol. 2008, pp. 71–80 (2008)

4. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of ISRE 1997 3rd IEEE International Symposium on
Requirements Engineering, pp. 226–235 (1997)

5. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Inf. Syst. 27(6), 365–389 (2002)

6. Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: towards a new generation of
requirements modeling languages with goals, preferences, and inconsistency handling. In:
Proceedings of 2010 18th IEEE International Requirements Engineering Conference RE
2010, no. May 2016, pp. 115–124 (2010)

7. Bratman, M.: Intentions, Plans, and Practical Reason (1987)

What Happens to Intentional Concepts in Requirements Engineering 221

8. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: ICMAS, vol. 95,
pp. 312–319 (1995)

9. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42(2–3),
213–261 (1990)

10. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1), 39–76
(1987)

11. Horgan, T., Woodward, J.: Folk psychology is here to stay. Philos. Rev. 44(2), 399–419
(1985)

12. Stich, S., Ravenscroft, I.: What is folk psychology? Cognition 50(1–3), 447–468 (1994)
13. Churchland, P.: Eliminative materialism and the propositional attitudes. J. Philos. 78(2), 67–

90 (1981)
14. Tomasello, M., Carpenter, M., Call, J., Behne, T., Moll, H.: Understanding and sharing

intentions: the origins of cultural cognition. Behav. Brain Sci. 28(5), 675–91–735 (2005)
15. Sperber, D., Wilson, D.: Pragmatics, modularity and mind-reading. Mind Lang. 17(1–2), 3–

23 (2002)
16. Wilson, D., Sperber, D.: Meaning and Relevance. Cambridge University Press, Cambridge

(2012)
17. Simon, H.A.: A behavioral model of rational choice. Q. J. Econ. 69(1), 99–118 (1955)

222 I.J. Jureta

Goal Models for Acceptance Requirements
Analysis and Gamification Design

Luca Piras(B), Elda Paja, Paolo Giorgini, and John Mylopoulos

University of Trento, Trento, Italy
{luca.piras,elda.paja,paolo.giorgini,john.mylopoulos}@unitn.it

Abstract. The success of software systems highly depends on user
engagement. Thus, to deliver engaging systems, software has to be
designed carefully taking into account Acceptance Requirements, such
as “70% of users will use the system”, and the psychological factors that
could influence users to use the system. Analysis can then consider mech-
anisms that affect these factors, such as Gamification (making a game
out of system use), advertising, incentives and more.

We propose a Systematic Acceptance Requirements Analysis Frame-
work based on Gamification for supporting the requirements engineer
in analyzing and designing engaging software systems. Our framework,
named Agon, encompasses both a methodology and a meta-model cap-
turing acceptance and gamification knowledge. In this paper, we describe
the Agon Meta-Model and provide examples from the gamification of a
decision-making platform in the context of a European Project.

Keywords: Acceptance requirements · Gamification · Goal modeling ·
Requirements engineering · Human behavior

1 Introduction

Usage is becoming the main factor that determines the success of a software
system [10,11,15], especially so for social software such as Twitter and Facebook.
In fact, the human aspect has to be deeply taken into account and addressed by
building into a system strategies for stimulating the user to carry out activities
that the system supports. For instance, if we consider Facebook, its success
resides mainly on people’s participation in platform activities. In fact, if people
stop posting videos, comments, etc., the entire system would be deemed a failure.
Thus, to guarantee the success of such a system, it is essential that users use
the functionality of the system [10,11]. According to this, in order to maximize
the usage and participation, favoring the success of a system, it is important to
analyze and design a system considering also elements for engaging the user [15].
Such elements have been called Acceptance Requirements [10,11].

Acceptance Requirements and how to fulfill them have been receiving much
attention in the literature [3,5,10–12,15]. Fulfilling such requirements calls for
expertise such as psychologists, sociologists or marketing experts [11,15], and this
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 223–230, 2017.
https://doi.org/10.1007/978-3-319-69904-2_18

224 L. Piras et al.

makes the design process even more complex, error-prone and time-consuming
than for vanilla software. Unfortunately, few requirements engineering studies
and practices consider adequately such strategical concerns [11].

In order to tackle this acceptance requirements problem, we need system-
atic, tool supported methodologies able to: (i) guide the analyst in properly and
accurately analyzing and eliciting Acceptance Requirements [10,11]; (ii) support
in finding and designing operationalization solutions (e.g., through Gamifica-
tion) [10,11]; (iii) provide suggestions concerning which psychological (accep-
tance) strategies and (gamification) best practices to employ in relation to the
typologies of users the analyst has to engage (e.g., on the basis of acceptance and
gamification knowledge conceptualized and modeled as meta-models) [10,11];
(iv) reason with the knowledge of conceptual models, mentioned in the previous
point, to supply the analyst with proper suggestions [10,11].

In a previous short paper [10] we propose a preliminary version of Agon,
an Acceptance Requirements Framework based on Gamification. Agon supports
all the elements discussed above with a methodology: a Systematic Acceptance
Requirements Analysis based on Gamification. This methodology is founded on
and uses a Multi-Layer Meta-Model that represents acceptance and gamification
knowledge. This paper is an extension of [10], focusing on the Agon Multi-Layer
Meta-Model. The paper presents a detailed description of the models and exam-
ples from a real case study, in the context of a European project, where we
employed Agon and its meta-model for gamifying a decision-making platform.

The next sections of this work are organized as follows. Section 2 introduces:
(i) the Acceptance Requirements; (ii) the European project of the decision-
making platform we gamified by using the Agon Meta-Model ; (iii) how accep-
tance requirements are important in the context of the previous point. Section 3
provides an overview of the Agon Multi-Layer Meta-Model and illustrates in
detail the meta-models that compose it. Finally, Sect. 4 concludes.

2 Acceptance Requirements and the PACAS Project

Acceptance Requirements are defined over a set of Functions, that are supposed
to be accepted, and a target set of users, Participants, that must use the func-
tions. Thus, they constitute a special class of quality requirements [6] represented
as: Acceptance[{Functions}, Participants] ≥ N%. Each acceptance require-
ment imposes a constraint, N%, on the percentage of intended users actually
agree to use the functions. The task for the designers is to deploy psychological,
cognitive and behavioral mechanisms to spur users to use the functions.

In the following, we introduce the Participatory Architectural Change MAn-
agement in ATM Systems (PACAS1) European project (ATM stands for Air
Traffic Management) and explain why acceptance requirements are important
in its context (EATMA). The European Air Traffic Management Architecture
(EATMA) is composed of many procedures that are continuously discussed,

1 http://www.pacasproject.eu/.

http://www.pacasproject.eu/

Goal Models for Acceptance Requirements Analysis and Gamification Design 225

innovated and improved concerning safety, security, organizational and econom-
ical aspects. This requires complex architectural change management activities
involving many heterogeneous stakeholders from various institutions, agencies,
and companies. The stakeholders, decision makers having different expertise, to
find a solution, deal with many concurrent multidisciplinary variables, needs and
constraints coming from different realities. They should collaborate and partic-
ipate actively to the decision making process for finding an agreement fulfilling
safety, security, organizational and economical aspects. Thus, the critical part is
to guarantee that all the stakeholders participate actively and continuously to
the process for designing high-quality solutions.

This process is enacted by using a platform for managing EATMA archi-
tectural changes. Therefore, our aim has been to make the platform able to
motivate the stakeholders to participate and collaborate actively. We used the
Agon methodology and the Agon meta-model, described in this paper, for ana-
lyzing acceptance requirements and operationalizing them for gamifying the plat-
form. The full case study is available at [9]. An extract of acceptance require-
ments we defined for PACAS is: Acceptance[{Propose Change Management,
Report AsIs Details, Propose Alternative, ...}, Decision Makers] ≥
80%. Thus, we identified the set of crucial functions of the platform that need full
users’ participation to satisfy platform objectives. For instance, from the previ-
ous definition, we decided to motivate decision makers, above all, concerning the
usage of the platform for proposing a new change management, reporting collab-
oratively details of the procedures to be improved, finding problems and parts
to be enhanced and proposing alternative solutions. By using the Agon meta-
model, described in the next section, we refined these acceptance requirements
and operationalized them by gamifying functions highlighted above [9].

3 The Agon Multi-Layer Meta-Model

Here, we start giving an overview of the Agon multi-layer meta-model and, in
the next sub-sections, we describe each model composing the entire meta-model.

The Multi-Layer Meta-Model. The Agon Multi-Layer Meta-Model is shown
in Fig. 1 with an example from the PACAS case study. The example is described
step by step in the next sub-sections. The meta-model is composed of 4 abstrac-
tion layers and at each level there is a goal model [2]. In order to design the
Agon meta-model, we extended the NFR Framework [2], and in the following
sub-sections we describe all the elements at each layer. At the moment of writing,
the meta-model counts 281 goals and 393 relations. It represents the acceptance
and gamification knowledge and, we are continuously improving it by adding
new elements. This is necessary because new acceptance and gamification con-
cepts have been continuously appearing in the literature, thus, it is important
to apply updates for keeping the meta-model as much as possible close to the
reality and, therefore, precise and effective.

From the acceptance level to the gamification level (Fig. 1) we have the Accep-
tance Meta-Model (AMM), the Tactical Meta-Model (TMM) and the Gamifica-

226 L. Piras et al.

Fig. 1. The Agon multi-layer meta-model

tion Meta-Model (GMM)). Them are meta-models including generic concepts
not referring to a particular domain (e.g., the one of PACAS). In fact, them are
composed of: (i) psychological strategies (AMM); (ii) tactics (TMM) as high-level
goals AMM and GMM have in common; (iii) gamification solutions (GMM). In
the bottom layer, there is the Instance Model (IM). IM is not a meta-model,
it instantiates generic goals of the upper level (GMM) by specifying them in
relation to the distinct domain of the system to gamify (e.g., PACAS).

The requirements analyst, following the Agon methodology, a Systematic
Acceptance Requirements Analysis based on Gamification, uses the Agon meta-
model starting from the top, the most abstract layer (AMM), and going towards
the bottom layers (GMM and IM). This activity is semi-automatic because, at
each layer, the analyst uses reasoning techniques applied to goal models [7] and
automatically receives suggestions related respectively to acceptance, tactical
and gamification solutions to employ in the gamification of the system. This
activity is also interactive, because the analyst at each layer, on the basis of
suggestions received and her knowledge regarding the domain of the system to
gamify, takes further decisions (e.g., discarding parts of the solutions proposed).

Morever, Agon is composed also of another fundamental model, the User
Context Model (UCM) (designed with Context Dimension Trees [8]), that char-
acterizes the intended users to engage through context variables such as gender,
age, expertise, kind of player [1], etc. These variables are crucial elements used
during the reasoning activity described above. Indeed, relations of the Agon
models are annotated by Context Dependent Rules (CDRs) defined on UCM
variables. CDRs are evaluated to decide if to keep or discard some relations
and connected elements. The idea behind this, is to reason over acceptance and

Goal Models for Acceptance Requirements Analysis and Gamification Design 227

gamification knowledge, the meta-model, selecting the solutions (goals) that are
the most suitable ones for the users to motivate.

In the following sub-sections, we describe all the Agon models by providing
some examples from the PACAS case study. The complete case study, the Agon
meta-model (with full models) and the Agon glossary can be found online at [9].

The User Context Model. Different people are stimulated by different psy-
chological factors and gamification solutions [1,5,14,15]. This is captured by
UCM that includes users’ characteristics to consider for the selection of accep-
tance and gamification strategies that can affect positively a specific kind of
user. Thus, the analyst instantiates UCM on the basis of the user’s characteris-
tics and, when Agon executes reasoning over AMM, TMM and GMM, considers
the UCM instantiation for evaluating CDRs (annotated in the relations of the
models) to select the most suitable solutions for the intended users. CDRs are
rules (we extracted them from the literature [1,5,14,15]) composed of expression
based on the UCM variables. For example, in Fig. 2 there is an extract from the
meta-model specifying that: (i) if you are dealing with socializers (or other user’s
kinds expressed by the CDR starting with (C2[Socializer] OR ...) challenges
tackled in team (Team Challenges) are preferred [15]; (ii) if you are dealing with
males or achiever, etc., ((C7[Male] OR C1[Achiever] ...) personal challenges
(Personal Challenges) are suggested [15].

Fig. 2. Context dependent rules, gamification goals and tactics

The Acceptance Meta-Model. AMM is composed of Needs (legend in Fig. 1)
to be satisfied for maximizing the possibility that intended users accept to use
the system. We designed AMM by carrying out a wide literature review of tech-
nology acceptance models (e.g., the Unified Theory of Acceptance and Use of
Technology (UTAUT) [14], the Technology Acceptance Model (TAM2), etc.; full
list in [10]) and merging the most relevant concepts in a model, the Agon AMM.

The main structure of AMM (Fig. 3) and related CDRs are based on the
UTAUT model [14]. The root goal is the Sufficient Acceptance need. It
is the most abstract goal and it means to make that most of the intended
users accept to use a software. This receives positive contributions (all the

228 L. Piras et al.

Fig. 3. An extract of the Agon acceptance meta-model based on UTAUT [14]

relations in AMM are contributions) by two high-level needs (Fig. 3): (i)
Improve Behavioral Intention that in turn receives positive contributions
from Improve Performance Expectancy, Reduce Effort Expectancy and
Increase Social Influence; (ii) Create Facilitating Conditions that in
turn receives positive contributions from Improve Perceived Behavioral
Control and Increase Assistance.

Around the main high-level needs we inserted relevant concepts of other
technology acceptance models. For instance, needs that provide positive contri-
butions to Increase Assistance come from [13]. Those needs are not shown
in Fig. 3 for the sake of space, but we can refer on the example from PACAS
in Fig. 1, where it is shown one of them: Create Assistance Group. In fact,
the idea is that, in order to create facilitating conditions for the decision mak-
ers of PACAS, Agon suggested to organize their activities in virtual groups for
increasing the possibility of supplying assistance each other.

The Tactical Meta-Model. On the one hand, AMM is composed of abstract
psychological factors. On the other hand, GMM includes more concrete (though
still generic, i.e. not domain-specific) elements such as gamification solutions.
Thus, it is needed an intermediate layer to fill the gap between the two (Fig. 1).
With this aim, we designed TMM (Fig. 1) by selecting common high-level qual-
ities able to tie acceptance and gamification goals. According to this, accep-
tance needs are refined by Tactics (goals at the tactical level) that in turn
are operationalized by gamification goals (Fig. 1). Continuing the example in
Fig. 1, at the AMM level Agon proposes to enable users to assist each other in
groups and, at the tactical level it is refined by promoting collaboration (Promote
Collaboration) among the PACAS decision makers. This leads Agon to select
gamification goals able to operationalize the collaboration promotion (we discuss
this in the next sub-section). Other tactics are shown in Fig. 2.

The Gamification Meta-Model. GMM is built on gamification concepts and
best practices we extracted by carrying out a wide review of the literature and
of success cases from the industry (some resources [3,4,12,15]). GMM supports
mainly: badges, levels, paths, leader-boards of various kinds, redeemable points,
reputation points, experience points, karma points, skill points, gamified train-
ings, gamified tutorials, game roles, unlockable powers, gamified tours, avatars,

Goal Models for Acceptance Requirements Analysis and Gamification Design 229

suggestions and tricks, gamified forums, team and personal challenges, gamified
communities and gamified markets with redeemable rewards and making gift
policies.

The main relationship used at the GMM level (Figs. 1 and 2) is that of refine-
ment. Furthermore, gamification goals operationalize or give positive/negative
contributions to tactics (Fig. 2). For instance, the challenges concept is rep-
resented in Fig. 2 (Set Challenges) with: Team Challenges and Personal
Challenges. According to the CDRs indicated, team challenges are suggested for
socializers, explorers, etc., and them operationalize the Promote Collaboration
and Support Social Behavior tactics. Continuing the PACAS example in
Fig. 1, at the tactical level Agon suggests to promote collaboration and, at the
gamification level, it is operationalized by arranging teams and team roles (Set
Team Roles) for PACAS decision makers.

The Instantiation Model. Solutions obtained at the gamification level are
the result of acceptance and tactic reasoning and are the most suitable for the
intended users, but are generic, independent from a specific domain. Therefore,
GMM goals need to be instantiated in relation to the specific domain of the
system to gamify. So far, the process is semi-automatic and interactive, while at
the instantiation level the analyst has to create the IM. Agon helps the analyst
by providing her with a notation based on the NFR Framework [2] supporting
goals, tasks, and relations such as instantiations, refinements and operational-
izations. Concluding the example from the PACAS case study (Fig. 1), at the
gamification level, Agon suggests to operationalize the collaboration through
the definition of teams and team roles for the users. This suggestion is valuable
and suitable for the intended users, but it is still abstract, thus, the analyst
creates the IM (Fig. 1) by instantianting the Set Team Roles gamification goal
and defining the purposes of each team roles. Those purposes are specific of
the PACAS domain. For instance, Set As-Is Reporter Team Role defines a
team responsible for reporting the current as-is situation of an ATM procedure.
While, Set Alternative Proponent Team Role describes a team in charge of
proposing alternative solutions for improving an ATM procedure.

4 Conclusion

In this paper, we focus on a fundamental component of our Agon framework,
the Agon Meta-Model. It captures acceptance and gamification knowledge and
facilitates a systematic acceptance requirements analysis based on gamification.
Moreover, we have provided examples from a real case study that we conducted
in the context of the PACAS European project2. This case study concerns the
gamification of the PACAS platform by using Agon. Moreover, preliminary eval-
uations conducted with non-experts (master students) and experts (experts on
gamification and requirements engineering from the PACAS project) confirmed
the usefulness of Agon. In order to collect more evidences regarding the Agon

2 http://www.pacasproject.eu/.

http://www.pacasproject.eu/

230 L. Piras et al.

usefulness, we are employing Agon also in the context of other European projects,
for instance in the Vision project3 for gamifying a privacy platform.

Acknowledgments. This project has received funding from the SESAR Joint Under-
taking under grant agreement No. 699306 under European Union’s Horizon 2020
research and innovation programme.

This work was partially supported by ERC Advanced Grant 267856, titled
“Lucretius: Foundations for Software Evolution.”

References

1. Bartle, R.: Hearts, clubs, diamonds, spades: players who suit MUDs. J. MUD Res.
1, 19 (1996)

2. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering, vol. 5. Springer, Heidelberg (2012)

3. Hamari, J.: Do badges increase user activity? a field experiment on the effects of
gamification. Comput. Hum. Behav. 71, 469–478 (2015)

4. Kazhamiakin, R., Marconi, A., Perillo, M., Pistore, M., Valetto, G., Piras, L.,
Avesani, F., Perri, N.: Using gamification to incentivize sustainable urban mobility.
In: 1st International Smart Cities Conference (ISC2). IEEE (2015)

5. Koivisto, J., Hamari, J.: Demographic differences in perceived benefits from gam-
ification. Comput. Hum. Behav. 35, 179–188 (2014)

6. Li, F.L., Horkoff, J., Mylopoulos, J., Guizzardi, R., Guizzardi, G., Borgida, A.,
Liu, L.: Non-functional requirements as qualities, with a spice of ontology. In:
22nd International Requirements Engineering Conference (RE), pp. 293–302. IEEE
(2014)

7. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reason-
ing with constrained goal models. Requir. Eng. J. p. 1–37 (2016)

8. Orsi, G., Tanca, L.: Context modelling and context-aware querying. In: Moor, O.,
Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp.
225–244. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24206-9 13

9. Piras, L., Giorgini, P., Mylopoulos, J.: Models, case studies and the glossary
of Agon (an Acceptance Requirements Framework). https://pirasluca.wordpress.
com/home/acceptance/

10. Piras, L., Giorgini, P., Mylopoulos, J.: Acceptance requirements and their gamifica-
tion solutions. In: 24th IEEE International Requirements Engineering Conference
(RE). IEEE (2016)

11. Piras, L., Paja, E., Cuel, R., Ponte, D., Giorgini, P., Mylopoulos, J.: Gamification
solutions for software acceptance: a comparative study of requirements engineering
and organizational behavior techniques. In: 11th IEEE International Conference
on Research Challenges in Information Science (RCIS). IEEE (2017)

12. Schell, J.: The Art of Game Design: A Book of Lenses. CRC Press, Boca Raton
(2014)

13. Thompson, R., Higgins, C., Howell, J.: Personal computing: toward a conceptual
model of utilization. MIS Q. 15, 125–143 (1991)

14. Venkatesh, V., Morris, M., Davis, G., Davis, F.: User acceptance of information
technology: toward a unified view. MIS Q. 27, 425–478 (2003)

15. Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game
Mechanics in Web and Mobile Apps. O’Reilly Media Inc, Sebastopol (2011)

3 http://www.visioneuproject.eu/.

http://dx.doi.org/10.1007/978-3-642-24206-9_13
https://pirasluca.wordpress.com/home/acceptance/
https://pirasluca.wordpress.com/home/acceptance/
http://www.visioneuproject.eu/

Modeling Regulatory Ambiguities
for Requirements Analysis

Aaron K. Massey1(B), Eric Holtgrefe1, and Sepideh Ghanavati2

1 Department of Information Systems, University of Maryland, Baltimore County,
Baltimore, USA

{akmassey,eholtgr1}@umbc.edu
2 Department of Computer Science, Texas Tech University, Lubbock, USA

sepideh.ghanavati@ttu.edu

Abstract. Lawyers and policy makers regularly and intentionally use
ambiguous language in laws, regulations, and other legal texts. Although
ambiguity has important policy benefits, such as interpretive resilience
in an ever-changing world, it frustrates engineers and businesses seeking
to build software systems that are demonstratively compliant with legal
obligations. In this vision paper, we propose a method for modeling legal
texts alongside models of software requirements or design artifacts. Our
approach allows engineers to reason about regulatory ambiguity sepa-
rately from their system under development and then trace interpretive
decisions made about the legal text to affected requirements models.
When a regulation is updated or case law demands a new interpretation
of a regulation, engineers can evaluate the effect of the changes on the
current design and respond appropriately. Inspired by User Requirements
Notation, our proposed method can be implemented as an extension to
Legal-GRL.

Keywords: Requirements engineering · Ambiguity modeling · Regula-
tory compliance

1 Introduction

Regulatory Compliance Software Engineering (RCSE) is an emerging field of
interdisciplinary research focused on the development of systematic approaches
to building, maintaining, and verifying software systems that must comply with
laws and regulations. Laws, regulations, and policy documents, and other legal
texts are simultaneously useful and challenging as a source of requirements for
software engineers [16]. One of the reasons for this challenge is the use of inten-
tional ambiguity as a means of interpretive resilience in rapidly changing tech-
nical environments. For example, specifying a particular encryption algorithm
is less resilient than using an ambiguous phrase like “reasonable encryption”
because if a specified algorithm were broken, then the law would need to be
updated. Unfortunately, any ambiguity in a legal text, whether intentional or
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 231–238, 2017.
https://doi.org/10.1007/978-3-319-69904-2_19

232 A.K. Massey et al.

not, must be identified, classified, and disambiguated during requirements engi-
neering [13]. That is, at some point “reasonable encryption” will have to be
interpreted to identify a particular algorithm prior to implementation.

Current approaches to RCSE focus on performing an interpretation of legal
texts, including the resolution of ambiguity, and linking each interpretation back
to the subsection of the policy document from which it came. On the surface, this
seems to be all that is needed, but interpreting legal texts is more nuanced than
this procedure supports. For example, lawyers cannot give a “definitive” interpre-
tation of a law; they can only give an opinion based on how they believe a court
or regulator would interpret the text for a particular situation. As a result, many
requirements engineering approaches to regulatory requirements fundamentally
require legal domain expertise that is not currently supported by goal modeling,
requirements modeling, or other standard software engineering modeling activ-
ities. New approaches must be developed to support increased participation of
non-legal domain experts, provide flexibility in the face of a changing regula-
tory environment, and incorporate modeling of regulatory requirements in the
software development lifecycle.

In this paper, we propose a method for modeling legal texts alongside models
of software requirements or design artifacts. Our approach allows engineers to
reason about regulatory ambiguity separately from their system under devel-
opment and then trace interpretive decisions made about the legal text to the
affected requirements models. The goal of this approach is to support reanalysis
of ambiguities in the event of regulatory change or updated engineering require-
ments. By identifying, categorizing, and modeling ambiguities, we can document
how those ambiguities are resolved by requirements models or other design arti-
facts. When a regulation is updated or case law demands a new interpretation
of a regulation, engineers can evaluate the effect of the changes on the current
design and respond appropriately.

The remainder of this paper is structured as follows. Section 2 details related
work in regulatory requirements and goal modeling. Section 3 describes our pro-
posed methodology for constructing an ambiguity model and present an example
of its use. Section 4 discusses the implications of our method and details possible
future work.

2 Related Work

Policy makers write abstract, intentionally ambiguous language to ensure the
laws and policies they construct outlast the current generation of technologies.
On the other hand, engineers developing software systems must interpret these
laws and regulations to address their specific cases and to ensure compliance.
Recent research [5,13] demonstrates that ambiguity and vagueness in privacy
policies increase privacy risks and decrease the user trust and willingness to
share the personal data.

Analyzing and resolving ambiguities has been a research topic in requirements
engineering and analysis for decades. Most engineering approaches to analyzing

Modeling Regulatory Ambiguities for Requirements Analysis 233

and resolving ambiguities involve developing tools [8] and techniques based on
natural language processing [14,15,18] or machine learning approaches [17,19].
The goal of these approaches is to resolve—once and for all—ambiguities in
requirements with a single, definitive interpretation (e.g., identify the correct
antecedent to an ambiguous pronoun). Herein, we avoid definitive resolution in
favor of modeling options and supporting reuse and re-examination of interpre-
tive decisions.

In our prior work [13], we developed a taxonomy and a classification method-
ology for legal ambiguities, consisting of seven types of ambiguity: Lexical,
Syntactic, Semantic, Vagueness, Incompleteness, Referential, and Other. Under-
standing an ambiguity’s classification supports disambiguation of that ambiguity.
This taxonomy was designed to be broadly applicable, but it is not guaranteed to
be comprehensive. Our ambiguity taxonomy describes the process of classifying
ambiguities according to their types [13]. Our methodology presented herein can
be adapted to other methods for classifying ambiguities.

We use User Requirements Notation (URN) [9] for modeling ambiguities
derived from our taxonomy. URN combines Goal-oriented Requirements Lan-
guage (GRL) [2–4] with Use Case Maps (UCM) [6] in one single notation and
provides traceability between the two. GRL includes ‘lightweight’ mechanisms
to help extending the language with the help of metadata, rules, concerns, and
links. The Use Case Map notation is used to model scenarios and use cases in
terms of a set of responsibilities assigned to components , which represent
actors, agents, roles, software modules, systems or sub-systems. Paths start with
start points and traverse through elements along the way until they reach the
end points . Paths contain responsibilities which indicate where actions,
activities, or transformations are needed. They can be performed in sequence,
concurrently , or as alternatives . UCM also includes static or dynamic
stubs to model parts of a scenario or a process as a plug-in map. URN has an
open source tool-support, called jUCMNav [1], which is a plugin for the Eclipse
development environment.1

Legal-URN [7] is an extension to the URN framework that helps requirements
engineers analyze the compliance of business and software requirements with
privacy-related regulations. jUCMNav has been extended to capture concepts
from Legal-URN. In our approach, we first model ambiguities with Use Case
Maps and then provide links from the ambiguity models to Legal-URN models
to perform this analysis. The ultimate goal of our approach is to develop a new
form of contribution link that connects regulatory ambiguities with traditional
modeling elements. Although we do not develop the syntax herein, we discuss
how it would support our ambiguity models in Sect. 4.

3 Constructing Ambiguity Models

In this section, we discuss how to develop ambiguity models. We adopt and
extend UCM to model ambiguities in legal statements. First, we identify and
1 http://eclipse.org/.

http://eclipse.org/

234 A.K. Massey et al.

classify ambiguities in the legal text we wish to model. Herein, we employ the
approach introduced in our prior work [13], but we believe similar approaches to
ambiguity identification may also suffice. Regardless of the technique chosen, we
recommend examining the complete text prior to modeling because this prevents
modeling of ambiguities that are resolved or clarified elsewhere in the regulation.

After classification, we follow the process outlined in Algorithm 1. In general,
we use static or dynamic stubs to model legal text. When the legal text
includes an ambiguity, we tag the stub with ambiguity marker as («amb»).
Specifically, the steps of our approach are as follows. First, model each subsection
of a legal statement with a stub. These represent legal statements to be detailed
in a plug-in map. Next, model the plug-in map of each related stub. If modeling
an ambiguity, use a stub with an ambiguity marker. If modeling another sub-
path, use a regular stub. If modeling a non-ambiguous task, use a responsibility

or other appropriate UCM element. Finally, we model the ambiguities tagged
with ambiguity markers using new plug-in maps. The plug-in map includes a
path, AND- or OR- Fork(s), and Join elements depending on the semantics of
the legal text and ambiguity elements .

We illustrate how our approach for modeling ambiguities works using a
section from the Health Insurance Portability and Accountability Act (HIPAA)2.
We selected §164.312, which contains the technical safeguards regulations for
HIPAA, because this article has been used extensively in our prior work [10–12]
examining those systems. To start the modeling process, we construct an outline
of §164.312 with each subsection modeled using a stub because none of them
are ambiguous. After completing this step, we follow the recursive step of the
algorithm to model the first stub in §164.312 which is (a) Access Control.

(a) Access Control contains two subparts, labeled as (1) Standard and
(2) Implementation Specifications. Subpart (a)(1) contains an ambiguity,3 thus

2 Pub. L. No. 104–191, 110 Stat. 1936 (1996).
3 All ambiguity identification is relative to the interpreter. There is no “ground truth”

in ambiguity identification. However, for the sake of simplicity, we refer to Subpart
(a)(1) as “containing” an ambiguity. In reality, without an interpreter, these same
words are neither ambiguous nor unambiguous.

Modeling Regulatory Ambiguities for Requirements Analysis 235

we model it as a stub with ambiguity marker, («amb»). Subpart (a)(2) is mod-
eled as a stub and it includes four separate statements as: (i) Unique User
Identification; (ii) Emergency Access Procedure; (iii) Automatic Logoff, and
(iv) Encryption and Decryption. We further expand the stub for (a)(2) in
another plug-in map. The first three statements of this subpart are ambigu-
ous.4 Thus, these three are modeled with stubs with ambiguity markers. The
fourth statements does not include any ambiguity so it is modeled with a UCM
responsibility element.

During this portion of the modeling, we are only interested in three things:
(1) reflecting the structure of the actual legal text we are modeling, (2) accu-
rately identifying ambiguity stubs, and (3) accurately modeling unambiguous
statements with traditional methods. We are neither resolving nor prioritizing
ambiguities because we want resolution, prioritization, and other analyses to be
independent of identification. If identification and classification are not separated
from other analysis, then the model is not easily reused.

Next, we expand stubs with ambiguity markers into detailed paths with ambi-
guity elements. As mentioned above, statement (a)(2)(ii) was found to be
ambiguous. This statement reads as follows:

(a)(2)(ii) Emergency access procedure: Establish (and implement as
needed) procedures for obtaining necessary electronic protected health
information during an emergency.

Our analysis found two ambiguities, one syntactic and one vagueness. The
phrase and implement as needed allows the whole statement to have multiple
valid meanings. (e.g., A procedure may be ‘established’ or ‘established and
implemented’.) In addition, the phrase during an emergency is vague in that
no definition for an emergency is provided.

At this point, requirements engineers may begin the task of resolving these
ambiguities. Resolution may take many forms, but whatever form it takes for
a given project, the data necessary to perform an ambiguity resolution should
be recorded here as attributes of the ambiguity stubs. In our prior work, we
examined intentionality [13]. That is, did the author of the legal text intend for
this ambiguity to be written as ambiguous in the way that we identified it. For
(a)(2)(ii), we believe the syntactic ambiguity is not intentional (When would
you establish and not implement a procedure?) and the vagueness is intentional
(Emergencies are difficult to define with clarity). Regardless the resolution app-
roach taken, all data necessary for resolution should be recorded as attributes
of the ambiguity stubs. The goal of this step is to support reuse and facilitate
changing legal or engineering requirements.

We model these two ambiguities with ambiguity elements which is added
to UCM models as an extension. To complete the ambiguity model, we must lay
each ambiguity out on the path. Our approach has two options, the ambiguities
are independent or one must be resolved before the other. For (a)(2)(ii), we

4 Again, based on our interpretation.

236 A.K. Massey et al.

decided that both of ambiguities determine the actor and their responsibilities.
As a result, we model them in parallel and with AND-fork paths.

Fig. 1. Ambiguity iden-
tified in §164.312(b)

Figure 1 illustrates modeling the second of these,
including the type of ambiguity, which details our
analysis of §164.312(b) which reads as follows:

Implement hardware, software, and/or proce-
dural mechanisms that record and examine activ-
ity in information systems that contain or use
electronic protected health information.

This legal statement includes four ambiguities: two
syntactic ambiguities, a lexical ambiguity and a vague-
ness, summarized in Table 1. We believe all four ambi-
guities are relatively easy to disambiguate and this text
can be implemented by software engineers. They do,
however, have a strict ordering, as shown in Fig. 1.

Due to space constraints, we now focus our analy-
sis on the lexical ambiguity resulting from the phrase
“. . . that contain or use electronic protected health
information.” The “contain and use” part of this phrase
is confusing. Does “contain” refer to “having access to some data” or “keeping
some data apart from”? No separation of data is explicitly mentioned, so it
would be easy to assume the former meaning is correct. However, in this case
the word “contain” is superfluous. Any “use” of the data would require access
to it. So perhaps the latter meaning of “contain” is correct? This ambiguity is

Table 1. Ambiguities found in 164.312(b)

Type Phrase Rationale

Syntactic “Implement hardware, software,
and/or procedural mechanisms
that. . . ”

Does the “that” clause apply to
the hardware, the software, the
procedural mechanisms or some
combination of them?

Syntactic “. . . that record and examine
activity. . . ”

Do the mechanisms need to be
implemented for a system that
only records activity?

Lexical “. . . that contain or use electronic
protected health information.”

Does contain mean “have access
to” or “keep separate from the
rest of the system”?

Vagueness “Implement hardware, software,
and/or procedural mechanisms
that record and examine activity in
information systems that contain
or use electronic protected health
information.”

The statement is quite broad.
What is actually needed?

Modeling Regulatory Ambiguities for Requirements Analysis 237

also localized and does not affect the meaning of the entire statement. Because
both this lexical ambiguity and the second syntactical ambiguity (see Table 1)
can be resolved independently and without affecting the resolution of the first
syntactical ambiguity, we modeled them in parallel.

4 Discussion and Summary

Although ambiguity has important policy benefits, such as interpretive resilience
in an ever-changing world, it frustrates engineers seeking to interpret their mean-
ing and demonstrate due diligence in complying with legal obligations. In this
vision paper, we proposed a method for modeling ambiguities in legal texts
alongside models of software requirements or design artifacts. We presented an
example model that demonstrate how our approach supports engineers as they
reason about regulatory ambiguity and come to a disambiguation or resolution
strategy. When a regulation is updated or case law demands a new interpretation
of a regulation, engineers can evaluate the effect of the changes on the current
design and respond appropriately.

Because regulations can change over time, interpretations may also change. A
structural model of regulatory ambiguity supports easier change impact analysis
because updates to legal texts are denoted with structural changes. For example,
consider §170.314 and §170.315. These two sections of HIPAA represent the
meaningful use certification criteria for EHR systems for 2014 and 2015, respec-
tively. They are remarkably similar in structure, so if an EHR vendor seeking to
transition from 2014 compliance to 2015 compliance used an ambiguity model,
many of the implications of the changes could easily be identified.

By modeling legal documents as they are structured to support reuse and
reanalysis, we support discussion between the analysts and legal experts as they
seek to resolve ambiguities in system design. If ambiguity identification and clas-
sification were interleaved with ambiguity resolution, then any change in the reg-
ulations may require analysts to either re-identify and re-classify the ambiguities
or to undo the resolution process, whatever it may have been (disambiguation,
prioritization, etc. . .).

By choosing to model the text in a way that supports multiple interpretations
and without a definitive interpretation or resolution in mind, we can meaning-
fully support analysts seeking to incorporate ambiguity resolution with tradi-
tional modeling approaches. Many ambiguity types can only be resolved with
domain experts, and for these analysts cannot reach a valid conclusion without
a consultation. Unfortunately, by resolving these directly and documenting only
the resolution, requirements engineers risk non-compliance resulting from future
changes, including changes to regulations, changes to customer requirements, or
even simple staff turnover. In essence, the resolved ambiguity has become tacitly
hidden, with no indication that the ambiguity existed at all.

238 A.K. Massey et al.

References

1. Amyot, D.: JUCMNav. http://jucmnav.softwareengineering.ca/ucm/bin/view/
ProjetSEG/WebHome, October (2016)

2. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. Int. J. Intell.
Syst. 25(8), 841–877 (2010)

3. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for
i* modeling. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp.
254–264. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04947-7_31

4. Amyot, D., et al.: Towards advanced goal model analysis with jUCMNav. In: Cas-
tano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds.) ER 2012. LNCS, vol.
7518, pp. 201–210. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33999-8_25

5. Bhatia, J., Breaux, T.D., Reidenberg, J.R., Norton, T.B.: A theory of vagueness
and privacy risk perception. In: 24th International RE Conference, Beijing, China,
September 2016

6. Buhr, R., Casselman, R.: Use Case Maps for Object-Oriented Systems. Prentice-
Hall, Upper Saddle River (1995)

7. Ghanavati, S.: Legal-URN Framework for Legal Compliance of Business Processes.
PhD thesis, University of Ottawa, Ottawa, Canada (2013)

8. Gordon, D.G., Breaux, T.D.: Reconciling multi-jurisdictional legal requirements: a
case study in requirements water marking. In: 20th IEEE International RE Con-
ference, pp. 91–100, September 2012

9. ITU-T. User Requirements Notation (URN) – Language definition. Technical
Report ITU-T Z.151, ITU-T, October 2012

10. Massey, A.K., Otto, P.N., Antón, A.I.: Evaluating legal implementation readiness
decision-making. IEEE Trans. Softw. Eng. 41(6), 545–564 (2015)

11. Massey, A.K., Otto, P.N., Hayward, L.J., Antón, A.I.: Evaluating existing security
and privacy requirements for legal compliance. Requir. Eng. 15, 119–137 (2010)

12. Massey, A.K., Rutledge, R.L., Antón, A.I., Hemmings, J.D., Swire, P.P.: A strategy
for addressing ambiguity in regulatory requirements. https://smartech.gatech.edu/
handle/1853/54573 (2015)

13. Massey, A.K., Rutledge, R.L., Antón, A.I., Swire, P.P.: Identifying and classifying
ambiguity for regulatory requirements. In: 22nd International Conference on RE,
pp. 83–92, August 2014

14. Nigam, A., Arya, N., Nigam, B., Jain, D.: Tool for automatic discovery of ambiguity
in requirements. Int. J. Comput. Sci. Issues 9(5) (2012)

15. Osborne, M., MacNish, C.K.: Processing natural language software requirement
specifications. In: 2nd International Conference on RE, pp. 229–236, April 1996

16. Otto, P.N., Antón, A.I.: Addressing legal requirements in RE. In: 2007 15th IEEE
International RE Conference, RE 2007, pp. 5–14 (2007)

17. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M.: Reducing ambiguities in
requirements specifications via automatically created object-oriented models. In:
Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 103–
124. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89778-1_10

18. Umber, A., Bajwa, I.S.: Minimizing ambiguity in natural language software require-
ments specification. In: 2011 Sixth International Conference on Digital Information
Management, pp. 102–107, September 2011

19. van Bussel, D.: Detecting ambiguity in requirements specifications. PhD thesis,
Tilburg University (2009)

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://dx.doi.org/10.1007/978-3-642-04947-7_31
http://dx.doi.org/10.1007/978-3-642-33999-8_25
https://smartech.gatech.edu/handle/1853/54573
https://smartech.gatech.edu/handle/1853/54573
http://dx.doi.org/10.1007/978-3-540-89778-1_10

An Experimental Evaluation
of the Understanding of Safety Compliance

Needs with Models

Jose Luis de la Vara1(&), Beatriz Marín2, Clara Ayora3,
and Giovanni Giachetti4

1 Departamento de Informática, Universidad Carlos III de Madrid,
Leganés, Spain

jvara@inf.uc3m.es
2 Facultad de Ingeniería, Universidad Diego Portales, Santiago, Chile

beatriz.marin@mail.udp.cl
3 R&D Department, Treelogic, Madrid, Spain

claraayora@gmail.com
4 Universidad Tecnológica de Chile INACAP, Santiago, Chile

ggiachetti@inacap.cl

Abstract. Context:Most safety-critical systems have to fulfil compliance needs
specified in safety standards. These needs can be difficult to understand from the
text of the standards, and the use of conceptual models has been proposed as a
solution. Goal: We aim to evaluate the understanding of safety compliance
needs with models. Method: We have conducted an experiment to study the
effectiveness, efficiency, and perceived benefits in understanding these needs,
with text of safety standards and with UML object diagrams. Results: Sixteen
Bachelor students participated in the experiment. Their average effectiveness in
understanding compliance needs and their average efficiency were higher with
models (17% and 15%, respectively). However, the difference is not statistically
significant. The students found benefits in using models, but on average they are
undecided about their ease of understanding. Conclusions: Although the results
are not conclusive enough, they suggest that the use of models could improve
the understanding of safety compliance needs.

Keywords: Safety-critical system � Safety standard � Safety compliance
needs � Model � Understanding � Comprehension � Experiment

1 Introduction

Safety-critical systems are those whose failure cam harm people, property, or the
environment [12]. These systems must comply with safety standards, e.g., IEC 61508
for a wide range of industries, DO-178C in avionics, EN 50128 in railway, and ISO
26262 in automotive, as a way of assuring that they do not pose undue risks [13].
Safety standards specify safety compliance needs that must be satisfied [7], such as
requirements to fulfil, data to manage, and activities to execute. System suppliers must

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 239–247, 2017.
https://doi.org/10.1007/978-3-319-69904-2_20

understand and follow these needs, but this can be difficult. The standards are typically
large textual documents that consist of hundreds of pages and define thousands of
criteria for compliance. Ambiguity and inconsistencies are also usual in their text [12].
Practitioners have indeed acknowledged issues in understanding the standards [5, 13].

As a solution, several authors have argued that conceptual models of safety com-
pliance needs can help practitioners understand these needs, e.g. [14]. However, there
exists little evidence of the extent to which the use of models improves this under-
standing. Prior analyses are either based on experts’ perceptions [7, 14], not on actual
model usage, or have only provided preliminary insights from pilot studies [6]. There is
also a general lack of experiments related to safety certification [12].

We aim to fill the gaps regarding the analysis of the understanding of safety
compliance needs with models. To this end, we have conducted an experiment to study
the effectiveness, efficiency, and perceived benefits of understanding the needs with
models. Sixteen Bachelor students answered questions about safety compliance needs
in DO-178C and in EN 50128, using their text and models (UML object diagrams).
The students also indicated their opinion about the use of models.

The paper is organised as follows. Section 2 presents the background, and Sect. 3
the experiment process. Section 4 reports the results and Sect. 5 our conclusions.

2 Background

Model-based approaches for the specification of safety compliance needs have been
proposed for specific standards or parts of them (e.g. IEC 61508 [14]), and for specific
compliance needs (e.g. related to processes [3]). Modelling standards for system
assurance and certification have also been published [8]. Some studies have reported
that models are used in industry for safety certification purposes [5, 13].

For the experiment, we have used a holistic generic metamodel for the specification
of safety compliance needs [7]. This metamodel supports the specification of different
types of these needs: information about requirements, artefacts, and processes, and
about their applicability. The metamodel can be used for different standards from
several domains and has been validated with practitioners and data from real projects.

Regarding related work, we run a pilot experiment [6] to validate the experiment
design, adjust it for the experiment reported in this paper, and derive hypotheses. We
found both evidence and counterevidence of the improvement in the understanding of
safety compliance needs with the use of models.

In other studies, experts have agreed that models of safety standards are easy to
understand [7, 14]. There are also some experiments related to safety certification (e.g.
[1, 4]), including on model-based approaches. Experiments that have evaluated the
comprehension of model-based artefacts (e.g. [2, 9]) have shown benefits in their use.
Others have compared textual and graphical representations (e.g. [15, 17]). The results
of understanding tasks with models were better in some cases, and with text in others.

240 J.L. de la Vara et al.

3 Experiment Process

We used the guidelines by Wohlin et al. [19] to design the experiment. The goal is to
analyse the use of models to specify safety compliance needs for the purpose of
evaluation with respect to effectiveness, efficiency, and perceived benefits of under-
standing safety compliance needs from the point of view of the researcher in the
context of Bachelor students in Computer Science and Engineering.

We formulated three research questions (RQs):

• RQ1. Does the use of models increase the effectiveness of understanding safety
compliance needs?

• RQ2. Does the use of models increase the efficiency of understanding safety
compliance needs?

• RQ3. Do users find benefits in the use of models to understand safety compliance
needs?

The subjects of the experiment are 16 students of a 3rd-year course on “Software
development projects management” of a Bachelor’s Degree in Computer Science and
Engineering at Carlos III University of Madrid, Spain. In this course the students have
to plan the development and validation of an application and to design it according to
the ESA PSS-05-0 software engineering standard [10]. In the experiment the subjects
have to identify safety compliance needs from excerpts of the text of safety standards
and from models of these excerpts, and indicate their opinion about the models.

Based on the results of the pilot experiment [6], we formulate two null hypotheses
that we aim to reject:

• H1,0: There is no significant difference in the effectiveness of understanding safety
compliance needs with the text of safety standards and with models.

• H2,0: There is no significant difference in the efficiency of understanding safety
compliance needs with the text of safety standards and with models.

The independent variables are: (1) the means used to represent safety compliance
needs (model or text), and; (2) the standard considered (DO-178C requirements process
or EN 50128 integration process, which are different to the standard used in the
course). To represent the instances of the holistic metamodel, we use UML object
diagrams.

Two dependent variables are the effectiveness and efficiency. In line with related
work, e.g. [2, 4], we use the F-measure (FsÞ to quantify the effectiveness. It is based on
the precision and recall in identifying safety compliance needs. We use the formulas for
cases in which it is possible that a subject does not answer a question [9]. We use the
effectiveness and the time (in minutes) to quantify efficiency (Effys) [1, 15].

precisions ¼
P

i janswers;i \ correctijP
i janswers;ij

recalls ¼
P

i janswers;i \ correctijP
i jcorrectij

Fs ¼ 2� precisions � recalls
precisions þ recalls

Effys ¼ 100� Fs

minutes

An Experimental Evaluation of the Understanding of Safety Compliance 241

The third dependent variable is the perceived benefits in understanding safety
compliance needs. It is evaluated with a questionnaire and a 5-point Likert scale (see
Sect. 4.3) about the use of models to specify and to understand the needs [7].

The subjects are randomly divided into four groups in a within-subject 2 � 2
factorial design [18]: (1) DO-178C model (for the first task) and EN 50128 text (for the
second task); (2) EN 50128 model and DO-178C text; (3) DO-178C text and EN 50128
model, and; (4) EN 50128 text and DO-178C model. The execution of the experiment
is planned for a maximum of two hours, one for training and one for performing the
tasks. The first author, as main expert in safety certification, was the main responsible
for material preparation and the rest of authors validated it.

The subjects work offline and with the material1 of each task printed: an intro-
ductory page, a two-page excerpt of a standard or models of the excerpts, and seven
free-text questions. The subjects have to identify 11 safety compliance needs to cor-
rectly complete the questionnaire, the same in the text and in the model. The subjects
need to record the time when they start and finish each task, and complete an opinion
questionnaire.

Despite our effort to ensure experiment validity, some threats could impact it. For
internal validity, we mitigated fatigue effects by running the experiment in the morning
and having a break between the training and the tasks. Learning effects were mitigated
by using different experimental objects, with similar size and complexity, in the two
tasks. Regarding external validity, the use of students as subjects might concern the
generalization of results. Nonetheless, recent studies argue that there are minor dif-
ferences when students or practitioners are used [16]. Students can be regarded as
novice practitioners [2], and it cannot be claimed that experience greatly helps prac-
titioners better understand safety compliance needs [5]. We are also aware that the
sample size is limited, but the number of students of the course was a constraint. The
creation of the experimental material might be threatened by the interpretation of the
standards (construct validity). To mitigate this threat, we used parts of standards for
which we had access to models validated by practitioners. For conclusion validity, we
use dependent variables that are widely used in experiments with a similar purpose, e.g.
[2, 4]. To analyse the statistical significance of the results, we use parametric tests when
normality of data was confirmed and non-parametric tests otherwise, and a 0.05 level
for the p-value. Finally, the selection of a given graphical notation (UML object
diagram) affects conclusion validity.

4 Results and Interpretation

This section presents the results of the experiment and how we interpret them. No
subject had knowledge about the standards used in the experiment or the parts of them.
Their experience with UML class or object diagrams was homogeneous and similar to
our expectations for 3rd-year Bachelor students in Computer Science and Engineering.

1 https://sites.google.com/site/jldelavara/material/msac2016.

242 J.L. de la Vara et al.

https://sites.google.com/site/jldelavara/material/msac2016

4.1 Effectiveness of Understanding (RQ1)

Table 1 shows the effectiveness of understanding safety compliance needs with models
and with the text of standards. In addition to the value of the F-measure for each subject
(F), the table shows the precision (P) and recall (R). Their mean values are similar to or
higher than those in other experiments related to safety certification, e.g. [1, 4], thus we
regard subjects’ overall effectiveness as acceptable and valid.

The mean effectiveness with models is 17% higher than with the text of standards,
and the median is 30% higher. This initial overall result suggests that the use of models
improves the effectiveness of understanding safety compliance needs. According to the
Shapiro-Wilk test, the sample for effectiveness with models is non-normal
(p-value = 0.049 < 0.05), thus we selected the Wilcoxon test for H1,0. The test result
determines that the difference in the effectiveness when using models is not statistically
significant (p-value = 0.096 > 0.05). Therefore, H1,0 cannot be rejected and the results
are not conclusive enough to confirm that the use of models improves the effectiveness
of understanding safety compliance needs.

Table 1. Effectiveness and efficiency of understanding safety compliance needs

Group Subj. Effectiveness Efficiency

Models Text Models Text
P R F P R F T Effy T Effy

1 1 0.67 0.91 0.77 0.55 0.55 0.55 18.88 4.07 13.75 3.97
2 0.18 0.27 0.21 0.82 0.82 0.82 19.5 1.1 16 5.11
3 0.83 0.91 0.87 0.5 0.45 0.48 18.65 4.66 25.73 1.86
4 0.5 0.73 0.59 0.64 0.64 0.64 26.03 2.28 16.57 3.84

2 5 0.67 0.73 0.7 0.38 0.45 0.42 14 4.97 11.63 3.58
6 0.75 0.82 0.78 0.47 0.73 0.57 18.08 4.33 17.58 3.25
7 0.69 0.82 0.75 0.2 0.36 0.26 19.23 3.9 18.42 1.40
8 0.62 0.73 0.67 0.36 0.36 0.36 26.12 2.55 14.38 2.53

3 9 0.62 0.73 0.67 0.4 0.56 0.46 22.92 2.91 17.5 2.64
10 0.33 0.36 0.35 0.24 0.56 0.33 16.12 2.16 21.33 1.56
11 0.87 0.64 0.74 0.62 0.73 0.67 15.77 4.67 21.93 3.04
12 0.58 0.64 0.61 0.41 0.64 0.5 21.05 2.89 26.42 1.89

4 13 0.31 0.36 0.33 0.67 0.73 0.7 15.28 2.18 22.98 3.03
14 0.29 0.45 0.36 0.8 0.73 0.76 21.32 1.68 25.32 3.01
15 0.64 0.64 0.64 0.5 0.55 0.52 19.5 3.26 29.93 1.74
16 0.56 0.82 0.67 0.33 0.18 0.24 29.83 2.23 32.58 0.72

Mean 0.57 0.66 0.61 0.49 0.56 0.52 20.14 3.12 20.75 2.7
Median 0.62 0.73 0.67 0.49 0.55 0.51 19.37 2.9 19.87 2.8
Std.
deviation

0.2 0.2 0.19 0.18 0.17 0.17 4.33 1.19 6.042 1.14

An Experimental Evaluation of the Understanding of Safety Compliance 243

Despite the lack of statistical significance, we argue that most of the evidence from
the results suggests that the use of models could improve the effectiveness of under-
standing compliance needs. In addition to the differences of the means and the medians,
the effectiveness with models is higher for 12 out of the 16 subjects (75%). The highest
effectiveness (0.87) is with models, as a result of the highest precision (0.83) and recall
(0.91). The effectiveness is above 0.7 for six subjects with models and for only two
with text. We conjecture that the lack of statistical significance is due to sample size.
This could be addressed in follow-up experiments. We have not observed any poten-
tially relevant correlation between subject’s experience and effectiveness.

When comparing the results with those from the pilot experiment [6], we consider
that the results are coherent. The initial average gain in effectiveness from using models
in the pilot was a 2%, but it raised up to 15% when an issue with a question about
applicability information was taken into account. This is close to the 17% average gain
in the experiment.

4.2 Efficiency of Understanding (RQ2)

Table 1 shows the results regarding efficiency of understanding safety compliance
needs with models and with text. The table includes the data of the time spent in the
tasks (T; in minutes) and the efficiency outcome (Effy). The mean effectiveness with
models is 15% higher and the median 3%. The results from the Shapiro-Wilk test for
normality shows that both the sample for efficiency with models and the sample for
efficiency with text of safety standards are normal (p-value > 0.05). Therefore, we
selected the paired t-test for H2,0. The test result determines that the difference in
efficiency is not statistically significant (p-value = 0.173 > 0.05). Thus, H2,0 cannot be
rejected and the results are not conclusive enough to confirm that the use of models
improves the efficiency of understanding safety compliance needs.

Although there is no statistical significance, some aspects of the results make us
believe that the use of models could improve the efficiency of understanding of safety
compliance needs. We have argued above that the results suggest that effectiveness
could increase with models, and efficiency is directly based on effectiveness. The
efficiency is above 4.0 for four subjects when using models, and only for one when
using text. The lack of statistical significance might be an effect of sample size.

As counter evidence of the increase in efficiency when using models, the average
time to execute the tasks is only a 3% higher with the text of safety standards. With
such a little decrease in time when using models, it is not likely that efficiency
improvement is significant unless effectiveness improvement also is. The mean gain in
efficiency with models is also lower (15%) than the mean gain in effectiveness (17%).
Finally, the efficiency is above 3.0 for seven subjects when using models and for eight
when using the text.

In the pilot experiment [6] the efficiency of understanding compliance needs with
models was quite lower than with the text (24%). This might have been a result of
issues in the experimental design that the adjustments for this experiment have
mitigated.

244 J.L. de la Vara et al.

4.3 Perceived Benefits in the Use of Models (RQ3)

Figure 1 shows the results about the subject’s perceived benefits in the use of models to
understand safety compliance needs. The numbers in the bars indicate the data points of
each possible answer for the corresponding statement.

The median of four statements is Agree, and at least three subjects strongly agreed
on them. No subject disagreed that “The models help in understanding the relation-
ships between the concepts’’, and the statements with the highest number of subjects
that disagreed or strongly disagreed are “The models help in understanding the con-
cepts” and “The models are easy to understand” (7 subjects; 44%). In addition to the
latter statement, some subject strongly disagreed that “The models are easier to
understand than the text of the safety standards I have dealt with”. “The models are
easy to understand” is also the only statement for which no subject strongly agreed.

Despite the overall benefits found, the models do not seem to be regarded as easy to
understand or easier to understand than the text. This could be due to the graphical
notation used in the experiment. The experience with UML might also influence the
perceived benefits. We plan to gain deeper insights into this aspect by running the
experiment with students of courses on model-driven engineering.

In the pilot experiment [6], the widest agreement was on “The models help in
understanding the relationships between the concepts” too, and the ratio of subjects
that disagreed or strongly disagreed that “The models are easy to understand” was
higher. The latter is also the only statement for which some practitioner disagreed in
[7], and all the practitioners agreed or strongly agreed upon the former. Interestingly,
the median in the study with practitioners, the pilot experiment, and the experiment for
“The models are easier to understand than the text of the safety standards I have dealt
with” is Undecided or Undecided-Agree. This supports the proposal of investigating
notations that could be more suitable to represent compliance needs. Different graphical
notations might help to increase the perception of the benefits.

Fig. 1. Perceived benefits in the use of models to understand safety compliance needs

An Experimental Evaluation of the Understanding of Safety Compliance 245

Most of the practitioners that provided feedback on a model of IEC 61508 [14]
regarded it as easy to understand. The model was presented as a class diagram, and
these practitioners might have more experience with UML than our subjects. In
experiments on security assessment (e.g. [11]), the number of positive aspects
regarding perceived ease of use and perceived usefulness was higher for models than
for text.

5 Conclusion

The textual descriptions of compliance needs in safety standards can be difficult to
understand. The use of conceptual models has been proposed as a solution, but there is
a lack of empirical evidence that confirms the benefits of this usage. This paper has
presented an experiment with 16 subjects, separated into four different groups, that
interpreted models and textual specifications of safety compliance needs. The results
show that the use of models can improve the effectiveness and efficiency of under-
standing safety compliance needs by 17% and 15%, respectively. However, this does
not guarantee statistical significance of the advantage in using models to understand
safety compliance. This makes it impossible to reject the hypotheses formulated.
Further experiments are needed to obtain more conclusive results.

From a deeper analysis, we have observed that the representation of applicability
information seems to be more effective in the text of safety standards than in models.
We conjecture that the use of a hybrid specification, combining graphical modelling
and tables, could be an alternative to study. Another aspect to consider is the use of
specific notations to model safety compliance needs instead of existing notations such
as the UML object diagrams used. Finally, although the use of models might not
significantly improve the understanding of safety compliance needs, it can still be
beneficial for safety certification, e.g. for automated compliance management [14].

As main future work, we plan to conduct new experiments to evaluate different
modelling approaches to specify safety compliance needs (e.g. BPMN and goal
models). We expect that, as a consequence, we will be able to draw stronger conclu-
sions and to guide the selection of adequate specification style alternatives according to
the safety compliance needs to be represented.

Acknowledgments. The research leading to this paper has received funding from the AMASS
project (H2020-ECSEL grant agreement no 692474; Spain’s MINECO ref. PCIN-2015-262) and
the AMoDDI project (Ref. 11130583). We also thank the subjects that participated in the
experiment.

References

1. Abdulkhaleq, A, Wagner, S.: A controlled experiment for the empirical evaluation of safety
analysis techniques for safety-critical software. In: EASE 2015, pp. 16:1–16:10 (2015)

2. Abrahão, S., et al.: Assessing the effectiveness of sequence diagrams in the comprehension
of functional requirements. IEEE Trans. Softw. Eng. 39(3), 327–342 (2013)

246 J.L. de la Vara et al.

3. Ayora, C., et al.: Variability management in process families through change patterns.
Inform. Softw. Tech. 74, 86–104 (2016)

4. Briand, L., et al.: Traceability and SysML design slices to support safety inspections: a
controlled experiment. ACM Trans. Softw. Eng. Meth. 23(1), 9:1–9:43 (2014)

5. de la Vara, J.L., et al.: An industrial survey on safety evidence change impact analysis
practice. IEEE Trans. Softw. Eng. 42(12), 1095–1117 (2016)

6. de la Vara, J.L., et al.: Do models improve the understanding of safety compliance needs?
Insights from a pilot experiment. In: ESEM, pp. 32:1–32:6 (2016)

7. de la Vara, J.L., et al.: Model-based specification of safety compliance needs for critical
systems: a holistic generic metamodel. Inform. Softw. Tech. 72, 16–30 (2016)

8. de la Vara, J.L., et al.: An analysis of safety evidence management with the structured
assurance case metamodel. Comput. Stand. Interfaces 50, 179–198 (2017)

9. De Lucia, A., et al.: An experimental comparison of ER and UML class diagrams for data
modelling. Empir. Softw. Eng. 15(5), 455–492 (2010)

10. ESA. Software engineering and standardisation (2006). http://www.esa.int/TEC/Software_
engineering_and_standardisation/TECBUCUXBQE_0.html

11. Labunets, K., et al.: An experimental comparison of two risk-based security methods. In:
ESEM, pp 163–172 (2013)

12. Nair, S., et al.: An extended systematic literature review on provision of evidence for safety
certification. Inform. Softw. Tech. 56(7), 689–717 (2014)

13. Nair, S., et al.: Evidence management for compliance of critical systems with safety
standards: a survey on the state of practice. Inform. Softw. Tech. 60, 1–15 (2015)

14. Panesar-Walawege, R.K., et al.: Supporting the verification of compliance to safety
standards via model-driven engineering. Inform. Softw. Tech. 55(5), 836–864 (2013)

15. Razali, R., et al.: Experimental comparison of the comprehensibility of a UML-based formal
specification versus a textual one. In: EASE (2007)

16. Salman, I., et al.: Are students representatives of professionals in software engineering
experiments? In: ICSE (2015)

17. Sharafi, Z., et al.: An empirical study on the efficiency of graphical vs. textual representations
in requirements comprehension. In: ICPC (2013)

18. Vegas, S., et al.: Crossover designs in software engineering experiments: benefits and perils.
IEEE Trans. Softw. Eng. 42(2), 120–135 (2016)

19. Wohlin, C., et al.: Experimentation in Software Engineering, 2nd edn. Springer, Heidelberg
(2012)

An Experimental Evaluation of the Understanding of Safety Compliance 247

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECBUCUXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECBUCUXBQE_0.html

Foundations

Cardinality Constraints with Probabilistic
Intervals

Tania Katell Roblot and Sebastian Link(B)

Department of Computer Science, University of Auckland, Auckland, New Zealand
{t.roblot,s.link}@auckland.ac.nz

Abstract. Probabilistic databases accommodate well the requirements
of modern applications that produce large volumes of uncertain data
from a variety of sources. We propose an expressive class of probabilis-
tic cardinality constraints which empowers users to specify lower and
upper bounds on the marginal probabilities by which cardinality con-
straints should hold in a data set of acceptable quality. The bounds
help organizations balance the consistency and completeness targets for
their data quality, and provide probabilities on the number of query
answers without querying the data. Algorithms are established for an
agile schema-driven acquisition of the right lower and upper bounds in
a given application domain, and for reasoning about the constraints.

Keywords: Cardinality constraint · Data and knowledge intelligence ·
Decision support · Probability · Requirements engineering · Summaries

1 Introduction

Background. Cardinality constraints help us understand the semantics of data.
They enforce bounds on the number of data patterns that occur in application
domains. Cardinality constraints were introduced in Chen’s seminal ER paper
[3], and have attracted interest and tool support ever since. A cardinality con-
straint card(X) ≤ b stipulates for an attribute set X and a positive integer b that
a relation must not contain more than b different tuples with matching values on
all the attributes in X. For example, a social worker may not handle more than
five cases at a time. This expressiveness makes cardinality constraints invaluable
in applications such as data integration, modeling, and processing.

Motivation. Relational databases target applications with certain data, such
as accounting and payroll. Modern applications, such as data integration and
information extraction, produce large volumes of uncertain data. For example,
RFID (radio frequency identification) can track endangered species of animals,
such as the Alpine Shrew in Slovenia. Here it is sensible to apply probabilis-
tic databases. Figure 1 shows two probabilistic relations (p-relation), which are
probability distributions over a finite set of possible worlds, each being a relation.

A goal in requirements acquisition is (i) to specify all constraints that apply
to the application domain, and (ii) not to specify any others. This enables us
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 251–265, 2017.
https://doi.org/10.1007/978-3-319-69904-2_21

252 T.K. Roblot and S. Link

Fig. 1. Probabilistic relations r1 and r2 over Tracking={rfid, time, zone}

to (i) restrict instances to those which are meaningful for the domain, and (ii)
permit all meaningful instances. Cardinality constraints therefore address the
consistency and completeness dimensions of data quality. Here, consistency in
relations requires us to specify all meaningful constraints, while we can only
access the complete set of meaningful relations if we do not specify any meaning-
less constraints. As depicted in Fig. 2, we aim at consistency and completeness.

In probabilistic databases, one may speak of a cardinality constraint when
it holds in all possible worlds. Hence, a cardinality constraint holds with mar-
ginal probability one, which means that the probabilities of the worlds in which
the constraint holds add up to one. However, due to the veracity inherent to
probabilistic databases, and the variety of sources the data originates from, one
must not expect to satisfy the completeness criteria with this definition. Such
definition does also not make sensible use of probabilities, contrary to what
would be expected of probabilistic databases. In our running example, the car-
dinality constraint card(time) ≤ 3 has marginal probability 1 in both r1 and
r2, card(time, zone) ≤ 2 has marginal probability 0.9 in r1 and 0.95 in r2, and
card(time, zone) ≤ 1 has marginal probability 0.75 in r1 and 0.8 in r2.

We propose the new class of cardinality constraints with probabilistic inter-
vals, or p-CCs for short, which stipulate lower and upper bounds on the marginal
probability by which a cardinality constraint holds in a probabilistic database.

Fig. 2. Consistency and completeness dimensions as controlled by cardinality con-
straints

Cardinality Constraints with Probabilistic Intervals 253

For example, we may specify the p-CCs card(time, zone) ≤ 2 ∈ [0.9, 0.95] and
card(time, zone) ≤ 1 ∈ [0.75, 0.8]. Data quality: Our main use-case for p-CCs is
their ability to balance the consistency and completeness targets for the quality
of probabilistic data. In fact, consistency means that for each CC the specified
lower (upper) bound is not too high (low), and completeness means that for each
CC the specified lower (upper) bound is not too low (high). Once consolidated,
p-CCs can control these data quality dimensions during updates. When new
data arrives, p-CCs can help detect anomalous patterns of data in the form of
p-CC violations. Query estimation: In a different showcase, p-CCs can be used
to infer probabilities on the maximum number of query answers without query-
ing any portion of the potentially big data source. The query SELECT rfid FROM
Tracking WHERE zone=‘z2’ AND time=‘9’; asks for the rfid of Alpine Shrews
recorded in zone ‘z2’ at ‘9’am. Reasoning about our p-CCs tells us that at most
3 answers will be returned with probability 1, at most 2 answers with a prob-
ability in [0.9,0.95], and at most 1 answer with a probability in [0.75,0.8]. A
service provider may return approximate costs to a customer, who can decide
whether to pay for the service. The provider does not utilize unpaid resources
for querying the potentially big data source to return the feedback.

Contributions. Our contributions are as follows. Modeling: We propose
p-CCs card(X) ≤ b ∈ [l, u] as a natural class of integrity constraints
over uncertain data. Their main use is to help organizations balance con-
sistency and completeness targets for the quality of their data. P-CCs
can distinguish meaningful from meaningless patterns in large volumes
of uncertain data from a variety of sources, and estimate the probabil-
ity bandwidths for numbers of query answers. Reasoning: While sets of
p-CCs can be unsatisfiable, we establish an efficient algorithm to decide satisfia-
bility. We characterize the implication problem of satisfiable sets of p-CCs by a
simple finite set of Horn rules, and a linear time algorithm. This enables organiza-
tions to reduce the overhead of data quality management by p-CCs to a minimal
level necessary. Acquisition: For the schema-driven acquisition of the right proba-
bilistic intervals, we show how to summarize concisely any given satisfiable set of
p-CCs as an Armstrong PC-base sketch. Such a sketch is a perfect semantic sum-
mary of all p-CCs currently perceived meaningful by analysts. The base consists
of two PC-sketches: one that satisfies every cardinality constraint with the exact
marginal probability that is the perceived best lower bound for the domain, and
one that is the perceived best upper bound. Any flaws with these perceptions are
explicitly pointed out in the sketches, either as unreasonably high lower bounds
or unreasonably low upper bounds. For example, Table 1 shows an Armstrong
PC-base sketch for the set of p-CCs that are satisfied by both p-relations r1 and
r2 in Fig. 1. For each sketch, Γ shows which patterns of data must occur in how
many rows (represented in column card) in which possible worlds (represented
by the world identifiers in column ι). The symbol ∗ represents some value that
is unique in each world derived from the sketch. Π defines the probability dis-
tribution over the possible worlds. The first (second) PC-sketch represents the
p-relation r1 (r2, respectively) from Fig. 1. While all implied p-CCs are satisfied

254 T.K. Roblot and S. Link

Table 1. Two PC-sketches that form an Armstrong PC-base for the set of p-CCs that
hold on both p-relations r1 and r2 in Fig. 1

Γ

card rfid time zone ι

3 as1 8 ∗ 2,3
2 as2 ∗ z1 1,2,3
1 as2 ∗ z1 2,3
2 ∗ 9 z2 2,3
1 ∗ 9 z2 3
3 as3 ∗ ∗ 1
3 ∗ 10 ∗ 1
4 ∗ ∗ z3 1,2,3

Π

ι Π(ι)

1 .75
2 .15
3 .1

Γ

card rfid time zone ι

1 ∗ ∗ ∗ 1
3 as2 ∗ z1 2, 3
2 ∗ 9 z2 2, 3
1 ∗ 9 z2 3
2 as1 8 ∗ 3

Π

ι Π(ι)

1 0.80
2 0.15
3 0.05

by both p-relations, every non-implied p-CC is violated in at least one p-relation.
For example, the implied p-CC card(time,zone) ≤ 2 ∈ [0.92, 0.93] is satisfied by
both p-relations, while the non-implied p-CC card(time,zone) ≤ 1 ∈ [0.75, 0.79]
is violated by r2. It is important to point out the challenges we have overcome.
While sets of p-CCs do not enjoy single Armstrong databases, our new concept
of an Armstrong base makes it possible to apply this toolkit to the requirements
acquisition of p-CCs. Moreover, most sets of p-CCs require Armstrong sketches
to represent infinite p-relations, as these are necessary whenever there is some
attribute A for which no p-CC card(A) ≤ b ∈ [1, 1] is implied by the given p-CC
set. The frequent challenge of finitely representing infinite p-relations is overcome
by using the symbol ∞ to represent an infinite number of rows of a data pattern.
This points out the potential incompleteness of the acquired requirements.

Organization. We discuss related work in Sect. 2. P-CCs are introduced in
Sect. 3. Computational problems are characterized in Sect. 4. The acquisition
framework is established in Sect. 5. We conclude and mention future work in
Sect. 6. All proofs are available in Roblot’s PhD thesis [13].

2 Related Work

Cardinality constraints are an influential contribution of data modeling. They
were already present in Chen’s seminal paper [3], and are now part of all major
languages for data modeling, including UML, EER, ORM, XSD, and OWL.
Cardinality constraints have been extensively studied [5,7,8,10–12,18]. Our work
subsumes relations as p-relations that consist of one possible world only.

Poor data quality is arguably the biggest inhibitor to deriving value from big
data [16]. P-CCs provide a well-founded, yet manageable approach to balance
consistency and completeness targets. The concept of p-CCs is new but naturally
derived from previous research.

In work on possibilistic CCs [6] tuples are attributed some degree of pos-
sibility and CCs some degree of certainty saying to which tuples they apply.

Cardinality Constraints with Probabilistic Intervals 255

Possibility theory can be a qualitative approach, while probability theory is a
quantitative approach to uncertainty. Our research therefore complements the
qualitative approach to CCs in [6].

P-CCs extend previous work on keys and CCs, in which only lower bounds
were considered in [2,14]. Our extension causes significant differences. First,
p-CCs are more expressive as upper bounds smaller than 1 can be specified by
them. Consequently, consistency and completeness targets can be addressed bet-
ter. Second, sets of p-CCs with intervals may not be satisfiable by any p-relation.
In contrast, every set of CCs with only lower bounds is satisfiable. Third,
while implication and inference problems become more complex for intervals,
we succeed in establishing linear time algorithms. Fourth, while keys and CCs
with only lower bounds enjoy representations by a single Armstrong PC-sketch,
p-CCs require two PC-sketches. This is also an interesting novelty for Armstrong
databases: So far, research on constraint elicitation [4,9] has only considered rep-
resentations by a single Armstrong instance, but constraint sets for which two
or fewer instances form an Armstrong base have not been considered. Our work
also extends previous work on keys with probabilistic intervals [1]. CCs are more
expressive than keys, the sources of inconsistencies become larger, the implica-
tion and inference problems become more challenging, and the construction of
Armstrong instances become more sophisticated.

3 Cardinality Constraints with Probabilistic Intervals

We fix concepts from probabilistic databases and introduce the central notion
of p-CCs. We use the symbol N∞

1 to denote the positive integers together with
the symbol ∞ for infinity, to which the order < extends.

A relation schema is a finite set R of attributes A. Each attribute A is associ-
ated with a domain dom(A) of values. A tuple t over R is a function that assigns
to each attribute A of R an element t(A) from the domain dom(A). A relation
over R is a finite set of tuples over R. Relations over R are also called possi-
ble worlds of R here. An expression card(X) ≤ b with some non-empty subset
X ⊆ R and b ∈ N

∞
1 is called a cardinality constraint over R. In what follows,

we will always assume that a subset of R is non-empty without mentioning it
explicitly. A cardinality constraint card(X) ≤ b over R is said to hold in a pos-
sible world w of R, denoted by w |= card(X) ≤ b, if and only if there are not
b + 1 different tuples t1, · · · , tb+1 ∈ W such that for all 1 ≤ i < j ≤ b + 1,
ti �= tj and ti(X) = tj(X). A probabilistic relation (p-relation) over R is a pair
r = (W, P) of a finite non-empty set W of possible worlds over R and a prob-
ability distribution P : W → (0, 1] such that

∑
W∈W P (W) = 1 holds. Figure 1

shows two p-relations over relation schema Tracking={rfid,time,zone}. World
W2 of r1, for example, satisfies the cardinality constraints card(rfid) ≤ 3,
card(time) ≤ 3, card(zone) ≤ 4, card(rfid, time) ≤ 3, card(rfid, zone) ≤ 3, and
card(time, zone) ≤ 2 but violates the CC card(time, zone) ≤ 1. The marginal
probability mX,b,r of a cardinality constraint card(X) ≤ b in the p-relation r is the
sum of the probabilities of those possible worlds in r which satisfy card(X) ≤ b.
We will now introduce the central notion of a key with probabilistic intervals.

256 T.K. Roblot and S. Link

Definition 1. A cardinality constraint with probabilistic intervals, or p-CC,
over relation schema R is an expression card(X) ≤ b ∈ [l, u] where ∅ �= X ⊆ R,
b ∈ N

∞
1 , l, u ∈ [0, 1], and l ≤ u. The p-CC card(X) ≤ b ∈ [l, u] over R is satisfied

by, or said to hold in, the p-relation r over R if and only if l ≤ mX,b,r ≤ u.

In our running example, the p-relations r1 and r2 from Fig. 1 both satisfy
the p-CCs card(rfid, time) ≤ 1 ∈ [0.75, 0.95], card(rfid, zone) ≤ 2 ∈ [0.75, 0.8],
card(time, zone) ≤ 2 ∈ [0.9, 0.95] and card(time, zone) ≤ 1 ∈ [0.75, 0.8], but
r1 violates the p-CC card(time, zone) ≤ 2 ∈ [0.95, 0.95] and r2 violates the
p-CC card(time, zone) ≤ 2 ∈ [0.9, 1]. The reasons for the violations are that
m{rfid,time},2,r1 = 0.9 and m{rfid,time},2,r2 = 0.95, respectively.

It is useful to look at lower and upper bounds separately. A CC with lower
bound, or l-CC, is of the form card(X) ≤ b ∈ [l, 1] and we write (card(X) ≤
b,≥ l). Similarly, a CC with upper bound, or u-CC, is of the form card(X) ≤ b ∈
[0, u] and we write (card(X) ≤ b,≤ u). For example, the p-CC card(time, zone) ≤
2 ∈ [0.9, 0.95] can be rewritten as the l-CC (card(time, zone) ≤ 2,≥ 0.9) and the
u-CC (card(time, zone) ≤ 2,≤ 0.95). Hence, a p-relation satisfies a p-CC iff it
satisfies the corresponding l-CC and u-CC. L-CCs have been studied in [14]. In
the following, we will first study u-CCs, and then combine u-CCs with l-CCs.

4 Reasoning Tools

When using p-CCs to manage consistency and completeness targets for data
quality, their overhead should be minimized. This requires us to reason about
p-CCs efficiently. We will establish fundamental tools to identify efficiently (i) if
a given set of p-CCs is satisfiable, and (ii) the largest lower and smallest upper
bounds on the probability by which a given CC is implied by a given set of
p-CCs. This helps optimize the efficiency of updates and query answers. The
results are required for our acquisition framework later.

Computational Problems. Let Σ ∪{ϕ} denote a set of constraints over rela-
tion schema R. We say that Σ is satisfiable, if there is some p-relation over R
that satisfies all elements of Σ. We say Σ implies ϕ, denoted by Σ |= ϕ, if every
p-relation r over R that satisfies Σ, also satisfies ϕ. We use Σ∗ = {ϕ : Σ |= ϕ}
to denote the semantic closure of Σ. Let C denote a class of constraints. The
C-satisfiability problem is to decide for a given relation schema R and a given
set Σ of constraints in C over R, whether Σ is satisfiable. The C-implication
problem is to decide for a given relation schema R and a given satisfiable set
Σ ∪ {ϕ} of constraints in C over R, whether Σ implies ϕ. If C denotes the class
of p-CCs, then the C-inference problem is to compute for a given relation schema
R, a given satisfiable set Σ of constraints in C, and a given cardinality constraint
card(X) ≤ b over R the largest probability l and the smallest probability u such
that Σ implies card(X) ≤ b ∈ [l, u]. We will characterize the computational prob-
lems for the class of u-CCs first. Subsequently, we then combine these results
with those from [14] for the class of l-CCs to characterize the class of p-CCs.

Cardinality Constraints with Probabilistic Intervals 257

4.1 Cardinality Constraints with Upper Bounds

Satisfiability Problem. While every set of l-CCs is satisfiable, this is not the
case for every set of u-CCs. However, satisfiable sets are easy to characterize.

Theorem 1. A set Σ of u-CCs over relation schema R is satisfiable iff Σ does
not contain a u-CC of the form (card(R) ≤ b,≤ u) where u < 1 and Σ does not
contain a u-CC of the form (card(X) ≤ ∞,≤ u) where u < 1. The satisfiability
problem for u-CCs can thus be decided with one scan over the input. �

Axioms. We determine the semantic closure by applying inference rules. For
a set R of inference rules let Σ �R ϕ denote the inference of ϕ from Σ by R.
That is, there is some sequence σ1, . . . , σn such that σn = ϕ and every σi is an
element of Σ or is the conclusion that results from an application of an inference
rule in R to some premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ : Σ �R ϕ} be the
syntactic closure of Σ under inferences by R. R is sound (complete) if for every
satisfiable set Σ over every R we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R

is a (finite) axiomatization if R is both sound and complete. The following set
U of inference rules

(card(R) ≤ ∞,≤ 1)
(card(XY) ≤ b + b′,≤ u)
(card(X) ≤ b,≤ u + u′)

(Maximum, M) (Relax, R)

forms a finite axiomatization for the implication of u-CCs. Here, R denotes
the underlying relation schema, X �= ∅ and Y form attribute subsets of R,
b + b′ ∈ N

∞
1 , b ∈ N1, and u, u′ as well as u + u′ are probabilities.

Theorem 2. U forms a finite axiomatization for u-CCs. �
For example, Σ = {(card(rfid, time) ≤ 2,≤ 0.95)} implies the u-CC ϕ =

(card(rfid) ≤ 1,≤ 0.97), but not the u-CC ϕ′ = (card(rfid) ≤ 3,≤ 0.97). Indeed,
ϕ can be inferred from Σ by applying R to (card(rfid, time) ≤ 2,≤ 0.95). By
definition, it is redundant to verify that a given p-relation satisfies an implied
p-CC. In particular, the larger the given p-relation, the more time we save by
avoiding redundant validation checks.

Algorithms. Computing Σ∗ and checking whether ϕ ∈ Σ∗ is not feasible. We
will now establish a linear-time algorithm for computing the smallest probability
u, such that (card(X) ≤ b,≤ u) is implied by Σ. The following theorem allows
us to decide the implication problem for u-CCs to a single scan of the input.

Theorem 3. Let Σ ∪ {(card(X) ≤ b,≤ u)} denote a satisfiable set of u-CCs
over R. Then Σ implies (card(X) ≤ b,≤ u) iff (i) u = 1 or (ii) there is some
(card(X ′) ≤ b′,≤ u′) ∈ Σ such that X ⊆ X ′, b ≤ b′ and u′ ≤ u hold. �

258 T.K. Roblot and S. Link

Algorithm 1. Inference
Require: R, Σ, card(X) ≤ b with satisfiable set Σ of u-CCs
Ensure: min{u : Σ |= (card(X) ≤ b, ≤ u)}
1: u ← 1;
2: for all (card(X ′) ≤ b′, ≤ u′) ∈ Σ do
3: if X ⊆ X ′ and b ≤ b′ and u′ < u then
4: u ← u′;
5: return u;

Theorem 3 enables us to design Algorithm 1, which returns for a given satis-
fiable set Σ of u-CCs, and a given cardinality constraint card(X) ≤ b over R the
smallest probability u such that (card(X) ≤ b,≤ u) is implied by Σ. Starting
with u = 1, the algorithm scans all input keys (card(X ′) ≤ b′,≤ u′) and resets
u to u′ whenever u′ is smaller than the current u, X is contained in X ′ and b
is at most b′. We use |Σ| and |R| to denote the total number of attributes that
occur in Σ and R, respectively.

Theorem 4. On input (R,Σ, card(X) ≤ b), Algorithm 1 returns in O(|Σ|+|R|)
time the minimum u with which (card(X) ≤ b,≤ u) is implied by Σ. �
Given R,Σ, (card(X) ≤ b,≤ u) as an input to the implication problem for u-CCs
we can use Algorithm 1 to compute uX,b := min{u′ : Σ |= (card(X) ≤ b,≤ u′)}
and return an affirmative answer if and only if uX,b ≤ u.

Theorem 5. The implication problem of u-CCs is decidable in linear time. �
Given Σ = {(card(rfid, time) ≤ 2,≤ 0.95)} and card(rfid) ≤ 3, Algorithm 1

returns urfid,3 = 1. In particular, if ϕ′ = (card(rfid) ≤ 3,≤ 0.97) as before, we
conclude that Σ does not imply ϕ′ as 1 �≤ 0.97.

4.2 Cardinality Constraints with Probabilistic Intervals

Every p-CC set Σ is the union of the l-CC set Σl := {(card(X) ≤ b,≥
l) | (card(X) ≤ b ∈ [l, u]) ∈ Σ} and the u-CC set Σu := {(card(X) ≤
b,≤ u) | (card(X) ≤ b ∈ [l, u]) ∈ Σ}. While every l-CC set is satisfiable
[14], and satisfiability for u-CCs requires one scan over the input, the sat-
isfiability problem for p-CCs requires two scans. For example, the p-CC set
Σ = {(card(rfid, zone) ≤ 2 ∈ [0.75, 0.8], card(rfid) ≤ 1 ∈ [0.85, 0.9]} is not satisfi-
able.

Theorem 6. A set Σ of p-CCs over relation schema R is satisfiable iff Σl ∪
Σu ∪ {(card(R) ≤ 1,≥ 1)} ∪ {(card(X) ≤ ∞,≥ 1) | (card(X) ≤ ∞,≤ q) ∈ Σu}
does not contain (card(X) ≤ b,≥ p), (card(X ′) ≤ b,≤ q) such that X ⊆ X ′,
b ≤ b′ and q < p. �

Cardinality Constraints with Probabilistic Intervals 259

No Interaction. We can show that every satisfiable set of p-CCs does not
exhibit any interaction between its l-CCs and u-CCs. We say that there is
no interaction between u-CCs and l-CCs if for every relation schema R, every
satisfiable set Σ of p-CCs, every l-CC (card(X) ≤ b,≥ p) and every u-CC
(card(X) ≤ b,≤ q) over R, the following hold:

– Σu ∪ Σl |= (card(X) ≤ b,≥ p) if and only if Σl |= (card(X) ≤ b,≥ p),
– Σu ∪ Σl |= (card(X) ≤ b,≤ q) if and only if Σu |= (card(X) ≤ b,≤ q).

Hence, there is no interaction between u-CCs and l-CCs iff it is true that the
p-CC card(X) ≤ b ∈ [p, q] is implied by a satisfiable set Σ of p-CCs iff (i)
(card(X) ≤ b,≥ p) is implied by Σl, and (ii) (card(X) ≤ b,≤ q) is implied by
Σu.

Theorem 7. There is no interaction between u-CCs and l-CCs. �
Firstly, we can simply combine our axiomatizations for u-CCs and l-CCs into

one for p-CCs.

Theorem 8. The union of U from Theorem 2 and P from [14] forms a finite
axiomatization for p-CCs. �

Secondly, we can combine our inference algorithms for u-CCs and l-CCs to
obtain an efficient inference algorithm for p-CCs.

Theorem 9. Given a satisfiable set Σ of p-CCs, and some card(X) ≤ b over
R, we can return in O(|Σ| + |R|) time the maximum l and the minimum u such
that card(X) ≤ b ∈ [l, u] is implied by Σ. �

Thirdly, the implication problem of p-CCs can be decided efficiently.

Theorem 10. The implication problem of p-CCs is decidable in linear time. �
Example 1. Consider the set of p-CCs that hold on both p-relations in Fig. 1. A
cover Σ for this set is: card(rfid) ≤ 3 ∈ [1, 1], card(time) ≤ 3 ∈ [1, 1], card(zone) ≤
4 ∈ [1, 1], card(rfid, time) ≤ 1 ∈ [0.75, 0.95], card(rfid, zone) ≤ 2 ∈ [0.75, 0.8],
card(time, zone) ≤ 2 ∈ [0.9, 0.95], and card(time, zone) ≤ 1 ∈ [0.75, 0.8]. To
decide if card(time, zone) ≤ 2 ∈ (0.91, 0.94) is implied by Σ we check if
(card(time, zone) ≤ 2,≥ 0.91) is implied by Σl and if (card(time, zone) ≤ 2,≤
0.94) is implied by Σu. While the first condition is true, the second condition
fails. Consequently, the p-CC is not implied by Σ.

5 Acquiring Probabilistic Intervals

A main inhibitor to the uptake of probabilistic cardinality constraints is the
difficulty to determine the probabilistic interval that applies to the underlying
application domain. For that task, analysts should communicate with domain
experts. However, the challenge is to overcome the following disconnect: Ana-
lysts know database concepts but not the domain, while domain experts know

260 T.K. Roblot and S. Link

the domain but not database concepts. To connect analysts and domain experts,
we establish a computational tool that helps them to jointly consolidate require-
ments. Analysts will use our algorithm to compute for any given satisfiable set of
p-CCs that they perceive meaningful, two user-friendly summaries that perfectly
represent the set. The summaries represent simultaneously for all cardinality con-
straints their lowest and highest marginal probabilities, respectively, that quality
data sets in the target domain should exhibit. The two data summaries are then
inspected jointly with the domain experts to identify and rectify any flaws with
the perception of the meaningful constraints. The constraints are revised until
analysts and domain experts are satisfied.

5.1 Summarizing Abstract Sets of P-CCs as Armstrong PC-bases

Our results will show that every satisfiable set Σ of p-CCs can be summarized
as a pair of PC-sketches such that all given p-CCs are satisfied by the two
p-relations the PC-sketches represent, and all those p-CCs not implied by Σ are
violated by at least one of the p-relations. The notion of a PC-sketch generalizes
the concept of an Armstrong database, which is a single database instance that
satisfies a constraint if and only if it is implied by the given constraint set [4].
The reason why p-CCs require two instances is simple: Each instance can only
represent one marginal probability, but p-CCs generally require a lower and an
upper bound on the marginal probability. So, unless every given p-CC has the
same lower and upper bounds, we require two p-relations.

Definition 2. Let Σ be a satisfiable set of p-CCs over R. A pair of p-relations
r1, r2 forms an Armstrong p-base for Σ if for all p-CCs ϕ over R it holds that
r1 and r2 satisfy ϕ if and only if Σ implies ϕ.

For example, the p-relations r1, r2 from Fig. 1 form an Armstrong p-base for
the set Σ of p-CCs from Example 1. It is worth emphasizing the effectiveness
of the definition: Knowing that r1, r2 form an Armstrong p-base for a given
Σ enables us to reduce every instance Σ ∪ {ϕ} of the implication problem to
simply checking if both r1 and r2 satisfy ϕ. Knowing that u-CCs and l-CCs do
not interact, we can compute r1, r2 such that every instance Σ∪{card(X) ≤ b} of
the inference problem is reduced to simply computing the lower (upper) bound
l (u) in card(X) ≤ b ∈ [l, u] as the marginal probability mX,b,r1 (mX,b,r2) of
card(X) ≤ b in r1 (r2). For example, card(time, zone) ≤ 2 ∈ [0.91, 0.94] is not
implied by Σ from Example 1 as the given upper bound 0.94 is smaller than the
marginal probability 0.95 of card(time, zone) ≤ 2 in r2.

Computational Strategy. For a given satisfiable set Σ of p-CCs over R we
want to compute two p-relations r1, r2 that form an Armstrong p-base for Σ.
Our strategy is to compute r1 (r2) such that for all card(X) ≤ b over R, the
marginal probability mX,b,r1 (mX,b,r2) equals the largest (smallest) probability
pX,b such (card(X) ≤ b,≥ pX,b) (card(X) ≤ b,≤ pX,b) is implied by Σl (Σu).
Let us recall the computation of r1 = (W1, P1) first [14].

Cardinality Constraints with Probabilistic Intervals 261

Lower Bounds. Let p1 < · · · < pn denote the different probabilities that occur
in Σl. Furthermore, let p0 ← 0, and if pn < 1, then we set n �→ n + 1 and
define pn ← 1. Then W1 = {w1, . . . , wn} where the possible world wi is an
Armstrong relation for the set Σl

pi
= {card(X) ≤ b | (card(X) ≤ b,≥ p) ∈ Σl ∪

{(card(R) ≤ 1,≥ 1)} such that p ≥ pi} and P1(wi) = pi − pi−1 for i = 1, . . . , n.
This construction yields a p-relation r1 that is Armstrong for Σl [14]. That is,
for an arbitrary l-CC ϕ it holds that Σl implies ϕ if and only if r1 satisfies ϕ. The
marginal probability of an arbitrary card(X) ≤ b in r1 is therefore the largest
probability pX,b such that (card(X) ≤ b,≥ pX,b) is implied by Σl. For example,
the p-relation r1 from Fig. 1 is Armstrong for the set Σl induced by the set Σ
of p-CCs from Example 1. To make the presentation self-contained, we briefly
recall how to compute the possible worlds as Armstrong relations for the sets
of cardinality constraints (CCs). An Armstrong relation w for a given set Σ of
CCs over relation schema R violates all CCs card(X) ≤ b over R which are not
implied by Σ. However, Σ |= card(X) ≤ b if and only if X = R or b = ∞ or there
is some card(Z) ≤ b′ ∈ Σ where Z ⊆ X and b′ ≤ b. Hence, if Σ �|= card(X) ≤ b,
then X �= R, b < ∞ and for all card(Z) ≤ b′ ∈ Σ where Z ⊆ X we have
b′ > b. Our strategy is thus to find for all subsets X, the smallest upper bound
bX that applies to the set X. In other words, bX = inf{b | Σ |= card(X) ≤ b}.
Moreover, if bXY = bX for some attribute sets X,Y , then it suffices to violate
card(XY) ≤ bXY −1. For this reason, the set dupΣ(R) of duplicate sets is defined
as dupΣ(R) = {∅ ⊂ X ⊂ R | bX > 1 ∧ (∀A ∈ R − X(bXA < bX))}. For each
duplicate set X ∈ dupΣ(R), we introduce bX new tuples tX1 , . . . , tXbX that all
have matching values on X and all have unique values on all the attributes in
R − X. An Armstrong relation for Σ is obtained by taking the disjoint union of
{tX1 , . . . , tXbX} for all duplicate sets X. For example, each possible world of the
p-relation r1 is an Armstrong relation for the corresponding set Σl

pi
induced by

the given p-CC set Σ from Example 1. For instance, consider the sets Σl
0.75, Σl

0.9

and Σl
1, together with their duplicate sets and associated cardinalities. Following

the construction above, we obtain the worlds w1, w2 and w3 of the p-relation r1
in Fig. 1. Each of these is an Armstrong relation for its corresponding CC-set.
For instance, the world w2 of r1 is Armstrong for the set Σl

0.9 = {card(rfid) ≤
3, card(time) ≤ 3, card(zone) ≤ 4, card(time, zone) ≤ 2}.

Upper Bounds. Let p1 < · · · < pn denote the different probabilities in Σu. If
pn < 1, then n �→ n + 1 and define pn ← 1. The construction of the p-relation
r1 for the lower bounds relies on traditional Armstrong relations as its possible
worlds. In contrast, we construct the worlds of the p-relation r2 for the upper
bounds without reference to traditional Armstrong relations. For probability p,
we define Σu

p = {card(X) ≤ b | ∃(card(X) ≤ b,≤ p′) ∈ Σu ∧ (p′ < p)}. The
sets Σu

pi
tell us to violate all those input cardinality constraints in world wi

whose upper bound probability is smaller than pi. In particular, Σu
p1

= ∅, so the
world w1 with probability p1 must satisfy every cardinality constraint, which is
achieved by populating w1 with a single tuple only. The world w1 is not used,
if p1 = 0. If n > 1, we violate input constraints with upper bound probability

262 T.K. Roblot and S. Link

smaller than pi in world wi, for i = 2, . . . , n. For that purpose, let candi consist
of those attribute sets Y such that there is some card(X) ≤ b ∈ Σu

pi
with Y ⊆ X.

For each X ∈ candi, let bX,i := sup{b | ∃card(Y) ≤ b ∈ Σu
pi

∧ X ⊆ Y }. That
is, bX,i denotes the maximum upper bound b such that card(X) ≤ b holds with
probability at most pi−1. To show that card(X) ≤ bX,i does not hold with any
probability larger than pi−1, it suffices to introduce bX,i + 1 different tuples in
wi with matching values on all attributes in X. Furthermore, it suffices to apply
this construction to every attribute set which is maximal, with respect to set
containment, among those attribute sets with the same upper integer bound.
Hence, we define the duplicate sets as dupu

i := {X ∈ candi | ∀Y ∈ candi(X ⊂
Y) ⇒ bX,i �= bY,i}, and then set bX,i ← bX,i+1 for all X ∈ dupu

i . For i = 2, . . . , n,
the world wi of r2 then has probability pi − pi−1 and is the disjoint union of the
tuple sets {tX1 , . . . , tXbX,i

} for each X ∈ dupu
i . The given construction yields an

Armstrong p-relation r2 = (W2 = {w1, . . . , wn}, P2 : wi �→ pi − pi−1) for Σu.
That is, the marginal probability of an arbitrary card(X) ≤ b in r2 is the smallest
probability pX,b such that (card(X) ≤ b,≤ pX,b) is implied by Σu. Consequently,
r1 and r2 form an Armstrong p-base for Σ.

Example 2. We illustrate our construction on the running example with Σ from
Example 1. We obtain Σu

0.8 = ∅, Σu
0.95 = {card(rfid, zone) ≤ 2, card(time, zone) ≤

1}, and Σu
1.0 = {card(rfid, time) ≤ 1, card(rfid, zone) ≤ 2, card(time, zone) ≤

1, card(time, zone) ≤ 2}. The duplicate sets and their cardinalities are: dup2
contains {rfid,zone} and {time,zone} with b{rfid,zone},2 = 3 and b{time,zone},2 = 2,
and dup3 contains {rfid,zone}, {time,zone}, and {rfid,time} with b{rfid,zone},3 =
3, b{time,zone},3 = 3, and b{rfid,time},3 = 3. The worlds w1, w2 and w3 of the
p-relation r2 in Fig. 1 are the result of our construction.

Armstrong Sketches. While the construction of Armstrong p-relations works
well in theory, a problem occurs with their actual use in practice. In many cases,
the Armstrong relation will be infinite and therefore of no use. These cases occur
exactly if there is some attribute A ∈ R for which bA = ∞, in other words, if
there is some attribute for which no finite upper bound has been specified. For
a practical solution we use sketches as introduced in [14], which are finite rep-
resentations of possibly infinite relations. In a relation we introduced for each
duplicate set X with associated cardinality bX , bX -many tuples tX1 , . . . , tXbX that
all have matching values on X and all have unique values on all the attributes in
R−X. The idea of a sketch is to represent these bX -many tuples by a single tuple
which has matching values with the tXi tuples on X, and carries the placeholder ∗
on all remaining attributes in R−X. Indeed, ∗ is a placeholder for values that are
unique across all tuples in a relation. In addition, we record the cardinality bX

in a new column card together with this tuple. This provides a convenient finite
summarization of a possibly infinite number of tuples. The notion of Armstrong
sketches can be suitably extended to Armstrong p-sketches and Armstrong
p-base sketches, the latter just being pairs of Armstrong p-sketches.

Cardinality Constraints with Probabilistic Intervals 263

Example 3. An Armstrong p-sketch for the set Σu of p-CCs in Example 1 is
given as follows. It is easy to see how the tuples in this sketch can be unfolded
to obtain the Armstrong p-relation r2 in Fig. 1.

ς1(p1 = 0.8)
card1 rfid time zone

1 ∗ ∗ ∗

ς2(p2 = 0.15)
card2 rfid time zone

3 as2 ∗ z1
2 ∗ 9 z2

ς3(p3 = 0.05)
card3 rfid time zone

3 as2 ∗ z1
3 ∗ 9 z2
3 as1 8 ∗

Naturally the question arises whether Armstrong p-base sketches always
exist. We say that p-CCs enjoy Armstrong p-base sketches, if for every rela-
tion schema R and for every finite satisfiable set Σ of p-CCs over R there is
some p-base sketch over R that is Armstrong for Σ.

Theorem 11. Prob. cardinality constraints enjoy Armstrong p-base sketches.

Armstrong PC-base Sketches. Probabilistic conditional databases, or short
PC-tables [17] are a popular system that can represent any given probabilis-
tic database concisely. Considering our aim of finding concise data samples of
p-CCs, we use PC-sketches to summarize each Armstrong p-sketch even further.
A PC-sketch of a p-sketch consists of two tables Γ and Π in which Π summa-
rizes the probability distribution, and Γ stores all tuples of a p-sketch together
with the identifiers of worlds in which the tuple occurs. Since we have sketches,
the same tuple is recorded multiple times and with cardinalities that represent
the difference bj

X − bi
X between its multiplicity bj

X in wj and its multiplicity bi
X

already recorded for the last possible world wi in which it occurs.

Example 4. The PC-sketch on the right of Table 1 summarizes the p-sketch from
Example 3. The third and fourth row of Γ show that (∗, 9, z2) occurs twice in
ς2 and three times in ς3. This is because X = {time, zone} is a duplicate set in
dup2 and dup3 with cardinalities b2X = 2 and b3X = 3, respectively.

Our main result can be summarized as follows.

Theorem 12. For every satisfiable set Σ of p-CCs over relation schema R, our
construction above results in an Armstrong PC-base sketch for Σ in which the
total number of possible worlds is at most two larger than the sum of the distinct
lower bounds in Σl and the distinct upper bounds in Σu.

The time complexity of finding Armstrong PC-base sketches is inherently
exponential. Precisely exponential means that there is an algorithm which
requires exponential time and that there are cases in which the number of tuples
in the output is exponential in the input size. Note that there are also cases where
the number of tuples in some Armstrong PC-base sketch for Σ is logarithmic in
|Σ|.
Theorem 13. The time complexity to find an Armstrong PC-base sketch for a
given satisfiable set Σ of p-CCs is precisely exponential in |Σ|.

264 T.K. Roblot and S. Link

6 Conclusion and Future Work

We empower users to stipulate lower and upper bounds on the marginal proba-
bility by which cardinality constraints shall hold on large volumes of uncertain
data. The constraints provide a principled, yet manageable mechanism to con-
trol the consistency and completeness targets for the quality of uncertain data.
Our axiomatic and algorithmic reasoning tools minimize the overhead in using
the constraints for applications. Our findings for the semantic summarization
of these constraints have been implemented as a tool that provides effective
support for the efficient acquisition of the right bounds that hold in a given
application domain [15]. In future research we will investigate the usefulness of
our framework for constraint acquisition. This will require us to extend empirical
measures from certain [9] to probabilistic data. Intriguing is the question whether
PC-sketches, p-sketches, or their finite p-relations (if available) are more useful.

References

1. Brown, P., Ganesan, J., Köhler, H., Link, S.: Keys with probabilistic intervals.
In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.)
ER 2016. LNCS, vol. 9974, pp. 164–179. Springer, Cham (2016). doi:10.1007/
978-3-319-46397-1 13

2. Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3),
670–682 (2017)

3. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

4. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
5. Ferrarotti, F., Hartmann, S., Link, S.: Efficiency frontiers of XML cardinality con-

straints. Data Knowl. Eng. 87, 297–319 (2013)
6. Hall, N., Köhler, H., Link, S., Prade, H., Zhou, X.: Cardinality constraints on

qualitatively uncertain data. Data Knowl. Eng. 99, 126–150 (2015)
7. Hartmann, S., Köhler, H., Leck, U., Link, S., Thalheim, B., Wang, J.: Constructing

Armstrong tables for general cardinality constraints and not-null constraints. Ann.
Math. Artif. Intell. 73(1–2), 139–165 (2015)

8. Jones, T.H., Song, I.Y.: Analysis of binary/ternary cardinality combinations in
entity-relationship modeling. Data Knowl. Eng. 19(1), 39–64 (1996)

9. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong rela-
tions in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

10. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality constraints in semantic
data models. Data Knowl. Eng. 11(3), 235–270 (1993)

11. McAllister, A.J.: Complete rules for n-ary relationship cardinality constraints. Data
Knowl. Eng. 27(3), 255–288 (1998)

12. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

13. Roblot, T.: Cardinality constraints for probabilistic and possibilistic databases.
Ph.D. thesis, Department of Computer Science, The University of Auckland (2016)

14. Roblot, T., Link, S.: Probabilistic cardinality constraints. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381,
pp. 214–228. Springer, Cham (2015). doi:10.1007/978-3-319-25264-3 16

http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-25264-3_16

Cardinality Constraints with Probabilistic Intervals 265

15. Roblot, T.K., Link, S.: URD: a data summarization tool for the acquisition of
meaningful cardinality constraints with probabilistic intervals. In: 33rd IEEE Inter-
national Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, 19–22
April 2017, pp. 1379–1380. IEEE Computer Society (2017)

16. Saha, B., Srivastava, D.: Data quality: the other face of big data. In: Cruz, I.F.,
Ferrari, E., Tao, Y., Bertino, E., Trajcevski, G. (eds.) IEEE 30th International
Conference on Data Engineering, ICDE 2014, Chicago, IL, USA, March 31–April
4 2014, pp. 1294–1297. IEEE Computer Society (2014)

17. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)

18. Thalheim, B.: Fundamentals of cardinality constraints. In: Pernul, G., Tjoa, A.M.
(eds.) ER 1992. LNCS, vol. 645, pp. 7–23. Springer, Heidelberg (1992). doi:10.
1007/3-540-56023-8 3

http://dx.doi.org/10.1007/3-540-56023-8_3
http://dx.doi.org/10.1007/3-540-56023-8_3

Contextual Keys

Ziheng Wei, Sebastian Link(B), and Jiamou Liu

Department of Computer Science, University of Auckland, Auckland, New Zealand
{z.wei,s.link,j.liu}@aucklanduni.ac.nz

Abstract. Much work has been done on extending the relational model
of data to encompass incomplete information. In particular, a plethora of
research has examined the semantics of integrity constraints in the pres-
ence of null markers. We propose a new approach whose semantics relies
exclusively on fragments of complete data within an incomplete relation.
For this purpose, we introduce the class of contextual keys. Users can
specify the context of a key as a set of attributes that selects the sub-
relation of tuples with no null marker occurrences on the attributes of
the context. Then the key uniquely identifies the tuples within the sub-
relation. The standard notion of a key over complete relations is the spe-
cial case of a contextual key whose context consists of all attributes. SQL
unique constraints form the special case of a contextual key whose con-
text coincides with the set of key attributes. We establish structural and
computational characterizations of the associated implication problem,
and of their Armstrong databases. The computation of Armstrong data-
bases has been implemented in a tool, and experiments provide insight
into the actual run-time behavior of the algorithms that complement our
detailed computational complexity analysis.

Keywords: Armstrong relation · Data and knowledge intelligence ·
Decision support · Incomplete data · Key · Reasoning · Requirements
analysis

1 Introduction

Keys are core enablers for data management. They are fundamental for under-
standing the structure and semantics of data. Given a collection of entities, a
key is a set of attributes whose values uniquely identify an entity in the collec-
tion. For example, a key for a relational table is a set of columns such that no
two different rows have matching values in each of the key columns. Keys are
essential for many other data models, including semantic models, object models,
probabilistic models, XML, RDF, and graphs. They help in many classical areas
of data management, including data modeling, database design, indexing, and
query optimization. Knowledge about keys enables us to (i) uniquely reference
entities across data repositories, (ii) minimize data redundancy at schema design
time to process updates efficiently at run time, (iii) provide better selectivity esti-
mates in cost-based query optimization, (iv) provide a query optimizer with new
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 266–279, 2017.
https://doi.org/10.1007/978-3-319-69904-2_22

Contextual Keys 267

access paths that can lead to substantial speedups in query processing, (v) allow
the database administrator to improve the efficiency of data access via physi-
cal design techniques such as data partitioning or the creation of indexes and
materialized views, and (vi) provide new insights into application data. Mod-
ern applications raise the importance of keys further. They facilitate the data
integration process, help with the detection of duplicates and anomalies, provide
guidance in repairing data, and return consistent answers to queries over dirty
data. The discovery of keys is one of the core activities in data profiling.

An important and rich area of research is to extend the relational model of
data to encompass incomplete information. This is due to the importance of
incomplete information for applications. A plethora of different extensions exist,
but many are based on the use of a special symbol as placeholder for incomplete
information, also known as the null marker. The semantics of the null marker
can vary greatly, for example “unknown at present” [8], “non-existence” [25],
“inapplicable” [4,8], “no information” [31] and “open” [7]. Similarly, several
extensions of the notion of a key from complete to incomplete relations have
been investigated in the research literature. Examples constitute SQL’s primary
and candidate keys as well as UNIQUE constraints [15], weak and strong keys
[21], Codd keys [9], possible and certain keys [15,17,18], and key sets [22,27].
Candidate keys are minimal sets of attributes that enable us to uniquely identify
tuples in an incomplete relation and where no null markers are permitted to
occur in the columns of the key. They are a result of Codd’s principle of entity
integrity. The principle has been challenged by several researchers, including
Thalheim [27], Levene and Loizou [22], and Köhler et al. [17]. For example,
certain keys can uniquely identify rows in a table even though null markers may
occur in the key columns. Similarly, for all pairs of distinct tuples there is some
key in a key set on which the two tuples have no null marker occurrences and
are unique.

Table 1 shows an incomplete relation, where ⊥ denotes a null marker occur-
rence. Interestingly, this relation does not satisfy any candidate key, any certain
key, nor any key set. It does not satisfy any candidate key as null markers
occur in Department and Manager, and there are different tuples with the same
value on Employee. The relation violates every certain key since the two null
marker occurrences may be replaced by the values Toys and Burns, respectively,
resulting in two different tuples that have matching values on all attributes. The
relation violates every key set because the first and second tuple are incomplete
on Department and on Manager, and have matching values on Employee.

Table 1. A relation with no candidate key, no certain key, and no key set

Employee Department Manager

Homer Toys Burns

Homer ⊥ ⊥
Marge Toys Burns

268 Z. Wei et al.

Common to all extended notions of keys is the target of uniquely identifying
all tuples in incomplete relations, even tuples with null marker occurrences. The
example in Table 1 shows that this target cannot always be achieved. In fact,
any semantics of a key that depends on the interpretation of null markers can
easily become problematic. This holds especially when data is integrated from
different sources, which may rely on different interpretations of null markers.
Interestingly, SQL’s UNIQUE constraint enforces uniqueness only for those tuples
of an incomplete relation that are complete on the attributes of the UNIQUE
constraint. For example, the incomplete relation in Table 1 satisfies the unique
constraints UNIQUE(Employee, Department) and UNIQUE(Employee, Manager),
but violates the unique constraints UNIQUE(Employee) and UNIQUE(Department,
Manager). This approach sparked our idea of giving up any false hope that
tuples can be uniquely identified in the presence of null marker occurrences. In
SQL’s UNIQUE constraint this given set of attributes forms the unique constraint
itself. That, however, is a requirement that should be relaxed, as the incomplete
relation in Table 1 illustrates. In fact, UNIQUE(Employee, Department) can dis-
tinguish between the first and third tuple by the values on Employee already,
and does not require values on Department. Note that uniqueness only holds for
the tuples which are complete on Employee and Department, and uniqueness
does not hold for the tuples that are complete on Employee only.

Motivated by these examples, we propose the new notion of contextual keys
for incomplete relations. Contextual keys target the unique identification of
those tuples in an incomplete relation that are complete on a user-specified
set of attributes. Contextual keys consist of a pair of attributes (C,K) such
that K ⊆ C. The user-specified set of attributes C is called the context of the
contextual key, and selects the scope of the key, which is defined as the subset
of tuples in a given incomplete relation that are complete on all the attributes
of the context. The set K of a contextual key (C,K) is called the key and
uniquely identifies tuples in the scope of the key. For example, ({Employee,
Department},{Employee}) and ({Employee, Manager},{Employee}) are both
contextual keys that are satisfied by the incomplete relation in Table 1. Here,
both contexts {Employee, Department} and {Employee, Manager} have the
same scope in the incomplete relation, which consists of the first and third
tuple, and the key {Employee} uniquely identifies tuples in this scope. The
incomplete relation in Table 1 does not satisfy any of the following contextual
keys: ({Employee},{Employee)}, ({Employee, Department},{Department}) and
({Employee, Manager},{Manager}). In particular, SQL’s constraint UNIQUE(X)
is satisfied by an incomplete relation if and only if the relation satisfies the
contextual key (X,X).

This paper introduces contextual keys, and provides first evidence that they
exhibit good computational properties. Due to its importance in automating data
management, we are interested in the axiomatic and algorithmic characteriza-
tions of the implication problem associated with contextual keys. We also want
to provide computational support for the acquisition of contextual keys that are
meaningful for an application domain. We will now detail our contributions.

Contextual Keys 269

Contributions. Our contributions are at least threefold. Firstly, we propose a
novel class of keys for incomplete databases, named contextual keys. Secondly, we
characterize the implication problem of contextual keys by a finite axiomatiza-
tion and by a linear-time algorithm. An immediate application of the algorithm
is to compute a non-redundant set of contextual keys, thereby minimizing the
overhead of enforcing contextual keys on relations. Thirdly, we investigate struc-
tural and computational properties of Armstrong relations for contextual keys,
providing a computational tool that aids with the acquisition of contextual keys.
While the problem of finding an Armstrong relation is precisely exponential, our
algorithm is conservative in its use of time and space, as the output Armstrong
relation is guaranteed to have a number of tuples that is at most quadratic in the
minimum number of tuples required. For transfer into practice, we have imple-
mented our algorithm in a prototype system. Experiments with the prototype
system complement our theoretical complexity analysis, and illustrate - on aver-
age - how quickly Armstrong relations for contextual keys can be computed, how
many tuples our output contains, and how many null markers occur in the out-
put. For example, for a fixed schema with 15 attributes, and a set of contextual
keys with 100 attributes, our algorithm computes an Armstrong relation with
86 tuples and 200 null marker occurrences in about 10 s.

Organization. We discuss related work in Sect. 2. Our central notion of con-
textual keys is introduced in Sect. 3, where we also characterize the associated
implication problem axiomatically and algorithmically. In Sect. 4 we investigate
structural and computational properties of Armstrong relations. Finally, we con-
clude and sketch future work in Sect. 5. We refer the interested reader to [30] for
the proofs of our results.

2 Related Work

While about 100 different classes of data dependencies are known [28], keys
arguably constitute the most import class among all of them. Keys have been
studied in-depth on complete data [23,28], and have been extended to most
other data models, including nested [29], object-relational [13], XML [10–12],
and models of uncertainty [2,3,5,14].

The first section has already examined various proposals for notions of keys
over incomplete relations. These include candidate keys that respect Codd’s
principle of entity integrity [9], possible and certain keys [15], weak and strong
keys [21], as well as key sets [22,27]. Contextual keys are different from all of
these proposals in the sense that they do not target the unique identification of
all tuples in an incomplete relation. The idea of contextual keys is to target the
unique identification of only those tuples that are complete on a user-specified
set of attributes. This idea generalizes SQL’s UNIQUE constraint where the user-
defined set coincides with the set of attributes on which the values are unique. We
believe contextual keys are particularly useful in modern applications, such as
data integration, where different occurrences of missing information may require
different semantics. The semantics of contextual keys is clearly defined as it does

270 Z. Wei et al.

not depend on the semantics of null marker occurrences. Furthermore, contextual
keys empower users to link their completeness requirements on the quality of
their data with their uniqueness requirements.

In our research we investigate the same computational problems that have
been studied for previous notions of keys. More specifically, we tackle the associ-
ated implication problem as well as the structural and computational properties
of Armstrong relations. The importance of these problems is well-established
in the literature and practice. Efficient solutions to the implication problem
help address many data management problems, as listed in the introduction.
Furthermore, Armstrong relations are useful for the acquisition of meaningful
contextual keys, similar to the case of Armstrong relations for other classes of
data dependencies [1,19,20,26].

3 Fundamentals of Contextual Keys

Let A = {A1, A2, · · · } be a countable and infinite set of distinct symbols, called
attributes. A relation schema is a finite, non-empty set of attributes, normally
denoted as R. Each attribute A ∈ A is associated with a domain dom(A). We
assume that the domain of every attribute contains a distinguished null marker,
which we denote by ⊥. This is for simplicity, and we emphasize that ⊥ is not
a domain value but a marker. In what follows we will use the relation schema
Staff = {Employee, Department, Manager} from Table 1 as a running example
for illustrating our concepts and results. We refer to the attributes Employee,
Department, Manager as E, D, and M , respectively.

A tuple t over R is a function which maps each A ∈ R to a value in dom(A),
namely t(A) ∈ dom(A). A relation r over R is a finite set of tuples over R. The
size of the relation, denoted as |r| is the number of tuples the relation contains.
Let X = {A1, A2, · · · , Am} be a set of attributes. For simplicity, we sometimes
write X as A1A2 · · · Am, and the union of X and another attribute set Y as
XY . Let X ⊆ R. For a tuple t over R, we use the notation t(X) to denote the
projection of t onto X. To stipulate completeness, we say a tuple t over R is
X-total if and only if t(A) �=⊥ for all A ∈ X. Furthermore, We use rX to denote
{t ∈ r | t is X-total}.

A constraint of a class C is a statement which enforces semantic properties on
a given collection of data. For instance, keys are a class of integrity constraints
which stipulate that the identity of tuples is determined by the values on a given
set of attributes. Let Σ be a set of constraints over class C. We use |Σ| to denote
the number of constraints in Σ, and ||Σ|| to denote the total number of attributes
in Σ. For a class C of integrity constraints, we are interested in the implication
problem associated with C. The C-implication problem is to decide whether for
an arbitrary given relation schema R, and an arbitrarily given set Σ ∪ {ϕ} of
integrity constraints from class C on R, Σ implies ϕ (written as Σ |= ϕ), that is,
whether every relation over R that satisfies all the elements in Σ also satisfies ϕ.
Solutions to the implication problem provide users with a better understanding
of the interaction of the integrity constraints, and algorithms can be developed

Contextual Keys 271

that compute better representations of a set of integrity constraints. For example,
a set Σ′ is said to be a cover of Σ if and only if Σ and Σ′ are satisfied by the same
relations. A cover Σ′ is said to be non-redundant if and only if for all σ ∈ Σ′ it
is the case that Σ′ − {σ} does not imply σ. Being able to decide the implication
problem, we can easily compute a non-redundant cover for Σ by successively
checking for all σ ∈ Σ whether Σ − {σ} implies σ and removing σ from Σ
whenever that is the case. In practice, checking whether all the constraints in
a non-redundant cover are satisfied by a relation ensures that the overhead of
constraint validation is minimized. Clearly, the more tuples in a relation, the
more time we save when validating constraints with a non-redundant cover.

Next we formally introduce a new class of keys for incomplete relations which
we call contextual keys.

Definition 1. A contextual key (CK) over a relation schema R is a statement
of the form (C,K) where K ⊆ C ⊆ R. The attribute set C is called the context
of the contextual key. A relation r over R satisfies the CK (C,K), denoted as
r |= (C,K), if and only if for all t, t′ ∈ rC , t(K) = t′(K) implies t = t′. We call
rC the scope of r with respect to the context C.

Next we illustrate the notion of a contextual key on our running example.

Example 1. The incomplete relation r in Table 1 satisfies the contextual keys
(ED,E) and (EM,E), but it violates the contextual keys (E,E), (ED,D), and
(EM,M). For example, r satisfies (ED,E), since the scope of r with respect to
the context ED consists of the first and third tuple of r, and the values of these
tuples on E are different. Similarly, r does not satisfy (E,E), since the scope of
r with respect to the context E is the relation r itself, but the values of the first
and second tuples on E are the same.

For what follows, we require the following concepts. Let R be a rela-
tion schema. We define a partial order �R over R as {((C1,K1), (C2,K2)) |
C1 ⊆ C2 ⊆ R,K1 ⊆ K2 ⊆ R}. For any ((C1,K1), (C2,K2)) ∈ �R, we write
(C1,K1) �R (C2,K2), or (C1,K1) �R (C2,K2) if C1 ⊂ C2 or K1 ⊂ K2.
We may omit the subscript R, if R is clear from the context. Let Σ be a
set of CKs over R. We define the set CL(Σ) = {(C,K) | Σ �|= (C,K),K ⊆
C ⊆ R}. The set of contextual anti-keys of Σ is Σ−1 = {(C,K) ∈ CL(Σ) |
¬∃(C ′,K ′) ∈ CL(Σ) : (C,K) � (C ′,K ′)}. Let r be a relation over R. We
say t1 and t2 exactly agree on (C,K) if and only if t1(K) = t2(K) and
t1(A) =⊥ ∨ t2(A) =⊥ for all A ∈ R \ C. The agree set of r is ag(r) = {(C,K) |
t1, t2 exactly agree on (C,K) for all distinct t1, t2 ∈ r}.

A sensible first step in solving the implication problem is to discover a set of
inference rules that allows us to mechanically derive exactly those constraints
from a given set Σ that are implied. We apply inference rules of the form
premises
conclusion . Let R be a set of inference rules over class C and ϕ a constraint
of C. We say that ϕ is derivable from Σ with respect to R, denoted by Σ �R ϕ,
whenever there is some finite sequence σ1, σ2, . . . , σn such that σn = ϕ and for
every i < n, σi ∈ Σ or σi results from the conclusion of some inference rule in
R with σ1, . . . , σi−1 as premises.

272 Z. Wei et al.

To reason about CKs, we introduce the set B of inference rules as shown in
Table 2. Our goal is to show that B is a sound and complete set of inference rules
for contextual keys. This goal can be realized by using the following syntactic
characterization of B.

Table 2. Axiomatization B

(C,K)
(R,R) (CC′,KK′)

(R-axiom) (Superkey)

Theorem 1. Let Σ ∪{(C,K)} be a set of CKs over a relation schema R. Σ �B

(C,K) if only if there is (C ′,K ′) � (C,K) where (C ′,K ′) ∈ Σ ∪ {(R,R)}.
We will now illustrate the usefulness of Theorem1 on our running example.

Example 2. Given the set Σ = {(ED,E), (EM,E)} we can use Theorem 1
to conclude that there is a derivation of the contextual keys (ED,ED) and
(EM,EM) from Σ by B since (ED,E) � (ED,ED) and (EM,E) �
(EM,EM) hold. Similarly, we can use Theorem1 to conclude that there is no
derivation of the contextual key (E,E) from Σ by B since neither (ED,E) �
(E,E) nor (EM,E) � (E,E) hold.

Using Theorem 1, we can establish the following axiomatic characterization.

Theorem 2. B forms a finite axiomatization for the implication of CKs.

We apply Theorem 2 to our running example.

Example 3. Recall that we inferred in Example 2 that we can use B to derive
the contextual keys (ED,ED) and (EM,EM) from Σ = {(ED,E), (EM,E)},
but we cannot use B to derive the contextual key (E,E) from Σ. Based on the
soundness of B we can further conclude that the contextual keys (ED,ED) and
(EM,EM) are implied by Σ. Furthermore, based on the completeness of B we
can conclude that the contextual key (E,E) is not implied by Σ.

The axiomatization can be used to explicitly enumerate all contextual keys
that are implied by a given set Σ. In practice, however, one may not be inter-
ested in all contextual keys that are implied, but only be interested whether a
given contextual key ϕ is implied by Σ. In such situation, an explicit enumera-
tion of all implied constraints is inefficient and does not make good use of the
additional input ϕ. For this purpose, our final contribution of this section is a
linear-time algorithmic characterization of the implication problem associated
with contextual keys. In fact, we use Theorem 1 to obtain this algorithm.

The correctness of Algorithm 1 follows from Theorems 1 and 2, and the linear-
time complexity is easy to observe from the algorithm.

Contextual Keys 273

Algorithm 1. Implication of contextual keys
1: INPUT: A set Σ ∪ {(C, K)} of contextual keys over relation schema R
2: OUTPUT: TRUE, if Σ |= (C, K); FALSE, otherwise
3: CK := FALSE
4: for each (C′, K′) ∈ Σ ∪ {(R, R)} do
5: if C′ ⊆ C and K′ ⊆ K then
6: CK := TRUE
7: return CK

Theorem 3. Algorithm1 decides the implication problem of contextual keys
Σ |= (C,K) in time O(||Σ ∪ {(R,R)}||).

We conclude this section by a final example.

Example 4. Using R = EDM , Σ = {(ED,E), (EM,E)} and ϕ = (E,E) as
input, Algorithm1 returns FALSE, since there is no (C ′,K ′) ∈ Σ ∪ {(R,R)}
such that C ′ ⊆ {E} and K ′ ⊆ {E}.

4 Armstrong Relations for Contextual Keys

Fig. 1. Acquisition framework

Contextual keys can enforce important appli-
cation semantics within a database sys-
tem. However, a fundamental problem is
to acquire those contextual keys that are
meaningful in a given application domain.
Database designers usually do not know the
domain well and domain experts do not know
database constraints. We will now estab-
lish computational support for overcoming
the communication barrier between designers
and experts. As illustrated in Fig. 1, designers
think in terms of an abstract set Σ of con-
textual keys they perceive meaningful. For
them to communicate their current perceived
understanding to domain experts, we will
establish an algorithm that computes from a given set Σ a relation rΣ that
perfectly represents Σ. That is, rΣ satisfies all contextual keys in Σ and vio-
lates all contextual keys that are not implied by Σ. Relations with this property
are known as Armstrong relations [6]. If designers currently perceive an actu-
ally meaningful contextual key as meaningless, then this contextual key will be
violated in rΣ . The point is that domain experts will easily notice this viola-
tion because the contextual key is meaningful. The experts can then alert the
designers to this inconsistency with the application semantics, and the designer
can include the meaningful contextual key in their set Σ. Such process can
be repeated until both designers and experts are happy. The other direction,

274 Z. Wei et al.

in which one provides computational support for identifying the set Σ of con-
textual keys that hold in a given relation, is beyond the focus of this article.
However, research into this direction is useful as the domain expert may want to
change values in an Armstrong relation, or legacy data becomes available to the
designers. For the remainder of this section, we will investigate computational
and structural properties of Armstrong relations for contextual keys. We begin
with the definition of Armstrong relations for contextual keys.

Definition 2. Let Σ be a set of contextual keys over relation schema R. A
relation r over R is Armstrong for Σ if and only if the following property holds
for all contextual keys (C,K) over R: r |= (C,K) if and only if Σ |= (C,K).

Note the beauty of this definition: Given an Armstrong relation r for Σ, one
can reduce every instance Σ |= ϕ of the implication problem for contextual keys
to checking whether ϕ holds on r. In fact, if r satisfies ϕ, then Σ implies ϕ; and
if r does not satisfy ϕ, then r is not implied by Σ.

Example 5. The relation r in Table 1 is Armstrong for the set

Σ = {(ED,E), (EM,E)}
over the relation schema R = EDM . It is indeed easy to observe that r satis-
fies (ED,ED) and (EM,EM), which are therefore implied by Σ. Similarly, r
violates (E,E), and (EDM,DM) which are therefore not implied by Σ.

We say that a class of constraints C enjoys Armstrong relations if there is an
Armstrong relation for every given set of constraints of C.

Theorem 4. Contextual keys enjoy Armstrong relations.

Next we would like to characterize the structure of Armstrong relations for
contextual keys. The following result establishes a necessary and sufficient con-
dition for a given relation to be Armstrong for a given set of contextual keys.

Theorem 5. Let Σ be set of contextual keys over relation schema R. A relation
r over R is Armstrong for Σ if and only if Σ−1 ⊆ ag(r) ⊆ CL(Σ).

We apply Theorem 5 to our running example.

Example 6. The relation r in Table 1 is indeed Armstrong for

Σ = {(ED,E), (EM,E)}
because every contextual anti-key is an exact agree set of r, and every exact
agree set is a contextual key not implied by Σ. In fact, the contextual anti-keys
of Σ are (E,E) and (EDM,DM), which are the exact agree sets of the first
and second tuple, and the first and third tuple, respectively. Moreover, the exact
agree set of the second and third tuple is (EDM, ∅), which is not implied by Σ.

Given Theorem 5, it is not difficult to see that Algorithm 2 computes a rela-
tion that is Armstrong for a given set Σ of contextual keys.

Contextual Keys 275

In fact, Algorithm 2 always computes an Armstrong relation with conserva-
tive use of space.

Theorem 6. For every set Σ of contextual keys, Algorithm2 computes an Arm-
strong relation for Σ with |Σ−1| + 1 tuples. This number is at most the square
of the minimum number of tuples required by any Armstrong relation for Σ.

Algorithm 2. Computing Armstrong relations
1: INPUT: A set Σ of contextual keys over a relation schema R
2: OUTPUT: An Armstrong relation r for Σ
3: Let t0 be a tuple over R where t(A) = 0 for all A ∈ R;
4: rArmstrong ← {t0};
5: i ← 1;
6: for each (C, K) ∈ Σ−1 do
7: Let ti be a tuple over R

8: ti(A) ←
⎧
⎨

⎩

0 , if A ∈ K
i , if A ∈ C \ K
⊥ , if A ∈ R \ C

9: i + +;
10: rArmstrong ← rArmstrong ∪ {ti};
11: return rArmstrong;

In practice, it may be important to focus the attention of the designers and
domain experts to certain fragments of an Armstrong relation. For rows, it makes
perfect sense to loop through the anti-keys and look at each row pair whose
agree set is the anti-key. For columns, one may give the users of the algorithm
full control over which columns should be highlighted. One sensible choice would
be to inspect the columns in the context of an anti-key.

The following example demonstrates a worst case scenario in which the size
of every Armstrong relation is exponential in the input size.

Example 7. Let R = {A1, A2, . . . , A2n} where n is a positive integer. Let Σ =
{(A2i−1A2i, A2i−1A2i) | i = 1, . . . , n} be a set of CKs over R. If n = 2, then

Σ−1 = {(A1A3, A1A3), (A1A4, A1A4), (A2A3, A2A3), (A2A4, A2A4)}
In general, |Σ−1| = 2n where Σ has size 4n. �

As evidenced by Example 7, there is no algorithm that can compute Arm-
strong relations in polynomial time in the input. Extending the currently best
known strategy of computing the set Σ−1 of anti-keys from traditional to con-
textual keys [26], we establish a characterization of anti-keys that will provide
us with an iterative algorithm to compute them.

Lemma 1. Let Γ = Σ ∪ {(C,K)} be a set of contextual keys over a relation
schema R. If (U,X) ∈ Γ−1, then the following must hold:

1. (U,X) ∈ Σ−1, or
2. there exists A ∈ K such that (U,XA) ∈ Σ−1, or
3. there exists A ∈ C \ K such that (UA,X) ∈ Σ−1.

276 Z. Wei et al.

Lemma 1 will give us an iterative algorithm for computing the anti-keys for
a given set of contextual keys. However, in each iteration we still need to vali-
date for each candidate anti-key that it is indeed an anti-key. This can be done
efficiently as formally documented now.

Algorithm 3. Computing contextual anti-keys
1: INPUT: A set Σ of contextual keys over a relation schema R
2: OUTPUT: Σ−1

3: Σ ← Σ ∪ {(R, R)};
4: Σ′ ← ∅;
5: Σ−1 ← {(R, R)};
6: for each (C, K) ∈ Σ do
7: Σ′ ← Σ′ ∪ {(C, K)}
8: for each (U, X) ∈ Σ−1 do
9: if (C, K) � (U, X) then

10: Σ−1 ← Σ−1 \ {(U, X)}
11: for each A ∈ C \ K do
12: Σ−1 ← Σ−1 ∪ {(U \ {A}, X \ {A})}
13: for each A ∈ K do
14: Σ−1 ← Σ−1 ∪ {(U, X \ {A})}
15: for each (U, X) ∈ Σ−1 do
16: if ∃A ∈ U \ X ∀(C′, K′) ∈ Σ′ : (C′, K′) �� (U, XA) or

∃A ∈ R \ U ∀(C′, K′) ∈ Σ′ : (C′, K′) �� (UA, X) then
17: Σ−1 ← Σ−1 \ {(U, X)};
18: return Σ−1;

Lemma 2. Validating whether a given contextual key is an anti-key for a given
set Σ of contextual keys over relation schema R can be done in time O(|R|·||Σ||).

Algorithm 3 iteratively examines the input keys in Σ. For each input key
(C,K) it checks if any anti-key in Σ−1 contains (C,K). The algorithm constructs
Γ−1 = (Σ ∪ {(C,K)})−1 from those contextual anti-keys which belong to Σ−1

by eliminating attributes in K or C \ K.

Fig. 2. Average computing time

To evaluate the efficiency of
our approach, we conducted exper-
iments with Algorithms 2 and 3.
We randomly generated sets of CKs
over a relation schema R. For each
set Σ of randomly generated CKs,
we set a series of parameters: n ∈
{10, 20, . . . , 100}, k ∈ {5, 6, . . . , 15}
where n = ||Σ|| and k = |R|. In
the experiments, we run each pos-
sible setting of the parameters 500
times and measure the average running time of the algorithm in milliseconds, the
average number of tuples and null markers in the output Armstrong relation.

Contextual Keys 277

Figure 2 illustrates that the average running time shows a linear growth with
respect to the input size and a fixed schema. Similarly, Fig. 3 illustrates that
the size of Armstrong relations and the number of null marker occurrences grow
slowly with increasing input size.

Fig. 3. Average sizes and average number of null markers in Armstrong relations

Indeed, with smaller sizes and fewer occurrences of null markers, Armstrong
relations become more comprehensible to domain experts. With faster run times,
communication between designers and domain experts improves in terms of fre-
quency and efficiency.

5 Conclusion and Future Work

We have investigated a new class of keys over incomplete relations, named con-
textual keys. Contextual keys target the unique identification of those tuples in
a relation that are complete on a user-specified set of attributes. This approach
ensures that the unique identification is independent of any interpretation of null
marker occurrences. In order to unlock the vast usefulness of contextual keys for
processing data, we have studied two fundamental problems associated with con-
textual keys. We have established axiomatic and algorithmic characterizations of
the implication problem, enabling us to reason efficiently about contextual keys
and to minimize the overhead of enforcing them within a database system. We
have further established structural and computational properties of Armstrong
relations for contextual keys, enabling us to represent any set of contextual keys
in the form of a user-friendly data sample. Our theoretical and experimental
analysis shows that Armstrong relations can be computed efficiently and that
their size is reasonably small in order to be effective for the acquisition of con-
textual keys that are meaningful in a given application domain.

In the future, it will be interesting to investigate the discovery problem for
contextual keys. The problem is to compute a cover of the set of contextual
keys that hold in a given relation. Solutions to this problem will complete our
acquisition framework, in which the cover of a set of constraints can be trans-
lated back and forth between an abstract set of constraints and an Armstrong
relation for this set. Another important avenue of future research will lead to the

278 Z. Wei et al.

investigation of other classes of contextual constraints, such as functional depen-
dencies, join dependencies, or inclusion dependencies. This may have important
applications in schema design [16,24].

References

1. Bisbal, J., Grimson, J.: Consistent database sampling as a database prototyping
approach. J. Softw. Maint. Evol.: Res. Pract. 14(6), 447–459 (2002)

2. Brown, P., Ganesan, J., Köhler, H., Link, S.: Keys with probabilistic intervals.
In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.)
ER 2016. LNCS, vol. 9974, pp. 164–179. Springer, Cham (2016). doi:10.1007/
978-3-319-46397-1 13

3. Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3),
670–682 (2017)

4. Codd, E.F.: Missing information (applicable and inapplicable) in relational data-
bases. ACM SIGMOD Rec. 15(4), 53–53 (1986)

5. Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Asymp-
totic properties of keys and functional dependencies in random databases. Theor.
Comput. Sci. 190(2), 151–166 (1998)

6. Fagin, R.: Horn clauses and database dependencies. J. ACM (JACM) 29(4), 952–
985 (1982)

7. Gottlob, G., Zicari, R.: Closed world databases opened through null values. VLDB
88, 50–61 (1988)

8. Grant, J.: Null values in a relational data base. Inf. Process. Lett. 6(5), 156–157
(1977)

9. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete rela-
tions. Comput. J. 54(7), 1166–1180 (2011)

10. Hartmann, S., Link, S.: Unlocking keys for XML trees. In: Schwentick, T., Suciu,
D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 104–118. Springer, Heidelberg (2006).
doi:10.1007/11965893 8

11. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2), 10:1–10:33 (2009)

12. Hartmann, S., Link, S.: Expressive, yet tractable XML keys. In: Kersten, M.L.,
Novikov, B., Teubner, J., Polutin, V., Manegold, S. (eds.) EDBT 2009, pp. 357–
367. ACM, New York (2009)

13. Khizder, V.L., Weddell, G.E.: Reasoning about uniqueness constraints in object
relational databases. IEEE Trans. Knowl. Data Eng. 15(5), 1295–1306 (2003)

14. Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys.
In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195.
Springer, Cham (2014). doi:10.1007/978-3-319-11558-0 13

15. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

16. Köhler, H., Link, S.: SQL schema design: foundations, normal forms, and nor-
malization. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, 26 June–01 July 2016, pp. 267–279. ACM (2016)

17. Köhler, H., Link, S., Zhou, X.: Possible and certain SQL keys. PVLDB 8(11),
1118–1129 (2015)

http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/11965893_8
http://dx.doi.org/10.1007/978-3-319-11558-0_13

Contextual Keys 279

18. Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete
and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)

19. Langeveldt, W.D., Link, S.: Empirical evidence for the usefulness of Armstrong
relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

20. Le, V.B.T., Link, S., Ferrarotti, F.: Empirical evidence for the usefulness of Arm-
strong tables in the acquisition of semantically meaningful SQL constraints. Data
Knowl. Eng. 98, 74–103 (2015)

21. Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete
relations. Theor. Comput. Sci. 206(1), 283–300 (1998)

22. Levene, M., Loizou, G.: A generalisation of entity and referential integrity in rela-
tional databases. RAIRO-Theor. Inf. Appl. 35(2), 113–127 (2001)

23. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond.
Springer Science & Business Media, Berlin (2012)

24. Link, S., Prade, H.: Relational database schema design for uncertain data. In:
Mukhopadhyay, S., Zhai, C., Bertino, E., Crestani, F., Mostafa, J., Tang, J., Si,
L., Zhou, X., Chang, Y., Li, Y., Sondhi, P. (eds.) Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management, CIKM
2016, Indianapolis, IN, USA, 24–28 October 2016, pp. 1211–1220. ACM (2016)

25. Makinouchi, A.: A consideration on normal form of not-necessarily-normalized rela-
tion in the relational data model. In: Proceedings of the Third International Con-
ference on Very Large Data Bases, 6–8 October 1977, Tokyo, Japan, pp. 447–453
(1977)

26. Mannila, H., Raihä, K.: Design by example: an application of Armstrong relations.
J. Comput. Syst. Sci. 33(2), 126–141 (1986)

27. Thalheim, B.: On semantic issues connected with keys in relational databases per-
mitting null values. Elektron. Informationsverarbeitung und Kybern. 25(1/2), 11–
20 (1989)

28. Thalheim, B.: Dependencies in Relational Databases. Teubner, Leipzig (1991)
29. Thalheim, B.: The number of keys in relational and nested relational databases.

Discrete Appl. Math. 40(2), 265–282 (1992)
30. Wei, Z., Link, S., Liu, J.: Contextual keys. Technical report 508, (2017). www.cs.

auckland.ac.nz/research/groups/CDMTCS/researchreports/
31. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–

166 (1984)

www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/
www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/

A Comprehensive Formal Theory
for Multi-level Conceptual Modeling

João Paulo A. Almeida1(&), Claudenir M. Fonseca1,
and Victorio A. Carvalho2

1 Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
jpalmeida@ieee.org, claudenirmf@gmail.com

2 Research Group in Applied Informatics, Informatics Department,
Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil

victorio@ifes.edu.br

Abstract. Multi-level modeling extends the conventional two-level classifica-
tion scheme to deal with subject domains in which classes are also considered
instances of other classes. In the past, we have explored theoretical foundations
for multi-level conceptual modeling and proposed an axiomatic theory for
multi-level modeling dubbed MLT. MLT provides concepts for multi-level
modeling along with a number of rules to guide the construction of sound
multi-level conceptual models. Despite the benefits of MLT, it is still unable to
deal with a number of general notions underlying conceptual models (including
the notions used in its own definition). In this paper, we present an extension of
MLT to deal with these limitations. The resulting theory (called MLT*) is novel
in that it combines a strictly stratified theory of levels with the flexibility
required to model abstract notions that defy stratification into levels such as a
universal “Type” or, even more abstract notions such as “Entity” and “Thing”.

Keywords: Conceptual modeling � Multi-level modeling � Metamodeling

1 Introduction

The vast majority of conceptual modeling techniques are based on notions such as
“class” and “type”, capturing what subject matter experts refer to as “kinds”, “cate-
gories” and “sorts” in their accounts of a subject domain. In several subject domains,
the categorization scheme itself is part of the subject matter, and thus experts make use
of categories of categories in their accounts. For instance, considering the software
development domain [15], project managers often need to plan according to the types of
tasks to be executed during the software development project (e.g. “requirements
specification”, “coding”). They may also need to classify those types of tasks giving
rise to types of types of tasks. In this case, “requirements specification” and “coding”
could be considered as examples of “technical task types”, as opposed to “management
task types”. Finally, during project development, they need to track the execution of
individual tasks (e.g. specifying the requirements of the system X). Thus, to describe
the conceptualization underlying the software development domain, one needs to

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 280–294, 2017.
https://doi.org/10.1007/978-3-319-69904-2_23

represent entities of different (but nonetheless related) classification levels, such as
tasks (specific individual occurrences), types of tasks, and types of types of tasks. Other
examples of multiple classification levels come from domains such as that of organi-
zational roles (or professional positions) [8], biological taxonomy [26] and artifact
types (e.g., product types) [29].

These subject domains require us to break the two-level divide between classes and
instances, admitting classes that are also instances of other classes, and suggesting that
there could be a multitude of classification ‘levels’ or meta-levels. The need to support
the representation of subject domains dealing with multiple classification levels has
given rise to what has been referred to as multi-level modeling [21]. Techniques for
multi-level conceptual modeling must provide modeling concepts to deal with types in
various levels and the relations that may occur among them. In the last decades, several
approaches for the representation of multi-level models have been worked out,
including those mostly focused on multi-level modeling from a model-driven engi-
neering perspective (e.g. [14, 23]) and those that propose modeling languages for
models with multiple levels of classification (e.g. [3, 22]). These approaches embody
conceptual notions that are key to the representation of multi-level models, such as the
existence of entities that are simultaneously types and instances, the iterated application
of instantiation across an arbitrary number of (meta) levels, the possibility of defining
attributes and values at the various type levels, etc.

Despite the recent advances in multi-level modeling approaches and tools, the
literature on multi-level modeling still lacks a language-independent formal theory that
captures the foundational concepts underlying multi-level modeling. We believe that
such a theory could facilitate the identification of the characterizing features a multi-
level approach should possess, being useful to support the proposal of well-founded
multi-level modeling approaches. Further, it could be used as a foundation to clarify the
semantics of existing approaches as well as to relate and harmonize different approa-
ches to multi-level modeling.

In the past, the search for such a theory has led us to propose the MLT multi-level
modeling theory [10]. MLT is founded on a basic instantiation relation and charac-
terizes the concepts of individuals and types, with types organized in ‘orders’ and
related by instantiation. MLT has been used successfully to analyze and improve the
UML support for modeling the powertype pattern [11], to uncover problems in
multi-level taxonomies on the Web [6], to found an OWL vocabulary that supports the
representation of multi-level vocabularies in the Semantic Web [5], and to provide
conceptual foundations for dealing with types at different levels of classification both in
core [8] and in foundational ontologies [9].

While the theory has been fruitful for these applications, it is unable to account for
types that defy a strict stratification scheme. This rules out abstract and general types
such as “Entity” and “Type” (which are instances of themselves). We have observed
that these types correspond to general notions that are ubiquitous in comprehensive
conceptualizations (see e.g., the core of the Semantic Web with the notion of
“Resource” or “Thing” [31, 32], (Foundation) Ontologies such as UFO [16], Cyc [13],
DOLCE and BFO [25] with their notions of “Entity” or “Thing”, Telos [28] with the
notions of “Property”). Failure to account for such types restricts the generality of the
theory, which motivates us to extend it.

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 281

This paper presents MLT*, which extends MLT with a focus on improving its
generality. The theory is formally defined through axiomatization in first-order logic,
building up on a primitive instantiation relation. In order to account for types that defy
a strict classification scheme, we introduce the notions of orderless and ordered types.
We precisely define the relations that may occur between orderless and ordered types,
and define rules that apply to these relations. We show that the two-level scheme and
the strictly stratified schemes are special cases allowed by the theory. We further show
how MLT* is general enough to account for the types that are used in its own defi-
nition. We aim to provide a theory that is comprehensive enough as a semantic
foundation for various multi-level modeling techniques.

All definitions of MLT* have been specified and tested with the support of Alloy
[19]. Alloy allows the specification of first-order logic based models and supports
model simulation (model finding) and verification (model checking) through exhaus-
tive search in finite models. The rules that arise from the definitions and axioms in
MLT* have been defined as assertions and verified in Alloy1.

This paper is further structured as follows: Sect. 2 presents requirements for a
comprehensive theory for multi-level modeling; Sect. 3 presents MLT*, addressing the
set of requirements defined in Sect. 2; Sect. 4 discusses the implications of the theory
to the practice of multi-level conceptual modeling and finally Sect. 5 presents con-
cluding remarks and topics for further investigation.

2 Requirements for a Comprehensive Multi-level Theory

We establish here key requirements for a theory on multi-level modeling, substantiating
these requirements with sources from the literature on multi-level modeling and jus-
tifying them based on the nature of multi-level phenomena.

First of all, an essential requirement for a multi-level modeling theory is to account
for entities of multiple classification levels, which are related through chains
of instantiation between the involved entities (requirement R1). This means that
the theory must admit entities that represent both types (class) and instances
(object) simultaneously [1], diverging thereby from the traditional two-level scheme, in
which classification (instantiation) relations are only admitted between classes and
individuals.

The size of chains of instantiation may vary according to the nature of the phe-
nomena being captured and according to the model purposes. Because of this, a
general-purpose theory should admit an arbitrary number of classification levels (R2)
(including the two-level scheme as a special case). The ability to deal with an arbitrary
number of levels is identified as a key a requirement by many authors (e.g., see [13,
14]). Several examples of three and four level models are available in the literature as
well as in structured data repositories such as Wikidata (in which there are more than
17,000 classes involved in multi-level taxonomies [6]).

1 See https://github.com/nemo-ufes/mlt-ontology.

282 J.P.A. Almeida et al.

https://github.com/nemo-ufes/mlt-ontology

Further, in previous work, some of us have found empirical evidence to support the
claim that representations capturing chains of instantiation can benefit greatly from
rules for organizing entities into levels [6]. We have found that over 87% of the classes
in multi-level taxonomies in Wikidata were involved in errors that could have been
prevented with some support to detect the inadequate use of instantiation (and its
combination with subtyping) [6]. Based on this evidence, we consider that a multi-level
modeling theory should define principles (rules) for the organization of entities into
levels (R3). An example of this sort of principle, which is adopted in some prominent
multi-level modeling approaches, is the so-called strict metamodeling principle [1],
which prescribes the arrangement of elements into levels mandating that elements of a
level only instantiate elements of the level immediately above.

While these principles are intended to guide the modeler in producing sound
models, they should not obstruct the representation of genuine multi-level phenomena.
The strict metamodeling principle, for example, excludes from the domain of enquiry
abstract notions such as a universal “Type” or, an even more abstract notion such as
“Thing”. This is because their instances may be related in chains of instantiation,
conflicting with the stratification imposed by the principle. Given that these general
notions are ubiquitous in comprehensive conceptualizations (see e.g., the core of the
Semantic Web with the notion of “Resource” or “Thing” [31, 32], (Foundation)
Ontologies such as UFO [16], Cyc [13], DOLCE and BFO [25] with their notions of
“Entity” or “Thing”, Telos [28] with the notions of “Property”), we conclude that a
comprehensive multi-level modeling theory should admit types that defy a strictly
stratified classification scheme (R4) (with the general notion of “type” or “class” and
the universal notion of “entity” or “thing” as paradigmatic special cases).

Finally, an important characteristic of domains spanning multiple levels of classi-
fication is that there are domain rules that apply to the instantiation of types of different
levels. For example, in a conceptual model encompassing the notions of “Dog Breed”
and “Dog”, all instances of “Dog Breed” (e.g. “Collie” and “Beagle”) are types whose
instances are instances of “Dog”. Hence, in this setting, instances of “Dog Breed”
specialize “Dog”. Given the recurrence of this kind of scenario [24], which in the past
motivated the powertype pattern [30], a comprehensive multi-level modeling theory
should be able to account for the rules that govern the instantiation of related types at
different levels (R5).

3 MLT*: A Theory for Multi-level Modeling

This section presents MLT* showing how it satisfies the requirements defined in
Sect. 2. Section 3.1 describes basic notions of the theory (in order to satisfy require-
ments R1 and R2); Sect. 3.2 discusses how types can be organized into strictly strat-
ified levels (addressing R3); Sect. 3.3 accounts for types that defy the rigid
stratification scheme (addressing R4); finally, Sect. 3.4 discusses the various structural
relations that can be established between types (addressing R5). Throughout the sec-
tions we discuss the rules that arise from the formalization of the theory.

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 283

3.1 Basic Notions

The notions of type and individual are central for our multi-level modeling theory.
Types are predicative entities that can possibly be applied to a multitude of entities
(including types themselves). Particular entities, which are not types, are considered
individuals. Each type is characterized by an intension, which is used to judge whether
the type applies to an entity (e.g., whether something is a Person, a Dog, a Chair) (it is
also called principle of application in [16]). If the intension of a type t applies to an
entity e then it is said that e is an instance of t. Thus, the instance of relation (or
instantiation relation) maps a type to the entities that fall under the type. The set of
instances of a type is called the extension of the type [17]. We assume that the theory is
only concerned with types with non-trivially false intensions, i.e., with types that have
possible instances in the scope of the conceptualization being considered.

MLT* is formalized in first-order logic, quantifying over all possible individuals
and types in a subject domain. The theory is built up from the instantiation relation,
which is formally represented by a binary predicate iof(e, t) that holds if an entity e is
instance of an entity t (denoting a type). For instance, the proposition iof (John, Person)
denotes the fact that “John” is an instance of the type “Person”. Note that here we do
not account for modal or temporal aspects of instantiation; see [10] for a treatment of
modal aspects where instantiation is ‘world-indexed’ and represented with a ternary
predicate.

Using the iof predicate, we can define the ground notion of individual (D1). An
entity is an individual iff it does not possibly play the role of type in instantiation
relations. Conversely, an entity is a type iff it plays the role of type in instantiation
relations, i.e., if there is some (possible) entity which instantiates it (D2). Definitions
D1 and D2 create a dichotomy with all elements in the domain of quantification being
considered either types or individuals.

8xðindividualðxÞ $:9yðiofðy; xÞÞÞ ðD1Þ

8xðtype(xÞ $ 9yðiof(y; xÞÞÞ ðD2Þ

We assume that all types are ultimately grounded on individuals (A1). Thus the
transitive closure of the instantiation relation (iof’), always leads us from a type to one
or more individuals:

8tðtypeðtÞ ! 9xðindividualðxÞ ^ iof 0ðx; tÞÞÞ ðA1Þ

Note that the definitions so far allow us to satisfy R1, as we place no restrictions on
the kinds of entities that may instantiate a type. Thus, the theory would admit a model
such as the one illustrated in Fig. 1. The figure depicts a chain of instantiation, with
“Man” and “Woman” instantiating “PersonTypeByGender”, and “John” and “Bob”
instantiating “Man”, while “Ana” instantiates “Woman”. We use a notation inspired in
the class and object notations of UML, and we use dashed arrows to represent relations
that hold between the elements, with labels to denote the relation that applies (in this
case instance of). This notation is used in all further diagrams in this paper. It is

284 J.P.A. Almeida et al.

important to highlight here that our focus is not on the syntax of a multi-level modeling
language and we use these diagrams to illustrate the concepts intuitively. Further, no
constraint is placed on the size of instantiation chains, and thus, the theory would admit
a model such as the one illustrated in Fig. 2 (satisfying R2).

We define some basic structural relations, starting with the ordinary specialization
between types. A type t specializes another type t’ iff in all possible instances of t are
also instances of t’. According to this definition every type specializes itself. Since this
may be undesired in some contexts, we define the proper specialization relation in
which t proper specializes t’ iff t specializes t’ and t is different from t’.

8t1; t2ðspecializesðt1; t2Þ $ ðtypeðt1Þ ^ 8eðiofðe; t1Þ ! iofðe; t2ÞÞÞÞ ðD3Þ

8t1; t2ðproperSpecializesðt1; t2Þ $ ðspecializesðt1; t2Þ ^ :ðt1 ¼ t2ÞÞÞ ðD4Þ

We consider two types equal iff the sets of all their possible instances are the same
[10]2. This definition of equality only applies to elements which are not individuals,
hence the ‘guard’ conditions on the left-hand side of the implication:

8t1; t2ððtypeðt1Þ ^ typeðt2ÞÞ ! ðt1 ¼ t2Þ $ 8xðiofðx; t1Þ $ iofðx; t2ÞÞÞ ðD5Þ

Building up on the specialization definition, we can now address the notion of
powertype. Here we employ the seminal notion proposed by Cardelli [7]. According to

Fig. 1. An instantiation chain, where “Man” and “Woman” are both instances and classes.

Fig. 2. A four-level instantiation chain with representing a biological domain.

2 See [10] for a refinement of identity and specialization concerning modal distinctions.

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 285

[7], the same way specializations are intuitively analogous to subsets, power types can
be intuitively understood as powersets. The powerset of a set A, is the set whose
elements are all possible subsets of A including the empty set and A itself. Thus, “if A
is a type, then Power(A) is the type whose elements are all the subtypes of A”
(including A itself) [7]. Following Cardelli’s definition, we define that a type t1 is
power type of a type t2 iff all instances of t1 are specializations of t2 and all possible
specializations of t2 are instances of t1. In this case, t2 is said the base type of t1:

8t1; t2ðisPowertypeOfðt1; t2Þ $ ðtypeðt1Þ ^ 8t3ðiofðt3; t1Þ $
specializesðt3; t2ÞÞÞÞ ðD6Þ

Given the definition of power type, it is possible to conclude that each type has at
most one power type (Theorem T1) and that each type is power type of, at most, one
other type (Theorem T2). (These theorems are proved in [10], which suggests a con-
crete syntactic constraint for a multi-level model: only one higher-order type can be
linked to a base type through the is power type of relation.).

8p; tðisPowertypeOfðp; tÞ ! :9p0ððp 6¼ p0Þ ^ isPowertypeOfðp0; tÞÞÞ ðT1Þ

8p; tðisPowertypeOfðp; tÞ ! :9t0ððt 6¼ t0Þ ^ isPowertypeOfðp; t0ÞÞÞ ðT2Þ

3.2 Accounting for Stratification into Orders

Note that, thus far, the theory does not impose a principle of organization for the
entities into (strictly stratified) ‘levels’. In order to account for such kinds of principles,
we use the notion of type order. Types whose instances are individuals are called first-
order types. Types whose instances are first-order types are called second-order types.
Those types whose extensions are composed of second-order types are called third-
order types, and so on.

Types that follow this strictly ordered scheme are called ordered types. To define
such a scheme formally, we define a notion of ‘basic type’. A basic type is the most
abstract type in its type order. For example, “Individual” is a basic type since it is the
most abstract of all first-order types, classifying all instances of first-order types, i.e., all
possible individuals. We define the constant “Individual” as follows:

8tððt ¼ IndividualÞ $ 8xðindividualðxÞ $ iofðx; tÞÞÞ ðA2Þ

Like “Individual”, there are basic types for each subsequently higher order, i.e.,
every instance of the basic type of an order i (i > 1) specialize the basic type of the
order immediately below (i − 1). This is formalized by D7. (Note that i is only used to
improve the intuition in the definition, and is not formally a variable).

8biðbasictypeðbiÞ $ ðtypeðbiÞ ^ ðð8xðindividualðxÞ $ iofðx; biÞÞ_
9bi�1ðbasictype(bi�1Þ ^ 8ti�1ðspecializeðti�1; bi�1Þ $ iofðti�1; biÞÞÞÞÞÞ ðD7Þ

286 J.P.A. Almeida et al.

A consequence of this definition of basic type is that the basic type of an order
i (i > 1) is the powertype of the basic type at the order immediately below (i − 1),
showing that the basic types are formed by the cascaded application of the powertype
pattern. This is reflected in the following theorem (T3), which is the result of applying
D6 to D7:

8biðbasictypeðbiÞ $ ð8xðindividualðxÞ $ iofðx; biÞÞ_
9bi�1ðbasictypeðbi�1Þ ^ isPowertypeOfðbi; bi�1ÞÞÞÞ ðT3Þ

Every ordered type that is not a basic type (e.g., a domain type) is an instance of
one of the basic higher-order types (e.g., “1stOT”, “2ndOT”), and, at the same time
proper specializes the basic type at the immediately lower level (respectively, “Indi-
vidual” and “1stOT”). Figure 3 illustrates this pattern. Since “Person” applies to
individuals, it is instance of “1stOT” and proper specializes “Individual”. The instances
of “PersonTypeByGender” are specializations of “Person” (e.g. “Man” and “Woman”).
Thus, “PersonTypeByGender” is instance of “2ndOT” and proper specializes “1stOT”.

Note that, the ellipsis in the left-hand side of the figure indicates that the theory
admits an unbound number of higher-order basic types. Nevertheless, we have been
careful not to necessitate the existence of such types in the theory. This means that the
theory has finite models, and thus can be subject to analysis using a finite model
checker/finder such as Alloy, which we have employed for verification of all theorems
discussed here.

Having defined the structure of basic types we can define ordered type as a type that
specializes one of the basic types (D8). Conversely, we can define orderless types as in
D9.

8xðorderedtypeðxÞ $ 9bðbasictypeðbÞ ^ specializesðx; bÞÞÞ ðD8Þ

8xðorderlesstypeðxÞ $ typeðxÞ ^ :orderedtypeðxÞÞ ðD9Þ

Fig. 3. Illustrating an important basic pattern of MLT and its intra-level structural relations.

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 287

We can account now for a strictly stratified scheme. In this case, it would suffice to
add an axiom stating that all types are ordered types, which would rule out types whose
instances belong to different orders. The stratified scheme is thus a restriction of the
more general theory we have, which admits orderless types.

Moreover, we can see that the theory can be further constrained to account for the
two-level scheme as a particular case. For a two-level theory it would suffice to add to
the strictly stratified scheme an axiom stating that there is a unique basic type (which
would be “Individual”).

3.3 Beyond Strictly Stratified Types

While a strictly stratified approach imposes a useful principle of organization for
entities in multi-level models, it rules out types whose instances transcend this strict
structure, i.e., types that have instances belonging to different levels or strata. For
example, consider the type whose instances are all types admitted (“Type”). This type
itself defies stratification into orders, since its instances are types at various different
orders (e.g., “Lion”, “Species”, “Taxonomic Rank”, etc.).

In order to capture the strictly stratified scheme while still guaranteeing the gen-
erality of the theory, we distinguish types into “OrderedType” (A3) and “Order-
lessType” (A4). Instances of “OrderedType” are those types that fall neatly into a
particular order. Instances of “OrderlessType” are those types whose instances belong
to different orders. This constitutes a dichotomy, and together, “OrderedType” and
“OrderlessType” form the notion of “Type” (A5), which classify all possible types. In
their turn “Type” and “Individual” (A2) together form the universal notion of “Entity”
(A6), which classify all possible entities (types and individuals).

8tðt ¼ OrderedType $ 8xðorderedtypeðxÞ $ iofðx; tÞÞÞ ðA3Þ

8tðt ¼ OrderlessType $ 8xðorderlesstypeðxÞ $ iofðx; tÞÞÞ ðA4Þ

8tððt ¼ TypeÞ $ 8xðtypeðxÞ $ iofðx; tÞÞÞ ðA5Þ

8tðt ¼ Entity $ 8xðiofðx; tÞÞÞ ðA6Þ

The classification scheme formed by MLT* is presented in Fig. 4. A number of
interesting observations can be made about the top-layer of MLT*. First of all, MLT*,
differently from MLT, is able to account for the types used in its definition. All entities
admitted are instances of “Entity”, including all possible types and all possible indi-
viduals. All possible types are instances of “Type” and ultimately specializations of
“Entity” (since their instances are entities). “Type” is thus the powertype of “Entity”.
All elements added in MLT* are instances of “OrderlessType”, including (curiously)
“OrderedType” (since its instances are types at different orders).

The instantiation relation has the following logical properties as a consequence of
the definitions and axioms of the theory: whenever instantiation involves solely ordered
types, it is irreflexive, antissymetric and antitransitive, leading to a strict stratification
of types. When instantiation involves any orderless types, none of these properties can

288 J.P.A. Almeida et al.

be asserted, as there are situations in which it is reflexive (e.g., “Type” is instance of
itself), symmetric (e.g., “Entity” is instance of “Type” and vice-versa) as well as
transitive (e.g., “OrderedType” is instance of “Type” which is instance of “Entity” and
“OrderedType” is also instance of “Entity”). Further, an orderless type is never an
instance of an ordered type. These characteristics of instantiation can be used to rule
out models that violate the theory.

Table 1 summarizes the rules that concern which types of entities may be related
through structural relations along with the logical properties of these relations.

The notion of “Orderless Type” is useful not only for the domain-independent
entities forming MLT*, but also for general notions in specific subject domains.
Consider, for example, the domain of social entities in which a “Social Entity” is
defined as an entity that is created by a social normative act. Instances of “Social
Entity” include specific states of Brazil (individuals) such as “Rio de Janeiro” and
“Espírito Santo”, but also the first-order type “State” of which “Rio de Janeiro” and

Fig. 4. MLT* classification scheme.

Table 1. Summary of constraints on MLT* relations.

Relation (t ! t’) Domain Range Constraint Properties
specializes(t, t’) Orderless Orderless if t and t’ are ordered types,

they must be at the same type
order

Reflexive,
antissymetric,
transitive

Ordered Orderless
Ordered Ordered

properSpecializes(t, t’) Orderless Orderless Irreflexive,
antissymetric,
transitive

Ordered Orderless
Ordered Ordered

isPowertypeOf(t, t’) Orderless Orderless t cannot be a first-order type if
t and t’ are ordered types,
t must be at a type order
immediately above the order
of t’

Irreflexive,
antissymetric,
antitransitive

Ordered Ordered

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 289

“Espírito Santo” are instances. As “SocialEntity” has instances at different orders (types
and individuals), it is an instance of “OrderlessType”, as shown in Fig. 5. The example
also highlights that MLT* allows entities to have multiple instantiation relations.
“RioDeJaneiro” and “EspíritoSanto”, are both instances of “SocialEntity” and “State”.
Moreover, multiple specializations are also allowed in MLT*. In this sense, MLT*
differs from a number of approaches in literature which limit these structural relations
to a single class (see [24]).

The same mechanism that allows us to model bona fide self-instantiating types such
as “Entity” and “Type” would permit a modeler to introduce paradoxical types, such as
the type of all types that are not self-instantiated (the so-called Russellian property, due
to Russell [18]). This type is paradoxical since it is both an instance and not an instance
of itself. Note that this possibility does not threaten the overall consistency of the
theory. This is because we do not assume in MLT* that there are types corresponding
to any expressible unifying condition (i.e., we do not assume that given an arbitrary
logical condition F, we can define the type with extension [x | F(x)]). Types here,
instead, are explicitly recognized entities describing intentionally identified properties
shared by their instances. Lacking the ability to prove or introduce the existence of
types in this sense, we are under no threat of such paradoxes [27].

3.4 Cross-Level Structural Relations

So far, the only cross-level structural relations we have considered is Cardelli’s power
type relation. Another definition of power type that has had great influence in the
literature was proposed by Odell [30]. In order to satisfy R5, and account for the
variations of the power type pattern in the literature, MLT* defines the categorization
cross-level relation based on Odell’s notion power type.

Fig. 5. Example of orderless type in domain model.

290 J.P.A. Almeida et al.

A type t categorizes a type t’ iff all instances of t are proper specializations of t’.
Note that, differently from the is powertype of relation (due to Cardelli), t’ is not an
instance of t, and further not all possible specializations of t’ are instances of t. For
instance, “EmployeeType” (with instances “Manager” and “Researcher”) categorizes
“Person”, but is not the powertype of “Person”, since there are specializations of
“Person” that are not instances of “EmployeeType” (“Child” and “Adult” for example).

MLT* also defines some variations of the categorization relation. A type t com-
pletely categorizes a type t’ iff every instance of t’ is instance of at least one instance of
t. Moreover, a type t disjointly categorizes a type t’ iff every instance of t’ is instance of
at most one instance of t. Further, t partitions t’ iff every instance of t’ is instance of
exactly one instance of t. For example, “PersonTypeByGender” partitions “Person”
into “Man” and “Woman”, and thus each instance of “Person” is either a “Man” or a
“Woman” and not both. “EmployeeType” incompletely categorizes “Person”, and thus
there are persons that are not instances of “Manager”, “Researcher” (or any other
possible instance of “EmployeeType”). This kind of constraint is usually represented in
UML through a generalization set, see [10] for a detailed comparison.

Rules concerning the types of entities that may be related through the variations of
categorization and the logical properties of these relations are summarized in Table 2.

4 Implications for Multi-level Modeling Approaches

We have observed in the literature that multi-level approaches often opt for one of two
extremes: (i) to define relations that support the representation of instantiation chains,
without necessarily binding a type to some level (what is referred to as a level-blind
approach in [4], e.g., Kernel [12]), or (ii) to consider all classes to be strictly stratified.
Some approaches that opt for (i) are able to account for all types which can be admitted
by MLT*, however, they fail on providing rules to guide the use of the various
structural relations (including instantiation). As shown in [6], this lack of guidance has
serious consequences for the quality of the resulting representation. Approaches that
opt for the other end of the spectrum (ii), lack support to a number of important abstract
notions, including those very general notions that are used to articulate multi-level
domains (such as “types”, “clabjects”, “entities”). This is the case of Melanee [3] and
MetaDepth [22]. The combination of both approaches in our theory places it in a
unique position in multi-level modeling approaches.

Table 2. Summary of constraints on MLT* categorization relations.

Relation (t ! t’) Domain Range Constraint Properties
categorizes(t, t’)
disjointlyCategorizes(t, t’)

Orderless Orderless t cannot be a
first-order type
if t and t’ are ordered
types, t must be at a type
order immediately above
the order of t’

Irreflexive,
antissymetric,
nontransitive

Ordered Orderless
Ordered Ordered

completelyCategorizes(t, t’)
partitions(t, t’)

Orderless Orderless Irreflexive,
antissymetric,
antitransitive

Ordered Ordered

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 291

A few other knowledge representation approaches (such as Telos [20] and Cyc
[13]) have, like MLT*, drawn distinctions between orderless and ordered types. Dif-
ferently from MLT*, however, Telos does not provide rules for the various structural
relations, including instantiation and specialization. (Mechanisms to address R5 in
Telos were added with the notion of MGI in Deeptelos [21]). In its turn, Cyc, which
employs a conceptual architecture for types that is most similar to MLT*’s top layer,
includes rules for instantiation and specialization [13]. However, it does not address the
cross-level relations (and associated rules) we discuss here.

MLT* shows that there is no dilemma between requirements R3 (to define prin-
ciples for the organization of entities into levels) and R4 (to admit types that defy a
strictly stratified scheme). It suggests the possibility of extending existing multi-level
approaches that currently meet R3 but fail to meet R4 in order to meet both. For
example, extensions of Melanee and MetaDepth could be worked out to allow some
kind of selective stratification, beyond what is currently supported with the so-called
star potency, in order to fully enable the representation of orderless types.

Further, since MLT* reveals that there is no inconsistency between powertype and
clabject-based approaches, we consider it possible to extend clabject-based approaches
such as Melanee and MetaDepth to support the representation of MLT* cross-level
relations (in order to satisfy R5). Finally, we consider it possible to extend Deeptelos
by including variations of the so-called MGI mechanism to capture the MLT*
cross-level relations (and thereby fully address R5 in Deeptelos).

5 Conclusions and Future Work

In this paper, we have proposed a multi-level modeling theory that can account for the
classification scheme underlying current multi-level modeling approaches. We have
aimed for a simple but comprehensive approach in that it encompasses stratified and
non-stratified schemes, and is able to accommodate the variations for the powertype
pattern in the literature. We should stress that it is not our intention in this paper to
propose a multi-level language, and that our use of a notation inspired in UML has
been solely illustrative. As discussed in [16], a reference theory can be used to inform
the revision and redesign of a modeling language, not only through the identification of
semantic overload, construct deficit, construct excess and construct redundancy, but
also through the definition of modeling patterns and semantically-motivated syntactic
constraints. Thus, a natural application for MLT* is to inform the design of a
well-founded multi-level conceptual modeling language or to promote the redesign of a
language such as UML into a multi-level modeling language. This is the subject of
ongoing research which will be reported soon.

Due to space limitations, we have not been able to address here the use of features
(attributes and associations). In a multi-level context, since types are also instances,
feature assignment in types becomes relevant, along with relations between features
across different levels. Some of us have already addressed this issue previously [10]
using the notion of ‘regularity feature’ in MLT, however, revisiting the notion in light
of MLT* is still the subject of further investigation. This is particularly important to
account for the deep characterization mechanisms in potency-based approaches [2].

292 J.P.A. Almeida et al.

Acknowledgements. This research is funded by CNPq (grants numbers 311313/2014-0,
461777/2014-2 and 407235/2017-5), CAPES (23038.028816/2016-41) and FAPES (69382549).
Claudenir M. Fonseca is funded by CAPES. We thank Giancarlo Guizzardi for fruitful discus-
sions in topics related to this paper.

References

1. Atkinson, C., Kühne, T.: Meta-level independent modelling. In: International Workshop on
Model Engineering at 14th European Conference on Object-Oriented Programming, pp. 1–4
(2000)

2. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Softw. Syst.
Model. 7, 345–359 (2008)

3. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering
environment. In: Proceedings of the 2nd International Master Class on MDE Modeling
Wizards. ACM (2012)

4. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling approaches. In:
Proceedings of the 1st International Workshop on Multi-Level Modelling (2014)

5. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Expressive multi-level
modeling for the semantic web. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch,
M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016 Part I. LNCS, vol. 9981, pp. 53–69.
Springer, Cham (2016). doi:10.1007/978-3-319-46523-4_4

6. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Applying a multi-level
modeling theory to assess taxonomic hierarchies in Wikidata. In: Proceedings of the Wiki
Workshop 2016 at 25th International Conference on Companion on World Wide Web,
pp. 975–980 (2016)

7. Cardelli, L.: Structural subtyping and the notion of power type. In: Proceedings of the 15th
ACM Symposium of Principles of Programming Languages, pp. 70–79 (1988)

8. Carvalho, V.A., Almeida, J.P.A.: A semantic foundation for organizational structures: a
multi-level approach. IEEE EDOC 2015, 50–59 (2015)

9. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Extending the foundations
of ontology-based conceptual modeling with a multi-level theory. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 119–
133. Springer, Cham (2015). doi:10.1007/978-3-319-25264-3_9

10. Carvalho, V.A., Almeida, J.P.A.: Towards a well-founded theory for multi-level conceptual
modeling. Softw. Syst. Model. 10, 1–27 (2016). Springer

11. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded multi-level theory to
support the analysis and representation of the powertype pattern in conceptual modeling. In:
Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 309–
324. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5_19

12. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A foundation for multi-level
modelling. In: Proceedings of Workshop on Multi-Level Modelling, MODELS, pp. 43–52
(2014)

13. Foxvog, D.: Instances of instances modeled via higher-order classes. In: 28th German
Conference on AI Foundational Aspects of Ontologies (FOnt 2005), pp. 46–54 (2005)

14. Frank, U.: Multilevel modeling. Bus. Inf. Syst. Eng. 6, 319–337 (2014)
15. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.

Softw. Syst. Model. 5, 72–90 (2006)

A Comprehensive Formal Theory for Multi-level Conceptual Modeling 293

http://dx.doi.org/10.1007/978-3-319-46523-4_4
http://dx.doi.org/10.1007/978-3-319-25264-3_9
http://dx.doi.org/10.1007/978-3-319-39696-5_19

16. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of
Twente, Enschede (2005)

17. Henderson-Sellers, B.: On the Mathematics of Modeling, Metamodelling, Ontologies and
Modelling Languages. Springer, Heidelberg (2012)

18. Irvine, A.D., Deutsch, H.: Russell’s paradox. In: The Stanford Encyclopedia of Philosophy
(2016). https://plato.stanford.edu/archives/win2016/entries/russell-paradox/

19. Jackson, D.: Software Abstractions: Logic, Language and Analysis. The MIT Press,
Cambridge (2006)

20. Jarke, M., et al.: ConceptBase – a deductive object base for meta data management. J. Intell.
Inf. Syst. 4, 167–192 (1995)

21. Jeusfeld, M.A., Neumayr, B.: DeepTelos: multi-level modeling with most general instances.
In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 198–211. Springer, Cham (2016). doi:10.1007/978-3-319-46397-1_15

22. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Proceedings of the 48th
International Conference, TOOLS 2010, Málaga, Spain (2010)

23. de Lara, J., et al.: Extending deep meta-modelling for practical model-driven engineering.
Comput. J. 57(1), 36–58 (2014)

24. de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling. ACM
Trans. Softw. Eng. Methodol. 24, 1–46 (2014)

25. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. In:
WonderWeb Deliverable D18 (2003)

26. Mayr, E.: The Growth of Biological Thought: Diversity, Evolution, and Inheritance. The
Belknap Press, Cambridge (1982)

27. Menzel, C.: Knowledge representation, the world wide web, and the evolution of logic.
Synthese 182, 269–295 (2011)

28. Mylopoulos, J., et al.: Telos: representing knowledge about information systems. ACM
Trans. Inf. Syst. (TOIS) 8, 325–362 (1990)

29. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with M-objects and
M-relationships. In: Proceedings of 6th Asia-Pacific Conf. Conceptual Modeling, New
Zealand (2009)

30. Odell, J.: Power types. J. Object-Oriented Program. 7(2), 8–12 (1994)
31. W3C: RDF Schema 1.1 (2014). https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
32. W3C: OWL 2 Web Ontology Language-Document Overview (Second Edition) (2012).

https://www.w3.org/TR/2012/REC-owl2-syntax-20121211

294 J.P.A. Almeida et al.

https://plato.stanford.edu/archives/win2016/entries/russell-paradox/
http://dx.doi.org/10.1007/978-3-319-46397-1_15
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211

Alignment-Based Trace Clustering

Thomas Chatain1(B), Josep Carmona2, and Boudewijn van Dongen3

1 LSV, ENS Paris-Saclay, CNRS, Inria, Cachan, France
chatain@lsv.ens-cachan.fr

2 Universitat Politècnica de Catalunya, Barcelona, Spain
jcarmona@cs.upc.edu

3 Eindhoven University of Technology, Eindhoven, The Netherlands
b.f.v.dongen@tue.nl

Abstract. A novel method to cluster event log traces is presented in
this paper. In contrast to the approaches in the literature, the clustering
approach of this paper assumes an additional input: a process model
that describes the current process. The core idea of the algorithm is to
use model traces as centroids of the clusters detected, computed from a
generalization of the notion of alignment. This way, model explanations of
observed behavior are the driving force to compute the clusters, instead of
current model agnostic approaches, e.g., which group log traces merely on
their vector-space similarity. We believe alignment-based trace clustering
provides results more useful for stakeholders. Moreover, in case of log
incompleteness, noisy logs or concept drift, they can be more robust for
dealing with highly deviating traces. The technique of this paper can be
combined with any clustering technique to provide model explanations
to the clusters computed. The proposed technique relies on encoding the
individual alignment problems into the (pseudo-)Boolean domain, and
has been implemented in our tool DarkSider that uses an open-source
solver.

1 Introduction

The ubiquity of digital data has made organizations to become more than ever
data-oriented. This has a clear implication on the way decisions are taken in an
organization, where nowadays an unprecedent focus is put to the evidences hid-
den in the data. Process mining is an emerging field which focuses on analyzing
event logs which contain the data corresponding to process executions. Process
mining techniques focus on discovering, analyzing and enhancing evidence-based
process models [1].

Trace clustering has been used as a method to partition event logs in a
way that more homogeneous sublogs are obtained, with the hope that process
discovery techniques will perform better on the sublogs than if applied to the
original log [1]. Several techniques have been proposed in the last decade for
trace clustering [2–8]. They can be partitioned into vector space approaches
[2,4], context aware approaches [5,6] and model-based approaches [3,7,8].

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 295–308, 2017.
https://doi.org/10.1007/978-3-319-69904-2_24

296 T. Chatain et al.

All the aforementioned clustering algorithms consider only the event log as input,
and use different internal representations for producing the clusters.

We present a different view on clustering event log traces, by assuming that
a process model exists. This assumption is realistic in many contexts, e.g., in
Process-Aware Information Systems (PAIS), process models are often available
[9]. Notice that due to the evolving nature of processes, this assumption by
no means invalidates the motivation of this work: processes in a organization
evolve and/or change frequently, and therefore process mining (and consequently,
clustering) techniques may be very useful to be aligned with the reality, even if
a process model exists.

Most of the aforementioned algorithms for trace clustering are centroid-based,
i.e., for each cluster a representative (often a vector of features) is the reference
of the cluster when computing distances. Furthermore, in some algorithms this
representative may not be one of the log traces (e.g., if applying k-means). By
using these model agnostic approaches, the grouping of event log traces may
have no relation at all with the executions of the underlying process.

The approach we propose in this paper puts the available process model as
a first citizen in trace clustering: clusters computed have as centroid a process
model execution. This way, even in case of deviations, incomplete or noisy traces,
or even drifts in the process model (e.g., dealing with the process of winter sales,
while the traces correspond to summer sales), a process explanation of the traces
in each cluster is available, so that stakeholders can relate them more reliably
to the underlying process.

The clustering approach of this paper has as core operation the novel concept
of multi-alignments, which is also a contribution of the paper. Multi-alignments
are a generalization of the notion of alignments [10]. Intuitively, given a trace
representing a real process execution, an optimal alignment provides the best
trace the process model can provide to reproduce the observed behavior. Then
observed and model traces are rendered in a two-row matrix denoting the syn-
chronous/asynchronous moves between individual activities of model and log,
respectively. Multi-alignments generalize alignments in that not one but a col-
lection of observed traces is considered, while still the model produces a sin-
gle trace that globally aligns well (i.e., its at minimal global distance) with
the observed traces. Multi-alignments are shown graphically as an (n + 1)-
row matrix, where the first n rows correspond to the observed traces, and the
n + 1 row denotes the model trace. An example of multi-alignment for four
observed traces and a model with behavior according to the regular expression1

A; ((B1;C1)||(B2;C2)||(B3;C3));D is shown in Fig. 1.
The clustering approach of this paper is guided by the computation of multi-

alignments. More specifically, clusters in our algorithm are multi-alignments.
Informally, given a threshold distance, the approach produces a set of multi-
alignments that covers (if possible) the set of traces in the event log. Several
variations of the initial algorithm proposed in this paper can be envisioned as

1 Operators ; and || denote sequential and parallel composition, respectively.

Alignment-Based Trace Clustering 297

A B1 C1 B2 C2 B3 C3 D trace 1
A B2 C2 B1 C1 B3 C3 D trace 2
A B3 C3 B1 C1 B2 C2 D trace 3
A B1 B2 C2 C1 B3 C3 D trace 4

A B1 B2 C2 C1 B3 C3 D model trace

Fig. 1. A model trace which is an optimal multi-alignment for four log traces.

future work, e.g., hierarchical or density based, or which allow rising the given
distance to guarantee a full covering of the traces in the event log.

The paper is organized as follows: Sect. 2 provides the necessary background
for the understanding of the paper. Then in Sect. 3 the formal description and
algorithmic computation of multi-alignments is provided. The overall method for
alignment-based clustering is presented in Sect. 4. The evaluation of the tech-
niques is reported in Sect. 5. Finally, Sect. 6 concludes the paper and provides
lines for future research.

2 Preliminaries

2.1 Petri Nets

Definition 1 ((Labeled) Petri Net System). A labeled Petri net system (or
simply Petri net) [11] is a tuple N = 〈P, T,F ,m⊥,m�, Σ, λ〉, where P is the set
of places, T is the set of transitions (with P ∩ T = ∅), F ⊆ (P × T) ∪ (T × P)
is the flow relation, m⊥ is the initial marking, m� is the final marking, Σ is an
alphabet of actions and λ : T → Σ labels every transition by an action.

A marking is an assignment of a non-negative integer to each place. If k is
assigned to place p by marking m (denoted m(p) = k), we say that p is marked
with k tokens. Given a node x ∈ P ∪ T , we define its pre-set •x def= {y ∈ P ∪ T |
(x, y) ∈ F} and its post-set x• def= {y ∈ P ∪ T | (y, x) ∈ F}.

A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each
place in •t and putting a token to each place in t•. A marking m′ is reach-
able from m if there is a sequence of firings 〈t1 . . . tn〉 that transforms m into
m′, denoted by m[t1 . . . tn〉m′. A firing sequence u = 〈t1 . . . tn〉 is called a run if
it can fire from the initial marking: m⊥[u〉; it is called a full run if it addition-
ally reaches the final marking: m⊥[u〉m�. We write Runs(N) for the set of full
runs of Petri net N . Given u = 〈t1 . . . tn〉 ∈ Runs(N), the sequence of actions
λ(u) def= 〈λ(t1) . . . λ(tn)〉. is called a trace of N .

The set of reachable markings from m⊥ is denoted by [m⊥〉, and form a graph
called reachability graph. A Petri net is k-bounded if no marking in [m⊥〉 assigns
more than k tokens to any place. A Petri net is safe if it is 1-bounded. In this
paper we assume safe Petri nets.

298 T. Chatain et al.

2.2 Foundations of Alignments

We survey definitions for alignments and some variations. The interested reader
can refer to [10] for the seminal work on alignments where a complete formal-
ization can be found.

An event log is a collection of traces, where a trace may appear more than
once. Formally:

Definition 2 (Event Log). An event log L (over an alphabet of actions Σ) is
a multiset of traces σ ∈ Σ∗.

Given a Petri net N (typically obtained using process mining techniques, and
supposed to model the behavior of an observed system), and an observed trace
σ in a log, the aim of alignments is to find the full run u of the model N that
mostly resembles σ, i.e. such that λ(u) is close to σ, for some notion of distance
dist(σ, λ(u)).

Example 1. An example of alignment is shown in Fig. 2: given the model in
Fig. 2(a) and the trace 〈C,D〉, the model produces the trace 〈A,C,B,D〉, as
shown in the upper row of Fig. 2(b).

(a) A model. (b) An optimal alignment.

Fig. 2. Example of alignment between observed and modeled behavior.

A traditional choice for the distance dist(σ, γ) is Levenshtein’s edit distance
(which counts how many deletions and insertions are needed to transform σ
to γ). Another possible choice is Hamming distance, which simply counts the
number of positions in which σ and γ differ: for two traces σ = 〈σ1 . . . σn〉 and
γ = 〈γ1 . . . γn〉 of equal length n, Hamming distance is defined as

∣
∣
{

i ∈ {1 . . . n} |
γi
= σi

}∣
∣; when one trace is shorter than the other, we pad it and count every

occurrence of the padding symbol as a mismatch with the longer trace.
Most of the definitions in this article are valid for any choice of distance

(in particular Levenshtein and Hamming). For readability, some of the most
technical developments are done only for Hamming distance, and we give insights
on how to adapt them to Levenshtein’s distance. In the example of Fig. 2, the
trace produced by the model is at distance 2, independently of the distance
considered. Our tool DarkSider mostly uses Levenshtein’s distance.

Alignment-Based Trace Clustering 299

Definition 3 (δ-Alignment, (Optimal) Alignment). Given a (log) trace σ,
and a Petri net model N , a δ-alignment of σ to N is a full run u of N such that
dist(σ, λ(u)) ≤ δ.

Clearly there exist δ-alignments for all values of δ larger or equal to a mini-
mal value which we denote δmin(σ,N) (or simply δmin when σ and N are clear
from the context). An optimal alignment (or simply alignment) is a δmin(σ,N)-
alignment of σ to N .

In Example 1, the 2-alignment represented by the run 〈A,C,B,D〉 is provided
for the observed trace 〈A,C〉, which is an optimal alignment.

3 Multi-alignments

We now present multi-alignment as a generalization of the notion of alignments.
This new notion will be used in the rest of the paper as basis for the cluster-
ing approach proposed. We refer the reader to the example in the introduction
(Fig. 1) for an example of multi-alignment.

3.1 Formalization of Multi-alignments

The following definition relies on a notion of distance dist , which can be chosen
depending on the context. For instance, Hamming distance and Levenshtein’s
edit distance are valid choices (see discussion in Sect. 2.2).

Definition 4 (Multi-alignments, Optimal Multi-alignments). Given a
finite collection C of (log) traces, a model N and some δ ∈ N, a δ-multi-alignment
of C to N is a full run u ∈ Runs(N) such that2

∑

σ∈C dist(σ, λ(u)) ≤ δ. Clearly,
there is a minimal δ for which a δ-multi-alignment exists. We denote it by
δmin(C, N) (or simply by δmin when C and N are clear from the context). A
δmin-multi-alignment is simply called an optimal multi-alignment of C to N .

Given a log L, interesting instantiations deserve a comment. First, it is clear
that if |C| = 1, then the notion of multi-alignment collapses into the traditional
notion of alignment from [10]. If C = L, then the corresponding optimal multi-
alignment represents the model trace that aligns optimally with all the traces
in the log. However, for models containing alternative executions, to consider
C = L may incur into high multi-alignment distances.

3.2 Encoding Multi-alignments Using Pseudo-Boolean Constraints

Computing multi-alignments is an NP-complete problem.3

2 We understand the
∑

as a sum over a multiset, taking multiplicities into account.
For instance, with the multiset A = {1, 1}, we get

∑
i∈A i = 2.

3 More precisely, the problem of existence of a δ-multi-alignment for given C, N and δ
(represented in unary), is NP-complete. For NP-hardness, we use a reduction from
the problem of reachability of a marking m in a 1-safe acyclic Petri net N , known
to be NP-complete [12,13], to the existence of a 0-multi-alignment with the empty
collection C = ∅.

300 T. Chatain et al.

In order to compute a multi-alignment of C to N , our tool DarkSider
constructs a pseudo-Boolean4 formula Φ(N, C) and calls a solver (currently min-
isat+ [14]) to find an optimal solution. Every optimal solution to the formula
is interpreted as a multi-alignment.

The formula Φ(N, C) characterizes a δ-multi-alignment u = 〈t1 . . . tn〉 ∈
Runs(N), with δ =

∑

σ ∈ C dist(σ, λ(u)). For simplicity, we present the encoding
for Hamming distance as dist . Later we discuss how to adapt the encoding to
Levenshtein’s edit distance.

For the encoding, we need to fix a bound on the length n = |u| of the
δ-multi-alignment. In principle n could be exponential in |T |, simply because
multi-alignments are full runs and there are models for which the final marking
is reachable only after firing sequences of exponential length in |T |. Nevertheless,
the distance dist(σ, λ(u)) between a full run u of length n is at least n − |σ|.5
Hence u cannot be a δ-multi-alignment for δ smaller than n − minσ∈C |σ|. Since
in practice we are interested with δ of the order of the length of the log traces,
we can bound n to, for instance, twice the length of the longest trace in C:
n = 2 × maxσ∈C |σ|.

The formula Φ(N, C) is coded using the following Boolean variables:

– τi,t for i = 1 . . . n, t ∈ T means that transition ti = t.
– mi,p for i = 0 . . . n, p ∈ P means that place p is marked in marking mi

reached after firing 〈t1 . . . ti〉 (remind that we consider only safe nets, therefore
the mi,p are Boolean variables).

– δi,σ for i = 1 . . . n, σ ∈ C, means that σ and λ(u) mismatch at position i,
i.e. λ(ti)
= σi.

The total number of variables is smaller than n × (|T | + |P | + |C|).
Let us decompose the formula Φ(N, C).

– The fact that u = 〈t1 . . . tn〉 ∈ Runs(N) is coded by the conjunction of the
following formulas:

• Initial marking:
(

∧

p∈m⊥

m0,p

)

∧
(

∧

p∈P\m⊥

¬m0,p

)

• Final marking:
(

∧

p∈m�

mn,p

)

∧
(

∧

p∈P\m�

¬mn,p

)

4 Pseudo-Boolean constraints are generalizations of Boolean constraints. They allow
one to specify constant bounds on the number of variables which can/must be
assigned to true among a set V of variables. We write them as a ≤ ∑v ∈ V v ≤ b.
Pseudo-Boolean constraints are not more expressive but can be upto exponentially
more concise than Boolean constraints. Some pseudo-Boolean solvers also offer
to search for a solution minimizing a pseudo-Boolean objective of the same form∑

v ∈ V v: number of variables assigned to true among V .
5 This holds as well for Hamming or edit distance.

Alignment-Based Trace Clustering 301

• The transitions are enabled when they fire:

n∧

i=1

∧

t∈T

(τi,t =⇒
∧

p∈•t

mi−1,p)

• Token game (for safe Petri nets):

n∧

i=1

∧

t ∈ T

∧

p ∈ t•
(τi,t =⇒ mi,p)

n∧

i=1

∧

t∈T

∧

p ∈ •t\t•
(τi,t =⇒ ¬mi,p)

n∧

i=1

∧

t∈T

∧

p∈P,p �∈•t,p�∈t•
(τi,t =⇒ (mi,p ⇐⇒ mi−1,p))

– One and only one ti for each i, can be expressed concisely as a pseudo-Boolean
constraint:

n∑

i=1

∑

t∈T

τi,t = 1

– Now, we look for a solution minimizing the quantity δ =
∑

σ∈C dist(σ, λ(u))
(total number of mismatches), which is coded as:

∑

σ∈C

n∑

i=1

δi,σ

with the δi,σ correctly affected w.r.t. λ(ti) and σi:

∧

σ∈C

n∧

i=1

(

δi,σ ⇐⇒
∨

t∈T, λ(t)=σi

τi,t

)

Notice that, as such, the formula Φ(N, C) characterizes multi-alignments u of a
fixed length n. But in fact, what we need is to accept any u of length less or
equal to n. There is a simple trick for this: we simply add to the Petri net N a
new transition with the final marking m� as pre- and post-set, and labeled with
a special padding symbol. This transition allows N to ‘wait’ once in the final
marking.

Size of the Formula. In the end, the first part of the formula (u = 〈t1 . . . tn〉 ∈
Runs(N)) is coded by a pseudo-Boolean formula of size O(n × |T | × |P |).

The second part of the formula (minimization of the mismatches) is coded
by a pseudo-Boolean minimization objective of size O(n × |C| × |T |).

The total size for the coding of the formula Φ(N, C) is

O
(

n × |T | × (|P | + |C|)) .

302 T. Chatain et al.

Encoding of Levenshtein’s Edit Distance. The encoding that we have pre-
sented above is for multi-alignments w.r.t. Hamming distance (see discussion
in Sect. 2.2). For Levenshtein’s edit distance, the basic idea is to let the multi-
alignment model trace “wait” for the log traces. This corresponds to the blanks
in the matrix shown in Fig. 1. For this it suffices to add to the Petri net N a
new transition with empty pre- and post-set, and labeled with a special padding
symbol. When counting the mismatches between the multi-alignment trace λ(u)
and a model trace σ, a blank compared to another action costs 1 (it corresponds
to a deletion if one transforms σ to λ(u)). Symmetrically, the log trace is also
allowed to “wait” for the multi-alignment.

There is now a subtlety: since the multi-alignment is compared with several
log traces together, at some point it may have to wait for only some of the
traces. This should count for the computation of the distance between λ(u) and
these traces, but not between λ(u) and the other traces which do not need to
wait. The solution is to let the latter wait without counting any mismatch at
this point between them and λ(u). This situation happens at the end of the
multi-alignment shown in Fig. 1 when the multi-alignment has to wait for trace
3, while trace 1, 2 and 4, which “are ready”, wait like the multi-alignment.

In the end, this may lengthen the representation of the multi-alignment: in
the worst case, for log traces of length l, one may have to insert l − 1 blanks
before each symbol of the multi-alignment.

3.3 Partial Covering of the Log Traces

We have defined a multi-alignment as a full run u of the model N which min-
imizes its distance to a collection C of (log) traces. Now, if the collection C
contains very different traces, it makes sense to focus on a subset of C containing
sufficiently similar traces. For this we adapt a little bit the notion of multi-
alignment in order to leave the choice of a subset of C to be considered: instead
of minimizing the sum of distances to the log traces σ ∈ C, we fix a distance
threshold d and look for a u ∈ Runs(N) which maximizes the number of log
traces which are at distance ≤ d to u.

Definition 5 (Optimal Partial Covering). Given a collection C of (log)
traces, a model N and a distance threshold d ∈ N, we say that a full run
u ∈ Runs(N) of N covers a log trace σ ∈ C if dist(σ, λ(u)) < d. We say
that u is an optimal partial covering of C for the distance threshold d if no full
run of N covers strictly more log traces of C than u.

As an example, consider the following collection of log traces, the model
shown in Fig. 3, and set the distance threshold to d = 4.

t1: A C E B D G H F

t2: A C E G H F D B

t3: A C AC AA AF AI AJ AD AH X2 AG AB D B

t4: A E C G H F D B

t5: A C AA AC AF AJ AI AD AH X2 AG AB D B

Alignment-Based Trace Clustering 303

A C E G

X3

L

H

I

N

O

M

JK

X1

F D B

P

R

W

Y

U

T

V

S

X

Z

G

AA
AF

AK

AH

AL

AG
AB

AC AD

X2

AE

Fig. 3. M1 example (taken from [15]).

The full run u1 = 〈A,C,E,G,H, F,D,B〉 covers traces t1, t2 and t4. The
full run u2 = 〈A,C,AA,AC,AF,AI,AJ,AD,AH,X2, AG,AB,D,B〉 covers
the others. No other full run covers more traces, so u1 is an optimal partial
covering.

The problem of finding an optimal partial covering u of the log traces can
be encoded as a pseudo-Boolean optimization problem following the same lines
as the encoding presented for multi-alignments in Sect. 3.2. We use additional
variables bσ for σ ∈ C with the constraint that bσ can be assigned to true only
if σ is covered by the full run u:

bσ =⇒
n∑

i=1

δi,σ ≤ d .

Now we express our objective of covering as many log traces as possible, as the
pseudo-Boolean maximization objective

∑

σ∈C bσ.

304 T. Chatain et al.

4 Alignment-Based Clustering of Log Traces

Based on partial multi-alignments, we propose a novel algorithm for trace cluster-
ing. The idea of our algorithm is to group log traces according to their closeness
to representative full runs of a given model. Those representative full runs act
as centroids for the clusters.

The following algorithm partitions a collection C of log traces into a set P of
clusters relying on a model N . Each cluster contains traces sufficiently close (i.e.
at distance ≤ d) to a full run u ∈ Runs(N) which is the centroid of the cluster.

Clustering Algorithm. Clustering(C, N, d)

– P := ∅
– repeat

• find a full run u of N which is an optimal partial covering of C for the
distance threshold d;

• let C = {σ ∈ C | dist(σ, u) ≤ d} be a new cluster with u as centroid.
• P := P ∪ {C}
• C := C \ C

until all the traces are clustered or no remaining log trace σ ∈ C is at
distance smaller than d to any full trace of N .

– return P

At the end of the algorithm, the log traces which are too far (i.e. at distance
> d) from any run of the model are left unclustered. It is possible then either
to increase d in order to cluster those traces, or, if one considers that they
are anyway too little related with the model, treat them with another (model
agnostic) clustering approach.

5 Implementation and Experiments

We have implemented the theory of this paper in our tool DarkSider, which
was initially focused on computing anti-alignments [16]. DarkSider is available
at http://www.lsv.ens-cachan.fr/∼chatain/darksider. DarkSider is written in
OCaml. For each cluster computed, it constructs the pseudo-Boolean formulas
described in Sect. 3.2 and calls the pseudo-Boolean solver minisat+ [14]. When
an (optimal) solution is found, DarkSider analyses it and displays the corre-
sponding multi-alignment according to the truth values of the variables τi,t.

To show the capabilities of the tool, we have focused on a synthetic medium-
size example (model M1, 40 places and 39 transitions). Figure 3 shows the exam-
ple. The model contains the typical constructs for a process: sequence, choice,
concurrency and loops. It was originally presented in [15], together with a log
containing 500 cases of varying sizes. We want to illustrate four different aspects
of the contributions of this paper: tool usability, comparison with another clus-
tering approach, combination with other approaches, and resilience to noise.

http://www.lsv.ens-cachan.fr/~chatain/darksider

Alignment-Based Trace Clustering 305

Tool Usability. By assigning values to the few parameters the tool has (that
control the length and the distance of the multi-alignments computed), one can
obtain a clustering in few minutes. We have run the clustering algorithm with
distance6 4 and setting 15 as maximal length for a run. As a result, we have
obtained 8 clusters, covering 499 traces. The 8 centroids are:

c1: A C E G H F D B

c2: A C P W R Y X U Z V T S Q D B

c3: A C AA AF AC AD AE AC AH AJ AI AD AG AE AC

c4: A C AA AC AF AH AJ AI AD AG X2 AB D B

c5: A C E X3 I J K I J K I J K I J

c6: A C AA AF AI AH AJ AC AD AG X2 AB D B

c7: A C P R W Y U Z V T S X Q D B

c8: A C AA AF AJ AI AC AH AD AG AE AC AD AE AC

corresponding to the following partitioning of the log in number of traces: (206,
135, 115, 31, 8, 2, 2, 1), respectively. Notice that most of the centroids are full
runs of the model (c1, c2, c4, c6, c7), the others are only prefixes of full runs,
truncated to the maximal size (15) that we imposed to centroids. One can see
that the aforementioned centroids cover most of the case variants of the model
in Fig. 3. For instance, centroid c5 corresponds to the following cluster:

t1: J J E I C K I A K I B J F D

t2: A C J I J K I J K F I E D B

t3: A J C K E I J K I J I F D B

t4: C J A E F I J K I D J K I B

t5: A C E J J K I J K I I F D B

t6: A C E I J K I J K B I K I J F D J

t7: A C I K J K E J I I J K I J F D B

t8: A C E I J K I K D I F J K I K I J J J B

Overall, the approach can be tuned to provide a coarse-view of the traces
(like the one examplified here), or by decreasing the distance, to get a more fine-
grained view with more clusters of smaller size. For instance, if we set maximal
distance 3 instead of 4, we get 18 clusters.

Comparison with Other Clustering Approach. We compare the results
produced by our tool with the technique from [8]. This technique maps every
case to a profile vector, and builds a similarity matrix. This matrix is used as
input for a Markov cluster algorithm, which returns the clustering. In essence,
this clustering approach is meant to group together traces with similar labels
and behavior. For the same example, this technique provides 18 clusters of sizes
ranging from 1 upto 137 traces. A key difference with our approach is the restric-
tion on the traces to be included in a cluster: this approach only obtains clusters
with traces having the same length. For instance, the following is an example of
one of the clusters obtained by the aforementioned technique:

6 For efficiency reasons, DarkSideruses currently an ad-hoc distance intermediate
between Hamming and Levenshtein.

306 T. Chatain et al.

t1: A C E J J K I J K I I F D B

t2: C J A E F I J K I D J K I B

t3: A J C K E I J K I J I F D B

t4: A C J I J K I J K F I E D B

t5: J J E I C K I A K I B J F D

To force having the same length within a cluster may be the reason why more
clusters are obtained in [8]. In case of loops, this can be misleading, as it can be
seen in the cluster computed by our tool corresponding to centroid c5, where
different iterations of the loop (I,J,K) are combined into the same cluster. We
believe this is a good feature of our approach, since the core information is the
same even if two traces have different number of loop iterations.

Combination with Other Clustering Approach. The theory of this paper
can be applied to enrich the information provided by other (model agnostic)
trace clustering approaches. Once clusters are produced by any trace cluster-
ing technique, obtaining multi-alignments for each one would then provide the
model-based centroids as our approach provides. For instance, for the cluster pro-
vided above from the approach in [8], our tool produced a multi-alignment having
the following model sequence 〈A,C,E,X3, I, J,K, I, J,X1, F,D,B〉. Also, traces
that are left uncovered by our approach (since they are beyond the distance con-
sidered) can then be clustered with other approaches that do not consider the
model.

Resilience to Noise. We have inserted noise into the initial log using the avail-
able plugins in the open source tool ProM. The noise insertion was removing and
swapping activities in every trace, with a 10% of probability for each one of the
noise operations. Accordingly, the clustering approach was computed (with the
same parameters) on the same model and the noisy log. Due to the significant
insertion of noise, 19 clusters were detected now, and 63 traces out of the 500
became unclustered (compared to the one trace unclustered for the initial log)7.
In spite of this, some of the centroids were preserved, which give rise to detect-
ing some of the clusters similar to the initial log. For instance the centroid c1
was again detected, and centroids equivalent (variations of the available concur-
rency in the model) to c2, c4, c6, c7 were computed. We performed the same
experiment but now with a 20% of probability for each one of the noise opera-
tions. The results obtained in terms of centroids and clusters were very similar.
Hence, by focusing at the model-based centroid and not at the cluster level, a
certain invariance in the results, even in the presence of significant noise, can
be obtained. Also, notice that unclustered traces represent model-based outliers
that can be then analyzed apart, to drill down the analysis in those cases.

7 If more flexible distance parameters are applied, a clustering with only 10 traces
unclustered can be computed.

Alignment-Based Trace Clustering 307

6 Conclusion and Perspectives

An important dimension in process mining is to extract from a large log with
many traces, high-level information about families of similar traces which may
correspond to different executions of the same parts of the model. The techniques
in the literature do not consider the process model for solving this task. For the
first time, this paper puts the process model as a main actor in trace clustering.

The notion of multi-alignments defined in this paper is a crucial one to facili-
tate alignment-based clustering. Multi-alignments incorporate the idea of group-
ing similar traces within the problem of aligning observed behavior with the
model. They provide a typical trace which represents as well as possible the
behavior of a cluster of similar log traces. These high-level alignments can be
viewed as a way to enrich, and at the same time compress, the alignment infor-
mation. We envision future applications of multi-alignments that will go beyond
trace clustering.

Although currently the tool can provide clustering results in few minutes
for medium-sized instances, future work will be devoted to improve the effi-
ciency of computing multi-alignments, which is the core part of the clustering
algorithm. Our tool computes exact solutions to the optimal multi-alignment
problem, which has a cost in terms of efficiency. Finding efficient heuristics for
computing reasonable approximations is an interesting perspective, as has been
done recently [17]. By considering several traces at the same time, this work
opens the door to significant reduction in the overall complexity of aligning an
event log and a model, since the number of alignment problems to solve may be
considerably lower.

We plan to do an extensive comparison of our technique with respect to other
clustering techniques in the literature, over a comprehensive set of benchmarks.
We will also show possible combinations of these approaches with ours, with the
aim of improving the interpretation of the clustering information obtained.

Acknowledgements. We thank Bart Hompes for facilitating the clustering results of
his tool for the example used in the experiments. This work has been partially supported
by funds from the Spanish Ministry for Economy and Competitiveness (MINECO), the
European Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. van der Aalst, W.M.P.: Process Mining — Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Berlin (2011)

2. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

3. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process min-
ing with sequence clustering: experiments and findings. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-75183-0 26

http://dx.doi.org/10.1007/978-3-540-75183-0_26

308 T. Chatain et al.

4. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp.
109–120. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00328-8 11

5. Bose, R., van der Aalst, W.M.P.: Context aware trace clustering: towards improving
process mining results. In: Proceedings of the SIAM International Conference on
Data Mining, SDM 2009, 30 April – 2 May 2009, Sparks, Nevada, USA, pp. 401–412
(2009)

6. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12186-9 16

7. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

8. Hompes, B., Buijs, J., van der Aalst, W., Dixit, P., Buurman, H.: Discovering devi-
ating cases and process variants using trace clustering. In: Proceedings of the 27th
Benelux Conference on Artificial Intelligence (BNAIC 2015), Hasselt, Belgium, 5–6
November 2015

9. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley,
Hoboken (2005)

10. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische
Universiteit Eindhoven (2014)

11. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–574 (1989)

12. Stewart, I.A.: Reachability in some classes of acyclic Petri nets. Fundam. Inform.
23(1), 91–100 (1995)

13. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. In: Shya-
masundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–337. Springer, Hei-
delberg (1993). doi:10.1007/3-540-57529-4 66

14. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

15. Taymouri, F., Carmona, J.: Model and event log reductions to boost the com-
putation of alignments. In: Proceedings of the 6th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2016), Graz, Austria, 15–
16 December 2016, pp. 50–62 (2016)

16. Chatain, T., Carmona, J.: Anti-alignments in conformance checking — the dark
side of process models. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS,
vol. 9698, pp. 240–258. Springer, Cham (2016). doi:10.1007/978-3-319-39086-4 15

17. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.)
BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016). doi:10.1007/
978-3-319-45348-4 12

http://dx.doi.org/10.1007/978-3-642-00328-8_11
http://dx.doi.org/10.1007/978-3-642-12186-9_16
http://dx.doi.org/10.1007/3-540-57529-4_66
http://dx.doi.org/10.1007/978-3-319-39086-4_15
http://dx.doi.org/10.1007/978-3-319-45348-4_12
http://dx.doi.org/10.1007/978-3-319-45348-4_12

Conceptual Modeling in Specific Context

The Conceptual Modelling of Dynamic Teams
for Autonomous Systems

Rick Evertsz1(B), John Thangarajah1, and Michael Papasimeon2

1 RMIT University, Melbourne, Australia
{rick.evertsz,john.thangarajah}@rmit.edu.au

2 Defence Science and Technology Group, Melbourne, Australia
michael.papasimeon@dsto.defence.gov.au

Abstract. The concept of a ‘team’ is key in multi-agent decision-
making applications such as for combat operations and disaster manage-
ment. Although there are a number of team-oriented agent programming
approaches, conceptual modelling of teams is not fully addressed. In this
paper we present TDF-T, an extension of the TDF agent design method-
ology that addresses the requirements of team oriented modelling; in par-
ticular, team hierarchies, dynamic team formation, and team coordina-
tion. These concepts encapsulate team tactical behaviour which is essen-
tial to our user community who need to build and deploy complex team-
based simulation applications. We show positive results in a user study
that evaluates comprehension and maintainability of TDF-T models.

Keywords: Autonomous systems · Multi-agent systems · Organisa-
tional modelling · Team modelling

1 Introduction

There is a growing community involved in computationally modelling team-based
decision-making behaviour; for example, to build multi-agent tactical simulations
or teams of autonomous aircraft in domains such as air combat (e.g. [3,6,11]).
In such applications, teams of agents are created to drive autonomous systems,
or to support what-if simulation scenarios that help answer questions such as
how best to build an air defence capability.

With the advent of increasingly sophisticated hardware, including
autonomous platforms such as Unmanned Aerial Systems, many scenarios have
become very complex and difficult to model; for example, where teams need to
achieve joint goals in uncertain and highly dynamic environments. As such, the
type of operational analysis that is being conducted has evolved from modelling,
simulating and analysing single agent systems to multi-agent systems in organi-
sational contexts. This has meant that concepts such as teams, joint goals, shared
beliefs and team roles have become increasingly important, and it is critical that
these concepts now be represented as first order constructs in any modelling
methodology.
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 311–324, 2017.
https://doi.org/10.1007/978-3-319-69904-2_25

312 R. Evertsz et al.

Another problem for those developing computational models is the lack of a
common language for the specification of team behaviour. The development of
team models usually requires collaboration between several communities with
different skill sets and perspectives, for example, domain experts, operations
analysts and software engineers. Within a given project, each community tends
to use a different approach. For example, domain experts typically rely on natural
language and informal diagrams, whereas software engineers might use UML [13]
or go straight to program code. This makes communication difficult, and the
links between the products of each community is tenuous and easily lost as the
modelling process moves from domain experts through to software engineers.

The final significant problem in team modelling has been the fact that com-
putational models are usually tied to a specific implementation platform, and
transferring the models to another platform entails reimplementation.

The aforementioned three drivers are the primary motivation for the team
modelling concepts and methodology presented in this paper, namely, the need
for (i) first order team constructs, (ii) a shared modelling representation for all
users, and (iii) platform independence.

In this work, our research objective has been to develop a methodology and
representation for modelling teams that is (i) easy for domain experts to under-
stand, (ii) straightforward for operations analysts to apply, and (iii) for software
engineers to use, debug and maintain. We want the representation to be easy to
understand because this will help with knowledge elicitation and model valida-
tion. If domain experts can understand the representation, then it gives them a
sense of ownership over the unfolding models, allowing them to relate the subse-
quent team behaviour back to the models so that they can directly critique any
shortcomings.

We have found over the last 20 years, working with groups who are modelling
team behaviour, that domain experts will talk about a team as an abstract entity.
They conceptualise the team as having an overall goal (desire) to achieve through
the cooperative actions of its team members, and as having specific situational
awareness (beliefs) guiding its choices, as well as committing to particular solu-
tions (intentions). This perspective is a close match to the BDI (Beliefs, Desires,
Intentions) paradigm [19], and so we selected an existing BDI-based modelling
methodology for extension with team modelling concepts; namely TDF (Tactics
Development Framework) [10].

This paper contributes a practical approach to the conceptual modelling of
autonomous teams by (i) extending the TDF methodology with additional steps,
and with explicit team modelling concepts such as team hierarchies, dynamic
team formation, and team coordination (Sect. 4), (ii) mapping it to an estab-
lished teams implementation platform, JACK Teams [8] (Sect. 5.1), and provid-
ing a preliminary evaluation (Sect. 5) indicating that, for team-based scenarios,
the TDF-T (TDF-Teams) extension is intuitive, and it is straightforward for new
users to see how team-oriented designs can be changed to encompass greater
variation in behaviour.

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 313

2 Background

This section briefly introduces important background to TDF-T, namely theoret-
ical and practical research into teams, team modelling in AOSE (Agent Oriented
Software Engineering) methodologies, the BDI paradigm, and TDF.

2.1 Team Oriented Programming and AOSE

From a philosophical perspective, there has been considerable debate about
whether a team should be modelled as a separate entity or merely an aggregation
of the different (mental) attributes of the agents that constitute it. According
to Bratman [5], a shared intention is nothing more than the aggregation of the
intentions of individuals. Searle [21], on the other hand, argues that there has
to be such a thing as collective intention if a team is to perform adequately.

Theoretical work on teaming tends to focus on formal aspects such as Cohen
and Levesque’s Joint Intentions Theory [7], and Grosz’s work on SharedPlans
[12], whereas practical work on team oriented programming is concerned with
the challenges of building real systems (e.g. Machinetta [20], JACK Teams [8]
and JaCaMo [4]).

In team oriented programming, coordinated behaviour is expressed at a high-
level of abstraction, relying on the team-based platform to reify the team struc-
tures and behaviour in terms of individual agents and sub-teams. Team oriented
programming typically organises a team in terms of the roles and responsibilities
of the team members; these specify the goals they can achieve as well as their
other capabilities. Depending on the platform, other aspects can be specified
in the team definition, for example, the procedures a team member can use to
achieve its goals, and coordination constraints that are applied when agents are
engaged in joint activities.

Teams are essentially collections of agents that work towards a common goal
[14]. Consequently, much of the early work on the computational modelling of
teams was carried out within the field of multi-agent systems [22]. AOSE is
concerned with how to specify, design, implement, validate and maintain multi-
agent systems, and was identified early on as an important prerequisite for their
successful development, e.g. [16]. Akbar [1] lists 75 AOSE methodologies, and
another survey [15] identifies only seven that incorporate some form of organ-
isational modelling; namely, ASPECS, Extended Gaia, INGENIAS, MaSE, the
AGR model, Moise+, and OperA. According to [15], of these, only the first
four specifically address teaming in the sense of explicitly supporting the rep-
resentation of a joint goal that all team members work towards. However, they
only partially address our modelling requirements (Sect. 3). For example, none
fully support dynamic team formation or the expression of team coordination
strategies of arbitrary complexity; only INGENIAS offers diagrammatic team
views.

314 R. Evertsz et al.

2.2 TDF and the BDI Paradigm

Effective team behaviour requires some degree of individual autonomy coupled
with an ability to coordinate with peers, while balancing reactivity with proactiv-
ity. These attributes, namely autonomy, social ability, reactivity and proactivity,
are characteristic of BDI agent-based systems.

The BDI model is a particularly parsimonious conception of rational agency,
characterising agents as reasoning in terms of their beliefs about the world,
desires (often modelled as goals) that they would like to achieve and the inten-
tions that they are committed to. Apart from its intuitive appeal as a model
of decision making [17], it is a powerful computational abstraction for building
sophisticated, goal-directed and reactive reasoning systems.

Operationally, a BDI agent performs a continuous loop in which it updates its
beliefs to reflect the current state of the world, deliberates about what to achieve
next (reacting to changes in the environment or pursuing its own goals), finds
an applicable plan from a predefined plan library, and executes the next step
in that plan. Each time around this cycle, it effectively reconsiders its options,
yielding goal-oriented behaviour that is also responsive to environmental change.

TDF [10] is an extension of the BDI-based Prometheus [18] AOSE methodol-
ogy; the latter has been in use for over 15 years. Whereas Prometheus targeted
fairly static problems, TDF was developed to tackle highly dynamic tactical
scenarios, and so it extended Prometheus with richer goal structures and ways
of expressing the conditions under which a goal should be adopted or dropped.
Relevant aspects of TDF are covered in more detail during the presentation of
TDF-T in Sect. 4.

3 Team Modelling Requirements

In developing TDF-T, we adopted the following requirements, based on previous
work on team modelling (including the research mentioned in Sect. 2.1), our
air combat stakeholder’s objectives, as well as our previous experience working
with other groups engaged in modelling a wide range of team-oriented tactical
domains.

R1 First class team entities – In a team modelling methodology, teams should
be primary entities. A major shortcoming of earlier approaches has been
that the designer had to find implicit ways to model teams [15], for example,
modelling them as organisations.

R2 Team structures – Modelling a team structure entails defining what con-
stitutes a team, and how situational factors can affect its structure.

R3 Joint goals – A team is formed to achieve a (relatively short term) goal and
so is, to some extent, ephemeral. This focus on an immediate joint goal is fun-
damental, and is what differentiates teams from longer term organisational
structures.

R4 Dynamic team structures – Scenarios such as those found in air combat
are highly dynamic, and so team structures need to be adaptable to any
significant changes in the tactical situation.

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 315

R5 Team roles – The dynamic formation of teams, as well as their reorganisa-
tion in response to tactical changes, is facilitated by the notion of role, that
is, what roles a team needs to have filled, and who can fill those roles.

R6 Sub-teams – Domains, such as air combat, require teams to be composed
of sub-teams, and for those sub-teams to be composed of further sub-teams,
and so on.

R7 Flexible team coordination strategies – Methodologies, such as Moise+,
support coordination by mapping goal schemes into a sub-team structure.
This approach is too rigid to handle some of the very dynamic scenarios we
have encountered in tactical domains.

R8 Intuitive representation for domain experts – In practice, the develop-
ment and validation of team models relies critically on the input of domain
experts. Therefore, it is vital that they can understand and take ownership
of the evolving models. They typically lack a background in computer sci-
ence, and so comprehension is facilitated by diagrammatic views rather than
formal, text based ones.

4 TDF-T Methodology, Conceptual Model, and Tool

TDF-T is a team oriented extension of the TDF methodology, that addresses
the teaming requirements, R1 through R8, outlined in Sect. 3. As a practical
methodology, it addresses four overarching modelling concerns:

– Process. Guidelines on the sequence of steps to be followed in modelling a
team oriented scenario.

– Artefacts and Relationships. The conceptual artefacts defined in the dia-
grams, and how those artefacts should relate to one another. For example, how
team artefacts are structured in a team hierarchy in terms of team/subteam
relationships.

– Diagrams and Iconography. The diagrams created at each step of the
process, and the set of icons used. Provides guidance on the diagrams needed
to represent a team oriented model, and what aspects those diagrams high-
light.

– Route to Implementation. Software support for creating and editing
design diagrams, and a method for mapping those designs to implementa-
tion.

4.1 TDF-T Process

TDF-T follows the original TDF methodology [10] by dividing the modelling
process into three main stages, and augments them with the team-oriented exten-
sions highlighted in italics below.

– System Specification. Identification and diagramming of system-level arte-
facts and relationships, namely scenarios, missions, goals, roles, incoming per-
cepts, outgoing actions, and external actors interacted with. Scenarios outline

316 R. Evertsz et al.

specific use cases, whereas missions are more general descriptions of the sit-
uations the system needs to handle, and typically encompass a number of
individual scenarios. Missions have top-level goals to pursue, and these map
to lower level sub-goals. These goals and sub-goals are aggregated into the
roles that will be responsible for their performance. The interaction with the
environment is diagrammed by showing, for each scenario, the percepts that
are received from external actors, and the actions that the system can per-
form. At this stage, although some of the roles are specified, their enactment
by either teams or agents isn’t specified until the Architectural Design stage.

– Architectural Design. Specification of the internal structural aspects of
the system, namely agent types and role enactments, team types, team role
enactments, and team structures. Here, the abstract roles are mapped to the
entity types that will enact them computationally. In the case where a role
needs to be enacted by a group of entities collectively working towards any of
the role’s goals, a team type must be specified. In a running system, the team
enacts the role in question, that is, it performs the computational activities
required to achieve the role’s currently active goal(s). In practice, some team
members may need to delegate their activities, and this leads to a hierarchical
team/sub-team structure of arbitrary depth, specified in a team structure
diagram.

– Detailed Design. Definition of the internal details of agents and teams, i.e.
tactics, plan diagrams, team coordination plans, messages sent/received, and
internal beliefs (data) held by each agent or team. Team coordination plans
are critical to effective team performance; without a coordination mechanism,
a team will not be able to synchronise its activities so as to achieve the overall
joint goal.

4.2 TDF-T Artefacts and Relationships

In addition to the artefacts/relationships already in TDF, TDF-T tackles the
team modelling requirements (Sect. 3) by providing (i) teams/sub-team rela-
tionships (requirements R1, R2 and R6; Fig. 2), (ii) team coordination plans
(requirement R7; Fig. 4), (iii) role/team relationships (requirement R5; Fig. 1),
(iv) dynamic conditions (requirement R4; Fig. 2) that define how a team struc-
ture should be modified in response to changes in the tactical situation and the
goals (requirement R3) being pursued by the team. These artefacts and rela-
tionships are described further in the context of the various diagrams that they
appear in.

4.3 TDF-T Diagrams and Iconography

The TDF-T methodology involves the development of a number of diagrams that
provide an overview of different aspects of the team-based system being mod-
elled. To address requirement R8, the diagrams and iconography were developed
with input from domain experts from undersea warfare, air combat, and firefight-
ing domains; nevertheless, they are not specific to those domains. In addition

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 317

Close Air Support (CAS)

CAS-T Bomber

StrikeOffensive Counter Air (OCA)

OCA-T Fighter Pair

Fighter Attack Pair Leader

Flight Lieutenant

Wingman

Pilot Officer UAVEnacts

Legend

Agent Team Role

XOR

XOR Node

XOR

Fig. 1. Agent and team role enactments

to the diagrams offered by TDF [10] (p. 227), TDF-T adds (i) team role enact-
ments (Fig. 1), (ii) team structure diagrams (Fig. 2), (iii) team overview diagrams
(Fig. 3), (iv) team tactics diagrams (Fig. 3), and (v) team coordination plan dia-
grams (Fig. 4).

Role Enactment Diagram (Architectural Design) Overview: Since
teams and agents enact roles, i.e. implement the functionality denoted by the
goals that a given role can achieve, TDF-T shows the mapping between roles and
teams/agents. For a given application, these role enactment definitions delimit
the space of possible team hierarchies, because a team can only take on the roles
it is defined as being able to enact.

Example: Figure 1 shows some role enactments from an air combat scenario.
Note that, in principle, a given role can be enacted by more than one entity, in
this case, the Wingman role can be enacted by a Flight Lieutenant, Pilot Officer

or UAV agent. Also, an entity can potentially enact more than one role; in this
example, an agent of type Flight Lieutenant can enact either the Leader or
Wingman roles, but never both, as shown by the exclusive OR node (XOR). If it
were possible for a Flight Lieutenant to take both roles simultaneously in a
team, then the XOR node would be omitted, and the choice would be made when
the specific team instance is created, as defined by the constraints within its
team structure definition (see Sect. 4.3).

Team Structure Diagrams (Architectural Design) Overview: As indi-
cated by requirement R4, TDF-T needs to support dynamic team structures.
Typical tactical scenarios are highly dynamic, i.e. the situation can change sig-
nificantly and unexpectedly within a short timeframe. Consequently, a static
team structure will not suffice; a team modelling representation needs to sup-
port the representation of the structure of a team, how that structure depends
on the tactical situation, and the conditions under which the team should be
dismantled. Team oriented programming languages typically address this need
by providing primitives for procedurally specifying the required steps (cf. JACK
Teams’ team formation plans [8]).

318 R. Evertsz et al.

We initially provided TDF-T with team formation plans. However, this was
difficult for domain experts to understand, because they were forced to mentally
simulate the team formation steps in order to derive the resulting team struc-
ture for a given situation. To address this difficulty, we developed a declarative
representation for team structures, that includes a means of specifying how the
team structure depends on situational factors. A situational factor is expressed
as an arc condition (using the IF keyword) between a role and its enacting team,
with an optional WHILE condition to express when the team should be disbanded.

Example: In Fig. 2, the team, OCA-T, gets formed when the goal is to
Provide close air support (due to space constraints, we have not shown the
Role Overview diagram that maps this goal to the Close Air Support (CAS) role
that this team enacts). Team formation is triggered by the system’s adoption of
the goal in question, and the team exists for as long as the goal remains active.
If the goal is achieved, or is dropped for some reason, the team is dismantled.
As shown in the diagram, a CAS-T team needs a Strike role filled, as well as an
Offensive Counter Air (OCA) role (cardinality is shown inside the role icon, i.e.
[1]). These are enacted by the Bomber and OCA-T teams.

The OCA-T team will comprise two Fighter Attack Pair role fillers if there are
between 5 and 8 enemy fighters; otherwise, if there are between 1 and 4 enemy
fighters, then only one role filler is required. The WHILE denotes that the sub-
team exists as long as the WHILE condition remains true. So, in this example, if
there were 5 enemy fighters, two Fighter Pair teams would be formed. If at any
time, the number of enemy fighters dropped to 4, then only one Fighter Pair

would be needed, and so the team would be dismantled and a new team formed.
This could happen due to enemy losses during air combat, or because the initial
estimate of the number of incoming fighters was wrong, and the true value only
became apparent once they were within visual range.

Team Overview Diagrams (Detailed Design) Overview: The Team
Overview diagram provides a high level summary of a team and its proper-
ties, and shows the goals the team can achieve, the tactics it can use to achieve
those goals, individual plans that are separate from its tactics, and beliefs that
it maintains.

Example: The lefthand side of Fig. 3 presents a small part of the Team Overview
diagram for the Fighter Pair team. It shows that the team handles two goals.
The Single side offset goal is handled by two plans, with the context in which
each plan applies shown as an arc label between goal and plan. Two tactics
are available to handle the Pincer attack goal, and each applies in a different
context (see arc labels). Both plans and both tactics read from, and write to,
the belief set Enemy situation, as denoted by the bidirectional arcs.

Tactics Overview Diagrams (Detailed Design) Overview: The concept
of a tactic is somewhat similar to the concept of a capability in AOSE. Tactics

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 319

Bomber

Strike

[1]

O ensive Counter Air (OCA)

[1]

OCA-T

CAS-T

OCA-T

IF [enemy = 5-8]
WHILE [enemy = 5-8]

Fighter Attack Pair

[1]

XOR

Fighter Attack Pair

[2]

Fighter Pair Fighter Pair

Provide close air support

IF [enemy = 1-4]
WHILE [enemy = 1-4]

Flight Lieutenant Pilot O cer

Leader

[1]

Wingman

[1]

Fighter Pair

Legend

Goal Agent Team Leader

[n] XOR

XOR Node

Fig. 2. CAS-T, OCA-T and Fighter Pair team structures

Pincer attack

Single side o set
Risky

pincer attack
Cautious

pincer attack

Pincer attack

Enemy situation

Goal Message

Legend

Beliefset Plan Tactic

Stealthy
single side o set

Aggressive
single side o set

IF [weaker] IF [stronger]

Rear
pincer attack

Frontal
pincer attack

Enemy situation

Part of Team Overview for Fighter Pair

Part of Frontal Pincer Attack
Tactics Overview

IF [weaker] IF [stronger]

Message
Goal

turn-in position

Attack enemy

Fig. 3. Team overview and tactics overview diagrams

decompose agent and team functionality into a collection of reusable compo-
nents, and incorporate aspects of design patterns, such as a problem description
and an accompanying solution description (see [10] (p. 232)).

Example: The righthand side of Fig. 3 presents a small part of the
Frontal pincer attack tactic. It applies to the goal Pincer attack. This dia-
gram shows two of the plans the tactic has for tackling the goal, and shows the
Assigned flank message and Fly to flank turn-in position message goal, that
is sent to the Leader and Wingman role fillers, as shown in the team coordination
plan (Fig. 4). One of the tactic’s belief sets, Enemy situation, is shown in the
diagram.

Team Coordination Plans (Detailed Design) Overview: As mentioned
earlier, the notion of joint goal is the key differentiator that distinguishes teams

320 R. Evertsz et al.

from other types of organisational structure. In TDF-T, team coordination plans
are used to specify how team members synchronise their approach to the joint
team goal. In contrast to agent plans, team coordination plans cannot directly
perceive or act on the environment; a team is an abstract entity and so can only
interact with the environment via one of its member agents. TDF-T extends the
TDF plan diagram language with role messaging so that it can support flexible
team coordination mechanisms, but it disallows the use of concrete environmen-
tal artefacts, i.e. percepts and actions, in team coordination plans. Each team
coordination plan is used to achieve a particular team goal, and this is shown
in the plan diagram, as well as in the Team Overview diagram, as illustrated
earlier.

Note that a team can have alternative team coordination plans for a given
goal, and this allows the implementation of multiple strategies for achieving a
particular team goal. In addition to the icons shown in Fig. 4, TDF-T coordi-
nation plans support activity, data, decision/merge, failure, asynchronous goal,
note and wait nodes [10] (p. 231).

Example: Figure 4 shows one of the coordination plans of the Fighter Pair

team. It is relevant when the team adopts the goal to perform a Pincer attack,
as denoted by the dotted communications flow arc incoming to the initial node.
The subsequent computational steps are linked by solid control flow arcs. After
the Select flanks activity, the fork node sets up two concurrent threads whose
completion is synchronised by the join node, and the team then goes on to adopt
the goal Attack enemy after which the coordination plan terminates successfully
at the success node. The Attack enemy goal is handled by another Fighter Pair

team coordination plan, but this is not shown in the Frontal Pincer Attack

tactics overview in Fig. 3, due to insufficient space. In between the fork and the
join, one thread sends the Leader role filler an Assigned flank message, and
then sends it the message goal to Fly to flank turn-in position, as denoted
by the communications flow arcs. The thread proceeds to the join once the
Fly to flank turn-in position is achieved. The other thread is analogous but
messages the Wingman instead.

The scope of role references is important in team coordination plans. Mes-
sages or goals can target role fillers within the team, but cannot reference roles
outside of the team or, if the team is a sub-team, roles in its parent team or
any of its parent’s ancestors. Thus, in this example, the Fighter Pair team can
reference its Leader and Wingman roles, but cannot refer to the Strike role of the
CAS-T ancestor team (Fig. 2). If the Fighter Pair team needs to coordinate with
the Strike role filler, then this must be encoded in a team coordination plan at
the level of the CAS-T team. This constraint is imposed because the Fighter Pair

team cannot assume that it is a sub-team of a team that has a Strike role filler.

4.4 TDF-T Tool

The TDF-T Tool extends the TDF Tool [10] (p. 232) to represent the team-
oriented diagrams and concepts presented in this paper. It is currently a working

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 321

Pincer attack

Leader

Wingman

turn-in position

turn-in position

Goal

Initial Node

Message

Role

Success Node

Fork/Join

Control Flow

Communications Flow

Legend
Activity

Message Goal

Attack enemy

Fig. 4. Cautious pincer attack - team coordination plan (Fighter Pair team)

prototype that offers type safety by constraining what can go in a diagram
and what relationships can be defined therein. It also supports propagation of
relationships across diagrams. Work is ongoing to extend the tool to mirror the
functionality of the TDF Tool by providing consistency checking of team-oriented
designs, and code generation capabilities.

5 Evaluation

We conducted a preliminary evaluation of the understandability and maintain-
ability of TDF-T designs. Previously, evaluations of TDF (without teams) indi-
cated that domain experts found its representation to be easy to understand [9],
and that participants with a sound UML background found TDF designs to be
significantly easier to understand and modify than equivalent UML ones [10].
The objective of the current study was to obtain an indication of how easily
TDF-T can be understood by those who are new to the notation, and whether
they can see how to modify a design to produce different behaviour. One of
our stakeholder’s key objectives for TDF-T is for it to be easy to understand
and critique, so that domain experts and model builders can have a common
diagrammatic representation for expressing and discussing team behaviour. The
following evaluation, though preliminary, is a first step in assessing whether this
is the case.

Participants. 13 participants took part in the evaluation; chosen because they
either had a software engineering background or were experienced in modelling
tactics.

Method. All participants were given a 15 minute presentation of the TDF-T
notation, and were then given 7 design diagrams to study that targeted the
teaming aspects of TDF-T. The design diagrams were based on a submarine
defence case study [2]. The participants were given unlimited time to answer the
11 questions, and took between 20 to 30 min to complete the questionnaire.

322 R. Evertsz et al.

The questions tested their comprehension of the individual team related dia-
grams, the overall comprehension across all diagrams, and their ability to modify
them to produce different behavioural outcomes. Finally, they were asked to rate
the methodology’s intuitiveness (i.e. how natural they found the diagrammatic
representation to be), how comprehensible the designs were, and how easy it was
to modify the designs to produce the required alternative behavioural output.

Results and Analysis. Table 1 shows the mean percentage correctly answered
for each evaluated dimension, and the mean rating (higher percentage equates
to a more positive rating). This preliminary evaluation indicates that, for people
who are new to the methodology and notation, TDF-T is fairly easy to learn and
understand. This is encouraging because they were given a real-world case study.
As expected, the overall intuitiveness rating was lower, as the notation was new
to the participants and most of them had many years of UML modelling experi-
ence, requiring a shift in perspective. However, the participants were able answer
most of the questions correctly and rated TDF-T highly on the dimensions of
ease of understanding and modification.

Table 1. Test scores and ratings for TDF-T evaluation

Dimension Mean (%) σ Rating Mean (%) σ

Goal structures 100 0.00 Intuitiveness 61 0.80

Roles, Goals, Teams 97 0.16 Ease of understanding 74 0.70

Team coordination 93 0.30 Ease of modification 83 0.88

Comprehension 82 0.37

Modification 100 0.00

Though promising, this evaluation needs to be followed up with a more exten-
sive study that looks at how TDF-T facilitates the interaction between domain
experts and modellers working on a real-world project together. Our stakeholder
is planning to run such a study in the air combat domain, looking at scenarios
that have been modelled using other approaches, that are not necessarily agent
based.

5.1 Implementation

A software design methodology is most useful when it can be mapped to sup-
porting programming platforms. With respect to TDF-T, we investigated BDI
agent programming languages that could support the methodology and found
two contenders in JaCaMo [4] and JACK Teams [8]. We found JACK Teams to be
more suitable for our implementation than JaCaMo, as there was a more direct
mapping from TDF-T to JACK Teams for most concepts. JACK Teams also sup-
ports the rich goal decomposition constructs that TDF-T provides, whilst the
goal decomposition in JaCaMo is less suited to our needs, because it is expressed

The Conceptual Modelling of Dynamic Teams for Autonomous Systems 323

via parallel and sequential goals and it is not straightforward to express more
flexible team coordination in terms of messaging.

6 Discussion

This paper presented TDF-T, a team-oriented extension of TDF, which supports
the diagrammatic specification of dynamic team structures, and team coordina-
tion plans.

In developing TDF-T, we surveyed related work in team oriented program-
ming, organisation-based methodologies, and also the philosophical work that
underpins team concepts (as outlined in Sect. 2.1). We developed and evaluated
various approaches to modelling teams and eventually settled on what is pre-
sented in this paper, as it met the requirements outlined in Sect. 3. For example,
to make the case studies easier to model and understand, we abandoned team
formation plans, and instead developed a declarative representation for dynamic
team structures. Furthermore, we initially used the widely adopted Business
Process Model and Notation (BPMN1) to represent team coordination plans.
However, as we developed our case studies, the diagrams became overly com-
plex and difficult to understand, due to the large set of possible BPMN design
elements. Although we tried using a subset, this required modification of the
standard definitions of some BPMN elements. To simplify team coordination
plans, we dispensed with BPMN and chose to use the TDF plan diagram nota-
tion, augmented to include team coordination constructs as detailed in Sect. 4.3.

Although our preliminary evaluation of TDF-T was positive, there are short-
comings. TDF-T does not include a formal model of the environment (also true
of TDF) and does not incorporate the notion of norms (social or organisational).
Both of these aspects are well formulated in JaCaMo [4], though JaCaMo lacks
some of the team specific modelling constructs of TDF-T, due to design choices
in Moise+. As such we see the current version of TDF-T as complementary to
JaCaMo and we will look into incorporating into TDF-T some of the organisa-
tional features of JaCaMo, including the normative aspects.

References

1. Akbari, O.Z.: A survey of agent-oriented software engineering paradigm: towards
its industrial acceptance. J. Comput. Eng. Res. 1(2), 14–28 (2010)

2. Akbori, F.: Autonomous-agent based simulation of anti-submarine warfare opera-
tions with the goal of protecting a high value unit. Master’s thesis (2004)

3. Bisht, S., Malhotra, A., Taneja, S.B.: Modelling and simulation of tactical team
behaviour. Def. Sci. J. 57(6), 853 (2007)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

5. Bratman, M.: Faces of Intention: Selected Essays on Intention and Agency.
Cambridge University Press, Cambridge (1999)

1 http://www.bpmn.org.

http://www.bpmn.org

324 R. Evertsz et al.

6. Case, D.M., DeLoach, S.A.: Obaa++: an agent architecture for participating
in multiple groups. In: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-agent Systems, pp. 1367–1368. International Foun-
dation for Autonomous Agents and Multiagent Systems (2014)

7. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25(4), 487–512 (1991)
8. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.: Implement-

ing industrial multi-agent systems using JACKTM. In: Dastani, M.M., Dix, J.,
El Fallah-Seghrouchni, A. (eds.) ProMAS 2003. LNCS, vol. 3067, pp. 18–48.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-25936-7 2

9. Evertsz, R., Thangarajah, J., Ly, T.: A BDI-based methodology for eliciting tac-
tical decision-making expertise. In: Sarker, R., Abbass, H.A., Dunstall, S., Kilby,
P., Davis, R., Young, L. (eds.) Data and Decision Sciences in Action. LNMIE, pp.
13–26. Springer, Cham (2018). doi:10.1007/978-3-319-55914-8 2

10. Evertsz, R., Thangarajah, J., Yadav, N., Ly, T.: A framework for modelling tactical
decision-making in autonomous systems. J. Syst. Softw. 110(C), 222–238 (2015).
doi:10.1016/j.jss.2015.08.046

11. Giachetti, R.E., Marcelli, V., Cifuentes, J., Rojas, J.A.: An agent-based simulation
model of human-robot team performance in military environments. Syst. Eng.
16(1), 15–28 (2013)

12. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artif. Intell.
86(2), 269–357 (1996)

13. Heaton, L.: Unified modeling language (UML): superstructure specification, v2.0.
Object Management Group, Technical report (2005)

14. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(04), 281–316 (2004)

15. Isern, D., Sánchez, D., Moreno, A.: Organizational structures supported by agent-
oriented methodologies. J. Syst. Softw. 84(2), 169–184 (2011)

16. Kinny, D., Georgeff, M., Rao, A.: A methodology and modelling technique for
systems of BDI agents. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996.
LNCS, vol. 1038, pp. 56–71. Springer, Heidelberg (1996). doi:10.1007/BFb0031846

17. Norling, E.: Folk psychology for human modelling: extending the BDI paradigm.
In: Proceedings of AAMAS 2004, pp. 202–209. IEEE Computer Society (2004)

18. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide, vol. 1. Wiley, Hoboken (2004)

19. Rao, A., Georgeff, M., et al.: BDI agents: from theory to practice. In: Proceedings
of the First ICMAS (1995), pp. 312–319, San Francisco (1995)

20. Schurr, N., Maheswaran, R., Scerri, P., Tambe, M.: From STEAM to Machinetta:
the evolution of a BDI teamwork model. Cognition and Multiagent Interaction:
From Cognitive Modeling to Social Simulation 2004 (2006)

21. Searle, J.R.: Responses to critics of the construction of social reality. Philos. Phe-
nomenol. Res. 57(2), 449–458 (1997)

22. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2008)

http://dx.doi.org/10.1007/978-3-540-25936-7_2
http://dx.doi.org/10.1007/978-3-319-55914-8_2
http://dx.doi.org/10.1016/j.jss.2015.08.046
http://dx.doi.org/10.1007/BFb0031846

Conceptual Modeling for Genomics: Building
an Integrated Repository of Open Data

Anna Bernasconi(B), Stefano Ceri, Alessandro Campi, and Marco Masseroli

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

{anna.bernasconi,stefano.ceri,alessandro.campi,marco.masseroli}@polimi.it

Abstract. Many repositories of open data for genomics, collected by
world-wide consortia, are important enablers of biological research; more-
over, all experimental datasets leading to publications in genomics must
be deposited to public repositories and made available to the research
community. These datasets are typically used by biologists for validating
or enriching their experiments; their content is documented by metadata.
However, emphasis on data sharing is not matched by accuracy in data
documentation; metadata are not standardized across the sources and
often unstructured and incomplete.

In this paper, we propose a conceptual model of genomic metadata,
whose purpose is to query the underlying data sources for locating rel-
evant experimental datasets. First, we analyze the most typical meta-
data attributes of genomic sources and define their semantic proper-
ties. Then, we use a top-down method for building a global-as-view inte-
grated schema, by abstracting the most important conceptual properties
of genomic sources. Finally, we describe the validation of the concep-
tual model by mapping it to three well-known data sources: TCGA,
ENCODE, and Gene Expression Omnibus.

Keywords: Conceptual model · Data integration · Genomics · Next
Generation Sequencing · Open data

1 Introduction

Thanks to Next Generation Sequencing, a recent technological revolution for
reading the DNA, a huge number of genomic datasets have become avail-
able. Sequencing machines perform the primary data analysis and produce raw
datasets (a single human genome requires about 200 GB). Computationally
expensive pipelines, collectively regarded as secondary data analysis [30], are
then applied to raw data for extracting signals from the genome (such as: muta-
tions, expression levels, peaks of binding enrichment, chromatin states, etc.),
thereby producing processed genomic data, which are much smaller in size.

Processed datasets are collected by worldwide consortia, such as TCGA (The
Cancer Genome Atlas) [36], ENCODE (the Encyclopedia of DNA Elements) [28],
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 325–339, 2017.
https://doi.org/10.1007/978-3-319-69904-2_26

326 A. Bernasconi et al.

Roadmap Epigenomics [19], and 1000 Genomes [27]; moreover, it is customary
for authors of biological articles to publish their processed datasets on reposito-
ries such as GEO (the Gene Expression Omnibus) [4]. These datasets constitute
a wealth of information, as they are open and can be used for secondary research.
Processed datasets are used in tertiary data analysis for giving a global sense to het-
erogeneous genomic and epigenomic signals, thereby answering complex biological
queries. Several systems are dedicated to tertiary data analysis, including Fire-
Cloud1, SciDB-Paradigm4 [26], and BLUEPRINT [1]. In the context of the GeCo
Project2, we developed GMQL [17,23], a high-level query language for genomics;
we also proposed GDM [24], a unifying model for processed data formats.

While a lot of efforts are made for the production of genomic datasets, much
less emphasis is given to the structured description of their content. Such descrip-
tions, collectively regarded as metadata, are fundamental for understanding how
each biological sample was processed, to which biological or clinical condition it
is associated, which technological process has been used for its production, and
so on. There is no standard for metadata, thus each source/consortium enforces
some rules autonomously; a conceptual design for metadata is either missing or,
when present, overly complex and useless3. In summary, in spite of a growing
interest on tertiary data analysis and of the availability of many valuable data
sources, genomic metadata are lacking a conceptual model for understanding
which sources and datasets are most suitable for answering a genomic question.

One of the far-reaching goals of the GeCo project is the development of an
integrated repository of open processed data, supporting both structured and
search queries; the GMQL prototype4 already integrates data from three reposi-
tories (TCGA, ENCODE, and Roadmap Epigenomics) and structured methods
for periodically loading and keeping updated their contents. To overcome the
lack of standards, metadata are stored in GMQL as generic attribute-value pairs;
with such format, metadata are used for the initial selection of relevant datasets.
However, we are aware of the fact that attribute-value pairs are just providing
a viable solution, but do not carry enough semantics.

In this paper, we present the Genomic Conceptual Model (GCM), a
conceptual model for describing metadata of genomic data sources. GCM is
centered on the notion of the experiment item, typically a file containing genomic
regions and their properties, which is analyzed from three points of view:

– The technology used in the experiment, including information about item
containers and their formats.

– The biological process observed in the experiment, in particular the sample
being sequenced (derived from a tissue or a cell culture) and its preparation,
including its donor.

1 https://software.broadinstitute.org/firecloud/.
2 Data-Driven Genomic Computing, http://www.bioinformatics.deib.polimi.it/geco/,
ERC Advanced Grant, 2016–2021.

3 At https://www.encodeproject.org/profiles/graph.svg see the conceptual model of
ENCODE, an ER schema with tens of entities and hundreds of relationships, which
is neither readable nor supported by metadata for most concepts.

4 http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/.

https://software.broadinstitute.org/firecloud/
http://www.bioinformatics.deib.polimi.it/geco/
https://www.encodeproject.org/profiles/graph.svg
http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

Conceptual Modeling for Genomics 327

– The management of the experiment, describing the organizations/projects
which are behind the production of each experiment.

The conceptual schema is constructed top-down, based on a systematic analysis
of metadata attributes and of their properties in many genomic sources, and then
verified bottom-up, on TCGA, ENCODE, and GEO; we show that ER schemas
describing these sources can be constructed as subsets of GCM. Arbitrary queries
on GCM can be propagated to sources, using the global-as-view approach [20].
We also show that GCM provides the skeleton to a simple query interface, similar
to the one provided by DeepBlue [2]. Driven by GCM, we will add many more
data sources to our integrated repository of open data for genomics.

2 Design of GCM

2.1 Analysis of Metadata Attributes

Most data sources provide interfaces for metadata extraction; these are based
on simple query templates or application programming interfaces (APIs), and
enable the selection of experimental data. Some sources also provide tabular
descriptions of the metadata that can be more systematically queried, or enable
the extraction of matching metadata in semistructured format (XML or JSON
files).

Taxonomy of Metadata Attributes. As a first step in developing GCM,
we defined a taxonomy of the main properties of metadata attributes; we then
systematically applied the taxonomy to each considered source, so as to better
characterize its content. According to our taxonomy, attributes are:

– contextual (C) when they are present (or absent) only within specific con-
texts, typically because another attribute takes a specific value. In such cases,
there is an existence dependency between the two attributes.

– dependent (D) when the domain of their possible values is restricted, typ-
ically because another attribute takes a specific value. In such cases, there is
a value dependency between the two attributes.

– restricted (R) when their value must be chosen from a controlled vocabu-
lary.

– single-valued (S) when they assume at most one value for each specific
experiment.

– mandatory (M) when they must have a value, either for all experiments or
within a specific context.

The resulting taxonomy is shown in Table 1; it includes orthogonal features,
and we targeted both completeness and minimality. By default (and in most
cases), attributes do not have any of the above properties. Very few attributes
are mandatory and unfortunately sources do not always agree on them; in many
cases they are named and typed somehow differently.

328 A. Bernasconi et al.

Table 1. Taxonomy of features for metadata attributes

Level Symbol Feature Default

Source C Contextual Non-contextual

D Dependent Independent

R Restricted Free

S Single-valued Multi-valued

M Mandatory Optional

Integrated Repository H Human Curated Extracted

O Ontological Ordinary

We use these five categories to describe the attributes that are included in the
conceptual model, as explained in the next section; we label the attributes with a
feature vector, e.g. Type[RSM] denotes Type as an attribute which is mandatory,
restricted and single-valued, while Pipeline[D(Technique)S] denotes Pipeline as a
single-valued attribute with a value dependency from the attribute Technique.

Source Analysis. We examined several sources; among them TCGA and
ENCODE provide the most comprehensive collection of metadata attributes.

– TCGA reports many experiment pipeline-specific metadata attributes; out
of them we selected 22 attributes, common to all pipelines, which are the
most interesting from a biological point of view (Table 2).

– ENCODE includes both a succinct and an expanded list of metadata
attributes; while the expanded list has over 2000 attributes, the succinct
list has 49 attributes for experiments, 44 attributes for biosamples, and 28
attributes for file descriptions.

Other Properties. We next define properties that we could not observe in
the sources, but will be used for characterizing the metadata attributes of our
integrated repository (they are also included in Table 1). Accordingly, attributes
are:

– human curated (H) when their value is provided by a curator of the repos-
itory (and not extracted from the underlying data source).

– ontological (O) when an interface supports similarity-based matches based
upon semantic properties, e.g. through the connection to external ontologies.

Rules. Rules may be used for expressing existence and value dependencies.

– The existence dependency Technique = “Chip-seq” → M(Target) indicates
that Target is a mandatory attribute if Technique takes the value “Chip-seq”,
while Technique �= “Chip-seq” → NULL(Target) indicates that Technique is
not specified otherwise.

Conceptual Modeling for Genomics 329

Table 2. TCGA metadata attributes analysis

C D R S M Dependency Attribute

× × clinical.demographic.id

× clinical.demographic.year of birth

× × × clinical.demographic.gender

× × × clinical.demographic.ethnicity

× × × clinical.demographic.race

× × biospecimen.sample.id

× × × biospecimen.sample.sample type

× × × sample type biospecimen.sample.tissue type

× × generated data files.data file.〈type〉.id
× × × generated data files.data file.〈type〉.data type

× × × × data type generated data files.data file.〈type〉.data format

× × generated data files.data file.〈type〉.file size

× × × × data type generated data files.data file.〈type〉.experimental strategy

× × × data type generated data files.data file.〈type〉.platform
× × × × data type analysis.〈workflow〉.workflow type

× × analysis.〈workflow〉.workflow link

× × case.case.id

× case.case.primary site

× × primary site case.case.disease type

× × administrative.program.name

× × administrative.project.name

× administrative.tissue source site.name

– The following value dependency connects the DataType and Format
attributes: DataType = “raw data” → Format = “fastq”.

In the next section we show examples of both existence and value dependencies,
that complement the conceptual model specification; when the dependencies
are specified for attributes belonging to different entities, they hold for all the
instance pairs connected with an arbitrary join path connecting the two entities
(this is not ambiguous because the conceptual model is acyclic).

2.2 Genomic Conceptual Model

We next designed the Genomic Conceptual Model top-down, inclusive of the
most relevant metadata attributes as scouted from the various sources, build-
ing the entity-relationship schema represented in Fig. 1. The schema includes
the principal concepts; other source-specific concepts can be made available in

330 A. Bernasconi et al.

Fig. 1. Genomic conceptual model

semi-structured form aside from this schema (e.g. all clinical diagnosis condi-
tions available for the donor in TCGA). The model is centered on the Item
entity, which represents an elementary experimental unit. Three sub-schemata
(or views) depart from the central entity, recalling a classic star-schema organi-
zation that is typical of data warehouses; they respectively describe biological,
technological, and management aspects.

Central Entity. We next describe the attributes of the Item entity and
associate each of them with their feature vector. The SourceId[SM] and
DataType[RSM] respectively denote the item identifier within the source and
the item’s data type, and must always be included; DataType denotes the spe-
cific content of the Item, e.g. “peak”. Format[D(DataType)RSM] denotes the Item
data file format (e.g. [“fastq”, “bam”, “wiggle”, “bed”, “tsv”, “vcf”, “maf”,
“xml”]) and depends on DataType (e.g. “bed” format is compatible with “peak”
and not compatible with “read”). Other attributes are: Size[SM], SourceUrl[M],
LocalUri[C(Format)SM], and Pipeline[D(Technique)S].

The use of the last three attributes requires some discussion. Recall that we
intend to build an integrated repository that contains only processed data, while
in many cases the sources include also the raw data. In our metadata repository
we include items relative to both raw and processed data with a reference to
the related file in the original source within the SourceUrl attribute, that can
be multi-valued in case the same data file is derived from different sources. In
addition, items relative to processed files also exhibit an attribute LocalUri (see
rule 1 in Listing 1, at the end of this section) indicating their physical location in
our data repository. Pipeline is a descriptor of the specific parameters adopted in
the pipeline used for producing the processed data. The descriptor is interpreted
in the general context of the Technique used for producing several items of the

Conceptual Modeling for Genomics 331

same type and format; hence, the feature vector notation for Pipeline. Providing
parameters and references to the raw data is relevant in the case of processed
data, as sometimes biologists resort to original raw data for reprocessing; how-
ever, in the data sources such attributes may be missing or hidden within textual
attributes.

Biological View. This view consists of a chain of entities: Item-Replicate-
BioSample-Donor describing the biological process leading to the production
of the Item. All relationships are many-to-one, hence an Item is associated with
a given Replicate, each associated with a given BioSample, each associated
with a Donor.

Donor represents the individual of a specific organism from which the bio-
logical material is derived. It has attributes SourceId[S] (donor identifier relative
to a source) and Species[RSM]; Age[S], Gender[RS], and Ethnicity[RS] are other
optional attributes of interest.

BioSample describes the material sample taken from a biological entity and
used for the experiment. Its SourceId[M] is an identifier of the bio-sample within a
source, mandatory but also multi-valued (when the same sample is linked to dif-
ferent sources). Type[RSM] is restricted to the values [“cell line”,“tissue”]. Based
on the value of this attribute, either Tissue[CSMO] or CellLine[CSMO] becomes
mandatory, but not both of them; this dependency is expressed by rules 2 and 3.
IsHealthy[RS] is Boolean and Disease[C(IsHealthy)D(Tissue)O] contextually depends
on IsHeathy, as expressed by rule 4, and can be multi-valued; moreover, its val-
ues depend on Tissue because given diseases can only be related to given tissues.
We marked Tissue, CellLine and Disease as ontological5, as we intend to extend
the values of these attributes with their synonyms and generalizations/special-
izations, so as to ease their search; for example, the Tissue “blood vessel” will
match the terms “vessel”, “arteries” and “veins”. Preliminary work for giving an
extended ontological interpretation to ENCODE metadata is reported in [11].

Replicate is used when multiple material samples are generated from the
same BioSample, giving rise to items that are replica for the same experiment.
This entity is relevant in some epigenomic data sources (such as ENCODE), that
differentiate between technical and biological replication; such distinction is not
present in most of the other sources.

Technology View. This view consists of a chain of entities: Item-Container-
ExperimentType describing the used technology leading to the production of
the Item. Through this chain, an Item is associated by means of (1:N) relation-
ships to a given Container of a given ExperimentType.

5 We will use the BRENDA Tissue and Enzyme Source Ontology [32] for tissues,
the Cell Line Ontology [31] for cell lines, and the Human Disease Ontology [33] for
human diseases.

332 A. Bernasconi et al.

Container is used to describe common properties of homogeneous items
- sharing the same data structure and produced by the same experiment type.
Its attributes include Name[SM] and Assembly[C(DataType)D(Species)RSM]; Assem-
bly is only present for items of particular types (see rule 5) and is restricted
to a smaller vocabulary according to the Species (e.g., see rules 16 and 17).
The Boolean attribute IsAnn[RSM] is used for distinguishing experimental items
from known annotations (i.e., regarding known genomic regions): when true,
Annotation[C(IsAnn)RSM] exists (see rules 6 and 7); annotations have a restricted
vocabulary, including: [“Gene”, “Exon”, “TSS”, “Promoter”, “Enhancer”, “Cpg-
Island”].

ExperimentType refers to the specific methods used for producing each
item. It includes the mandatory attribute Technique[RSM] (e.g., [“Chip-seq”,
“Dnase-seq”, “RRBS”, . . .]). Feature[D(Technique)RSMH] is a mandatory manu-
ally curated attribute that we add to denote the specific feature described by
the experiment (e.g., “Copy Number Variation”, “Histone Modification”, “Tran-
scription Factor”). The value of Platform[C(DataType)RSM] illustrates the NGS
platform used for sequencing and depends on the DataType of the item (see rule
8). When the Technique is “Chip-seq”, the two attributes Target[C(Technique)RSM]

and Antibody[C(Technique)D(Target)RSM] are present (see rules 9–12). The Target
value is usually aligned to the vocabulary of UniProtKB6. The Antibody value
depends on the Target since it is specific against that antigen.

Management View. This view consists of a chain of entities: Item-Case-
Project describing the organizational process for the production of each item
and the way in which items are grouped together to form a case.

Case represents a set of items that are gathered together, because they
participate to a same research objective.

Project represents the project or program, occurred at a given institution
(e.g., individual laboratory or consortium) that was responsible of the production
of the item. ProjectName[S] and ProgramName[S] may be present, but none of
them is mandatory.

Dependencies. Rules 1–12 of Listing 1 exhaustively describe the existence
dependencies of the global schema. Rules 13–17 show some examples of value
dependencies. Note that an attribute can be contextual but not mandatory (such
as Disease, rule 4), contextual and mandatory (such as Target, rules 9 and 10),
and also mandatory but not contextual (such as Technique). Note also that,
when an attribute is marked as mandatory and the related information is miss-
ing from the source, then either human curation or rule-based management are
needed.

6 http://www.uniprot.org/uniprot/.

http://www.uniprot.org/uniprot/

Conceptual Modeling for Genomics 333

1Item.Format=“bed” → M(Item.LocalUri)
2BioSample.Type=“tissue” → M(BioSample.Tissue)
3BioSample.Type=“cell line” → M(BioSample.CellLine)
4BioSample.IsHealthy → NULL(BioSample.Disease)
5Item.DataType in [“aligned read”,“peak”,“signal”] → M(Container.Assembly)
6Container.IsAnn → M(Container.Annotation)
7NOT(Container.IsAnn) → NULL(Container.Annotation)
8Item.DataType=“raw data” → M(ExperimentType.Platform)
9ExperimentType.Technique=“Chip-seq”→ M(ExperimentType.Target)
10ExperimentType.Technique �=“Chip-seq” → NULL(ExperimentType.Target)
11ExperimentType.Technique=“Chip-seq”→ M(ExperimentType.Antibody)
12ExperimentType.Technique �=“Chip-seq” → NULL(ExperimentType.Antibody)

——–
13Item.DataType=“raw data”→ Item.Format=“fastq”
14BioSample.Tissue=“liver”→ BioSample.Disease ∈ [“viral hepatitis”,“liver lymphoma”,. . .]
15BioSample.Tissue=“liver” → BioSample.Disease �∈ [“acute leukemia”,“pilorus cancer”,. . .]
16Donor.Species=“Homo sapiens”→ Container.Assembly ∈ [“GRCh38”, “hg19”, “hs37d5”]
17Donor.Species=“Mus musculus”→ Container.Assembly ∈ [“mm9”, “mm10”, “GRCm38”]

Listing 1. Examples of existence and value dependencies

2.3 Source-Specific Views of GCM

We verify that the global-as-view approach really captures the three data sources
considered, by showing them as views of GCM in Fig. 2; we use the following
notation:

– We place the attributes of each source in the same position as in GCM, but
we use for them the name that we found in the documentation of each source;
missing attributes correspond to white circles.

– We cluster the conceptual entities corresponding to a single concept in the
original source by encircling them within grey shapes. The entity names cor-
responding to the original source are reported with a bold bigger font on the
clustered shape (e.g. Series in GEO) or directly on the new entity (e.g., Case
in TCGA) when this corresponds to the name given in our GCM.

– We indicate specific relationship cardinalities where GCM differs from the
source, using a bold font (e.g., see (1,1) from Item to Case in ENCODE).

– We enclose fixed human curated values in inverted commas and use the func-
tions notation tr, comb, and curated to describe a transformation of a source
field, a combination of multiple source fields, and curated fields, respectively.

Note that the Gene Expression Omnibus (GEO) source is at the same time
a very rich public repository of genomic data (as most research publications
include links to experimental data uploaded to GEO), but is also a very poor
source of metadata, which are not well structured and often lack information;
hence our mapping effort is harder and less precise for GEO than for the more
organized TCGA and ENCODE sources7. The mapping to GEO captures as well
the mapping to Roadmap Epigenomics, another relevant source of public data.

7 Textual analysis to extract semantic information from the GEO repository is
reported in [12]; we plan to reuse their library.

334 A. Bernasconi et al.

Fig. 2. Source-specific views of GCM for TCGA, ENCODE, and GEO

2.4 User-Friendly Interface

An important side effect of providing a global and integrated view of data sources
is the ability to build user-friendly query interfaces for selecting items from mul-
tiple data sources. We show a mock-up of an interface that supports conjunctive

Fig. 3. Retrieval interface mock-up

Conceptual Modeling for Genomics 335

queries over our entities, very similar to the user interface currently provided
by DeepBlue [2] (Fig. 3); attributes are rendered by pop-up lists and values are
then entered by users, with autocomplete support.

3 Building the Integrated Repository

In this section, we describe high level rules for loading the content of the inte-
grated repository from the original data sources, with a global-as-view approach.
These transformations drive our approach.

3.1 Available Repositories at the Sources

Most genomic repositories offer Web interfaces for accessing their metadata. In
addition, some of them offer Web APIs for querying the metadata, used for
accessing storage structures for metadata (typically relational tables). Table 3
describes the schemas of the tables available at TCGA8, ENCODE, and GEO9.
TCGA and ENCODE tables result from the translation of a hierarchical json
format representation (the only one provided by the sources) into a relational
representation that has required several normalization steps and simplifications
for illustration purposes. GEO tables result from a selection of a small subset of
attributes used for mapping GEO to GCM.

Table 3. Relational schema of TCGA(T), ENCODE(E), and GEO(G) repositories

T.Case(id,project id,disease type,primary site,tissue source site)

T.Project(id,name,program)

T.ClinicalDemographic(id,case id,year of birth,gender,ethnicity,race)

T.BiospecimenSample(id,case id,sample type,tissue type)

T.BiospecimenReadGroup(id,sample id,platform id)

T.DataFile(id,readgroup id,workflow id,data type,data format,size,experimental strategy)

T.AnalysisWorkflow(id,workflow type,workflow link)

E.Donor(id,organism scientific name,age,sex,ethnicity)

E.Biosample(id,donor id,biosample type,biosample term name,health status)

E.Replicate(id,biosample id,experiment id,biological replicate num,technical replicate num)

E.Experiment(id,assembly,assay term name,target,antibody,lab,award project,platform)

E.File(id,experiment id,output type,file type,file size,pipeline title,pipeline accession)

G.File(id,gsm id,file type,size,download)

G.Gse(id,organization name,contact,bioproject,experiment type)

G.Gsm(id,gse id,organism,age,gender,source name,disease state,genome built,instrument model)

8 The metadata is provided in the NCI Genomic Data Commons portal, https://docs.
gdc.cancer.gov/Data Dictionary/viewer/.

9 GEO information can be retrieved through the R package GEOmetadb [37].

https://docs.gdc.cancer.gov/Data_Dictionary/viewer/
https://docs.gdc.cancer.gov/Data_Dictionary/viewer/

336 A. Bernasconi et al.

3.2 Mapping Rules

Mapping rules are used to describe how data are loaded from the sources into the
integrated repository; for illustration purposes, in Table 4 we provide some of the
mappings, related to the Donor, BioSample, Case, and ExperimentType
entities. Each mapping rule is a logic formula with variables in its left end side
(LHS) which are computed from the variables in its right end side (RHS). The
order of the LHS variables is the same reported in our global schema in Fig. 1 and
the order of the RHS variables is the same reported in Table 3 for each source. As
an example, the entity ExperimentType of the global schema is filled with data
from ENCODE’s entity Experiment, together with data from TCGA’s Biospec-
imenReadGroup and DataFile (joined on the readgroup id attribute), and data
from GEO’s Gse and Gsm (joined on the gse id attribute).

Table 4. Examples of mapping rules for building the integrated repository from the
sources

Donor(SID,SP,AGE,G,E) ⊇ E.Donor(SID,SP,AGE,G,E)

Donor(SID,“Homo S.”,tr(Y),G,comb(ET,R)) ⊇ T.ClinicalDemographic(SID, ,Y,G,EY,R)

Donor(,SP,AGE,G,) ⊇ G.Gsm(, ,SP,AGE,G, , , ,)

BioSample(SID,T,tr(BT),tr(BT),tr(HS),tr(HS)) ⊇ E.Biosample(SID, ,T,BT,HS)

BioSample(SID,“tissue”,PS, ,tr(ST,TT),DIS) ⊇ T.BiospecimenSample(SID,CID,ST,TT),

T.Case(CID, ,DIS,PS,)

BioSample(SID,tr(SN),tr(SN),tr(SN),tr(D),tr(D)) ⊇ G.Gsm(SID, , , , ,SN,D, ,)

Case(SID,SS) ⊇ E.Experiment(SID, , , , , ,SS,)

Case(SID,SS) ⊇ T.Case(SID, , , ,SS)

Case(SID,tr(O,C)) ⊇ G.Gse(SID,O,C, , ,)

ExperimentType(TE,comb(TE,T),P,T,A) ⊇ E.Experiment(, ,TE,T,A, , ,P)

ExperimentType(TE,tr(TE),P, ,) ⊇ T.BiospecimenReadGroup(RGID, ,P),

T.DataFile(,RGID, , , , ,TE)

ExperimentType(tr(TE),tr(TE),tr(P), ,) ⊇ G.Gse(EID, , , ,TE),

G.Gsm(,EID, , , , , , ,P)

As we already discussed in Sect. 2.3, the values of some of the attributes are
acquired exactly as they are in the original source, others need the application of
simple manually provided functions for textual transformation (denoted as tr),
others are computed as textual combination of multiple source fields (denoted as
comb, and finally others need manual curation (values are enclosed in inverted
commas). As an example, Donor.Ethnicity corresponds to a combination of
the attributes race and ethnicity of the ClinicalDemographic table, taken from
TCGA source. Tissue and CellLine attributes of the BioSample are both pro-
duced by biosample term name of ENCODE which uses this attribute for both
of them - the content of this attribute depends on the value of biosample type
(either “cell line” or “tissue”). Relevant integration efforts are addressed towards
defining a shared set of homogenized values for each attribute. The values of the
global attributes, given to the LHS variables, are to be intended as already
homogenized to the reference ontologies (as indicated in Sect. 2.2), or to the

Conceptual Modeling for Genomics 337

chosen finite restricted dictionaries. Notice that all the mappings preliminarily
perform a value homogenization step, implicit in the integration process.

4 Related Works

A long stream of research tackled the problem of providing integrated access
to multiple, heterogeneous sources. A survey of very preliminary works is [14].
Buneman et al. [6] described the problem of querying and transforming scientific
data residing in structured files of different formats. Along that work, BioK-
leisli [8] and K2 [9] describe early systems supporting queries across multiple
sources. BioKleisli was a federated database offering an object-oriented model;
its main limitation was the lack of a global schema, imposing users to know
the structure of underlying sources. To improve this aspect, K2 included GUS
(Genomics Unified Schema), an extensive relational database schema support-
ing a wide range of functional genomics data types. The BioProject [3] database
was recently established to facilitate the organization and classification of project
metadata submitted to NCBI, EBI and DDBJ databases.

A common approach in integrated data management is data warehousing,
consisting of a-priori integration and reconciliation of data extracted from mul-
tiple sources, such as in EnsMart/BioMart [13,34]. Along this direction, [22]
describes a warehouse for integrating genomic and proteomic information using
generalization hierarchies and a modular, multilevel global schema to overcome
differences among data sources. ER modeling (and UML class diagrams) were
used in [5]; models describe protein structures and genomic sequences, with
rather complex concepts aiming at completely representing the underlying biol-
ogy. [35] is a biomedical data warehouse supporting a data model (called BioStar)
capturing the semantics of biomedical data and providing some extensibility to
cope with the evolution of biological research methodologies.

Many other works [10,15,16,18,21,25,29] present conceptual models for
explaining biological entities and their interactions in terms of conceptual data
structures. With our approach, similar to DeepBlue [2], we instead use concep-
tual modeling for driving the continuous process of metadata integration and for
offering high-level query interfaces on metadata for locating relevant datasets,
under the assumption that users will then manage these datasets for solving
biological or clinical questions. Similarly to DeepBlue, we hide the data source
differences so as to provide easy-to-use interfaces, but differently from them we
disclose the semantic properties of the underlying sources and the metadata inte-
gration process; moreover, we cover a broader spectrum of sources and provide
a richer set of concepts, including the management view.

5 Conclusions

The interest on an integrated repository for genomics stems from the huge
amount of resources that are becoming available. In this paper we provide GCM,
a genomic conceptual model capable of capturing the metadata of heterogeneous

338 A. Bernasconi et al.

sources with a global-as-view approach. The model is supported by a method for
conceptually designing global metadata through source attribute analysis and is
validated by using three data sources: TCGA, ENCODE, and GEO.

Our GMQL system already provides access to datasets from TCGA,
ENCODE, and Roadmap Epigenomics, that were identified as the most rele-
vant in the course of collaborative projects with many biologists; we already
developed some tools for automatically importing such datasets and for convert-
ing them to an integrated format, e.g., TCGA2BED [7]. Thanks to GCM, we
can also provide a coherent semantics to the metadata of integrated sources;
throughout the GeCo project we plan to add more sources, according to needs
of biologists, and to continuously integrate their metadata within GCM.

Acknowledgement. This research is funded by the ERC Advanced Grant project
GeCo (Data-Driven Genomic Computing), 2016–2021.

References

1. Adams, D., et al.: BLUEPRINT to decode the epigenetic signature written in
blood. Nat. Biotechnol. 30(3), 224–226 (2012)

2. Albrecht, F., et al.: DeepBlue epigenomic data server: programmatic data retrieval
and analysis of epigenome. Nucleic Acids Res. 44(W1), W581–W586 (2016)

3. Barrett, T., et al.: BioProject and BioSample databases at NCBI: facilitating cap-
ture and organization of metadata. Nucleic Acids Res. 40(D1), 57–63 (2012)

4. Barrett, T., et al.: NCBI GEO: archive for functional genomics data sets – update.
Nucleic Acids Res. 41(Database issue), D991–D995 (2013)

5. Bornberg-Bauer, E., Paton, N.W.: Conceptual data modelling for bioinformatics.
Brief. Bioinform. 3(2), 166–180 (2002)

6. Buneman, P., et al.: A data transformation system for biological data sources. In:
International Conference on Very Large Data Bases, pp. 158–169 (1995)

7. Cumbo, F., et al.: TCGA2BED: extracting, extending, integrating, and querying
The Cancer Genome Atlas. BMC Bioinform. 18(6), 1–9 (2017)

8. Davidson, S.B., et al.: Biokleisli: a digital library for biomedical researchers. Int.
J. Digit. Libr. 1(1), 36–53 (1997)

9. Davidson, S.B., et al.: K2/Kleisli and GUS: experiments in integrated access to
genomic data sources. IBM Syst. J. 40(2), 512–531 (2001)

10. El-Ghalayini, H., et al.: Deriving conceptual data models from domain ontologies
for bioinformatics. In: 2006 2nd Information and Communication Technologies,
ICTTA 2006, vol. 2, pp. 3562–3567 (2006)

11. Fernández, J.D., et al.: Ontology-based search of genomic metadata. IEEE/ACM
Trans. Comput. Biol. Bioinform. 13(2), 233–247 (2016)

12. Galeota, E., Pelizzola, M.: Ontology-based annotations and semantic relations in
large-scale (epi)genomics data. Brief. Bioinform. 18(3), 403–412 (2017)

13. Haider, S., et al.: BioMart Central Portal - unified access to biological data. Nucleic
Acids Res. 37(Web Server issue), 23–27 (2009)

14. Hernandez, T., Kambhampati, S.: Integration of biological sources: current systems
and challenges ahead. SIGMOD Rec. 33(3), 51–60 (2004)

15. Idrees, M., et al.: A review: conceptual data models for biological domain. JAPS,
J. Anim. Plant Sci. 25(2), 337–345 (2015)

Conceptual Modeling for Genomics 339

16. Ji, F., Elmasri, R., et al.: Incorporating concepts for bioinformatics data modeling
into EER models. In: ACS/IEEE International Conference on Computer Systems
and Applications, pp. 189–192. IEEE Computer Society, Washington, DC, USA
(2005)

17. Kaitoua, A., Pinoli, P., Bertoni, M., Ceri, S.: Framework for supporting genomic
operations. IEEE Trans. Comput. 66(3), 443–457 (2017)

18. Keet, M.C.: Biological data and conceptual modelling method. J. Concept. Model.
29(1), 1–14 (2003)

19. Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature
518(7539), 317–330 (2015)

20. Lenzerini, M.: Data integration: a theoretical perspective. In: Symposium on Prin-
ciples of Database Systems, PODS, pp. 233–246. ACM, New York, NY, USA (2002)

21. Louie, B., et al.: Data integration and genomic medicine. J. Biomed. Inform. 40(1),
5–16 (2007)

22. Masseroli, M., Canakoglu, A., Ceri, S.: Integration and querying of genomic and
proteomic semantic annotations for biomedical knowledge extraction. IEEE/ACM
Trans. Comput. Biol. Bioinform. 13(2), 209–219 (2016)

23. Masseroli, M., et al.: GenoMetric Query Language: a novel approach to large-scale
genomic data management. Bioinformatics 31(12), 1881–1888 (2015)

24. Masseroli, M., et al.: Modeling and interoperability of heterogeneous genomic big
data for integrative processing and querying. Methods 111, 3–11 (2016)

25. Rechenmann, F.: Data modeling: the key to biological data integration. EMBnet.
J. 18(B), 59–60 (2012)

26. Anonymous paper. Accelerating bioinformatics research with new software for big
data to knowledge (BD2K), Paradigm4, April 2015. www.paradigm4.com

27. Consortium 1000Genomes: A map of human genome variation from population-
scale sequencing. Nature 467(7319), 1061–1073 (2010)

28. Consortium ENCODE: An integrated encyclopedia of DNA elements in the human
genome. Nature 489(7414), 57–74 (2012)

29. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual
modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka,
K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–
412. Springer, Cham (2016). doi:10.1007/978-3-319-46397-1 31

30. Roy, A., et al.: Massively parallel processing of whole genome sequence data: an
in-depth performance study. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD 2017, Chicago, Illinois, USA, 14–19
May 2017, pp. 187–202. ACM, New York (2017)

31. Sarntivijai, S., et al.: CLO: the cell line ontology. J. Biomed. Semant. 5(1), 37
(2014)

32. Schomburg, I., et al.: BRENDA in 2013: new options and contents in BRENDA.
Nucleic Acids Res. 41(Database issue), D764–D772 (2013)

33. Schriml, L.M., et al.: Disease Ontology: a backbone for disease semantic integration.
Nucleic Acids Res. 40(Database issue), 940–946 (2012)

34. Smedley, D., et al.: The BioMart community portal: an innovative alternative to
large, centralized data repositories. Nucleic Acids Res. 43(W1), 589–598 (2015)

35. Wang, L., et al.: BioStar models of clinical and genomic data for biomedical data
warehouse design. Int. J. Bioinform. Res. Appl. 1(1), 63–80 (2005)

36. Weinstein, J.N., et al.: The cancer genome atlas pan-cancer analysis project. Nat.
Genet. 45(10), 1113–1120 (2013)

37. Zhu, Y., et al.: Geometadb: powerful alternative search engine for the gene expres-
sion omnibus. Bioinformatics 24(23), 2798–2800 (2008)

www.paradigm4.com
http://dx.doi.org/10.1007/978-3-319-46397-1_31

Towards Thinking Manufacturing and Design
Together: An Aeronautical Case Study

Thomas Polacsek1, Stéphanie Roussel1(B), François Bouissiere2,
Claude Cuiller2, Pierre-Eric Dereux2, and Stéphane Kersuzan2

1 ONERA, Toulouse, France
{thomas.polacsek,stephanie.roussel}@onera.fr

2 AIRBUS, Blagnac, France
{francois.boussiere,claude.cuiller,pierre-eric.dereux,

stephane.kersuzan}@airbus.fr

Abstract. The construction of complex objects, such as an aircraft,
requires the creation of a dedicated industrial system. By industrial sys-
tem, we mean all the material and immaterial means used to manufacture
the object (labour, machines, factories, etc.). Classically, the industrial
system is specified when the aircraft design is already engaged. In other
words, the specifications of the product are the requirements of the indus-
trial system. This approach presents two major drawbacks: firstly, the
industrial system can inherit blocking constraints that could be easily
removed by changing the aircraft design, and secondly, both continue to
evolve during the lifetime of the aircraft programme. In this paper, we
address the problem of having a global view of design and manufacturing.
Starting from an industrial case study, the Airbus A320 aircraft manufac-
turing, we proposed a model-based approach, firsts steps towards tools
for specifying together and consistently the design of an aircraft and its
manufacturing system.

Keywords: Model-based systems engineering · Simultaneous engineer-
ing · Manufacturing · Aeronautics · Factory of the future

1 Introduction

Nowadays, the aeronautical market moves very quickly, especially due to the
emergence of new airline companies. Indeed, these companies have requirements
on their aircraft fleet either regarding the performances of the aircraft, the asso-
ciated costs, or more specific features. Aircraft manufacturers need to align their
current aircraft models with these requirements quickly if they want to remain
competitive. But the development cycle of an aircraft is, today, very long com-
pared to the evolution of the market. In fact, the aircraft architectural design
is carried out sequentially by first considering the requirements related to the
performance of the product (number of passengers, consumption, etc.), defining
the major components of the aircraft, and then defining the associated industrial
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 340–353, 2017.
https://doi.org/10.1007/978-3-319-69904-2_27

Towards Thinking Manufacturing and Design Together 341

system.1 This results in a low reactivity to adapt the product to these potential
new clients.

On another aspect, the demand for aircraft has been growing for decades,
especially for some short-haul aircraft families. In this context, there is a need
for increasing the production rate on the manufacturing lines. But the produc-
tion schedule is already so tight that it has become very difficult and costly to
reach higher rates. As the aircraft manufacturers do not wish to deeply modify
the current industrial system, they are introducing modifications in the archi-
tecture design that “simplify” manufacturing. For instance, a heavy and large
aircraft element, thus difficult to handle by operators, may have to be installed
in non-ergonomic conditions, like arms raised upward for a long duration. If
this element is moved to a more accessible location, or replaced by smaller ele-
ments, gains in installation time can be expected. In order to evaluate the impact
of a modification of the architectural design on the industrial system, one has
classically to go through the whole development cycle and specially define in
detail the industrial operations associated to the new design. This process is
very time-consuming and results again in a low reactivity in regards with the
market demand.

One way to shorten the development cycle and hence increase the reactivity
of aircraft manufacturers is to think the design of aircraft architecture and man-
ufacturing system together instead of sequentially, which is also called simulta-
neous engineering. The concept of simultaneous engineering between the design
office and production is relatively old [12]. Used in the automotive industry,
especially in the supply chain [7], its implementation in our context raises some
issues due to aeronautics particularities. Indeed, an aircraft is a very complex
and bulky object, composed of many components, and requiring manufacturing
operations that are often manual and relying on a very specific know-how. In
addition, aeronautical regulations impose very strong certification constraints on
the design and the manufacturing of the aircraft. All of this constrains and limits
the evolution of the design and production methods, mainly due to the efforts
necessary to provide justifying elements for the compliance with the regulations.
Lastly, until today, production volumes, limited to a few hundred aircraft per
year, had not yet prompted an evolution of production methods.

In this paper, we present a recent initiative from Airbus to incrementally
develop the A320 aircraft family and increase the production rate on a specific
manufacturing line. The concepts we describe here are still preliminary but are
based on a real industrial use-case for which significant efforts have been provided
to collect very heterogeneous data (documents, interviews, plans, etc.). We show
how this industrial problem has been addressed so as to think aircraft architec-
tural design and manufacturing system together. Therefore, the contribution is
a first step towards an aeronautical simultaneous engineering.

This paper is organized as follows. We first present the specificities of simul-
taneous engineering dedicated to aeronautics in Sect. 2.1. In Sect. 3, we describe

1 By industrial system we mean all the material and non-material means used to
construct an aircraft (labour, machines, factories, methods, tools, etc.).

342 T. Polacsek et al.

the industrial use-case and we define a first model of the manufacturing line. In
Sect. 4, we define a generic pattern for a model of design and manufacturing that
can be instantiated at different levels of abstraction. Finally, Sect. 5 concludes
this paper by bringing up the short-term and long-term perspectives.

2 Simultaneous Engineering for Aeronautics

In this section, we describe the specificities of simultaneous engineering for the
aeronautics domain. We first detail the current aircraft development cycle. Then,
we highlight the main objectives to reach.

2.1 A Sequential Development Cycle

In the aeronautics industry, the aircraft architect manages the interactions
between many different entities and the contribution of many different disci-
plines. These interactions include negotiations amongst engineering disciplines
(e.g. aerodynamics, loads, safety, thermal), business functions (e.g. finance, pro-
curement) and production. In fact, because they have a global picture, the main
goal of the aircraft architect is to ensure that the aircraft fulfils its operational
performance requirements just as well as its production requirements.

The design and development of an aircraft, such as the A320, follows today
a very traditional cascading cycle, starting from very high level requirements
refined to lower level requirements that are then transformed into specifications.
More precisely, in this sequential cascade approach, the preliminary project steps
are devoted exclusively to the overall aircraft specification and sizing. These steps
are in fact a consultation between the aircraft architects, the design offices and
the European national companies that make up the European Economic Interest
Grouping (EEIG). After dispatching the main activities between the members of
the EEIG, each major component of the aircraft (fuselage, cockpit, wings, tails,
systems, landing gear, . . .) is defined in detail. The result is the detailed aircraft
design and constitutes the starting point used for the definition of the industrial
system.

Because of this sequential definition, the design of the industrial system is
completely out of synchronisation with the engineering activities. Therefore, the
difficulties of defining an industrial system that implements the detailed design
are only grasped late in the development process. Moreover, this division between
design and production is a constraint for the new challenges of the aeronautics
industry. First of them is the capability to quickly modify the product to meet
the market demand and second the need to increase the production rate.

The spectrum of market demand can be quite large. For instance, one cus-
tomer might want to improve the performances of the aircraft or make it compli-
ant with a specific regulation. Generally, this implies some modifications of the
aircraft design. However, because the demand is expressed when the aircraft is
already designed and industrial system build deep modifications of the industrial
system are not an option. That is why the architects have to ensure that the

Towards Thinking Manufacturing and Design Together 343

current industrial system will be able to handle the design modifications. For
that, they need to evaluate the impact of a modification of the design on the
production system.

Today, such an evaluation cannot be done directly because the architects use
high level abstract elements such as a wing or landing gear while the manufactur-
ing engineers handle screws, cables, etc. In fact, to perform this evaluation, it is
necessary to perform all the steps of the development cycle: preliminary design,
detailed design and industrial definition. The industrial definition includes the
creation of assembly operations dedicated to the new design, the identification
of the physical equipment necessary to manufacture along with the associated
tooling, and the scheduling of the manufacturing steps. Then, the evaluation is
performed mostly manually following different criteria: impact on the production
rate, additional costs, etc. This process is time-consuming and has a significant
cost.

Regarding the production rate, the increase in air traffic and the arrival
of new airlines lead to the need to produce more aircrafts. For cost reasons,
the production rate must be increased without deeply modifying the industrial
system. Indeed, increase the size of the assembly line or build a new factory
requires a very unfavorable financial investment. Therefore, a possible option,
with a limited effect of the industrial system, is to introduce design modifications
to make manufacturing operations simpler.

An example is illustrated on Fig. 1: after a study of the assembly line, it
appears that a bottleneck for the increase of the production rate is related to
the installation of an air conditioning circuit (pipe). A part of this circuit passes
through a very narrow area, which makes the installation particularly difficult.
The architects propose to modify the path of this circuit in the aircraft, and to
make it pass through an area more accessible to the operators.

In this case, the process to increase the production rate consists in the fol-
lowing steps:

1. identify the manufacturing bottlenecks and their causes;
2. analyse the installation instructions in order to establish the links between

the design elements and the installation operations (duration, aircraft zones,
number of operators needed for the operations);

3. create a new architecture design that removes the bottleneck;
4. define the corresponding manufacturing elements as described previously and

evaluate the resulting benefits on the industrial system performance.

Again, this process is too time-consuming compared to the required reactiv-
ity. Moreover, it can sometimes reveal to be a waste of time if a new design does
not have the expected positive effects on the production.

2.2 Objectives of the Simultaneous Engineering

As we have seen, the architectural work begins at high-level of abstraction and
finishes at complete detailed description design level. However, due to the suc-
cessive design refinements, it is excessively difficult to evaluate the impact of new

344 T. Polacsek et al.

Fig. 1. New aircraft concept design to remove a bottleneck

architecture proposals on the production. To reduce the time and cost, there is
a real need for tools allowing to assess the impacts on the manufacturing with-
out the detailed definition of the final product, i.e. tools that can be used at
the same level of abstraction as the one used by the architect. To address this,
Airbus has decided to carry out a simultaneous engineering activity between the
design office and the production department.

The purpose of this activity is to switch from the sequential development
cycle as described in the previous subsection and illustrated on Fig. 2a to a
progressive development cycle as illustrated on Fig. 2b. More precisely, on Fig. 2a,
the pyramid represents the evolution from high-level design (top of the pyramid)
to a final design (bottom of the pyramid) from which a manufacturing can be
implemented. The manufacturing impact can only be assessed when a final design
is achieved. The aim of the simultaneous engineering is to allow the architect to
quickly study aircraft design proposals regarding the expected benefits on the
production. It can be split up into two objectives:

(a) consider consistently about design and manufacturing at any level of abstrac-
tion. As illustrated on Fig. 2a, it is currently possible to reason about design
at several levels of abstraction. Hence, the objective is to have high-level
abstractions of the manufacturing model, one for each level of the design.
On Fig. 2b, this corresponds to the right pyramid;

(b) assess the manufacturing performances thanks to its abstract models. If such
an evaluation is possible at any abstract level, then it allows to have a feed-
back on the impact of the design at any time. On Fig. 2b, this feedback is
represented by the left arrow that goes from the right pyramid to the left one.

Towards Thinking Manufacturing and Design Together 345

(a) Current development process. (b) Enhanced development process.

Fig. 2. Towards an enhanced model for the aircraft architect

With such a structure, the first advantage is the capacity for the architects
to evaluate at any time the foreseen impact on the manufacturing process, which
avoids the current time-consuming process. The second advantage is the possi-
bility to specify much earlier the industrial system associated to a design. In fact,
such a specification based on conceptual models allows all stakeholders to antic-
ipate the difficulties in the industrial implementation of an architecture design,
even for high-level ones.

In a long-term perspective, the evaluation could consist in a complete chain
of methods and tools. For instance, at each abstract level of design, one could
consider several high-level industrial systems and choose the one that gives the
best performances, or even optimize the overall industrial system. Tools could
also support the architects in design tasks by automatically checking properties
directly on the model and finding the best possible configuration according to a
set of constraints as it is done in [4,5] with logic-based solvers.

In a short-term perspective, we focus on an essential part of the evaluation:
the estimation of the impact on the production rate. More precisely, we want to
plug our model to automatic tools that would generate the optimal sequence of
high-level installation operations and therefore give a clue of an expected pro-
duction rate. This means that conceptual manufacturing models must be com-
pliant with operational research tools dedicated to scheduling [8,10]. In order to
reach this short-term objective, we first need to achieve the first sub-goal and
model the manufacturing at different abstract levels. Hence, for the time being,
starting from raw data, we focus on the definition of high-level manufacturing
models. More precisely, we first model the current assembly line and we abstract
this model while taking into account architecture design elements. Contrary to
approaches developed in [2,6,13], we do not aim at defining a generic framework
for simultaneous engineering but a framework dedicated to aeronautics. Never-
theless, we hope that this preliminary work will support a larger reflection in
the future.

346 T. Polacsek et al.

3 Modelling the Production Line

3.1 The Aeronautical Case Study

The industrial use-case of this work is the production assembly process of for-
ward sections of single-aisle A320 aircraft. The forward section covers the nose
fuselage, the cockpit and the forward section of the cabin. Note that the junction
with the wings is performed on another production line dedicated to the central
section of the fuselage. The forward section’s production line is located in the
French site of Saint-Nazaire and is organized along two sub-lines. The first one is
dedicated to structural assemblies, i.e. the building of the aircraft body, and the
second one, COMETE, is dedicated to the installation of all the non-structural
elements such as the heat insulation and soundproofing, electrical harnesses and
equipping, air conditioning circuits, etc.

In this use-case, we focus on the COMETE production line. It is composed of
14 stations on which manufacturing activities, i.e. equipments installation, are
distributed. The installation process is organized as a pulse line, meaning that
the section to equip and the associated tooling are transferred every X hours
from one station to another. The equipments installation always starts in station
1 with a completely unequipped section, and always finishes on station 14 with
a completely equipped one.

As the A320 aircraft family is quite old, its production was not foreseen
for high production rates. At this time, a production rate of one plane per
month was a remarkable performance. Nowadays, the rate reaches 50 planes per
month in order to meet the market demand. Nevertheless, due to the weight of
this program’s history, most of manufacturing activities are still manual ones.
Technologies used on the line are highly reliable and low cost but have almost
not evolved since the beginning. Moreover, work zones are still cramped and
make operators’ tasks quite tedious, especially with high production rates.

The objective is to develop solutions that allow to reach a rate of 63 planes
per month. In order to minimize industrial risks, these solutions cannot deeply
modify the production line. Moreover, the solution that would consist in building
a second identical production line is out of scope.

3.2 Data Retrieval and Analysis

Modelling the manufacturing process requires an in-depth understanding of its
building blocks and the interactions between them. In fact, many competences
and trades are involved and they can sometimes be quite far from the architect’s
world. Thus, the first part of the study, which is still on-going work, consists in
retrieving and analysing data about the manufacturing line.

Due to the A320 program’s age, significant part of the documentation is still
not digitalized, the human knowledge is quite tremendous but is mostly shared
orally and some rules can even be implicit. Consequently, we had to go to the
Saint-Nazaire site regularly in order to interview the different actors, understand
and question their practises.

Towards Thinking Manufacturing and Design Together 347

From those interviews and from the engineering and manufacturing database,
we have built and/or retrieved several relevant pieces of information:

– the PERT (Program Evaluation and Review Technique) diagram - this dia-
gram contains the manufacturing scheduling, i.e. the order in which the
equipment are currently installed on the section. For the A320 program, this
scheduling is manually built by a Time Evaluation Agent ;

– equipment installation descriptions - documents detailing the sequences of
activities performed during the installation, the impacted geographic zones
of the forward section, the list of physical parts concerned and the number of
operators required;

– a list of all the physical parts to be installed on each station of the line.

Note that most of these pieces of information are paper documents with
heterogeneous structures and formats and therefore have been analysed manu-
ally, which represents a significant work. From this analysis, we have identified
seven major concepts in the COMETE manufacturing line. They are connected
together as presented in the UML model of Fig. 3.

stations

1..*

is preceded by

1

*

*

operators

1..*

station

1

SOIs

*

operations1..*

1..*

parts1..*

*
qualif

1

*

qualifs*

*

zones
1..*

Pulse Line

PTSduration: time
nbStations: integer

Station

SOI Operation

duration: time
startDate: time
nbJourneymen: integer

Journeyman

Routing

Part Qualification

Manufacturing Zone

capacity: integer

Fig. 3. UML model of the manufacturing line

The concepts and their features are:

– Part: physical elements of the aircraft.
– Station: the physical space in which the section is equipped along with the

associated tools and parts. Because the physical space and the time during
which the forward section stays at the station are often merged, station rep-
resents also a temporal interval called the Product Time Slot (PTS).

– Pulse Line: set containing nbStations stations that altogether deliver com-
pletely equipped forward sections every X hours, where X denotes the dura-
tion of the Product Time Slot.

348 T. Polacsek et al.

– Manufacturing Zone: physical space in the forward section. In fact, for-
ward section is divided into manufacturing zones that are characterized by
their geographic perimeter and the maximum number of operators that can
simultaneously work in them (i.e. its capacity).

– SOI Operation (Standard Operating Instruction): sequence of atomic man-
ufacturing activities on the forward section.

The set of parts that are assembled in the nose section during these
activities is associated to the SOI operation. One SOI operation cannot fall
on more than one station. The realization of one SOI operation requires
nbJourneymen operators that have a specific qualification.

It starts at startDate and lasts duration. The SOI operation covers at least
one manufacturing zone. Finally, there are precedences constraints between
SOI operations, meaning that some SOI operations cannot start before some
other are finished.

– Routing: set containing SOI operations that correspond to interconnected
parts. A routing groups operations into high level tasks.

– Journeyman: operator that performs the SOI operations. Each journeyman
has at least one qualification.

For instance, all harnesses and cables are physical parts. An instance of a
SOI operation is the connection of one specific harness and a specific cable.
An instance of a routing is the connection of a specific harness to a calculator
that involves several connections between the harness and cables and other SOI
operations.

In the COMETE use-case, there are approximately 500 routings, 3500 SOI
operations and 10000 parts (exclusive of hardware).

4 Abstract Generic Model

4.1 General Idea

In order to have a model allowing the architect to perform simultaneous engi-
neering of the aircraft design and the industrial system, we must create a cor-
respondence between dynamic elements, in our case manufacturing operations,
and static elements. Let us take the simple example of an air conditioning cir-
cuit. In the design world, such a circuit, pipe, is defined by static attributes such
as geometry, materials, etc. In the manufacturing world, it is linked to the oper-
ations necessary for its installation. The concept of pipe object makes sense in
both worlds and can therefore be seen as a bridge between them. More generally,
we consider that the physical elements constituting the aircraft, are the contact
points of these two worlds.

The junction between design and manufacturing could be achieved by cou-
pling two distinct models along with transformation rules for instance [9]. We
did not choose this solution for three reasons. First, there is a significant risk of
drift between the two models. Indeed, in the future, it is possible that the models
change without their coupling being updated, or even worse that they become

Towards Thinking Manufacturing and Design Together 349

completely incompatible with one another. The second reason is more practical.
Whether in the design or the manufacturing worlds, there is only one aircraft.
Therefore, it is better to have a unique model of the aircraft that can be shared
by all stakeholders, rather than heterogeneous models that would suggest that
the real object may be different depending on the context. Finally, the third
reason is related to our goal, which is to enable the architect to understand the
interactions between architecture and production. Hence, it is not a matter of
having two distinct models, but rather an integrated model of the aircraft, with
a design part and a production part.

On the other side, we do not intend to merge inextricably the production and
the design models. We must foresee that models of each world may evolve in the
future, without each evolution of the one necessarily impacting the other. Hence,
our idea is to define a global model with two parts and a very limited number of
objects shared between the parts. In this model, shared objects define a “contact
area”, i.e. the bridge, between the manufacturing and the design. This allows
each trade to update its model without impacting the other as long as it does
not touch the objects of the contact area.

As discussed previously, we need to define high-level of abstraction for the
manufacturing model. Like [14] with architectural frameworks, we have chosen
an approach in views, where each view corresponds to a layer of abstraction.
However, unlike the macro-models defined in [11] that are composed of layers
of abstraction with rules explaining how to pass from one level to the other,
we have privileged simplicity. For the moment, we choose to define a high-level
abstract model with abstract classes that can be specialized in concrete ones for
each level of abstraction.

4.2 Pattern

An outline of this abstract model is illustrated on Fig. 4. This model must be
specialized in each view, i.e. in each abstraction level. For reasons of legibility,
we chose to include only the most important attributes and classes. On the
generic pattern of this figure, concepts relating to design are on the left and
those relating to production on the right. The bridge between the two worlds is
represented here by the abstract classes Physical Element and Zone.

Physical Element is specialized as follows:

– at high-level of abstraction, in the class Sub-element. A Sub-element is a set
of parts that has a business meaning in a stage of the production process.
A set of sub-elements defines a component of the aircraft which corresponds
to a part of the aircraft (wing, front section, etc.), manufactured by different
production sites and delivered for assembly to the factories which realize the
final assembly;

– at low-level of abstraction, in the class Part presented in Sect. 3.

For instance, the air conditioning pipe as mentioned in the example of Sect. 2.1
is a Sub-element and belongs to a high-level view. All the pipes sections are
instances of Part and belong to the low-level view.

350 T. Polacsek et al.

*

* *

*
*

*
*

prec. 1*

*

1
1..*

Levels of abstraction Generic pattern

Design
Physical
elements

Manufacturing

Design

maturity: level

“abstract”
Function

“abstract”
Zone

“abstract”
Physical Element

“abstract”
Operation

duration: time
startDate: time

“abstract”
Operator

Station

Pulse Line

PTSDuration: time
nbStations: integer

Design
Physical
elements

Manufacturing

Fig. 4. Prototype of a generic class diagram for aeronautics simultaneous engineering

The abstract class Zone corresponds to the location of physical elements
in the aircraft. At low-level, it specializes in Manufacturing Zone as defined in
Sect. 3.

On the design side, an aircraft architecture proposal is represented by a
Design, which is associated with a maturity level and composed of physical ele-
ments. Here, a Design is the realization of an architecture, i.e. the definition of
all physical elements (parts, sections, etc.) composing the aircraft, the technical
way they are assembled together and associated to the Function which are full-
filled. So, each Physical Element is connected with an aircraft Function. These
functions are related to the aircraft operational life: power generation, fuel stor-
ing, providing means of communication etc. The class Function is abstract and
it generalizes as follows:

– at high-level of abstraction, in service functions to users (pilots, passengers,
cabin crew, etc.), without presupposing how these functions are performed;

– at low-level of abstraction, in Elementary Functions which are all the techni-
cal functions necessary to perform the hight-level users services.

On the manufacturing side, the pattern contains two concrete classes for the
manufacturing: the Pulse Line and the Station as described in the Sect. 3. In
fact, these elements constitute the structure of any industrial system and must
consequently be present at any level of abstraction. Operations, represented by
the abstract class Operation, are carried out on each station and correspond to
actions performed on a station. An operation has duration and a startDate. At
a high-level of abstraction, operations are specialized in the class Action which
consists in equipping the aircraft with a Sub-element like fixing a pipe. At low-
level of abstraction, operations are specialized in SOI operations (see Sect. 3).
Finally, the abstract class Operator corresponds to the actor performing the
Operation. An operator could be a human or a robot. We choose not to represent
the relation between Operator and Operation in this generic pattern. Indeed, for
higher abstract levels, architect might not be able to express such a relation.
However, it could be useful to characterize the different kind of operators.

Towards Thinking Manufacturing and Design Together 351

The Fig. 5 represents two specialisations of the generic pattern for the man-
ufacturing side. The lower part of the figure shows how the UML model of
manufacturing defined in the Sect. 3 and illustrated on Fig. 3 is transformed to
be compliant with the generic pattern. We can remark that there are no robots
on the current production line, so Journeyman is the only class specializing
Operator.

* *

*

*

prec.

1

*

* 1

1..*

**

* *

1..* *

1..*

*

*

“abstract”
Zone

Manufacturing Zone

capacity:integer

“abstract”
Physical Element

Part

“abstract”
Operation

duration: time
startDate: time

SOI Operation

nbJourneymen: integer

Station

Pulse Line

PTSDuration: time
nbStations: integer

“abstract”
Operator

Journeyman

QualificationRouting

ActionSub-elementAircraft Zone

Physical Elements Manufacturing

High-level Specific Classes

Generic
Pattern

Low-level
Specific
Classes

Fig. 5. UML class diagram, manufacturing part, low-level.

5 Conclusion and Perspectives

In this article, we present an industrial case study and demonstrate the need
for having a model-based framework to embrace design and industrial system
of complex products such as aircraft. After studying the manufacturing reality,
especially the data retrieval and the precise understanding of the domain which

352 T. Polacsek et al.

have mobilized most of our efforts so far, we have given a first draft of a model for
a simultaneous engineering of the aircraft design and its production. This model-
based approach allows the definition of the different concepts, the analysis of the
problem and the communication between the design and manufacturing teams
by providing a common system of reference. Moreover, it is a first step towards
a simultaneous engineering digital framework to carry out studies of impact of
architecture on the production.

In future work, we will refine the manufacturing part of the model in order
to build a simulator of the production chain. This simulator will allow the archi-
tect to estimate production rates according to design choices. We have already
conducted initial investigations using operational research tools such as the one
presented in [10]. Like in [4], we will also combine our conceptual models with
formal tools that deduce the missing links and objects of the models. In our
case, the links would be the ones between tasks, operators and stations, accord-
ing to some optimization criteria, such as the production rate. Our first basic
experiments in this way are promising.

Today, our models are a static view of the aircraft and its production system,
but the manufacturing process has a time component that could only represented
in a behavioural view. To model the static and the behavioural views together,
another perspective of this paper is to adapt the works that tend to unify these
two views through SysML diagrams as in [1].

Finally, in a completely different way and in the line of [3], it could be inter-
esting to use a manufacturing-oriented ontology in order to allow architects to
have high-level abstraction reasoning on very detailed data, by establishing the
link between physical elements and high-level functions.

References

1. Batarseh, O., McGinnis, L.F.: Sysml to discrete-event simulation to analyze elec-
tronic assembly systems. In: Proceedings of the 2012 Symposium on Theory of
Modeling and Simulation - DEVS Integrative M&S Symposium, TMS/DEVS 2012,
San Diego, CA, USA, pp. 48:1–48:8. Society for Computer Simulation International
(2012)

2. Benkamoun, N., ElMaraghy, W., Huyet, A.L., Kouiss, K.: Architecture framework
for manufacturing system design. Procedia CIRP 17, 88–93 (2014). doi:10.1016/j.
procir.2014.01.101

3. Bruno, G., Antonelli, D., Villa, A.: A reference ontology to support product life-
cycle management. Procedia CIRP 33, 41–46 (2015)

4. Delmas, R., Doose, D., Pires, A.F., Polacsek, T.: Supporting model based design.
In: Bellatreche, L., Mota Pinto, F. (eds.) MEDI 2011. LNCS, vol. 6918, pp. 237–
248. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24443-8 25

5. Delmas, R., Polacsek, T.: Formal methods for exchange policy specification. In:
Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp.
288–303. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38709-8 19

6. Demoly, F., Yan, X., Eynard, B., Rivest, L., Gomes, S.: An assembly oriented
design framework for product structure engineering and assembly sequence plan-
ning. Robot. Comput. Integr. Manuf. 27(1), 33–46 (2011)

http://dx.doi.org/10.1016/j.procir.2014.01.101
http://dx.doi.org/10.1016/j.procir.2014.01.101
http://dx.doi.org/10.1007/978-3-642-24443-8_25
http://dx.doi.org/10.1007/978-3-642-38709-8_19

Towards Thinking Manufacturing and Design Together 353

7. Göpfert, I., Schulz, M.: Logistics integrated product development in the Ger-
man automotive industry: current state, trends and challenges. In: Kreowski,
H.J., Scholz-Reiter, B., Thoben, K.D. (eds.) Dynamics in Logistics, pp. 509–519.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35966-8 43

8. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

9. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An algebraic view
on the semantics of model composition. In: Akehurst, D.H., Vogel, R., Paige, R.F.
(eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 99–113. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72901-3 8

10. Pralet, C., Verfaillie, G.: Dynamic online planning and scheduling using a static
invariant-based evaluation model. In: Borrajo, D., Kambhampati, S., Oddi, A.,
Fratini, S. (eds.) Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, 10–14 June 2013.
AAAI (2013)

11. Salay, R., Mylopoulos, J., Easterbrook, S.: Using macromodels to manage collec-
tions of related models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 141–155. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02144-2 15

12. Shenas, D.G., Derakhshan, S.: Organizational approaches to the implementation
of simultaneous engineering. Int. J. Oper. Prod. Manag. 14(10), 30–43 (1994)

13. Sprock, T., McGinnis, L.F.: Analysis of functional architectures for discrete event
logistics systems (DELS). Procedia Comput. Sci. 44, 517–526 (2015)

14. Wisnosky, D.E., Vogel, J.: DoDAF Wizdom: A practical guide to planning. Man-
aging and Executing Projects to Build Enterprise Architectures Using the Depart-
ment of Defense Architecture Framework (DoDAF) (2004)

http://dx.doi.org/10.1007/978-3-642-35966-8_43
http://dx.doi.org/10.1007/978-3-540-72901-3_8
http://dx.doi.org/10.1007/978-3-642-02144-2_15
http://dx.doi.org/10.1007/978-3-642-02144-2_15

OCLUNIV: Expressive UML/OCL Conceptual
Schemas for Finite Reasoning

Xavier Oriol(B) and Ernest Teniente

Universitat Politècnica de Catalunya, Barcelona, Spain
{xoriol,teniente}@essi.upc.edu

Abstract. Full UML/OCL is so expressive that most reasoning tasks
are known to be undecidable in schemas defined with these languages.
To tackle this situation, literature has proposed mainly three decidable
fragments of UML/OCL: UML with no OCL, UML with limited OCL
and no maximum cardinality constraints (OCL-Lite), and UML with
limited OCL with no minimum cardinality constraints (OCLUNIV). Since
most conceptual schemas make use of OCL together with min and max
cardinalities, this poses a strong limitation to current proposals. In this
paper, we go beyond these limits by showing that OCLUNIV with acyclic
min cardinality constraints and path acyclicity constraints also preserves
decidability. In this way, we establish a language that can deal with most
of UML/OCL identified constraint patterns. We also empirically test the
expressiveness of this language through different UML/OCL case studies.

Keywords: UML · OCL · Decidability · Reasoning

1 Introduction

Reasoning on UML/OCL conceptual schemas is aimed at answering questions
regarding what kind of instances does a UML/OCL conceptual schema admit.
This is known to be crucial in the specification stage of software development.
Indeed, reasoning about what kind of instances does a UML/OCL schema admit
allows to assess whether the UML/OCL schema is correct or not. In this way,
we can avoid the propagation of conceptual errors to the other stages of software
development [1].

For instance, consider the UML/OCL schema in Fig. 1 specifying a soccer
league competition. This domain includes Leagues, identified by year, and Teams
enrolled in these leagues. Teams play Matches during a league, for which we
store the goals made and the Stadium in which they took place. The UML
schema is complemented with some OCL constraints that describe the primary
key attributes of each class, ensure that no team has a match with itself, ensure
that a league is finished when all teams have played against all other teams, and
ensure that the unique unfinished league is the last one, whose finishing date is
later than any date of its matches.

By taking a closer look at this UML/OCL schema, we may realize that it
accepts an instance of a match among two teams of different leagues. This clearly
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 354–369, 2017.
https://doi.org/10.1007/978-3-319-69904-2_28

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 355

FinishedLeague

League

year: Integer

Team

name: String
1..* 4..*

TeamInLeague Match

date: Date
visitorGoals: Int
visitantGoals: Int

date: Date

Stadium

name: String

*
*

visitor

visitant

* 1

Fig. 1. UML schema and OCL constraints

indicates that there is an error in the UML/OCL schema and, thus, an OCL con-
straint preventing such situation should be incorporated to it. It is worth noting
that, incorporating new constraints in the conceptual schema means propagating
such changes into the other software artifacts (in particular, operation design-
contracts and code), thus, it is crucial to reason that no constraint is miss-
ing/lacking in the conceptual schema in order to avoid the propagation of this
mistake to the rest of artifacts.

Unfortunately, it is well-known that reasoning on UML/OCL schemas is
undecidable [2]. That is, there is no algorithm that can reason over a UML/OCL
schema ensuring termination and a correct output. The cause of the undecid-
ability relies on the high expressiveness of UML/OCL schemas. Indeed, UML
schemas with general OCL constraints have an expressive power beyond first-
order logics. Thus, since reasoning about the satisfiability of first-order logic
theories is undecidable and a UML schema with general OCL constraints can
encode a first-order theory, the undecidability result of first-order logic reasoning
is inherited by reasoning on UML/OCL schemas.

To mitigate this issue, one option is to reduce the expressiveness of
UML/OCL into some fragment whose reasoning problems are decidable. To the
best of our knowledge, three such fragments have been identified in the literature:

– UML schemas alone: that is full UML features with no OCL constraints [2].
– OCL-Lite: a fragment of UML/OCL which, in essence, forbids the usage of

maximum cardinalities in the UML schema [3].
– OCLUNIV: a fragment of UML/OCL which, in essence, forbids the usage of

minimum cardinalities in the UML schema [4].

Clearly, all three proposed languages lack critical features making them
strongly limited. Indeed, UML/OCL schemas tend to make use of OCL
constraints and minimum and maximum cardinality constraints together, as

356 X. Oriol and E. Teniente

required by our running example. Thus, although all such fragments are decid-
able, none of them is expressive enough for actual UML/OCL schemas.

Hence, the main goal of this paper is to identify an OCL subset that, com-
bined with min and max cardinality constraints together, preserves decidability.
In particular, we prove that OCLUNIV combined with minimum cardinality con-
straints is still decidable, provided that these constraints do not form a cycle in
the UML class diagram. This decidability result is also preserved when extend-
ing OCLUNIV with path acyclicity constraints (such as no person can be his own
ancestor). As a result, we have that this extended language can deal with the
constraint patterns most frequently used (as defined in [5]). We keep the name
OCLUNIV since the fragment of OCL handled by this new language is the same
as the original OCLUNIV.

We also test the expressiveness of this decidable fragment by means of study-
ing several UML/OCL case studies, and comparing how many textual constraints
could we encode in the language proposed in this paper and how many in OCL-
Lite. With this experiment, we show that, while OCL-Lite could cover 56% of the
constraints of the case studies, our OCLuniv could handle the 82%. In addition,
our OCLUNIV required only deleting 1 minimum cardinality constraint to ensure
decidability (i.e., acyclicity in the class diagrams associations) while OCL-Lite
required removing all the maximum cardinality constraints in the schemas (a
total of 69).

In conclusion, we can state that the language identified in this paper is cur-
rently the most expressive one for specifying UML/OCL schemas while ensuring
finite reasoning on them. Thus, any complete UML/OCL schema reasoner (such
as [6]) receiving as input a schema written in our language never hangs while
checking its correctness.

2 Preliminaries

We start from a logic encoding of a UML class diagram into a logic schema
based on [6], and the weak acyclicity result stating that any logic schema with
no cycles involving existential variables can be reasoned in finite time [7,8]. We
summarize all these notions in the following:

UML Class Diagram and Compatible Classes. A UML class diagram is a dia-
gram which contains a hierarchy of classes, n-ary associations among these classes
(where some of them might be reified, i.e., association classes), and attributes
inside the classes. In addition, a UML class diagram might be annotated with
minimum/maximum cardinality constraints over its association-ends/attributes,
and hierarchy constraints (that is, disjoint/complete constraints). In this paper,
we say that two classes C1 and C2 are compatible if they have a common super-
class SC in the hierarchy.

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 357

Terms, Atoms, Literals, and Positions. A term t is either a variable or a con-
stant. An atom is formed by a n-ary predicate p together with n terms, i.e.,
p(t1, . . . , tn). We may write p(t) for short, and say that the position p[i] is occu-
pied by the term ti. If all the terms of an atom are constants, we say that the
atom is ground. A literal l is either an atom p(t), or a built-in literal ti ω tj ,
where ω is an arithmetic comparison (i.e., <,≤,=, �=).

Logic Encoding of the UML Class Diagram. We formalize each class C in a
class diagram with attributes {A1, . . . , An} by means of a base atom c(Oid)
together with n atoms of the form cAi(Oid,Ai), each association R between
classes {C1, . . . , Ck} by means of a base atom r(C1, . . . , Ck), and each association
class R between classes {C1, . . . , Ck} with attributes {A1, . . . , An} by means of
a base atom r(C1, . . . , Ck) together with n atoms rAi(C1, . . . , Ck, Ai).

Dependencies. A Tuple-Generating Dependency (TGD) is a formula of the form
∀x, z. ϕ(x, z) → ∃ y. ψ(x, y) where ϕ(x, z) is a conjunction of literals, and ψ(x, y)
a conjunction of atoms. A Disjunctive Embedded Dependency (DED) is a varia-
tion of TGDs where disjunctions are admitted in the conclusion of the rule. In
particular, they follow the form: ∀x, z. φ(x, z) → ∨ ∃y. ψ(x, y). A ded is a denial
if its right hand side is an empty disjunction: ∀x. φ(x) → ⊥. From now on, we
omit the logic quantifiers since they can be understood by context.

Dependency Graph and Weak Acyclicity. Given a set of deds, its dependency
graph is a directed graph obtained as follows. There is a vertex for each position
of all ded predicates, and for each ded of the form φ(x, y) → ∨

ψ(x, z), there
is a universal edge from a position p[i] of φ to a position r[j] of ψ iff: there is
a variable x ∈ x occupying both p[i] and r[i]. Moreover, there is an existential
edge from a position p[i] of φ to a position r[j] of ψ iff there is a variable x ∈ x
occupying p[i], and there is a variable z ∈ z occupying r[i]. A set of deds is said
to be weakly acyclic iff its dependency graph does not contain any cycle involving
an existential edge.

3 The OCLUNIV Language

OCLUNIV is a fragment of OCL which does not make use of existential variables
(i.e., it does not have the exists OCL construct and it limits all the other con-
structs to avoid emulating it). Under the point of view of first-order logics, it
is the fragment of OCL that can be described by means of the first-order con-
structs ∨, ∧ and ∀; avoiding ∃ and limiting the usage of ¬ accordingly. The
OCLUNIV language was firstly described as a fragment of OCL which can be effi-
ciently checked by means of SQL queries with no need of subqueries [9], and as
a fragment whose constraints can be mantained (i.e. repaired) in finite time [4].

358 X. Oriol and E. Teniente

We reproduce its grammar here for the sake of self-containment of the paper:

ExpBool ::= ExpBool and ExpBool | ExpBool or ExpBool
| ExpOp

ExpOp ::= Path->excludesAll(Path) | Var.Member->includesAll(Path)
| Path->excludes(Path) | Var.Member->includes(Var)
| Path->isEmpty() | Path->forAll(Var| ExpBool)
| Path OpComp Constant | not Path.oclIsKindOf(Class)
| Path OpComp Path | Path.oclIsKindOf(Class)

Path ::= Var.Nav | Class.allInstances().Nav
| Var Class.allInstances()

Nav ::= Role.Nav | oclAsType(Class).Nav
| Role | Attribute
| oclAsType(Class)

With regard to semantics, the basic property of OCLUNIV is that its logic
encoding provides as a result deds of the form: φ(x, y) → ∨

ψ(x) or denials
φ(x) → ⊥ [4]. In any case, note the absence of existentials variables z of typical
deds.

For instance, the OCLUNIV constraints in Fig. 1 would be encoded as follows:
1) LeagueYear(l, y), LeagueYear(l2, y), l�=l2 → ⊥
2) TeamName(t, n), TeamName(t2, n), t �=t2 → ⊥
3) StadiumName(s, n), StadiumName(s2, n), s �=s2 → ⊥
4) Match(tl, tl) → ⊥
5) TeamInLeage(t, l), TeamInLeage(t2, l) → Match(t, l, t2, l)
6) FinishedLeage(f),LeagueName(l,n),l �=f,LeagueYear(f,y),LeagueYear(l,z),z<y → ⊥
7) FinishedLeage(f), LeagueDate(f, d), MatchDate(tl, l, tl2, l2, d2), d < d2 → ⊥

Moreover, since the OCLUNIV language is strongly-typed, all its valid expres-
sions satisfy the type conformance specified in the OCL standard. This fact
implies that, for each variable x in some ded codifying some OCLUNIV constraint,
the UML class of two different positions occupied by x are compatible. Intu-
itively, this is because each variable x stands for some UML instance of class C
obtained when evaluating an OCLUNIV expressions, and UML instances of C can
only be obtained in OCLUNIV expressions of a type compatible with C.

For instance, in the ded 4 above, we see that the variable t1 holds two different
positions in the Match predicate. This implies that both positions codify two
compatible types. Indeed, if we take a look at the diagram, we see that Match
is a recursive association and thus, both positions have the same type.

4 Decidability of OCLUNIV with Min Cards and Path
Acyclicity

Reasoning whether a UML/OCL schema satisfies a given property is aimed at
checking whether the schema admits a consistent sample instantiation witness-
ing the property. For instance, checking whether the schema in our example
satisfies that Match is lively, requires identifying whether this schema admits an
instantiation containing, at least, one instance of Match without violating any
integrity constraint.

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 359

The cause for undecidability is always the new objects that must be cre-
ated to repair the constraints violated by the sample instantiation being built.
Indeed, such new objects might violate other constraints that require creating
new objects, thus, potentially stacking into an endless process of creating new
objects.

For instance, assume that we have a UML class diagram with classes
Employee, Department, and Project such that each employee should be assigned
to at least one department, each department should be assigned to at least one
project, and that each project should have at least two employees. Clearly, if we
want to check whether Employee is lively, we need to instantiate one employee
in the schema. Then, to satisfy the constraints, we will have to instantiate one
department for this employee. Similarly, we will need to instantiate one project
for the department and, then, we need a new employee for the project, thus
potentially entering into an infinite loop.

Intuitively, a UML class diagram with acyclic minimum cardinality con-
straints avoids this kind of loops. Moreover, OCLUNIV constraints (and path
acyclicity constraints) guarantee that no new object needs to be created to sat-
isfy the constraints. Thus, the combination of OCLUNIV constraints with path
acyclicity constraints into UML class diagrams with no minimum cardinality
constraints cycles is decidable.

In the following we formalize the proof of this statement. We start by proving
that reasoning on UML class diagrams with no min cardinality cycles and no
OCL constraints is decidable. To facilitate the proofs, we begin with the assump-
tion that min cardinalities are 1 or 1..*, and that all hierarchies are complete.
Then, we show that incorporating OCLUNIV constraints preserves decidability.
Finally, we incorporate path acyclicity constraints and generalize our results to
min cardinality constraints with boundaries different than 1, and incomplete
hierarchies.

4.1 Reasoning on UML Class Diagrams with No Min Card Cycles
Is Decidable

We say that there is a min cardinality cycle in a UML class diagram if there is a
directed cycle in the UML class diagram formed by association roles whose min
cardinality is one and/or hierarchy constraints (taken upwards or downwards,
i.e., in both directions of the hierarchy). Then, we say that a UML class diagram
is weakly acyclic if it does not contain any min cardinality cycle. Formally:

Definition 1. A min cardinality cycle on class C is a sequence of association-
role names r0,. . . , rn s.t.:

1. Forms a cycle, i.e., the UML class of rn is compatible with C.
2. Each association-role ri has a min cardinality 1 (or is a navigation from an

association class to one of its members).
3. It is a valid path, i.e., C can navigate to r0, and the UML class of ri−1 can

navigate to a role/association-class ri for every i > 1. We consider that a

360 X. Oriol and E. Teniente

UML class can navigate through a role ri if it has a role property called ri,
or some of its compatible classes have it.

Equivalently, there is a min cardinality cycle if we can build an OCL path
that starts from class C, navigates uniquely through roles whose min cardinality
is 1 (or from association classes to its members since an instance of an association
class always one member for each association-end), possibly using oclAsType to
cast some (intermediate) path result to some other compatible classes into which
continue navigating, and whose final result is (a collection) of a type compatible
with C.

Definition 2. A UML class diagram is weakly acyclic iff it does not contain
any min cardinality cycle for any of its classes.

In the following, we prove that reasoning on a weakly acyclic UML class
diagram is decidable. We do so by showing that the logic encoding of a weakly
acyclic UML schema results into a weakly acyclic set of deds, which are well-
known to be decidable [7,8].

Theorem 1. Reasoning on a weakly acyclic UML class diagram is decidable.

Proof. The proof starts from the logic encoding of the UML constraints present
in the class diagram. In particular, we see that there are only 6 kinds of rules
generated by the encoding of constraints in this language [1]:

– Integrity Reference Rules: Assoc(x, y,. . .) → Class(x)
– Minimum cardinality rules: Class(x) → Assoc(x, y,. . .)
– Maximum cardinality rules: Assoc(x, y,. . .) ∧ Assoc(x, y2,. . .) → ⊥
– Hierarchy constraints: Subclass(x) → Class(x)
– Disjoint constraints: Subclass1(x) ∧ Subclass2(x) → ⊥
– Complete constraints: Class(x) → Subclass1(x) ∨. . .∨ SubclassN(x)

Now we see that, if the UML class diagram is weakly acyclic, these kinds of
rules form a weakly acyclic set of deds. We do this by contraposition. That is,
we show that if there is a cycle in the deds, we can find a min cardinality cycle
in the class diagram.

If there is a cycle in the deds, there is, for sure, an existential edge. The
unique rules that generate an existential edge are the min cardinality rules, so,
there must be a min cardinality constraint in the UML class diagram. We use
this class to generate a min cardinality cycle. Indeed, each edge that appears in
the cycle in the deds can be seen either as a navigation through a min cardinality
1 role, or the navigation to the class of the association, a superclass or a subclass.
We can generate the min cardinality cycle by simply picking the role names of
the min cardinality constraint deds appearing in the deds cycle. Since the deds
form a cycle, for sure, the navigations ends with the original class C. ��

Up to here, we know that reasoning on weakly acyclic UML schemas is decid-
able. Now, we generalize this condition in order to ensure good expressiveness.

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 361

In particular, it is quite frequent to find a binary association in a UML class
diagram with a min cardinality 1 in both association-ends. This forms a trivial
cycle in the UML class diagram, and thus, a cycle in its logic encoding.

Assume, for instance, that the (reified) association TeamInLeague in our
example has a min cardinality 1 in both association-ends: Team and League. In
such case, the logic encoding contains the following cycle:
8) Team(t), → TeamInLeague(t, l)
9) TeamInLeague(t, l), → League(l)
10) League(l) → TeamInLeague(t, l)
11) TeamInLeague(t, l) → Team(t)

This kind of cycles do not affect the decidability of the schema. Intuitively,
this is because everytime we repair the ded 9 creating a new league l for some
team t we are actually repairing the ded 10 that says that each league (such as
l) should have at least one team. Thus, ded 10 is not triggered, and the repairing
process does not loop forever.

Formally, this kind of cycles satisfy the third decidability theorem identified
in [1], which states that when creating new instances to repair such kind of
constraints, those instances do not get stacked into an infinite loop.

Therefore, cycles involving only one (non-recursive) association with min
cardinalities in both association ends do not break decidability.

4.2 Incorporating OCLUNIV

We assume now that the UML class diagram is complemented with OCLUNIV

constraints and show that decidability is still preserved. The basic idea is that
these constraints do not create new objects to be repaired, but reclassify them
among compatible classes or add new associations to them. Thus, no new cycles
with new existential edges are added.

It might seem that an OCLUNIV constraint can create a new universal edge
that is involved within a cycle with some existential edge (given by some min
card constraint). However, we show that, if this is the case, then, there is a
min cardinality cycle in the UML class diagram alone (and thus, the UML class
diagram would not be weakly acyclic). The intuition behind this fact is that,
given a ded cycle involving an OCLUNIV constraint, we can build a UML min
card cycle by simply bypassing OCLUNIV constraints. This is because OCLUNIV

cannot make an existing object become an instance of an arbitrary class, but can
only reclassify objects into compatible classes (whose propagations are already
taken in account when searching for min cardinality cycles through hierarchies).

We start stating two intermediate Propositions that make the overall proof
easier:

Proposition 1. Given a set of deds encoding a UML class diagram, if a posi-
tion r[i] encodes objects compatible with class C, then, there is a universal-path
(i.e., a path formed by universal edges in the dependency graph) from r[i] to
C[0].

362 X. Oriol and E. Teniente

Proof. There are two different cases: r might encode either a class or an associ-
ation (the case of association classes is treated similarly).

Assume r is a predicate encoding a class R. If R is compatible with C we
have that, in the UML class diagram, R is connected to C through hierarchies.
This connection is represented in the dependency graph through deds encod-
ing hierarchy constraints (intuitively, to go upwards a hierarchy), and complete
constraints (intuitively, to go downwards a hierarchy). Both kinds of deds only
generate universal edges and, so, there is a universal-path between them.

Assume r is a predicate encoding an association R and r[i] encodes the i-th
member of the association R, whose UML class is RC. If RC is compatible with
C, we have a universal path between the positions rc[0] and c[0] (as we have seen
previously). Now, because of the ded encoding the integrity reference constraint,
there is also a universal edge from r[i] to rc[0]. So, there is a universal path
between r[i] and c[0]. ��

With this result at hand, we can prove that, if there is a cycle in the deds
encoding a UML schema with OCLUNIV constraints, then, there is a min car-
dinality cycle in the UML schema. The proof is based on showing that, if
there is a cycle in the deds, and such cycle uses some universal edge generated
from a ded encoding an OCLUNIV constraint, we can build a new cycle without
using such ded by means of replacing such edge for the universal path stated in
Proposition 1.

Proposition 2. If there is a cycle in the deds encoding a UML schema with
OCLUNIV constraints, then, there is a min cardinality cycle in the UML schema.

Proof. Take a cycle in the deds. If such cycle does not use any edge resulting
from a ded encoding an OCLUNIV constraint, then, there is a min cardinality
cycle in the UML class diagram (see proof of Theorem 1).

If such cycle uses an edge coming from the ded of a OCLUNIV constraint, we
are going to see that we can create a new cycle avoiding such ded. Assume that the
edge is from positions r[i] to position s[j]. First, because OCLUNIV does not create
existential variables, such edge is going to be a universal edge. Then, because
OCLUNIV is a typed language, we have that the classes represented in r[i] and
s[j] are compatible. Thus, by Proposition 1 there is a universal path between r[i]
and s[j] that only goes through deds encoding UML schema constraints. Thus,
we can build a cycle with no ded encoding OCLUNIV by replacing such edges by
their corresponding alternative universal-paths. So, since there is a cycle using
the deds encoding the UML schema, there is a min cardinality cycle in the UML
class diagram (see proof of Theorem 1). ��

Now, we can finally state that reasoning with weakly acyclic UML class
diagrams with OCLUNIV constraints is decidable.

Theorem 2. Reasoning on a weakly acyclic UML class diagram with OCLUNIV

constraints is decidable.

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 363

Proof. Taking the contraposition of Proposition 2, we have that a UML schema
with OCLUNIV constraints but no min cardinality cycle generates a weakly acyclic
set of deds, which are known to be decidable [7,8]. ��

4.3 Incorporating Acyclicity Constraints, Min Cardinalities Greater
Than 1, and Incomplete Hierarchies

Our goal now is to show that weakly acyclic UML schemas with OCLUNIV con-
straints are still decidable when considering: (1) path acyclicity constraints, (2)
minimum cardinalities greater than 1, and (3) incomplete hierarchies. In this
way, the language we identify is able to deal with almost all identified frequent
UML schema constraints [5].

Intuitively, a path is acyclic on a UML class diagram if and only if, given a
class of the path, we can establish a stratification of the instances of such class.
This can be emulated by means of considering a new fake attribute called strata
in such class, and adding a new OCLUNIV constraint forcing that the strata of
some instance of the class should be less than the strata that can be obtained
through navigation by the cyclic path.

Theorem 3. Reasoning on a weakly acyclic UML class diagram with OCLUNIV

constraints and path acyclicity constraints is decidable.

Proof. The proof is based on reducing the problem to reasoning on a UML class
diagram with OCLUNIV constraints and no path acyclicity constraint.

Indeed, remove the acyclicity constraint and add some fake attribute strata in
some class belonging to the acyclic path. Then, add a OCLUNIV constraint stating
that each instance of such class should have a strata less or equal than the strata
of the instances that can be obtained by navigating through the acyclic path.
Clearly, the first schema is satisfiable iff the second one is satisfiable. Moreover,
this transformation does not alter the existance/inexistance of a min cardinality
cycle in the diagram (indeed, we are not altering the diagram), so, if the original
UML diagram is weakly acyclic, the second one (the one with no acyclicity
constraint) is weakly acyclic too, and thus, decidable. ��

Consider now min cardinality constraints of n (n > 1). We now show that they
can be emulated by considering n new associations of min cardinality one, and
adding some constraints to ensure that each of these associations should retrieve
a different object, and all n should be included in the original association. Note
that, indeed, all these constraints can be written in OCLUNIV. Formally:

Theorem 4. Reasoning on a weakly acyclic UML class diagram with OCLUNIV

constraints and general min cardinality constraints is decidable.

Proof. The proof is based on reducing the problem to reasoning in a UML class
diagram with OCLUNIV constraints and where all min cardinalities are of the
kind “1” or “1..*”.

Indeed, remove the min cardinality n and add n new associations with the
same members, and a min cardinality 1 in all of them. Then, add n OCLUNIV

364 X. Oriol and E. Teniente

constraints stating that each instance of such associations should be instance
of the original association, and that all of them should be disjoint. Clearly, the
first schema is satisfiable iff the second one is satisfiable. Moreover, this trans-
formation does not alter the existance/inexistance of a min cardinality cycle in
the UML class diagram (indeed, we are only adding min cardinalities between
classes which already had min cardinalities), so, if the original UML class dia-
gram is weakly acyclic, the second one (the one with no min cards greater than
1) is weakly acyclic too, and thus, decidable. ��

Finally, we show that if a UML class diagram with OCLUNIV constraints and
incomplete hierarchies is weakly acyclic, then, it is also decidable.

Theorem 5. Reasoning on a weakly acyclic UML class diagram with OCLUNIV

constraints and incomplete hierarchies is decidable.

Proof. If the UML class diagram with OCLUNIV constraints is weakly acyclic,
then, its set of deds is weakly acyclic. Hence, the set of deds after removing the
deds encoding complete constraints is still weakly acyclic. Thus, reasoning on
a weakly acyclic UML class diagram with OCLUNIV constraints and incomplete
hierarchies is decidable. ��

5 Expressiveness Study

OCLUNIV is expressible enough to deal with the typical constraint patterns used
in conceptual modeling that were identified in [5]. The unique exception is the
path inclusion pattern (i.e., a constraint stating that the instances that can be
reached navigating through some path in the UML diagram should be a subset
of the instances that can be obtained following another path), which in OCLUNIV

is limited to paths of only one navigation step.
Such patterns are able to encode about the 60% of textual constraints in

conceptual schemas [5]. Nevertheless, OCLUNIV is able to encode expressions
beyond such patterns, thus, a better coverage is expected.

To show the expressiveness of our fragment, we have evaluated how many
constraints could we encode in our OCLUNIV (i.e. the original OCLUNIV with the
extension we have proposed in this paper) in several typical UML/OCL case
studies. In particular, we have used as case studies the schemas of osCommerce
[10] (24 classes and 33 constraints), a Sudoku application [11] (10 classes, and
8 constraints), the DBLP schema [12] (17 classes, and 22 constraints), and the
EU-rent fictional system [13] (33 classes, and 33 constraints). It is worth noting
that two of them (osCommerce and DBLP) were obtained by reverse engineering
of real systems.

For each case study, we have checked how many minimum cardinality con-
straints must be removed (if any) from the schema in order to ensure that the
UML class diagram is weakly acyclic, and how many of their constraints may be
encoded in OCLUNIV. To be able to evaluate our results with regards to other
decidable fragments of OCL, we have decided to compare our proposal with

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 365

OCL-Lite [3], which is, to our knowledge, the unique existing decidable and
expressive fragment of OCL (appart form OCLUNIV). To establish the compari-
son, we have counted how many cardinality constraints did we need to remove
to ensure that the UML class diagram fulfilled the OCL-Lite requirements, and
then, how many constraints could be written in OCL-Lite. Tables 1 and 2 sum-
marize our results.

Table 1. Cardinalities removed to be compliant with OCLUNIV and OCL-Lite require-
ments

OCLUNIV OCL-Lite

Sudoku 1 17

DBLP 0 14

EU-rent 0 24

osCommerce 0 14

Total 1 69

Table 2. OCL constraints encodable in our OCLUNIV vs OCL-Lite for our case studies

OCL constraints OCLUNIV OCL-Lite

Encodable Non-encodable Encodable Non-encodable

Sudoku 8 8 0 7 1

DBLP 22 21 1 13 9

EU-rent 33 27 6 13 20

osCommerce 33 23 10 21 12

Total 96 79 17 54 42

As shown in Table 1, we only had to remove 1 minimum cardinality con-
straint from the Sudoku schema to ensure that the UML class diagrams were
weakly acyclic in all cases, and thus, decidable under our OCLUNIV constraints.
This is because the unique cycle found was between the relations Sudoku has
Rows, Rows have Cells, Cells are in Columns, Columns are in Sudokus, which
form a cycle with min cardinalities 1 in each association end. To break this
cycle, it is only necessary to remove one of such min cardinality constraints.
However, this does not entail with our approach a decrease in expressivity since
the cardinality between Column and Sudoku could be replaced with an OCLUNIV

constraint saying that each column has the sudoku of its cells (which entails the
min cardinality one).

On the other hand, OCL-Lite required removing a total of 69 cardinalities
considering all the schemas. This is because OCL-Lite cannot handle maximum

366 X. Oriol and E. Teniente

cardinalities (which are pretty common in UML diagrams) and, hence, all of
them must be removed.

In Table 2 we can see that OCLUNIV can encode more constraints than OCL-
Lite (82.3% against 56.3%). We believe that this is due to the lack of comparison
operators (=, <, ≤, <>) in OCL-Lite, which made quite a lot of constraints
encodable in OCLUNIV not encodable in OCL-Lite. Conversely, only very few
cases were encodable in OCL-Lite but not in OCLUNIV. These cases were related
to constraints forcing the existence of some object satisfying a particular con-
dition (for instance, in the osCommerce, a constraint stating that there should
exists an enabled PaymentMethod among the PaymentMethods in the system).
Interestingly, neither OCLUNIV nor OCL-Lite could deal with some constraints
involving path inclusions (such as the shopping cart atttributes should be included
in the attributes of the products of the shopping cart). OCL-Lite could not encode
any of them because of the absence of equalities, and OCLUNIV is limited to path
inclusion constraints involving paths of only one navigation, which has been
proven to be too limited in some of our case studies.

Given these results, we can state that the language we have identified in
this paper is, up to now, the most expressive language for defining UML/OCL
conceptual schemas while ensuring finite reasoning on them, with a substantial
improvement with respect to the closest competitor found in the literature (OCL-
Lite).

As a limitation of this experiment, we should point out that, due to the
difficulties to find UML schemas with OCL constraints, only four schemas were
used. In addition, it might be argued that evaluating expressiveness by means of
counting encodable constraints might be insufficient since, subjectively, it could
happen that OCL-Lite encoded constraints were more interesting than OCLUNIV

constraints. However, this notion is subjective and thus, out of the scope of the
controlled experiment we have carried out.

6 Related Work

We analyze languages and approaches related to OCLUNIV. We distinguish
between UML/ER based, and tgd-based.

UML/ER Based. Reasoning the satisfiability of an ER diagram consider-
ing only association cardinalities is polynomial [14]. When, considering UML
schemas with all features in exception of OCL constraints, the problem becomes
EXPTIME-complete [2].

Adding OCL-Lite constraints in UML class diagrams maintains the
EXPTIME-complete complexity (and thus, decidability), although it requires
removing the maximum cardinality constraints [3]. This requirement is, in our
opinion, too strong since most realistic UML class diagrams always have some
kind of maximum cardinality. In addition, we have seen during our expressiveness
study that this inability to encode constraints involving equalities/inequalities
represents also a drawback in comparison to OCLUNIV. However, OCL-Lite is

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 367

not subsumed by OCLUNIV since, for instance, OCL-Lite is capable of encoding
the exists operator, which is forbidden in OCLUNIV.

Another option consists in using general UML/OCL constraints, and then,
analyze whether that particular UML/OCL schema is decidable or not [1,6].
This approach subsumes OCLUNIV. Indeed, OCLUNIV decidability relies in weak
acyclicity, which is a condition subsumed by the previous decidability analysis
[1]. However, we argue that it is quite difficult from the point of view of a
conceptual modeller to write a UML/OCL schema that satisfies such decidability
conditions. This is because such conditions are checked in the logic encoding of
the UML/OCL schema, rather than the UML/OCL itself. In contrast, it is easy
to check whether a UML/OCL schema satifies the decidabiilty requirements of
our OCLUNIV (i.e., weak acyclicity and the syntax of OCLUNIV).

Another interesting work is the one presented in [15]. In this work, UML/OCL
constraints are written under the form of several constraint patterns, and such
constraint patterns are analyzed to be consistent/inconsistent polynomially
(through syntactic checks), which means that they not only guarantee decid-
ability of reasoning, but also efficiency. However, this approach might bring false
positives (i.e., it might say that some set of consistent constraints are inconsis-
tent).

Finally, we have the approaches based in Armstrong tables [16]. An Arm-
strong table is, roughly speaking, an instantiation of the schema which exempli-
fies the satisfaction of the constraints entailed by the schema (and is a counterex-
ample for anyone else). [16] shows how to build Armstrong tables for schemas
considering min/max and not-null constraints. However, it does not target gen-
eral constraints as we do.

TGD Based. Our approach is based on a logic encoding in deds of the
UML/OCL schema, and the decidability of reasoning over such logic encod-
ing. In particular, we have used the ded weak acyclicity property to ensure the
termination of the chase algorithm to reason with such deds [7].

The weak acyclicity property of deds is subsumed by the stratification prop-
erty stated in [8]. This means that we could potentially enlarge the subset of
UML/OCL we can deal with if we based on stratification rather than weak
acyclicity. However, we argue that this change is unfeasible. Indeed, checking
whether a set of deds satisfy the weak acyclicity consists in a simple graph analy-
sis, thus, we only needed to characterize which kind of UML/OCL expressions
would bring an acyclic graph. In contrast, checking the stratification property
requires solving a NP problem for each edge in the dependency graph. In our
opinion, it is quite difficult to find some condition over the UML/OCL level that
ensures that such NP condition is satisfied at the logic level.

Another family of decidable languages based on tgds is Datalog+/− [17]. The
basic notion in Datalog+/− is guardedness. A ded is said to be guarded if there
is some atom containing all its universal variables in a single atom in the left-
hand side (called guard). Under this situation, reasoning over such set of deds
is decidable. It is easy to see that OCLUNIV is not subsumed by this language

368 X. Oriol and E. Teniente

since ded 5 of our example is not guarded. It is also worth noting that OCLUNIV

does not subsume Datalog+/− since it does not offer existential variables (appart
from the special min cardinality 1 case). So, both are languages with different
expressiveness. However, we argue that it is quite difficult to realize an expressive
OCL subset that ensures that its logic encoding is guarded.

7 Conclusions

We have seen that reasoning with UML schemas with no minimum cardinality
cycles, path acycliclity constraints and OCLUNIV constraints is decidable. This
decidability result is guaranteed because, by construction, the logic encoding into
deds of such schema is weakly acyclic, which guarantees that the chase algorithm
terminates on such schema. Current UML/OCL reasoners such as [6] can benefit
from this termination result.

We have compared the expressiveness of the decidable language we have
identified with that of OCL-Lite [3], another decidable language based on OCL,
and we have seen that OCLUNIV is more expressive in all different UML/OCL
case studies we have taken into account (while OCLUNIV could handle about the
82% of constraints appearing in these schemas, OCL-Lite could only deal with
around 56%).

As future work, we would like to extend our proposal to be able to admit more
constraints involving existential variables. We understand that special attention
should be put to inclusion path constraints. In addition, OCLUNIV is designed
only for ensuring decidability, so, a more sophisticated analysis should be done
to bound its complexity.

Acknowledgements. This work is supported by the Ministerio de Economia y Com-
petitividad, project TIN2014-52938-C2-2-R and by the Secretaria d’Universitats i
Recerca de la Generalitat de Catalunya, project 2014 SGR 1534.

References

1. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)

2. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

3. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

4. Oriol, X., Teniente, E., Tort, A.: Computing repairs for constraint violations in
UML/OCL conceptual schemas. Data Knowl. Eng. 99, 39–58 (2015)

5. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Improving the
definition of general constraints in UML. Softw. Syst. Model. 7(4), 469–486 (2008)

6. Rull, G., Farré, C., Queralt, A., Teniente, E., Urṕı, T.: AuRUS: explaining the
validation of UML/OCL conceptual schemas. Softw. Syst. Model. 14(2), 953–980
(2015)

OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning 369

7. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

8. Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: Proceedings of the 27th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
PODS 2008, pp. 149–158. ACM (2008)

9. Oriol, X., Teniente, E.: Incremental checking of OCL constraints through SQL
queries. In: Proceedings of the 14th International Workshop on OCL and Textual
Modelling, pp. 23–32 (2014)

10. Tort, A.: (The osCommerce case study). http://www-pagines.fib.upc.es/modeling/
osCommerce cs.pdf

11. Tort, A., Olivé, A.: (The sudoku case study). http://www.essi.upc.edu/atort/
documents/Sudoku.pdf

12. Planas, E., Olivé, A.: The DBLP case study (2006). http://www-pagines.fib.upc.
es/modeling/DBLP.pdf

13. Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: EU-rent car rentals specifica-
tion. Technical report, Universitat Politècnica de Catalunya (2012). http://www.
essi.upc.edu/estanyol/docs/artifacts eu rent.pdf

14. Hartmann, S.: On the consistency of int-cardinality constraints. In: Ling, T.-W.,
Ram, S., Lee, M.L. (eds.) ER 1998. LNCS, vol. 1507, pp. 150–163. Springer,
Heidelberg (1998). doi:10.1007/978-3-540-49524-6 12

15. Wahler, M., Basin, D., Brucker, A.D., Koehler, J.: Efficient analysis of pattern-
based constraint specifications. Softw. Syst. Model. 9(2), 225–255 (2010)

16. Hartmann, S., Köhler, H., Leck, U., Link, S., Thalheim, B., Wang, J.: Constructing
armstrong tables for general cardinality constraints and not-null constraints. Ann.
Math. Artif. Intell. 73(1–2), 139–165 (2015)

17. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. Web Semant.: Sci. Serv. Agents World
Wide Web 14, 57–83 (2012)

http://www-pagines.fib.upc.es/modeling/osCommerce_cs.pdf
http://www-pagines.fib.upc.es/modeling/osCommerce_cs.pdf
http://www.essi.upc.edu/atort/documents/Sudoku.pdf
http://www.essi.upc.edu/atort/documents/Sudoku.pdf
http://www-pagines.fib.upc.es/modeling/DBLP.pdf
http://www-pagines.fib.upc.es/modeling/DBLP.pdf
http://www.essi.upc.edu/estanyol/docs/artifacts_eu_rent.pdf
http://www.essi.upc.edu/estanyol/docs/artifacts_eu_rent.pdf
http://dx.doi.org/10.1007/978-3-540-49524-6_12

Conceptual Modeling and Business
Processes

Goal Orchestrations: Modelling and Mining
Flexible Business Processes

Metta Santipuri1, Aditya Ghose1(B), Hoa Khanh Dam1, and Suman Roy2

1 Decision Systems Lab, School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW 2522, Australia

{ms804,aditya,hoa}@uow.edu.au
2 Infosys Ltd., #44 Electronics City, Hosur Road, Bangalore 560 100, India

Suman Roy@infosys.com

Abstract. In many application domains, it is more natural to think of
a process as a coordination model of goals to be achieved rather than
of tasks or acitivities to be performed. Replacing tasks or activities with
goals in process models allows us to enact processes in flexible, context-
sensitive ways. We define a formal semantics for processes modeled in this
manner (which we call goal orchestrations) and show how these enable
flexible process execution. We also offer a simple means of mining goal
orchestrations from readily available event logs, and present an evalua-
tion with an event log consisting of 65000 entries from one of the world’s
largest IT companies.

1 Introduction

Business processes (and related conceptions, such as clinical processes or man-
ufacturing processes) are typically specified in terms of tasks that need to be
executed. This ignores an important alternative perspective on process model-
ing, in terms of goals to be achieved. Consider a physician preparing a patient for
surgery. The treatment plan is typically conceived of as a sequence of goals to
be achieved: first we will lower the patient’s blood pressure, then we will stabilize
the patient’s blood glucose levels, then treat the persistent chest infection before
sending the patient into surgery. Implicit in this treatment plan is a sequence
of three goals to be achieved: “lower blood pressure”, “stabilize blood glucose”
and “treat chest infection”. It is interesting to note (and this has been borne
out by extensive interviews with physicians) that treatment plans do not involve
task descriptions such as “administer drug X” or “treat with antibiotic Y”. The
key motivation behind conceiving these treatment plans as sequences of clinical
goals/objectives to be achieved is to admit the possibility of achieving these goals
in multiple different ways. Indeed clinicians often flesh out additional detail in
such treatment plans by introducing what might be viewed as sub-processes of
the form: if medication X (for blood pressure) does not work, we’ll try medica-
tion Y concurrent with hydration therapy. Similar patterns of modeling can be

Suman Roy did this work when he was a visiting fellow at University of Wollongong
on Infosys-CRC funded project of data-driven process discovery during July–Dec’14.

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 373–387, 2017.
https://doi.org/10.1007/978-3-319-69904-2_29

374 M. Santipuri et al.

found in a range of other settings (manufacturing, logistics as well as traditional
“business” process application domains).

Our objective in this paper is to formalize this alternative approach to process
modeling via goal orchestrations. As the name suggests, a goal orchestration
is a coordination or orchestration model, where we describe the coordination
of goals instead of the coordination of tasks. There are several reasons why
these are of interest. First, goal orchestrations provide a more natural means of
modeling behaviour (or processes) in many settings, as illustrated by the clinical
example above. Second, goal orchestrations provide an easy means of achieving
flexible process execution. The execution machinery for goal orchestrations is
able to compute alternative task-level realizations of a goal if the initial attempt
at realizing the goal fails to achieve the desired results (manifested by events
or effects in the operating context). Third, goal orchestrations offer abstract,
strategy-level views on processes, which can aid human understanding and ease
process redesign (and other forms of analysis). More interestingly, as we will
show below, goal orchestrations can be mined from readily available enterprise
data in the form of event logs.

Goal orchestrations and their analysis involves considerable complexity (even
though a superficial reading might suggest that all we are doing is replacing
tasks in process models with goals). We need to consider temporal coordination
of entities at three, progressively finer-grained, levels of abstraction: (1) the goal
level, (2) the task level and (3) the event level. A given goal orchestration might
admit multiple conformant task sequences. We need to use an important device
from the reasoning about action literature, in the form of a state update operator
to accumulate the persistent effects of tasks at the event level. The fact that state
update, in general, leads to multiple non-deterministic outcomes means that the
execution of a given task sequence might generate multiple event sequences (the
non-determinism implies that we will be unable to specify at design time which
of these event sequences will actually accrue when the task sequence is executed).

Of special interest are goal orchestrations that leverage an input goal model
(in the form of an AND-OR goal graph). The input goal model can help identify
alternative OR-refinements of a given goal, opening up a larger space of re-design
alternatives in settings where the run-time monitoring machinery detects that
the execution of a goal orchestration has not delivered the desired effects. The
AND-refinements of a goal specified in a goal model can also be leveraged, but
we do not formalize this in detail in this paper due to space constraints.

We note that much of the machinery we describe requires repeated use of the
state update operator, and entailment checks. While space precludes a detailed
empirical evaluation of computational cost of these, we can note that in the case
of a propositional language for describing events/effects, fast SAT-solvers can exe-
cute these checks in near real-time. Well-known results about Horn clause theories
also indicate that entailment checking can be executed in polynomial time.

In this paper, we provide a formal semantics of a goal orchestration model (in
Sect. 2) by using abstractions spanning the goal level, the task level and finally
the event level. We outline a machinery for executing goal orchestration models

Goal Orchestrations 375

that achieves the flexibility discussed above (Sect. 3). We then outline an app-
roach to mining goal orchestration models (Sect. 4) from event logs, leveraging
in considerable detail the semantics described in Sect. 2. Finally, we present an
empirical evaluation (Sect. 5), first with a synthetic dataset, and then with a
dataset from one of the world’s largest IT companies involving an event log with
65,000 distinct entries.

2 Goal Orchestration Models and Semantics

A goal can be represented in any truth-functional language that comes equipped
with machinery for checking satisfiability (and hence entailment). In the fol-
lowing, we will only consider achievement goals. A goal orchestration (N,F) is
best viewed as a process graph (as commonly used in the literature) with the
tasks/activities replaced with goals, where N = G ∪ Γ ∪ E (G is a set of goal
assertions, Γ is a set of gateways, and E = Es ∪Ef is a set of special events (Es

represents start events and Ef denotes end events); F ⊆ (N\E × N\E)
⋃

(Es ×
N\E)

⋃
(N\E × Ef) corresponds to sequence flows connecting goal assertions

with goal assertions, goal assertions with gateways, gateways with goal asser-
tions, start events with goal assertions and goal assertions with end events. We
will now describe the semantics by specifying under what circumstances an event
log will be deemed to satisfy a goal orchestration. Recall that an event log is a
set of pairs of the form 〈event, timestamp〉 (we ignore case IDs in the formula-
tion, but if they are available, we can leverage these to cluster effects by process
instance, if that granularity of analyisis is of interest). We order an event log
from the earliest timestamp to the latest, obtaining a sequence 〈e1, e2, . . . , en〉,
where each element is of the form ei = 〈εi, τi〉 (εi is the i-th event, τi is its
timestamp) and for every adjacent pair of elements in the sequence 〈ei, ei+1〉,
τi ≤ τi+1.

Every event involves one or more state transitions (a business object such as
an insurance claim transitions from a not-determined state to an accepted state,
or a task object transitions from an incomplete state to a completed state etc.).
The effects of some events persist (an insurance claim once accepted remains in
the accepted state) while others do not (a light that is initially switched on is
eventually switched off). An event log describes the changes but not the non-
changes. In other words, such a log describes new events as they occur but does
not describe which prior events have persistent effects, so determining which
effects hold at a given point requires specialized machinery. In the following, we
will not distinguish between an event and its effects - thus the description of
an event is also the description of its effects. To obtain a sequence of states or
partial states (each denoted by a conjunction of effect assertions) from an event
log, we accumulate effects using a state update operator in a manner similar to the
approach adopted in [20,32]. A state update operator takes a state description
and the effects of an action to generate one or more descriptions of the state that
would accrue from executing this action in the input state. Some well-known
state update operators are the Possible Worlds Approach (PWA) [15] and the

376 M. Santipuri et al.

Possible Models Approach (PMA) [33] (other approaches based on the logic of
theory change [3,12] and belief merging [23,24] can also apply, but we defer that
discussion to future work). Given a set of accumulated effects (representing a
possibly partial description of the state of the operating environment), and a new
effect (representing the action just performed), we use the state update operator
to determine what new set of accumulated effects should be (in our evaluation,
we use the PWA operator, but others could be used without loss of generality).
Applying the state update operator (denoted by ⊕) leads to non-deterministic
outcomes. Thus, if s1 and s2 are states represented as conjunctions of event/effect
assertions (we can think of the effects of an action being described, without loss
of generality, as s2), then s1 ⊕ s2 is a set of states (the intuition being that any
one of these could be the result of making s2 true in state s1.

The idea, now, is to generate from an event log a sequence of sets of states
(we need sets of states and not single states because of the non-deterministic
nature of the state update operator). Given a set of prior states and a set of
posterior states (i.e., those obtained from the prior set via state update), it
is important to note that a state in the posterior set can be arrived at only
from some (but possibly not all) of the states in the prior set. Thus, there are
predecessor-successor relationships connecting elements of temporally adjacent
sets of states. We first extract from an event log a state set sequence consisting
of pairs of states, where the first element is the predecessor and the second
element is the successor. Given an event log 〈e1, e2 . . . , en〉, we compute a state set
sequence 〈StateSet1, StateSet2, . . . , StateSetn〉, where each StateSeti is of the
form {StatePair1, StatePair2, . . . , StatePairk} and each StatePairi is of the
form 〈statepred, statesucc〉 (i.e., these are predecesor-successor pairs) as follows:

– We set StateSet1 = {〈∅, ε1〉} (where 〈ε1, τ1〉 is the first entry in the temporally
ordered event log).

– We set StateSet2 = {〈ε1, s〉 | s ∈ ε1 ⊕ ε2} (where 〈ε2, τ2〉 is the first entry in
the temporally ordered event log).

– For i = 3 . . . n,StateSeti = {〈si−1, si〉 | si−1 ∈ StateSeti−1 and si ∈ si−1⊕εi}.

A state sequence 〈s1, s2, . . . , sn〉 is supported by a state set sequence
〈StateSet1, StateSet2, . . . , StateSetn〉, if and only if:

– StateSet1 = {〈∅, s1〉}.
– Every adjacent pair 〈si−1, si〉 in the state sequence must be an element of

StateSeti in the corresponding state set sequence.

Given a state sequence 〈s1, s2, . . . , sn〉 and a goal model with a goal set
{g1, g2, . . . , gk} (this represents our vocabulary of goals), we compute a goal
sequence 〈G1, G2, . . . , Gn〉 by setting each Gi = {gi | si |= gi}. Note that a goal
sequence is a sequence of sets of goals. We define a goal orchestration trace as
a sequence of goals 〈g1, . . . , gm〉 satisfying the constraints of the corresponding
goal orchestration model (much like a trace through a process model). Given a
goal orhestration model and a trace 〈g1, . . . , gm〉, we will say that the trace is
supported by a goal sequence 〈G1, G2, . . . , Gn〉 if it is the case that n ≥ m and
every gi ∈ Gi.

Goal Orchestrations 377

Given a goal model (and thence, the set of goals contained in it), an event
log satisfies a goal orchestration model if and only if a goal sequence can be
obtained from the event log and the goal model in the manner described above
such that the goal sequence supports a trace for the goal orchestration model.

3 Executing Goal Orchestrations

For a goal orchestration approach to enable flexible process execution, we require
tasks/activities or enterprise capabilities to be annotated with post-conditions,
specified in the same ontology as the goals (as recent results in [27] show,
post-conditions can be relatively reliably mined from readily available enter-
prise data). More generally, one can view this as an instance of a generic scheme
that permits us to relate task execution to the functional outcomes that are used
to specify goals. A number of recent proposals suggest that leveraging task post-
condition annotations can be effective and practical [6–8,10,11,13,19,20,29,32].

The first question we need to address is whether a goal orchestration is
feasible with respect to an enterprise capability library. We shall view the lat-
ter as a repertoire of tasks or capabilities annotated with post-conditions. A
goal orchestration is strongly feasible with respect to an enterprise capability
library if and only if for every trace admitted by the orchestration, there exists
a task/capability sequence 〈t1, . . . , tn〉 with a corresponding sequence of post-
conditions 〈p1, . . . , pn〉 such that this latter, if viewed as an event log (this can
be easily done by inserting time-stamps with each post-condition that respects
the relative ordering), generates (given a goal model) a goal sequence that sup-
ports that trace. In the case of weak feasibility, we only require that there exist
a task sequence that generates a goal sequence that supports at least one trace.
The subsequent analyses will only be performed for goal orchestrations that are
(strongly or weakly) feasible with respect to the available enterprise capability
library.

Practical deployment of goal orchestrations must ideally be done with a goal
model at hand. A goal model, typically an AND-OR goal tree, is critical in
offering alternative means of arriving at the same outcome. We will refer to any
goal related to a parent goal g in the goal model via an OR-link as an OR-refined
child goal, and the OR-refined children of these and so on as the OR-refined
descendants of g. We shall refer to the set of all OR-refined descendants of a
goal g as the OR-alternatives of g. Given a goal orchestration model GOM, the
set OR-Alt(GOM) of OR-alternatives of GOM consists of all goal orchestration
models obtained by replacing at least one goal in GOM with an OR-alternative.

Executing a goal orchestration model consists of computing an optimal suffix
for a partially executed task sequence (empty at the start of execution). By
introducing a current state into the problem, one can deal with the problem of
semantic compensation [17], where a process deviates from the functionality it
is expected to deliver (manifested via events/effects) and where the challenge is
to compute a new sequence of activities that will restore the process to semantic
conformance (where it delivers the expected effects) and achieve the final goals.

378 M. Santipuri et al.

Formally, given: (1) The current state S of the process and its environment,
(2) a goal orchestration model and (3) The current sequence of goals achieved
〈g1, . . . , gi〉, compute: a sequence of tasks 〈tj , . . . , tm〉 drawn from the enterprise
capability library such that the corresponding sequence of task post-conditions
〈pj , . . . , pm〉, when concatenated with the achieved goal sequence 〈g1, . . . , gi〉
generates a sequence of events 〈g1, . . . , gi, pj , . . . , pm〉 which can be viewed as an
event log (with the appropriate insertion of sequence-maintaining time-stamps,
as before) that generates a goal sequence that supports a goal trace through the
input goal orchestration model.

Goal orchestrations serve to provide useful abstractions of underlying process
models. Figure 2 shows a goal orchestration model for treating head injuries,
providing an abstract view of a more detailed clinical process model in Fig. 1.
A comparison of the 2 models reveals that the goal of administering IV bolus
of dextrose is to maintain blood glucose level within the normal range, while
giving extra dextrose helps achieve the goal of body fluid balance, and so on.
‘Administer Paracetamol’, ‘Administer a bolus of IV morphine (50–100µg/kg)
and a morphine infusion (20–40µg/kg/hr)’, and ‘Sedation’ tasks are alternative
ways of achieving the goal Reduce patient’s pain and stress.

Fig. 1. Clinical process model fragment for treating head injuries

Fig. 2. Goal orchestrations for clinical process model in Fig. 1

4 Mining Goal Orchestrations

In this section, we show how goal orchestrations can be mined from event logs.
A formal statement of the problem is as follows. Given: (1) An event log and
(2) a goal model, compute: a goal orchestration that best explains the behaviour
encoded in the event log. Recall that an event log records two kinds of events:
events that flag the execution of a task and events that describe state transitions
in objects impacted by a process. Our interest is in the latter kind of event (we
shall refer to these as effects). It is useful to note that we do not need case IDs

Goal Orchestrations 379

associated with effects. Given a set of effects, we are only interested in their
temporal ordering, but not which process instance, or actor/agent, might have
generated these effects. Our intent is to identify the sequence of goals achieved
(and thence a goal orchestration model) from the sequence of effects manifested.
The vocabulary of available goals (as provided in the input goal model) provides
the lens through which we view the effects. If the goal model is specific to an
actor or a process instance, then the goals we will recognize and mine will be
specific to the process or actor in question.

Mining goal orchestrations from event logs involves a sequence of pre-
processing steps, followed by the application of an off-the-shelf process min-
ing tool (in the empirical evaluation presented in the next section, we use
AlphaMiner from the ProM toolkit [31]). The steps involved are as follows:

– Processing an event log to obtain a state set sequence.
– Extracting a set of state sequences from the state set sequence.
– Extracting goal sequences from the state sequences.
– Extracting a set of ordering assertions from each goal sequence identified in

the previous step (we do not elaborate this in any greater detail since this is
the standard approach associated with the AlphaMiner tool).

– Running an off-the-shelf process mining tool (AlphaMiner) with the goals
playing the role of tasks.

5 Evaluation

The purpose of the evaluation is to establish that our approach is capable of the
following:

– Mining goal orchestrations from readily available data
– Identifying different alternatives to achieving a goal based on the execution

history

We present two cases to perform our evaluation. The first case involve a
synthetic dataset and the second evaluation using a real-life dataset from a
ticket handling process.

Evaluation with Synthetic Process Models: We ran the first experiment
with a synthetic semantically annotated process model (i.e., a process model
where each task is associated with the events/effects that would be generated
as a consequence of executing that task) using T1, T2, . . . etc., for task names
and p, q, . . . for effects. The model consists of 12 tasks with an XOR-split lead-
ing to two alternative flows, one of which included a nested AND-split and the
other a nested XOR-split. The semantic annotations were 2 or 3 literals long and
involved a mix of conjunctions and disjunctions. We generated a large number
of possible execution traces of this model, and obtained the synthetic log using
BIMP (The Business Process Simulator)1 (with a small process model, perform-
ing the execution by hand also produced similar logs). We also investigated the
1 http://bimp.cs.ut.ee/.

http://bimp.cs.ut.ee/

380 M. Santipuri et al.

effect of scaling up the complexity of the process model, by generating a sec-
ond synthetic process model with 20 tasks with and XOR-split leading to four
alternative flows, one flow included a nested AND-split, two included XOR-split
(one leading to two alternative flows and the other leading to three alternative
flows), and the other was a sequence.

We randomly assigned effects to tasks, then performed the pre-processing
steps described in the previous sections to obtain goal sequences, and from there,
mined the goal orchestration. We had access to the ground truth (by maintaining
the original process models together with the effects associated with each task
and the goal sequence of each trace in the process model) so that we were able
to determine the fitness and precision values for the mined goal orchestration.

Table 1 below describes the results of the experiments with each of these two
process models. We measure the fitness and precision of the goal orchestrations
generated from the log. Fitness evaluates whether the observed process complies
with the control flow specified by the process, while precision indicates how
precisely the model describes the observed process. In both process model, the
results shows that the goal orchestrations generated from the mining conform to
the data. The results appear overly predictable, but serve to establish feasibility
and provide a baseline.

Table 1. Evaluation result with synthetic data

of instances # of events Fitness Precision Time (ms)

Process model 1

100 1520 1.0 1.0 52

500 7540 1.0 1.0 160

1000 15094 1.0 1.0 257

5000 75640 1.0 1.0 548

10000 151080 0.99 1.0 1,149

Process model 2

100 1810 1.0 1.0 95

500 9008 1.0 1.0 287

1000 18026 1.0 1.0 377

5000 90040 0.99 1.0 1,170

10000 180540 0.99 1.0 3,147

The synthetic effect logs used in these examples considered all possible flows.
Real-life data might involve more imperfections (such as certain XOR flows never
being executed, certain tasks never being executed and so on).

Evaluation with a Real-life Dataset: An important part of the evaluation of
the feasibility of the overall approach to goal orchestration was to gain experience

Goal Orchestrations 381

in using it in with a real-life dataset in a large complex practical setting. Our
intent was to test several key elements of our proposal, including the processing
(and pre-processing) of event logs, the identification of goals and goal sequences
and the eventual use of process mining to obtain explicit goal orchestration
models. Specifically, we looked at data from a team in one of the world’s largest
IT companies that supports IT infrastructure management as an outsourced
service. Much of its activities involves the handling and resolution of problem
tickets generated by customers. These can span the spectrum of complexity from
a simple password reset to dealing with a complete ATM network that might
have gone down. The dataset we analyzed described how 65000 distinct problem
tickets were handled.

In the ticket handling process, when a member of a client firm faces IT-related
problems or has queries about the IT systems whose management has been
outsourced, they raise a ticket. The ticket handling system maintains records of
ticket status from the opening of a ticket until the closing of it, responds with
an acknowledgment to the user along with a notification to a system engineer
who is assigned to handle the ticket. Also further input from the user may be
requested. At this stage, if the problem can be resolved, the ticket is closed. In
case the problem can not be resolved, the system checks to see whether there
is any update from the user. If no update is provided and the ticket is not re-
opened within a stipulated time, then the problem is considered as resolved and
it is automatically closed. If the ticket is updated with new information then
the system checks the nature of the ticket, whether it is incident or request,
depending on which the ticket is serviced or resolved respectively.

The system records all events related to a ticket in the process. Each record
represents all attributes of a ticket, such as incident number or ticket number to
identify any particular ticket, the identity of the user or employee that raised the
ticket, the timestamp of when the ticket is raised (open date attribute), when
the problem is resolved (resolve date attribute), when the system sends a
response to the user and the engineer (respond date attribute), when the ticket
is closed (close date attribute), an attribute to signify if the ticket is reopened,
etc. These attributes will be used to identify the current state of the ticket. For
example, a ticket in the Open state signifies that the ticket has been received and
currently at the start of the ticket handling process. Similarly, a ticket in Close
or Auto-close state signifies that it is at the end of the process, etc. Based on
these timestamps, we were able to identify 16 distinct event sequences, shown in
Table 2.

We use the goal assertions in Table 3 to recognize goal sequences from event
sequences (these goal assertions were provided by domain experts from the orga-
nization - the authors might have articulated these goals somewhat differently).

We extract a goal sequence for each event sequence in Table 2. Recall that a
goal is recognized in an event if the formal representation of the event entails the
formal assertion of the goal. The complete list of goal sequences thus obtained
is presented in Table 4.

382 M. Santipuri et al.

Table 2. Effect sequences identified in the log

Event sequence
name

Event sequence # of sequences

TR1 {open}, {open,respond} 1299

TR2 {open}, {open,respond,¬receive} 4546

TR3 {open}, {open,respond}, {open,respond,close} 2

TR4 {open}, {open,respond}, {open,respond,resolve},
{open,respond,resolve,close}

53296

TR5 {open}, {open,resolve}, {open,resolve,auto-close} 128

TR6 {open}, {open,approved} 70

TR7 {open}, {open,respond}, {open,respond,receive},
{open,respond,receive,¬reopen,auto-close}

25

TR8 {open} 296

TR9 {open}, {open,¬approved} 383

TR10 {open}, {open,respond}, {open,respond,rejected},
{open,respond,rejected,close}

1

TR11 {open}, {open,respond},
{open,respond,reopen,auto-close}

37

TR12 {open}, {open,respond}, {open,respond,receive},
{open,respond,receive,incident,resolve,auto-close}

1195

TR13 {open}, {open,respond}, {open,respond,receive},
{open,respond,receive,resolve,auto-close}

3169

TR14 {open}, {open,respond},
{open,respond,¬reopen,auto-close}

12

TR15 {open}, {open,respond}, {open,respond,receive} 531

TR16 {open}, {open,respond}, {open,respond,¬instock} 10

For this exercise, the first check is towards the end effect scenario of each
trace where in all traces, the end effect must satisfy any one of the goal in the
goal model. We can determine from Table 4 that among the 16 distinct traces,
the end effect of TR2, TR9 and TR16 do not conform to any goal. Upon closer
inspection, it reveals that some of these traces are not fault or error, but the
process is not finished yet and the effects are simply some kind of intermediate
state. For example in TR2 where the end effect is ¬receive, the state is to
identify that the process is still waiting for user input and has not received any
at the observed time.

For the 13 remaining traces, the next check would be whether any one of the
effect in the trace conform to a goal. By annotating each effect, we discover that
the effect rejected of TR10 does not conform to any goal, therefore we annotate
this trace as exception, while the 12 other traces are annotated as normal.

The last check is to examine whether in the normal trace, the goal precedence
constraints in each trace is preserved. We perform the checking between any two
consecutive goals (pair-wise) in the trace. From 12 normal traces, we found that
all of them are preserving the goal precedence constraints.

Goal Orchestrations 383

Table 3. Goal assertions for the goal model

Goal Goal assertion

Ticket handled (G0) close ∨ auto-close

Ticket initiated (G1) open

Ticket acknowledged and problem assigned (G2) respond

Requirements provided (G3) approved ∨ receive ∨ instock

DM approval acquired (G5) approved

User input acquired (G6) receive

Stock acquired (G7) instock

Unresolved problem handled (G9) auto-close

Problem resolved (G10) resolve

Request fulfilled (G11) request ∧ resolve

Incident resolved (G12) incident ∧ resolve

New ticket created (G13) reopen

Problem closed (G14) ¬reopen

Table 4. Goal sequence for effect trace

Event sequence name Goal sequence

TR1 (G1),(G1,G2)

TR2 (G1),(G1,N/A)

TR3 (G1),(G1,G2),(G1,G2,G0)

TR4 (G1),(G1,G2),(G1,G2,G10),(G1,G2,G10,G0)

TR5 (G1),(G1,G10),(G1,G10,G9),(G1,G10,G9,G0)

TR6 (G1),(G1,G5)

TR7 (G1),(G1,G2),(G1,G2,G6,G3),(G1,G2,G6,G3,G14,G9,G0)

TR8 (G1)

TR9 (G1),(G1,N/A)

TR10 (G1),(G1,G2),(G1,G2,N/A),(G1,G2,N/A,G0)

TR11 (G1),(G1,G2),(G1,G2,G13,G9,G0)

TR12 (G1),(G1,G2),(G1,G2,G6,G3),(G1,G2,G6,G3,G12,G0)

TR13 (G1),(G1,G2),(G1,G2,G6,G3),(G1,G2,G6,G3,G11,G0)

TR14 (G1),(G1,G2),(G1,G2,G14,G9,G0)

TR15 (G1),(G1,G2),(G1,G2,G6,G3)

TR16 (G1),(G1,G2),(G1,G2,N/A)

We use these 12 normal traces to build the goal orchestrations model. How-
ever, we only use the complete trace, that is all traces that end in the highest
goal (G0), therefore we omit TR1, TR6, TR8, and TR15 and left with eight traces
to build the orchestrations. We utilize ProM [31] to mine the workflow net.

To determine the consistency between discovered the goal orchestrations with
the goal model, we need to establish that all goals in the goal orchestrations

384 M. Santipuri et al.

Fig. 3. Goal orchestrations for ticket handling process

presents in the goal model and all transitions preserves the goal precedence
constraints in the goal model.

Looking at the goal orchestrations in Fig. 3, there are 13 goals in the goal
orchestrations. We confirm that they are also goals in the goal model. The next
checking compares the precedence constraints in our library with the transitions
in the discovered model. There are 23 transitions between goals in the goal
orchestration. Eight of the transitions have a precedence constraint related to
them. The checking reveals that these transitions conform to the precedence
constraints. The rest of the transitions do not have any constraints related to
them. Take for instance, the transitions between G1 and G2. In the goal model,
both are sub-goals of G0, thus both have precedence over their parent goal, but
there is no constraint defined between G1 and G2. Since there is no violation of the
goal precedence constraints, we conclude that the discovered goal orchestrations
is consistent with the goal model.

6 Related Work

The nearest point of departure for our approach in the literature is the Azzurra
framework [5], where business processes are modelled as social interactions
between actors. A business process is seen as a coordination of actor’s interac-
tions to achieve the established goals. Interactions between actors are governed
by commitments. While Azzurra focuses on inter-actor interactions in business
processes and the realization of commitments, our work provides in addition a
goal-oriented account of business process execution by individual actors.

Our work also builds on prior work on process mining [31] and the discovery
of process designs from legacy artefacts [14]. It also builds on prior work on
correlating goals with process designs [21].

There is a long history of work on checking goal realization in downstream
artefacts, such as tracking goals through their lifecycle [18], management of
changes and impact analysis [1], traces in and between requirements models
[16,28], demonstrating compliance with some regulations [22], demonstration in
real industrial settings [26], etc.

One of the main challenge highlighted by [28] is the need for presenting
the traceability information in a clear and concise fashion. In our research, we

Goal Orchestrations 385

represent our traceability problem by leveraging semantic annotation of business
process using formal language in CNF.

To asses the goal realization, many frameworks make a comparison between
goals with other system artefacts, such as comparison with testing cases [2,4],
comparison with design [9], and comparison with code [25,30,34]. In compari-
son, our research also trace goal realization during or after system run-time, by
comparing the task post-conditions defined during design-time with the result
of the system execution.

7 Conclusion

In this paper we propose a representation of business process as a coordination
of goals called goal orchestrations. This representation gives us a flexibe and
context sensitive enactment of processes and convenient for a goal-driven and
knowledge-intensive process. We also present a simple method of mining goal
orchestrations from event logs. We illustrate this method using a real world
setting of a ticket handling system. In our future work, we would like to further
explore the mining of goal orchestrations and implement the concept in other
application domains, more specifically in clinical setting.

References

1. Allehyani, B., Reiff-Marganiec, S.: Maintaining goals of business processes during
runtime reconfigurations. In: Proceedings of the 8th ZEUS Workshop, pp. 21–28
(2016)

2. Arkley, P., Riddle, S.: Tailoring traceability information to business needs. In:
Proceedings of the 14th IEEE International Conference Requirements Engineering,
pp. 239–244. IEEE (2006)

3. Chopra, S., Ghose, A., Meyer, T.: Non-prioritized ranked belief change. J. Philos.
Log. 32(4), 417–443 (2003)

4. Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing supporting evidence
to improve dynamic requirements traceability. In: Proceedings of the 13th IEEE
International Conference on Requirements Engineering, pp. 135–144. IEEE (2005)

5. Dalpiaz, F., Cardoso, E., Canobbio, G., Giorgini, P., Mylopoulos, J.: Social speci-
fications of business processes with azzurra. In: 2015 IEEE 9th International Con-
ference on Research Challenges in Information Science (RCIS), pp. 7–18, May 2015

6. Dasgupta, A., Ghose, A.K.: Implementing reactive BDI agents with user-given
constraints and objectives. Int. J. Agent-Oriented Softw. Eng. 4(2), 141–154 (2010)

7. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.:
Semantically-aided business process modeling. In: Bernstein, A., Karger, D.R.,
Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC
2009. LNCS, vol. 5823, pp. 114–129. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04930-9 8

8. Di Pietro, I., Pagliarecci, F., Spalazzi, L.: Model checking semantically annotated
services. IEEE Trans. Softw. Eng. 38, 592–608 (2012)

9. Ernst, N.A., Mylopoulos, J., Yu, Y., Nguyen, T.: Supporting requirements model
evolution throughout the system life-cycle. In: Proceedings of the 16th IEEE Inter-
national Requirements Engineering, RE 2008, pp. 321–322. IEEE (2008)

http://dx.doi.org/10.1007/978-3-642-04930-9_8
http://dx.doi.org/10.1007/978-3-642-04930-9_8

386 M. Santipuri et al.

10. Fensel, D., Facca, F.M., Simperl, E., Toma, I.: Web service modeling ontology.
Semantic Web Services, pp. 107–129. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19193-0

11. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling Ontol-
ogy. Springer, Heidelberg (2006). doi:10.1007/978-3-540-34520-6

12. Ghose, A., Goebel, R.: Belief states as default theories: studies in non-prioritized
belief change. In: ECAI, vol. 98, pp. 8–12 (1998)

13. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74974-5 14

14. Ghose, A., Koliadis, G., Chueng, A.: Rapid business process discovery (R-BPD). In:
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol.
4801, pp. 391–406. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75563-0 27

15. Ginsberg, M.L., Smith, D.E.: Reasoning about action I: a possible world approach.
Artif. Intell. 35(2), 165–195 (1988)

16. Glorio, O., Pardillo, J., Mazon, J.N., Trujillo, J.: Dawara: an eclipse plugin for
using i* on data warehouse requirement analysis. In: Proceedings of the 16th IEEE
International Requirements Engineering, RE 2008, pp. 317–318. IEEE (2008)

17. Gou, Y., Ghose, A., Chang, C.-F., Dam, H.K., Miller, A.: Semantic monitoring
and compensation in socio-technical processes. In: Indulska, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8823, pp. 117–126. Springer, Cham (2014). doi:10.1007/
978-3-319-12256-4 12

18. Hayes, J.H., Dekhtyar, A., Sundaram, S.K., Howard, S.: Helping analysts trace
requirements: an objective look. In: Proceedings of the 12th IEEE International
Requirements Engineering Conference, pp. 249–259. IEEE (2004)

19. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: a vision towards using semantic web services for business
process management. In: IEEE International Conference on e-Business Engineering
(ICEBE 2005), pp. 535–540. IEEE (2005)

20. Hinge, K., Ghose, A., Koliadis, G.: Process SEER: a tool for semantic effect anno-
tation of business process models. In: Proceedings of the 13th IEEE International
EDOC Conference (EDOC-2009). IEEE Computer Society Process (2009)

21. Koliadis, G., Ghose, A.: Relating business process models to goal-oriented require-
ments models in KAOS. In: Hoffmann, A., Kang, B., Richards, D., Tsumoto,
S. (eds.) PKAW 2006. LNCS, vol. 4303, pp. 25–39. Springer, Heidelberg (2006).
doi:10.1007/11961239 3

22. Aoki, T., Traichaiyaporn, K., Chiba, Y., Matsubara, M., Nishi, M., Narisawa, F.:
Modeling safety requirements of ISO26262 using goal trees and patterns. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 206–221. Springer, Cham
(2016). doi:10.1007/978-3-319-29510-7 12

23. Meyer, T., Ghose, A., Chopra, S.: Social choice, merging, and elections. In: Ben-
ferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS, vol. 2143, pp. 466–477.
Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4 41

24. Meyer, T., Ghose, A., Chopra, S.: Syntactic representations of semantic merging
operations. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS, vol. 2417, pp.
620–620. Springer, Heidelberg (2002). doi:10.1007/3-540-45683-X 88

25. Mirakhorli, M., Fakhry, A., Grechko, A., Wieloch, M., Cleland-Huang, J.: Archie:
a tool for detecting, monitoring, and preserving architecturally significant code. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, New York, NY, USA, pp. 739–742. ACM (2014)

http://dx.doi.org/10.1007/978-3-642-19193-0
http://dx.doi.org/10.1007/978-3-642-19193-0
http://dx.doi.org/10.1007/978-3-540-34520-6
http://dx.doi.org/10.1007/978-3-540-74974-5_14
http://dx.doi.org/10.1007/978-3-540-75563-0_27
http://dx.doi.org/10.1007/978-3-319-12256-4_12
http://dx.doi.org/10.1007/978-3-319-12256-4_12
http://dx.doi.org/10.1007/11961239_3
http://dx.doi.org/10.1007/978-3-319-29510-7_12
http://dx.doi.org/10.1007/3-540-44652-4_41
http://dx.doi.org/10.1007/3-540-45683-X_88

Goal Orchestrations 387

26. Panis, M.C.: Successful deployment of requirements traceability in a commercial
engineering organization... really. In: Proceedings of the 18th IEEE International
Requirements Engineering Conference (RE), pp. 303–307. IEEE (2010)

27. Santiputri, M., Ghose, A.K., Dam, H.K.: Mining task post-conditions: automating
the acquisition of process semantics. Data Knowl. Eng. 109, 112–125 (2017)

28. Siegl, S., Hielscher, K.S., German, R.: Model based requirements analysis and
testing of automotive systems with timed usage models. In: Proceedings of the
18th IEEE International Requirements Engineering Conference (RE), pp. 345–350.
IEEE (2010)

29. Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business
processes. In: ICAART, SciTePress, pp. 130–143 (2013)

30. Valderas, P., Pelecha, V., Pastor, O., et al.: Requirements engineering for pervasive
systems. A transformational approach. In: Null, pp. 351–352. IEEE (2006)

31. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

32. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of
semantic business process models. Distrib. Parallel Databases 27, 271–343 (2010)

33. Winslett, M.: Reasoning about action using a possible models approach. Urbana
51, 61801 (1988)

34. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., do Prado Leite,
J.C.S.: Reverse engineering goal models from legacy code. In: Proceedings of the
13th IEEE International Conference on Requirements Engineering, pp. 363–372.
IEEE (2005)

Configurable and Executable Task Structures
Supporting Knowledge-Intensive Processes

Nicolas Mundbrod(B) and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany
{nicolas.mundbrod,manfred.reichert}@uni-ulm.de

http://www.uni-ulm.de/dbis

Abstract. The operational support of knowledge-intensive processes
(KiPs) constitutes a big challenge. As KiPs tend to be unpredictable
and emergent, KiP execution is driven by knowledge workers utilizing
their skills, experiences, and expertise. For coordination and synchro-
nization, knowledge workers rely on simple task lists (e.g., to-do lists or
checklists). Though these means are intuitive and prevalent, their current
implementations are ineffective as well as error-prone: tasks are neither
made explicit nor synchronized nor personalized. Furthermore, media
disruptions frequently occur and no task lifecycle support is provided.
Consequently, the effort knowledge workers invest in task management
is not preserved for future KiPs. This work presents the proCollab app-
roach, focusing on the generic concept of task trees. The latter enable to
constitute digital task lists of any kind and to establish a task manage-
ment lifecycle in the context of KiPs. Further, a configuration approach
for reusable task lists (i.e., templates) is included to support knowledge
workers in configuring task lists at both design and run time. proCol-
lab is implemented as a proof-of-concept prototype and validated along
a real-world use case from the healthcare domain. Overall, proCollab
improves coordination and synchronization among knowledge workers,
prevents media disruptions, and enables the reuse valuable coordination
knowledge.

Keywords: Task management · Knowledge-intensive processes ·
Knowledge workers · Task lists · To-do lists · Checklists

1 Introduction

Residing in highly sensitive key business areas, such as research, engineering,
or service management, knowledge-intensive processes (KiPs) have become the
centerpiece for creating value in many companies in recent years [2,8]. Driving
KiPs, knowledge workers make use of their distinguished skills, experiences, and
expertise to cope with emerging tasks. Thus, the systematic and sustainable sup-
port of KiPs constitutes a prerequisite for achieving business goals. At the same
time, a more sophisticated KiP support still poses one of the biggest challenges
companies face today [3].
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 388–402, 2017.
https://doi.org/10.1007/978-3-319-69904-2_30

Configurable and Executable Task Structures 389

KiPs can be characterized as non-predictable, emergent, goal-oriented, and
knowledge-creating processes [8] whose elements (e.g., activities, artifacts, or
resources) cannot be foreseen a priori. KiPs have not been fully supported by
contemporary process-aware information systems at the operative level so far.
Instead, knowledge workers, who aim to achieve common process goals, often
rely on simple, paper-based task lists (e.g., to-do lists, checklists) to define and
coordinate the various activities of a KiP (cf. Fig. 1) [1]. Though paper-based
task lists are intuitive and prevalent on one hand, they are error-prone and inef-
fective on the other. Tasks are often managed based on paper, are not explicitly
represented as coordination artifacts, and are spread over different localities [12].
Thus, knowledge workers suffer from media disruptions as well as the lack of a
synchronized task lifecycle support. Due to this lack, knowledge workers cannot
make use of existing artifacts (e.g., task lists) when facing comparable situations,
i.e. in the context of other KiPs. If knowledge workers could reuse best practice
task lists and combine them on demand, redundant efforts would be significantly
reduced. Likely, in turn, work quality and productivity would be increased.

Methodology Phase C Methodology Phase B Methodology Phase D

Milestone 400
Milestone 401

...

...
...Milestone 402

Milestone 865
Milestone 866
Milestone 867

...
Milestone 710
Milestone 711

...

Milestone 712
Quality
Gate B

Quality
Gate A

Quality
Gate C

Quality
Gate D

Goal
......

We have to perform
further tests!

Then we need to
involve Melinda and
Daniel!

To-do lists James
Janice

Daniel

Melinda

Steve
Checklists

Task Sheets

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

George

Testing
Application

What is Melinda
doing at the
moment?

Have we sticked to
the design guidelines?ID

62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

ID
62 Component Design Janice, James
63 Quality Assurance
...

Task Responsible

Steve

Planning Milestone 712

C
he

ck
in

gP
lanning

Fig. 1. Knowledge workers collaborating to achieve a goal (automotive domain)

In this work, we present fundamental aspects of the proCollab1 approach,
which aims at the systematic and sustainable support of KiPs. As tasks con-
stitute the key entities for knowledge workers when it comes to coordination n
the context of a particular KiP, but also across KiPs, proCollab provides the
foundation for process- and lifecycle-based task management. In particular, it
aims to empower knowledge workers to coordinate their activities among each
other more effectively. To make use of best practices as well as knowledge gained
in previous KiPs, proCollab encompasses the process-aware provision of task
list templates, which knowledge workers may instantiate on demand. To foster
the reuse of task list templates and to provide support for large sets of task
list templates, a context-aware approach for configuring task list templates is
included. This enables knowledge workers to easily configure task lists either at
design or run time. Based on the proCollab approach, KiPs can be operationally
supported through digital, synchronized and configurable task lists. Thereby,
one can improve coordination and synchronization among knowledge workers,
1 Process-aware Support for Collaborative Knowledge Workers.

390 N. Mundbrod and M. Reichert

prevent media disruptions, and reuse valuable (process) knowledge. Finally, the
feasibility of establishing an integrated task management lifecycle is demon-
strated by a proof-of-concept prototype. Further, the configuration approach is
evaluated by applying it to a real-world healthcare scenario.

The remainder of this paper is organized as follows: Sect. 2 presents funda-
mentals and discusses key requirements. Section 3 then introduces the proCollab
approach, whereas Sect. 4 deals with generic task lists enabling the modeling of
templates and instances of different types of task lists, e.g., to-do lists or check-
lists. Section 4 further sketches key operations on task tree structures. Referring
to these operations, Sect. 5 describes a flexible approach for configuring task
lists, which allows knowledge workers to easily compose pre-specified task list
templates. Section 6 evaluates the approach and Sect. 7 discusses related work.
Finally, Sect. 8 concludes the paper and gives an outlook on future work.

2 Fundamentals and Requirements

To establish a common understanding of KiPs, this paper uses the notion of
knowledge-intensive processes as introduced in [15]:

“Knowledge-intensive processes are processes whose conduct and execution
are heavily dependent on knowledge workers performing various interconnected
knowledge-intensive decision making tasks. KiPs are genuinely knowledge, infor-
mation and data-centric and require substantial flexibility at design- and run-time.”

A detailed discussion of different KiP notions and definitions is provided in
[2]. To draw attention on the challenges of a systematic KiP support and to
facilitate the ensuing discussion of key requirements, we reuse an application
scenario from prior work [9,14]:

Example 1. In development projects for electrical and electronic (E/E) car
components, the involved knowledge workers aim at developing an E/E
car component before a fixed release date. Hundreds of professionals (e.g.,
engineers) are involved in these projects for up to several years. To ensure
effective E/E development, the knowledge workers follow a development
methodology with sub-goals, e.g., quality gates or milestones. Each devel-
opment phase, in turn, may comprise sub-phases, as well as concurrent
development processes. Hence, the knowledge workers need to frequently
communicate and synchronize with each other. To ensure compliance with
regulations (e.g., ISO 26262), to foster the quality of engineering processes,
and to track the engineering progress, a central project checklist with hun-
dreds of check items is initially set up and continuously managed by one or
more quality assurance officers. Usually, the currently relevant check items
are regularly discussed during interview with the project members. Addi-
tionally, pro-active task lists (e.g., to-do lists and task sheets) are dynami-
cally used by the knowledge workers to manage personal tasks as well as to
coordinate with each other in smaller, more specialized teams.

Configurable and Executable Task Structures 391

The presented scenario constitutes a typical example of how knowledge work-
ers follow a methodology to cooperatively achieve a common goal as well as
to cope with the emergent and unpredictable nature of KiPs [8]. In general,
respective methodologies, which are customized to a specific domain (e.g., the
V model), can be abstracted by the Plan-Do-Study-Act (PDSA) cycle [8,9]
(cf. Fig. 2). We want to emphasize that collaborating knowledge workers, who
follow a methodology designed for KiPs, iteratively stride through the stages of
planning work, performing work, studying work results, and optimizing plans. In
particular, the planning and studying stages are utilized by knowledge workers to
establish efficient coordination as well as to assure KiP quality and effectiveness.

System Design

Proactive Task Lists

Retrospective Task Lists
Requirements Engineering

Quality Assurance

System Integration

Mechanical, Electrical, and Information Engineering

......

Quality GateQuality Gate Quality Gate

KiPPlan

Do

Study

Act

KiPPlan

Do

Study

Act

KiPPlan

Do

Study

Act

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Fig. 2. PDSA-based methodology present in application scenario

In the planning and studying stages, knowledge workers rely on different
types of task lists as their key artifacts in use. In this context, proactive task lists,
e.g., to-do lists, are used to dynamically plan and coordinate the various tasks
emerging in the context of a KiP, whereas retrospective task lists, e.g., checklists,
are used for quality assurance. Furthermore, both types of task lists increase
work awareness [4], i.e., the awareness of who is doing what in the considered
KiP. In prior work [12], we could observe that checklists, in practice, are not
changed frequently for the sake of quality assurance, whereas to-do lists, task
sheets, and similar artifacts require frequent updates, especially, the insertion of
new tasks or entire sub-lists. However, in all considered application scenarios,
neither checklists nor to-do lists have been supported by a KiP-aware system in
an integrated, synchronized, and lifecycle-oriented manner.

To support KiPs, like the one presented in Example 1, various challenges
and requirements need to be addressed. In order to design an approach that
systematically supports KiPs, we conducted several case studies primarily in
healthcare (e.g., ward rounds and patient treatment) and in the automotive
domain (e.g., E/E engineering) [6,8,12,14]. In these studies, we derived a set of
key requirements [9]. In this paper, we focus on the key requirements for enabling
configurable and executable task lists to properly support KiPs:

Meta Model (R1): A generic and expressive approach supporting KiPs must
rely on a sound meta model that specifically allows for the representation of
task lists of various types. Knowledge workers rely on task lists as key entities
for planning, evaluating, and performing their work. Due to the emergent nature
of KiPs, knowledge workers may continuously change task lists. For this use case,
the meta model should provide change operations with a well-defined semantics
that allow modifying a sound task list, ensuring soundness afterwards as well.

392 N. Mundbrod and M. Reichert

To further increase the knowledge workers’ efficiency and convenience, a set of
high-level change operations (e.g., to swap tasks) relying on the low-level ones,
are required. Finally, the trade-off between expressiveness and comprehensibility
of the meta model has to be well balanced to enable knowledge workers to
seamlessly work with task lists.

Lifecycle Support (R2): In the context of a particular KiP, but also across
KiPs, knowledge workers may want to use similar task lists when facing similar
situations. For example, the engineering of an E/E car component requires check-
ing functional safeness in a standardized way. To enable full lifecycle support of
KiPs, therefore, the meta model needs to be enriched with an integrated and
consistent support of task list templates and instances (cf. Fig. 3a). Thereby, the
introduction of task list templates allows establishing reusable artifacts of seman-
tically connected tasks. As an example consider a checklist template with items
for evaluating the functional safety of car components (cf. Example 1). During
KiP execution, knowledge workers may choose a task list template, matching the
given goal, needs and application context, and create a corresponding instance.
To cope with the emergent nature of KiPs, in-progress task list instances may
be further enhanced on demand by knowledge workers, e.g., by selecting and
instantiating task list templates as subordinated task list instances. Finally, a
lifecycle-based meta model relying on templates and instances provides the nec-
essary foundation for evolving templates over time [7].

Task List Templates

a) b)

Truck

Telematics
E/E Dev.

NavigationHeadUnit

Car

Adapted
Task List Instances

Generic Task List Level 1: Generic Task List
Complete EE development

Level 2: Task Lists for BUs
Task lists for specific business units

Level 3: Task Lists for Centers
Task lists for specific business units

Level 4: Task Lists for Projects
Task lists for specific projects

...

...

...

Task A
Task B
Task C

Task D
Task C.1

Task A
Task B
Task C

Task D
Task C.1

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

Task A
Task B
Task C

Task D

Task C.1
Task C.2

ConfigurationInstantiation

Optimization
(through analysis

of instances)

Configuration

Configuration

Fig. 3. Instantiation of task list templates and multi-level configuration

Configuration Support (R3): To facilitate the creation of task list templates,
which may be reused in different contexts, as well as to decrease the efforts
required to build up a task list, configuration support is needed. In particular,
knowledge workers should be allows to configure a template in a way meeting the
demands of the given application context. For example, the creation of new task
list instances (e.g., checklists) may be performed by composing reusable task list
templates. Additionally, configuration support necessitates the ability to remove
and update existing tasks in a task list template before instantiating the latter.
Generally, task list templates should be designed in a reusable and modular
way to enable multi-level configurations (cf. Fig. 3b). This includes the use of
a generic template and the stepwise (i.e. level-based) integration of more fine-
grained (i.e. specialized) task list templates to finally create the overall task list
template matching the present requirements. Based on this principle, the efforts
needed for creating a specific task list variant can be minimized significantly.

Configurable and Executable Task Structures 393

3 The psroCollab Approach

The proCollab approach has been developed in the scope of a long-term research
project to enable full lifecycle support for KiPs. In [8], we discussed the overall
proCollab research vision, whereas [9] presented key challenges and requirements
to be addressed by any KiP supporting approach. In turn, [7] introduced the key
proCollab components focusing on an approach for optimizing and evolving task
list templates based on the mining of existing task lists. This paper, in turn,
focuses on the interplay of the key components of the proCollab meta model, its
generic task trees and, in particular, an approach for configuring task lists.

To design the proCollab meta model, we specifically considered that knowl-
edge workers repetitively perform the stages of planning work, performing work,
studying work results, and optimizing plans (cf. Sect. 2). During these KiP
stages, knowledge workers use widely established, task-based artifacts, e.g.,
checklists or to-do lists. Overall, proCollab relies on the key components of
processes, task trees, and tasks to establish a framework with conceptual entities
for representing KiPs as well as task-based artifacts used by knowledge workers
during KiP execution (cf. Requirement R1). Moreover, to provide a lifecycle-
based task management in the context of KiPs (cf. Requirement R2), processes
and task trees are refined to process templates and process instances as well
as task tree templates (with task templates) and task tree instances (with task
instances) respectively (cf. Fig. 4).

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Task Tree
Templates

with
Task Templates

0-n

0-1

0-1

0-n

0-n

1-n 1-n

1-n 1-n

0-n 0-n

0-n 0-n

0-n 0-n
0-n

Subordinated
Process Templates

Subordinated
Process Instances

Process
Templates

B

Sub-Task Tree
Templates with
Task Templates2

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

1 B

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Task Tree Instances
with Task Instances

Process
Instances

Sub-Task Tree
Instances with
Task Instances

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

B1 B2

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Fig. 4. Overview of the proCollab approach

Process templates and task tree templates shall enable knowledge workers
to accelerate planning and coordination of their tasks based on best practices
and standards. Before starting KiP execution, knowledge workers may retrieve a
process template fitting best to their goals. Every process template may have an
arbitrary number of subordinated process templates and feature various prop-
erties, conditions (e.g., a relative due date), and linked resources. Most impor-
tantly, every process template may be linked to an arbitrary number of task tree
templates. A task tree template, in turn, contains task templates and, optionally,
subordinated task tree templates. In particular, it reflects best practices for plan-
ning (to-do list) or quality assurance (checklist) in the context of KiPs. Hence,

394 N. Mundbrod and M. Reichert

a task tree template refers to one or several goals addressed by the definition
of a process template. For example, a standardized checklist for ensuring func-
tional safety based on ISO26262 can be well deposited as a task tree template
in proCollab.

At run time, knowledge workers may collaborate in the context of specific
process instances. A process instance may represent a running project, a case, or
another type of collaboration. Moreover, it has properties like start date, dura-
tion, goals, and resources (e.g., documents). A process instance may further
refer to subordinated process instances enabling knowledge workers to focus on
specialized sub-goals. It is also noteworthy that every process instance may com-
prise multiple task tree instances (with corresponding task instances). In turn, a
task tree instance constitutes the generic representation of common task-based
artifacts in use (e.g., a to-do list). For example, an automotive E/E engineering
project with to-do lists for planning and checklists for quality assurance can be
properly supported by a corresponding proCollab process instance with its linked
task tree instances (of type “to-do list” and “checklist”). In general, knowledge
workers may create a process instance based on a pre-specified process template
or may start even without any pre-specified template. If a process template gets
instantiated, all linked task tree templates are automatically instantiated as well.
The generated task tree instances are then linked to the process instance. Fur-
thermore, knowledge workers may instantiate further task tree templates or add
blank task tree instances to process instances on demand. Based on this flexible
approach, the initial setup for the support of planning in a KiP becomes easier
for knowledge workers. Finally, template concurrently promote best practice for
coordination and existing process knowledge.

In practice, knowledge workers are collaborating in projects or cases as spe-
cific types of KiPs [8]. To support a wide range of application scenarios, pro-
Collab incorporates type- and domain-specific specializations enabling domain-
and KiP-specific customization of the generic proCollab components. For exam-
ple, a proCollab process may be easily adapted to a specific automotive project
regarding E/E engineering (cf. Fig. 5).

Fig. 5. Visualization of process templates and instances from the automotive domain

Configurable and Executable Task Structures 395

Moreover, proCollab task trees may be used as a basis for supporting check-
lists or to-do lists at the operative level. Depending on the chosen specializations,
proCollab processes (e.g., projects) and task trees (e.g., to-do lists) may feature
additional properties, conditions, constraints, or assignments. To realize respec-
tive specializations, in turn, proCollab employs specialization types enhancing
the generic data structures of processes and task trees. For example, if a task
tree template is linked to the specialization type “to-do list”, it will be interpreted
as a “to-do list template” with corresponding properties and an appropriate user
interface representations (cf. Fig. 5). To ensure that certain specialization types
are used coherently together, the specialization types can be interlinked. For
example, the specialization types “to-do list” and “to-do item” may be inter-
linked and, hence, task trees of the type “to-do list” may only contain tasks of
type “to-do item” (and none of the type “check item”).

4 Task Trees

Enabling KiP support through process-related task lists and providing a solid
meta model for representing the latter (cf. Requirement R1), proCollab employs
the generic structure of task trees. In turn, a task tree includes tasks as well as
subordinated task trees (cf. Fig. 6). The recommended order, in which tasks shall
be processed, is specified through the hierarchical and ordering edges of a task
tree. To be more precise, the pre-order traversal of any task tree directly provides
its recommended sequence of tasks. To enable flexibility, however, knowledge
workers may deviate from the recommended order, e.g., allowing them to deal
with the current situation during KiP execution. Based on task lists relying
on task trees, knowledge workers may iteratively refine coarse-grained tasks by
defining more fine-grained sub-tasks. Thus, a particular task may refer to a set
of subordinated tasks, which need to be completed to finish the task itself.

Fig. 6. Exemplary to-do list and checklist and their task tree representation

Every task tree exposes a root node with several ordered child nodes (cf.
Fig. 6). The child nodes, in turn, themselves may comprise ordered child nodes.
Except the root node, every task tree node either corresponds to a specific task
or an embedded task tree (nesting). The root node does not correspond to a
task, but may store task list properties (e.g., title, description, or purpose).

396 N. Mundbrod and M. Reichert

Using the conceptual model of a task tree yields several advantages. Task
trees constitute an intuitive representation of common task lists. In particular,
their generic and executable structure makes it possible to provide a powerful
basis for both task list templates and instances as well as any concrete type of
task lists, e.g., to-do lists or checklists. Furthermore, the data structure of a task
tree provides a sound and common basis for defining required task tree opera-
tions (cf. Sect. 2). When using task lists, knowledge workers may add, update
or remove tasks and subordinated task trees on demand. Hence, a task tree is
manipulable through a set of low-level operations including the insertion, update,
and removal of task tree nodes as well as an operation to filter node attributes.
Note that the filter operation is useful to limit the number of attributes displayed
to knowledge workers. Moreover, if the filter is applied to a task tree node with
child nodes, the filtering is hierarchically applied. Due to lack of space, we omit
a formalization of the sketched operations. Figure 7 illustrates the application of
low-level operations to a task tree resulting in a new task tree version.

To add a task tree node to a task tree or to remove one, the respective parental
node and the desired positions are required as parameters of the respective oper-
ations. As depicted in Fig. 7, a particular task tree may be inserted several times,
which allows for the reuse of task trees in different contexts. Note that this option
is useful for task tree templates. For example, a particular task tree template
with several tasks assuring quality may be embedded and reused at different
spots of a parental task tree template. Consequently, a particular task tree may
have several parental task trees due to its use in different application contexts.
The interconnected task trees then constitute a graph of task tree nodes. Espe-
cially when inserting a subordinated task tree into an existing one, this must be
carefully considered to avoid recursive nesting.

1) removeTaskTreeNode(C1, C, 0)
2) removeTaskTreeNode(C2, C, 0)
3) updateTaskTreeNode(B, name=B*)
4) insertTaskTreeNode(Task Tree #2, C, 0)

applied to Task Tree #1:

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B C

A1 A2 C1 C2Root

B1 B2

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B* C

A1 A2 Root

B1 B2

Ta
sk

 T
re

e
#2

Root

B1 B2

Fig. 7. Exemplary low-level operations applied to a task tree

To ease the management of task structures, a set of high-level task tree
operations is provided by proCollab. Knowledge workers may move, copy, split
or merge task tree nodes. Further, they may filter out nodes that match certain
properties. Thereby, the high-level operations are mapped to one or several low-
level task tree operations. For example, splitting a task tree node involves the
insertion of task tree nodes as well as the removal of the node to be split. Figure 8
depicts the application of high-level operations on an exemplary task tree.

Configurable and Executable Task Structures 397

Relying on the conceptual model of task trees, all presented operations
may be applied on both task tree templates and task tree instances no matter
how they are refined by any specialization type. However, every task tree tem-
plate solely consists of task templates and, optionally, subordinated task tree
templates. Furthermore, every task tree template features additional template-
specific properties, e.g., a specific state model. Analogously, task tree instances
solely comprise task instances and subordinated task tree instances. Further,
they may feature instance-specific properties and a dedicated state model, too.
Based on this generic concept, proCollab supports the sound and integrated
management of templates and instances of arbitrary task lists. In particular,
knowledge workers may compose, configure, and instantiate arbitrary task tree
templates when starting and executing proCollab process instances.

1) moveTaskTreeNode(A2, Root, 3)
2) copyTaskTreeNode(A1, A, 1, name=A1*)
3) splitTaskTreenNode(A1, {A1.1, A1.2})
4) mergeTaskTreeNodes({C1, C2}, name=C3)

applied to Task Tree #1:

5) filterTaskTreeNode(Root, name!=B1)

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B C

A1 A2 C1 C2Root

B1 B2

Ta
sk

 T
re

e
#2

Task Tree #1
Root

A B C

A1.1 A1* C3A1.2

A2

Root

B2

Fig. 8. Exemplary high-level operations applied to a task tree

5 Configurable Task Trees

To enable knowledge workers to efficiently configure task list templates in accor-
dance to the given application context (cf. Requirement R3) or even to the given
level of expertise involved knowledge workers expose, proCollab allows for the
configuration of task tree templates. In this context, the sketched task tree oper-
ations provide the basis for a multi-level configuration of task tree templates.
Furthermore, the operations enable both the combination of best practice task
tree templates (e.g., inserting checklists for quality assurance) as well as the
customization of task tree templates in accordance to knowledge workers’ needs
(e.g., filtering out non-relevant task templates).

To properly support the configuration of task tree templates, contextual sit-
uations, under which a task tree template might be instantiated, need to be
explicitly defined. These contextual situations, in turn, may be utilized to define
which operations shall be applied in which order to a task tree template during
the configuration. To properly specify contextual situations, proCollab intro-
duces configuration parameters each of which has a name, a pre-defined data
type (boolean, String, etc.), and a value domain. Subsequently, contextual situa-
tions are defined by a name and a condition expressed in first-order logic relying
on the set of pre-defined configuration parameters. Figure 9 illustrates exemplary
configuration parameters and contextual situations in the scope of the automo-
tive use case (cf. Example 1) and, especially, functional safeness requirements
(ISO26262) regarding E/E car component engineering.

398 N. Mundbrod and M. Reichert

exposure (e)

severity (s)
...

Contextual Situations:

controllability (c) {C1, C2, C3}

{E1, E2, E3, E4}

{S0, S1, S2, S3}

Name Type

ENUM

ENUM

ENUM

Domain

Safety Relevance Level D c==C3 && e==E4 && s==S3
(c==C2 && e==E4 && s==S3) || ...
(c==C1 && e==E4 && s==S3) || ...

Safety Relevance Level C
Safety Relevance Level B

Name Condition

Fig. 9. Exemplary configuration parameters and contextual situations

Based on the defined contextual situations, one may provide one or more
configuration specifications for a task tree template. A configuration specifica-
tion contains a map data structure that allows assigning a sequence of task tree
operations (applied on the respective task tree template) to every contextual
situation. Figure 10 depicts examples of task tree configuration specifications for
task trees of the checklist specialization type. If a configured task tree template
shall be instantiated, the currently active contextual situations need to be deter-
mined first. Accordingly, each defined configuration parameter obtains a value
matching the defined data type.

The conditions of the contextual situations are then evaluated—a contextual
situation will be considered as being active if its condition is fulfilled. Finally,
the configuration specifications are processed in the pre-defined order. For every
active contextual situation, the defined sequence of operations is applied to the
task tree template. As soon as the configuration process is successfully com-
pleted, the task tree template is finally instantiated, i.e., a new task tree instance
is created as the final result of the configuration.

Fig. 10. Example of multi-level configuration specifications for checklists

Note that the application of task tree operations is not commutative. As a
result, the order of the operations has to be carefully designed. For example,
if a task tree node A1 is inserted below an existing node A, the number of
child nodes of A is consequently increased by one. Hence, one must consider this
new fact for subsequent operations (e.g., more insert operations) accordingly. As
a further consequence, sophisticated user interfaces are required to ensure the
sound creation of configuration specifications at design time.

Configurable and Executable Task Structures 399

6 Evaluation

A mature proof-of-concept implementation is required to conduct empirical stud-
ies based on the proCollab approach. To prepare such studies and to validate
the technical feasibility, we developed a sophisticated proof-of-concept prototype
including the key concepts presented in this work. The prototype is realized with
Java EE 7 and relies on a multi-layer architecture (cf. Fig. 11a) based on the
Model–View–Controller design pattern. The application logic layer represents
the core of the prototype realizing the key services of the proCollab approach
and its key components. The RESTful interface enables web and mobile applica-
tions to communicate with the services. In particular, this includes the synchro-
nized presentation of the proCollab components across connected clients. Hence,
the user interface of the web application (cf. Fig. 11b) enables knowledge work-
ers to collaboratively manage their projects or cases (i.e., proCollab processes)
including task trees in the shape of to-do lists and checklists.

Fig. 11. Architecture and screenshot of the proCollab prototype

To validate the conceptual model of executable and configurable task struc-
tures, we applied proCollab to the SURPASS checklist2 [16], which was designed
for establishing a surgical patient safety system. The checklist is supposed to
accompany a patient, who will get a surgery, during each step of the surgical
pathway (cf. Fig. 12). In general, the checklist contains seven key parts (A0,
A1,. . . , E), connected to the different stages of the pathway, and two additional
parts dealing with the transfer of patients (T1, T2). The SURPASS checklist
features three main variants: one for clinical surgeries, one for outpatient surg-
eries, and one for emergency surgeries. The variants mainly differ from each
other in terms of contained parts (e.g., the emergency variant omits A0) and in
the number of corresponding tasks. For example, in the context of part A of the
outpatient variant, a surgeon has to process five check items, whereas in part A
of the emergency variant, he has to process eleven items (three being identical).

Altogether, the variants of the checklists could be well supported by the pro-
Collab tree template configuration approach. For this purpose, we first identified

2 http://www.surpass-checklist.nl/.

http://www.surpass-checklist.nl/

400 N. Mundbrod and M. Reichert

Fig. 12. SURPASS checklist parts in relation to surgical pathway

the common parts shared by all variants (e.g., A1, T1) and added them to a basic
task tree template of the checklist specialization type. Then, we modelled the
individual components of the SURPASS checklist variants as separated checklist
templates and included them based on the contextual situations “clinical envi-
ronment”, “outpatient environment”, and “case of emergency”. To illustrate
the entire configuration process and the proper instantiation of the configurable
SURPASS checklist template in detail, we refer to a created screencast3.

7 Related Work

The roots of KiP support can be found in Computer Supported Cooperative Work
in general and in groupware in particular [4]. The fields more closely related to
proCollab are Business Process Management (BPM) and Adaptive Case Manage-
ment (ACM) [5]. Originated from BPM research, ACM targets at the systematic
support of KiPs based on the principles of case management and cases. In this
context, the Case Management Model and Notation (CMMN) was developed as
modeling notation to create, deploy, and interchange case-based specifications
for supporting KiPs [10]. As CMMN does not provide a dedicated representation
for task trees and relies on various specialized case elements, proCollab does not
implement CMMN. However, its components process and task may be related
to the CMMN elements case and task. Another approach comparable to pro-
Collab is Cognoscenti [13], which allows modeling and using projects with goal
lists and corresponding goals. In this context, goals are comparable to tasks,
but the approach lacks an integrated support of templates and, especially, the
generic task tree meta model. [11] introduced a notation for task models to spec-
ify a wide range of temporal relationships among tasks. The notation, which also
employs a tree-based approach, focuses on the relationship between tasks and
discusses the implications of temporal relationships among tasks regarding their
execution. However, operations on task trees, integrated lifecycle support and
configurations of task trees are not discussed in [11].

3 http://er2017.procollab.de.

http://er2017.procollab.de

Configurable and Executable Task Structures 401

8 Conclusion

Tasks and task lists constitute the key objects for knowledge workers when it
comes to KiP coordination. Consequently, the proCollab approach aims at sys-
tematic and sustainable KiP support based on integrated task management. This
paper focused on the generic representation of task-based artifacts, i.e., check-
lists and to-do lists, through corresponding task structures. Based on the latter,
KiPs can be supported through digital, synchronized, and configurable task lists.
To make use of best practices and knowledge gained in similar KiPs, proCollab
enables the process-aware provision of task list templates to allow knowledge
workers to instantiate these templates on demand. To provide a context-aware
support for large sets of task list templates, a corresponding configuration app-
roach was presented to enable knowledge workers to configure task list tem-
plates on demand. Finally, the feasibility of the approach was demonstrated by
a proof-of-concept prototype and its application to a use case from the healthcare
domain.

In future work, we will extend the proCollab approach and evaluate it in
further case studies. Furthermore, the formal foundation of the proCollab meta
model as well as constraints between proCollab components will be subject to
future publications. Finally, we will consider the evolution of task tree templates
and instances over time.

References

1. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., Ducheneaut, N.: What
a to-do: studies of task management towards the design of a personal task list
manager. In: Proceedings of the CHI 2004, pp. 735–742 (2004)

2. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2014)

3. Drucker, P.F.: Knowledge-worker productivity: the biggest challenge. IEEE Eng.
Manag. Rev. 34(2), 29 (2006)

4. Gutwin, C., Greenberg, S.: A descriptive framework of workspace awareness for
real-time groupware. CSCW 11(3), 411–446 (2002)

5. Hauder, M., Pigat, S., Matthes, F.: Research challenges in adaptive case manage-
ment: a literature review. In: Proceedings of the EDOCW 2014, pp. 98–107 (2014)

6. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. Data Knowl. Eng. 61(1), 39–58 (2007)

7. Mundbrod, N., Beuter, F., Reichert, M.: Supporting knowledge-intensive processes
through integrated task lifecycle support. In: Proceedings of the EDOC 2015, pp.
19–28 (2015)

8. Mundbrod, N., Kolb, J., Reichert, M.: Towards a system support of collaborative
knowledge work. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132,
pp. 31–42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36285-9 5

9. Mundbrod, N., Reichert, M.: Process-aware task management support for
knowledge-intensive business processes: findings, challenges, requirements. In: Pro-
ceedings of the EDOCW 2014, pp. 116–125, September 2014

http://dx.doi.org/10.1007/978-3-642-36285-9_5

402 N. Mundbrod and M. Reichert

10. OMG: Case Management Modeling and Notation (CMMN) 1.1 (2016).
http://www.omg.org/spec/CMMN/1.1/

11. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: a diagrammatic notation
for specifying task models. In: INTERACT 1997, pp. 362–369 (1997)

12. Pryss, R., Mundbrod, N., Langer, D., Reichert, M.: Supporting medical ward
rounds through mobile task and process management. Inf. Syst. e-Bus. Manag.
13(1), 107–146 (2015)

13. Swenson, K.D.: Demo: cognoscenti open source software for experimentation on
adaptive case management approaches. In: Proceedings of the EDOCW 2014, pp.
402–405 (2014)

14. Tiedeken, J., Reichert, M., Herbst, J.: On the integration of electrical/electronic
product data in the automotive domain. Datenbank Spektrum 13(3), 189–199
(2013)

15. Vaculin, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative
business artifact centric modeling of decision and knowledge intensive business
processes. In: Proceedings of the EDOC 2011, pp. 151–160 (2011)

16. de Vries, E.N., Hollmann, M.W., Smorenburg, S.M., Gouma, D.J., Boermeester,
M.A.: Development and validation of the SURgical PAtient Safety System (SUR-
PASS) checklist. Qual. Saf. Health Care 18(2), 121–126 (2009)

http://www.omg.org/spec/CMMN/1.1/

Various Notions of Soundness
for Decision-Aware Business Processes

Kimon Batoulis(B), Stephan Haarmann, and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{kimon.batoulis,mathias.weske}@hpi.de, stephan.haarmann@student.hpi.de

Abstract. The Decision Model and Notation (DMN) specification
enables process designers to represent the decision logic and requirements
of business processes. When integrating DMN models into processes it
needs to be assured that the correctness of the process is not impaired.
The precise semantics for executing DMN models in the context of a
business process permits to broaden existing soundness notions for work-
flow verification to encompass such decision-aware processes. This paper
presents correctness notions for processes referring to DMN conform deci-
sion models and groups them in a manner that follows the intuition of
the well established soundness notions for workflow nets. In doing so, we
also make use of the different possible states the process can be in at the
point at which a decision is made.

Keywords: DMN · BPMN · Soundness · Verification

1 Introduction

Business process management (BPM) is a technique widely used in industry to
manage and support processes in organizations [19]. One of the most commonly
used modeling languages for business processes is the Business Process Model
and Notation (BPMN) standard [5]. Process models are not only used to capture
and document workflows but also as a base for the processes’ implementation
and (partly) their automation.

With the increasing use of models in businesses’ daily operations it becomes
more and more important that these models are correct [2]. Soundness has been
developed as a correctness criterion for workflows or processes specified by Petri
nets [16]. In order for a process model to be sound, its structure must pre-
vent certain (unwanted) situations such as dead transitions. Since soundness is
a rather strict criterion and not all violations are harmful in every situation,
different relaxations such as relaxed soundness and weak soundness have been
proposed [8,16]. Still, all of these notions verify only the control-flow structure
given in a process model.

However, many processes contain rather complex decision-making procedures
and nowadays it is agreed that a separation of concerns of process and decision
logic is necessary [3], leading to so called decision-aware processes [18]. In 2015
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 403–418, 2017.
https://doi.org/10.1007/978-3-319-69904-2_31

404 K. Batoulis et al.

the Decision Model and Notation (DMN) standard [7] has been published. DMN
can be used complementary to BPMN to design and implement a process’ deci-
sions in a separate model. Also, by explicitly modeling decisions with a clear exe-
cution semantics in DMN and linking them to dedicated tasks in process models
it becomes possible to extend the soundness considerations for traditional work-
flows to this class of decision-aware processes. Hence, process analysts would be
able to verify process models containing DMN decisions.

In this paper, we define various notions of soundness for decision-aware
processes and their relationships. These notions and their relationships are exten-
sions of the existing soundness notions described in [16]. The extension of classi-
cal soundness defined in [1,2] has already been introduced in previous work [4].
This paper broadens the perspective of that work by defining other types of
soundness in the context of processes associated with DMN decision models and
giving illustrating examples along the way.

The remainder of the work is structured as follows: An overview of important
related work is given for motivation and context in Sect. 2. Section 3 introduces
necessary background knowledge, our running example and gives an outlook
that emphasizes our contribution. In the main parts in Sects. 4 and 5 we extend
the soundness notions to decision-aware processes. This paper concludes with a
small summary and a discussion of our contribution in Sect. 6.

2 Related Work

Workflow nets are a prominent basis for formalizing and analyzing business
processes [2], so that mappings for modeling notations such as BPMN to work-
flow nets have been proposed [9]. Different correctness criteria have been devel-
oped and grouped into different soundness notions, e.g. classical, relaxed, and
weak soundness [2,8,14,15]. Each notion is tailored to different process models
and scenarios, e.g., the initial purpose of weak soundness was the analysis of web
services’ compatibility [14,15]. Van der Aalst et al. organize different notions of
soundness into a taxonomy and analyze the decidability of each in respect to
extensions of workflow nets [16]. All of these notions are purely structural and
do not consider decision logic.

Decisions and business rules are considered as another way to structure and
organize operations in businesses. Expert systems and their underlying knowl-
edge bases are methods to implement those rules. Vanthienen et al. analyze
different problems that can occur in such systems [17,20]. Furthermore, isolated
decision tables have been analyzed [12,13] and adapted for DMN conform deci-
sion tables [6].

Recently, the consistency between decisions and processes got increasing
attention as DMN is a decision standard complementary to BPMN processes.
Janssens et al. motivate the importance of consistent decisions and processes
and they introduce different high-level categorizes [10]. Additionally, the notion
of (classical) soundness [2] has been adopted to BPMN processes with comple-
mentary DMN decision logic [4]. Our work focuses on the adaptation of the

Various Notions of Soundness for Decision-Aware Business Processes 405

soundness taxonomy [16] to decision-aware process models: we investigate dif-
ferent notions and extend them to decisions without changing their intuition or
mutual relationships.

3 Prerequisites and Motivation

In this section we will introduce DMN as well as the different soundness notions
for workflow nets. This will lay the foundations for applying these notions to
decision-aware business processes. The description of a running example to illus-
trate the different notions as well as a figure summarizing our contribution con-
clude this section.

3.1 DMN and BPMN

Decision models in DMN can consist of two artifacts: On the one hand, deci-
sion requirements diagrams describe the dependencies between decisions and the
necessary input data. On the other hand, the decision logic expresses the actual
logic to make the decision. Since decision tables are standardized in DMN, we
will illustrate our discussions using decision tables. Figure 1 shows an abstract
decision model for illustration. In this figure, both rectangular decision elements
reference a decision table. These tables consist of rows corresponding to rules
and columns corresponding to inputs or outputs. Usually, there is only one out-
put column, namely the rightmost one. The domain of each input/output col-
umn can be restricted by a list of possible values, displayed directly below the
input/output name. The rules of a DMN table may be overlapping, meaning
that for certain input values, more than one rule matches. For these cases, a
hit policy can be defined to specify how such conflicts should be resolved. Since
our soundness notions are independent of such matters, however, we will stick
to the default policy unique. Finally, a DMN table is complete if and only if “it
produces a result for every possible case” [7], i.e., for all possible input values at
least one rule matches.

Decision 1

Decision 2Input data 1

Decision table 1

Input data 2

Decision table 2

Fig. 1. An abstract decision model

Decision
Task

Result?

x

Task A

y

Task B

Input
 data 1

Result

Input
 data 2

Fig. 2. An abstract decision fragment

406 K. Batoulis et al.

A decision model is linked to a process by a business rule task, which we
will call decision task in the following (cf. Fig. 2). Note that a decision model
may be referenced by multiple decision tasks in multiple process models. When
the control flow of a process instance reaches the decision task, the input data
objects of that task are read and provided as input to the decision model. We
assume that the decision model has a single top-level decision (such as Decision
1 in the example), whose output will then be returned to the process, such
that it is written into the output data object of the decision task. Hence, in the
following, if a process model references a decision model that consists of only
one decision table, we will disregard the requirements diagram and only show
the table.

After the decision was made, the return value is subsequently evaluated to
determine how the process proceeds. Thereby, we assume that a decision task
is followed by a split-gateway with two or more outgoing branches, where each
branch is annotated with a condition that refers to the output of the decision.
We call such a process fragment a decision fragment. Finally, a process model
that uses decision models to express the decisions necessary for executing the
process is called a decision-aware business process [18].

3.2 Soundness of Workflow Nets

The verification of workflows has been the topic of many publications. The
analysis is typically done by translating the workflow or process, expressed, for
instance, in BPMN, to a workflow net [9]. A workflow net, introduced in [2]
and [1], is a specific type of Petri net, with a distinguished initial place that has
no incoming edge, and a distinguished final place that has no outgoing edge.
Furthermore, every place and every transition is located on a path from the
inital to the final place.

Based on such a workflow net, different notions of soundness can be inves-
tigated, which have been summarized in [16]. In the following, we will briefly
explain each notion and provide exemplary workflow nets where appropriate.
All kinds of soundness are based on the rather strict classical soundness, con-
sisting of three criteria1:

(i) For every token on the initial place there will eventually appear a token on
the final place.

(ii) When a token on the final place appears, all other places are empty.
(iii) Every transition can be activated.

Relaxed soundness “relaxes” this notion in that it allows unsound firing
sequences to occur, i.e., firing sequences that violate criteria (i) or (ii). How-
ever, it is required that every transition can participate in at least one sound
firing sequence. The workflow shown in Fig. 3 is not sound because the firing
sequence t1, t4 leads to a remaining token on place p2. Yet, it is relaxed sound
because all transitions can be activated in firing sequences that end with only a
token in p4.
1 We will refer to these criteria in the following with their given Roman numerals.

Various Notions of Soundness for Decision-Aware Business Processes 407

Fig. 3. A relaxed sound workflow net Fig. 4. A weak sound workflow net

Weak soundness is also less strict because it allows dead transitions. However,
any transition that can fire must always lead to a proper termination. Therefore,
only criterion (iii) may be violated. Figure 4 shows a workflow that is neither
classically sound nor relaxed sound, because of the dead transition t2. Since the
net without t2 fulfills all conditions (i)–(iii), however, the net is weak sound.

Weak soundness implies lazy soundness as well as easy soundness. Lazy
soundness additionally allows the net to be lazy in the sense that there can
be tokens left in the net after a token appeared on the final place. Therefore,
also criterion (ii) may be violated. Still, the remaining tokens are not allowed
to appear on the final place later on, i.e., they have to remain somewhere else
in the net. The net in Fig. 5 is not weak sound because after a token on the
end place p6 appears it will have a remaining token on place p2 or p4. Lastly,
easy soundness extends weak and relaxed soundness by requiring criterion (i)
to be fulfilled not for every token but only by at least one. An example for an
easy sound net is given in Fig. 6. Only one firing sequence, t1, leads to the final
place p2.

Fig. 5. A lazy sound workflow net Fig. 6. An easy sound workflow net

3.3 Running Example

To illustrate the different notions of soundness of decision-aware business
processes, we will use a discount handling process inferred from booking tickets
from a German railway company. The corresponding process model is displayed
in Fig. 7.2 Customers can make discounted bookings with a discount card, called
BahnCard, which exists in 3 different types: 25, 50, and 100. Each of these types
correspond to a respective discount in percent. For example, a BahnCard of type
25 provides the customer with a discount of 25% on ticket prices. The decision

2 For better readability, only the data objects of the decision tasks are modeled.

408 K. Batoulis et al.

Fig. 7. Decision-aware business process for handling train ticket discounts

table implementing this is shown in Table 1 and is referenced by the Manage
discount decision task.

Table 1. Decision table for the Manage discount decision task

U Input Output

BahnCard.type Discount

25, 50, 100 25%, 50%, 100%

1 25 25%

2 50 50%

3 100 100%

Additionally, after the discount was applied, a special offer can be provided
to the customer. This is decided during the Manage special offer decision task
and an exemplary implementation of the logic is given in Table 2. If a booking is
made with a type 25 card, the customer is eligible for special offers, while type 50
card holders may upgrade their ticket to first class for a reduced amount. Note
that also the case of a BahnCard of type 100 is considered, although the first
XOR-split gateway will prevent this case from actually occurring. This fact will
become important during the discussions of the different notions of soundness
in Sect. 5. Also, when showing different variants of the running example in the
remainder of the paper, we will only show activities that are decision tasks, and
leave out activities such as Apply 25% discount and data objects because they
are not important for our considerations.

3.4 Outlook

Figure 8 summarizes the different notions of soundness and their relationships
described in Sect. 3.2 as a directed graph where an arrow from a source to a
target node can be interpreted as an implication [16]. In contrast, Fig. 9 shows the
notions of decision-aware soundness that we derived for decision-aware business
processes. As can be seen, the relationships are preserved and for each notion a
corresponding definition is given in Sect. 5.

Various Notions of Soundness for Decision-Aware Business Processes 409

Table 2. Decision table for the Manage special offer decision task

U Input Output

BahnCard.type Special offer

25, 50, 100 None, special, upgrade

1 25 Special

2 50 Upgrade

3 100 None

(classical) soundness

relaxed soundness weak soundness

easy soundness lazy soundness

Fig. 8. Various notions of soundness

decision-aware
(classical) soundness

(Def. 3)

decision-aware
relaxed soundness

(Def. 4)

decision-aware
weak soundness

(Def. 5)

decision-aware
easy soundness

(Def. 7)

decision-aware
lazy soundness

(Def. 6)

Fig. 9. Notions of decision-aware
soundness

4 State-Based Soundness Criteria for Decision-Aware
Processes

In this section we build on the soundness criteria defined in [4] and extend
them by incorporating knowledge about the states of the process. This is first
motivated in Sect. 4.1. In Sects. 4.2 and 4.3 we define the two extended criteria.

4.1 Using State Information for Soundness Checking

Whether or not a decision model causes soundness problems for a process model
it is linked to, depends on the point of view of the analysis. We differentiate
between two viewpoints. On the one hand, one can consider a decision fragment
in isolation. On the other hand, one may additionally take the context of the
decision fragment into account, or, put differently, the possible states of the
process at the point when the decision is made. Both points of view agree on
the criteria that need to be checked, but differ with respect to the method of
checking them. The two criteria to be checked have already been introduced
in [4]: Decision deadlock freedom makes sure that coupling a process model with
a decision model does not lead to a deadlock. This requires all tables of the
decision model to be complete, and that for every output of the decision there

410 K. Batoulis et al.

is a matching branch in the decision fragment of the process model, also known
as output coverage. Dead branch absence demands that for every branch in the
decision fragment there is an output of the decision model such that this branch
is selected for execution.

We will illustrate these criteria as well as the two ways of checking them using
the introduced example in Fig. 7. Let us first consider a decision fragment in iso-
lation as in [4]. Table 3 shows a possible decision table for the Manage special
offer decision task of the example. One can see that some input combinations,
such as (25, 50%), are not covered. In a process instance where the decision is
reached and (25, 50%) is provided as an input, no decision can be made because
no respective rule exists. Additional problems can arise when the decision’s out-
come is interpreted by a gateway: If rule 3 of Table 3 is triggered, the output none
is produced which cannot be handled by the succeeding gateway. On the other
hand, by slightly adjusting our model, we can create a dead-branch-scenario:
we change the branch condition upgrade to 1st class. Consequently, we have a
situation in which a branch condition is never met and, hence, the branch is
dead.

Table 3. Alternative decision table for the special offer decision that is incomplete

U Input Output

BahnCard.type Discount Special Offer

25, 50, 100 25%, 50%, 100% None, upgrade, special

1 25 25% Special

2 50 – Upgrade

3 – 100% None

How does our analysis change if we analyze the possible states of the process
at the point when the decision is made? Let us first motivate why this is a
reasonable idea. DMN decision models are designed to be reused in different
process models that deal with different aspects of a business but contain the
same decisions [7]. Because of that, the decision model will not fit perfectly to
every process model it is used in. For example, sometimes certain outputs of the
decision are not relevant for a process, or the decision is made in a situation in
which only a subset of the set of possible inputs of the decision could actually be
provided as an input. Therefore, we extend the decision deadlock freedom as well
as the dead branch absence criterion to also take state information into account.
State information can be accessed in three ways, two of which we will illustrate
in Sect. 4.2 and 4.3:

(1) The conditions of split gateway branches that led to the current state.
(2) The input and output values of the rules matched in previous decisions that

led to the current state.
(3) The states of data objects.

Various Notions of Soundness for Decision-Aware Business Processes 411

4.2 State-Based Decision Deadlock Freedom

Table 3 was claimed to be incomplete because the input in which
BahnCard.type = 25 and discount = 50% is not dealt with. Yet, by ana-
lyzing the state space of the process model, we can infer that such a state is
unreachable when Manage special offer is enabled. The path on which this
decision task lies is taken when discount ∈ {25%, 50%}, since these are the
branch conditions of the preceding XOR split gateway. Moreover, by ana-
lyzing the decision table linked to the decision task preceding the gateway,
Table 1, one can infer that discount = 25% ⇐⇒ BahnCard.type = 25 and
discount = 50% ⇐⇒ BahnCard.type = 50. Therefore, the input combination
(25, 50%) that was claimed to be missing in Table 3 can actually never occur. In
conclusion, any input combination given by any state reachable before Manage
special offer is covered and the decision table is conditionally complete.

The situation is similar for output coverage. As mentioned before, the output
none is not covered by any branch condition of the succeeding gateway. But, this
output will never be produced because it requires that discount = 100% (cf. rule
3 in Table 3). From our previous investigation we know that at the point when
Table 3 is called, no such state is reachable. Hence, all outputs producible through
any state reachable before Manage special offer are covered, i.e., all outputs of
the decision model are conditionally covered. This leads to the definition of state-
based decision deadlock freedom:

Definition 1 (Criterion: State-based decision deadlock freedom). The
state-based decision deadlock freedom criterion is satisfied for a process p asso-
ciated with a set of decision models DM if and only if

• For all dm ∈ DM , every decision table of dm is conditionally complete.
• For all dm ∈ DM , all outputs of dm are conditionally covered.

4.3 State-Based Dead Branch Absence

Let us now change the process model slightly to create a dead branch that cannot
be detected by inspecting a decision fragment in isolation but also depends on the
possible states of the process.3 The process model is shown in Fig. 10. The second
decision fragment now contains another branch with condition none. Considered
in isolation, this fragment perfectly fits to Table 3. So, the usual dead branch
absence criterion would be satisfied. However, we know from our state space
analysis that the rule producing the output none cannot be triggered in this
process. Hence, the newly added branch is actually dead. Therefore, a branch
that cannot be reached by any output producible through any state reachable
before the decision task is a conditionally dead branch. This leads to the definition
of state-based dead branch absence:

3 Note that we left out non-decision tasks for better readability.

412 K. Batoulis et al.

Manage
discount

Discount?

25%

50%

100%

Manage
special offer

special
offer?

none

special

upgrade

Fig. 10. Variant of the discount process with a conditionally dead branch

Definition 2 (Criterion: State-based dead branch absence). The state-
based dead branch absence criterion is satisfied for a process p associated with
a set of decision models DM if and only if p does not contain any conditionally
dead branches.

Note that the state-based version of the dead branch absence criterion is
stricter than the original one described in [4]. It is not sufficient to just check
if there is a decision model output for every branch condition of the decision
fragment. It also needs to be assured that this output can actually be produced
by the decision model based on the possible states of the process.

5 Definition of Decision-Aware Soundness Notions

This section is dedicated to the definitions of the decision-aware soundness
notions necessary when integrating DMN-based decisions into business processes.
These extended soundness notions build on the notions described in [16] but
additionally take into account decisions. Thereby, they allow or do not allow
certain relaxations of the criteria defined in the previous section. We illustrate
them with variants of the example introduced in Sect. 3.

5.1 Decision-Aware Soundness

This soundness criterion corresponds to the node decision-aware (classical)
soundness in Fig. 9. Conforming to the relationship between the different sound-
ness notions shown in Fig. 9, (classical) decision-aware soundness is supposed to
be the strictest notion that implies relaxed and weak decision-aware soundness
etc. Hence, we require the strictest criteria for this notion and define it as follows:

Definition 3 (Decision-aware soundness). A decision-aware process model
is decision-aware sound if and only if

• It is (classically) sound.
• It is decision deadlock free.
• It is state-based dead branch free.

Consider the process in Fig. 11, which is the same as in Fig. 7, but without
non-decision tasks to increase the readability of the model. Let the decision task
of the second decision fragment be associated with Table 4, which is the same as

Various Notions of Soundness for Decision-Aware Business Processes 413

Manage
discount

Discount?

25%

50%

100%

Manage
special offer

Special
offer?

upgrade

special

Fig. 11. Original discount handling process that is not decision-aware sound

Table 4. Decision table for the Manage special offer decision task, repeated for con-
venience

U Input Output

BahnCard.type Special offer

25, 50, 100 None, special, upgrade

1 25 Special

2 50 Upgrade

3 100 None

Table 2, repeated for convenience. The process is not decision-aware sound: rule
3 of this table leads to an uncovered output. If we remove this rule, all outputs
will be covered. However, note that then the table will be incomplete because
no rule considers the input BahnCard.type = 100. Therefore, this value must
be removed from the list of possible inputs as well. Lastly, notice that the third
condition of decision-aware soundness requires state-based dead branch absence.
Hence, the process in Fig. 10 would not be considered decision-aware sound,
because the second decision fragment contains a conditionally dead branch.

5.2 Decision-Aware Relaxed Soundness

The notion of relaxed soundness [8] assumes an intelligent user or environment
being responsible at runtime to perform decisions of which activity to execute
next in such a way that only “good executions paths” occur [16]. When using
DMN to explicitly model decision logic, this responsibility is transferred to design
time. Hence, decision-aware relaxed soundness relaxes the deadlock considera-
tions compared to the previous one: It does not allow deadlocks or dead branches
given the possible states of the process at the point in which the decision is made,
i.e.:

Definition 4 (Decision-aware relaxed soundness). A decision-aware
process model is decision-aware relaxed sound if and only if

• It is relaxed sound.
• It is state-based decision deadlock free.
• It is state-based dead branch free.

The process in Fig. 11 is decision-aware relaxed sound: Although the decision
fragment with the Manage special offer task does not cover all outputs of the

414 K. Batoulis et al.

according table, by analyzing the state space one will determine that the previous
decision fragment is designed in such a way that rule 3 of Table 2 cannot be
reached. Hence, the uncovered output (none) will never be produced. The process
in Fig. 10, in contrast, is not decision-aware relaxed sound because it contains a
conditionally dead branch and is therefore not state-based dead branch free.

5.3 Decision-Aware Weak Soundness

Weak soundness requires that every process instance will eventually complete
properly [15]: the end event is reached without tokens left in the net. This, on
the one hand, forbids all kinds of deadlocks—even on concurrent paths—and
on the other hand, it allows dead parts. The mapping to decision-aware process
models is straightforward:

Definition 5 (Decision-aware weak soundness). A decision-aware process
model is decision-aware weak sound if and only if

• It is weak sound.
• It is state-based decision deadlock free.

Consequently, decision tables have to be complete to handle all possible inputs
and some kind of output coverage must be fulfilled to prevent deadlocks caused
by interpreting gateways. If certain outputs will never be produced, they cannot
lead to a deadlock. Therefore, only conditional output coverage is required. The
model in Fig. 12 violates the state-based dead branch absence criterion, but it
is still decision-aware weak sound. In contrast, it is not decision-aware relaxed
sound since it contains dead parts.

Manage
discount

Discount?

25%

50%

100%

Manage
special offer

special
offer?

none

special

upgrade

Fig. 12. Variant of the discount process that is decision-aware weak sound

5.4 Decision-Aware Lazy Soundness

A workflow net is considered lazy sound if from every reachable state the end
event can be reached exactly once. This notion is similar to weak soundness:
deadlocks are forbidden until the end is reached. In contrast, lazy sound nets
may have tokens left in the net when the end event is reached and there can be
transitions that are enabled or fire.

The production of tokens is not influenced by decision logic. However, deci-
sions are fundamental for a process’ branching behavior and, thus, can lead to
deadlocks or unused tokens. In [4] it was motivated, that all outputs produced
by decision should be consumed and used by the succeeding gateway. This is
analogue to consuming all tokens in a Petri net before reaching the final place.

Various Notions of Soundness for Decision-Aware Business Processes 415

Definition 6 (Decision-aware lazy soundness). A decision-aware process
model is lazy sound if and only if each instance eventually reaches the end event
exactly once.

Manage
special offer

special
offer?

upgrade

special

Discount?

100%Manage
discount

Fig. 13. Decision-aware business process that fulfils all criteria of decision-aware lazy
soundness

This definition relaxes the criterion that enforces all tokens to be consumed.
Additionally, processes can be decision-aware lazy sound but also contradict
(classical) lazy soundness. If we look at the example process depicted in Fig. 13,
we can see that it is not lazy sound: The parallel gateway spawns two concur-
rent paths which are later joined by an exclusive gateway right before the end
event. Since the process model does not contain any structural deadlocks, each
instance reaches the end event twice. Now let us take the decision logic into
account (Tables 1 and 2). In every possible instance, exactly one of the concur-
rent branches contains a deadlock: if the bahncard type is 100 the upper branch
stops at the gateway special offer? ; if the type is 50 or 25 the lower branch
stops at the gateway discount. Consequently, each process instance eventually
reaches the end event and it does this exactly once. Hence, it is decision-aware
lazy sound.

5.5 Decision-Aware Easy Soundness

A workflow net is considered easy sound if a state of proper completion can be
reached at least once. Consider the process in Fig. 14, where the first decision task
references Table 5 and the second references Table 6. Note that the second rule
of the first decision table does not consider the case when BahnCard.type =
50 anymore. This means it is incomplete and therefore violates (state-based)
decision deadlock freedom. Furthermore, given that the upgrade branch of the
second decision fragment can only be taken given that BahnCard.type is 50, this
branch is conditionally dead.

Therefore, this process is neither decision-aware relaxed nor weak sound. Still,
there is a path through the process and the decision tables that properly reaches
the end event, namely in case BahnCard.type = 25. Therefore, the process is
decision-aware easy sound, a notion that is defined as follows:

416 K. Batoulis et al.

Manage
discount

Discount?

25%

50%

Manage
special offer

Special
offer?

upgrade

special

Fig. 14. Variant of the discount process that is decision-aware easy sound

Table 5. Variant of the decision table for the Manage discount decision task

U Input Output

BahnCard.type Discount

25, 50, 100 25%, 50%, 100%

1 25 25

2 25 50%

3 100 100%

Table 6. Decision table for the Manage special offer decision task, repeated for con-
venience

U Input Output

BahnCard.type Special offer

25, 50, 100 None, special, upgrade

1 25 Special

2 50 Upgrade

3 100 None

Definition 7 (Decision-aware easy soundness). A decision-aware process
model is decision-aware easy sound if and only if

• It is easy sound.
• It contains at least one path that is state-based decision deadlock free and

state-based dead branch free.

6 Discussion and Conclusion

Since DMN has been released, decision logic and requirements can be modeled
in a standardized way complementary to process models and enterprises increas-
ingly depend on the combination of both model types to document and support
their operations. As a consequence, asserting a consistent and correct integration
of decisions in process models becomes more important. We provided a set of
notions and criteria to pursue this objective. Since analysts may have different
requirements for the strictness of the verification, we presented different notions
that are in line with the original taxonomy of soundness notions introduced by
Van der Aalst et al. [16] offering various relaxations.

Various Notions of Soundness for Decision-Aware Business Processes 417

In real world scenarios enterprises can have hundreds of process models.
Analyzing and checking them by hand is a time consuming task and, hence,
automation becomes attractive. We can check the presented criteria by inves-
tigating the state space of the system described by our decision-aware process
models. In the past, different approaches have been used, such as applying a
mapping to Petri nets and extracting the reachability graph afterwards [19] or
by extracting Kripke structures and describing properties in temporal logic [11].
These approaches can be applied to automatically extract state information as
suggested in Sect. 4.1 and we intend to do so in future work.

Besides the notions discussed in this paper, [16] additionally considers gen-
eralized, up-to-k and k-soundness. We did not consider them for the following
reasons. All of these notions analyze the behavior of workflow nets when there
are multiple tokens in the initial place. If we map a BPMN model to a workflow
net, such a token represents a process instance. Decisions are taken by a single
business rule task, thus a single token is consumed during their execution. Fur-
thermore, DMN decisions are functional and hence behave the same way each
time they are called. So, neither do multiple instances affect decisions nor does
a single execution of a decision impact multiple instances.

Our soundness notions consider both, decision logic and process structure.
This paper focuses on decision tables, but DMN provides other concepts of
expressing decision logic called literal expressions. Literal expressions need not
be formal in which case using them for assessing the soundness of decision-aware
processes requires manual effort of a domain expert. They can be formalized,
however, using Friendly Enough Expression Language (FEEL) or some other
expression/programming language [7]. In this case, in order to check the pre-
sented criteria for decision-aware processes, we need to be able to determine
which inputs lead to which outputs and, along with it, which inputs can be
processed and which outputs can be produced. If we look at FEEL, we can
derive the sets of possible inputs and possible outputs from the boxed context
which can be compared to method signatures in typed programming languages.
In order to determine which input values lead to which output value, we must
parse and analyze the expression itself—a complex task which is out of scope of
this paper.

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circuits Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997).
doi:10.1007/3-540-63139-9 48

3. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision
logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). doi:10.1007/
978-3-319-19069-3 22

http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1007/978-3-319-19069-3_22
http://dx.doi.org/10.1007/978-3-319-19069-3_22

418 K. Batoulis et al.

4. Batoulis, K., Weske, M.: Soundness of decision-aware business processes. In: Car-
mona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNBIP, vol. 297, pp. 106–124.
Springer, Cham (2017). doi:10.1007/978-3-319-65015-9 7

5. Business process model and notation, specification 2.0, version 2 (2011)
6. Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.:

Semantics and analysis of DMN decision tables. In: La Rosa, M., Loos, P., Pastor,
O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 217–233. Springer, Cham (2016). doi:10.
1007/978-3-319-45348-4 13

7. Decision model and notation, specification 1.1, version 1.1 (2016)
8. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,

K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–
170. Springer, Heidelberg (2001). doi:10.1007/3-540-45341-5 11

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

10. Janssens, L., Bazhenova, E., Smedt, J.D., Vanthienen, J., Denecker, M.: Consis-
tent integration of decision (DMN) and process (BPMN) models. In: CAiSE 2016
Forum, pp. 121–128 (2016)

11. Kherbouche, O.M., Ahmad, A., Basson, H.: Using model checking to control the
structural errors in BPMN models. In: 2013 IEEE Seventh International Confer-
ence on Research Challenges in Information Science (RCIS), pp. 1–12. IEEE (2013)

12. Kirk, H.: Use of decision tables in computer programming. Commun. ACM 8(1),
41–43 (1965)

13. Lew, A.: Proof of correctness of decision table programs. Comput. J. 27(3), 230–
232 (1984)

14. Martens, A.: On compatibility of web services. Petri Net Newsl. 65(12–20), 100
(2003)

15. Martens, A.: Consistency between executable and abstract processes. In: The 2005
IEEE International Conference on 2005 Proceedings e-Technology, e-Commerce
and e-Service, pp. 60–67. IEEE (2005)

16. Van Der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H., Sidorova, N., Ver-
beek, H., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

17. Vanthienen, J., Dries, E.: Developments in decision tables: Evolution, applications
and a proposed standard. DTEW Research Report (1992)

18. Von Halle, B., Goldberg, L.: The Decision Model: A Business Logic Framework
Linking Business and Technology. Taylor and Francis Group, Abingdon (2010)

19. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Publishing Company Incorporated, Heidelberg (2010)

20. Zaidi, A.K., Levis, A.H.: Validation and verification of decision making rules. Auto-
matica 33(2), 155–169 (1997)

http://dx.doi.org/10.1007/978-3-319-65015-9_7
http://dx.doi.org/10.1007/978-3-319-45348-4_13
http://dx.doi.org/10.1007/978-3-319-45348-4_13
http://dx.doi.org/10.1007/3-540-45341-5_11

Data, Control, and Process Flow Modeling
for IoT Driven Smart Solutions

P. Radha Krishna1(&) and Kamalakar Karlapalem2

1 Infosys Limited, Hyderabad, India
radhakrishna_p@infosys.com

2 Data Sciences and Analytics Centre, IIIT-Hyderabad, Hyderabad, India
kamal@iiit.ac.in

Abstract. Internet of Things (IoT) technologies advance physical objects
capabilities regarding programmable, sensor-based and connected. Today’s
smart applications leverage IoT technologies that enable collaboration between
different entities involved in the application. Further, smart applications provide
local intelligence attached each device/physical object. The nature of an IoT
application usually differs from time-to-time due to varied context and
end-device sensing/response. The key issue is that of understanding the data and
control flows which govern the processes that act on the sensed data all the way
up to end user application. So, conceptually modeling of data, control and
process flow for IoT-driven smart applications is more challenging, especially
when further modeling the context and exceptions arise during the execution. In
this paper, we discuss an architectural framework for IoT-driven smart appli-
cations that facilitate monitoring and managing data, control and process flows.
We provide a vertically and horizontally integrated enactment of data modeling
for smart solutions.

Keywords: IoT devices � Modeling � Workflows � Context

1 Introduction

Internet of Things (IoT) technologies advances physical objects capabilities regarding
programmable, sensor based, and connected. IoT involves a lot of technologies such as
a sensor, connectivity, embedded, mobility, and network. An entity instance is an
object. An object is any physical entity that can communicate/connect with other
objects. IoT connects different objects such as computing devices, sensors, actuators,
people, vehicle, road and virtually any object that can be connected to other objects.
Smart applications provide local intelligence (as information) attached to each
device/physical object. These applications are connected to a variety of devices. Each
device produces data that need to be shared and processed as per the process flow.
Examples of smart applications include smart cities, smart home, smart meter, intel-
ligent cars, health care monitoring, smart manufacturing plant, and real-time traffic
monitoring. In this work, we assume that a smart solution is a composition of smart
applications.

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 419–433, 2017.
https://doi.org/10.1007/978-3-319-69904-2_32

The data from IoT devices are captured in two ways: push and pull. In the push
scenario, the device/object send the data as and when it is created. The velocity of the
data (the rate at which data is sent for processing) is dependent on the sensors and
needs to be modeled. On the other hand, in the pull scenario, the application period-
ically polls the devices and capture the data from them. The application controls the
level at which data is pulled. Hence the aggregating the data and buffering of the data
needs to be modeled. In some applications, a hybrid scenario where both push and pull
choices takes place. However, push scenario results in real-time data, whereas pull
scenario there is a delay from the data generated time to data capturing (availability for
the application to process) time. IoT applications are usually very short duration and
highly specific purpose-built. Since the sensors built for the smart application are prone
to energy-related issues, push choice is preferable as the pushed data can be stored and
available immediately for down-stream processing.

Smart applications leverage IoT technologies that enable collaboration between
different entities involved in the application. The nature of an IoT application usually
differs from time-to-time due to varied context and end-device sensing/response. The
devices that are part of smart applications are usually heterogeneous and possess a lot
of autonomy while interacting/coordinating with the application. This nature of IoT
devices limits the control and process flows. For instance, a mobile device goes out of
sensing region and thereby communication/connection lost. Similarly, a computing
device such as a server/laptop is shutdown. The owner of that device can shut down the
system any time (since autonomy) irrespective of IoT applications that it involves.
Events that are generated should be continuously monitored and perform their asso-
ciated actions. In some cases, the devices may not respond due to failure, and
exceptions may raise due to non-acceptance of the business process flow. Handling
such failures necessitate (i) a seamless integration of data generated by the sensors to
data processing and (ii) action at the end user level to support IoT-driven smart
applications.

In this paper, we present an event, condition, and action driven conceptual mod-
eling of data, control and process flow (supported by workflows) for IoT-driven smart
applications. The main contributions of this work are:

• Developed a conceptual model for smart solutions (CM-SS)
• Views from IoT conceptual model to drive smart applications
• Presented an architectural framework for IoT-driven smart solutions
• Developed implementation mechanism for Event-Condition-Action (ECA) Rules to

monitor data, control, and process flows in IoT applications
• Presented (a) vertically integrated modeling of data and control flow starting from

IoT Sensors to Smart Application and (b) horizontally integrated modeling of a
smart solution as a composition of smart applications.

The rest of the paper is organized as follows. Section 2 presents the related work. In
Sect. 3, we discuss various issues that arise during modeling IoT-driven smart solutions
and also present a conceptual model for smart solutions. In Sect. 4, an architecture for
smart application is proposed, and in Sect. 5 we present a case study to show the
applicability of proposed modeling for traffic movement solution. Section 6 concludes
our paper.

420 P. Radha Krishna and K. Karlapalem

2 Related Work

Chen [3] presented a four-layered architecture for IoT applications. The layers from top
to bottom are (i) Object sensing and information gathering layer, (ii) Information
delivering layer, (iii) Information handling layer and (iv) application and service layer.
The first layers Object sensing and information gathering: The first layer enables smart
services that collect contextual information about the environment, things and objects
of interest. Wireless technologies such as sensor networks and mobile communication
form Information delivery layer that is used to deliver the information. The third layer
provides pervasive and autonomic services. The application and service layer repre-
sents network computing capability and energy efficiency features required for
designing applications. Mervat et al. [7] discussed a data management framework for
IoT that serves as a seed to build a comprehensive IoT data management solution. Their
framework is a two-way publishing and querying of data and allows the system to
respond to the immediate data and processing requests of the end users. This work
mainly explores the integration of heterogeneous and distributed data sources and
systems for IoT.

Zambonelli [10] presented a common set of features for IoT systems such as objects
(including places and persons), Middleware, Services and Applications, and described
software engineering concepts for developing complex IoT applications in a more
systematic way. Zanella et al. [11] provided a comprehensive survey related to enabling
technologies, protocols, and architecture for an urban IoT to support smart cities. They
also proposed an architecture based on web service approach for the design of IoT
services and discussed that can be used to interconnect the different parts of the IoT.
Gaur et al. [4] described an architecture for Multi-Level Smart City using semantic web
technologies and Dempster-Shafer uncertainty theory to inference rules to combine
sensor information. Robles et al. [8] presented a smart water management model that
combines IoT technologies with smart solution coordination and decision support
systems using OPC UA (Object Linking and Embedding for Process Control Unified)
standards.

All the above works focus is on providing architecture details that show functional
and non-functional aspects of various components but lacks the conceptual modeling
aspects for IoT applications. Though IoT-driven smart solutions are built over existing
technologies, there is a need for understanding how the data, control, and process flow
across the components. To the best of our knowledge, our work is the first attempt in
conceptually modeling IoT-driven smart solutions along with a system oriented
architectural framework.

3 Issues in Conceptual Modeling of IoTs Driven Smart
Solutions

Sensors to IoT Store
Unlike traditional applications wherein the data is mostly captured from end users or
points of interaction and stored in a database, IoT is a sensor that (i) captures the sensed

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 421

data, (ii) may preprocess the data to store and load the data, or (iii) transfer the data to a
database or a store. There is a data pipeline from IoTs to the IoT store. There are
protocols such as HTTP, MQTT (Message Queue Telemetry Transport) [12], and
CoAP (Constrained Application Protocol) [13] to format the sensed data and send it to
the IoT store. For simplicity, we can consider that the IoT store is a central repository
for all sensed data collected and preprocessed (to remove protocol specific tags) from
all IoTs before any processing takes place.

Following are different aspects that need to be modeled for this part of the pipeline
from IoTs to IoT store: (i) The metadata about the IoT-type such as the make, type,
what do they sense, the unit of measurement and any constraints on the device. There
can be many IoTs of the same IoT-type; (ii) The location of the deployed IoTs, if
available; (iii) The rate at which the data is generated from the IoT, and whether the
sensor supports push, pull or both ways of data transfer; and (iv) The health status
information of the IoT device, if any.

The above information will be critical to be conceptually modeled so that the
application designers can comprehend the IoTs that are the source of the data. For
example, the solution architect can decide based on downstream processing require-
ments to replace one of the IoT types and to evaluate the impact of this replacement on
the entire solution.

Extracting Entity Types and IoT Conceptual Model from IoT Store
The next aspect of modeling is the determination of entities that will be used for further
processing in the IoT-driven solution. The key issue is how we model the entity, model
the instances of the entity types, and how they are generated. There can be other entity
types in the environment wherein IoTs are located (that need to be incorporated in the
conceptual model) which are critical for the IoT solution. The key issues are: (i) The
purpose of the entity type for downstream processing; (ii) The attributes of the entity
types; and (iii) The relationships between these entity types and other non-IoT based
entity types. At the end of this step, a conceptual model integrating the IoT sensed data
with other related entity types is available. This model helps developers and solution
architect to determine the interdependencies among the data collected as an available
IoT conceptual model.

Determining Views from the IoT Conceptual Model
The main purpose of IoTs is to sense the environment to prepare data for controlling
the environment. A given set of IoTs can sense different aspects of the environment.
The smart application is driven by the events detected from the sensed data. For each
aspect of control, a view is specified which determine the data that is part of the view,
and the availability of this data for the downstream processing. The view is a bridge
between the IoT conceptual model and the action layer where the event-condition-
action processing is done. The key aspects to be modeled for the views are: (i) The
implementation related specification of the view as a relational table, or as
semi-structured XML object or JSON object; (ii) The refresh rate of the data in the
view; and (iii) The predefined stored procedures that generate some aggregate attributes
and values for downstream processing.

422 P. Radha Krishna and K. Karlapalem

The views will model the necessary information for the developer and solution
architect to identify the data relevant for action layer wherein the smart application
takes its inputs for specific actions to be done.

Modeling the Action Layer and Its Interaction with Views
The action layer consists of processes (i) event detector, (ii) condition checker, and
(iii) action generator. The specification of the events, conditions, and actions are done
at this layer using the information got from the views. The key issues for this action
layer modeling are (a) The event specification which can be (i) a predicate on the
instances inserted in the view, (ii) output of execution of a stored procedure, (iii) ex-
ternal notifications or (iv) context related changes. Events themselves can be com-
posite, that is, made up of other events. The event detector uses these specifications for
event detection. (b) The conditions are modeled again as predicates or external checks
to determine whether action needs to be taken. (c) The actions are either (i) notifications
or (ii) processes or applications that are automatically executed. The purpose and
output of these actions along with corresponding exceptions that may arise are also
specified.

The above modeling can be done by ECA rules [1, 9], but in our case, the linkages
to the views and the smart applications need to be modeled. The developer or the
solution architect can understand the process flow and the control aspects of the smart
application based this specification. At our modeling level, we can use ECA rules, but
at the implementation level, the coding of these can be driven by the development
environment used. In this case, the mapping from our model to the implantation
artifacts needs to be provided.

Modelling Smart Application and Smart Solution
The main idea is that the smart application uses the IoT sensed information along with
user preference level decisions to take actions based on their requirements. The key
issues in modeling smart application are: (i) Mapping ECA rules to actions suggested to
the end user. Some of the actions can be automatically performed based on user’s prior
approval, and other actions require user’s explicit confirmation; (ii) Modeling excep-
tions and failures at the smart application level. The set of actions because of excep-
tions and failures need to be specified; (iii) The actions taken by the smart application
can have external implications. So, need to model the data related to the applications
which handle the implications; and (iv) The modeling of chaining of many smart
applications orchestrated as a smart solution based on external implications.

The smart application can be modeled as a workflow and the smart solution as a
loosely coupled integration of workflows of individual smart applications. The mod-
eling from IoT to IoT store to IoT Conceptual Model to Views to Action layer to Smart
Application is the enactment of vertically integrated data and control flow to the smart
application from the IOT sensors. The modeling of smart solution from multiple smart
applications is the enactment of the horizontally integrated modeling of a smart
solution.

Discussion
Many of the issues listed above have been considered in various conceptual models,
but the key issue is the systematic and comprehensive view of data, control and process

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 423

flow that is required to be modeled for developer and solution architect. The storage
and processing capabilities of IoT objects are restricted by the availability of resources
(due to size, energy, and computational capability), and thus, the data need to be moved
to a central store for downstream processing. IoT-driven smart applications are
event-centric and context sensitive. Continuous generation of (complex) events raised
by the IoT objects need to be stored, processed as they occur and to take appropriate
action at real-time. These features of IoT-driven smart applications necessitate
appropriate modeling of sensor data and events. Further, there is a need to streamline
the design principles for data, control and process flow starting from sensors to smart
applications. Therefore, the challenge is to provide a conceptual model that builds on
an existing solution while providing an architectural framework for structuring the
smart application and smart solution.

3.1 CM-SS: Conceptual Model for Smart Solutions

The conceptual model consists of following constructs as described below: (i) Sensors,
(ii) IoT Store, (iii) Constraints, (iv) Entity types and relationship types, (v) ECA rules,
and (vi) Workflows

Sensors
Most data generated in IoT-based smart
solutions is through sensors, and this
data is critical for deploying successful
applications. Thus, it is necessary to
understand the different characteristics
of a sensor and its data. Figure 1 shows
typical characteristics (but not exhaus-
tive) of sensor data. The data is gener-
ated either continuously (stream data) or
periodically. IoT devices suffer from a
limited battery capability and high
energy consumption. The life value
information such as energy and signal
range helps in determining the health of the sensor and usability of the data at a certain
point in time. IoT applications can consider either all the generated data or a sample it
for further processing. The devices associated with the sensor can be in the stationary
position (ex. Camera sensor placed at a traffic junction, an on-the-road sensor that
monitors pedestrians’ traffic). Some devices have mobility when the data is captured
(ex. GPS data while the car is in travel state).

The contextual parameters such as location and time of sensors possess distinctive
characteristics that make the application as context-aware. The rate of the data at which
the sensor generates provides applicability of either real-time or batch protocols to
transmit data to IoT store to get processed as soon as it arrives at the IoT store.
Applications consume the data either in the aggregated form or the raw data itself so

Aggregated /
raw data

Data rate and
Push/Pull

Autonomous/
Linked

Sample/ All dataSensor

Streaming /
Periodic

Life value

Contextual
Parameters

Stationary/
Mobility

Fig. 1. Sensor data characteristics

424 P. Radha Krishna and K. Karlapalem

that the devices can send the data accordingly. This characteristic has an impact on
communication overheads as well as the delay in processing the data. Further, appli-
cations may consider data from each sensor without any dependence on other objects.
Some applications may treat the data collectively (data fusion) from multiple sensors
that are either physically or virtually connected. All these characteristics typically
define the format (schema) and type of the data that need to be stored in a database
management system. In our earlier work [5], we presented mechanisms to collect and
analyze the context information during the enactment of workflows. A similar approach
is followed in this work to analyze the context derived from IoT devices.

IoT Store
IoT store helps in capturing sensor data, communicate, store, access, and share data
among the (physical) objects. For instance, IoT store stores RFID sensor data about the
item to which RFID tag is attached. The data needs to be sensed and acted on when it
arrives at the IoT store. Active databases [9] serve as IoT store. In addition to sensor
data, the data related to other entities in the IoT solution are also captured in the IoT
store. Views on IoT store can be created to facilitate monitoring and orchestrating a
variety applications that constitute a specific solution.

Constraints
Constraints in the IoT solutions mainly show the dependence on the data that is shared
among the objects and sensors. Constraints can be modeled using rules. Since IoT
applications interact with the external entities, constraints can also include external
entities.

Entity Types and Relationship Types
Figure 2 shows the CM-SS model, an extended ER model, for the conceptual design of
IoT-driven smart application. This model allows us to capture conceptual level details

Smart Objects Sensors

Activities

Users

can
have

include

associate Rules

refer

generate

is a

Events

Exceptions

connect
(1, n)

(0, n) (1, n)

(1, n)

(1, n)

(0, n)

(1, n)

(1, n)
(1, n)

(1, n)

(1, n) (1, n) (0, 1)

(1, 1)

Fig. 2. CM-SS model for modeling IoT applications

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 425

required for such applications. This ER model serves as a meta-model template for
building IoT applications and solutions.

Sensor data is mostly captured in the form of streams, and thus, there is a need of
stream type to model sensor data. A stream represents an ordered, finite sequence of
entities or values. Our model adds a stream type construct to model sensors data that
models a sequence of instances within an entity. Similarly, events life span is very small
and handled instantaneously. An event is a state transition in the application. When an
event is detected, the variables are updated as per the actions in the ECA rule associated
with that event. The states are typically implicit and are not explicitly defined in the
traditional ER models. Smart objects, which serve as building blocks for IoTs, can
understand and react to their environment. The events play a major role in the IoT
applications as many smart objects are autonomous and at the same time connected with
the other objects (i.e., entity instances) and exchange information among the applica-
tions. Due to the complexity in the IoT applications, events need to bemodeled explicitly.

There are seven Entity types in IoT applications namely Activities, Smart Objects,
Rules, Users, Sensors, Events, and Exceptions. Here, we introduce two new constructs
to conceptually model Sensors and Events entity types which have special considera-
tions in the IoT applications when compared to traditional applications. Sensors entity
type represented by a dashed box to indicate the nature of data is a stream. The Events
entity type is represented as hexagon box to indicate the nature of instantaneous
handling. Further, Exceptions entity type is represented same as Events entity type.
Also, we represented Rules entity type as parallelogram by following the ER-R
model [9].

The IoT applications have pre-defined (system) activities that are executed at
run-time. End users are actual beneficiaries in such applications and thus involve either
directly or indirectly associated with the activities. So, Users entity type has a rela-
tionship type associate with Activities entity type. An activity consists of a set of tasks
which need to be processed in a given order. Activities include smart objects which
have sensors. Smart objects are connected to other smart objects, and thus Smart object
entity type has a self-relationship type connect. Events can be database events (raised
during execution of activities) and capture sensor events that control the execution of
the IoT application. Sensors entity type and Event entity type are related to a rela-
tionship type generate. Each event is associated with a rule which is in the form of
ECA rules. Execution of activities can also include normal if-then-else rules. Activities,
Events and Rules entity types have a ternary relationship type refer. Some events lead
to exceptions. In this work, we treat exceptions as events. Thus, Exceptions entity type
has is a relationship type with Events entity type. The rules to handle exceptions are
mostly treated as external rules, which are also in the form of ECA rules. When an
exception occurs, corresponding ECA rules will trigger, and the action specified in the
ECA rule is performed. Exception handlers (action part of ECA rules) are typically
handled outside of the application environment either manually (ex., replacing a faulty
sensor with a new one) or automatically (ex., sending an electronic message to external
objects). For the sake of simplicity, the attributes of entity and relationship types are not
shown in the diagram.

426 P. Radha Krishna and K. Karlapalem

ECA Rules
Events handlers and Exceptions handlers are specified as ECA-rules. Execution of IoT
applications is mostly event-driven. The actions taking place during the application
execution is determined by the occurrence of various events. ECA rules facilitate the
monitoring and execution of the application. Each rule consists of three components: an
event, a condition, and an action. Rules can be specified on both primitive atomic
events and composite events. An event can be specified by an event expression.
Composite events, each of which in turn consists of a set of atomic events, are specified
as event expressions, which are formed using event operators using SNOOP language
[2]. Context-specific events can be specified using an event language developed for
context-aware information push service (CAIPS) [1]. A composite event can be
specified using the event operators. Events, either atomic or composite, happen
instantaneously at specific points in time. Events are associated with activity transac-
tions and specified to happen after a transaction begins and before a transaction
commits/aborts. Examples of ECA rules are given below:

(i) Event: Abnormal behavior of Sensor
Condition: Sensor data is out of valid range
Action: Replace the sensor with a new one

(ii) For an IoT-driven smart application “Driver Assist Application”, where smart
vehicles can sense the health of passengers,

Event: Irregular eyelid movement
Condition: Driving for more than five hours
Action: Alert driver to take rest

Workflows
Workflows automate business logic for smart objects in the IoT applications. They can
model both vertical integrations of data movement from sensors to the smart appli-
cation, and among smart applications to form a smart solution. Usually, most of the
IoT-driven smart applications involve business processes that span multiple
organizations/entities. Workflows support cross-organizational workflows that are
essential for the enactment of the application. Workflows can also be generated based
on the situation. User workflows allow the users to create his/her workflow to process
the incoming event from a specific device/sensor. The execution of specific workflows
depends on the execution of previous workflows, transactions commit/rollback and the
exceptions raised. However, in certain circumstances, human intervention is required to
take a decision. An example workflows for a smart traffic solution is travel route
finding workflow which includes tasks such as receive data from road sensors, esti-
mation of traffic flow, traffic prediction and pathfinding.

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 427

4 Architectural Framework for IoT Driven Smart
Applications

Figure 3 shows the architecture overview of IoT Applications. Smart applications can
have either a dedicated infrastructure or subscribe to a cloud. The infrastructure usually
includes data centers, networks, etc. The data from IoT devices can be captured either
pushed into a data center or pulled from the IoT devices. Heterogeneous devices/
objects may have data of different data types, and a proper setting is needed which data
needs to be stored or processed at data centers. Business processes of smart applica-
tions are automated using workflows. The workflow schema and rules about business
process activity along with the data captured from IoT devices are stored in a Database.

Smart Solution coordination and management component coordinates the overall
execution of the application. Several applications can be developed using available IoT
devices. Workflow manager, task scheduler, the event handler and ECA (Event-Con-
dition-Action) rule manager represents the IoT system specific components, whereas
sense, monitor and context analyzer forms application specific components. The
events generated during the workflow execution are tracked by and handled by the
event handler, which works with the ECA rule manager to trigger appropriate ECA
rules.

The activities are scheduled by the task scheduler, whereas all the workflows and
workflow instances are managed by the workflow manager. Sensing component

Push DataPull Data

Application Infrastructure
(Data Center, cloud, networks, etc.)

Workflows
(inter-organizational workflows)

•••

IoT Devices/Objects

••

Application
Specific

Sensing

Smart Solution
Coordination &
Management

Context
Analyzer

System
Specific
Workflow
Manager

Task
Scheduler

ECA Rule
Manager

Database
(Data, workflows

and Rules)

Event
Handler

Monitor

Fig. 3. Architectural framework for IoT smart applications

428 P. Radha Krishna and K. Karlapalem

analyzes the sensor data and their data types and allows the application to act based on
the data.Monitor tracks the IoT devices and indicates whether there is any failure in the
devices/objects. Context analyzer captures the context of the environment for the
execution of application transactions (ex. Location, time, etc.) to determine the infer-
ence out of context. The three components namely sensing, monitor and context
analyzer keep track of the health of the sensor attached to the IoT devices and generate
necessary workflows in coordination with Smart solution coordination and
management.

4.1 Implementation Mechanism

Figure 4 shows the implementation mechanism for IoT smart applications that are
driven by ECA rules (adapted from [6]). The steps indicated in the figure are given
below.

1. The smart application involves a set of business processes which automated using
workflows. Appropriate workflow instances are initiated according to the appli-
cation requirements. These requirements are mainly based on the current state of
data, control, and process (DCP) flow.

2. Smart application captured the data either continuously or periodically and asso-
ciated them with pre-defined control flows.

3. Further, the smart application consists of a variety of devices/physical objects
which generate the data.

4. The devices (objects) uses context to access/control/process the data.
5. Devices monitor the rules, which can be specified in the application specification

document.
6. Devices generate events at run-time and raise exceptions if there is any failure.

Here, exceptions also treated as a specific class of events.
7. When an event occurs, it triggers some rules.
8. Next, the condition part of these rules will be evaluated.

Fig. 4. ECA rules to monitor DCP flows in IoT applications

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 429

9. Data and constraints required for a business process are based on smart application.
10. Action in the rules may update the data or generate new data.
11. During the updating of data, other events may trigger. So, the workflow may

exploit other rules for its update completeness.

Figure 5 shows the intuition behind modeling data, control and process flow for
building smart applications/solutions. An IoT-driven smart solution consists of:

(i) a sensing component made of one or more sensors,
(ii) a data collection and processing component,
(iii) an event generator component,
(iv) a specification of actions to be taken when an event occurs,
(v) the effect of the actions at the smart application end user level, and
(vi) a workflow that shows a vertical integration of the steps from (i) to (v) by

specifying the tasks to be done at each level, and the system applications that do
the tasks, followed by the application specific tasks.

At the other level (represented as oval at the top of Fig. 5), different smart appli-
cations can be horizontally coalesced to support a larger smart solution.

(iv)

Smart Solution

•••

•••

•••

Sensors

Entity

Data
Store

Event Detector

ECA Rule Evaluator

Actions Actions Actions •••

Application

Data
Store

Data
Store •••

Sensors

Entity

Data
Store

Event Detector

ECA Rule Evaluator

Actions Actions Actions •••

Application

Data
Store

Data
Store

•••

Sensors

Entity

Data
Store

Event Detector

ECA Rule Evaluator

Actions Actions Actions •••

Application

Data
Store

Data
Store

(i)

(ii)

(iii)

(vi)

(v)

Fig. 5. High-level overview of data, control and process flows

430 P. Radha Krishna and K. Karlapalem

5 Traffic Advisor: A Case Study

Consider a smart traffic solution example provided to a city. The basic sensors are the
vehicle detectors, the pedestrian detectors at different junctions, commuter detectors at
bus stops and train stations, along with the flow of the public transport vehicles and
trains. The vertical integration will consist of providing the number of pedestrians who
are at a junction, and how many of them are coming from the bus stop and train station.
Further, the time at which next bus will come at the bus stop or train at the train station
based on sensors on the buses and trains. A simpler smart application will provide the
density of the people at each junction and availability of space in next few trains or
buses coming to that place. A horizontally integrated smart solution will use the data
and events from each of the smart applications and develop a traffic movement solution
for commuters to reduce the overall energy consumed by the city due to people
mobility. Energy efficient transportation will involve dynamic management of traffic
lights, bus and train frequencies, and pro-active guidance to the commuters on when to
travel to reduce their costs and increase the comfort level of their trip.

The bottom level (see Fig. 5) mainly comprises sensors, which provides most of the
data required for processing different activities in an IoT application. An entity can be
sensors, computers, smartphones, mobile systems or any object that contains intelligent
devices and/or connectedness with other entities. For instance, Vehicle with GPS is an
Entity. Each entity is described regarding attributes. Examples of attributes for the use
case include Road ID, Road Name, Time, Number of vehicles, etc.

Views are useful to serve as a data store and visualize the data specific to an
application. They can capture data not only from sensors but also from other external
entities. For instance, the direction of traffic movement at traffic signals is useful in
assessing the traffic condition. Views can be further classified as control views or action
views. Control views mainly relate to the control flows in the IoT application whereas
Action views are about the specific actions to be carried out by executing smart solu-
tions. Views for a smart traffic management application comprises data about
(a) on-road sensors, cameras placed at traffic signals and GPS positioned on vehicles,
(b) objects namely road, vehicles, pedestrians, and (c) flow of vehicles, weather con-
ditions and road maps (ex., Google maps).

Event Detectors analyze the data to detect the events at runtime or patterns in the
data. Some events dealt with (a) control the objects, (b) alter the business process
(application) or (c) both. For instance, when traffic is heavy on a specific road, a con-
gestion event raises which controls the traffic signals (such as on/off and adjust the time
for traffic lights namely red, yellow and green). On the other hand, the smart vehicles
sense a congestion event (by polling the traffic data at periodic intervals) to decide on a
new route that has a less traffic for a vehicle. ECA rule evaluator reacts to events and
chooses appropriate actions to control the objects/business processes. Actions corre-
spond to the execution of ECA rules and coordinate with the smart environment. The
application provides the information about specification of workflows, how to control
workflows, what data is modeled, etc., and ensure the consistency while running entire
application. It also provides necessary feedback on what additional data need to be
captured and modeled, additional views to be created, exception handling, etc.

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 431

In this work, we modeled each of data flow, control flow, and process flow as
workflows itself that are interdependent. For instance, for the above example, the tasks
of control workflow include:

(a) capture the GPS data from vehicles,
(b) process time and vehicle location,
(c) find the distance between the vehicle and the current position of the end user,
(d) notify the user when the bus is fully occupied, and
(e) notify to end user the vehicle time to reach.

Each of such tasks can have separate exception handlers. This exception handler is
also modeled as a workflow in our approach. Suppose, there is a long delay due to a
vehicle breakdown, an exception handler initiates a workflow that consisting of tasks
like arrange for another vehicle, move the passengers into the new bus, update the route
if required, and inform the passengers who are waiting for the bus at designated stops.
The integration of these workflows as part of a larger smart solution help us in adapting
the smart applications for various (context related) scenarios, and at the same time, a
specific IoT device data can be used in multiple applications. The core of any
IoT-based applications is (a) localized intelligence and (b) contextual workflows.
Making devices more intelligent enough facilitates appropriate communication with
rest of the application. On the other hand, contextual workflow instances can be gen-
erated in order to serve a variety of application scenarios.

6 Conclusion

In this paper, we discussed the modeling aspects of data, control and process flow for
IoT-driven smart solutions and presented an architecture that suits for entire data,
control, and process flow of such solutions. We also presented a case study that
illustrates our approach. The main objective of this work is to provide a conceptual
model that drives the understanding of the vertical flow of data from sensors to the
smart application, and loose composition of smart applications as a smart solution. Our
CM-SS model along with the architectural framework aids the smart application/
solution developer and architect to understand the data, control and process flows. This
provides discussion and modification of the existing solutions and development of
newer solutions. In our ongoing work, we are working towards incorporating the
formal specification of flows, and the service level constraints into our CM-SS model.

References

1. Beer, T., Rasinger, J., Höpken, W., Fuchs, M., Werthner, H.: Exploiting E-C-a rules for
defining and processing context-aware push messages. In: Paschke, A., Biletskiy, Y. (eds.)
RuleML 2007. LNCS, vol. 4824, pp. 199–206. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75975-1_19

2. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite events for active
databases: semantics, contexts and detection. In: Proceedings of the 20th VLDB Conference
Santiago, pp. 606–617 (1994)

432 P. Radha Krishna and K. Karlapalem

http://dx.doi.org/10.1007/978-3-540-75975-1_19
http://dx.doi.org/10.1007/978-3-540-75975-1_19

3. Chen, M.: Towards smart city: M2M communications with software agent intelligence.
Multimed. Tools Appl. 67, 167–178 (2013)

4. Gaur, A., Scotney, B., Parr, G., McClean, S.: Smart city architecture and its applications
based on IoT. Procedia Comput. Sci. 52, 1089–1094 (2015). 5th International Symposium
on Internet of Ubiquitous and Pervasive Things (IUPT 2015)

5. Jain, H., Radha Krishna, P., Karlapalem, K.: Context-aware workflow execution engine for
e-contract enactment. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki,
M. (eds.) ER 2016. LNCS, vol. 9974, pp. 293–301. Springer, Cham (2016). doi:10.1007/
978-3-319-46397-1_23

6. Krishna, P.R., Karlapalem, K.: A methodology for evolving e-contracts using templates.
IEEE Trans. Serv. Comput. 6(4), 497–510 (2013)

7. Mervat, A., Mohammad, H., Najah, A.: Data management for the internet of things: design
primitives and solution. Sensors 13, 15582–15612 (2013)

8. Robles, T., Alcarria, R., Martín, D., Navarro, M., Calero, R., Iglesias, S., López, M.: An IoT
based reference architecture for smart water management processes. J. Wirel. Mob. Netw.
Ubiquit. Comput. Dependable Appl. 6(1), 4–23 (2015)

9. Tanaka, A.K., Navathe, S.B., Chakravarthy, S. Karlapalem, K.: ER-R: an enhanced ER
model with situation-action rules to capture application semantics. In: Proceedings of
International Conference on Conceptual Modeling (ER 1991), pp. 59–75 (1991)

10. Zambonelli, F.: Key abstractions for IoT-oriented software egnieering. IEEE Softw. 34(1),
38–45 (2017)

11. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart
cities. IEEE Internet Things J. 1(1), 22–32 (2014)

12. MQTT Version 3.1.1 Specification. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.
1.1-os.html

13. The Constrained Application Protocol (CoAP) Specification RFC7252. https://tools.ietf.org/
html/rfc7252

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions 433

http://dx.doi.org/10.1007/978-3-319-46397-1_23
http://dx.doi.org/10.1007/978-3-319-46397-1_23
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

Model Efficiency

Determining the Preferred Representation
of Temporal Constraints in Conceptual Models

C. Maria Keet(B) and Sonia Berman

Department of Computer Science, University of Cape Town, Cape Town, South Africa
{mkeet,sonia}@cs.uct.ac.za

Abstract. The need for expressing temporal constraints in conceptual
models is well-known, but it is unclear which representation is preferred
and what would be easier to understand by modellers. We assessed five
different modes of representing temporal constraints, being the formal
semantics, Description logics notation, a coding-style notation, tempo-
ral EER diagrams, and (pseudo-)natural language sentences. The same
information was presented to 15 participants in an experimental eval-
uation. Principally, it showed that (1) there was a clear preference for
diagrams and natural language versus a dislike for other representations;
(2) diagrams were preferred for simple constraints, but the natural lan-
guage rendering was preferred for more complex temporal constraints;
and (3) a multi-modal modelling tool will be needed for the data analysis
stage to be effective.

1 Introduction

Modelling of temporal constraints for information systems has received attention
since the mid-1990s and continues to do so (e.g., [9,15,16]), for it adds expressive-
ness to the model so as to ensure data integrity. For instance, to ensure that each
Alumnus must have been a Student at that university before (evolving object),
that a couple registered as divorcing in a census database must have been marrying
before (an evolving relation), or that flex-workers may not always have an Office
assigned (temporal attribute). This need has not subsided, and, perhaps, even
increased with Big Data and the Internet of Things, for that data is inherently
temporal. Capturing such information may be achieved with a temporal concep-
tual data modelling language. This adds a challenge during the data analysis
stage, however, for modelling temporal aspects of the universe of discourse is
non-trivial. This is due in part to the limited language options available to cap-
ture all these constraints. For instance, TimERplus [10] does not consider tran-
sition constraints for evolving entities, ERV T [2] omits transition constraints for
relationships and attributes (other than freezing), and TimeER [7], while includ-
ing more on temporal attributes, has no specification for temporal relationships
either. Another reason may be the graphical modelling languages, which have
only recently been evaluated on whether the temporal adornments make sense
to modellers, and which ones they prefer [21]. That evaluation [21] also demon-
strated that graphical notations are not unambiguous and that there was a steep
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 437–450, 2017.
https://doi.org/10.1007/978-3-319-69904-2_33

438 C.M. Keet and S. Berman

learning curve. An alternative is to verbalise information in natural language, as
is common for the ORM language [12]. One also could present modellers with the
more precise logic-based semantics. This smorgasbord of representation options
raises the following main questions:

1. Which representation is preferred for representing temporal information: for-
mal semantics, Description Logics (DL), a coding-style notation, diagrams,
or (pseudo-)natural language sentences?

2. What would be easier to understand by modellers: a succinct logic-based
notation, a graphical notation, or a ‘coding style’ notation?

The aim of this paper is to answer these questions. We conducted a survey
of modeller preference and understanding of these representation modes. For the
formal semantics, slightly more succinct DL notation, coding-style representa-
tion, and graphical notation, we use an extended version of ERV T [2]. Because
new temporal constraints have been added since ERV T was proposed, and to
ensure the, with current knowledge, ‘best’ graphical representation, we devised
an updated and extended notation in line with findings of [21]. This extended
and updated notation resulted in the Temporal information Representation in
Entity-Relationship Diagrams, TREND language. Finally, verbalisations—or:
(pseudo-)natural language sentences—of the temporal constraints were eluci-
dated in a separate research activity [13], which were added as a fifth option to
choose from. The evaluation with 15 modellers showed (1) a clear preference for
graphical or verbalised temporal constraints over the other three representations
(2) ‘simple’ temporal constraints were preferred graphically and complex tempo-
ral constraints preferred in natural language and (3) their English specification
of temporal constraints was inadequate. This suggests the need for multi-modal
modelling languages in the process of temporal conceptual model development,
especially among graphical and verbalised temporal constraints.

The remainder of the paper is structured as follows. We describe the five
modes of representation in Sect. 2 and the experiment and its results in Sect. 3.
We discuss the results and related works in Sect. 4 and conclude in Sect. 5.

2 Representing the Same Information in Different Ways

This section provides a succinct overview of the different notations for temporal
elements and constraints. Because we use the logic-based reconstruction into
DLRUS [1] as the foundation for both the semantics and DL notation, this will
be introduced first. This is followed by the creation of the diagrammatic notation
in the extended ERV T , TREND, and finally basic information is provided for
the verbalisation into natural language.

2.1 The Description Logic DLRUS : Syntax and Semantics

The temporal Description Logic DLRUS [1] is an expressive fragment of first
order logic that combines the propositional temporal logic with Since and Until

Determining the Preferred Representation of Temporal Constraints 439

operators with the (atemporal) DL DLR [6] so that the temporal operators
can be used with relationships, entity types, and attributes. The syntax and
semantics are included in Fig. 1. In short, as usual for DLs, there are concepts C
(declared from atomic ones, CN), n-ary roles R (relationships, with n ≥ 2, RN),
binary attributes A between a class and a datatype, and DL role components
(U , of which F denotes a role component in an attribute, F ⊆ U, and F =
{From, To}). The selection expression Ui/n : C denotes an n-ary relation whose
i-th argument (i ≤ n) is of type C and [Uj]R denotes the j-th argument (j ≤ n)—
i.e., a DL role component, alike a projection over the role—in role R (we omit
subscripts i and j if it is clear from the context). Until and Since together with
⊥ and � suffice to define the relevant temporal operators: ♦+ (some time in the

C → � | ⊥ | CN | ¬C | C1 � C2 | ∃≶k[Uj]R | ∃[F]A |
♦+C | ♦−C | �+C | �−C | ⊕ C | 	 C | C1 U C2 | C1 S C2

R → �n | RN | ¬R | R1 � R2 | Ui/n : C |
♦+R | ♦−R | �+R | �−R | ⊕ R | 	 R | R1 U R2 | R1 S R2

A → �A | AN | ¬A | F : C |
♦+A | ♦−A | �+A | �−A | ⊕ A | 	 A | A1 U A2 | A1 S A2

�I(t) = ΔI
O

⊥I(t) = ∅
CNI(t) ⊆ �I(t)

(¬C)I(t) = �I(t) \ CI(t)

(C1 � C2)
I(t) = C

I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj]R)I(t) = { o ∈ �I(t) | �{〈o1, . . . , on〉 ∈ RI(t) | oj = o} ≶ k}
(∃ [F]AI(t) = { o ∈ �I(t) | �{〈o, d〉 ∈ AI(t) ≥ 1}}

(C1 U C2)
I(t) = { o ∈ �I(t) | ∃v > t.(o ∈ C

I(v)
2 ∧ ∀w ∈ (t, v).o ∈ C

I(w)
1)}

(C1 S C2)
I(t) = { o ∈ �I(t) | ∃v < t.(o ∈ C

I(v)
2 ∧ ∀w ∈ (v, t).o ∈ C

I(w)
1)}

(�n)
I(t) = (ΔI

O)n

RNI(t) ⊆ (�n)
I(t)

(¬R)I(t) = (�n)
I(t) \ RI(t)

(R1 � R2)
I(t) = R

I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈o1, . . . , on〉 ∈ (�n)
I(t) | oi ∈ CI(t)}

(R1 U R2)
I(t) = { 〈o1, . . . , on〉 ∈ (�n)

I(t) | ∃v > t.(〈o1, . . . , on〉 ∈ R
I(v)
2 ∧

∀w ∈ (t, v). 〈o1, . . . , on〉 ∈ R
I(w)
1)}

(R1 S R2)
I(t) = { 〈o1, . . . , on〉 ∈ (�n)

I(t) | ∃v < t.(〈o1, . . . , on〉 ∈ R
I(v)
2 ∧

∀w ∈ (v, t). 〈o1, . . . , on〉 ∈ R
I(w)
1)}

(♦+R)I(t) = {〈o1, . . . , on〉 ∈ (�n)
I(t) | ∃v > t. 〈o1, . . . , on〉 ∈ RI(v)}

(⊕ R)I(t) = {〈o1, . . . , on〉 ∈ (�n)
I(t) | 〈o1, . . . , on〉 ∈ RI(t+1)}

(♦−R)I(t) = {〈o1, . . . , on〉 ∈ (�n)
I(t) | ∃v < t. 〈o1, . . . , on〉 ∈ RI(v)}

(R)I(t) = {〈o1, . . . , on〉 ∈ (�n)
I(t) | 〈o1, . . . , on〉 ∈ RI(t−1)

(�A)I(t) = ΔI
O × ΔI

D

ANI(t) ⊆ (�A)I(t)

(F : C)I(t) = { 〈o, d〉 ∈ (�A)I(t) | o ∈ CI(t)}
(A1 U A2)

I(t) = { 〈o, d〉 ∈ (�A)I(t) | ∃v > t.(〈o, d〉 ∈ A2 ∧I(v) ∀w ∈ (t, v).〈o, d〉 ∈ A
I(w)
1)}

(A1 S A2)
I(t) = { 〈o, d〉 ∈ (�A)I(t) | ∃v < t.(〈o, d〉 ∈ A

I(v)
2 ∧ ∀w ∈ (v, t).〈o, d〉 ∈ A

I(w)
1)}

(♦+A)I(t) = {〈o, d〉 ∈ (�A)I(t) | ∃v > t.〈o, d〉 ∈ AI(v)}
(⊕ A)I(t) = {〈o, d〉 ∈ (�A)I(t) | 〈o, d〉 ∈ AI(t+1)}

(♦−A)I(t) = {〈o, d〉 ∈ (�A)I(t) | ∃v < t.〈o, d〉 ∈ AI(v)}
(A)I(t) = {〈o, d〉 ∈ (�A)I(t) | 〈o, d〉 ∈ AI(t−1)}

Fig. 1. Syntax and semantics of DLRUS ; o denote objects, d domain values, v, w, t ∈ Tp.

440 C.M. Keet and S. Berman

future) as ♦+C ≡ �U C, ⊕ (at the next moment) as ⊕C ≡ ⊥U C, and likewise
for their past counterparts. Analogously, we have �+ (always in the future) and
�− (always in the past) are the duals of ♦+ and ♦−. The operators ♦∗(at some
moment) and its dual �∗(at all moments) are defined as ♦∗C ≡ C 	♦+C 	♦−C
and �∗C ≡ C
 �+C
 �−C, respectively.

The model-theoretic semantics of DLRUS assumes a linear flow of time T =
〈Tp, <〉, where Tp is a set of countably infinite time points (chronons) and <
is isomorphic to the usual ordering on the integers. The language of DLRUS
is interpreted in temporal models over Tp, which are triples in the form I =
〈Tp,ΔI , ·I(t)〉, where ΔI is the union of two non empty disjoint sets, the domain
of objects, ΔI

O, and domain of values, ΔI
D, and ·I(t) the interpretation function

such that, for every t ∈ Tp, every class C, and every n-ary relation R, we have
CI(t) ⊆ ΔI

O and RI(t) ⊆ (ΔI
O)n; also, (u, v) = {w ∈ Tp | u < w < v}. A

knowledge base is a finite set Σ of DLRUS axioms of the form C1 � C2 and
R1 � R2, and with R1 and R2 being relations of the same arity. An interpretation
I satisfies C1 � C2 (R1 � R2) if and only if the interpretation of C1 (R1) is
included in the interpretation of C2 (R2) at all time, i.e. C

I(t)
1 ⊆ C

I(t)
2 (RI(t)

1 ⊆
R

I(t)
2), for all t ∈ Tp.

This enables one to capture not only temporal entity types, relationships,
and attributes, but also transition constraints for them. One can use either the
DLRUS semantics notation directly, or its DL notation. For instance, the axiom
o ∈ PersonI(t) → ∀t′.o ∈ CI(t′) (with t, t′ ∈ Tp) states that an object o is
a member of the temporal interpretation (the “I(t)”) of the concept Person
at time t, and if that holds, then (the “→”) for all times t′ in the set of time
points Tp, object o is still a member of Person; i.e, it holds at all time points
in the past, present, and in the future. In DLRUS notation, this is represented
as Person � �∗Person. In contrast, o ∈ StudentI(t) → ∃t′ �= t.o /∈ StudentI(t′)

states there is a time t′ that is different from time t where an object is not a
student (whereas at time t it was, is, or will be). This is captured in DLRUS as
Student � ♦∗¬Student.

The core transition constraints are dynamic extension (Dex) and dynamic
evolution (Dev). In an extension, the entity is also an instance of the other entity
type whereas with evolution, the entity ceases to be an instance of the source
entity type. An example of extension is Employee
 ¬Manager
 ⊕Manager,
and of evolution is Caterpillar
 ¬Butterfly
 ⊕ (¬Caterpillar
 Butterfly). We use
shorthand notation for these constraints, as in [2]: DexEmployee,Manager and
DevCaterpillar,Butterfly, respectively.

2.2 ERV T , EER++
V T , and Further Extensions to TREND

The basic graphical and a textual version of ERV T was introduced with DLRUS
as its logic-based reconstruction [1] and fully described as a temporal con-
ceptual modelling language in [2]. ERV T focused on temporalising classes,
but DLRUS is expressive enough to allow capturing temporal relationships
and attributes, hence this was added by [14,15], respectively, and quantitative

Determining the Preferred Representation of Temporal Constraints 441

transition constraints, resulting EER++
V T . The graphical notation, like with other

temporal conceptual data modelling languages (e.g., [7,10,11,16,17,19]), was ad
hoc. This was investigated systematically by [21], with the relevant outcome that
clocks on temporal elements were preferred over any other icon and over ERV T ’s
S and T, and arrows labeled with text for the transition constraints (Dev and
Dex) were preferred over the icons tested.

In preparing the questions for the evaluation, especially in finding examples
and the natural language generation (NLG) part for the pseudo-natural language
sentences, it came afore that mandatory transition constraints are likely to be
more interesting for conceptual modelling than optional ones. All prior versions
did not address this distinction, so we devised our own notation for it, in line with
ERD notation practices: maintaining the arrow notation, where a dashed shaft
denotes an optional transition and a solid shaft denotes a mandatory transition.
It appeared than none of the previous works had a sample diagram with quan-
titative transition constraints, so a notation was devised for that. To ‘unclutter’
the textual adornments, only Dev and Dex are used cf. EER++

V T ’s RDex and
ADex etc. for the relationship and attribute transitions, for it can be easily
deduced from the diagram (which elements are linked). A summary of the nota-
tion for temporal elements is listed in Fig. 2, with the other constraints following
the same principles. Given that the primitives for the diagrammatic language
are different from ERV T and EER++

V T , we refer to this language as TREND.

Fig. 2. Selection of the notation of the TREND diagram language.

An example of such a TREND diagram is shown in Fig. 3. Office is a temporal
attribute, for with flex-work, employees may not always have an office. The
mandatory transition Dex− indicates that a manager must have been working
for the company as a regular employee before being promoted to manager, and

442 C.M. Keet and S. Berman

Fig. 3. Example of a temporally extended ER diagram in TREND notation.

thus that the transition from employee to manager happened in the past. Not all
employees will be promoted to manager, hence, the optional Dex from employee
to manager. Likewise, the transition from work to manage is optional.

2.3 Verbalising Temporal Conceptual Models

Verbalising atemporal conceptual data models is well established for the Object-
Role Modeling (ORM) language [8,12], SBVR [18], and to some extent also for
UML class diagrams [5]. These approaches are based on templates, where the nat-
ural language rendering of the constraint is the ‘fixed’ part of the sentence that
then takes the vocabulary from the model with the constraints represented for
it. A mandatory participation of an entity type in a relationship has a template
like “Each <class1> <relationship1> at least one <class2>”. Then if,
say, <class1> = Professor, <relationship1> = teaches, and <class2> =
Course in some conceptual model, it will generate the sentence Each Professor
teaches at least one Course. The sentence planning stage of NLG [20] deals with
which words to choose. For instance, the mandatory constraint also can be ver-
balised as “Each <class1> must <relationship1> at least one <class2>”
to emphasise mandatory participation. Just like for atemporal constraints, it is
possible to verbalise the temporal constraints and likewise decisions have to be
taken on word choice. For instance, for a mandatory transition in the future, the
‘nicer sounding’ auxiliary verb “will” could be used, or a more strict auxiliary
verb with a reference to the future, such as “must be ... a later point in time”.

This has been investigated elsewhere [13], which we summarise here. For
each of the relatively more interesting constraints (34 in total), 1–7 templates
were designed and evaluated by three experts in temporal logic on whether each
sentence captures the semantics adequately and which of the sentences were pre-
ferred. One of those questions is included in Fig. 4 for illustration. Observe here
that with respect to the logic counterpart, often there is no literal 1:1 mapping
between the axiom and the natural language sentences, but instead a ‘free’ ren-
dering in natural language. For instance, consider the fairytale country where
each non-tenured professor eventually will become a tenured professor, which
can be formalised in DLRUS as NTProf � ♦+DevNTProf,TProf , but one would
not want to read Each NTProf is a subclass of some time in the future evolves
from NTProf to TProf. Instead, a sentence like Each NTProf must evolve to

Determining the Preferred Representation of Temporal Constraints 443

(DevM−) Mandatory dynamic evolution, past: o ∈ DevM−I(t)
C1,C2

→ (o ∈ C1
I(t) →

∃t′ < t.o ∈ Dev
I(t′)
C1,C2

). For instance, Butterfly and the Caterpillar it used to be.
a. Each ..C1.. must have been a(n) ..C2.. , but is not a(n) ..C2.. anymore.
b. Each ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. now.
c. If ..C1.. , then ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. anymore.

Fig. 4. Verbalisation question for DevM− (mandatory dynamic evolution in the past)
with three templates to choose from. The experts preferred option b.

TProf, ceasing to be NTProf sounds more natural. The outcome of this evalua-
tion were the preferred sentences by majority voting, largely having chosen for
the more natural-sounding templates. These selected sentences were used in the
experiment that we will describe in Sect. 3.

3 Evaluation of Temporal CDMLs

The aim of the experimental evaluation is to find out which mode of represen-
tation ‘regular modellers’ prefer regarding temporal entities and constraints in
temporal conceptual modelling languages. Regular modellers refers to the typical
computer scientist who is conversant in conceptual modelling and has a basic
understanding of logic. Because theoretical computer science and logic is not
popular and the results on graphical notations not encouraging, the hypothesis
to test is: The natural language rendering of the temporal aspects is the preferred
mode of representation among modellers. We will test this by means of a ques-
tionnaire with a selection of elements and constraints that are represented in five
different modes among which the participants have to choose, an extra question
on whether they understand some of the representations, and auxiliary questions
(such as their mother tongue).

3.1 Materials and Methods

Methods. The method followed a standard procedure for in-person question-
naires. In short, after purposive recruiting—honours or masters students who had
attended either the Ontology Engineering or Logics for AI module—participants
were informed about the aim of the experiment and given the consent form, and
time to read the task and the provided background information on the notations.
This was followed by about an hour in which to complete the questionnaire at
their own pace. They did so in the same venue, with a researcher present at
all times to answer any questions and to ensure that choices were given serious
attention. All subjects volunteered for this experiment and were offered a small
monetary incentive for participation.

After the experiment, submitted spreadsheets were combined with the typed-
up paper-based data. Both researchers independently assessed the interpreta-
tions submitted for the DLRUS , coding-style, and TREND questions. Excel
was used to analyse the data and chart results.

444 C.M. Keet and S. Berman

Materials. The materials consisted of a Consent Form to sign, a softcopy and
printed copy of the questionnaire, and a spreadsheet for entering answers.

The questionnaire had some written explanation on the logic and diagram
notations, which was kept to a minimum as they had seen similar logic notation
and ER diagrams before, and because models should be sufficiently intuitive
not to require lengthy explanations. Then 33 elements and constraints were pre-
sented where they had to indicate notation preferences. The 33 were ordered
thus: 6 basic examples distinguishing snapshot from temporal classes, relation-
ships and attributes; all 8 possible dynamic constraints for classes (Dev/Dex
x optional/mandatory x past/future); 1 persistent class example (PDex); all
8 quantitative dynamic constraints for classes; all 8 dynamic constraints for
relationships; and 2 dynamic constraints for attributes (frozen, and quantita-
tive evolution). Instructions required entering a value from 5 (most preferred)
down to 1 (least preferred), or 0 if they disliked a notation’s representation of a
constraint. One of the questions is shown in Fig. 5.

Tadpole

DEV -
Frog

(DevM−) Mandatory dynamic evolution, past: For instance, Frog and the Tadpole
it used to be.
a. o ∈ FrogI(t) → ∃t′ < t.o ∈ Dev

I(t′)
Tadpole,Frog

b. Frog � ♦−DevTadpole,Frog

c. DevM−(Tadpole,Frog)

d. Diagram:

e. Each Frog was a(n) Tadpole before, but is not a(n) Tadpole now.

Fig. 5. Question for DevM−, mandatory dynamic evolution in the past.

To ascertain how well they understood the notations, a question asked them
to interpret 3 examples: one comprising 9 DLRUS axioms, one comprising 8
coding-style statements, and one TREND diagram with 5 temporal aspects. In
the final section of the questionnaire they indicated if English was their first
(home) language, if they were 4th year or Masters students, which courses they
had studied (ontologies, logic, both) and which notation they would prefer for
modelling rather than understanding/reading temporal constraints. The ques-
tionnaire ended with an invitation to give any other comments. The question-
naire and data are available at http://www.meteck.org/files/ER17suppl.zip.

3.2 Results and Discussion

We first describe some pertinent details about the participants, which is fol-
lowed by the quantitative results, the participants’ comments, and finally the
assessment on the participants’ understanding of the models.

http://www.meteck.org/files/ER17suppl.zip

Determining the Preferred Representation of Temporal Constraints 445

Participants. Fifteen students participated in the experiment, of which 10 were
4th year students and 5 Masters students. Most participants took a full hour
to complete the questionnaire, with three finishing early and two running out
of time due to other commitments and failing to finish the last section or two.
Everyone completed the first section on choosing between the alternative repre-
sentations and all had clearly devoted considerable time to the 33 examples.

Quantitative Results. Responses were analysed based on 3 metrics: responses cal-
ibrated to a standard competition ranking on a scale of 1–5, a favourite (highest
ranked), and a dislike (0). Aggregating over the participants, the diagrams were
the favourite for 10 constraints and the natural language sentence for 25 (there
being two ‘ties’); no other notation was chosen as favourite for any constraint.
The overall rating totals are summarised in Table 1. Favourites and dislikes aggre-
gated by group of constraints are shown in Fig. 6.

Zooming into details, a less straightforward picture of ‘general winner’
emerges; the two clearest of these results are shown Fig. 7: the ‘simple’ con-
straints of temporal elements (entity types, relationships, and attributes) were
best represented in the diagram with the clock rather than as a sentence (option
d; 57 favourites vs 28, and average rank 4.1 vs 3.5, respectively), whereas with
transition (dynamic) constraints, the differences between diagrams and natural
language were much smaller in favour of the sentence. For transition constraints
for relationships on the future, the difference was smallest, with 26 vs 33 as
favourite (average 3.9 vs 4.3), in favour of natural language sentences. The great-
est difference was for class transitions on the past (19 vs 42 as favourite in favour
of English), which was also their first encounter with arrows for transitions that

Table 1. Summary of the preference data. Percentages include ‘tie’ 1st/2nd choice,
and ‘tie’ last choice.

Rank total Average Favourite total Dislikes % Top 2 % Last

Formal semantics 785 1.6 49 136 15% 70%

DLRUS 1355 2.7 78 42 27% 16%

Coding-style 1406 2.8 77 45 31% 25%

TREND 1984 4.0 223 14 76% 7%

Natural language 2113 4.3 299 8 81% 3%

Fig. 6. The top-rated representation modes and ‘dislike’ ratings.

446 C.M. Keet and S. Berman

Fig. 7. Top choices by category of constraints, with a category A the ‘simple’
constraints—e.g., “C is a temporal class”—and category C one of the ‘complex’ set
of constraints, being the transition constraints for classes in the past.

constrain the past. For the last examples of constraints on the past, the difference
shrank to 29 vs 41 as favourite in favour of English, indicating that once familiar
with those arrows, several participants favoured these as ‘tie’ best with English.
Statistically, with a Kruskal-Wallis due to non-normal distribution of the data,
the difference between graphical and natural language mode is significant for
both the ‘simple’ (p = 0.0003) and ‘complex’ (p = 0.0002) constraints.

There is clear general decrease in preference from ‘simple’ temporal con-
straints in the DL representation in favour of natural language for the more
complex (transition) constraints; that is, a natural language sentences such as
“Person married-to Person may be followed by Person divorced-from Person,
ending Person married-to Person.” is deemed easier to understand than 〈o, o′〉 ∈
marriedToI(t) → ∃t′ > t.〈o, o′〉 ∈ divorcedFromI(t′) ∧ 〈o, o′〉 /∈ marriedToI(t′)

or ♦+RDevmarriedTo,divorcedFrom. However, marriedTo � ♦∗¬marriedTo (a temporal
relationship) was deemed easier to understand than the somewhat cumbersome
sentence “The objects participating in a fact in Person married to Person do not
relate through married-to at some time” (rank totals 54 and 49, respectively).

Preferences for class transitions were largely unaffected by the introduc-
tion of quantitative constraints (total rank changed by between 0.1% and 5%
for the 5 notations). The distinction between dynamic extension (DEX) and
dynamic evolution (DEV) similarly had negligible impact on preferences (total
rank changes between 0.1% and 1.5%). This was also true for mandatory vs
optional constraints (changes between 0.06% and 6%), and past vs future con-
straints (changes between 0.2% and 2%).

Respondent Comments. General comments made more than once were that the
logic is “fine” for “simple” concepts but not “complex” examples. This is in
agreement with the quantitative results (see Fig. 7). Also, it was noted that
diagrams were best sometimes and natural language best at other times, as also
indicated by the quantitative data. Some comments on the English verbalisation
(option (e)) vs TREND (option (d)) are:

– “I would prefer D for an overview of information, but like E for clearing up
any uncertainty/learning the notation of D”;

– “D = 5; E = 5; although English sentences may be complicated”;
– “it is quicker to interpret option (d) than most of the other options. Option

(e) requires a lot of reading”;

Determining the Preferred Representation of Temporal Constraints 447

Feedback on individual examples included:

– “The +2, −1 are great ways to illustrate future and past”;
– “the use of the clock in the diagrams for dynamic constraints is favoured”;
– “(English) “since” confusing, I am not sure of meaning” (by an English home

language speaker);
– “Perhaps Dev+6 so syntax matches the “-””;
– “option (c) and (d) are easier to write, however they require more interpre-

tation they do not encode all the information”;
– “(c) and (b) are prefered when having to write the relationship. Option (e)

and (a) are prefered when reading.”;
– “(c) would require memorization of the various “functions” such as “Sa””;
– “Since the source of the Dex is (clock) then the (clock) on the dest(ination)

feels redundant”, which indeed are redundant, because it can be inferred
thanks to the logical implications proven in [2,14];

– “it is not clear why (DEV-) is not the same (as Dev) ... Can this not be
achieved with Dev”, indicating a lack of understanding, which is also evident
from the questions on testing their understanding.

– “(c) has a favourable score because its function name (Freez) is clear”;

Students twice noted that their preferences were changing as they progressed
through the questionnaire due to repeated exposure improving their understand-
ing of the new temporal concepts they were exposed to. One participant stated
this for the diagrams only and another said this applied to (b), (c) and (d).

Interpretations and Testing Understanding Outside the Context of Individual
Constraints. This was shown to be the hardest task. One student did not inter-
pret any of the examples, and several tackled only some parts of some of the three
notations, possibly through lack of time. Since this data is thus incomplete, we
can state only that at least 3 students understood at least one notation well and
at least 2 all notations. It was clear that precise and complete natural language
description does not come naturally even to Computer Science postgraduates, as
no student gave all and only the expected interpretation; they were frequently
imprecise and generally failed to convey all the semantics.

The authors were like-minded in their evaluation of students’ understanding.
The values were calibrated on marks given for each constraint in the model and
number of constraints in the model so as to compare the three fairly. The DL
notation received a mark of 2.3, coding-style notation 2.7, and diagram notation
3.8. Thus, they understood the diagram best of the three notations.

The main source of fundamental errors were with the transition constraints—
transition in the wrong direction and not distinguishing Dev from Dex—and
with describing the distinction of mandatory versus optional constraints. In par-
ticular, C � ♦+DevC,B and ♦−DevC,B and similar were problematic1. Perhaps
surprisingly, this question was answered somewhat better for option c (the

1 “C must evolve into a B some time in the future” and “C evolved into a B in the
past”, with both ceasing to be a C, respectively.

448 C.M. Keet and S. Berman

coding-style notation) than either the DL notation or the TREND diagram.
Some examples of imprecise English encountered were:

– “can evolve to” and “evolved from” without stating ceasing to be the original;
– “used to be and continues to be” instead of “must previously have been”;
– “were not” instead of “may not have been”;
– “is”, “gets”, “will” or “can” instead of “may” or “must”
– “immutable”, which has a specific meaning that at least the ontology engi-

neering students had been exposed to, instead of “snapshot”
– “can have” (attribute), without adding “at some time and not at other times”.

That said, also three temporal logic experts did mostly not agree unanimously
on a preferred natural language rendering of the semantics [13], so perhaps the
general discourse about temporal constraints is not well developed.

The participants expect they prefer creating models in TREND most (n =
7), then in natural language (n = 5), and then in DL or coding-style notation
(n = 1 each). The preference for the former may be explained by the fact that
they seem to understand it best. That it may not be the natural language sen-
tences as most preferred for modelling is also substantiated by the comments to
the first part of the questionnaire (see previous section).

4 Discussion

To the best of our knowledge, this is the first attempt to evaluate different modes
of representing temporal information to figure out what may be the ‘best’ way.
Extant proposals for temporal conceptual modelling languages focus on inclusion
of features rather than fitness for purpose, such as by [2,7,9,10,14–16,19] and on
formal foundations [2,7,15,16]. However, they will receive broader uptake only
if they are understandable and usable for modelling. Gianni et al. [9] do propose
a multi-modal interface for ORM diagrams adorned with temporal information
and verbalisations, but the verbalisations are for individuals only, rather than the
information represented in the model, and also this proposal was not evaluated
with modellers. This paper sought to fill this gap, with the hypothesis that
the verbalisations would be preferred. The results show that verbalisations are
preferred mainly for ‘complex’ constraints, but it is not a ‘clear winner’ in all
cases. This may suggest that there is a need for a multimodal interface, alike
in NORMA [8], that allows one to switch back and forth between, at least, the
diagrams and natural language sentences.

Also, the (pseudo-)natural language renderings may be better for communi-
cation, especially with domain experts, but data suggests the diagrammatic rep-
resentation is likely to be favoured most during the authoring stage of the model.
The models were still small, however, so caution has to be exercised extrapo-
lating from these results and it deserves further attention. We did not test the
participants’ understanding of the natural language sentences because we could
not devise a satisfactory way: writing the sentences in different English seemed
superfluous and, e.g., drawing the semantics may not test their understanding

Determining the Preferred Representation of Temporal Constraints 449

of the English but instead their abilities in the other representation model (be
this TREND or the semantics with timelines).

One could perhaps argue that a particular verbalisation pattern was not
optimal, or some graphical notation was not, and that others would have to
be tested with. However, both the graphical notation and sentences have been
evaluated with modellers and experts and found preferable [13,21], mitigating
this argument. The (previously untested) graphical extension for quantitative
transition constraints were deemed sufficiently clear by the participants. That
said, these are currently limited when compared to natural language, in that
they do not indicate if the given time units are a minimum, maximum or exact
requirement, nor whether the previous state had to be retained continuously
for that length of time or simply had to be true at some point that many time
units ago. It would be useful to look into, especially since they are also easy to
implement in temporal and atemporal databases with straight-forward triggers
to provide easy integrity constraints.

Finally, the 33 constraints evaluated were a subset of the possible temporal
constraints for conceptual models, and perhaps these are still too many. It may
be of interest to constrain it further to those useful for temporal Ontology-Based
Data Access only [3,4], for those temporal logics are fragments of DLRUS and
thus would constitute fragments of TREND as well.

5 Conclusion

In evaluating the mode of representing temporal constraints, the experimen-
tal evaluation made clear that there was a preference for diagrams and natural
language, and a dislike for the formal semantics and coding-style notations. Dia-
grams were preferred for simple constraints, but transition constraints were best
verbalised in natural language. The results demonstrated that a multi-modal
modelling tool will be needed for the data analysis stage to be effective, due to
the differing preferences and abilities of understanding and modelling temporal
constraints. It also showed that transition constraints in the past were hardest
to understand, but there was at least an increase observed in grasping the new
temporal notions as the participants went along in the questionnaire.

Both the graphical TREND language proposed in this paper, and the natural
language sentence are, with the current state of the art, optimal. This may
facilitate broader uptake of temporal conceptual modelling and, with that, larger
experiments may be conducted.

Acknowledgments. We thank all those who participated in the experiment.

References

1. Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M.: A temporal description
logic for reasoning over conceptual schemas and queries. In: Flesca, S., Greco, S.,
Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS, vol. 2424, pp. 98–110. Springer,
Heidelberg (2002). doi:10.1007/3-540-45757-7 9

http://dx.doi.org/10.1007/3-540-45757-7_9

450 C.M. Keet and S. Berman

2. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information
systems. Ann. Math. Artif. Intell. 50(1–2), 5–38 (2007)

3. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description
logic for ontology-based data access. In: Proceedings of IJCAI 2013 (2013)

4. Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data
access. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 330–344.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 23

5. Burden, H., Heldal, R.: Natural language generation from class diagrams. In: Pro-
ceedings of MoDeVVa 2011. ACM (2011)

6. Calvanese, D., De Giacomo, G.: Expressive description logics. In: The DL Hand-
book: Theory, Implementation and Applications, pp. 178–218. Cambridge Univer-
sity Press (2003)

7. Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal
ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol.
5231, pp. 397–411. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87877-3 29

8. Curland, M., Halpin, T.: Model driven development with NORMA. In: Proceedings
of HICSS-40, p. 286a. IEEE Computer Society (2007)

9. Gianni, D., Bocciarelli, P., D’Ambrogio, A.: Temporal capabilities in support of
conceptual process modeling using object-role modeling. In: Proceedings of DEVS
Integrative 2014 (2014)

10. Gregersen, H.: TimeERplus: a temporal EER model supporting schema changes.
In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp.
41–59. Springer, Heidelberg (2005). doi:10.1007/11511854 4

11. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models - a survey. IEEE
Trans. Knowl. Data Eng. 11(3), 464–497 (1999)

12. Halpin, T., Morgan, T.: Information Modeling and Relational Databases, 2nd edn.
Morgan Kaufmann, Burlington (2008)

13. Keet, C.M.: Sentence planning for temporal conceptual models and their temporal
constraints. Submitted to an International Conference. ACL (2017)

14. Keet, C.M., Artale, A.: A basic characterization of relation migration. In: Meers-
man, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 484–493.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16961-8 70

15. Keet, C.M., Ongoma, E.A.N.: Temporal attributes: their status and subsumption.
In: Proceedings of APCCM 2015, vol. 165, pp. 61–70. CRPIT (2015)

16. Khatri, V., Ram, S., Snodgrass, R.T., Terenziani, P.: Capturing telic/atelic tem-
poral data semantics: generalizing conventional conceptual models. Trans. Knowl.
Data Eng. 26(3), 528–548 (2014)

17. McBrien, P.: Temporal constraints in non-temporal data modelling languages. In:
Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp.
412–425. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87877-3 30

18. Object Management Group: Semantics of Business Vocabulary and Rules (SBVR) -
OMG released versions of SBVR, formal/2008-01-02, January 2008. http://www.
omg.org/spec/SBVR/1.0

19. Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual Modeling for Traditional and
Spatio-temporal Applications-the MADS Approach. Springer, Hedidelberg (2006).
doi:10.1007/3-540-30326-X

20. Reiter, E., Dale, R.: Building applied natural language generation systems. Nat.
Lang. Eng. 3, 57–87 (1997)

21. Shunmugam, T.: Adoption of a visual model for temporal database representation.
M. IT thesis, Department of CS, University of Cape Town, South Africa (2016)

http://dx.doi.org/10.1007/978-3-642-38574-2_23
http://dx.doi.org/10.1007/978-3-540-87877-3_29
http://dx.doi.org/10.1007/11511854_4
http://dx.doi.org/10.1007/978-3-642-16961-8_70
http://dx.doi.org/10.1007/978-3-540-87877-3_30
http://www.omg.org/spec/SBVR/1.0
http://www.omg.org/spec/SBVR/1.0
http://dx.doi.org/10.1007/3-540-30326-X

User Perception of Numeric Contribution
Semantics for Goal Models: An Exploratory

Experiment

Norah Alothman, Mehrnaz Zhian, and Sotirios Liaskos(B)

York University, Toronto, ON M3J 1P3, Canada
{norah,mehrnaz,liaskos}@yorku.ca

Abstract. Goal models have long been regarded to be an effective way
for representing stakeholder goals and how they relate to one another
during requirements engineering. One of the ways goals are connected
in goal models is contribution relationships, which represent how satis-
faction of one goal affects the satisfaction of another. There are several
proposals in the literature on how contributions should be modelled and
used, but little empirical evidence as to which one is more intuitive for
users. We experimentally explore how users interpret numeric contribu-
tion labels in goal models. Experimental participants are exposed to a
number of pre-constructed goal models and are asked what they believe
the satisfaction degree of a goal is given the satisfaction degree of other
goals in the model. We find that users tend to prefer specific aggregation
rules over others, depending, also, on specific factors.

Keywords: Goal models · Model comprehension · Decision support

1 Introduction

Capturing and modeling stakeholder high-level objectives is an important part
of the requirements analysis process. Prior to making any solution decisions
analysts need to understand the general and vaguely defined goals that stake-
holders consider important and use them as criteria for evaluating alternative
solutions. Such high-level goals can be many, with various degrees of importance
and interacting in various ways.

Goal models [1,20,25] have been suggested to be an effective way to represent
goals and the complex interactions between them. Such models consist of various
kinds of intentional elements and relationships between them. A particularly
interesting type of intentional element used in many goal modeling languages is
a goal for which there is no clear-cut criterion for deciding if it is satisfied or
not [21,25]. Examples of such goals are “Happy Customer”, “Improve Patient’s
Experience” or “Ensure Scheduling Fairness”. Such goals have traditionally been
referred to as soft-goals or quality goals [16]. As analysts compare solution ideas
for the elicited stakeholder problems, these goals serve as criteria to assess the
fitness of various possibilities, the latter affecting the former in different degrees.
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 451–465, 2017.
https://doi.org/10.1007/978-3-319-69904-2_34

452 N. Alothman et al.

In goal modeling languages, contribution relationships are used to show exactly
how satisfaction of one such goal is believed to affect satisfaction of another.

Several approaches exist for modeling contribution links, both qualitative and
quantitative. When devising an approach, language designers are confronted with
the problem of defining what exactly the contribution links mean and how they
can be used, most often in combinations, in order to calculate satisfaction of
goals given the satisfaction status of other goals. Different such semantics have
been proposed in the literature based on different satisfaction propagation and
aggregation rules and techniques. However, given also the abstract nature of the
subject matter that these models are meant to represent, how can one evaluate
which one is best for adoption in practice?

In this paper, we focus on the intuitiveness of choices of contribution link
semantics, understood here as the match between the intended meaning of the
language, devised by its designers, and the meaning that the users of the language
assign to it. We focus on numeric contribution links and distil from the literature
four (4) different theories for contribution link semantics. Then, we perform an
experiment with the following goals: (a) understand whether model users who
are ignorant to any of the theories perceive contribution semantics in a way
that tends to agree (or disagree) to one or more of the theories and (b) identify
potential model- or user-related factors that affect such tenancies.

Specifically, we construct a number of goal models containing quality goals
connected using numeric contribution links, fixing also the satisfaction level for
some of the goals. We present the models to a number of experimental partici-
pants and ask them what they think is the most appropriate satisfaction value for
a specific goal in the model whose satisfaction level is initially unknown. These
are different numbers depending on what contribution semantics one adopts. We
present the choices to the users and ask them which one they think is the most
appropriate. We observe if there is any concentration of responses to any of the
theories and, as such, whether the hypothesis that some semantics match user
expectation better than others, is at all plausible. We do find such effects as well
as some early indications of factors that can affect participant choices.

The paper is organized as follows. Section 2 presents goal models, contribution
links and semantic possibilities thereof in more detail. In Sects. 3 and 4 we present
the design and results of our experiment. Then in Sect. 5 we present related work
and in Sect. 6 we offer our concluding remarks.

2 Background

2.1 Goal Models and Contribution Links

A goal model of the kind we consider in this research can be seen in Fig. 1 –
adapted from Mylopoulos et al. [20]. The model represents a decision problem in
the Meeting Scheduling domain. Design alternatives are represented through an
AND/OR decomposition hierarchy of hard-goals (ovals), rooted in goal Schedule
Meeting. The cloud-shaped elements represent quality goals, i.e., goals whose
satisfaction is generally not defined in a clear-cut manner. Quality goals, written

User Perception of Numeric Contribution Semantics for Goal Models 453

here in an unstructured way, form a separate hierarchy that acts as decision
criteria: each alternative of the AND/OR decomposition implies different levels
of satisfaction for each of the criteria. Modeling the level and quality of this
satisfaction is possible through contribution links that originate from hard goals
or quality goals and target (other) quality goals.

Fig. 1. A goal model represented as a diagram

Different approaches can be found in the literature on how contribution links
can be labelled, and what such labels would mean. Most common are qualitative
contribution labels, in which an ordinal scale such as {“– –”, “–”, “+”, “++”}
is used [2,25]. Elsewhere it is proposed that contribution labels can be values
from a real interval such as [0, 1] (as in Fig. 1) or [−100,100] [1,9,17,19]. Most of
these proposals come with concrete semantics as to how the contribution label
is to be interpreted and used to infer satisfaction of goals from the satisfaction
of other goals in the model. In this paper, we focus on quantitative contribution
labels and different proposals for their semantics.

2.2 Quantitative Propagation Semantics

An established approach for modeling and reasoning about quantitative contri-
bution links is offered by Giorgini et al. [9]. The framework they propose first
assumes that each goal is associated with two variables, each representing the
amount of evidence that the goal is satisfied or denied, respectively. The vari-
ables take values from the real interval [0, 1], 1.0 denoting maximum possible
evidence and 0.0 denoting absence of evidence. When two goals are connected
through a contribution link, the label of the link describes how the evidence
of satisfaction and/or denial of the origin goal affects our belief of satisfaction

454 N. Alothman et al.

and/or denial of the destination goal. Specifically the label is a number in the
interval [0, 1], which denotes the degree of contribution, a subscript S, D or both
(denoted through absence of subscript), denoting which of the two variables is
considered and a sign “+” or “–” denoting that the contribution is positive or
negative with respect to the involved variable.

A second approach to quantitative contribution has been proposed in the
context of URN [1] as well as in efforts to combine reasoning about contribu-
tions with the Analytic Hierarchy Process (AHP) [17,19]. In these approaches
each goal has one satisfaction value. The label of each contribution link that
points toward that goal, denotes the degree by which the satisfaction value of
the origin of the link is interpreted into satisfaction of the destination. When
AHP semantics are considered, where both contribution labels and satisfaction
values can only be positive, the label indicates the share of satisfaction influence
of each origin goal in calculating the satisfaction of the destination goal. In the
Amyot et al. proposal, though, labels can be negative allowing satisfaction of
origin goal to actually subtract from the satisfaction of the destination [1].

Given a goal model with numbers such as that of Fig. 1, the above proposals
can lead to different conclusions as to how satisfaction propagates from one goal
to the other. We look into these differences in more detail below.

2.3 Four Alternative Theories

To allow for a comparison among the contribution modeling frameworks for
our purposes here, we make certain assumptions and simplifications. Firstly, we
consider simple acyclic hierarchies of quality goals such as the one seen in Fig. 1.
Secondly, labels are a real number in the interval [0, 1] without any subscripts
and signs (so assumed to be positive), rounded to two decimal places. Thirdly,
only initial satisfaction values are considered, keeping initial denial values zero,
when denial variables are defined by the theory at all. These restrictions take
away much of the expressiveness of the examined frameworks, but make them
comparable with respect to their core semantics, which is our interest here.

We may, thus, attempt a common formulation of satisfaction propagation,
which will, in turn allow us to perform a comparison. Thus, let G be the set of
all quality goals in the diagram and s : G �→ [0, 1] denote the satisfaction value
for each of them. Let further Og be the set of goals g′ for which there exists
a contribution link from g′ to g. Let also Sg = {s(g′) : g′ ∈ Og} be the set of
satisfaction values of all these quality goals and Wg = {w : g′ w→ g; g′ ∈ Og} the
set of all labels of the corresponding contributions links. Then, the satisfaction
of goal g is a function f of these two sets: s(g) = f(Sg,Wg).

The literature proposals we discussed above, suggest four possible defini-
tions for f . Three of them come directly from the label propagation framework
proposed by Giorgini et al. [9]. According to the proposed algorithm the satis-
faction/denial value of every node is always calculated by maximizing individual
evidence values formed by the satisfaction/denial values of the origin nodes and
the corresponding contribution weights. A generic operator ⊗ is used to denote

User Perception of Numeric Contribution Semantics for Goal Models 455

that the two values (satisfaction values of origins and contribution link weights)
are combined to produce a candidate value for the satisfaction of the destination:
s(g) = s(g′) ⊗ w(g′, g). Note that given our assumptions of zero initial denial
values and positive labels, the denial values are always zero and can, thus, be
ignored. There are at least three ways to interpret ⊗, which will make for our
first three possible definitions of f .

The fourth possible definition of f comes from interpreting how other liter-
ature [1,17,19] addresses combinations of incoming satisfaction evidence. While
label propagation maximizes, these approaches sum-up individual incoming evi-
dence, treating thereby contribution aggregation as a linear combination. Thus,
our four possible definitions of f are as follows.

Bayesian, assumes that the satisfaction value of the origin is multiplied by
the weight of the corresponding contribution link (p1 ⊗ p2 =def p1 · p2). The
function f is then defined as:

fb(Sg,Wg) = MAX
g′∈Og

{s(g′) × w(g′, g)}

Min-Max, assumes that ⊗ denotes the minimum of the satisfaction value of
the origin and the weight of the corresponding contribution link (p1 ⊗ p2 =def

MIN(p1, p2)). The function f is then:

fm(Sg,Wg) = MAX
g′∈Og

{MIN(s(g′), w(g′, g))}

Serial-Parallel, proposes that ⊗ combines the satisfaction value and the
weight in a serial/parallel resistance model (p1 ⊗ p2 =def p1 · p2/(p1 + p2)). The
function f is then:

fs(Sg,Wg) = MAX
g′∈Og

{s(g
′) × w(g′, g)

s(g′) + w(g′, g)
}

Linear, is similar to the Bayesian with the difference that candidate values
are not maximized but added up:

fl(Sg,Wg) =
∑

g′∈Og

{s(g′) × w(g′, g)}

Given the above four alternatives, it seems now inevitable to ask what crite-
rion one should use to select a theory for a practical purpose.

2.4 Comparing Theories

We view visually represented conceptual models, such as goal models, as devices
to be used by humans for comprehending and communicating domain knowledge.
Designers of conceptual modeling languages have specific meanings in mind for
the constructs they introduce, often in the form of formal semantics as in our
case. Such semantics define, among other things, what are correct ways to per-
form inferences using the information represented in the visualized model. Users

456 N. Alothman et al.

of the visualized models, however, may have their own way of interpreting the
model constructs and perform inferences accordingly. In other words, users may
develop a mental model on how the visualization device is supposed to be used
[22,23]. This model can be due to a combination of factors: potentially partial
and incomplete training, experience with similar models and tasks, educational
or cultural background and, importantly, the way the model is visually repre-
sented – the “system image” according to Norman’s discussion on mental models
for user interface designs [22]. While in interface design designers strive to align
their intent on how their devices are supposed to work with the corresponding
perception that users develop, in our case, modeling language designers might
likewise adjust either the semantics or the visual representation of the language
so that the latter evokes correct perception of the former.

In our work we use “intuitiveness” as a working term for describing this level
of a match between the designer’s intended semantics and the user’s assumed
meaning. While the former can be drawn from the formal definitions above, the
latter needs to be observed empirically. Thus, we measure the meaning users
assign to contributions by observing how they perform inferences about goal
satisfaction. We particularly perform a simple test: if we provide a decomposition
such as that of Fig. 1, Frame A to (unsuspecting of any theories) users, how would
they combine the numbers to decide a missing satisfaction value? The result of
such a test is an assessment of users’ expectation of how the numbers presented
to them should be combined in order to perform inferences and, consequently,
what the meaning of the contribution is.

3 Experimental Study

3.1 Study Design

The main objectives of the study are to: (a) assess whether model users who
are oblivious to aggregation theories perceive contribution semantics in a way
that tends to agree (resp. disagree) with one or more of the theories, supporting
the hypothesis that such theories are more (resp. less) intuitive, (b) explore
what factors related to the models or the users affect said agreement (resp.
disagreement).

To fulfill these objectives, we first develop a number of goal models. The
models consist exclusively of hierarchies of quality goals. We construct a total
of nine (9) model structures. The structures are different in a number of ways,
including the number of goals they contain, the depth of the hierarchy and the
number of contributions they contain. Table 1 describes each structure in detail.
As seen in the table, using depth as the primary size measure, we split the goals
into three size levels: small, medium and large. The goals of all structures have
“dummy”names, A, B, C, etc. For each structure we devise four (4) different
concrete models. Each of the four models has a different number-set, i.e. set
of labels for the contribution links and initial satisfaction values for the leaf
level quality goals, the latter presented as an annotation next to the goal. The
resulting models look like what is contained in Frame A of Fig. 1 (depth = 2,

User Perception of Numeric Contribution Semantics for Goal Models 457

Table 1. Structure characteristics

Size Depth # Goals # Contributions

Small 1 3 2

1 4 3

1 5 4

Medium 2 5 4

2 7 6

2 6 5

Large 3 7 6

3 9 8

3 10 9

Table 2. Participant demographics

Female Male Total

Business and econ. 8 5 13

Education 3 3 6

Fine arts 2 3 5

Health sciences 1 1 2

Humanities 8 3 11

Science and tech. 3 7 10

Social sciences 6 3 9

Total 31 25 56

num. of goals = 3, num. of contributions = 2). Given a complete model, one can
calculate the satisfaction value of its root using each of the aggregation functions
we introduced earlier (fb, fm, fs and fl), leading to four different corresponding
values.

The choice of number-sets deserves further discussion. All values are ran-
domly sampled, under the following conditions. Firstly, for two (2) out of the
four (4) number-sets devised for each structure, labels of contributions pointing
to the same goal are restricted to necessarily add up to exactly 1.0. For the other
two (2) number-sets, such labels need to add up to more than 1.5. We refer to
these as the two weighting styles: restricted (to 1.0) and unrestricted or free
(to add up to any value above 1.5). Secondly, the four values that result from
calculating the satisfaction value of the root goal using each of the four (4) aggre-
gation functions must have a distance of at least 0.08 between each other – the
number is the maximum we could achieve across all models. It is important to
add that for a given number-set, the satisfaction values that result from applying
each theory are ranked almost consistently, due to their mathematical structure.
Serial-Parallel in all models gives the smallest number, followed by Bayesian
which always is the second smallest. Linear is usually the largest number (∼86%
of times in our models) and MinMax is usually (∼86% of times) the second
largest.

In all, a total of (9 structures) × (2 weighting styles) × (2 number-sets per
style) = 36 distinct models are constructed. The models are used to construct
the experimental instrument. The instrument is a sequence of screens/tasks pre-
sented to the participants using an on-line survey tool (surveygizmo.com). On
each screen the user is presented with one of the 36 models and the four (4)
possible satisfaction values for the root goal that result from applying the four
different aggregation functions; the values are presented in random order. Par-
ticipants are asked to choose the “most appropriate satisfaction value” for the
root goal. The 36 screens are presented in random order.

https://www.surveygizmo.com/

458 N. Alothman et al.

Prior to performing the tasks, the participants are also asked to provide
demographic information and watch an instructional video. The video introduces
goal models, explains what contributions are about and presents the idea that the
more the contribution weight or the more the satisfaction of the origin, the more
the satisfaction of the destination. It does not, however, provide any information
of the precise method to calculate that value in a way that would bias the
respondents in the subsequent tasks. Prior to beginning the tasks, participants
are also instructed to not use calculator or pen and paper, and try to be quick,
i.e. not spend more than half a minute in each screen. The reason for this request
is to better simulate natural use of a goal model visualization.

A final question presents the participants with a small sample model and a
list of formulae for calculating the satisfaction of the root goal, corresponding to
the four theories under investigation. The participants are asked to choose the
formula that describes the way they worked in the exercises or describe their
own. In a second version of the instrument, this question is replaced with one
in which the participants are asked whether they follow a specific calculation
method, which they are asked to describe, or whether they “just used [their]
intuition”.

Sixty (60) participants are recruited from Amazon’s Mechanical Turk (AMT),
an online crowdsourcing platform. In AMT the experiment is posted as a Human
Intelligence Task (HIT) for members in the platform. Participants are screened
to have at least a bachelor’s degree and respond from North America. Half of
them use the original instrument and the other half the instrument with the last
question changed and at a later time. Data from a total of 56 participants are
analyzed – four (4) are excluded for not passing a reliability test. Participants
demographics can be seen in Table 2.

3.2 Results

More Preferred and Less Preferred Theories. As a first step of our analysis
we test whether the participant responses deviate from the uniform distribution
in each of the models. Thus, for each of the 36 models we collect all 56 responses.
If, for a given model, participants pick each of the four theories randomly, we
expect that the four choices will appear with equal likelihood in each of the 56
ratings. Reversely, if we observe substantial preference (or lack thereof) to one or
more of the four categories, then we can suspect that participants do not respond
randomly but exhibit preference toward (or against) one or more theories.

Running binomial tests for each model gives us this evidence. Figure 2 shows
for how many of the 36 models there was at least one theory choice that was
atypically high or low in preference; atypically meaning so high or low that the
likelihood of it being due to a uniformly random process is very small p < 0.05.
The figure organizes those numbers by model size and weighting style. In all
cases, half or more of the models exhibit some deviation from the random and
the effect is more pronounced for larger models. Figure 3 further shows for each
of those factor configurations, how many times was each theory preferred more
or less than uniformly randomly expected. For example, in large models with

User Perception of Numeric Contribution Semantics for Goal Models 459

Fig. 2. Total occurrences of non-random preference to a theory

Fig. 3. More preferred and less preferred theories

free weighting, there were six (6) models in which the MinMax theory was cho-
sen more frequently than expected under the uniform assumption (upper right
chart), and five (5) models in which the Serial-Parallel theory was chosen less fre-
quently than expected (lower right chart). Note that more than one occurrence
of such statistically significant deviations may occur in one model.

We can apply the same logic within the responses of each participant to
investigate whether each of them tends to “adopt” a specific theory by choosing
it more frequently than expected – under a uniform randomness hypothesis.
Indeed, out of the 56 participants only seven (7) seem to respond uniformly
across the four (4) theories – i.e. they could be just selecting at random. All the
other participant responses tend to concentrate on one or more theories. Thus,
for 27, 13, 5 and 2 participants, there is a significant (Binomial test p < 0.05)
concentration of their choices to MinMax, Linear, Bayes and the Serial-Parallel
model, respectively; while for 35, 12, 9 and 4 participants Serial-Parallel, Linear,
Bayes and MinMax theories were, respectively, significantly not chosen.

460 N. Alothman et al.

Relevant Factors. Let us now have a closer look into some of the factors
that affect choice. We descriptively show these effects (or lack thereof) through
mosaic displays [8]. Such displays are clusters of bars, the height of each in the
vertical dimension show the relative frequency of the corresponding (y) variable,
while the width of each sector within a bar shows the conditional frequency of
the horizontal (x) variable. The color of the sector represents deviation from
expected frequencies measured through Pearson’s residuals ri = (ni −mi)/

√
mi,

where ni is the observed count and mi the expected count, again, in our case,
of the uniform random case. The darker blue the color the higher the residual,
meaning that the observed count was higher than expected; the darker red the
color the lower the residual, hence the observed count is lower than expected.

In Fig. 4 we see two such mosaic plots, displaying the distribution of theory
choices per weighting style (left) and model size (right). The label of each sector
is the number of data points (participant ratings) associated with the sector. We
clearly observe differences between the styles of weightings. Thus, unrestricted
weighting seems to induce a concentration of choices in the MinMax category
to a larger extend than restricted weighting. Importantly while the unrestricted
models attract less choice of the Linear model than expected, the restricted
models do more so. The reverse is observed for Bayes’ models. There is therefore
room for a hypothesis that weights adding up to 1.0 evoke a Linear interpretation.

On the right side of Fig. 4 the effect of model size appears to be less pro-
nounced, yet notable. The Serial-Parallel theory, in particular, becomes less and
less preferred as model size increases. Meanwhile MinMax is slightly more pre-
ferred in larger models. Recalling that the Serial-Parallel interpretation is always
the smallest number and the MinMax is the second largest, one can as well
hypothesize that the larger the model, hence the more the numbers that appear
on the graph, the more users will tend to inflate satisfaction values.

Fig. 4. The effect of style and size

User Perception of Numeric Contribution Semantics for Goal Models 461

A possible suspicion that mathematically-intensive academic background
may affect the choice does not seem to be supported by these data. We omit a
display for the interest of space.

Self Reporting. The results of the last question, in which participants self-
report the method they think they used, strongly indicate that participants are
not completely aware of the method they use. Only 20% of 35 participants who
specified a concrete calculation method either forcedly (version 1 of instrument)
or voluntarily (version 2), state that they use a method that also happens to
be the one they actually used with statistically significant consistency. A higher
26% claim that they follow a theory which, in fact, they used unusually less in
the exercises (chiefly Serial/Parallel). Importantly, of the participants who were
asked if they used their intuition to respond (version 2), 81% states that they
did, i.e., they did not use a specific calculation method.

4 Consequences and Validity Threats

Consequences. The general impression we get from the result is that untrained
users of quantitative goal models may not come without expectations as to how
numbers are supposed to be combined to infer goal satisfaction, and that such
expectations may depend on aspects of the model. More specifically, we believe
that our data seem to support further corroboration of at least four hypotheses.
Firstly, for visual goal models as constructed in this experiment, participants
tend to favour certain ways of inferring satisfaction of goals over others, partic-
ularly MinMax, Linear and, to a lesser extent, Bayesian. Secondly, the amount
to which the weights of incoming contribution links to a goal sum up can affect
the choice of interpretation of satisfaction propagation semantics; if the sum is
1.0 the Linear model becomes more popular. Thirdly, the larger the model is the
more inflated the assessment of goal satisfaction appears to be. Finally, users do
not appear to consciously follow a specific aggregation method but instead work
intuitively.

There are, further, some important experimental validity points that deserve
a closer look, particularly on construct and external validity.

Construct Validity. As we saw, to measure which theory users prefer we mainly
rely on inference from how they use the models rather than on directly asking
them (e.g., “how would you combine these numbers?”). This emphasis was in
part due to practical reasons – on-line administration prevents meaningful open-
ended interaction – but also due to our low confidence that users can provide
valid data. The limited self-reporting we solicited (last questions of instrument)
indeed revealed that participants have limited awareness of the process they
themselves follow. Moreover, the input of those who volunteered to describe the
method they followed in their own words proved difficult to interpret and was
often plain incomprehensible. Thus, we remain unconvinced that there is a trivial
interviewing protocol that can conclusively explain why participants work the
way they do. It is, however, subject for future research.

462 N. Alothman et al.

Looking now at the observational measure, the substantial deviation from
uniform randomness begs an explanation and supports, we believe, the validity
of the endeavour: why are some theories preferred and some others avoided?
One explanation is that the participants were asked to choose from a fixed set of
values and, thus, naturally leaned toward those that were not extreme, choosing
completely randomly one of them. This could explain why they avoided, for
example, Serial-Parallel. But it would not completely explain why Linear was
not avoided to the same extend, and why there was still concentration to MinMax
versus the Bayesian theory – which both give values which are, generally, in the
middle of the ranking. Future designs could allow for a more solid picture of the
above by asking participants to freely specify satisfaction value that they find
more appropriate, instead of offering a predefined inventory.

External Validity. We treat this study as exploratory, with no intent of making
strong generalization arguments, about e.g. the universal suitability of a specific
theory, our goal being to see if there is any effect. Keeping this in mind, in
appreciating generalizability of the findings one should consider both the chosen
participants and the chosen models. The former are users of MTurk, who are
known to be a good enough proxy for random population samples [5], and might
offer more variability than e.g. University students, especially when the latter
are drawn from a specific department or course. More important is, we find, the
level of representativeness of the models: different sizes, visual properties and
goal contents (e.g. real domain concepts vs. A, B, C etc.) might certainly affect
participants’ reaction to them. Recall also that to enable comparability of the
frameworks certain simplifications were made, such as for example not using
negative contribution measures or not fully utilizing notions of satisfaction and
denial values as defined in the Giorgini et al. framework. Generalizations should
be predicated on these restrictions.

5 Related Work

There is a wealth of proposals for modeling partial goal satisfaction and influence
thereof between goals in the literature, the semantics of which vary in intuitive
meaning and their mathematical/algorithmic treatment (e.g. [3,7,10,14,15,18]
in addition to ones discussed earlier; [12] for further survey). Such proposals are
typically evaluated based on expressiveness standards, amenability to interesting
and efficient reasoning or hypothesized ease of label acquisition.

Nonetheless, the idea of also empirically investigating the way a diagram
elicits by its viewers a certain way of understanding its subject matter is not
new to the conceptual modeling community, either. Several studies, for example,
investigate the comprehensibility of diagrammatic notations such as UML state
diagrams or ER diagrams [6,24]. Similar work has been done with goal models.
Horkoff et al., for example, propose and evaluate an interactive evaluation tech-
nique for goal models [13]. The visual properties of goal modeling languages such
as i* vis-a-vis model comprehensibility have been the target of investigation as
well. Moody et al. offer an assessment of the i* visual syntax based on established

User Perception of Numeric Contribution Semantics for Goal Models 463

rules (“Physics of Notations”). An empirical analysis was followed by Caire et
al. [4] in which experimental participants evaluate visualization choices of the
language’s primitives. Elsewhere, Hadar et al. [11] compare goal diagrams with
use case diagrams on a variety of user tasks, including reading and modifying.

The above efforts tell us that there is interest in the community in under-
standing how users interact with diagrams, and even have users define their
visual properties of such, as e.g. Caire et al. demonstrate. Having users go beyond
the visuals and evaluate the semantics of notations seems to be a natural next
step. On that matter, although we could not find work in which interpretation
of satisfaction contribution in goal models is empirically investigated the way we
do here, we believe there is potential for much more research.

6 Concluding Remarks

We presented an exploratory experimental study aimed at assessing the intu-
itiveness of four theories of satisfaction propagation, operationalized through
measuring the frequency by which inferences untrained users perform with the
model match inferences that the theory prescribes. The results suggest that par-
ticipants do not choose at random and tend to favour some theories over others.
The way numbers are chosen as well as the size of the model also seem to affect
selection of theory, a process which, moreover, appears to take place heuristically
rather than through performance of precise calculations.

More investigation will be needed to fully understand how such results may
affect the practice of goal modelers and goal modeling language designers. It is
important to first consider that the results concern a specific diagrammatic way
of visualizing goal models and the kinds of inferences the specific visualization
evokes. If a modeler has compelling theoretical reasons to choose an “unintu-
itive” (vis-à-vis the visualization) propagation theory, e.g. Serial/Parallel if it
eventually proves to be such, use of traditional goal diagrams may be prob-
lematic, as users will likely make goal satisfaction inferences that contravene the
normative values, perhaps even if the latter are explicated in the diagram for the
purpose of exactly preventing erroneous user inferences. We intuitively consider
such situation sub-optimal compared to a situation in which the visualization
and the theory are in alignment. Nevertheless, the impact of misalignment in
practical model use needs to be explored in realistic model use scenarios (e.g.
decision making), prior to elevating intuitiveness measurement to a priority for
language designers.

References

1. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.S.K.:
Evaluating goal models within the goal-oriented requirement language. Int. J.
Intell. Syst. 25(8), 841–877 (2010)

2. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the
next ten years. J. Softw. (JSW) 6(5), 747–768 (2011)

464 N. Alothman et al.

3. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adap-
tation. In: Proceedings of the 18th IEEE International Requirements Engineering
(RE 2010), Sydney, Australia, pp. 125–134 (2010)

4. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0:
towards user comprehensible requirements engineering notations. In: Proceedings
of the 21st IEEE International Requirements Engineering Conference (RE 2013),
pp. 115–124 (2013)

5. Crump, M.J.C., McDonnell, J.V., Gureckis, T.M.: Evaluating Amazon’s mechan-
ical turk as a tool for experimental behavioral research. PLoS ONE 8(3), 1–18
(2013)

6. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing
the understandability of UML statechart diagrams with composite states–a family
of empirical studies. Empirical Softw. Eng. 14(6), 685–719 (2009)

7. Elahi, G., Yu, E.S.K.: Requirements trade-offs analysis in the absence of quantita-
tive measures: a heuristic method. In: Proceedings of the 2011 ACM Symposium
on Applied Computing (SAC 2011), TaiChung, Taiwan, pp. 651–658 (2011)

8. Friendly, M., Meyer, D.: Discrete Data Analysis with R: Visualization and Model-
ing Techniques for Categorical and Count Data. Chapman Hall, New York (2015)

9. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning tech-
niques for goal models. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on
Data Semantics I. LNCS, vol. 2800, pp. 1–20. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-39733-5 1

10. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the Tropos methodology. Eng. Appl. Artif. Intell. 18(2), 159–171
(2005)

11. Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F., Susi, A.: Compar-
ing the comprehensibility of requirements models expressed in use case and Tropos:
results from a family of experiments. Inf. Softw. Technol. 55(10), 1823–1843 (2013)

12. Horkoff, J., Yu, E.: Analyzing goal models: different approaches and how to choose
among them. In: Proceedings of the 2011 ACM Symposium on Applied Computing
(SAC 2011), TaiChung, Taiwan, pp. 675–682 (2011)

13. Horkoff, J., Yu, E.S.K.: Interactive goal model analysis for early requirements engi-
neering. Requirements Eng. 21(1), 29–61 (2016)

14. van Lamsweerde, A.: Reasoning about alternative requirements options. In:
Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling:
Foundations and Applications. LNCS, vol. 5600, pp. 380–397. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02463-4 20

15. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. In: Proceedings of the 12th International
Symposium on the Foundation of Software Engineering, FSE 2004, pp. 53–62
(2004)

16. Li, F.L., Horkoff, J., Mylopoulos, J., Guizzardi, R.S.S., Guizzardi, G., Borgida,
A., Liu, L.: Non-functional requirements as qualities, with a spice of ontology. In:
Proceedings of the 22nd International Requirements Engineering Conference (RE
2014), Karlskrona, Sweden, pp. 293–302 (2014)

17. Liaskos, S., Jalman, R., Aranda, J.: On eliciting preference and contribution mea-
sures in goal models. In: Proceedings of the 20th International Requirements Engi-
neering Conference (RE 2012), Chicago, IL, pp. 221–230 (2012)

http://dx.doi.org/10.1007/978-3-540-39733-5_1
http://dx.doi.org/10.1007/978-3-540-39733-5_1
http://dx.doi.org/10.1007/978-3-642-02463-4_20

User Perception of Numeric Contribution Semantics for Goal Models 465

18. Liaskos, S., Khan, S.M., Soutchanski, M., Mylopoulos, J.: Modeling and reason-
ing with decision-theoretic goals. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.)
ER 2013. LNCS, vol. 8217, pp. 19–32. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41924-9 3

19. Maiden, N., Pavan, P., Gizikis, A., Clause, O., Kim, H., Zhu, X.: Making decisions
with requirements: integrating i* goal modelling and the AHP. In: Proceedings of
the 8th International Working Conference on Requirements Engineering: Founda-
tion for Software Quality (REFSQ 2002), Essen, Germany (2002)

20. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring alternatives during
requirements analysis. IEEE Softw. 18(1), 92–96 (2001)

21. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–
497 (1992)

22. Norman, D.: The Design of Everyday Things. Basic Books, New York (2013)
23. Payne, S.J.: A descriptive study of mental models. Behav. Inf. Technol. 10(1), 3–21

(1991)
24. Purchase, H.C., Welland, R., McGill, M., Colpoys, L.: Comprehension of diagram

syntax: an empirical study of entity relationship notations. Int. J. Hum. Comput.
Stud. 61(2), 187–203 (2004)

25. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE 1997), Annapolis, MD, pp. 226–235 (1997)

http://dx.doi.org/10.1007/978-3-642-41924-9_3
http://dx.doi.org/10.1007/978-3-642-41924-9_3

On the Impact of the Model-Based
Representation of Inconsistencies

to Manual Reviews

Results from a Controlled Experiment

Marian Daun(&), Jennifer Brings, and Thorsten Weyer

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany
{marian.daun,jennifer.brings,

thorsten.weyer}@paluno.uni-due.de

Abstract. To ensure fulfilling stakeholder wishes, it is crucial to validate the
documented requirements. This is often complicated by the fact that the wishes
and intentions of different stakeholders are somewhat contradictory, which
manifests itself in inconsistent requirements. To aid requirements engineers in
identifying and resolving inconsistent requirements, we investigated the use-
fulness for manual reviews of two different model-based representation formats
for inconsistent requirements; one that represent the inconsistent requirements in
separate diagrams and one that represents them integrated into one diagram
using annotations. The results from a controlled experiment show that the use of
such integrated review diagrams can significantly increase efficiency of manual
reviews, without sacrificing effectiveness.

Keywords: Requirements validation � Inconsistencies � Controlled experiment

1 Motivation and Background

Model-based engineering has widely been adopted in the domain of embedded systems
to cope with the growing complexity of such systems [1]. Model-based requirements
engineering is often seen as an important part as it allows, among others, for full
continuity across the entire engineering process [2]. As model-based documentation is
often used from different requirements perspectives or to document the intentions of
different stakeholders in different requirements models, inconsistencies between mul-
tiple requirements models can easily arise [3]. This particular challenge can often only
be solved by manual validation, as automated approaches can only detect inconsis-
tencies but not negotiate agreement between different stakeholders and thus, ensure the
correctness of all requirements artifacts (cf. [4]).

An extended version containing supplemental experiment material can be found at: https://arxiv.
org/abs/1707.02907.

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 466–473, 2017.
https://doi.org/10.1007/978-3-319-69904-2_35

https://arxiv.org/abs/1707.02907
https://arxiv.org/abs/1707.02907

Message sequence charts like languages are commonly used in requirements
engineering. While message sequence charts have shown to be an effective and efficient
language to be used in manual reviews (cf. [5]), the validation of different inconsistent
requirements models is challenging because it involves investigating a potentially vast
number of diagrams containing identical parts, alternative parts, and contradictory
parts. To reduce the number of diagrams to be reviewed, existing automated model
merging techniques (e.g., [6]) can create diagrams that represent inconsistent properties
integrated in just one diagram.

Figure 1 illustrates a very simple merge of just two separate basic message
sequence charts (bMSCs) ((a1) and (a2) in Fig. 1). Both bMSCs show the same excerpt
of a specification of an automotive lane keeping support system (LKS). Diagram (a1)
shows how the system shall handle lane departures from the perspective of one
stakeholder and diagram (a2) shows how this functionality is specified from another
stakeholder’s perspective. As can be seen, these two diagrams differ in just one mes-
sage that the LKS either receives the current steering angle from the electronic stability
support (ESS) or not. Diagram (b) shows the merged behavior in a corresponding
bMSC, which displays both interaction sequences specified by the originating bMSC.
In the following, we will refer to the original bMSCs as the separate and the merged
bMSC as the integrated representation.

This paper reports on a controlled experiment to investigate whether model
merging can be used to improve effectiveness and efficiency of reviews. Therefore, the
experiment compares the two representations of inconsistencies. Results show that the
representation of inconsistencies has no significant impact on the review’s effective-
ness; but for diagrams with few inconsistencies, it is significantly more efficient to use
the integrated representation.

Section 2 gives an overview of the related work. Section 3 defines the experimental
setup and Sect. 4 reports on the results of the experiment. Finally, Sect. 5 concludes the
paper.

Origina ng basic Message Sequence Charts (Separate)

Merged basic Message Sequence Charts (Integrated)

ESS Instrument Cluster LKS Camera Indicator

Picture

Status Turn Signal

Steering Angle

Warning

New Steering Angle

ESS Instrument Cluster LKS Camera Indicator

Picture

Status Turn Signal

Warning

New Steering Angle

ESS Instrument Cluster LKS Camera Indicator

Picture

Status Turn Signal

Warning

New Steering Angle

opt Steering Angle(a1)

(a2)

(b)

Fig. 1. Exemplary model merging of bMSCs

On the Impact of the Model-Based Representation 467

2 Related Work

Several approaches exist to support the manual review of model-based specifications.
In [7], Denger and Ciolkowski describe a defect taxonomy to apply a perspective-based
inspection technique to statecharts. In addition, Binder defines a checklist to validate
statecharts from a testing perspective in [8]. A more general approach to validate
model-based specifications is presented by Travassos et al. [9]. The approach addresses
the consistency between UML diagrams of different types. For this purpose,
perspective-based reviews of scenarios from different perspectives are suggested.

In previous work, we proposed the use of dedicated review models to support the
validation of embedded systems’ functional design and behavioral requirements [10].
Among others, we found that the use of ITU message sequence charts as review artifact
is more effective, efficient, and subjectively supportive compared to the use of the
original specification of the embedded systems’ functional design (cf. [5]).

Several studies already investigated effectiveness and efficiency of different review
types. Therefore, the experiment design presented in this paper is based on the
experiment design of these reported experiments. For example, Miller et al. [11] report
on a student experiment with 50 trained students, finding that perspective-based
reviews are more effective than checklist-based approaches for error detection in nat-
ural language requirements specifications. Basili et al. [12] report on a controlled
experiment with professional software developers, where the perspective-based review
is evaluated as significantly more effective than other inspection techniques for
requirements documents.

3 Experiment

Table 1 provides an overview of the experimental setup. Subsequently, Sect. 4 presents
the results from the hypotheses tests. A more detailed description of the experiment and
descriptive statistics can be found in [13].

4 Hypotheses Tests

This section shows the results of hypotheses tests. As preconditions of parametric test
were satisfied, we conducted two-way repeated measures ANOVAs and followed up
significant interaction effects using t tests.

Effectiveness. The results of a two-way repeated measures ANOVA indicate no sig-
nificant main effect of the representation. F(1, 35) = 0.001, p > .05, d = 0.01, Power:
.92. There was, however, a highly significant main effect of degree of consistency. F(1,
35) = 34.86, p < .01, d = 0.99, Power: 1. As there was no significant interaction effect
F(1, 35) = 0.46, p > .05, d = 0.11, Power: .18 between representation and degree of
consistency, the significant main effect of degree of consistency can be interpreted
globally. Since effectiveness is higher when reviewing diagrams with a high degree of
consistency (H) we accept HEff2-1a. However, we cannot reject HEff1-0 and HEff3-0.

468 M. Daun et al.

Table 1. Experiment planning

Goals Investigate, whether the integrated representation (i.e. the merged diagram)
is advantageous compared to the separate representation (i.e. the original
bMSC diagrams) for reviews with respect to their effectiveness, and
efficiency

Participants The experiment was conducted with 41 graduate students. We filtered some
of the participants’ data sets from the final data set. This was necessary,
since some of the participants did obviously not perform serious reviews,
since these participants finished the review of all four tasks (consisting of
the validation of 34 natural language stakeholder intentions) in less than
five minutes. In total, we used 36 data sets for further analysis

Experiment
material

An industrial sample specification of an avionics collision avoidance
system and a set of natural language stakeholder intentions

Independent
variables

Representation format:
Integrated (short: I): The participants reviewed a diagram using the
integrated representation, which displays inconsistencies in the same bMSC
Separate (short: S): The participants reviewed diagrams using the separate
representation, which displays inconsistencies in two separate bMSCs
Degree of consistency:
High (short: H): The participants reviewed diagrams, which are highly
consistent, i.e., that have only few inconsistencies between each other
Low (short: L): The participants reviewed diagrams in I or S, which are
highly inconsistent, i.e., have many inconsistencies between each other

Dependent
variables

Effectiveness: the ratio of correct review decisions made
Efficiency: the average time spent per correct review decision

Hypotheses HEff1-0: The review is equally effective no matter the representation
HEff1-1a: The review is more effective in I
HEff1-1b: The review is more effective in S
HEff2-0: The review is equally effective no matter the degree of consistency
HEff2-1a: The review is more effective for H
HEff2-1b: The review is more effective for L
HEff3-0: There is no interaction effect between the representation and the
degree of consistency in terms of effectiveness
HEff3-1: NOT HEff3-0
HEfy1-0: The review is equally efficient no matter the representation
HEfy1-1a: The review is more efficient in I
HEfy1-1b: The review is more efficient in S
HEfy2-0: The review is equally efficient no matter the degrees of consistency
HEfy2-1a: The review is more efficient for H
HEfy2-1b: The review is more efficient for L
HEfy3-0: There is no interaction effect between the representation and the
degree of consistency in terms of efficiency
HEfy3-1: NOT HEfy3-0

Experiment
design

The study was conducted as an experiment using an online questionnaire.
The experiment was designed to last about 30 min. The experiment used a
within-subject design. Each participant conducted a review of an excerpt
from the specifications of the avionics collision avoidance system in both
representations (I and S). The order of the reviews using the different
representations was randomized

On the Impact of the Model-Based Representation 469

Efficiency. The results of the two way repeated measures ANOVA show a significant
main effect of representation F(1, 35) = 4.83, p < .05, d = 0.38, Power: .97, and a
significant main effect of degree of consistency F(1, 35) = 5.18, p < .05, d = 0.39,
Power: .98. There was also a highly significant interaction effect between representa-
tion and degree of consistency F(1, 35) = 9.36, p < .01, d = 0.52, Power: .99. This
indicates that the representation had different effects on the participants’ efficiency
depending on the degree of consistency between the reviewed diagrams. We therefore
accept HEfy3-1.

As the interaction diagrams (cf. Fig. 2) show a disordinal interaction between
representation and degree of consistency, the significant main effects cannot be inter-
preted globally.

To investigate the interaction effect, we conducted t tests, where we kept one of the
factors constant. On average, participants reviewed diagrams with a high degree of
consistency (H) (M = 0.65, r = 0.39) significantly more efficiently than diagrams with
a low degree of consistency (L) (M = 1.13, r = 0.58) when using the integrated
representation (I) t(34) = −5.30, p < .05, d = 0.89, Power: .99.

When using the separate representation (S), the participants’ efficiency was not
significantly higher when reviewing diagrams with a low degree of consistency
(L) (M = 1.04, r = 0.60) than when reviewing diagrams with a high degree of con-
sistency (H) (M = 1.13, r = 0.87) t(35) = −0.548, p > .05, d = 0.09, Power: .08.

When reviewing diagrams with a high degree of consistency (H), participants were
highly significantly more efficient when using the integrated representation
(I) (M = 0.65, r = 0.39) than when using the separate representation (S) (M = 1.14,
r = 0.88), t(34) = −3.08, p < .01, d = 0.52, Power: .63.

When reviewing diagrams with a low degree of consistency (L), participants were
not significantly more efficient when using the separate representation (S) (M = 1.04,
r = 0.60) than when using the integrated representation (I) (M = 1.12, r = 0.58), t
(35) = −0.68, p > .05, d = 0.11, Power: .10.

Fig. 2. Interaction diagrams – efficiency

470 M. Daun et al.

5 Discussion and Conclusion

5.1 Evaluation of Results and Implications

Regarding effectiveness, the representation format itself had no significant impact.
When reviewing diagrams with a low degree of consistency the readability of the
integrated representation seems to decrease. Additionally, effectiveness is considerably
higher when reviewing diagrams with a high degree of consistency than with a low
degree of consistency, regardless of the representation.

Regarding efficiency, it depends on the degree of consistency whether an integrated
or a separate representation is more advantageous when reviewing inconsistent
behavioral properties. As the results show, when reviewing diagrams with a high
degree of consistency, efficiency is highly significantly higher when using the inte-
grated representation. Since there is no significant difference in effectiveness, we
conclude that diagrams with a high degree of consistency can be more efficiently
reviewed using the integrated representation without sacrificing accuracy. The fact that
there is no statistically significant difference between the representation formats when
reviewing diagrams with a low degree of consistency might be due to low statistical
power in this case. Surprisingly, participants using the separate representation were
more efficient when reviewing diagrams with a low degree of consistency than when
reviewing diagrams with a high degree of consistency.

5.2 Threats to Validity

To address threats to validity, which exist for this type of study, we have employed
certain mitigation strategies [14]. While the detailed mitigation strategies applied can
be found in [13], in this paper we limit the discussion to the remaining threats:

Construct Validity. In case of efficiency, we must discuss some threats to validity
arising from the experiment setup. As we used an online questionnaire, which does not
measure the time usage for a single decision but for the review of a whole diagram, we
can make no statements about the exact time used for reviewing each single stakeholder
intention. Since the experiment participation was done online, we have no knowledge
about time-consuming activities participants might have done during their experiment
participation. In a short briefing, we stressed the need for focused work on the
experiment. In addition, we designed the experiment in such a way that the experiment
could be completed in less than 30 min to minimize the number of participants losing
focus. While we removed outliers indicating large irregularities, we cannot eliminate
the issue that smaller activities (e.g., chatting or answering phone calls) could have
influenced our measurements.

Internal Validity. We designed the experiment as an online questionnaire to be con-
ducted within about 30 min and gave the participants a time frame of 5 days to
participate. Thus, we assume that internal threats to history, maturation, or mortality do
not exist. However, it must be noted that allowing a time frame to participate and to
allow participation online also relates to losing control over participants’ behavior
regarding experiment participation.

On the Impact of the Model-Based Representation 471

External Validity. The participants were mostly graduate students except for a few
undergraduates in their senior year. As the participants were students, the question of
generalizability to an industrial setting arises. Since studies (cf. [15, 16]) showed that
graduate students can serve as an adequate replacement for industry professionals in
experiments, and we discussed experiment material, experiment tasks and experiment
results with our industry partners, we are confident that the findings can be generalized.

5.3 Inferences

Regarding the question, whether it is beneficial for manual reviews to first merge
inconsistent behavioral properties into one integrated diagram compared to the review
of inconsistent properties in separate diagrams, the experiment shows that such a model
merging seems to have only limited impact on the effectiveness of the review. In
contrast to previous work that has shown that the use of model transformations and
model merging for consistent behavioral properties does significantly impact effec-
tiveness of the review (cf. [5]), no such overall advantages (or any disadvantages) for
inconsistencies were recognizable in this experiment. However, two major findings
remain and may provide a starting point for future work:

First, when reviewing models with minor inconsistencies a merging of the incon-
sistent parts into one diagram can significantly improve the reviews efficiency. Since
minor inconsistencies easily occur in model-based engineering (e.g., due to simple
misnaming errors), this effect might significantly impact the overall review of an entire
specification. Consequently, future work should deal with determining the maximal
ratio of inconsistent and consistent parts that should be merged to allow for efficient
reviews of the merged diagram.

Second, the results show that regardless of the representation format (i.e. two
separate diagrams or one merged diagram) the effectiveness of the review is consid-
erably higher when reviewing diagrams with a high degree of consistency than when
reviewing diagrams with a low degree of consistency. Therefore, for manual validation,
it might be beneficial to determine the degree of consistency between different views
beforehand. Based on the degree of consistency it can then be decided, which repre-
sentation format should be chosen for the review. Therefore, future work should deal
with the question, how best to determine the degree of consistency and what the
preferable review format for a certain degree of consistency is. Furthermore, it might
also be interesting to investigate the tradeoff between more reviews in shorter time and
fewer reviews far between. Hence, the question arises whether shorter reviewing cycles
are advantageous to longer review cycles, as inconsistencies are removed earlier and, in
conclusion, larger inconsistencies are less likely to occur.

Acknowledgment. This research was partly funded by the German Federal Ministry of Edu-
cation and Research (grant no. 01IS16043V and grant no. 01IS12005C). We thank Stefan Beck
and Arnaud Boyer (Airbus Defence and Space), Jens Höfflinger (Bosch), and Karsten Albers
(inchron) for their support regarding the adoption of industrial specifications to fit as experiment
material.

472 M. Daun et al.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer Society,
Washington, DC (2007)

2. Loniewski, G., Insfran, E., Abrahão, S.: A systematic review of the use of requirements
engineering techniques in model-driven development. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 213–227. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16129-2_16

3. Finkelstein, A., Goedicke, M., Kramer, J., Niskier, C.: ViewPoint oriented software
development: methods and viewpoints in requirements engineering. In: Bergstra, J.A., Feijs,
L.M.G. (eds.) Algebraic Methods II: Theory, Tools and Applications. LNCS, vol. 490,
pp. 29–54. Springer, Heidelberg (1991). doi:10.1007/3-540-53912-3_17

4. ISO/IEC/IEEE: ISO/IEC/IEEE 29148:2011 - Systems and software engineering – Life cycle
processes – Requirements engineering (2011)

5. Daun, M., Salmon, A., Weyer, T., Pohl, K.: The impact of students’ skills and experiences
on empirical results: a controlled experiment with undergraduate and graduate students. In:
Proceedings of International Conference on Evaluation and Assessment in Software
Engineering, pp. 29:1–29:6. ACM (2015)

6. Klein, J., Caillaud, B., Hélouët, L.: Merging scenarios. Electron. Notes Theor. Comput. Sci.
133, 193–215 (2005)

7. Denger, C., Ciolkowski, M.: High quality statecharts through tailored, perspective-based
inspections. In: 29th EUROMICRO Conference 2003, New Waves in System Architecture,
pp. 316–325. IEEE Computer Society (2003)

8. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, Reading (1999)

9. Travassos, G., Shull, F., Fredericks, M., Basili, V.R.: Detecting defects in object-oriented
designs: using reading techniques to increase software quality. In: Proceedings of the 1999
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA 1999), pp. 47–56. ACM (1999)

10. Daun, M., Weyer, T., Pohl, K.: Detecting and correcting outdated requirements in
function-centered engineering of embedded systems. In: Fricker, S.A., Schneider, K. (eds.)
REFSQ 2015. LNCS, vol. 9013, pp. 65–80. Springer, Cham (2015). doi:10.1007/978-3-319-
16101-3_5

11. Miller, J., Wood, M., Roper, M.: Further experiences with scenarios and checklists. Empir.
Softw. Eng. 3, 37–64 (1998)

12. Basili,V.R.,Green,S.,Laitenberger,O.,Lanubile,F.,Shull,F.,Sørumgård,S.,Zelkowitz,M.V.:
Theempirical investigationofperspective-based reading.Empir.Softw.Eng.1, 133–164(1996)

13. Daun, M., Brings, J., Weyer, T.: On the impact of the model-based representation of
inconsistencies to manual reviews: results from a controlled experiment - extended version.
arXiv:1707.02907 Cs (2017)

14. Daun, M., Salmon, A., Bandyszak, T., Weyer, T.: Common threats and mitigation strategies
in requirements engineering experiments with student participants. In: Daneva, M., Pastor,
O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp. 269–285. Springer, Cham (2016). doi:10.
1007/978-3-319-30282-9_19

15. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects-a comparative study of
students and professionals in lead-time impact assessment. Empir. Softw. Eng. 5, 201–214
(2000)

16. Svahnberg, M., Aurum, A., Wohlin, C.: Using students as subjects an empirical evaluation.
In: Proceedings of the 2nd International Symposium on Empirical Software Engineering and
Measurement, ESEM 2008, pp. 288–290. ACM (2008)

On the Impact of the Model-Based Representation 473

http://dx.doi.org/10.1007/978-3-642-16129-2_16
http://dx.doi.org/10.1007/3-540-53912-3_17
http://dx.doi.org/10.1007/978-3-319-16101-3_5
http://dx.doi.org/10.1007/978-3-319-16101-3_5
https://arxiv.org/abs/1707.02907
http://dx.doi.org/10.1007/978-3-319-30282-9_19
http://dx.doi.org/10.1007/978-3-319-30282-9_19

Ontologies

On the Semantics of Ongoing and Future
Occurrence Identifiers

Nicola Guarino(B)

ISTC-CNR Laboratory for Applied Ontology, Trento, Italy
nicola.guarino@cnr.it

Abstract. According to the standard wisdom, all temporal occurrences
are considered as “frozen in time”. This means that all their properties
are fully determined, and they can’t change. This is certainly true for his-
torical occurrences, but, at least in the ordinary language, ongoing and
future occurrences seem to admit the possibility of change: the score of
an ongoing match may change in time, and a future trip may be delayed.
But if ongoing and future events can change in time, what are their iden-
tifiers? In this paper I propose a tensed ontological account (contrasted
with the dominant tenseless tradition) that provides an answer to this
question.

Keywords: Event · Process · Occurrence · Identifier · Ontology · Time ·
Tense · Change

1 Introduction

References to ongoing and future temporal occurrences appear very often in our
everyday discourse. The ongoing football match, Mary’s next medical appoint-
ment, her next trip to Rome, her coming birthday, the writing of this paper...
These expressions are considered as denoting unique, well-defined individuals,
although some of their properties are not completely fixed, so that they may
change in time. Indeed, many software systems consider these entities as first-
class citizens, since they need to handle crucial information about them. This
means that, as Scheer puts it, we do have some knowledge of the future, “in
spite of the truism that there is always the possibility that something will turn
up to prevent the event whose occurrence we supposedly have knowledge of”
[20, p. 212]. In particular, in sharp contrast with events that are necessarily
unknown (like the outcome of a future football match), there is an important
class of future events we must have knowledge of, namely those that are custom-
arily scheduled (like the match itself) or anyway expected, as those dealt with in
the following examples:

– A flight reservation system may associate properties such as (possibly chang-
ing) expected departure and actual departure to the same flight identifier;

– A football match management system may have a variable standing for ’the
present score’ associated to the match identifier;

c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 477–490, 2017.
https://doi.org/10.1007/978-3-319-69904-2_36

478 N. Guarino

– A news management system may assign unique event identifiers to news
appearing in different media, and dynamically classify them as describing
future/ongoing/past events;

– A business process management system may assign a unique identifier to each
ongoing process instance;

– A financial risk management system may assign a unique identifier to each
loan instalment.

But what is the semantics of these identifiers? What is the ontological nature of
ongoing and future temporal occurrences? In a recent paper with Guizzardi and
Almeida [11], we pointed out to a serious problem concerning them, resulting
from two established premises in conceptual modeling and in formal ontology:

(1) Instances of classes used in conceptual modeling should be denoted by rigid
Object Identifiers (oids) referring to exactly one element of the domain of
discourse, whose identity remains the same across different states of the
world [23];

(2) According to the mainstream philosophical view [4,15], temporal occurrences
are “frozen in time”, in the sense that their temporal parts and their tem-
poral location are essential to them. This means that they can’t have modal
properties and can’t genuinely change in time.

If we accept these premises, the result is that we can only have past occurrences
in our domain of discourse, since occurrence identifiers cannot denote entities
having different temporal locations and temporal parts at different times. For
example, we cannot state that a process instance is incomplete at a certain time
and complete at a later time, since its temporal location can’t change. To talk
of ongoing and future occurrences in the way we want, it seems that we have
to either reject (1), adopting a non-classical semantics for oids and admitting
that occurrence identifiers may have a variable reference, or reject (2), adopting
a non-classical ontological accounts of temporal occurrences.

Of course, there is still the possibility of ignoring the distinction between
past and future occurrences, adopting an eternalist view according to which
all occurrences are assumed to be already fully determined, although possibly
unknown. This is indeed the position adopted in the dolce ontology [3] and in
most foundational ontologies. Modeling occurrences in this way may be useful
to express general constraints about them (saying for instance that all air flights
involve an airplane), but, as we have seen, doesn’t offer a clear semantics for
an identifier such as ‘The AZ1490 flight of December 30, 2017’, whose exact
temporal location is presently indeterminate. What we need in practice is a way
to account for a crucial aspect of ongoing and future occurrences, that is their
possibility to change, depending on how the actual future will be: that flight
may be postponed or even canceled, the present game’s scores may change, and
so on.

A possible solution to this problem is offered in the paper cited above [11],
where a modeling alternative that accepts both premises (1) and (2) is described.
The essence of the idea is rather simple, and is based on Lombard’s view [15] that

On the Semantics of Ongoing and Future Occurrence Identifiers 479

temporal occurrences (events, in the original text1) are manifestations of qualities
of their participants. So, the subject of an (apparent) event’s change is not the
event itself, but rather those qualities of its participants that are manifested
by the event, which are defined in [10] as the event’s focal qualities. Assuming
that a flight event has an airline company as a participant, and the company’s
commitment to run that flight is a quality of the company, the flight itself can be
seen as a manifestation of the company’s commitment. So, saying that a flight
has been postponed means that the commitment to run that flight has changed.
We rely in the paper on the notion of quality introduced in the dolce ontology
[16], further discussed by Borgo and Masolo [3] and recently revisited by Guarino
and Guizzardi [10]. Since qualities so understood are considered as (dependent)
objects and not as events, no problem for them to undergo genuine changes, and
to have modal properties. This is a very powerful technique, since pointing to
specific focal qualities gives us the possibility to talk of fine-grained aspects of an
event, but still it is only a partial solution to our problems, since in some cases
we have to talk of properties concerning the events themselves, and not their
participants’ qualities. In particular, there are at least four kinds of properties
of events that can’t be reduced to properties of their participants’ qualities:

1. Local properties such as a flight’s instantaneous speed, ascribed to the whole
event but actually depending just on what happens at a given time. These
can be hardly understood as concerning a participant’s quality, such as the
plane’s spatial location: instantaneous speed is actually the average speed of
a (suitably short) event, considered as a whole.

2. Cumulative properties depending on an event’s past history, such as the dis-
tance covered so far by an ongoing flight, the present score of a football match,
or the total number of changes in the present paper’s writing. These appear
to be as global properties of the event, and not of its participants.

3. Contextual properties depending on the broader event’s context, i.e. what-
ever happens in the scene where the event occurs without involving the focal
qualities (for example, the weather during the flight, which may be expected
to be nice and may actually turn out to be bad), or even beyond the scene
(e.g., a delay due to the late arrival of the aircraft).

4. Modal properties depending on the future parts of the event, such as the
possibility, for an ongoing trip, to miss the next connection, or for a match
to be interrupted before the end.

So, going back to our flight example, in some cases we can avoid referring to
ongoing and future flights by just talking of the airline’s commitments and the
flight schedule, but to talk of the properties described above a direct reference
to ongoing or future flight occurrences seems to be unavoidable.
1 We have a serious terminological issue here. In philosophy, multiple terms (e.g.,
perdurant, occurrent, event, eventuality...) have been used to denote what I have
been calling so far an ‘occurrence’. Although the latter term is probably the least
ambiguous, ‘event’ seems to be the most common, so, to better reflect the literature
I will be citing, I will use it as a synonym of ‘occurrence’ from now on, ignoring that
‘event’ is also used in a stricter sense, in contraposition to states and processes.

480 N. Guarino

A further way of dealing with the problem of (apparent) change for ongoing
events is the approach pursued by Antony Galton (and Riichiro Mizoguchi) in
several papers [7–9], inspired by Stout’s idea [21] of processes as continuants
(that is, objects instead of events). According to Galton’s view, the dynamic
behavior of an ongoing event concerns not the event itself, but rather the process
that constitutes it, considered as an object (depending on the event’s partici-
pants) that is fully present in the thin temporal window where we experience
things happening at the present time and moves forward as time passes by,
assuming different properties at different times. As we shall see, this approach
has several interesting features that contributed to inspire the solution proposed
in this paper, but in a sense it has the same problems as the previous solution,
since, restricting the subject of change to a specific object (the process), is not
able to fully describe what’s happening while an event goes on, and does not
take future events into account.

In conclusion, describing ongoing and future events in terms of their local
qualities or in terms of their constituting processes is only a partial solution to
our problem, so we have to face the challenge: giving up either (1) or (2). In
this paper I will argue in favor of rejecting (2), namely the view that events
are “frozen in time”, by proposing a tensed ontological account (contrasted with
the dominant tenseless tradition) according to which only past events are frozen
in time, while ongoing and future events may have modal properties concerning
their actual occurrence. At the core of this proposal there is a radical thesis: from
the experiential point of view (that is, if we take tense seriously), ongoing events
do change. They change by embodying temporal parts as time passes by, which
accumulate with the previous parts. As a new temporal part is embodied, the
event’s properties and its elapsed duration may change accordingly. Hence, the
final temporal location of ongoing events is not an essential property of them—
that is, they can (literally!) take place at different time intervals, although their
starting time is fixed. As a generalization of this approach, future events are
conceived as empty embodiments at the time we refer to them, being free to take
place at any future time interval.

In the following, I will defend and illustrate this thesis by first discussing
some dolce-core axioms [3] concerning time-indexed parthood and the notion
of ‘being present at t’ in the light of a tensed approach. I will then define ongoing
and future events as variable embodiments, introducing a difference between
processes and episodes and providing a minimal axiomatic characterization that
shows how we can account for their temporal, cumulative, contextual and modal
properties. Finally, I will discuss the practical consequences of this approach, its
relationships with other approaches, and the future work.

2 The Need for Tensed Properties and Tensed Parthood

As mentioned above, most upper-level ontologies (including in particular dolce
[16] and bfo [2]) adopt an eternalist view about the ontological nature of time,
which means that all points in time are considered as real, and it is perfectly

On the Semantics of Ongoing and Future Occurrence Identifiers 481

plausible to quantify over past, present or future entities. This position is tech-
nically very simple, and does not impact on our problem. More subtle is the
choice concerning the way properties hold in time, that is, the interpretation of
formulas of the form F (x, t). Under the (dominant) tenseless view, properties
may vary in time not differently from the way they may vary in space, inde-
pendently of what the present time is. On the contrary, under the tensed view,
whether or not a property holds depends on the present time.

In their re-visitation of dolce’s foundational choices resulting in dolce-
core, Borgo and Masolo [3] suggest a way to account for these formulas that
they borrow from Merricks:

(3) F (x, t) can be read as follows: “x exists at t and it has the property F when
t is (was, will be) present” [17]

This interpretation seems very natural, and apparently shows an attitude to take
tense seriously. However, I think there is delicate issue concerning the proviso ‘x
exists at t’, which Borgo and Masolo interpret (in the strong ontological sense)
as ‘x is present at t’, assuming the following axiom scheme:

(4) F (x, t) → Pre(x, t).

In the formula above, we shall assume that t denotes a time interval, and F (x, t)
stands for a generic property holding for x in the interval t, while Pre(x, t)
is a primitive standing for ‘x is present in the interval t’2. The problem with
this assumption is that it leaves no room for tensed properties of x that may
hold at t when x is not present at t. Properties of this kind are rather common,
especially for events. For instance, if x is an event that occurs at t0 (say, a person’s
birthday), it may be expected at a time t1 < t0 only if x is not present at t1,
and remembered at a time t2 > t0 only if x is not present at t2, since we can’t
expect nor remember something that is present. Similarly, a person can have
various properties, such as being admired or being the mother of somebody, also
when she is not present anymore since she is died. So, presumably, (4) is valid
for intrinsic properties, but cannot be generalized to all kinds of properties.
In conclusion, I suggest that we should reject it, and just rely on the logical
existence of x while quantifying on x in F (x, t). This means that we are free to
ascribe a tensed property, holding when t is present, to every entity that exists
somehow in our domain3, independently on whether it is present at t. Note that,
otherwise, (4) would be interpreted in tenseless way, since, needing that x is

2 ‘Being present’ is taken here as a primitive notion, which we can roughly understand
as ‘being perceivable’. When we say that a time is present we assume to have some
kind of perceivable clock that shows us what the present time is. A time interval is
assumed to be present if it contains the present time.

3 I will be deliberately vague on this point. While a person may exist after her death
without being present, arguably she does not exist before her conception. Similarly,
a future medical appointment does not exist before it is decided. To account for
these issues, a temporalized existence predicate might be introduced in addition to
the temporalized presence predicate. Here I assume to quantify on things that exist.

482 N. Guarino

present when t is present, it just describes where F holds in time, independently
of what the present time is.

Adopting a tensed interpretation for F (x, t) is of crucial importance for our
argument, since it has a direct impact on describing how events accumulate
temporal parts as time passes by. The point is the interpretation of the time-
indexed parthood relation P (x, y, t), which in dolce-core is constrained by the
following axiom (besides the usual ones of extensional mereology):

(5) P (x, y, t) → Pre(x, t) ∧ Pre(y, t)

Note that, in the original version of dolce, time-indexed parthood was restricted
to objects only, since, following Hawley [13], one of the distinctions between
objects and events was exactly that only objects require a time-indexed parthood
relation. Intuitively, the rationale of this choice was that “...a statement like ‘this
keyboard is part of my computer’ is incomplete unless you specify a particular
time, while ‘my youth is part of my life’ does not require such specification”.
In dolce-core, in an attempt for generality, the argument restrictions on x and
y were removed, so that (5) holds both for objects and events. This axiom can
be seen as a direct consequence of the scheme (4), since it implies that, if x has
the property of being a part of some y at t, then x has to be present at t, and,
viceversa, if y has the property of having some x as a part at t, then y has to
be present at t. The problems we have seen for (4) have therefore an impact on
accepting (5).

The crucial issue is that, if we assume that (5) holds also for events, and
not just for objects, we over-constrain the notion of part of an event, imposing
it a tenseless reading that violates its tensed nature. Indeed, a characteristic of
events, as we shall see, is exactly the fact that their temporal parts become past
as time passes by. So, the property of being a part of an event needs to hold
also when the part is not present. The reason why this is so can be explained
intuitively by observing that, at each time an event is present, it has some
cumulative properties (say, the elapsed duration or the actual score of the football
match) that are influenced by all previous parts. So, an event grows in time like
a glacier4, by having a present part (the “moving front”) that is constantly
changing, and keeping memory—so to speak—of the parts that are not present
any more. In my view, this behavior seems indeed at the core of the established
view that events “unfold in time”, in the sense that

(6) Whenever a (non-instantaneous) event is present, it is not wholly present,
since some of its parts are not present.

To account for such behavior, we clearly have to reject (5) as a general axiom,
reserving it only for objects. Of course, getting rid of (5) for events is not enough,
since we need to suitably constrain the notion of presence and the temporal
behavior of parthood in order to avoid non-intended models. As we shall see,
such behavior comes in two main kinds, marking the difference between episodes
and processes.
4 The ‘glacier’ or ‘growing block’ metaphor is used in the philosophical literature to

illustrate a position concerning the tensed theory of time [24].

On the Semantics of Ongoing and Future Occurrence Identifiers 483

3 Episodes and Processes

Before continuing, it is time to introduce episodes and processes as particular
kinds of events. I define an episode as an event that requires a completion. It
is therefore a telic event, while processes are atelic5 [14]. A football match, a
run to the station, running for an hour or just being sitting for an hour are all
examples of episodes (some static, some dynamic). On the contrary, processes
are events that do not require a completion. A walk is a typical example of a
process, while a walk from home to the station is an episode. Pouring water in
a container or preparing the coffee are also considered as processes, but only if
we think of them as occurring independently of their result.

This is established wisdom, but a crucial aspect of the novel view I am pre-
senting is that processes become present as soon as their first temporal part is
present6, and they remain present for an extended interval by embodying new
temporal parts that accumulate with the previous ones, so that processes are
bearers of cumulative properties that may change over time. This accumula-
tion phenomenon is such that, when a process is present, most of its parts
are past, while only the part located at the present time (the moving front)
is present. So, under the glacier metaphor, our processes are similar to growing
blocks, while Galton’s processes resemble moving fronts, or, more exactly, to the
“dynamo” that drives their move [8, p. 334]. So, with the due adjustments, the
two approaches may be coexist, with the latter being more suitable to explain
why the block grows, and the former to describe what happens to the whole
growing block.

A further characteristic of processes is that they can finish anytime, with no
need of completion, so that they are open-ended, but not open-started. Suppose
for instance that a bicycle run started at 9, and was still continuing at 9:30 and
at 10. If somebody starts observing the run at 9:30, she may ascribe cumulative
properties to the process that started at 9:30, which is different from the one
that started 9, as indeed the former is a proper part of the latter.

Episodes behave in a very different way. While processes keep accumulat-
ing parts that are genuinely new, parts of episodes are somehow predefined a
priori, since, while still being able of later changes, they are conceptualised as
parts before being perceived (and therefore becoming present). Like processes,
episodes become present as soon as their first temporal part is present, but they
remain only partially present until becoming fully present when their culminat-
ing part becomes present. On the contrary, processes are always fully present,
since, whenever they are present, they have no parts that are not present yet.
Note that being fully/partially present is very different from being wholly/partly
present. Being wholly present means that all the parts are present, while being
5 In dolce, telic events are called accomplishments, while atelic events are distin-

guished into states and processes. Here, for the sake of simplicity, states are consid-
ered as a particular case of processes.

6 I will not discuss granularity issues here. Anyway, I am sympathetic with Galton’s
position according to which a walking process would be present even at a time when
the first step is still in the air, assuming that the intention to run remains constant.

484 N. Guarino

fully present means that there are no parts yet to be present (although some
parts may be past). Wholly presence implies fully presence, but not viceversa.

This means that episodes have essential parts that have to become present,
sooner or later, in order for the episode to be fully present7. For an episode, being
partially present means that there is a part that is not present yet. We are then
in the position to define the meaning of ongoing precisely: for processes, being
ongoing is just synonym of being present. For episodes, it means being partially
present. Although they are very different from each other, there is an important
relationship between episodes and processes: for an episode to be present at t,
there must be a corresponding realization process present at t. We shall say
that an episode is gradually embodied by a process. When the embodiment is
complete, the episode becomes fully present, so we may say it is constituted by
a process that is temporally co-located with it8.

Before explaining the embodiment notion more in detail, let me illustrate the
temporal behavior of processes and episodes by means of Fig. 1. Suppose e is a
football match episode, consisting of two parts, the first half (e1) and the second
half (e2). The figure shows that, when t1 is present (situation a), the process p

Fig. 1. Episode e being gradually embodied by process p. (a) describes the situation
where t1 is present, and (b) the situation when t2 is present. For the sake of generality,
reference times t1 and t2 are assumed as intervals and not as instants.

7 Of course, a past episode must have been fully present previously. Once an episode
of a given kind is aborted, it is not “registered” as an episode of that kind.

8 The fact that an episode and its realizing process are temporally co-located does not
mean that they have the same temporal parts. For instance, a process of walking
that happens to stop at the station is different from an episode of walking from
home to the station, since the focal qualities [10] of the two events are different:
some qualities of the station (its location) are in the focus of the latter, but not of
the former.

On the Semantics of Ongoing and Future Occurrence Identifiers 485

has been ongoing until then (its part located at t1 being the “moving front”),
embodying therefore e1, which has just become fully present. e is however only
partially present, since e2 is not present yet (it is still unembodied). When t2 is
present (situation b), since p has been continuing, e2 is now fully present as an
embodied part, and since it completes e, e is also fully present. e1 is not present
any more, still being an (embodied) part of e.

4 Ongoing and Future Events as Variable Embodiments

Let us now discuss in more detail what it means to consider events as variable
embodiments, and what are the practical consequences of this approach. The
notion of variable embodiment has been introduced by Fine [6], and then refined,
notably, by Moltmann [18,19]. Using Moltmann’s words,

“A variable embodiment, according to Fine, is an entity that allows for the

replacement of constituting material and thus may have different material man-

ifestations in different circumstances. Organisms and artifacts, in particular,

are variable embodiments. They allow for a replacement of constituting matter

and thus may have different material manifestations at different times. Variable

embodiments are not identical with their constituting matter, but rather are

entities associated with a function mapping a time to their material manifesta-

tion at the time. Variable embodiments differ from ‘rigid embodiments’, which

are entities that do not allow for a replacement of their immediate parts” [19,

p. 4].

A classic example of variable embodiment is a river, but for our purposes
the example of a lake is more appropriate. Of course, a lake may be filled with
different quantities of water at different times, and yet we say it remains the
same lake. According to Fine, the referent of ‘the water in the lake’ (in its de
dicto interpretation) is a variable embodiment. But also the lake itself, including
its basin, is a variable embodiment: using Fine’s words, we have therefore two
variable embodiments: a content (the water), and a container-cum-content (the
lake). Now we may admit that a lake is temporarily empty of water, and still it
is the same lake. This means that the content may lack its manifestation—the
water, but still the container-cum-content exhibits the properties necessary for
its identification, e.g., its geographical location. Another example closer to our
goals is ‘the book John needs to write’, which according to Moltmann [19] is a
variable embodiment that does not have a manifestation in the actual circum-
stances, but only in those circumstances in which John’s needs are fulfilled. She
uses here the variable embodiment mechanism to explain a reference to a future
object. The idea described in this paper is to use the same approach to also
explain references to future events. The possibility to consider temporal entities
as variable embodiments was briefly suggested by Kit Fine, but never exploited
in practice, as far as I know:

486 N. Guarino

“A process—such as the erosion of a cliff, for example—may be taken to be a

variable embodiment whose manifestations are the different states of erosion of

the cliff.” [6, p. 72]

In terms of their behavior as variable embodiments, there is a striking anal-
ogy, in my opinion, between a lake and the water that fills it, on one hand, and an
episode and the process that embodies it, on the other hand. A future episode
is like a dried lake: from the shape and the position of its basin we know—
roughly—where the lake is located, and similarly, on the basis of our previsions
and expectations, we know—roughly—where the future episode is (will be?)
located. The water that comes in is like the time that comes: the lake becomes
gradually “alive” (fully perceivable in all its aspects), being filled (embodied)
by water, while the episode becomes gradually present (fully perceivable in all
its aspects), being embodied by actual events. There are several differences, of
course. One is that the lake—at least at the beginning of the filling process—
embodies its parts synchronically, since when a new amount of water arrives the
previous one is still there, so all the embodied parts are present at each time the
lake is present. The episode, on the contrary, embodies its parts diachronically,
since when a part becomes present the previous one is not present any more,
so the embodied parts are spread out in time. This is a consequence of the fact
that the lake is an object, while the episode is an event9. A further difference
is that an episode may be embodied only once: because of the irreversibility of
time, once a part is embodied, it “freezes”.

On the other hand, it is easy to see that the water that gradually fills the lake
is analogous to the process that gradually embodies the episode. While the lake,
as a container-cum-content, exists without being embodied by the content, the
content exists only if it is embodied. Similarly, a future episode exists (at least
in the mind of somebody) as soon as its characteristics are uniquely determined,
but the process embodying it only exists when it becomes present.

In the light of this discussion, let us now consider the different properties
episodes and processes may have, how they are related to those of their embod-
iments, and why we can claim that events may be subjects of genuine change.
Following Moltmann [19, p. 5], a generic event, understood as a variable embod-
iment, will have, at a time t, some local properties (if any) inherited from those
of its embodiment at t, as well as global properties cumulatively depending on
previous embodiments. They will be both dynamic properties, since they may
change during the embodiment process. In addition, if the variable embodiment
is not just a content, but a container-cum-content, it will also have some proper-
ties that are specific of the container (say, specific of the lake’s size and location).
Although these properties may change in time, their truth does not depend on
what the actual embodiment is. They will be therefore static properties. Note
that a process has only dynamic properties, while an episode may have both
9 Indeed, a popular distinction between objects and events is based on the fact that

an object is wholly present whenever it is present, while an event is always par-
tially present. These notions are notoriously difficult to formalize [5], while they are
unproblematic under the present approach.

On the Semantics of Ongoing and Future Occurrence Identifiers 487

dynamic and static properties. In particular, the expected starting and ending
times of a future episode (or its temporal location) may be considered as static
properties. The actual starting time will be the starting time of the process that
embodies the episode. Also, the mereological properties of an episode (having
or not a particular part, or a part of a certain kind) can be considered as static
properties. An important consequence of having such static properties is that
among them there are those that are essential for an episode, contributing in
this way to endow it with a rigid identifier (OID).

Let us consider now the properties mentioned in the introduction:

1. Local properties: the speed of a process, at a time t, can be defined as the
average speed of its moving front at t (speed is therefore understood as a
quality of an event). The speed of an ongoing event will be just the speed of
its realization process.

2. Cumulative properties: the score of a football match, at a time t, is a global
property of its embodying process at t.

3. Contextual properties: these are local properties of (the moving front of) the
realization process, which are inherited by the ongoing episode. For instance,
a football match may have the property of being under the sunshine at time
t1, and under the rain at time t2.

4. Modal properties: because of the way they have been defined, both processes
and episodes are perfect bearers of modal properties, as long as they are
ongoing or future. So, an ongoing process may evolve in one way or another, a
future flight may change its starting and ending times, and an ongoing match
may end with a tie or not. On the contrary, past episodes and processes are
considered as “frozen”, and for them the standard assumptions concerning
events still apply.

In conclusion, let me recap the reasons why I claim that events—so
conceived—may be subjects of genuine change. In the view I have presented,
an event’s change is not just a variation concerning two different temporal parts
that have different properties. The presence of cumulative properties is perhaps
the most vivid example why this is not so. A cumulative property is a global
property of an event, reflecting at a given time the contribution of multiple past
temporal parts. If the same event (say, the football match) has the cumulative
property P at time t1 and P ′ at time t2, then we can say it has genuinely
changed.

5 A Preliminary Axiomatization

In the following, I will adopt a standard tenseless parthood relation P (x, y)
for intervals of time, and a tensed version P (x, y, t) to express the dynamic
mereological behavior of events. Both of them will be assumed to satisfy the
axioms of standard extensional mereology, which I will omit here for the sake of
space (note that, differently from [3], these axioms are not constrained to hold
only when the arguments of P are present).

488 N. Guarino

I will also rely on Allen’s interval logic [1] to express some useful temporal
relations holding between temporal entities each of which can be either an event
of a time interval. Since, on the basis of previous discussion, I am assuming that
events’ temporal location may change in time, I will add a temporal index to
express the time interval that is assumed to be present when the temporal rela-
tion holds. For the sake of simplicity, I will consider these relations as primitives,
omitting their axiomatization (notice that they are mutually exclusive):

(D1) Sts(x, y, t) (when t is present, x starts y)
(D2) Fin(x, y, t) (when t is present, x finishes y)
(D3) Drn(x, y, t) (when t is present, x is during y)
(D4) Ovl(x, y, t) (when t is present, x overlays y)
(D5) Cloc(x, y, t) (when t is present, x and y are colocated in time)
(D6) Ins(x, y, t) � Sts(x, y, t) ∨ Drn(x, y, t) ∨ Fin(x, y, t) ∨ Cloc(x, y, t)

Note that, according to (D6), being inside an event means just happening while
the event is ongoing, without necessarily being a temporal part of it. We shall
define the notion of temporal part as follows:

(D7) TP (x, y, t) � Ins(x, y, t) ∧ P (x, y, t) ∧ ¬∃z(Ins(x, y, t) ∧ ¬P (z, x, t))

So the temporal part of an event includes all the parts (such as spatial parts)
that are co-located in certain interval of the event’s time span. Now we can
characterize the mereological behavior of presence in time as follows:

(A1) Pre(x, t) ∧ P (t, t′) → Pre(x, t′)
(A2) Pre(x, t) → ∃y(TP (y, x, t) ∧ Pre(y, t))
(A3) Pre(x, t) ∧ Ins(x, y, t) → Pre(y, t)
(A4) P (x, y, t) ∧ Pre(x, t) ∧ t′ > t → P (x, y, t′)
(D8) FP (x, t) � Pre(x, t)∧∀y(P (y, x, t) → Pre(y, t)∨∃t′(Pre(y, t′)∧ t′ < t))

Note that, according to (A2), if an event is present at t, then it is not necessarily
wholly present at t. The interpretation of the presence predicate is therefore
different from [3], since it does not admit presence dissectivity. Axiom (A3) links
the presence of an event with the presence of a co-located event. (A4) states
that, as soon as a part of an event becomes present, it keeps being a part at any
future time; this means that past events, but not future or ongoing events, cannot
change their parts in time. Finally, (D8) defines the notion of full presence.

After these general axioms, let us now constrain the specific behavior of
processes (Pr) and episodes (Ep):

(A5) Pr(x) → (Pre(x, t) ↔ Ovl(x, t, t) ∨ Fin(t, x, t))
(A6) Ep(x) → (Pre(x, t) ↔ ∃yz(Pr(y)∧TP (z, x, t)∧Sts(z, x, t)∧Rlz(y, z, t))
(A7) Rlz(x, y, t) → (Pr(x) ∧ Ep(y) ∧ Pre(y, t) ∧ Cloc(x, y))

Axiom (A5) conveys the essence of the approach I presented. In practice, a
process is an event with a moving front, since whenever it is present at t it must
be such that the interval t overlaps or coincides with its ending part. All the
other parts except the moving front are located in the past. In other words, a
part of a process is present only if it is present at the front. On the other hand,

On the Semantics of Ongoing and Future Occurrence Identifiers 489

according to (A2), if a process is present at t, then it has always a part “at its
front”.

Axiom (A6) constrains the way episodes are present. For an episode, to be
present means that there is an ongoing process that has just realized an initial
part of it. Rlz(x, y, t) is a primitive standing for ‘x is a realization of y at time
t’, which is only constrained by axiom (A7). Clearly this notion may deserve to
be analyzed more in detail, as it implies some notion of causality, but this is
outside the scope of the present paper.

6 Related Work and Conclusions: Let’s Defrost Events!

I am well aware that the views expressed here may be seen as rather unconven-
tional, so it is a bit difficult to compare them properly with previous approaches
to conceptual modeling, besides the few I mentioned already [7–9,11]. Most of
the work in temporal databases deals with temporal aspects of objects without
including events explicitly in the domain, and those who consider events typically
see them as instantaneous. An exception is the work by Terenziani et al. [14,22],
who admit events as extended in time and explicitly account for the difference
between telic events (episodes) and atelic ones (processes and states), although
they (obviously) limit themselves to historical events. Another paper addressing
the ontological foundations of events in conceptual modeling in the framework
of the ufo ontology is the one by Guizzardi et al. [12], which presents some
modeling patterns to account for complex events and temporal relationships,
again limited to the case of historical events. Of course this is a preliminary
work, whose main relevance—independently of the ontological details discussed
here—would be to show that ongoing and future events can actually be endowed
with rigid identifiers, and hence be considered as first-class citizens, without the
restrictions coming from the view that considers them as frozen in time.

In the future, I plan to integrate this approach with the general theory of
events, scenes, and relationships presented in [10], hopefully finding a way to
harmonize it with the notion of process developed by Galton and Mizoguchi. On
the application side, I plan to consider specific practical cases, especially those
involving business processes and service systems, which seem to rely on a notion
of activity poorly formalized so far.

Acknowledgements. I am grateful to Giancarlo Guizzardi and Tiago Prince Sales for
some interesting discussions that motivated the need for this approach. I am also very
grateful to Antony Galton and the anonymous reviewers for their constructive com-
ments. Part of this work has been done in the framework of project ‘KAOS: Knowledge-
Aware Operational Support’, funded by the Euregio Tirol-Südtirol-Trentino.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

490 N. Guarino

2. Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology.
MIT Press, Cambridge (2015)

3. Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. IHIS, pp. 361–381. Springer, Heidelberg (2009).
doi:10.1007/978-3-540-92673-3 16

4. Casati, R., Varzi, A.C.: Events. In: Stanford Encyclopedia of Philosophy (2014)
5. Crisp, T.M., Smith, D.P.: ‘Wholly present’ defined. Philos. Phenomenol. Res.

71(2), 318–344 (2005)
6. Fine, K.: Things and their parts. Midwest Stud. Philos. 23(1), 61–74 (1999)
7. Galton, A.: On what goes on: the ontology of processes and events. In: Bennett,

B., Fellbaum, C. (eds.) Formal Ontology in Information Systems, pp. 3–11 (2006)
8. Galton, A.: Experience and history: processes and their relation to events. J. Logic

Comput. 18(3), 323–340 (2007)
9. Galton, A., Mizoguchi, R.: The water falls but the waterfall does not fall: new

perspectives on objects, processes and events. Appl. Ontol. 4(2), 71–107 (2009)
10. Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of

reification and truthmaking. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M.
(eds.) AI*IA 2016. LNCS, vol. 10037, pp. 237–249. Springer, Cham (2016). doi:10.
1007/978-3-319-49130-1 18

11. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the
representation of events and endurants in business models. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham
(2016). doi:10.1007/978-3-319-45348-4 2

12. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida,
J.P.A.: Towards ontological foundations for the conceptual modeling of events. In:
Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41924-9 27

13. Hawley, K.: How Things Persist. Clarendon Press, Oxford (2001)
14. Khatri, V., Ram, S., Snodgrass, R.T., Terenziani, P.: Capturing telic/atelic tem-

poral data semantics: generalizing conventional conceptual models. IEEE Trans.
Knowl. Data Eng. 26(3), 528–548 (2015)

15. Lombard, L.B.: Events. A Metaphysical Study. International Library of Philosophy.
Routledge and Kegan Paul, London (1986)

16. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: The DOLCE
ontology. Technical report Deliverable D18, European Community, IST Project
2001–33052 “WonderWeb: Ontology Infrastructure for the Semantic Web” (2003)

17. Merricks, T.: Endurance and indiscernibility. J. Philos. 91(4), 165–184 (1994)
18. Moltmann, F.: Abstract Objects and the Semantics of Natural Language. Oxford

University Press, Oxford (2013)
19. Moltmann, F.: Variable objects and truthmaking. In: Dumitru, M. (ed.) Meta-

physics, Meaning, and Modality. Oxford University Press, Oxford (2014)
20. Scheer, R.K.: Knowledge of the future. Mind 80(318), 212–226 (1971)
21. Stout, R.: Processes. Philosophy 72(279), 19–27 (1997)
22. Terenziani, P.: Coping with events in temporal relational databases. IEEE Trans.

Knowl. Data Eng. 25(5), 1181–1185 (2013)
23. Wieringa, R.J., De Jonge, W.: Object identifiers, keys, and surrogates: object iden-

tifiers revisited. Theory Pract. Object Syst. 1(2), 1–18 (1995)
24. Zimmerman, D.W.: The a-theory of time, the b-theory of time, and “taking tense

seriously”. Dialectica 59(4), 401–457 (2005)

http://dx.doi.org/10.1007/978-3-540-92673-3_16
http://dx.doi.org/10.1007/978-3-319-49130-1_18
http://dx.doi.org/10.1007/978-3-319-49130-1_18
http://dx.doi.org/10.1007/978-3-319-45348-4_2
http://dx.doi.org/10.1007/978-3-642-41924-9_27

Ontological Evolutionary Encoding to Bridge
Machine Learning and Conceptual Models:

Approach and Industrial Evaluation

Ana C. Marcén1,2(B), Francisca Pérez2, and Carlos Cetina2

1 Centro de Investigación en Métodos de Producción de Software,
Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

acmarcen@usj.es
2 SVIT Research Group, Universidad San Jorge,

Autov́ıa A-23 Zaragoza-Huesca Km. 299, 50830 Zaragoza, Spain
{mfperez,ccetina}@usj.es

Abstract. In this work, we propose an evolutionary ontological encod-
ing approach to enable Machine Learning techniques to be used to per-
form Software Engineering tasks in models. The approach is based on
a domain ontology to encode a model and on an Evolutionary Algo-
rithm to optimize the encoding. As a result, the encoded model that is
returned by the approach can then be used by Machine Learning tech-
niques to perform Software Engineering tasks such as concept location,
traceability link retrieval, reuse, impact analysis, etc. We have evaluated
the approach with an industrial case study to recover the traceability link
between the requirements and the models through a Machine Learning
technique (RankBoost). Our results in terms of recall, precision, and the
combination of both (F-measure) show that our approach outperforms
the baseline (Latent Semantic Indexing). We also performed a statistical
analysis to assess the magnitude of the improvement.

Keywords: Machine learning · Traceability link recovery · Evolutionary
computation · Model driven engineering

1 Introduction

Machine Learning (ML) is known as the branch of artificial intelligence that
gathers statistical, probabilistic, and optimization algorithms, which learn empir-
ically. ML has a wide range of applications, including search engines, medical
diagnosis, text and handwriting recognition, image screening, load forecasting,
marketing and sales diagnosis, etc. Even though the research on ML has been
applied in Software Engineering tasks that target source code artifacts [7,33],
other software artifacts such as conceptual models have been neglected.

Most of the ML techniques are designed to process feature vectors as inputs
[8]. Feature vectors are known as the ordered enumeration of features that char-
acterize the object being observed [10]. Therefore, to apply ML techniques in
c© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 491–505, 2017.
https://doi.org/10.1007/978-3-319-69904-2_37

492 A.C. Marcén et al.

models, the first challenge consists in identifying the features from models and
selecting the most suitable ones to encode the models in feature vectors.

In this work, we propose the Ontological Evolutionary Encoding (OnEvEn)
approach, which allows models to be encoded in feature vectors. The approach is
based on a domain ontology to transform each model to a feature vector and on
Evolutionary Computation to perform the selection of the most relevant features.
Once the most relevant features have been selected, the approach generates as
output the feature vectors from the models according to the selected features.
Then the ML techniques can make use of these feature vectors to perform Soft-
ware Engineering tasks.

The presented approach was evaluated in CAF1, a worldwide provider of
railway solutions. Thanks to our OnEvEn approach, their models were encoded,
making it possible for a ML technique (RankBoost [16] that belongs to the family
of Learning to Rank) to take advantage of these encoded models to recover
the traceability between the requirements and the models. The outcome shows
that our approach provides the best results, and proves that the approach can
be applied in a real world environment. The statistical analysis of the results
assesses the magnitude of the improvement.

The contribution of this paper is twofold. First, we show how to encode
models by means of our OnEvEn approach in order to be able to apply ML in
models. Second, we provide evidence that by using our OnEvEn approach, ML
techniques are applicable to Software Engineering tasks such as traceability link
recovery between the requirements and the models.

The remainder of this paper is structured as follows: Sect. 2 presents our
OnEvEn approach. Section 3 provides the evaluation carried out. Section 4
describes the threats to validity. Section 5 presents the related work, and Sect. 6
concludes the paper.

2 The OnEvEn Approach

The objective of the OnEvEn approach is to provide the encoding of a model in
the form of a feature vector. To do this, the approach consists of three phases (see
Fig. 1): Ontological Encoding, Evolutionary Encoding, and Feature Selection. In
the first phase, the approach encodes the model based on a domain ontology.
In the second phase, the approach generates a mask, taking advantage of a
knowledge base. In the third phase, the approach applies the mask to the feature
vector that is the result of the Ontological Encoding. As output, the approach
generates a feature vector, which is the encoding of the model.

The input of the approach consists of a model, a domain ontology, and the
knowledge base that is provided by domain experts. Specifically, the knowledge
base consists in a set of triplets that are generated using the domain experts’
experience, results, and documentation. In Fig. 1, each triplet of the knowledge
base is composed of a requirement description, a model whose fragment is marked
by a dashed square with different background, and an assessment.
1 www.caf.net/en.

www.caf.net/en

Ontological Evolutionary Encoding to Bridge Machine Learning 493

Knowledge Base

Model
Fragment

Composition

Car2

Door3

Button

Door1

Car1 Car3

Door2

Requirement
Description

The system turns on
the led of the button

that closes the
doors of one side of
the train if all the

doors of the
correspondent side

are closed or
convicted.

Assessment

3.5 / 4

1 Ontological
Encoding

2 Evolutionary
Encoding

3 Feature
Selection

Mask

C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6

Model

Car1

Composition

Car2

Door3Door1

Button1 Button2

Door2

Control Panel

Button3

Cabin

Feature Vector

C1 C2 C3 C4 C5 C6
1 2 3 3 1 1

R1 R2 R3 R4 R5 R6
2 3 3 3 1 1

Ontology

R1

R2

R3R4

R5

R6

CarC2CabinC6

CompositionC1

DoorC3

ButtonC4

Control PanelC5

OnEvEn

C2 C3 C5
2 3 1

R1 R2 R3 R5 R6
2 3 3 1 1

Feature Vector

Fig. 1. Overview of our OnEvEn approach.

The requirement description uses natural language to define the requirement.
The model fragment consists of an element or a set of elements that belongs to
a model. To formalize these model fragments, we use the Common Variability
Language (CVL) [27]. The assessment determines if the model fragment realizes
the requirement to a greater or lesser extent. That is, the assessment determines
the similarity between the requirement description and the model fragment.

Figure 1 shows an example of the knowledge base to perform requirement
traceability. However, if we plan to perform concept location [21], the knowledge
base would be composed of concept descriptions, model fragments, and assess-
ments. Therefore, the knowledge base depends on the Software Engineering task
that is going to be performed.

2.1 Ontological Encoding Phase

In this first phase, the model is turned into a feature vector based on the domain
ontology. We consider each concept and relation in the ontology as a feature in
the feature vector. The value of each feature is computed as the frequency of
the concept or the relation in the model. Therefore, the output of this phase is a
feature vector that represents the model, taking into account the concepts and
the relations of the ontology.

494 A.C. Marcén et al.

The Fig. 1 shows examples of a model, an ontology, and the feature vector
that would be generated by this first phase. Concepts and relations of the ontol-
ogy are features in the feature vector. For example, the concept Door is mapped
as C3, and the relation between the concepts Cabin-Control Panel is mapped
as R5. Moreover, their values correspond to the number of occurrences of these
features in the model. Therefore, the value of the feature C3 is 3 because there
are 3 doors in the model, and the value of the feature R5 is 1 because there is
1 relation of type Cabin-Control Panel.

Once a model is encoded in form of feature vector, ML techniques can use the
feature vector to perform Software Engineering tasks. However, the performance
of the ML techniques is affected by the redundant and useless features, so Feature
Selection is an important step for the approaches that apply ML techniques [23].
For this reason, the following phase performs the selection of the most relevant
features.

2.2 Evolutionary Encoding Phase

This section details the Evolutionary Encoding phase of OnEvEn approach.
This phase involves four steps (see Fig. 2): Generation Initial Mask Population,
Genetic Operations, Fitness Function, and Top Mask. This phase relies on an
Evolutionary Algorithm that iterates a population of masks and evolves them
using genetic operations. As output, the phase provides the top mask, which
enables only the features that optimize the model encoding.

2.1 Generate Initial
Masks Population

Ontology

Initial Masks
Population

Masks
Population

Rank of Masks

Weighted Masks
Population

yes

no converges?

Knowledge Base

Model
Fragment

Requirement
Description

Assessment

2.2 Genetic
Operations

2.3 Fitness Function

Mask

Evolutionary
Encoding2

2.4 Top Mask

Fig. 2. Details of the evolutionary encoding phase of the OnEvEn approach.

Ontological Evolutionary Encoding to Bridge Machine Learning 495

Generate Initial Masks Population. The first step is to generate randomly
a population of masks. Figure 1 shows an example of a mask. Each position of
the mask indicates if a concept or relation that belongs to the ontology is enabled
or disabled. In order words, if the concept or the relation should be used or not
for the encoding.

Genetic Operations. The second step is to generate a set of masks that could
optimize the model encoding. The generation of masks is done by applying
genetic operators that are adapted to work on masks. In other words, new masks
that are based on the existing ones are generated through the use of two genetic
operators: the mutation and the crossover.

I. The crossover operator is used to imitate the sexual reproduction that is
followed by some living beings in nature to breed new individuals. In other
words, two individuals mix their genomic information to give birth to a new
individual that holds some genetic information from one parent and some
from the other one. This could make that the new individual adapt better
(or worse) to its living environment depending on the genetic information
inherited from its parents. Following this idea, our crossover operator that is
applied to masks takes two masks as input and combines them into two new
individuals.

II. The mutation operator is used to imitate the mutations that randomly occur
in nature when new individuals are born. In other words, a new individual
has a small difference with respect to its parents that could make it adapt
better (or worse) to its living environment. Following this idea, the mutation
operator that is applied to masks takes a mask as input and mutates it into a
new one that is produced as output. Specifically, the mutation operator can
perform randomly two kinds of modifications based on the features, to enable
a feature that is disabled in the mask, or vice versa, to disable a feature that
is enabled in the mask.

Fitness Function. The third step of the process consists of the assessment of
each candidate mask that is produced according to a fitness function. The fitness
score of each mask in the population is calculated as follows:

I. Knowledge Base Encoding generates a set of feature vectors, which correspond
to the triplets of the knowledge base. To encode a triplet, the main terms of
the requirement description and the model fragment are extracted using well-
established Information Retrieval (IR) techniques: tokenizer, Parts-of-Speech
(POS) tagging technique, and stemming techniques. Then, these terms are
used to generate the feature vector as the Sect. 2.1 describes.

II. Training and Testing are performed by means of cross-validation [20].
Cross-validation consists of randomly dividing the knowledge base into k-
independent partitions. Then, k − 1 of the partitions are used to train a
classifier, which consists in a rule-set that is learnt from a given knowledge

496 A.C. Marcén et al.

base [26]. Then, this classifier is used to test the partition that is left out.
This procedure is repeated k times, each time leaving out another partition.
This produces k estimations of the classifier, allowing assessment of its central
tendency and variance [18].

III. Assignment of the Fitness Score is performed according to the central ten-
dency and variance that are obtained for the classifier. Therefore, the fitness
score assesses the relevance of each mask candidate based on how much the
results are optimized by using this mask.

IV. Loop At this point, if the stop condition is met, the process will stop return-
ing the rank of the masks. If the stop condition has not been met yet, the
Evolutionary Algorithm will keep its execution one generation more.

Top Mask. The mask with the highest fitness score will be the top mask. This
step returns the top mask as output, which allows the model encoding to be
optimized by selecting only the most relevant features.

2.3 Feature Selection Phase

In the third phase, we apply feature selection on the feature vector that is
obtained in the first phase. To do so, the mask that is generated in the second
phase is used to reduce the features of the feature vector. As the Fig. 1 shows,
each disabled feature in the mask is discarded in the feature vector. Therefore,
the feature vector is only composed by the features that are enabled in the mask.
As output, our OnEvEn approach returns this feature vector as encoding of the
model. In fact, taking into account that the mask is generated to select the most
relevant features and avoid the useless and redundant features, the feature vec-
tor obtained is able to optimize the performance of ML technique that is used
to perform Software Engineering tasks in models.

3 Evaluation

This section presents the evaluation of our approach: the experimental setup, a
description of the case study where we applied the evaluation, the implementa-
tion details, the obtained results, and the statistical analysis.

3.1 Experimental Setup

The goal of this experiment is to determine if our OnEvEn approach can be used
to encode models so that the ML techniques can take advantage of the encoding
to perform Software Engineering tasks. In addition, we compare the OnEvEn
approach with a baseline.

Figure 3 shows an overview of the process that was followed to evaluate the
baseline and our OnEvEn approach. The top part shows the documentation
provided by our industrial partner: the requirements, the product models, and

Ontological Evolutionary Encoding to Bridge Machine Learning 497

the approved traceability between requirements and product models. The Test
Cases are prepared from the documentation provided by our industrial part-
ner, and each test case comprises a requirement and a model fragment of each
product model that might be relevant for that requirement. The ontology and
the knowledge base that our approach uses as input are provided by a domain
expert.

On the one hand, the baseline approach (see the dotted red elements of
Fig. 3) uses Latent Semantic Indexing (LSI) to analyze the relevance between
requirements provided in Test Cases and the model fragments. There are many
Information Retrieval techniques, but most research efforts show better results
when applying LSI [24]. On the other hand, our approach (see the solid blue
elements of Fig. 3) encodes the models in both the Test Cases and the knowledge
base in order to enable the application of ML techniques to models. In this
evaluation, we use RankBoost [16] for the ML classifier. RankBoost belongs to
the family of Learning to Rank (LETOR) ML algorithms that automatically
address ranking tasks [31]. LETOR has been successfully applied in a lot of
fields [9] like document retrieval, collaborative filtering, expert finding, anti web
spam, sentiment analysis, product rating, and feature location. Our OnEvEn
approach enables the application of LETOR to models.

Test Cases

Our
OnEvEn

approach

Ontology

Knowledge
Base

Requirements Product
Models

Approved
Traceability

Documentation From Industrial Partner

Baseline Baseline
Results

Calculation
of Confusion

Matrix

Oracle

OnEvEn
R&P Report

Baseline
R&P Report

Calculation
of Confusion

Matrix

OnEvEn
Results

Encoded
Test Cases

Machine
Learning
ClassifierEncoded

Knowledge
Base

Fig. 3. Experimental setup

We run the baseline and OnEvEn to obtain as results a ranking of relevant
model fragments for each requirement of the Test Cases. Next, we first take
the best solution of the ranking of the baseline approach, and then we take the
best solution of the ranking of the OnEvEn approach. These best solutions are
then compared with an oracle, which is the ground truth. The oracle is prepared
using the approved traceability provided by our industrial partner. Once the
comparison is performed, a confusion matrix for each approach is calculated.

A confusion matrix is a table that is often used to describe the performance
of a classification model (in this case both the baseline and OnEvEn) on a set
of test data (the best solutions) for which the true values are known (from the
oracle). In our case, each solution outputted by the approaches is a model frag-
ment composed of a subset of the model elements that are part of the product

498 A.C. Marcén et al.

model. Since the granularity is at the level of model elements, each model ele-
ment presence or absence is considered as a classification. The confusion matrix
distinguishes between the predicted values and the real values classifying them
into four categories:

– True Positive (TP): values that are predicted as true (in the solution) and
are true in the real scenario (the oracle).

– False Positive (FP): values that are predicted as true (in the solution) but
are false in the real scenario (the oracle).

– True Negative (TN): values that are predicted as false (in the solution) and
are false in the real scenario (the oracle).

– False Negative (FN): values that are predicted as false (in the solution) but
are true in the real scenario (the oracle).

Then, some performance measurements are derived from the values in the
confusion matrix. In particular, we create a report including three performance
measurements (recall, precision, and F-measure), for each of the test cases for
both the baseline and OnEvEn.

Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution and is defined as follows:

Recall =
TP

TP + FN

Precision measures the number of elements from the solution that are correct
according to the ground truth (the oracle) and is defined as follows:

Precision =
TP

TP + FP

F-measure corresponds to the harmonic mean of precision and recall and is
defined as follows:

F − measure = 2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2TP + FP + FN

Recall values can range between 0% (which means that no single model ele-
ment from the realization of the requirement obtained from the oracle is present
in any of the model fragments of the solution) to 100% (which means that all the
model elements from the oracle are present in the solution). Precision values can
range between 0% (which means that no single model fragment from the solu-
tion is present in the realization of the requirement obtained from the oracle) to
100% (which means that all the model fragments from the solution are present
in the requirement realization from the oracle). A value of 100% precision and
100% recall implies that both the solution and the requirement realization from
the oracle are the same.

Ontological Evolutionary Encoding to Bridge Machine Learning 499

3.2 CAF Case Study

The case study where we applied our approach was CAF, a worldwide provider
of railway solutions. Their trains can be found all over the world and in different
forms (regular trains, subway, light rail, monorail, etc.). A train unit is furnished
with multiple pieces of equipment through its vehicles and cabins. These pieces
of equipment are often designed and manufactured by different providers, and
their aim is to carry out specific tasks for the train. Some examples of these
devices are: the traction equipment, the compressors that feed the brakes, the
pantograph that harvests power from the overhead wires, and the circuit breaker
that isolates or connects the electrical circuits of the train. The control software
of the train unit is in charge of making all the equipment cooperate to achieve the
train functionality, while guaranteeing compliance with the specific regulations
of each country.

Our evaluation is made up of 29 test cases, 247 concepts and 161 relationships
in the ontology, and 102 triplet in the knowledge base. It is important to highlight
that the requirements and the models of the knowledge base are different from
the requirements and models of the test cases. The requirements have about 50
words and the models have about 1200 elements. For each test case, we followed
the experimental setup described in Fig. 4. Finally, each test case was run 30
times. As suggested by [6], given the stochastic nature of OnEvEn approach,
several repetitions are needed to obtain reliable results.

3.3 Implementation Details

We have used the Eclipse Modeling Framework to manipulate the models and
CVL to manage the model fragments. The IR techniques used to process the
language have been implemented using OpenNLP [1] for the POSTagger and
the English (Porter 2) [3] stemming algorithm. LSI has been implemented using
the Efficient Java Matrix Library (EJML [2]). The genetic operations are built
upon the Watchmaker Framework for Evolutionary Computation [13]. Finally,
RankBoost has been implemented using the library RankLib [11].

For the settings of the evolutionary algorithm of OnEvEn, we have mainly
chosen values that are commonly used in the literature [25]. As suggested by [6],
tuned parameters can outperform default values generally, but they are far from
optimal in individual problem instances. Therefore, the objective of this paper
is not to tune the values to improve the performance of our algorithm.

3.4 Results

This subsection presents the results obtained for each of the Test Cases by both
the baseline and OnEvEn. Figure 4 shows the charts with the recall and precision
results for the baseline (in the left side of the figure) and OnEvEn (in the right
side of the figure). A dot in the graph represents the average result of precision
and recall for each of the 29 Test Cases for the 30 repetitions.

500 A.C. Marcén et al.

Baseline
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0
R
ec

al
l(
%
)

Precision (%)

Our OnEvEn Approach
●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●● ●

●

0
20

40
60

80
10

0
R
ec

al
l(
%
)

0 20 40 60 80 100
Precision (%)

Fig. 4. Mean recall and precision values for baseline and OnEvEn approaches

Table 1 shows the mean values of recall, precision and F-measure of the graphs
for both the baseline and OnEvEn. OnEvEn obtains the best results in recall
and precision, providing an average value of 90.47% in recall and 75.19% in
precision. The baseline obtains an average value of 84.22% in recall and 43.97%
in precision. Hence, OnEvEn outperforms the baseline.

Table 1. Mean Values and Standard Deviations for Precision, Recall, and the F-
Measure for Baseline and OnEvEn

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Baseline 84.22 ± 9.58 43.97 ± 26.81 52.61 ± 23.35
OnEvEn 90.47 ± 9.68 75.19 ± 22.37 79.99 ± 15.33

3.5 Statistical Analysis

Statistically significant differences can be obtained even if they are so small as
to be of no practical value [5]. Then it is important to assess if an approach is
statistically better than another and to assess the magnitude of the improvement.
Effect size measures are needed to analyze this.

For a non-parametric effect size measure, we use Vargha and Delaney’s Â12

[28]. Â12 measures the probability that running one approach yields higher values
than running another approach. If the two approaches are equivalent, then Â12

will be 0.5.
The Â12 value for recall between our OnEvEn approach and the baseline is

0.6938, which means that we would obtain better results for recall in 69.38%
of the runs with OnEvEn. With regard to the precision, the Â12 value between
OnEvEn and the baseline is 0.8056, which shows a superiority of OnEvEn since
its results are better in 80.56% of the runs. Hence, these results confirm that the
use of our OnEvEn approach has impact on the results, specially on the results
for precision.

Ontological Evolutionary Encoding to Bridge Machine Learning 501

4 Threats to Validity

In this section, we use the classification of threats of validity of [29] to acknowl-
edge the limitations of our approach.

Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have in
mind. To minimize this risk, our evaluation is performed using three measures:
precision, recall, and the F-measure. These measures are widely accepted in
the software engineering research community.

Internal Validity: This aspect of validity is of concern when causal relations are
examined. There is a risk that the factor being investigated may be affected
by other neglected factors. RankBoost tend to overfit when the dataset is
not large enough and there are many features [30]. Therefore, the number of
triplets in our knowledge base may look small. However, Feature Selection
in ML enables to avoid overfitting [19] so this threat has been reduced by
Feature Selection through the Evolutionary Algorithm.

External Validity: This aspect of validity is concerned with to what extent it
is possible to generalize the finding, and to what extent the findings are of
relevance for other cases. Our OnEvEn approach is designed to encode models
for using ML techniques, but there must be an ontology and a knowledge base.
If these conditions are satisfied, the models of any domain could be encoded
using this approach. Nonetheless, OnEvEn should be applied to other domains
before assuring its generalization.

Reliability: This aspect is concerned with to what extent the data and the
analysis are dependent on the specific researchers. To reduce this threat, the
creation of the ontology and the knowledge were performed by a domain
expert who was not involved in the research. Moreover, the requirements
descriptions and the product models were provided by our industrial partner.

5 Related Work

In this section, we present the related works, which are divided into two parts.
First, we overview research on Feature Selection. Second, we overview research
papers on Requirements Traceability.

5.1 Feature Selection

Haiduc et al. [17] perform feature selection among 21 measures using the gain
ratio technique during the retrieval of software artifacts. Ye et al. [34] apply
feature selection in mapping bug reports to identify the features that have the
most impact on the ranking performance. However, our approach makes use of
models instead of other software artifacts such as source code and of a domain
ontology as a basis for identifying the features.

502 A.C. Marcén et al.

Evolutionary Computation techniques have also recently been applied in Fea-
ture Selection. Xue et al. [32] present a survey of the state-of-art work on Evo-
lutionary Computation for feature selection in different fields such as image
analysis, text mining, and gene analysis. Our approach also takes advantage
of Evolutionary Computation to perform feature selection, but it focuses on a
domain ontology to encode models and on these encoded models to perform
Software Engineering tasks.

5.2 Requirements Traceability

CERBERUS [15] provides a hybrid technique that combines information
retrieval, execution tracing, and prune dependency analysis allowing to trace
requirements to source code. Eaddy et al. [14] presents a systematic method-
ology for identifying which code is related to which requirement, and a suite
of metrics for quantifying the amount of crosscutting code. Antoniol et al. [4]
propose a method based on information retrieval to recover traceability links
between source code and free text documents, such as, requirement specifica-
tions, design documents, manual pages, system development journals, error logs,
and related maintenance reports. Zisman et al. [35] automate the generation of
traceability relations between textual requirement artifacts and object models
using heuristic rules. These approaches recover the traceability between source
code and requirements. In contrast, our work recovers the traceability between
requirements and models instead of source code.

Some works rely on models as the software artifacts to perform traceability.
De Lucia et al. [12] present a traceability recovery method and tool based on LSI
in the context of an artifact management system. Marcus and Maletic [22] use
LSI for recovering the traceability relations between source code and documenta-
tion (manual, design documentation, requirement documents, test suites, etc.).
Our approach makes it possible for a ML technique (Rank Boost) to take advan-
tage of encoded models to recover traceability links between the requirements
and the models. Our results show that Rank Boost significantly outperforms
LSI in traceability link recovery between the requirements and the models of
our industrial partner.

6 Conclusion

Machine Learning (ML) has a wide range of successful applications but current
research efforts have neglected the application of ML to models. In this paper,
we propose OnEvEn approach that encodes models in order to enable the appli-
cation of ML techniques to models. We also show that by using our OnEvEn
approach, ML techniques are applicable to Software Engineering tasks such as
traceability link recovery between the requirements and the models.

We evaluate our OnEvEn approach in terms of precision, recall and F-
measure. To do so, we compared it to a baseline in an industrial domain (firmware

Ontological Evolutionary Encoding to Bridge Machine Learning 503

of train PLCS with CAF). We report our evaluation, including: experimental
setup, results, statistical analysis, and threats to validity.

The results show that enabling the application of ML techniques by means
of OnEvEn pays off for traceability link recovery. Results also show that our
approach can be applied in real world environments. The statistical analysis of
the results assesses the magnitude of the improvement of our approach.

Acknowledgments. This work has been developed with the financial support of the
Spanish Ministry of Economy and Competitiveness under the project TIN2016-80811-
P and co-financed with ERDF. We also thank both ITEA3 15010 REVaMP2 Project
and MINECO TIN2015-64397-R VARIAMOS Project.

References

1. Apache opennlp: Toolkit for the processing of natural language text. https://
opennlp.apache.org/. Accessed Apr 2017

2. Efficient Java matrix library. http://ejml.org/. Accessed Apr 2017
3. The English (porter2) stemming algorithm. http://snowball.tartarus.org/

algorithms/english/stemmer.html. Accessed Apr 2017
4. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-

ability links between code and documentation. IEEE Trans. Softw. Eng. 28(10),
970–983 (2002)

5. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2014)

6. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empirical Softw. Eng. 18(3), 594–623
(2013)

7. B Le, T.D., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault local-
ization approach using likely invariants. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis, pp. 177–188. ACM (2016)

8. Bianchini, M., Maggini, M., Jain, L.C.: Handbook on Neural Information Process-
ing. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36657-4

9. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise
approach to listwise approach. In: Proceedings of the 24th International Conference
on Machine Learning, ICML 2007, pp. 129–136. ACM, New York (2007)

10. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput.
Electr. Eng. 40(1), 16–28 (2014)

11. Dang, V.: The lemur project - wiki - ranklib (2013). http://sourceforge.net/p/
lemur/wiki/RankLib/. Accessed Apr 2017

12. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact man-
agement system with traceability recovery features. In: Proceedings of 20th IEEE
International Conference on Software Maintenance, pp. 306–315. IEEE (2004)

13. Dyer, D.: The watchmaker framework for evolutionary computation (evolution-
ary/genetic algorithms for Java). http://watchmaker.uncommons.org/. Accessed
Apr 2017

14. Eaddy, M., Aho, A., Murphy, G.C.: Identifying, assigning, and quantifying cross-
cutting concerns. In: Proceedings of the First International Workshop on Assess-
ment of Contemporary Modularization Techniques, p. 2 (2007)

https://opennlp.apache.org/
https://opennlp.apache.org/
http://ejml.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://dx.doi.org/10.1007/978-3-642-36657-4
http://sourceforge.net/p/lemur/wiki/RankLib/
http://sourceforge.net/p/lemur/wiki/RankLib/
http://watchmaker.uncommons.org/

504 A.C. Marcén et al.

15. Eaddy, M., Aho, A.V., Antoniol, G., Guéhéneuc, Y.G.: Cerberus: tracing require-
ments to source code using information retrieval, dynamic analysis, and program
analysis. In: ICPC 2008 Conference, pp. 53–62. IEEE (2008)

16. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res. 4(Nov), 933–969 (2003)

17. Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., Marcus, A.: Automatic query
performance assessment during the retrieval of software artifacts. In: International
Conference on Automated Software Engineering, pp. 90–99. ACM (2012)

18. Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A.: Evaluating the ability
of habitat suitability models to predict species presences. Ecol. Model. 199(2),
142–152 (2006)

19. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683

20. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: IJCAI, Stanford, CA, vol. 14, pp. 1137–1145 (1995)

21. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An information retrieval app-
roach to concept location in source code. In: Proceedings of the 11th Working
Conference on Reverse Engineering, pp. 214–223, November 2004

22. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: Proceedings of 25th International Confer-
ence on Software Engineering, pp. 125–135. IEEE (2003)

23. Navot, A., Shpigelman, L., Tishby, N., Vaadia, E.: Nearest neighbor based feature
selection for regression and its application to neural activity. Adv. Neural Inf.
Process. Syst. 18, 995 (2006)

24. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Trans. Softw. Eng. 33(6), 420–432 (2007)

25. Sayyad, A.S., Ingram, J., Menzies, T., Ammar, H.: Scalable product line configu-
ration: a straw to break the camel’s back. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE), pp. 465–474, November
2013

26. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by
applying machine learning classifiers on static features: a state-of-the-art survey.
Inf. Secur. Tech. Rep. 14(1), 16–29 (2009)

27. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, Ø., Møller-
Pedersen, B., Olsen, G.K.: Developing a software product line for train control:
a case study of CVL. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
106–120. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 8

28. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering. Springer Science & Business Media, Heidelberg
(2012). doi:10.1007/978-3-642-29044-2

30. Wolf, L., Martin, I.: Robust boosting for learning from few examples. In: Computer
Vision and Pattern Recognition, vol. 1, pp. 359–364. IEEE (2005)

31. Xuan, J., Monperrus, M.: Learning to combine multiple ranking metrics for fault
localization. In: Proceedings of the 30th International Conference on Software
Maintenance and Evolution (2014)

http://dx.doi.org/10.1007/BFb0026683
http://dx.doi.org/10.1007/978-3-642-15579-6_8
http://dx.doi.org/10.1007/978-3-642-29044-2

Ontological Evolutionary Encoding to Bridge Machine Learning 505

32. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

33. Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports using
domain knowledge. In: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pp. 689–699. ACM (2014)

34. Ye, X., Bunescu, R., Liu, C.: Mapping bug reports to relevant files: a ranking
model, a fine-grained benchmark, and feature evaluation. IEEE Trans. Softw. Eng.
42(4), 379–402 (2016)

35. Zisman, A., Spanoudakis, G., Pérez-Miñana, E., Krause, P.: Tracing software
requirements artifacts. In: Software Engineering Research and Practice, pp. 448–
455 (2003)

The OntoREA© Accounting and Finance
Model: Ontological Conceptualization
of the Accounting and Finance Domain

Christian Fischer-Pauzenberger and Walter S.A. Schwaiger(&)

Institute of Management Science – TU Wien, Vienna, Austria
{christian.fischer-pauzenberger,

walter.schwaiger}@tuwien.ac.at

Abstract. Geerts and McCarthy [1, 2] extended McCarthy’s [3] Resource-
Event-Agent (REA) accounting model with a forward-looking perspective by
including commitments and economic contracts. Schwaiger [4] investigated the
extended REA accounting model with respect to accounting and finance
requirements and developed the REA-based Asset-Liability-Equity (ALE) ac-
counting model. Due to the ontological neutrality of UML class diagrams [5],
financial instruments are not concisely conceptualized. This holds true espe-
cially for derivative instruments which have very special temporal modal and
identity-related peculiarities. For modeling them the OntoUML language
developed by Guizzardi [6] provides a solid foundation. In this article onto-
logical meta-properties of OntoUML are used to specify these peculiarities and
to derive the OntoREA© Accounting and Finance Model, which constitutes a
valid ontology-based conceptualization of the accounting and finance domain.
This model should be beneficial especially for business analysts who have to
understand and develop conceptual models for up-to-date enterprise and
accounting information systems.

Keywords: Accounting � Finance � REA accounting model � OntoUML �
Unified Foundational Ontology � Ontology-driven conceptual modeling �
Design patterns

1 Introduction

Geerts and McCarthy [1, 2] extend McCarthy’s Resource-Event-Agent (REA) ac-
counting model to the REAC accounting model by introducing the concept of com-
mitments (C). The REAC model goes beyond the accounting domain as it allows the
modeling of future events. Furthermore the definition of economic contracts as bund-
ling of commitments opens the model for mapping more complex situations.
The REAC accounting model evolved to the REA business ontology as well as the
Accounting and economic ontology and was promoted as such as industry standard in
(ISO 15944-4, [7]). Schwaiger [4] investigates the REAC accounting model with
respect to the traditional Asset-Liability-Equity (ALE) accounting logic. He extends the
model by including debit and credit events to address changes in the ALE-categorized
economic resources. This semantic extension provides the foundation for modeling

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 506–519, 2017.
https://doi.org/10.1007/978-3-319-69904-2_38

non-derivative financial instruments as well and consequently can be understood as an
important step for integrating the finance within the accounting domain.

One substantial drawback, however, is substantiated within the modeling language
of all aforementioned models. The Unified Modeling Language (UML) class diagrams
bear several deficiencies for modeling derivative instruments due to their special nature
and behavior over time. Unlike tangible resources and non-derivative financial
instruments, they can have a value of zero and are likely to change their ALE-status
over time. Such meronymic (part-whole) and temporal modal properties can explicitly
be specified in the Unified Foundational Ontology (UFO), which was established by
Guizzardi [6]. Accordingly, it seems worthwhile to conceptualize the finance domain in
the UFO-based OntoUML language. Furthermore the usage of OntoUML as concep-
tual modeling language should allow an even deeper integration of the finance domain
into the accounting domain, as this language was already used for modeling the REA
accounting context. Gailly et al. [8] use the OntoUML language to classify the endurant
primitives in the REA enterprise domain ontology (REA-EO) in terms of the meta-
physical UFO upper-level ontology. Fischer-Pauzenberger and Schwaiger [9] deepen
the anchoring of REA-based accounting models in the accounting domain by devel-
oping the OntoREA accounting model which represents the REA-based Asset-Liabiliy-
Equity (ALE) accounting model in terms of the OntoUML language.

The deeper integration of the finance into the accounting domain by using the
OntoUML language for the ontological conceptualization constitutes the primary
research objective of this article. This objective is guided by two principal research
questions: What are the special temporal modal and meronymic properties of derivative
instruments? Can these properties be modeled within the OntoREA accounting model
or is an extension of the model needed?

To address the research objective and to answer the two questions, the special
properties of derivative instruments are identified and specified according to OntoUML’s
ontological meta-properties and they are integrated into the REA accounting model. The
resulting OntoREA© Accounting and Finance Model is derived in two steps. Firstly, the
REAC accountingmodel is transformed into the REA©-based ALE accountingmodel by
modeling the duality as well as the reciprocity relationship in a balanced version that
includes the (present) value constraints of business transactions. Secondly, the OntoREA
accounting model is extended by incorporating the future related commitment and bal-
anced reciprocity concepts as well as an adequate conceptualization of derivative
instruments.

The OntoREA© accounting and finance model goes substantially beyond the
OntoREA accounting model by modeling the meronymic nature and the temporal
modal behavior of derivative instruments with OntoUML’s Collective, Role and Phase
classes. Especially the definition of derivative instruments with the Collective class
makes the OntoREA© model very distinct from the OntoREA accounting model which
considers such instruments simply as economic resources. Finally, the development of
the OntoREA© model is based on the ontology-driven conceptual modeling method-
ology introduced by Guizzardi et al. [10] and elaborated by Verdonck et al. [11], and its
syntactical validity with respect to the UFO axioms is proven by verifying the correct
application of the OntoUML design patterns in the OntoUML class diagram repre-
senting the OntoREA© accounting and finance model.

The OntoREA© Accounting and Finance Model 507

The remainder of this article is structured as follows. In the next chapter, the REA©
accounting model is developed. Its characteristic compared to the REA accounting
model is the inclusion of the commitment entity and the reification of the balanced
reciprocity relationship. This relationship acts as truthmaker for the relationship
between economic commitments, it refers to the promises of two economic agents to
transfer economic resources in the future and it includes the present value constraint. In
the following section, the OntoREA Accounting Model is presented and discussed in
more detail with respect to its ontological meta-properties. In Sect. 4 the OntoREA©
Accounting and Finance Model is developed by modeling the REA©-based ALE
accounting model in terms of OntoUML’s ontological meta-properties. The final sec-
tion concludes the paper and gives directions for future research.

2 REA© Accounting Model: Additional Reification
of the Balanced Reciprocity Relationship

Geerts and McCarthy [1] analyzed the REAC accounting model ontologically and
introduced some new components and concepts as commitments and reciprocity as
analogue to the duality principle. The same authors [2] extended the model further by
integrating policy-level definitions specifying “what should, could or must be”.
The ISO standard ISO 15944-4, Business transaction scenarios - Accounting and
economic ontology [7] describes economic contracts as economic bundles of economic
commitments which fulfill the reciprocity principle. The publication also promotes the
REA business ontology as recognized international industry standard.

Before going into ontological details the integration of economic contracts (C) into
the REAC accounting model is addressed. This model adds the economic commitments
to the already existent notion of economic exchange. Commitments do not occur in
isolation because partners simply do not agree to value exchanges without recipro-
cation. ISO/IEC 15944:2007(E) [7]. The specific extensions in the REAC model
compared to the REA accounting model are defined as follows [7]:

• An Economic Commitment is a promise to execute an Economic Event at some
point in the future.

• A fulfillment relationship is an association between an Economic Commitment and
the Economic Event that executes that commitment.

• A reciprocal relationship is an association between Economic Commitments that
each in turn individually fulfills compensating economic events.

• An Economic Contract is a bundle of reciprocating commitments wherein two
Parties agree to a future schedule of exchanges with compensating economic
events. An Agreement is similar to an economic contract, but it is not legally
enforceable.

• An economic bundle relationship is an association between an Economic Contract
and its pair of reciprocal Economic Commitments.

The REAC accounting model as stated in the ISO/IEC 15944:2007(E) standard is
shown in Fig. 1 in form of an UML class diagram. The commitments are modeled on
top of the economic events, connected by a fulfillment relationship and bundled to

508 C. Fischer-Pauzenberger and W.S.A. Schwaiger

economic contracts. By using this approach, the REA accounting framework becomes
capable of modeling future events, especially future commitments associated with
financial instruments.

Although the REAC accounting model is intended to specify the accounting
domain as well, it does not cover essential accounting requirements. Schwaiger iden-
tified several deficiencies concerning the traditional Asset-Liability-Equity (ALE) ac-
counting logic [12]. In the REAC accounting model, there is no reference to debits,
credits and accounts. This however is essential for modeling traditional accounting
logic. McCarthy explicitly avoided those classic double-entry bookkeeping elements in
his initial design of the REA accounting model to be able to establish a generic
framework. However, debit and credit linguistics are essential to give the increment
and decrement events of assets, liabilities and equity a consistent interpretation within
the ALE-based accounting system.

Schwaiger [4] extends the REAC accounting model by introducing the ALE typi-
fication of economic resources, i.e. the inclusion of liabilities and equity next to assets.
By integrating this typification the model is suitable for ALE accounting applications as
well as modeling future events. Fischer-Pauzenberger and Schwaiger [9] eliminate the
business transaction class from Schwaiger’s model by putting the value constraint
associated with these transactions into the duality relationship. To indicate this inte-
gration the relationship is called balanced duality relationship. This can be seen in
Fig. 2 in the reflexive relationship under the Economic Event class. Next to that the
figure contains the balanced reciprocity relationship on top of the Commitment class.
This relationship expresses the combined occurrence of future in- and outflowing events
that underlie the debited and credited commitments and it includes – like the balanced
duality relationship – a value constraint. Due to the future fulfillment of the commit-
ments the reciprocity relationship includes the commitments’ present values. Finally the
Economic Contract class is defined with respect to one or more commitments.

Due to the different extensions the model shown in Fig. 2 is called REA©-based
ALE Accounting Model. The © sign is used in order to explicitly indicate its distinction
from other REAC model versions. Its conceptualization can be summarized as follows:

Economic
Contract

Economic
Commitment

Economic
Event

fulfillment

Economic
Agent

Economic
Resource

from

to
resource

flow

Duality

Business
Location

Economic
Claim

site
settlement

materialized

reciprocity economic
bundle

Fig. 1. REAC accounting model – UML class diagram

The OntoREA© Accounting and Finance Model 509

REA©-based ALE accounting model covers all resources related to assets, liabilities
and equity instead of tangible assets and cash only. Furthermore, it features the value
flow relationship related to debit and credit events instead of relying on stock flow
relationships related to increment and decrement events.

The balanced relationships include the value constraints. In the duality context the
constraint requires the equality of the values of the debited and credited events. In the
reciprocity context the constraint requires the equality of the commitments’ present
values. For illustrative purposes, the balanced reciprocity of a stock forward instrument
(for further details see e.g. Hull [13]) is taken: At the day of the contract setting the
forward only consists of commitments. The buyer of the forward is committed to
receive the stock in the future (debit commitment) and to pay the forward price (credit
commitment). The forward seller takes exactly the opposite commitment positions so
that the contracting of a forward constitutes a zero sum game.

The balanced reciprocity only requires the equality of the commitment values, but it
does not show the specific values of the different commitments involved in the
derivative instruments. Consequently for the forward instrument with net value of zero
no insights into the different commitments’ values are given and the forward does not
appear on the balance sheet. As enterprises – especially banks – often trade huge
volumes in derivative instruments the net values are not sufficient. Consequently
concepts from finance are integrated to solve this deficiency.

3 OntoREA Accounting Model: Ontological Meta-
Properties – Stereotypes in OntoUML Class Diagrams

Ontology is a philosophical discipline (metaphysics) that addresses existential prop-
erties of things. The ontological analysis of Geerts and McCarthy [1] relate to Sowa’s
ontology definition [14]. But there are other definitions as well. According to the

Economic
ContractCommitment

Balanced
Reciprocity

Economic
Event

fulfillment

Economic
Agent

Economic
Resource

(ALE et al.)

from

to
value flow

Balanced
Duality

Business
Location

Economic
Claim

site
settlement materialized

 economic
bundle

1…* 1

1…*

0..1

Fig. 2. REA©-based ALE accounting model – UML class diagram

510 C. Fischer-Pauzenberger and W.S.A. Schwaiger

research questions the focus of this article refers to the OntoUML language. This
language is based on the Unified Foundational Ontology (UFO) which is influenced by
the Four-Category-Ontology from Lowe [15]. UFO covers different scopes, namely
UFO-A for the ontology of endurants, UFO-B for the ontology of perdurants and
UFO-C covering the ontology of social concepts.

It is important to note that this article only uses endurant constructs and thus
UFO-A in order to be in line with the OntoUML-based REA accounting research. In
the following the OntoREA accounting model developed by Fischer-Pauzenberger and
Schwaiger [9] is presented. It will serve in the subsequent chapter as basis for the
deeper integration of finance into the accounting domain.

Before the OntoREA accounting model is presented some propaedeutic UFO
considerations seem appropriate. A very important UFO meta-property is rigidity.
Rigidity in the modal sense regards the necessity of individuals to instantiate given
universals throughout time. Anti-rigid universals however, are the ones whose
instances contingently instantiate them [16]. Ruy et al. summarizes the ontological
meta-properties by giving illustrative examples [17]: By referring to a number of
formal and ontological meta-properties, UFO proposes a number of distinctions
among object types. Within these, sortal types are types that either provide or carry a
uniform principle of identity for their instances. Within sortal types, we have the
distinction between rigid and anti-rigid sortals. A rigid type is a type that classifies its
instances necessarily (in the modal sense), i.e., the instances of that type cannot cease
to be an instance of that type without ceasing to exist. Anti-rigidity, in contrast,
characterizes a type whose instances can move in and out of the extension of that type
without altering their identity. For instance, contrast the rigid type Person with the
anti-rigid types Student or Husband. While the same individual John never ceases to be
instance of Person, he can move in and out of the extension of Student or Husband,
once he enrolls in/finishes college or marries/divorces, respectively.

In conceptual modeling entity types and relationship types are the most funda-
mental constructs [18]. Taken from [9] the following entity types (subsequently marked
in bolded letters), which are derived from the UFO typification tree (marked in italic
letters) are of importance for the OntoREA accounting model:

• Kinds are rigid substance sortals and they provide their own identity principle
(rather than just carrying it). Kinds are also considered as an OntoUML model’s
backbone [19] and they are used to model resources, events and agents as
endurants.

• SubKinds are rigid sortals and do not provide their own identity principle, they are
merely inheriting the principle from another Substance Sortal.

• Roles are anti-rigid sortals and therefore can change their instantiation in a modal
sense according to an extrinsic generalization condition. Furthermore, Roles are
relational-dependent, they have to rely on at least one other universal. Roles get
their identity principle through the generalization relation from the instance of its
parent universal.

• Phases are anti-rigid sortals as well with a significant distinction to Roles. Phases
are relational (i.e. external) independent. Due to the predetermined disjoint and
complete generalization sets, instances of Phases, in contrast to instances of Roles,

The OntoREA© Accounting and Finance Model 511

can change according to their intrinsic (and not extrinsic) generalization condition.
As Roles, Phases also get their identity principle through the generalization relation.

Next to the above mentioned entity types the following relationship types will be
important for the OntoREA accounting model to be developed:

• Relator Universals, are moment universals which represent the objectification of a
relational property. Relator Universals are existentially dependent on a multitude of
individuals, thus, mediating them. Relators are the foundation of the so-called
Material Relations [20] and act as truth-makers of the relation.

• Formal Relations hold directly between entities without requiring any intervening
individual.

The remaining entity types and relationship types of UFO are not needed for the
OntoREA accounting model. The current and complete version of UFO is specified in
the UFO reference [21].

These UFO-based entity types and relationship types are the definitions of the
stereotypes used in OntoUML class diagrams. In Fig. 3 the OntoREA accounting
model is presented in the OntoUML language. It features special modeling charac-
teristics [9], which are briefly elaborated:

• The endurant backbone in the OntoREA model are the rigid Kind classes Economic
Resource, Economic Event and Economic Agent.

• The typification relationship of the Economic Event into the two SubKind classes
Debit Event and Credit Event is modeled by a disjoint and complete generalization
set. Thus, an event can only be either a debit event or a credit event. This typifi-
cation is needed for handling changes in the ALE resource types. An increase in
liabilities and equity is related to a credit event, whereas an increase of assets relates
to a debit event.

Fig. 3. OntoREA accounting model – OntoUML class diagram

512 C. Fischer-Pauzenberger and W.S.A. Schwaiger

• The (Material) balanced duality relationship is modeled via the Relator class
Balanced Duality. It acts as truthmaker and reifies the relationship between the
endurant debit event and the endurant credit event. The balanced duality relation-
ship incorporates the value constraint so that the debit and credit events have the
equal values. Furthermore the duality relationship is not only referring to the value
constraint for keeping the balance in the fundamental ALE-equation (classifica-
tional double entry), but it also describes a REA-based cause-effect relationship
(causal double entry).

• The use of Phase classes for modeling the typification of the Kind class Economic
Resources introduces the modal meta-property into the OntoREA model. The Phase
class is an anti-rigid, non-identity providing sortal which receives its identity from
its superclass in the inheritance relationship. The anti-rigidity allows the economic
resources to change Phases over time without losing identity.

• The modal meta-property is used for conceptualizing the temporal modal behavior
of claims [9]. Claims are defined as imbalances in the balanced duality relationship
that are neither assets nor liabilities or equity. When claims materialize, they convert
to their corresponding resource types.

4 OntoREA© Accounting and Finance Model: Collectives
Beyond ALE Phases

After defining the balanced reciprocity relationship in Sect. 2 and illustrating the
OntoREA accounting model in Sect. 3, both parts can be integrated. Before that, the
balanced reciprocity relationship is conceptualized in the OntoUML language. All
subsequent OntoUML models are implemented in the open-source tool Menthor Editor
[22] as well as the proprietary Enterprise Architect from Sparkx. An important benefit
of these modeling support tools lies in their built-in quality control functions.
According to this support function the syntactic correctness of the developed
OntoUML class diagram is assured. This validation tool is used throughout the paper
so that the syntactic validity of all developed OntoUML models is proven.

Figure 4 contains the balanced reciprocity relationship. The Kind class Commit-
ment is like the Kind class Economic Event typified by two disjoint subsets in form of
SubKind classes for the Debit and Credit Commitment. Both classes are related in the
balanced reciprocity relationship. In this Material relationship the balanced reciprocity
is reified by the Relator class. Furthermore the balanced reciprocity relationship
includes the present value constraint. This ensures that the (present) value of the debit
commitments has to be equal to the (present) value of credit commitments. Finally the
Kind classes Commitment and Economic Event are in a Formal fulfillment association.
Its cardinalities indicate that a commitment relates to at least one economic event,
whereas an economic event can but must not have a commitment.

Now the dynamic modal behavior of a derivative instrument is elaborated in the
context of a stock forward instrument. The value of the forward is derived from the
price of its underlying stock. Initially the forward price is set in such a way that the
forward value has a value of zero. Over time the value of the stock forward changes

The OntoREA© Accounting and Finance Model 513

according to changes in the prices of its underlying stock. For the buyer of the forward
the value of the forward becomes ceteris paribus negative (positive) if the stock price
goes up (down). At a subsequent measurement date a positive (negative) value of the
forward is recorded as an asset (liability) in the balance sheet. In the double-entry
bookkeeping accounting system the recognition as asset is recorded by debiting the
financial asset account and by crediting the financial revenue account. A liability is
recorded by debiting the financial expense account and crediting the liability account.

From the finance perspective these value changes of the stock forward can be
explained by the no-arbitrage pricing theory which was introduced by the Nobel
laureates Merton [23] and Black/Scholes [24]. An easier accessible approach to this
theory is the discrete time approach introduced by Cox, Ross and Rubinstein. Applied
to the stock forward instrument it can be shown that the forward value is equal to the
sum of the values of the assets (A) and liabilities (L) in the forward hedging portfolio
[25, p. 233]. The A/L hedging portfolio representation underlying the no-arbitrage
pricing proposition explains the meronymic peculiarity of derivative instruments. On
the one side, the derivative instrument class is a rigid sortal universal that provides the
identity principle to its instantiations. On the other side, the identity principle cannot be
related to the ALE typification of the economic resources as derivative instruments can
change their ALE-status quite easily and often over time. The changes between on- and
off-balance sheet as well as asset and liability position make the derivative instruments
even very distinct from claims. Claims can only change from off- to on-balance

Fig. 4. Balanced reciprocity relationship – OntoUML class diagram

514 C. Fischer-Pauzenberger and W.S.A. Schwaiger

positions but not from assets to liability or vice versa. Hence the ALE-based typifi-
cation of the economic resources is not sufficient for derivative instruments.

The ontological foundation of OntoUML shows very beneficial for solving this
problem. Of importance are the meronymic meta-properties which address the different
types of parthood relationships and define the special rigid and identity principle
providing universal, i.e. the Collective universal. The Collective universal has the same
ontological meta-properties as the Kind universal. The difference lies in the scope of the
universals. The Kind universal specifies individual universals whereas the Collective
universal goes beyond individual universals by specifying collections. The Beatles are
an example for such a collection. Seen as an instantiation of a Collective universal the
Beatles as a group has its own identity. The members of the Beatles as persons are
instantiations of a Kind universal and consequently have their personal identity. It is
important not to confuse the personal identity with the identity of the group. In
OntoUML this distinction relates to the meronymic meta-property of a MemberOf
parthood-relationship. Due to the different identities of the group as a whole and its
individual members it is possible that group member leave or join the group without
changing the group identity. Applied to the Beatles example this happened when Pete
Best left the group and Ringo Starr joint it.

In the light of the no-arbitrage A/L hedging portfolio representation a derivative
instrument is a collective and its members are assets and liabilities composing the A/L
hedging portfolio. Hence the first research question can now be answered: Financial
derivatives are a Collective universal with a MemberOf parthood-relationship to its
members that are economic resources in form of assets and liabilities. With this answer
also the second question can be answered: The existing REA-based ALE accounting
framework has no Collective universals included so that it has to be extended in order
to include the meronymic peculiarities of derivative instruments.

The needed extension of the REA-based ALE accounting framework can be seen in
the top-left corner of Fig. 5. It shows the Collective class Derivative Instrument. This
class has a MemberOf relationship to the Kind class Economic Resource. The cardi-
nality says that derivative instruments have two economic resource members, i.e. one
asset and one liability. Furthermore the Collective class Derivative Instrument is typ-
ified via a Phase partition that consists of the Phase classes Asset, Liability and Null.
According to this the derivate instruments can change the phases over time without
losing its identity by switching from the Phase Null, i.e. an off-balance position, into an
on-balance position either to the Phase Asset or the Phase Liability and so on.

The overall conceptualization in Fig. 5 represents the OntoREA© Accounting and
Finance Model. By modeling the derivative instrument as a Collective class this model
goes substantially beyond the REA-based ALE accounting. Derivative instruments are
no longer seen as economic resources related to a Kind class. Instead they are seen by
their no-arbitrage representation as a collection (hedging portfolio) of asset and liability
resources which have their own identity principles. The big advantage of explicitly
including the derivative instruments in form of their no-arbitrage A/L hedging portfolio
lies in the added flexibility: Depending on the purpose the derivate instruments can be
shown on a net basis for financial reporting purposes or on an un-consolidated basis for
strategic and management control purposes.

The OntoREA© Accounting and Finance Model 515

Finally the double nature of the balanced reciprocity relationship has to be men-
tioned. In Fig. 5 this can be seen by the additional term Economic Contract set in
parenthesis. The reason for the double nature is due to the fact that actually the
economic contract is the truthmaker in the Relator class Balanced Reciprocity by which
the debit and credit commitments between the two involved agents are contractually
determined. Hence derivative instruments are special economic contracts for which the
temporal modal peculiarities are explicitly specified.

5 Conclusions

The primary research objective addressed in this article relates to the deeper anchoring
of the finance domain into the accounting domain. In order to achieve this the temporal
modal and meronymic properties of derivative instruments had to be identified, spec-
ified and integrated into the REA-based ALE accounting framework. For this purpose

OntoUML OntoREAC

«Kind»
Economic
Resource

«Phase»
Asset

«Phase»
Liability

«Phase»
Equity

«Phase»
Claim

«Kind»
Economic Ev ent

«Kind»
Economic Agent

«Relator»
Balanced Duality

«SubKind»
Debit Ev ent

«SubKind»
Credit Ev ent

value constraint

«SubKind»
Debit

Commitment

«SubKind»
Credit

Commitment

present value constraint

«Kind»
Commitment

«Collective»
Deriv ativ e
Instrument

«Relator»
Balanced

Reciprocity
(Economic
Contract)

«Phase»
Asset

«Phase»
Liability

«Phase»
Null

{disjoint, complete}

{disjoint, complete}

«MemberOf»
2

{disjoint, complete}

0..1

commited
outflow

«Formal»

1..*

1..*

duality
«Material» 1..*

1..*

in-/outflow
«Formal»

1

provide

1..*

fulfi l lment

«Formal»0..1

1

participation

«Formal» 2

0..1

commited
inflow

«Formal»

1..*
{disjoint, complete}

1

«Mediation»

1..*

1

«Mediation»

1..*

1..*

out-/inflow
«Formal»

1

1

«Mediation»

1..*

1
«Mediation»

1..*

2

participation

«Formal»0..1

receive

1..*

reciprocity

«Material» 1..*

Fig. 5. OntoREA© accounting and finance model – OntoUML class diagram

516 C. Fischer-Pauzenberger and W.S.A. Schwaiger

the UFO-ontological foundation of Guizzardi’s OntoUML language showed to be the
key as this foundation provides a precise understanding for investigating existence,
identity and rigidity related topics. This foundation was used to specify the derivative
instruments according to the no-arbitrage A/L hedging portfolio representation as a
Collective universal with MemberOf parthood relationships to economic resources in
form of assets and liabilities. Their temporal modal behavior, where derivative
instruments – what especially relates to forward contracts – can switch between asset,
liability and off-balance position, was captured by Phase universals. These universals
allow anti-rigidity what underlies the temporal modal behavior and that cannot be
modeled in the ontologically neutral UML class diagrams.

Equipped with these ontological meta-properties Geerts and McCarthy’s REAC
accounting model was extended. In the first step the balanced reciprocity relationship
was defined. Then the OntoREA accounting model [9] was presented. Finally the
OntoREA© accounting and finance model was developed by integrating the collective
conceptualization of the derivative instrument and the balanced reciprocity relationship
with the economic contract as truthmaker into the OntoREA model.

The syntactical validity of the OntoREA© accounting and finance model with
respect to OntoUML modeling rules is assured by applying a reactive validation
strategy specified in the ontology-driven conceptual modeling methodology [10, 11].
This validation strategy is implemented by using the open-source tool Menthor Editor
[22] as well as the proprietary Enterprise Architect from Sparkx where the compliance
with the ontological distinctions and UFO axioms underlying the OntoUML language
is continuously checked during the subsequent combinations of the pre-defined onto-
logical design patterns within the conceptual modeling process. In order to provide a
deeper validation next to the current validation two additional steps will be taken in the
future: A model simulation in the logic-based Alloy language for detecting possible
misspecifications and the usage of real derivative instrument cases for demonstrating
and assessing the model’s adequacy.

The resulting model can be used for different purposes. One possibility is its usage
in the accounting (AIS – see Steinbart and Romney [26]) as well as enterprise infor-
mation systems (EIS – see Dunn et al. [27]) research by establishing ontology-based
accounting and enterprise information systems. Such systems could be designed and
implemented e.g. within a model-driven software development approach (see e.g.
Brambilla et al. [28], Stahl and Völter [29] or Rybola et al. [30]) by establishing the
OntoREA© model first and subsequently transforming it into a software application.

Finally, an interesting idea for future research relates to the used UFO ontology.
Instead of only using enduring entities from UFO-A for all REA primitives, it seems
worthwhile to model economic events via perduring entities from UFO-B and eco-
nomic agents via agents as described in UFO-C. By doing this, enterprise models can
be developed that cover a much broader scope compared to the narrow compliance
requirements within the ALE accounting domain. This would require a complete
redesign and would contribute to the ongoing discussions [31].

The OntoREA© Accounting and Finance Model 517

References

1. Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives of the
extended-REA enterprise information architecture. Int. J. Account. Inf. Syst. 3, 1–16 (2002)

2. Geerts, G.L., McCarthy, W.E.: Policy level specifications in REA enterprise information
systems. J. Inf. Syst. 20, 37–63 (2006)

3. McCarthy, W.E.: The REA accounting model: a generalized framework for accounting
systems in a shared data environment. Account. Rev. 554–578 (1982)

4. Schwaiger, W.S.A.: The REA accounting model: enhancing understandability and
applicability. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.
P. (eds.) ER 2015. LNCS, vol. 9381, pp. 566–573. Springer, Cham (2015). doi:10.1007/978-
3-319-25264-3_43

5. Karlsson, F., Linander, F., von Schéele, F.: A conceptual framework for time distortion
analysis in method components. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper,
H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD-2014. LNBIP, vol. 175, pp. 454–
463. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43745-2_31

6. Guizzardi, G.: Ontological foundations for structural conceptual model. http://doc.utwente.
nl/50826 (2005)

7. Standardization/International, E.C.I.O. for: Information Technology—Business Operational
View—Part 4: Business Transactions Scenarios—Accounting and Economic Ontology.
ISO/IEC FDIS. 15944 (2007)

8. Gailly, F., Geerts, G., Poels, G.: Ontological reengineering of the REA-EO using UFO. In:
OOPSLA Workshop on Ontological Software Engineering (2009)

9. Fischer-Pauzenberger, C., Schwaiger, W.S.A.: The OntoREA accounting model:
ontology-based modeling of the accounting domain. Complex Syst. Inform. Model. Q.
54, 20–37 (2017)

10. Guizzardi, G., Das Graças, A.P., Guizzardi, R.S.S.: Design patterns and inductive modeling
rules to support the construction of ontologically well-founded conceptual models in
OntoUML. In: Salinesi, C., Pastor, O. (eds.) CAiSE 2011. LNBIP, vol. 83, pp. 402–413.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22056-2_44

11. Verdonck, M., Gailly, F., De Cesare, S., Poels, G.: Ontology-driven conceptual modeling: a
systematic literature mapping and review. Appl. Ontol. 10, 197–227 (2015)

12. Horngren, C., Harrison, W., Oliver, S., Best, P., Fraser, D., Tan, R., Willett, R.: Accounting.
Pearson Higher Education AU, New York (2012)

13. Hull, J.C.: Options, Futures, and Other Derivatives. Pearson Education, London (2009)
14. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foun-

dations. Brooks/Cole Publishing, Pacific Grove (2000)
15. Lowe, E.J.: The Four-Category Ontology: A Metaphysical Foundation for Natural Science.

Oxford University Press (2006)
16. Sales, T.P.: Ontology Validation for Managers (2014)
17. Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., Guizzardi, G.: Ontology engineering

by combining ontology patterns. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L.,
López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 173–186. Springer, Cham (2015). doi:10.
1007/978-3-319-25264-3_13

18. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S.: Towards ontological
foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl.
Ontol. 10, 259–271 (2015)

518 C. Fischer-Pauzenberger and W.S.A. Schwaiger

http://dx.doi.org/10.1007/978-3-319-25264-3_43
http://dx.doi.org/10.1007/978-3-319-25264-3_43
http://dx.doi.org/10.1007/978-3-662-43745-2_31
http://doc.utwente.nl/50826
http://doc.utwente.nl/50826
http://dx.doi.org/10.1007/978-3-642-22056-2_44
http://dx.doi.org/10.1007/978-3-319-25264-3_13
http://dx.doi.org/10.1007/978-3-319-25264-3_13

19. Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: introduction to the
transformation of OntoUML into relational databases. In: Pergl, R., Molhanec, M., Babkin,
E., Fosso Wamba, S. (eds.) EOMAS 2016. LNBIP, vol. 272, pp. 67–83. Springer, Cham
(2016). doi:10.1007/978-3-319-49454-8_5

20. Sales, T., Barcelos, P., Guizzardi, G.: Identification of semantic anti-patterns in
ontology-driven conceptual modeling via visual simulation. In: 4th International Workshop
on Ontology Information System (ODISE 2012), Graz, Austria (2012)

21. Ontology Project: UFO-A Specification. http://ontology.com.br/ufo-a/spec/
22. Menthor Editor on github. https://github.com/MenthorTools/menthor-editor
23. Merton, R.C.: Theory of rational theory option pricing. Bell J. Econ. 4, 141–183 (1973)
24. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81,

637 (1973)
25. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Financ.

Econ. 7, 229–263 (1979)
26. Romney, M., Steinbart, P., Mula, J., McNamara, R., Tonkin, T.: Accounting Information

Systems. Pearson Higher Education AU, New York (2012)
27. Dunn, C.L., Hollander, A.S., Cherrington, J.O.: Enterprise Information Systems: A

Pattern-Based Approach. McGraw-Hill/Irwin, New York (2005)
28. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice.

Synth. Lect. Softw. Eng. 1(1), 1–182 (2012)
29. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development:

Technology, Engineering, Management. Wiley, Hoboken (2013)
30. Pergl, R., Sales, T.P., Rybola, Z.: Towards OntoUML for software engineering: from

domain ontology to implementation model. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI
2013. LNCS, vol. 8216, pp. 249–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
41366-7_21

31. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the
representation of events and endurants in business models, pp. 1–16 (2016)

The OntoREA© Accounting and Finance Model 519

http://dx.doi.org/10.1007/978-3-319-49454-8_5
http://ontology.com.br/ufo-a/spec/
https://github.com/MenthorTools/menthor-editor
http://dx.doi.org/10.1007/978-3-642-41366-7_21
http://dx.doi.org/10.1007/978-3-642-41366-7_21

Teleologies: Objects, Actions and Functions

Fausto Giunchiglia and Mattia Fumagalli(&)

Department of Information Engineering and Computer Science (DISI),
University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
{Fausto.Giunchiglia,Mattia.Fumagalli}@Unitn.it

Abstract. We start from the observation that the notion of concept, as it is used
in perception, is distinct and different from the notion of concept, as it is used in
knowledge representation. In earlier work we called the first notion, substance
concept and the second, classification concept. In this paper we integrate these
two notions into a general theory of concepts that organizes them into a hier-
archy of increasing abstraction from what is perceived. Thus, at the first level,
we have objects (which roughly correspond to substance concepts), which
represent what is perceived (e.g., a car); at the second level we have actions,
which represent how objects change in time (e.g., move); while, at the third
level, we have functions (which roughly correspond to classification concepts),
which represent the expected behavior of objects as it is manifested in terms of
“an object performing a certain set of actions” (e.g., a vehicle). The main out-
come is the notion of Teleology, where teleologies provide the basis for a
solution to the problem of the integration of perception and reasoning and, more
in general, to the problem of managing the diversity of knowledge.

Keywords: Conceptual modeling � Perception � Knowledge

1 Introduction

A crucial characteristic of humans is their ability to build and exploit representations of
what they perceive, what we usually call the world. Such representations usually
consist of complex combinations of concepts, where we take a concept to be an
abstract idea generalized from particular instances. However, the very notion of
concept is controversial [1]. Thus, for instance, on one side, we have the Biosemantics
approach, which takes a concept to be a device and a representation supporting certain
biological processes, in particular, perception (e.g., human vision) [2, 3], while, on the
other side, we have the so-called Descriptionist approach which takes a concept to be a
class, namely a set of instances characterized by some shared set of properties, as the
basic construct enabling knowledge representation, classification and reasoning [4].
The former and latter notions of concept underlie the work in Computer Vision
(CV) [5] and in Knowledge Representation (KR) [6], respectively.

This work has been supported by QROWD (http://qrowd-project.eu), a Horizon 2020 project,
under Grant Agreement No. 732194.

© Springer International Publishing AG 2017
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, pp. 520–534, 2017.
https://doi.org/10.1007/978-3-319-69904-2_39

http://qrowd-project.eu

The work in [1] shows how the two notions above have different characteristics and
calls them substance concepts (as from Millikan [4]) and classification concepts,
respectively. Substance concepts represent what we perceive and, therefore, are char-
acterized by a notion of perceptual identity (and diversity) while classification concepts
represent what we reason about and, therefore, are characterized by a notion of rea-
soning identity (and diversity). While perceptual identity captures invariance over the
occurrences of what we perceive, reasoning identity captures invariance over the
occurrences of what we reason about. Thus, for instance, we recognize a rock as being
such depending on what we perceive, while we reason about the same rock as an
obstacle when it is in our way, or as a kind of weapon when throwing it at someone.

In this paper we show how to integrate substance and classification concepts into a
hierarchy of increasing abstraction from what is perceived. Thus, at the first level, we
have objects (which roughly correspond to substance concepts), which are represen-
tations of what is perceived (e.g., a car); at the second level we have actions, which
represent how objects change in time (e.g., move, where, among others, cars can
move); while, at the third level, we have functions (which roughly correspond to
classification concepts), which represent the expected behavior of objects as it is
manifested in terms of “an object performing a certain set of actions” (e.g., a vehicle,
where vehicles, e.g., cars, can perform many actions, e.g., move and stop). The intu-
ition is that, by performing actions, objects interfere with other objects, this being the
basic mechanism by which the world evolves. In this perspective, functions model the
expected interference among objects. Object interference, and therefore function, is
captured via the notions of producer and consumer, where an object is a producer when
it performs an action affecting another object and a consumer when it is affected by it.

The patterns by which producers affect consumers provide the basis for the con-
struction of Teleologies.1 Ontologies2 are defined as explicit formal specifications of
the terms in a domain [7]. The same definition can be applied for teleologies but with
the proviso that teleologies focus on function and on how a chosen representation fits a
certain purpose, this being the basis for a general model for the diversity of knowledge
[8]. In this respect, the distinction between objects and their multiple functions is the
first source of heterogeneity, modeling the diversity between the representation of what
we perceive and the representation of what we reason about. The second source of
heterogeneity is our ability to represent and reason about what we perceive at different
levels of abstraction, as function of the problem to be solved. Thus, for instance, I can
describe a person as moving her legs, as walking, or as moving, depending on my focus.

This work is a first step towards a solution to the problem of managing knowledge
diversity not in the sense that we are able to define the ultimate teleology which can be
reused in general (which is impossible), but, rather, in the sense that we provide the
basis for a general methodology for the construction, integration and/or adaptation of
data and knowledge coming from multiple heterogeneous sources. We organize the

1 The word teleology builds on the Greek words telos (meaning “end, purpose”) and logia, (meaning
“a branch of learning”).

2 The word ontology builds on the Greek words ont (meaning “being”) and logia, (meaning “a branch
of learning”).

Teleologies: Objects, Actions and Functions 521

paper as follows. In Sect. 2, we introduce objects, actions and functions. In Sect. 3 we
introduce producers, consumers and producer – consumer (PC) patterns. In Sect. 4 we
introduce the three PC pattern transformations which can be used to reduce one pattern
to another pattern, preserving the pattern intended meaning. In Sect. 5, we provide a
small example of how to build and how to adapt a teleology, using the pattern trans-
formations from Sect. 4, adaptation being they key for handling diversity in knowl-
edge. Finally, in Sect. 6, we provide the related work.

2 Object, Action and Function

We live immersed in a spatio-temporal continuum where space and time are the a-
priori forms of perception [9]. We do not perceive space or time, but anything we
perceive is part of a precise spatial or temporal ordering, and fills it. We perceive these
parts through encounters, namely events during which such parts manifest themselves
to an observer. We call such parts, substances, where, as from [4], “… substances are
those things about which you can learn from one encounter something of what to
expect on other encounters, where this is no accident but the result of a real
connection”.

People represent substances as concepts. However, the mapping between sub-
stances and concepts is not one-to-one [1]. Thus, I may perceive a substance as a cat
that I am trying to avoid hitting, as my cat, as an animal, or as an obstacle. Even more,
there are substances for which we do not have a concept. One such example, the part of
the mountain that I can see from the window of my office. Concepts represent those
parts of the spatio-temporal continuum that are relevant to us, in the way which is most
convenient for us,3 as the world where we live.4 But if the world, as we perceive it, is
representation, and if there is a certain degree of freedom in what we represent and in
how we represent it, is there a general principle to which we all adhere and that allows
us to live in the same world, or at least in worlds which are very similar?

Our answer to the above questions is based on a distinction among three types of
concepts, namely objects, actions, and functions, which represent what is perceived,
across encounters, at increasing levels of abstraction (see Fig. 1).

Fig. 1. Object, action and function.

3 The concepts we use are also largely influenced by our language, culture, history, place where we
live, and many other contextual factors, see, e.g., [10].

4 Interestingly enough, the ancient Latin word for world is mundus, meaning “clean, elegant”, itself a
translation of the Greek word cosmos, meaning “orderly arrangement”.

522 F. Giunchiglia and M. Fumagalli

We take Objects to be those concepts that represent substances, i.e., what is per-
ceived across encounters. Examples of objects are: cats, cars, rivers. As from [1], an
object can be thought as the set of all of the representations of how the same substance
“fills” space, any time we encounter it. Objects can be individuals (what in KR we call
instances, e.g., my cat Garfield) or kinds (i.e., generic instances of what in KR we call
classes, e.g., any cat that I can encounter while walking). Objects are first level abstract
representations in the sense that they abstract over multiple occurrences of the same
substance (as recognized during encounters) and collect them in clusters (one cluster
per object). An object, e.g., “a cat”, is nothing else but the set of representations of all
the times we have perceived (e.g., seen) it.

We take Actions to be those concepts that represent how objects change in time.
Examples of actions are: running (performed by, e.g., cats), carrying (performed by,
e.g., cars) and flowing (performed by, e.g., rivers). As with objects, actions are gen-
erated any time we encounter a substance. Actions are second level abstract repre-
sentations in the sense that they abstract over multiple occurrences of changes in time
of a substance (as recognized during encounters) and collect them in clusters (one
cluster per action). An action, e.g., “running”, is taken to be the set of representations of
all times we have perceived a running object, e.g., “a cat” (or “a dog”), where the
representation of “a running cat” or (“a running dog”), is a temporal sequence of “cat”
(“dog”) occurrences. Notice how actions are independent of the specific object carrying
them out; objects are abstracted away to keep track only of what changes.

We say that a certain object O performs a certain action A when we perceive O
subject to the change described by A. Notice that there are only so many actions that
can be performed by an object. For instance a car cannot be used to fly. We capture this
intuition by saying that any object O is associated to a set of admissible actions {A}a:O,
where A is an action and “a:O” stands for “admissible for O”. We have the following:

AaO Oð Þ ¼ fA j for anyA 2 Af ga:Og
OaA Að Þ ¼ fO j for anyO such thatA 2 Af ga:Og

where AaO and OaA are to be read, respectively, (admissible) Actions of (Object) and
Objects of (admissible Action). Thus, for instance we have AaO(car) = {move, trans-
port, trap, …} and OaA(move) = {car, bus, person, table,…}. For any object, its set of
admissible actions, as well as its set of not admissible (inadmissible) actions, is infinite,
as infinite are the ways in which an object can evolve in time. At the same time, an
admissible action can be performed only under certain contextual conditions. For
instance, a car needs gas to run its engine and move around. Admissible actions are
similar in spirit to Millikan’s abilities [4] and somewhat related to the notion of
affordance, as formalized by Gibson [11] and then taken up in various contexts, see,
e.g., [12, 13]. The crucial difference is that affordances are related to what an envi-
ronment enables an object to do, more than what an object is, by itself, able to do.

Certain admissible actions occur quite rarely. For instance, a car can be used as a
trap for certain animals, but this is rather unusual. Many admissible actions are instead
quite common. Thus for instance, a car usually moves around and transports people,
while a person usually eats, sleeps and walks. Similarly, at school, quite often an older

Teleologies: Objects, Actions and Functions 523

person (that we call “a teacher”) explains some topic to a younger person (that we call
“a student”), she gives homework, she grades it, and so on. The fact that certain sets of
actions are repeatedly performed by the same object allows humans to make predic-
tions about the future behaviour of objects and to reason about this. We formalize this
fact through the notion of function. The function of an object formalizes the behavior
that an object is expected to have. This expected behavior may be due to the object’s
purpose (as it is the case with artifacts, e.g., a car) or to its role, for instance in the
world and society (as it is the case with living organisms, e.g., a cat, a tree or a person).
Sometimes the word used to denote a function is the same used to denote the object
performing it (e.g., car, cat); in many cases language provides dedicated words (e.g.,
teacher, parent) possibly with a negative connotation (e.g., obstacle, enemy, garbage).

We capture this intuition by saying that an object can perform one or more func-
tions, where a function is defined as a set of actions. Let O be an object and {FO}p:O a set
of proper functions FO (where proper emphasizes the fact that these are functions which
are “expected”). Then we have the following (“p:O/p:FO” stands for “proper for O/FO”):

FpO Oð Þ ¼ fFO j for any FO 2 FOf gp:Og
OpF FOð Þ ¼ fO j for anyO such that FO 2 FOf gp:Og

with:

ApF FOð Þ ¼ fA j for anyA 2 Af gp:Fog
FpA Að Þ ¼ fFO j for any FO such thatA 2 Af gp:Fog

where: FpO and OpF are to be read (proper) Functions of (Object) and Objects of
(proper) Function, respectively, and ApF and FpA are to be read (proper) Actions of
(Function) and Functions of (proper Action), respectively. Thus, for instance, we have
ApF(vehicle) = {move, transport, …} and FpA(move) = {vehicle, person, …}. Obvi-
ously, {A}p:Fo � {A}a:O. {FO}p:O is assumed to be finite. The finiteness of {FO}p:O, in
the case of artifacts follows from the fact that we build artifacts with a specific purpose
in mind. The finite functionality of living beings is not connected to the fact that we
know their purpose but to the fact that they have shape and behavior which comes from
nature and is replicated through reproduction, and from the fact that we model it as their
role [14]. It is a fact that (the functions of) living beings are more easily recognized and
perceived than (those of) artifacts [15]. At the same time, ApF(FO) contains (again) a
possibly infinite number of actions, this meaning, in practice, that there is always the
possibility to characterize a specific change of an object/function as a new action. If
language allows us to precisely denote an object or a function with a word, a precise
characterization in terms of its possible actions is impossible [1, 4].

As from Fig. 1, functions are third level abstract representations in the sense that
they abstract over multiple occurrences of objects performing actions (as recognized
during encounters) and collect them in clusters (one cluster per function). A function,
e.g., “mover”, consists of the set of representations of all the times we have perceived an
object performing a certain expected action, e.g., “a running cat” or “a walking person”.

524 F. Giunchiglia and M. Fumagalli

3 Producer – Consumer Patterns

We model the interaction between objects, actions and functions using patterns like the
one in Fig. 2. More precisely, the pattern in Fig. 2, is a specific instance of what we call
an OAO (for Object-Action-Object) pattern. In OAO patterns, round boxes represent
objects, arrow boxes represent actions and square boxes represent functions. t1 and t2
define start and end of the action. The specific pattern in Fig. 2 instantiates what in
natural language we would describe as ‘a car transporting a person’. In Fig. 2,
Transport is the action, Car is the producer object, Person is the consumer object,
Vehicle is the function performed by the producer while Passenger is the function
performed by the consumer. The intuition is that an object plays the function of a
producer when it performs an action affecting another object, possibly itself, and that
the function of consumer is played by the object being affected by this action. The
intuition of what “an action affecting another object” means is that an object is
associated with a state and that this state changes any time an object is a consumer. The
state of an object includes its physical properties (e.g., position, shape, beauty), the
actions it performs (a subset of the set AaO(O)), namely the patterns where it is a
producer and the state of its functions (being, e.g., active, idle, malfunctioning, sick, in
love, angry, …).

In Fig. 2, the arrows from/to objects represent two crucial aspects of the model:

1. an object is always both a producer and a consumer, being embedded in the con-
tinuous evolution of the world;

2. an object may occur in multiple OAO patterns while an action may occur only
inside a single OAO pattern.

OAO patterns have the form of the pattern in Fig. 2 with three possible variations:
(i) producer and consumer may be dropped when the relevant concept is not lexicalized
or it is lexicalized with the same term as the object, (ii) the producer and the consumer
may be the same object (as in, e.g., “a person walking”), in which case the pattern
forms a cycle, and (iii) the action may be in passive form (as in, e.g., “a person
transported by a car”), this being useful to compose OAO patterns, as described
below.

OAO patterns model the world evolution. Clearly there are infinitely many such
patterns. However, that there are only four primitive OAO patterns and corresponding
primitive functions, which model the world evolution basic modalities. These patterns
model (i) how new objects are conceived, (ii) how they are realized and (iii) how they
are destroyed, and (iv) how they affect the state of other objects. The first such pattern,
called Conception, or OCO pattern, defines the function conceiver. See Fig. 3.

Fig. 2. ‘OAO pattern – A car transporting a person’.

Teleologies: Objects, Actions and Functions 525

Conception represents the process by which a concept, which was not lexicalized
before, is conceived. Concept conception amounts not only to the creation of the new
concept in the mind of a living being, e.g., a person, but also to the creation, via
perception, of the causal relation between the concept and the substance being per-
ceived. For instance, Johannes Gutenberg in 1439 conceived the first printing press.
Notice that living beings are the only objects which can conceive new functions and
that they do this by reflexively “enriching” their state with a new concept, where the
word in parenthesis in Fig. 3 represents the concept being conceived.

The second primitive pattern, that we call Realization, or ORO pattern, defines the
function maker. See Fig. 4. The realization of an object coincides with the moment
when an object assumes its (recognizable) identity in the world. For instance, my car
was realized in 2014, 15 days before I bought it. For an object to be realized, its defining
functions must have been previously conceived. Figure 4 depicts three important spe-
cializations of the pattern, namely: (i) the capability of living beings to procreate, (ii) the
manufacturing skills by which a factory (or a person) can realize objects, e.g., a press,
and (iii) the ability of “intelligent” machines to assemble new objects.

The third primitive pattern, called Destruction, or ODO pattern, defines the
function destroyer. See Fig. 5.

Fig. 3. ‘OCO - object conception pattern’.

Fig. 4. ‘ORO - object realization pattern’.

Fig. 5. ‘ODO - object destruction pattern’.

526 F. Giunchiglia and M. Fumagalli

ODO patterns represent the process by which an object “disappears” because losing
its identity. This is the inverse pattern of realization. Thus, eating an orange and a car
wrecker destroying my car are both instantiations of this pattern.

The last primitive pattern, called Service Provision, or OSO pattern, defines the
functions provider and receiver. See Fig. 6.

This is the pattern that models the process by which any two objects may affect one
another. The specialization patterns represent some important specializations, namely:
(i) the inception of a living being (it is a “service” in the sense that the state of the
consumer is changed), (ii) a living being acquiring the energy needed to live by eating,
and (iii) an object affecting the state, e.g., the position, of another object.

The key observation is that the world evolution can be modeled by suitably
specializing/generalizing and/or by composing OAO patters to produce complex pat-
terns. We call the patterns obtained in this way, Producer – Consumer (PC) patterns.
The figures above provide examples of specializations. PC patterns compose OAO
patterns by making the consumer of a former pattern coincide with the producer of a
latter pattern. PC patterns can produce graphs of arbitrary complexity. The simplest
versions of PC patterns are OAOAO patterns. These patterns are of particular relevance
since they represent how the application of the function in the first OAO pattern
provides input to the function applied in the second OAO pattern. Examples of relevant
OAOAO patterns are: reproduction, which models how something is constructed as a
copy of some object, transformation which models how objects change their function
(e.g., a car transformed into a cage or a rock into a chair); undo by which the second
function, under certain conditions, cancels the effects of the first function, this allowing
to define the inverse function; service composition, which models how complex ser-
vices are provided, online or in the world, and so on. As an example of OAOAO
pattern, Fig. 7 depicts Creation.

Fig. 6. ‘OSO - object service pattern’.

Fig. 7. ‘Creation compound pattern’.

Teleologies: Objects, Actions and Functions 527

Creation allows for the construction of a new type of object (e.g., presses, in the
case of Gutenberg’s press). Notice that the central object has two inputs which may
occur at different times. The first observation is that the double input captures the fact
that nothing can be created but can only be “transformed” from something else. The
second is that what we represent is always an approximation, e.g., we could further
complicate the above pattern to consider more materials, human effort, and so on.

4 Pattern Transformations

PC patterns allow for a uniform representation of the spatio-temporal continuum.
However, they do not give us the means for univocally representing this continuum as
(the evolution of) the world where we live. As from Sect. 2, there is a many-to-many
mapping between substances and substance concepts (i.e., objects) and, as from [1],
there is a many-to-many mapping between substance concepts and classification
concepts, this latter intuition being captured by the two relations FpO and OpF
introduced in Sect. 2. These two mappings are at the core of the phenomenon of
knowledge diversity and formalize two levels of freedom in the representation of the
spatio-temporal continuum. The first, from substances to objects, corresponds to the
many possible ways in which the same substance can be perceived as a certain object.
The second, from objects to functions, corresponds to the many possible ways in which
the same object can be reasoned about in terms of the function it performs.

Our solution to the problem of managing diversity in knowledge is to exploit the
uniform representation provided by PC patterns and define a set of PC pattern
transformation operators that allow, given any two PC patterns, to reduce one to the
other, preserving their intended meaning. The intuition is that the existence of such a
reduction will be evidence that the two PC patterns represent the same or similar
configurations of substances, and the contrary when this is not the case. Notice how this
does not avoid the possibility of multiple descriptions of the same (set of) substances,
but it does provide a systematic approach for absorbing diversity.

We have identified three PC pattern transformation operators, that we call Gran-
ularity, Abstraction and Partiality, where the combined effects of these three operators
allow to transform patterns, still preserving the underlying semantics.5

The Granularity operator allows for two types of transformation: (i) substituting
parts with wholes or vice versa, and (ii) substituting more specific concepts with more
general concepts or vice versa. The examples in the previous section are all applica-
tions of this operator. Figure 8 provides a further example where the pattern at the
bottom is obtained from the one at the top via a whole-part transformation and a more
general-more specific transformation.

The Abstraction (concretization) operator enables the (un)folding of concepts,
towards a less (more) fine-grained structure; making some concepts implicit (explicit).

5 A general formalization of this intuition, not provided here for lack of space, will be provided in a
follow-up paper and will be based on the work described in [16], which provides a formalization of
the problem of theory transformation in terms of abstraction operators.

528 F. Giunchiglia and M. Fumagalli

Figure 9 provides an example of abstraction (top) and one of concretization (bottom).
Notice how anActionObject Action pattern gets reduced to a single action and vice versa.

The granularity and the abstraction operators output PC patterns. This is not the
case for the Partiality operator which outputs two patterns, namely (i) patterns con-
taining only actions and functions, that we call AA patterns, and (ii) patterns containing
only objects and functions, that we call OO patterns. The Partiality operator achieves
this result by dropping all elements of certain kinds (O or A). Consider for instance
Fig. 10, where the top pattern is obtained from the middle one by dropping objects (and
functions) and where the bottom pattern is obtained from the middle one by dropping
actions. Notice how AA patterns focus on the process, as it is done, e.g., in planning
and activity recognition (see, e.g., [17–19]) while OO patterns focus on objects and
their functions, as it is done, e.g., in Schema.org [20]. The choice of where to focus
depends on the purpose of the modeling. We call the union of PC patterns, OO patterns
and AA patterns, teleology patterns, to capture the idea that any representation is
chosen to best fit the problem to be solved.

Fig. 9. ‘Abstraction/concretization operator’.

Fig. 8. ‘Granularity operator’.

Fig. 10. ‘Partiality operator’.

Teleologies: Objects, Actions and Functions 529

5 Teleologies

Teleology patterns are the basic constituents of Teleologies. Teleologies are nothing
else but structured organizations of teleology patterns where the horizontal dimension
is given by the teleology patterns themselves while the vertical dimension follows the
“usual” more/less general hierarchy. In this respect the name “teleology” has a double
motivation as, on one side, teleologies allow for the explicit representation of function,
while, on the other side, are organized as needed for the problem to be solved.

The top part of teleologies is organized in two levels. The root is “Concept”,
meaning that the focus is on representation rather than on what is the case, as it happens
in (upper level) ontologies (where, for instance, the root of DOLCE is “Thing” [21] and
the root of SUMO is “Entity” [22]). In turn, the root has three children, namely
“Object”, “Action” and “Function”, the last being then further subdivided into “Pro-
ducer” and “Consumer”. Furthermore, functions, objects and actions are linked by the
relations defined in Sect. 2, i.e., “AaO”, “OaA”, “FpO”, “OpF”, “FpA” and “ApF”.

Teleologies are designed to satisfy two main properties:

1. to allow for the representation of teleology patterns, as the way to provide a uniform
view of the concepts recognized via perception and the concepts used and derived
via reasoning;

2. to allow for their continuous modification, via pattern transformation operators, as
the way by which a teleology can be adapted to integrate new inputs, e.g., new
concepts needed to represent a new input from perception or from a heterogeneous
dataset, or concepts coming from another teleology.

Let us start with the first property. For the sake of argumentation, as an example, we
can assume that we have, as initial set of “relevant” concepts, those which are reported
in Table 1 and are not tagged with “*”. Notice that in Table 1 we have “Person” and
“Car” but also “LivingBeing” and “Machine”, with the latter two concepts being more
general than the former two. It is in general a good practice to use a set of high level
concepts as collectors of functions and actions. Thus, for instance, the functions and
actions of “LivingBeing” can be inherited by, e.g., “Cat”. The idea is to avoid
unnecessary diversity as the more general concepts drive the instantiation of their more
specific concepts.

Table 1. An example of relevant concepts.

Object Function Action

LivingBeing {LivingBeing} {Conceive}
Machine {Machine} {Transport}
Person {Person, Driver, Maker, Passenger,

Rider}
{Conceive, Drive, Make,
Ride}

Car {Car, Vehicle, Transportation} {Transport}
Motorcycle {*Motorcycle*, Vehicle} {Transport}

530 F. Giunchiglia and M. Fumagalli

A snapshot of the resulting teleology is reported in Fig. 11.

The white arrows represent more/less general relations, the black diamonds rep-
resent associative relations, e.g., “partOf”, “FpO” and “ApF”. The “ApF” links in
Fig. 11 must be read as follows: producers enable the actions in ApF(producer) while
consumers are affected by the actions in ApF(consumer). Notice how the PC pattern in
Fig. 2 is reconstructed via the associative relations linking “Car”, “Person”, “Vehicle”,
“Transport” and “Passenger”. Notice also how roles such as, e.g., “driverOf” or
vehicleOf”, not represented in Fig. 11 for lack of space, are more specific concepts than
the relation resulting from the composition of FpO and ApF. Roles are crucial for the
representation of OO patterns like the one represented in Fig. 10 (bottom).

Let us now see how we can use the same process as above to adapt, e.g.,
extend/change, the current teleology in the presence of a new concept (for instance
coming from another vocabulary). Consider, for instance, the concept “Car”, classified
in Schema.org6 as a “Product” and as a “Vehicle”. This concept is perfectly aligned
with that with the same name in the teleology in Fig. 11. The only (optional) addition is
to add “Product” (as a function, more precisely as a consumer). Consider now the more
complex situation of updating the teleology in Fig. 11 by adding the object “Motor-
cycle”, as defined in Schema.org7, as a specialization of “Machine”. “Motorcycle” is
not present in Fig. 11 nor is there any PC pattern to which it can be connected. The
relevant PC pattern(s) can be added by applying the granularity operator, more
specifically by specializing the function “Driver” with “Rider” and the action “Drive”

Fig. 11. ‘A small example of teleology’.

6 http://schema.org/Car .
7 https://auto.schema.org/Motorcycle .

Teleologies: Objects, Actions and Functions 531

http://schema.org/Car
https://auto.schema.org/Motorcycle

with “Ride”. Figure 12 represents a focus on the relevant part of Fig. 11 where the new
concepts (marked with “*” in Table 1) are added. The resulting teleology is now
capable of modeling the PC pattern described by the natural language sentence ‘a
person riding a motorcycle’.

6 Related Work

Our work is coherent and shares some intuitions with some recent work on the theories
of intentionality (see, e.g., [23]), where the central focus is on how minds are able to
represent and be about objects, as the basis for understanding what minds represent. Of
direct relevance to our notion of function are Searle’s notions of status function and
function imposition and how they contribute to the construction of social reality [24].

From a methodological point of view, the work which is closer in spirit to ours is
that on upper ontologies. However, we can articulate two main differences. The first is
connected to what they are modeling, as well represented by the different roots (see the
previous section). The second, which is a direct consequence of the first, is in how
teleologies are built. Ontologies are designed on the basis of a thorough analysis of
how the world appears to us. As a consequence, the problem reduces to finding the
most suitable more general classes from which an entity can be derived by special-
ization. This approach cannot be used in the definition of teleologies. With teleologies
the general idea is to build the most suitable teleology and to adapt it as needed
following the evolution of the world (see Sect. 6). What is defined a priori is not
teleologies but the process by which they are built starting from their top level
concepts.

The approach presented in this paper has some important commonalities with the
work on biosemantics [25], and was initially inspired by Millikan’s work, as cited
throughout the paper. In particular Millikan was the first to introduce the notions of
producer and consumer, with the goal of explaining the process by which meaning gets
transferred [14]. Millikan’s notions are a particular case of the corresponding notions
introduced in this paper. Figure 13 (top) reports one of Millikan’s most famous pro-
ducer and consumer examples describing how bees communicate to other bees, via a
specific dance, where the nectar is.

Fig. 12. ‘An example of teleology update’.

532 F. Giunchiglia and M. Fumagalli

Figure 13 shows how the bee example is an instance of an OROSOSO pattern
where sign is meant to be a “word” in the bee language, and inform is a service by
which the sign, by being seen, informs the second bee about the location where the
nectar is.

Last but not least, PC patterns can be seen as a formalism for modeling causality.
This fact was not intended when we started this work and came out completely
unexpected. At this point in time we are not ready for a thorough discussion on this
issue. The only two observations that we are able to make is that certain argumentations
on causal factors, see, e.g., [26], can be modeled as suitable PC patterns and that, at the
same time, Millikan’s notion of causal factor [4], as also discussed in [1], relates to the
notion of function, as introduced in this paper.

7 Conclusion

In this paper we have shown how the world is modeled in terms of three concepts at
three increasing levels of abstractions: objects, actions and functions. These three
notions have allowed us to introduce PC patterns and teleologies as a first step towards
a general solution of the problem of managing knowledge diversity. To this extent, we
have briefly described how teleologies can be tuned to the specific problem and later
adapted as needed, following a precise methodology. The future work will consist in
the development of large scale teleologies (including a full formalization of schema.
org) and a detailed mapping to the work done in biosemantics.

References

1. Giunchiglia, F., Mattia F.: Concepts as (recognition) abilities. In: Proceedings of the 9th
International Conference Formal Ontology in Information Systems (FOIS 2016), vol. 283,
p. 153. IOS Press (2016)

2. Millikan, R.G.: Biosemantics. J. Philos. 86(6), 281–297 (1989)
3. Prinz, J.: Beyond appearances: the content of sensation and perception. In: Perceptual

Experience, pp. 434–460 (2006)
4. Millikan, R.G.: On Clear and Confused Ideas: An Essay About Substance Concepts.

Cambridge University Press, Cambridge (2000)
5. Forsyth, D.A., Jean, P.: Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle

River (2011)

Fig. 13. ‘A bee telling another bee where the nectar is’.

Teleologies: Objects, Actions and Functions 533

6. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations, vol. 13. Brooks/Cole, Pacific Grove (2000)

7. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
Int. J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)

8. Giunchiglia, F.: Managing diversity in knowledge. In: Keynote Talk, European Conference
on Artificial Intelligence (ECAI-2006) (2006). http://www.disi.unitn.it/*fausto/knowdive.
ppt

9. Bird, G.: Kant’s Theory of Knowledge: An Outline of One Central Argument in the
‘Critique of Pure Reason, vol. 1. Routledge, Abingdon (2016)

10. Giunchiglia, F., Khuyagbaatar B., Gabor, B.: Understanding and exploiting language
diversity. In: IJCAI (2017)

11. Gibson, J.J.: The theory of affordances. In: Perceiving, Acting, and Knowing: Toward an
Ecological Psychology, pp. 67–82 (1977)

12. Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To afford or not to afford: a new
formalization of affordances toward affordance-based robot control. Adapt. Behav. 15(4),
447–472 (2007)

13. Ortmann, J., Kuhn, W.: Affordances as qualities. In: FOIS, pp. 117–130 (2010)
14. Millikan, R.G.: Language, Thought, and Other Biological Categories: New Foundations for

Realism. MIT press, Cambridge (1984)
15. Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Boyes-Braem, P.: Basic objects in

natural categories. Cogn. Psychol. 8(3), 382–439 (1976)
16. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 57(2–3), 323–389 (1992)
17. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in

smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)
18. Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for

human behavior recognition. ACM Comput. Surv. (CSUR) 46(4), 43 (2014)
19. Ni, Q., Pau de la Cruz, I., García Hernando, A.B.: A foundational ontology-based model for

human activity representation in smart homes. J. Ambient Intell. Smart Environ. 8(1), 47–61
(2016)

20. Barker, P., Campbell, L.M.: What is schema.org? LRMI (2015). Accessed 21 Apr 2014
21. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Oltramari, R., Schneider,

L.: Lead Partner ISTC-CNR, Ian Horrocks. WonderWeb Deliverable D17. The WonderWeb
Library of Foundational Ontologies and the DOLCE ontology (2002)

22. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International
Conference on Formal Ontology in Information Systems, vol. 2001, pp. 2–9. ACM (2001)

23. Millikan, R.G.: Varieties of Meaning: The 2002 Jean Nicod Lectures. MIT Press, Cambridge
(2004)

24. Searle, J.R.: Social ontology and political power. In: Friederick, S.F. (ed.) Socializing
Metaphysics: The Nature of Social Reality, pp. 195–210 (2003)

25. Macdonald, G., Papineau, D. (eds.): Teleosemantics. Clarendon Press, Wotton-under-Edge
(2006)

26. Sober, E., Papineau, D.: Causal factors, causal inference, causal explanation. Proc. Aristot.
Soc. Suppl. Vol. 60, 97–136 (1986)

534 F. Giunchiglia and M. Fumagalli

http://www.disi.unitn.it/%7efausto/knowdive.ppt
http://www.disi.unitn.it/%7efausto/knowdive.ppt

Correction to: SourceVote: Fusing
Multi-valued Data via Inter-source Agreements

Xiu Susie Fang, Quan Z. Sheng, Xianzhi Wang, Mahmoud Barhamgi,
Lina Yao, and Anne H.H. Ngu

Correction to:
Chapter “SourceVote: Fusing Multi-valued Data via
Inter-source Agreements” in: H.C. Mayr et al. (Eds.):
Conceptual Modeling, LNCS 10650,
https://doi.org/10.1007/978-3-319-69904-2_13

The original version of the chapter was incomplete. The complete information must be
read as follows:

This work was supported in part (for the co-author Mahmoud Barhamgi) by the Justice
Programme of the European Union (2014-2020) 723180, RiskTrack, under Grant
JUST-2015-JCOO-AG and Grant JUST-2015-JCOO-AG-1.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-69904-2_13

© Springer International Publishing AG 2018
H.C. Mayr et al. (Eds.): ER 2017, LNCS 10650, p. E1, 2017.
https://doi.org/10.1007/978-3-319-69904-2_40

https://doi.org/10.1007/978-3-319-69904-2_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69904-2_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69904-2_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69904-2_40&domain=pdf
https://doi.org/10.1007/978-3-319-69904-2_13

Author Index

Abad, Karina 36
Akhigbe, Okhaide 77
Almeida, João Paulo A. 280
Alothman, Norah 451
Amyot, Daniel 77
Asani, Zera 149
Ayora, Clara 239

Balke, Wolf-Tilo 134
Barhamgi, Mahmoud 164
Batoulis, Kimon 403
Berman, Sonia 437
Bernasconi, Anna 325
Bouissiere, François 340
Brings, Jennifer 466
Buchmann, Robert Andrei 21
Buga, Andreea 120

Campi, Alessandro 325
Carmona, Josep 295
Carvalho, Victorio A. 280
Carvallo, Juan Pablo 36
Ceri, Stefano 325
Cetina, Carlos 491
Chaki, Nabendu 69
Chatain, Thomas 295
Ciglic, Margareta 50
Cuiller, Claude 340

Dam, Hoa Khanh 373
Dam, Hoa 69
Daun, Marian 466
de la Vara, Jose Luis 239
de Lara, Juan 59
Deb, Novarun 69
Dereux, Pierre-Eric 340

Eder, Johann 50
Ehrensberger, Sybil 149
Evertsz, Rick 311

Fang, Xiu Susie 164
Fischer-Pauzenberger, Christian 506

Fonseca, Claudenir M. 280
Franch, Xavier 36
Fumagalli, Mattia 520

Ghanavati, Sepideh 231
Gharib, Mohamad 193
Ghose, Aditya 69, 373
Giachetti, Giovanni 239
Giorgini, Paolo 193, 223
Giunchiglia, Fausto 520
Gonzalez-Perez, Cesar 92
Guarino, Nicola 477
Guerra, Esther 59

Haarmann, Stephan 403
Heap, Susie 77
Holtgrefe, Eric 231

Islam, Sakib 77

Jordan, Andreas 173
Jureta, Ivan J. 209

Kalo, Jan-Christoph 134
Karagiannis, Dimitris 21
Karlapalem, Kamalakar 419
Keet, C. Maria 437
Kersuzan, Stéphane 340
Khan, Muhammad Asjad 69
Kolozoff, Michail-Romanos 106

Liaskos, Sotirios 451
Link, Sebastian 251, 266
Liu, Jiamou 266

Macías, Fernando 59
Marcén, Ana C. 491
Marín, Beatriz 239
Martin-Rodilla, Patricia 92
Masseroli, Marco 325
Massey, Aaron K. 231
Mennicke, Stephan 134
Moser, Christoph 21

Mundbrod, Nicolas 388
Murolo, Alfonso 149
Mylopoulos, John 77, 193, 223

Nemeş, Sorana Tania 120
Ngu, Anne H.H. 164
Norrie, Moira C. 149

Olivé, Antoni 1
Oriol, Xavier 354

Paja, Elda 223
Papasimeon, Michael 311
Pérez, Francisca 491
Pérez, Wilson 36
Pichler, Horst 50
Piras, Luca 223
Polacsek, Thomas 340

Radha Krishna, P. 419
Reichert, Manfred 388
Roblot, Tania Katell 251
Roussel, Stéphanie 340
Roy, Suman 373

Santipuri, Metta 373
Santiputri, Metta 69

Schewe, Klaus-Dieter 120
Schrefl, Michael 173
Schwaiger, Walter S.A. 506
Selway, Matt 173
Sheng, Quan Z. 164
Storey, Veda C. 182
Stumptner, Markus 173

Teniente, Ernest 354
Thalheim, Bernhard 182
Thangarajah, John 311

Utz, Wilfrid 21

van Dongen, Boudewijn 295
Vassiliadis, Panos 106

Wang, Xianzhi 164
Wei, Ziheng 266
Weske, Mathias 403
Weyer, Thorsten 466

Yao, Lina 164

Zarras, Apostolos V. 106
Zerva, Maria 106
Zhian, Mehrnaz 451

536 Author Index

	Preface
	Organization
	Invited Talks
	Conceptual Modeling? When We are Awash in Information?
	Conceptual Modeling: Philosophical Considerations
	IT Professionals and Conceptual Modeling
	Classification and Science
	Contents
	The Universal Ontology: A Vision for Conceptual Modeling and the Semantic Web (Invited Paper)
	Abstract
	1 Introduction
	2 Concept Specification in the UO
	3 The Structure of the UO
	3.1 The Conceptual Model Level
	3.2 The Foundational Level
	3.3 The General Level
	3.4 The Domain Level
	3.5 Local Concepts

	4 Concept Composition
	4.1 Compound Nouns
	4.2 Count Composition

	5 Feasibility and Desirability of the UO
	5.1 Feasibility
	5.2 Desirability

	6 Conclusions
	Acknowledgments
	References

	Conceptual Modeling Methodology
	CE-SIB: A Modelling Method Plug-in for Managing Standards in Enterprise Architectures
	Abstract
	1 Introduction
	2 Problem Statement and Background
	2.1 Problem Statement
	2.2 Related Works

	3 Design Decisions
	3.1 CE-SIB: A Design Science Artifact
	3.2 The CE-SIB Language Fragment: Semantic Docking
	3.3 The CE-SIB Procedure: Managing Standards Compliance
	3.4 The CE-SIB Mechanisms: Computing Standardization Degrees

	4 Implementation and Evaluation
	5 Concluding SWOT Analysis
	Acknowledgment
	References

	A Catalogue of Reusable Context Model Elements Based on the i* Framework
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The DHARMA Method
	2.2 Related Work on Reuse Through Patterns

	3 Catalogue Construction
	3.1 Data Collection
	3.2 Actors Analysis
	3.3 Dependencies Analysis
	3.4 Synonyms in Actors and Dependencies
	3.5 Parametric Actors and Dependencies

	4 The Catalogue of Context Model Elements
	5 Catalogue Use
	5.1 Use Case
	5.2 Reusability

	6 Conclusions and Future Work
	References

	Modelling Processes with Time-Dependent Control Structures
	1 Introduction
	2 Temporal Control Structures
	3 Process Model with Temporal Control Structures
	4 Schedule and Controllability
	5 Related Work
	6 Conclusion
	References

	Towards Rearchitecting Meta-Models into Multi-level Models
	1 Introduction
	2 Background and Motivation
	3 Rearchitecting Meta-Models into Multi-level Solutions
	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References

	Mining Goal Refinement Patterns: Distilling Know-How from Data
	1 Introduction
	2 General Approach
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	Goal-Oriented Regulatory Intelligence: How Can Watson Analytics Help?
	Abstract
	1 Introduction
	2 Background
	3 Regulatory Intelligence
	4 A Method for Regulatory Intelligence
	5 Illustrative Case Study
	6 Lessons Learned
	7 Limitations
	8 Conclusion and Future Work
	Acknowledgements
	References

	An Alternative Approach to Metainformation Conceptualisation and Use
	Abstract
	1 Introduction
	2 Existing Metadata Approaches
	2.1 ISO 15836 (Dublin Core)
	2.2 ISO/IEC 11179 (Metadata Registry)

	3 Metadata as a Conceptual Problem
	4 Proposed Solution
	5 Discussion and Conclusions
	References

	Schema Evolution and Foreign Keys: Birth, Eviction, Change and Absence
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Fundamentals
	3.2 Datasets
	3.3 Data Processing

	4 Growth and Heartbeat of Foreign Key Evolution
	4.1 Total Number of Tables and Foreign Keys
	4.2 Heartbeat of Changes

	5 Where Did the Foreign Keys Go?
	5.1 The Strange Case of the Disappearing Foreign Keys
	5.2 Are Foreign Keys Unwelcome in CMS's?

	6 Conclusions
	References

	Conceptual Modelling of Autonomous Multi-cloud Interaction with Reflective Semantics
	1 Introduction
	2 Multi-cloud Interaction
	2.1 Abstract State Services
	2.2 Plots and Mediators
	2.3 Matching Services

	3 Middleware Architecture
	3.1 Client-Cloud Interaction Middleware
	3.2 CCIM Interaction Scenarios

	4 Monitoring and Adaptation
	4.1 Monitoring Ground Model
	4.2 Leader ASM

	5 Conclusion
	References

	Querying Graph Databases: What Do Graph Patterns Mean?
	1 Introduction
	2 Graph Databases and Graph Patterns
	3 Failures in Relations and Properties
	3.1 Failures
	3.2 Simulations

	4 Beyond Structural Similarity: Query Patterns
	5 Related Work
	6 Conclusion
	References

	Scaffolding Relational Schemas and APIs from Content in Web Mockups
	1 Introduction
	2 Background
	3 The DataMockups Tool
	4 Data Detection and Schema Formation
	5 Evaluation
	5.1 Case Study for Schema Formation
	5.2 Performance Evaluation

	6 Conclusion
	References

	SourceVote: Fusing Multi-valued Data via Inter-source Agreements
	1 Introduction
	2 Related Work
	3 The SourceVote Approach
	3.1 Creating Agreement Graphs
	3.2 Estimating Value Veracity and Source Reliability

	4 Experiments
	4.1 Comparison of Data Fusion Methods
	4.2 Empirical Studies of Different Concerns

	5 Conclusion
	References

	Level-Aware Ecosystem Transformations for Industrial Lifecycle Interoperability
	1 Introduction
	2 Brief Introduction to SLICER
	3 Multi-level Enrichment
	3.1 Mapping the Linguistic Dimension to SLICER
	3.2 Enriching the Ontological Dimension

	4 Multi-level Mappings
	4.1 Semantic Mapping Relations
	4.2 Defining Joint Model Mappings

	5 Conclusion
	References

	Conceptual Modeling: Enhancement Through Semiotics
	Abstract
	1 Introduction
	2 Modeling Challenges in Conceptual Modeling
	3 Models, Expressions, and Stakeholder Levels
	4 Illustrative Example
	5 Semiotics Reconsidered
	6 Conclusion
	Acknowledgements
	References

	Conceptual Modeling and Requirements
	Towards an Ontology for Privacy Requirements via a Systematic Literature Review
	1 Introduction
	2 Review Process
	2.1 Planning the Review
	2.2 Conducting the Review
	2.3 Reporting the Results

	3 Review Results and Discussion
	4 A Novel Privacy Ontology
	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	References

	What Happens to Intentional Concepts in Requirements Engineering if Intentional States Cannot Be Known?
	Abstract
	1 Introduction
	2 Intentional Concepts in Requirements Engineering
	3 Requirements Intentionality Assumptions
	4 Problems
	5 Sketching a Solution
	6 Discussion and Conclusions
	References

	Goal Models for Acceptance Requirements Analysis and Gamification Design
	1 Introduction
	2 Acceptance Requirements and the PACAS Project
	3 The Agon Multi-Layer Meta-Model
	4 Conclusion
	References

	Modeling Regulatory Ambiguities for Requirements Analysis
	1 Introduction
	2 Related Work
	3 Constructing Ambiguity Models
	4 Discussion and Summary
	References

	An Experimental Evaluation of the Understanding of Safety Compliance Needs with Models
	Abstract
	1 Introduction
	2 Background
	3 Experiment Process
	4 Results and Interpretation
	4.1 Effectiveness of Understanding (RQ1)
	4.2 Efficiency of Understanding (RQ2)
	4.3 Perceived Benefits in the Use of Models (RQ3)

	5 Conclusion
	Acknowledgments
	References

	Foundations
	Cardinality Constraints with Probabilistic Intervals
	1 Introduction
	2 Related Work
	3 Cardinality Constraints with Probabilistic Intervals
	4 Reasoning Tools
	4.1 Cardinality Constraints with Upper Bounds
	4.2 Cardinality Constraints with Probabilistic Intervals

	5 Acquiring Probabilistic Intervals
	5.1 Summarizing Abstract Sets of P-CCs as Armstrong PC-bases

	6 Conclusion and Future Work
	References

	Contextual Keys
	1 Introduction
	2 Related Work
	3 Fundamentals of Contextual Keys
	4 Armstrong Relations for Contextual Keys
	5 Conclusion and Future Work
	References

	A Comprehensive Formal Theory for Multi-level Conceptual Modeling
	Abstract
	1 Introduction
	2 Requirements for a Comprehensive Multi-level Theory
	3 MLT*: A Theory for Multi-level Modeling
	3.1 Basic Notions
	3.2 Accounting for Stratification into Orders
	3.3 Beyond Strictly Stratified Types
	3.4 Cross-Level Structural Relations

	4 Implications for Multi-level Modeling Approaches
	5 Conclusions and Future Work
	Acknowledgements
	References

	Alignment-Based Trace Clustering
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets
	2.2 Foundations of Alignments

	3 Multi-alignments
	3.1 Formalization of Multi-alignments
	3.2 Encoding Multi-alignments Using Pseudo-Boolean Constraints
	3.3 Partial Covering of the Log Traces

	4 Alignment-Based Clustering of Log Traces
	5 Implementation and Experiments
	6 Conclusion and Perspectives
	References

	Conceptual Modeling in Specific Context
	The Conceptual Modelling of Dynamic Teams for Autonomous Systems
	1 Introduction
	2 Background
	2.1 Team Oriented Programming and AOSE
	2.2 TDF and the BDI Paradigm

	3 Team Modelling Requirements
	4 TDF-T Methodology, Conceptual Model, and Tool
	4.1 TDF-T Process
	4.2 TDF-T Artefacts and Relationships
	4.3 TDF-T Diagrams and Iconography
	4.4 TDF-T Tool

	5 Evaluation
	5.1 Implementation

	6 Discussion
	References

	Conceptual Modeling for Genomics: Building an Integrated Repository of Open Data
	1 Introduction
	2 Design of GCM
	2.1 Analysis of Metadata Attributes
	2.2 Genomic Conceptual Model
	2.3 Source-Specific Views of GCM
	2.4 User-Friendly Interface

	3 Building the Integrated Repository
	3.1 Available Repositories at the Sources
	3.2 Mapping Rules

	4 Related Works
	5 Conclusions
	References

	Towards Thinking Manufacturing and Design Together: An Aeronautical Case Study
	1 Introduction
	2 Simultaneous Engineering for Aeronautics
	2.1 A Sequential Development Cycle
	2.2 Objectives of the Simultaneous Engineering

	3 Modelling the Production Line
	3.1 The Aeronautical Case Study
	3.2 Data Retrieval and Analysis

	4 Abstract Generic Model
	4.1 General Idea
	4.2 Pattern

	5 Conclusion and Perspectives
	References

	OCLUNIV: Expressive UML/OCL Conceptual Schemas for Finite Reasoning
	1 Introduction
	2 Preliminaries
	3 The OCLUNIV Language
	4 Decidability of OCLUNIV with Min Cards and Path Acyclicity
	4.1 Reasoning on UML Class Diagrams with No Min Card Cycles Is Decidable
	4.2 Incorporating OCLUNIV
	4.3 Incorporating Acyclicity Constraints, Min Cardinalities Greater Than 1, and Incomplete Hierarchies

	5 Expressiveness Study
	6 Related Work
	7 Conclusions
	References

	Conceptual Modeling and Business Processes
	Goal Orchestrations: Modelling and Mining Flexible Business Processes
	1 Introduction
	2 Goal Orchestration Models and Semantics
	3 Executing Goal Orchestrations
	4 Mining Goal Orchestrations
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Configurable and Executable Task Structures Supporting Knowledge-Intensive Processes
	1 Introduction
	2 Fundamentals and Requirements
	3 The psroCollab Approach
	4 Task Trees
	5 Configurable Task Trees
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Various Notions of Soundness for Decision-Aware Business Processes
	1 Introduction
	2 Related Work
	3 Prerequisites and Motivation
	3.1 DMN and BPMN
	3.2 Soundness of Workflow Nets
	3.3 Running Example
	3.4 Outlook

	4 State-Based Soundness Criteria for Decision-Aware Processes
	4.1 Using State Information for Soundness Checking
	4.2 State-Based Decision Deadlock Freedom
	4.3 State-Based Dead Branch Absence

	5 Definition of Decision-Aware Soundness Notions
	5.1 Decision-Aware Soundness
	5.2 Decision-Aware Relaxed Soundness
	5.3 Decision-Aware Weak Soundness
	5.4 Decision-Aware Lazy Soundness
	5.5 Decision-Aware Easy Soundness

	6 Discussion and Conclusion
	References

	Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions
	Abstract
	1 Introduction
	2 Related Work
	3 Issues in Conceptual Modeling of IoTs Driven Smart Solutions
	3.1 CM-SS: Conceptual Model for Smart Solutions

	4 Architectural Framework for IoT Driven Smart Applications
	4.1 Implementation Mechanism

	5 Traffic Advisor: A Case Study
	6 Conclusion
	References

	Model Efficiency
	Determining the Preferred Representation of Temporal Constraints in Conceptual Models
	1 Introduction
	2 Representing the Same Information in Different Ways
	2.1 The Description Logic DLRUS: Syntax and Semantics
	2.2 ERVT, EERVT++, and Further Extensions to TREND
	2.3 Verbalising Temporal Conceptual Models

	3 Evaluation of Temporal CDMLs
	3.1 Materials and Methods
	3.2 Results and Discussion

	4 Discussion
	5 Conclusion
	References

	User Perception of Numeric Contribution Semantics for Goal Models: An Exploratory Experiment
	1 Introduction
	2 Background
	2.1 Goal Models and Contribution Links
	2.2 Quantitative Propagation Semantics
	2.3 Four Alternative Theories
	2.4 Comparing Theories

	3 Experimental Study
	3.1 Study Design
	3.2 Results

	4 Consequences and Validity Threats
	5 Related Work
	6 Concluding Remarks
	References

	On the Impact of the Model-Based Representation of Inconsistencies to Manual Reviews
	Abstract
	1 Motivation and Background
	2 Related Work
	3 Experiment
	4 Hypotheses Tests
	5 Discussion and Conclusion
	5.1 Evaluation of Results and Implications
	5.2 Threats to Validity
	5.3 Inferences

	Acknowledgment
	References

	Ontologies
	On the Semantics of Ongoing and Future Occurrence Identifiers
	1 Introduction
	2 The Need for Tensed Properties and Tensed Parthood
	3 Episodes and Processes
	4 Ongoing and Future Events as Variable Embodiments
	5 A Preliminary Axiomatization
	6 Related Work and Conclusions: Let's Defrost Events!
	References

	Ontological Evolutionary Encoding to Bridge Machine Learning and Conceptual Models: Approach and Industrial Evaluation
	1 Introduction
	2 The OnEvEn Approach
	2.1 Ontological Encoding Phase
	2.2 Evolutionary Encoding Phase
	2.3 Feature Selection Phase

	3 Evaluation
	3.1 Experimental Setup
	3.2 CAF Case Study
	3.3 Implementation Details
	3.4 Results
	3.5 Statistical Analysis

	4 Threats to Validity
	5 Related Work
	5.1 Feature Selection
	5.2 Requirements Traceability

	6 Conclusion
	References

	The OntoREA© Accounting and Finance Model: Ontological Conceptualization of the Accounting and Finance Domain
	Abstract
	1 Introduction
	2 REA© Accounting Model: Additional Reification of the Balanced Reciprocity Relationship
	3 OntoREA Accounting Model: Ontological Meta-	Properties – Stereotypes in OntoUML Class Diagrams
	4 OntoREA© Accounting and Finance Model: Collectives Beyond ALE Phases
	5 Conclusions
	References

	Teleologies: Objects, Actions and Functions
	Abstract
	1 Introduction
	2 Object, Action and Function
	3 Producer – Consumer Patterns
	4 Pattern Transformations
	5 Teleologies
	6 Related Work
	7 Conclusion
	References

	Correction to: SourceVote: Fusing Multi-valued Data via Inter-source Agreements
	Correction to: Chapter “SourceVote: Fusing Multi-valued Data via Inter-source Agreements” in: H.C. Mayr et al. (Eds.): Conceptual Modeling, LNCS 10650, https://doi.org/10.1007/978-3-319-69904-2_13

	Author Index

