
Random Binary Search Trees for Approximate
Nearest Neighbour Search in Binary Space

Micha�l Komorowski(B) and Tomasz Trzciński

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

michalkomorowski1984@gmail.com, t.trzcinski@ii.pw.edu.pl

Abstract. Approximate nearest neighbour (ANN) search is one of the
most important problems in computer science fields such as data mining
or computer vision. In this paper, we focus on ANN for high-dimensional
binary vectors and we propose a simple yet powerful search method that
uses Random Binary Search Trees (RBST). We apply our method to a
dataset of 1.25M binary local feature descriptors obtained from a real-life
image-based localisation system provided by Google as a part of Project
Tango [7]. An extensive evaluation of our method against the state-of-
the-art variations of Locality Sensitive Hashing (LSH), namely Uniform
LSH and Multi-probe LSH, shows the superiority of our method in terms
of retrieval precision with performance boost of over 20%.

Keywords: Approximate nearest neighbour search · Binary vectors ·
Random Binary Search Trees · Locality sensitive hashing

1 Introduction

The goal of nearest neighbour search is to find vectors from a database that lie
close to a query vector. This is a common use case in disciplines such as com-
puter vision [17] or data mining [15]. However, often finding the exact nearest
neighbour is costly while retrieving approximate neighbours is sufficient. There-
fore several successful solutions in the area of Approximate Nearest Neighbour
Search (ANN) have been proposed and among them the two most prominent
ones are hierarchical structure (tree) based methods [2,5] and hashing based
methods [6,20].

One of the typical computer vision tasks where ANN search is used due
to prohibitive amounts of data points is image-based localisation [4,13]. ANN
search is typically used in this context to find similarities between local feature
descriptors extracted from different images. The majority of works on ANN focus
on descriptors that are vectors of real numbers [5,10,12,16]. However, extraction
of real-valued descriptors is time consuming so they are often substituted with
binary descriptors when real-time performance is required. At the same time
methods suitable for real-valued descriptors do not seem to work equally well
when applied to binary ones [18].
c© Springer International Publishing AG 2017
B.U. Shankar et al. (Eds.): PReMI 2017, LNCS 10597, pp. 473–479, 2017.
https://doi.org/10.1007/978-3-319-69900-4_60

http://orcid.org/0000-0002-6838-2135


474 M. Komorowski and T. Trzciński

In this paper, we propose ANN search method that uses Random Binary
Search Trees (RBST) to find similar vectors within a database of binary vectors.
As a use case of our method we take image-based localisation problem and we
evaluate our method on a real world dataset of over 1 million binary local feature
descriptors obtained within the frames of Google Project Tango [7] collaboration.
Our ANN search method outperforms the state of the art in terms of retrieval
accuracy, while providing similar recall and memory consumption.

Several other types of trees have been proposed in the literature for indexing
of binary descriptors e.g.: k-means trees, kd-trees, or vantage-points trees [8].
However, their application to binary descriptors leads to severe performance
drops, as indicated in [18]. Therefore we compare our proposed Random Binary
Search Trees method with Local Sensitivity Hashing method [6] and its further
modifications: Uniform LSH [18] and Multi-probe LSH [11].

2 Random Binary Search Trees

In this section, we propose a simple yet powerful ANN method for indexing
and searching a database of binary descriptors. We draw the inspiration for
the method from standard Binary Search Trees (BST) [3]. These structures are
well designed for speeding up search process and building up on their success,
we propose a modified version of them, called Random Binary Search Trees.
Our proposed RBST differ from standard Binary Search Trees in the following
aspects.

Firstly, all paths from the root node to the leafs in our RBST have the same
length. Secondly, the leafs of our RBST are used to store binary descriptors.
The most important difference, however, is the fact that the nodes of our trees
store a bit mask. It specifies which bit of a binary descriptor needs to be checked
in order to decide if a given descriptor should be assigned to the left or to the
right branch of a given node during indexing and search. Thanks to this setup
RBST are extremely fast as no distances must be calculated in order to create
and search them - the fast binary operation AND is used instead.

In the indexing stage, we use one or more Random Binary Search Trees to
store the information about binary descriptors from our database. Each descrip-
tor from the database traverses the tree from the root towards the leaves. While
traversing the tree, the descriptor is assigned to left or right branch based on
the output of the binary AND operation on the descriptor and the bit mask of
the node. In the querying stage, we use those constructed trees to search for
candidate nearest neighbours by traversing the trees with a query descriptor
and retrieving candidates per each tree. The final set of candidates is returned
as a union of candidates across the trees. In the last stage of search, candidate
descriptors are sorted based on their Hamming distance to the query descriptor.
We then retrieve N descriptors with the smallest distance.

Our Random Binary Search Trees algorithm is controlled by four parameters:
N equals to number of approximate nearest neighbours retrieved with default
N = 10, Ntree defines the number of RBST to be created, D specifies the



Random Binary Search Trees for ANN Search in Binary Space 475

maximum depth of a tree and Ntest defines how many dimensions of a binary
descriptor can be checked in a single tree. Although each node can check only
one dimension, this parameter allows us to randomly subsample the space of
binary dimensions across different binary trees and increases robustness of our
method.

The randomness of our RBST stems from the fact that bits masks for nodes
are selected randomly from a given set of bits. A similar idea is used in [9].
However, the trees proposed in [9] were not used to index binary descriptors,
but to classify keypoints. A related method can also be found in [4] where trees
are generated in supervised way using a stability metric. We evaluated applica-
tion of this approach to our RBST, however, in our experiments trees proposed
in [4] were up to 3 orders of magnitude slower than our Random Binary Search
Trees. Our proposed RBST may also look similar to Randomised Binary Search
Trees [14]. However, there are few differences. In comparison to our RBST data
structure proposed in [14] associates a priority with every inserted key, use rota-
tions to balance a tree and does not store list of keys (in our case descriptors)
in leafs.

2.1 Bits Selection Metrics and Hash Codes

We also used the following bit metrics to weight the probability of a given bit
to be selected for a mask in the nodes: Shannon entropy of a bit, its conditional
entropy and its empirical stability. We define the empirical stability metric as
a number of descriptors representing the same 3D point with equal value of a
given bit to a total number of descriptors of the same 3D point. After calculating
those bit metrics, we used their distribution as bias in the selection of a bit
mask for each node. Bits with the higher values of bit metrics are used more
often to generate RBST. In order to limit memory consumption, we also used
hash codes of binary descriptors, instead of the raw vectors. For hashing the
descriptors we used Semi-Supervised Hashing method [19] with various hash
code lengths (32, 64, 128, 256 bits). Although in some cases bit metrics or hash
codes increased the performance of our method, the improvement was rather
negligible and, therefore, in the remainder of this paper, we rely on random bit
selection for the node masks.

3 Evaluation

In this section, we evaluate the accuracy and efficiency of our RBST method
and compare it with the state of the art. To increase robustness of our evalua-
tion, we run our experiments 10 times, each time on a different subset of 100K
descriptors extracted from dataset of 1.26M 512-dimensional binary FREAK
descriptors [1]. This dataset was obtained from Google Project Tango [7] collab-
oration and was generated using state-of-the-art 3D reconstruction methods. As
evaluation metrics, we use Precision@N defined as number of correctly retrieved



476 M. Komorowski and T. Trzciński

nearest neighbours within the first N descriptors retrieved. Similarly, we com-
pute Recall@N defined as the ratio of retrieved nearest neighbours describing the
same 3D point within N returned descriptors versus all descriptors describing
given 3D point. We also measure querying time and average the results over 10
runs. All experiments are run using a server with 32 GB of RAM and Intel(R)
Xeon(R) 2.60 GHz CPU.

3.1 Initial Experiments

To validate our method and verify the appropriate range of parameters, we first
run an initial set of experiments with the following set of parameters: Ntree =
{1, 3, 6, 9, 12}, D = {20, 30, 40, 50} and Ntest = {64, 128, 256, 512}. Based on
obtained results, we defined a default set of parameters to be evaluated against
the state of the art in the next sections, as they give a good balance between
the precision, the recall and the average query time: D = {30, 40, 50} and
Ntest= 256.

We also discovered the following trends. Firstly, the higher value of Ntree the
higher Precision@10, at the expense of the average query time. The dependence
between Ntree and the average query time, assuming other parameters remain
unchanged, is quasi-linear. Secondly, the lower value of D, the higher average
query time. Shallower trees have leafs with higher number of descriptors and
since the last step of search includes sorting candidate vectors, the more candi-
dates we retrieve, the longer the sorting. The highest precision can be obtained
for the trees with the highest depth, for which majority of leafs contain not more
than a few nodes but at the cost of the recall. As to Ntest, the higher value of
this parameter the smaller average query time (even 2 times or more), because
descriptors are spread across higher number of leafs. This, in turn, results from
a fact that more bits are taken into account while generating trees.

3.2 Comparison with the State of the Art

In this section, we compare our RBST against the competitive approaches for
ANN search in binary spaces. Figures 1 and 2 show the results of experiments.
Following the evaluation protocol of [18] we plot Precision and Recall results
obtained against average query times. We compare our method against 3 variants
of Local Sensitive Hashing (LSH) algorithm, as they were shown to provide the
best performances in [18]. We use our own implementation of those algorithms.
The parameters of all the methods were optimised using grid search approach.
In the case of RBST the evaluation was done for Ntree = {1, 3, 6, 9, 12} trees. For
the hashing methods, the number of hash tables used were equal to {1, 2, 4, 8, 16}.
For LSH and Uniform LSH the hash length was 56 and for Multi-Probe 28. We
report average memory consumption as memory required by the algorithms to
build indexing structures for descriptors and not descriptors themselves.

Figure 1 shows that RBST provides better performance with respect to the
state of the art hashing methods in terms of search precision, given equal query
time. The performance boost is especially visible for lower average query times



Random Binary Search Trees for ANN Search in Binary Space 477

Fig. 1. Precision@10 and Recall@10 versus the average query time.

Fig. 2. Precision@10 and Recall@10 versus the average memory consumption.

(<50µs), where our proposed RBST algorithm leads to over 20% precision
increase over the next best Uniform-LSH method. At the same time, our eval-
uation shows that the precision increase does not lead to any significant recall
drops. If we consider both Precision and Recall our RBST achieve the best results
for D = 40 and Ntest= 256.



478 M. Komorowski and T. Trzciński

Figure 2 compares various methods in terms of memory consumption.
Although particular results depend on the tested configuration, one can see that
for D = 40 and Ntest = 256 RBST performs au pair with the state-of-the-art
methods, falling short only of the Multi-probe LSH, which is highly optimised
for memory consumption. We can therefore conclude that our proposed RBST
search method provides significant precision increase, while remaining competi-
tive in terms of recall and memory consumption.

4 Summary

In this article, we proposed to use Random Binary Search Trees (RBST) algo-
rithm to index and search binary descriptors. We tested a wide range of config-
urations and we compared them with Locality Sensitive Hashing (LSH) and its
two variations. The experiments showed that, although RBST are a relatively
simple data structure, they give better or equal results to the competing hashing
algorithms.

Future work on ANN search with our trees includes improving the linear
search stage after retrieving the initial set of candidate descriptors, as this part
remains a bottleneck of the algorithm. Furthermore, application of a more com-
plex bit metric that can measure dependencies between the bits could lead to
the improved precision and search efficiency and should also remain within the
scope of future work.

Acknowledgment. This research was supported by Google’s Sponsor Research
Agreement under the project “Efficient visual localisation on mobile devices”. We thank
Oskar Dylewski for the implementation of LSH, Uniform LSH and Multi-probe LSH.

References

1. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: CVPR
(2012)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

4. Feng, Y., Fan, L., Wu, Y.: Fast localization in large-scale environments using super-
vised indexing of binary features. IEEE Trans. Image Process. 25(1), 343–358
(2016)

5. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Trans. Comput. 100(7), 750–753 (1975)

6. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. VLDB 99(6), 518–529 (1999)

7. Google Tango. https://get.google.com/tango/
8. Kumar, N., Zhang, L., Nayar, S.: What is a good nearest neighbors algorithm for

finding similar patches in images? In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008. LNCS, vol. 5303, pp. 364–378. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88688-4 27

https://get.google.com/tango/
http://dx.doi.org/10.1007/978-3-540-88688-4_27
http://dx.doi.org/10.1007/978-3-540-88688-4_27


Random Binary Search Trees for ANN Search in Binary Space 479

9. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans.
Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)

10. Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate
nearest neighbor algorithm. In: NIPS (2004)

11. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In: VLDB (2007)

12. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR
(2006)

13. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-
to-3d matching. In: ICCV (2011)

14. Seidel, R., Cecilia, R.A.: Randomized search trees. Algorithmica 16(4), 464–497
(1996)

15. Shakhnarovich, G., Viola, P.A., Darrell, T.: Fast pose estimation with parameter-
sensitive hashing. In: ICCV (2003)

16. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching.
In: CVPR (2008)

17. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for
recognition. In: CVPR (2008)

18. Trzcinski, T., Lepetit, V., Fua, P.: Thick boundaries in binary space and their
influence on nearest-neighbor search. Pattern Recogn. Lett. 33(16), 2173–2180
(2012)

19. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search.
IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)

20. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, vol. 21, pp. 1753–
1760 (2009)


	Random Binary Search Trees for Approximate Nearest Neighbour Search in Binary Space
	1 Introduction
	2 Random Binary Search Trees
	2.1 Bits Selection Metrics and Hash Codes

	3 Evaluation
	3.1 Initial Experiments
	3.2 Comparison with the State of the Art

	4 Summary
	References




