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Preface

Nature-Inspired metaheuristic algorithms are algorithms inspired from nature
ranging from a natural biological system such as the human brain, animal behaviour
and plants; human activities including but not limited to football and interior
decoration; natural phenomenon such as waterfall, gravitational force and others
including chemistry and physics. These algorithms are known for their efficiency
and effectiveness in solving optimization problems across different domain of
applications. This makes these algorithms not to be problem dependent.

In previous years, statistical and mathematical methods are the dominant
methods in solving problems in energy including predictions for energy manage-
ment, but the present uncertainty nature of the energy makes the conventional
methods unfit for the task. Nature-inspired metaheuristic algorithms such as neural
networks, genetic algorithm and more recently cuckoo search, artificial bee colony,
firefly and hybrid systems have gained an unprecedented attention in the literature
because of their ability to model any nonlinear problem more than the conventional
methods. Presently, metaheuristic algorithms are very active in the literature for
solving problems in the energy domain.

This book summarizes contributions from experts in the research area. The book
can serve as a platform for dissemination and sharing of the latest scientific
development for nature-inspired metaheuristic algorithms in energy that present
state-of-the-art interesting topics and a consolidated expert view ready for practical
applications to the interested readers as well as industry experts. The book is
covered by ten chapters dedicated to significant contributions on the applications of
metaheuristic algorithm in energy issues as follows:

Chapter “A Theoretical Framework for Big Data Analytics Based on
Computational Intelligent Algorithms with the Potential to Reduce Energy
Consumption”, by Haruna Chiroma, Usman Ali Abdullahi, Ibrahim Abaker
Targio Hashem, Younes Saadi, Rawaa Dawoud Al-Dabbagh, Muhammad Murtala
Ahmad, Dada Emmanuel Gbenga, Sani Danjuma, Jafaar Zubairu Maitama, Adamu
Abubakar and Shafi’i Muhammad Abdulhamid, discusses theoretical work
involving computational intelligence algorithm in big data analytics. The chapter
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proposes a theoretical framework for big data analytics using computational
intelligent algorithms that have the potential to reduce the consumption of energy
and advanced performance for big data analytics.

Chapter “Artificial Bee Colony for Minimizing the Energy Consumption in
Mobile Ad Hoc Network”, by Mustafa T. Abd, Saad Adnan Abed and
Elankovan A. Sundararaja, discusses the searching behaviour of the artificial bee
colony (ABC) motivated the authors to apply the algorithm for finding the possible
optimal route from the source to the destination. As such, minimize the average
energy consumption for the routes selected by the ABC algorithm. Evaluation result
indicated that the proposed ABC was found to improve the energy efficiency of the
network.

Chapter “A Novel Chicken Swarm Neural Network Model for Crude Oil Price
Prediction” by Abdullah Khan, Rahmat Shah, Junaid Bukhari, Nasreen Akhter,
Attaullah, Muhammad Idrees, and Hilal Ahmad, discusses the extraction of chicken
swarm intelligence of the chicken smarm optimization to train an artificial neural
network for building a model for the prediction of crude oil price. The chicken
swarm based artificial neural network is applied to predict crude oil price, and it was
found to be better than the comparison algorithms.

Chapter “Forecasting OPEC Electricity Generation Based on Elman Network
Trained by Cuckoo Search Algorithm”, by Abdullah Khan, Rahmat Shah, Nasreen
Akhter, Awais Qureshi, Kamran Ullah, Shah Zaman, Hilal Ahmad and Muhammad
Idrees, discusses the hybridization of Elman network by training it using cuckoo
search algorithm to build a model for the prediction of OPEC electricity generation.
Experimental results have shown that the proposed algorithm performs better than
classical algorithms.

Chapter “Variable Neighborhood Search-Based Symbiotic Organisms Search
Algorithm for Energy-Efficient Scheduling of Virtual Machine in Cloud Data
Center”, by Mohammed Abdullahi, Shafi’i Muhammad Abdulhamid, Salihu Idi
Dishing and Mohammed Joda Usman, proposes modified symbiotic organisms
search (SOS) algorithm to minimize the number of the active server by consoli-
dation virtual machines on few servers for energy savings. The SOS mimics
mutualism, commensalism and parasitism forms of relationship for traversing the
search space. The SOS is hybridized with variable neighbourhood search
(SOS-VNS), and it is applied to various workload instance with varying number of
virtual machines in a simulated IaaS cloud. The proposed algorithm is found to
efficiently minimize energy consumption and improving resource utilization. The
results obtained showed that SOS-VNS outperforms the heuristics algorithms.

Chapter “Energy Savings in Heterogeneous Networks with Self Organizing
Backhauling”, by Nasir Faruk, Abdulkarim A. Oloyede, Abubakar Abdulkarim,
Lukman A. Olawoyin and Yinusa A. Adediran, discusses the comparison of con-
ventional microwave backhauls and self-backhauling for typical dense and spare
environments in which the heterogeneous network backhaul-energy model is used
for the investigation of their energy efficiency. The chapter presents a break-even
power point and the load threshold level for safe operating regions towards
achieving optimum utilization of self-backhauling in a way for higher
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energy-efficient and sustainable networks compared to traditional homogeneous
macro-network deployments.

Chapter “Integrated Resource Allocation Model for Cloud and Fog Computing:
Toward Energy-Efficient Infrastructure as a Service (IaaS)”, by Mohammed Joda
Usman, Abdul Samad Ismail, Hassan Chizari, Abdulsalam Ya’u Gital, Haruna
Chiroma, Mohammed Abdullahi and Ahmed Aliyu, proposes the integration of the
resource allocation model for energy-efficient Infrastructure-as-a-Service (IaaS). It
extends from the network edge of the fog to the cloud data centre. The propose
architecture have a policy on the fog end where a decision can be made to either
process the user request on the fog or move to the cloud data centre. The new
architecture can improve resource utilization and the reduction of energy con-
sumption by a data centre. Therefore, improves energy efficiency and optimum
resource utilization.

Chapter “Energy-Efficient Bias-Based User Association for Heterogeneous
Networks in LTE-Advanced” by Ayuba K. Danburam, Mohammed A. Gadam,
Aliyu D. Usman and Suleiman M. Sani, proposes an adaptive BRSRP cell selection
algorithm that uses energy efficiency as cell load metric for adaptive pico-cell range
extension (CRE). The algorithm was found to effectively estimate the varying
energy efficiency in each of the cells. Subsequently, based on the optimality gap
of the energy efficiency a corresponding bias value is configured per cell. The
simulation results show that the proposed adaptive bias setting improves energy
efficiency, average UE throughput and system capacity compared to the classical
methods.

Chapter “Energy Efficiency of Backhauling Options for Future Heterogeneous
Networks”, by Nasir Faruk, Abubakar Abdulkarim, Nazmat T. Surajudeen-
Bakinde, and Segun I. Popoola discusses various backhauling options for future
HetNet. For a HetNet system of seven SBS scenario, the efficiencies of the back-
hauling technologies are evaluated based on power consumption analysis. The
implementation of energy-efficient microwave communication links is also con-
sidered based on realistic power consumption. It is found that massive MIMO
(M-MIMO) backhauling system consumes the highest power at maximum load.
Power consumption in M-MIMO tends to rise as the number of transmitting
antennas increases. The contribution of this work will help mobile network oper-
ators (MNO) in better decision making towards achieving a sustainable backhauling
in future HetNet deployments.

Chapter “Analysis of Energy Consumption Model in Cloud Computing
Environments” by Zhou Zhou, Jemal H. Abawajy and Fangmin Li discussed
energy consumption in cloud computing data centres. The high energy consumption
in data centres not only causes the energy wastes and system instability, but also
generates low return on the investment and adverse effects on the environment.
Therefore, it is extremely necessary to reduce energy consumption while meeting
the quality of service. This chapter presents a fine-grained energy consumption
model and analysis its effectiveness in energy consumption of data centres.
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Lastly, we will like to thanks all the reviewers by providing sufficient and
relevant comments that significantly improve the quality of the book chapters. Our
profound appreciation goes to the authors for submitting their contributions to the
edited book.

Kuala Lumpur, Malaysia Tutut Herawan
Gombe, Nigeria Haruna Chiroma
Geelong, Australia Jemal H. Abawajy
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A Theoretical Framework for Big Data
Analytics Based on Computational
Intelligent Algorithms with the Potential
to Reduce Energy Consumption

Haruna Chiroma, Usman Ali Abdullahi, Ibrahim Abaker Targio Hashem,
Younes Saadi, Rawaa Dawoud Al-Dabbagh, Muhammad Murtala Ahmad,
Gbenga Emmanuel Dada, Sani Danjuma, Jaafar Zubairu Maitama,
Adamu Abubakar and Shafi’i Muhammad Abdulhamid

Abstract Within the framework of big data, energy issues are highly significant.
Despite the significance of energy, theoretical studies focusing primarily on the
issue of energy within big data analytics in relation to computational intelligent

H. Chiroma (B) · U. A. Abdullahi
Department of Computer Science, Federal College of Education (Technical), Gombe, Nigeria
e-mail: freedomchi@yahoo.com

U. A. Abdullahi
e-mail: danzazzau12@gmail.com

U. A. Abdullahi
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Perak,
Malaysia

I. A. T. Hashem
Centre for Data Science and Analytics, School of Computing & Information Technology, Taylor’s
University, Subang, Jaya, Malaysia, Kuala Lumpur, Malaysia
e-mail: ibrahimabaker.targiohashem@taylors.edu.my

Y. Saadi
Department of Computer Science, University of Batna, Fésdis, Algérie
e-mail: younessaadi@gmail.com

R. D. Al-Dabbagh
Department of Computer Science, University of Baghdad, Baghdad, Iraq
e-mail: rawaaiq04@yahoo.com

M. M. Ahmad
Department of Information Technology, National Open University of Nigeria, Lagos, Nigeria
e-mail: mursuw@gmail.com

G. E. Dada
Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria
e-mail: gbengadada2004@yahoo.com

S. Danjuma
Department of Mathematical Science, North-West University Kano, Kano, Nigeria
e-mail: sani_danjuma@yahoo.com

© Springer Nature Switzerland AG 2019
T. Herawan et al. (eds.), Advances on Computational Intelligence in Energy,
Green Energy and Technology, https://doi.org/10.1007/978-3-319-69889-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69889-2_1&domain=pdf
mailto:freedomchi@yahoo.com
mailto:danzazzau12@gmail.com
mailto:ibrahimabaker.targiohashem@taylors.edu.my
mailto:younessaadi@gmail.com
mailto:rawaaiq04@yahoo.com
mailto:mursuw@gmail.com
mailto:gbengadada2004@yahoo.com
mailto:sani_danjuma@yahoo.com
https://doi.org/10.1007/978-3-319-69889-2_1


2 H. Chiroma et al.

algorithms are scarce. The purpose of this study is to explore the theoretical aspects
of energy issues in big data analytics in relation to computational intelligent algo-
rithms since this is critical in exploring the emperica aspects of big data. In this
chapter, we present a theoretical study of energy issues related to applications of
computational intelligent algorithms in big data analytics. This work highlights that
big data analytics using computational intelligent algorithms generates a very high
amount of energy, especially during the training phase. The transmission of big data
between service providers, users and data centres emits carbon dioxide as a result of
high power consumption. This chapter proposes a theoretical framework for big data
analytics using computational intelligent algorithms that has the potential to reduce
energy consumption and enhance performance. We suggest that researchers should
focus more attention on the issue of energy within big data analytics in relation to
computational intelligent algorithms, before this becomes a widespread and urgent
problem.

Keywords Big data analytics · Energy · Cluster systems · Computational
intelligent algorithms · Artificial neural networks · Cuckoo search algorithm

1 Introduction

The International Energy Agency (IEA) has estimated that the global consumption
of energy is expected to surge by 53% by the year 2035 [1]. Energy is viewed as
the largest industry across the globe [2]. The consumption of energy involves all
sectors of society, including information and communication technology. Shojafar
et al. [3] have argued that real-time processing and energy efficiency are hot top-
ics in the management of information and communication technology platforms.
Currently, one of the most widely discussed topics in the science and technology
community is big data. Big data has potential for applications in all sectors of soci-
ety, such as climate, economics, health, social science [4]. The data collected from
various sources in society is growing exponentially and is estimated to grow to
44 ZB (trillion gigabytes) by 2020, from 4.4 ZB in 2013 [5]. In big data, a diverse
field of study which includes natural language processing, medical science, secu-
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A Theoretical Framework for Big Data Analytics Based … 3

rity and business management depends heavily on knowledge discovery through big
data analytics. The effective and efficient processing of big data requires computer
systems [6] involving Hadoop which offer the MapReduce framework for parallel
computation [7].

The transfer of large volumes of data between users, service providers and data
centres requires a high bandwidth connection. This consumes large amounts of
energy, more than simply processing and storing the big data within cloud-based
data centres. Therefore, emits high carbon dioxide. The transfer of big datasets into
remote data centres consumes a significant quantity of power [8], and these car-
bon dioxide emissions contribute to global warming [9]. The optimisation of energy
consumption for data transmission requires the network to reduce redundant and
duplicate traffic [10].

Applications for future generations of parallel and distributed systems in big data
analytics are a major issue. These applications generate datasets in repositories that
exceed exabytes, and the size of these datasets is speedily increasing. These datasets
and their associated applications pose a challenge to both software techniques and
software development [11]. The task of analysis frequently has strict targets, and
one of the major issues for applications in this field is the quality of data. Most of
the emerging applications, data-driven models and techniques with the capability of
operating at large scales are not yet widely known [12]. In real-time systems, the
amount of energy is increasing; thus, the application of big data methodologies can
be used to handle these operations [13]. Significant developments in big data have
arisen from various research communities, for example data mining and learning
algorithms from the artificial intelligence research community [4].

Big data offers important opportunities for organisations who can analyse it and
gain critical intelligence for effective decisions [14]. Within various industries, data
processing and analysis plays a significant role, especially in situations where non-
linear dynamics, comprising various uncertainties and mathematical models, fails.
Computational intelligent algorithms such as fuzzy logic, artificial neural networks
and evolutionary algorithms have demonstrated their ability to deal effectively with
data modelling, and research on computational intelligent algorithms has attracted
unprecedented attention from researchers. Computational intelligent algorithms have
successfully solved real-world problems, as reported in the literature. Examples of
the effectiveness of computational intelligent algorithms in solving real-world prob-
lems include control engineering, the modelling of unknown nonlinear dynamics
using artificial neural networks and the implementation of controllers using adaptive
neuro-fuzzy inference systems. Despite the overwhelming successes recorded by
computational intelligent algorithms in solving real-world problems, those within
the research community are still facing obstacles to the processing of industrial
data, such as feature extraction from large-scale measurements that are distributed
in nature, machine learning algorithms for highly robust data modelling and signal
processing [15].

The world is experiencing a data revolution in terms of gleaning knowledge from
big data. Computational intelligent algorithms are among the mainstream tools of
big data analytics: computational intelligence has played an important role in artifi-
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cial intelligence, which focuses on the design of algorithms. Such algorithms can be
used to analyse huge amounts of structured and unstructured data which help in the
discovery of approximate solutions for many complex problems [16]. Meanwhile,
the use of virtualised clouds is currently under consideration in big data analytics,
based on newmachine learning theories and artificial intelligence. It is now common
that intuitive physical interpretations affect the use of machine learning and artifi-
cial intelligence. It is therefore important that a suitable knowledge interpretation is
provided, in order to make sound decisions based on the intelligence derived from
machine learning and artificial intelligence [17].

In this chapter, we propose a theoretical framework for big data analytics, based on
computational intelligent algorithmswith the potential to reduce energy consumption
and improve performance. It is necessary to explore the theoretical aspects of energy
issues in big data analytics in relation to computational intelligent algorithms; it is
critical to explore the theoretical aspects of big data in view of the fact that this can
point the way towards effective and efficient applications [4].

The remaining sections of this chapter are organised as follows: Section 2 intro-
duces the computational intelligent algorithms; Sect. 3 presents a discussion of big
data analytics and the energy consumption of cluster systems; Sect. 4 discusses big
data analytics and computational intelligent algorithms; Sect. 5 describes the issue
of energy consumption in the application of computational intelligent algorithms in
big data analytics; Sect. 6 describes the proposed framework for big data analytics
based on computational intelligent algorithms; and Sect. 7 presents the conclusions.

2 Computational Intelligent Algorithms

The computational intelligent algorithm is a name recently given to the branch of
artificial intelligence that deals with sub-symbolic techniques. It offers a description
of techniques that mainly focus on strategies and results. Computational intelligent
algorithms include sub-disciplines that deal with adaptive and intelligent systems
such as evolutionary computing, artificial neural networks, fuzzy systems, artificial
immune systems, particle swarm optimisation (PSO) and ant colony optimisation
[18, 19]. The primary source of inspiration for these intelligent systems is nature;
most of these algorithms are inspired by the characteristics of biological systems,
referred to as biology-inspired algorithms [20].

Solving real-world problems generally involves challenging and NP-hard prob-
lems which require optimisation techniques, with no guarantee of obtaining an opti-
mal solution. There are no effective and efficient algorithms for allNP-hard problems;
therefore, experimentation with various optimisation algorithms is required to find
the algorithm that produces the optimal solution. Many computational intelligent
algorithms such as PSO, cuckoo search and firefly have been introduced to deal with
the challenges of optimisation problems [20]. Computational intelligent algorithms
have become widespread, and this has significantly expanded the literature [21].
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Recently, a new computational intelligent algorithm inspired by nature has been
added to the literature almost every month. It is likely that there are more than 200
of such algorithms in the literature. As these algorithms have flooded the literature,
many researchers have found that the newly created algorithms are the existing algo-
rithms disguised as new ones [22]. Figure 1 illustrates the number of computational
intelligent algorithms introduced into the literature per year. In 2009, the literature
witnessed a drastic influx of computational intelligent algorithms. Figure 2 presents
the classification of computational intelligent algorithms inspired by nature and is
based on the classification proposed by Fister et al. [20].

2.1 Characteristics of Computational Intelligent Algorithms

In general, computational intelligent algorithms aim to generate a new solution
which is superior to the existing one. Ideally, computational intelligent algorithms are
expected to generate solutions superior to current solutions with minimal effort [21].
We now examine the major characteristics of computational intelligent algorithms:
exploitation and exploration, parameter tuning/control, diversity and adaptation and
algorithm parameters.

Exploitation and Exploration Exploitation is a local search process using local infor-
mation for a problem and uses information obtained from a problem to generate new

Fig. 1 Number of computational intelligent algorithms in the literature per year
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solutions which are superior to the existing ones. The major strength of exploita-
tion is its ability to give a high convergence rate. However, it has the possibility of
becoming stuck in local minima. Conversely, exploration is a global search process
which allows computational intelligent algorithms to explore the larger search space
in far regions efficiently; it has the ability to generate solutions with sufficient diver-
sity which is far from the existing solutions. Exploration has a lower propensity to
become stuck in local minima, but it has a slow convergence rate and involves a high
computational cost. Good performance for an algorithm requires a balance between
exploitation and exploration: high exploitation and low exploration lead to faster
convergence, but the possibility of finding a true global solution is low, while low
exploitation and high exploration can lead to the meandering of the search path with
a slow convergence rate [21].

Parameter Control/Tuning The values of parameters obtained through parameter
tuning are fixed during iterations, whereas the parameters of an algorithm are varied
for the purpose of control. Parameter control aims to find the algorithm with the
best convergence rate for better performance; parameter tuning is carried out to find
the optimal parameter settings for the running of the algorithm, in order to solve a
broader array of problems. There is currently no systematic and efficient method of
tuning to obtain optimal parameter settings; this is often realised through extensive
experiments on parameter studies [23].

Diversity and Adaptation The computational intelligent algorithms have both diver-
sity and adaptation, which are evident from the balance between exploitation and
exploration. For example, ways of balancing exploration and exploitation are the
key form of adaptation. For instance, the representations of solutions in genetic
algorithms are either in binary or in real number form, whereas swarm intelligence-

Intelligent Algorithms 

Swarm Intelligent Algorithms Bio-Inspired Algorithms
not Swarm Intelligent 

Physics and Chemistry Based 
Algorithms Other Algorithms

Cuckoo Algorithm Fish School Search Algorithm Charged System Search Grammatical Evolution

Bees Algorithm Differential Evolution Water Cycle Algorithm League Championship 

Particle Swarm Algorithm Egyptian Vulture Galaxy Based Search 
Algorithm

Backtracking Optimization 
Search

Artificial Bee Colony Flower Pollination Algorithm Gravitational Search 
Algorithm Anarchic Society Optimization

N Algorithm N Algorithm N Algorithm N Algorithm

Fig. 2 Classification of intelligent algorithms
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based algorithms generally use real numbers for solutions. The population size of an
algorithm can either be fixed or varying, and variation in population size is therefore
a typical example of adaptation.

Algorithm Parameters These algorithms involve parameters, and algorithm opera-
tors are used to construct the algorithms. In genetic algorithms, crossover, mutation
and selection are used. Crossover is the operation used to create new solutions [21].
As an example of the differences between computational intelligent algorithms in
terms of parameters, strengths, weaknesses, generation of new solution and solution
representation, Table 1 presents five different well-established algorithms from the
literature with their differences.

3 Big Data Analytics and Energy Consumption by Cluster
Computing Systems

3.1 Big Data Analytics Platforms

The unprecedented accumulation of data in the information technology world has
given rise to the concept of big data. Volumes are extremely large, with petabytes
(PB) and even zettabytes (ZB) of data handled by organisations. The velocity and
time-based variability of this data involve high speeds. The formats in which this data
is created and stored are inconsistent, although these may originate from the same
source and/or be generated by the same user. The veracity of the data, as opposed to
the noise inherent in it, is of the highest concern. Despite all these features, big data
offers high value when properly stored and analysed [29, 30]. Internet companies
handle large volumes of Internet requests from their users using big data analytical
platforms running on clusters of commodity hardware. Facebook and Walmart are
two good examples [31].

Due to the above-mentioned characteristics, the storage and analytics of big data
require large hardware resources. For example, in order to store 1 PB of data on a
cluster with a 6 TB capacity hard disk, 163 hard-disk units are required. Assuming
each node in the cluster can host five hard-disk units, then a 100-node cluster is
required. In addition, when analysing this 1 PB of data, each hard disk must be
accessed for IO, depending on the platform used for big data analysis. This is due to
the fact that big data analytics platforms use the sequential access method by default.
The most popular big data analysis framework, Hadoop, uses a full scan (sequential
access) by default for the targeted data [32]. Each IO operation on a hard disk leads
to a maximum consumption of energy in the form of electricity. Consumption due
to powering of the cluster and cooling: The scenario described above can be used to
give a wider picture of how much energy is consumed by companies that deal with
big data. This explains why power and energy are always of first-order priority in
the design of computing systems infrastructure [31].
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Table 1 Major differences between five well-established computational intelligent algorithms

Algorithm Strengths Weaknesses Generation
of new
solutions

Parameters
required
for
settings

Solution
represen-
tation

Reference

CS Strikes a
balance between
exploitation and
exploration.
Requires few
parameter
settings

Sensitive
to
parameter
settings

Lévy
walk and
far-field
randomi-
sation

Probability
of the
worst nest
and step
size

Real
number

Yang and
Deb [24]

FP Balance
between
consistency and
exploration

Tuning
switching
probabil-
ity can
create
fluctua-
tions

Pollination Switching
probabil-
ity

Real
number

Yang [25]

ABC Strong
exploration

Weak
exploita-
tion.
Requires
many
parameter
settings

Randomness Number
of scouts,
swarm
size,
number of
onlookers
and
number of
employed
bees

Real
number

Karaboga
[26]

PSO Computationally
inexpensive and
very simple to
implement

Possibility
of
premature
conver-
gence

Adding
velocity
to a
position

Population
size,
probabil-
ity,
gamma
and
neigh-
bourhood

Real
number

Eberhart
and
Kennedy
[27]

GA Strong
exploitation

Unnecessary
number of
iterations.
Weak
explo-
ration

Crossover Probability
of
crossover,
probabil-
ity of
mutation,
popula-
tion size,
genera-
tions

Real
num-
ber/binary
number

Holland
[28]

CS Cuckoo search algorithm, GA genetic algorithm, FL flower pollination algorithm, ABC artificial
bee colony
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Initially, information technology companies used clusters of commodity hardware
and networking to avoid the high costs of hardware. These companies see this as a
better option for providing the infrastructure necessary to accumulate and process
large amounts of data, in comparisonwith the expense of purchasing andmaintaining
supercomputers and mainframe computers which would allow the system to achieve
the same purpose. However, the amount of power and energy consumed by these
clusters, particularly during big data storage and analysis, is growing at an alarming
rate. The cost of the energy used by servers within their lifetime is expected to
supersede the cost of the hardware itself, if current trends continue unchecked [31].
For example, Yahoo has installed a Hadoop cluster of over 2000 servers, while that
of Facebook has more than 600 servers. Similarly, General Electric has deployed
Hadoop on a cluster of 1700 servers. Energy is a crucial issue in view of thesemassive
deployments of Hadoop over thousands of cluster systems and has influenced the cost
of exploiting cluster systems. In 2007, there was a high cost of energy consumption
for cluster systems [33]. This example shows the massive deployment of Hadoop
over a cluster of hundreds of servers. In addition, the deployment and operation of
Hadoop, the hardware required to build the cluster systems and the energy required
to run them incur very high costs [31].

3.2 Energy Consumption Over Big Data Platforms

Energy consumption in big data platforms is related to several factors such as physi-
cal resources and computing resources. Big data platforms have the ability to model,
organise, store and process large amounts of data. Development of information tech-
nology platforms and the massive generation of data in the world, big data technolo-
gies has become the battlefield of information technology service providers in terms
of high performance and cost. The research community started to focus on energy
consumption in big data platforms [34]. With the fast development of the global
economy, energy consumption will keep increasing in the upcoming years.

Figures 3 and 4 are created based on the data presented in [35]; it shows the
carbon dioxide emissions of data centres according to [36]. Whereas Fig. 4 depicts
the distribution of energy consumption in data centres, Figure 3 shows that almost
6% per year of the emissions are caused by information technology servers. The
consumption of energy in big data platforms can be expressed as follows:

Ec = Cr + Pr (1)

where Ec denotes the energy consumption, Cr represents the computing resources
and Pr denotes the physical resources. According to [37], the energy consumption
of computing resources accounts for about 50% of the total energy consumption as
shown in Fig. 4. The percentage of energy consumes by servers’ computation; the
communication equipment, and the storage devices are depicted in Fig. 4.
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Fig. 3 Estimated information and communication technology carbon dioxide emissions

Fig. 4 Energy consumption distribution of data centres

From Fig. 4, it is clear that the data servers are consuming a big part of the energy
consumed by data centres. This amount grows exponentially in case of processing
large datasets which is the case of big data platforms. Therefore, reducing energy
consumption for big data platforms is the key issue for sustainable big data platforms.
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3.3 Metrics Used for Measuring Power in Big Data Platforms

The management of energy consumption can be formulated as a multi-objective
optimisation problem, where several performances and energy metrics are used to
measure the performance [38–42]. It is very important to highlight that the following
two objectives are mostly considered in the literature: minimisation and maximisa-
tion. The minimisation consists of reducing the consumption of the data platforms
during peak power. The maximisation consists of increasing energy efficiency.

In fact, limiting the consumption during peak power is very crucial to maintain the
reliability of big data platforms, escape system overheating and avoid power capacity
overloads. It is shown that reducing power consumption is strongly correlated with
the cost of power provisioning [43]. Energy efficiency can be expressed as follows:

Energy efficiency = Computing performance

Total energy consumed
(2)

This metric represents the main focus of energy management of data centres and
processing systems. From the perspective of power management of data centres,
energy consumption control is viewed as a result of [39]:

Power Usage Effectiveness Facility efficiency is the ratio of the total amount of
energy used by a data centre facility to the energy delivered to computing equipment.

Server Power Usage Effectiveness Server power conversion efficiency is the ratio of
the total server input power to its useful power consumed by the electronic compo-
nents directly involved in the computation.

Server’s Architectural Efficiency Server’s architectural efficiency is the ratio of com-
puting performance metric to the total amount of energy used by electronic compo-
nents.

4 Computational Intelligent Algorithms and Big Data
Analytics

In today’s world, almost everything is online, and organisations intending to improve
their services analyse big data to gain knowledge to be used in improving their
services [44]. Big datasets are beyond the scope of relational or object-oriented
databases, and traditional computer applications and normal computers cannot han-
dle the analytics involved. These big datasets require very large parallel processing
power, from clusters of computers, for analysis. The processing of big data is gen-
erally based on nonlinear systems, and actions are not predictable in some cases
[45].

To discover the knowledge required for decision making, data mining algorithms
are applied to the datasets extracted fromdata sources. In recent years,much attention
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Fig. 5 Three primary layers
of big data analytics [49]

has been given to data mining, probably due to the popularity of big data concepts
[44]. Big data analytics involves modelling, analysis and interpretation [46]. It has
been shown that computational intelligent algorithms can be applied to solve big data
problems effectively from the perspective of hardware and software design [29].

The application of computational intelligent algorithms in big data analytics
is severely limited, however, since recent intelligent algorithms have difficulty in
analysing big data. This is because the nature of big data makes it difficult for these
intelligent algorithms to analyse it [47]. The proposed basic framework for big data
analytics in relation to data mining is shown in Fig. 5; these data mining algorithms
also include computational intelligent algorithms [48] (discussed in Sect. 2).

The commonly accepted framework for big data analytics is shown in Fig. 5. It
comprises three layers [50] as follows:

i. Data access and computing,
ii. Data privacy and
iii. Domain knowledge and data mining algorithms.

The core of Fig. 5 is the data mining platform, which is responsible for data
access and computing processes. With the increasing accumulation of high volumes
of data, the distributed storage of large-scale data is required to be considered during
computation. In brief, data analytics and the processing of the task are partitioned into
sub-tasks in multiple forms for parallel execution on a large number of computing
nodes. The role of the middle layer structure is to connect the outer and inner layers.
The inner layer contains datamining technology, responsible for providing a platform
for the execution of data-related activities in the middle layer. Examples of data-
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related work include information sharing, privacy protection and the acquisition of
knowledge from areas and applications.

Information sharing is the concern of the whole framework, including process-
ing and big data analytics in smart grid. The outer layer of Fig. 5 shows the data
fusion technology necessary for the preprocessing of the heterogeneous, uncertain,
incomplete and multi-source data. Complex and dynamic data is extracted after the
data preprocessing phase. Subsequently, pervasive smart-grid global knowledge can
be obtained through local learning and fusion of the model [31]. Of the decision
tree, ridge regression and support vector machine algorithms, the decision tree is
found to be the most efficient algorithm for managing energy data based on big data.
However, when efficiency is the priority, for example in real-time applications, ridge
regression is the most effective algorithm of these three algorithms [51].

Learning is a subfield of machine learning that has the potential to solve a range
of complex problems within mobile big data analytics, including classification and
regression. Mobile big data samples can be modelled using deep learning consisting
of neurons and synapses for training mobile big data samples to learn hierarchical
features.

The application of deep learning within mobile big data has the advantages of a
high level of accuracy, which is a priority in mobile systems, and multimodal deep
learning; intrinsic features are generated by deep learning, necessary in mobile big
data analytics, and unlabelled mobile data can be learned using deep learning, which
reduces the effort required for data labelling. However, the large number of deep
model parameters and the large size of mobile big datasets mean that deep learning
is slow and computationally expensive [52].

More recently, deep learning has become a common technique in big data analyt-
ics, especially in the retrieval of imageswith a high level of accuracy [53]. Supervised
deep learning and unsupervised deep learning are the two types of deep learning dis-
cussed in the literature [54]. A battery with a limited capacity requires an energy
efficiency of hundreds of giga floating-point operations per second per watt for a
mobile embedded system. This can allow mobile embedded systems to achieve both
the required portability and performance [55].

5 Energy Consumption in the Application
of Computational Intelligent Algorithms in Big Data
Analytics

In the design of computing systems, energy efficiency is one of the most significant
issues to be considered. However, the termination ofMoore’s law has imposed a limit
on additional improvements to energy efficiency, which is unfortunate. Recently, the
use of physical memristors has shown that it is possible to generate a solution for the
integrated hardware of artificial neural networks. This can heavily influence energy
efficiency and improve performance [10, 55]. The artificial neural network is one
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of the more powerful algorithms in computational intelligence and has received
unprecedented attention from researchers; it is believed to constitute one of the
major breakthroughs in artificial intelligence. Hu et al. [56] used memristors in the
design of a power neuromorphic framework for approximating computation with
programmability and computational generality. This design was motivated by the
theory of artificial neural networks, which shows that multilayer neural networks are
universal approximators, and their wide range of applications in signal processing,
pattern recognition, computer vision and natural language processing. A neuromor-
phic architecture for computing and a tolerance for uncertain computing can generate
significant performance and gains in energy efficiency. Wang et al. [55] have found
that large-scale artificial neural networks constitute one of themost mainstream algo-
rithms in big data analytics. Two phases are involved in the processing of big data
using large-scale artificial neural networks: a training phase and an operational phase.
The training phase in big data processing requires a very high amount of computing
power and energy efficiency, and this is one of the primary considerations in the
operational phase. For example, a ~100 MB training dataset is needed with >100
TOP computation capability, ~40 GB/s IO and SRAM data bandwidth. A 3.4 GHz
CPU therefore requires >10 h of learning time for ~100 K input-vector datasets; this
requires ~1 s for recognition and is far from real-time processing [57].

The use of computational intelligent algorithms in big data analytics requires high
bandwidth interconnection networks with low latency and low power consumption,
which are essential for data and storage systems [58]. For example, Wang et al. [55]
presented a promising ultrahigh energy-efficient implementation by taking advantage
of emerging memristor techniques involving the computing power of GPUs for big
data analytics. The results showed a high speedup compared with the basic CPU
implementation [55]. Big data analytics using artificial neural networks poses the
challenge of how to achieve better training within a lower convergence time and
with lower energy consumption [55]. Another computational intelligent algorithm
related to energy itself is the deep belief network. The deep belief network consists
of the stack of a restricted Boltzmann machine. This is based on the model of energy
and certain stochastic methods. Binary values are generated by each of the nodes in
the restricted Boltzmann machine, between each node, symmetric link (weight) that
can have negative and positive numbers exist. The two types of node in a restricted
Boltzmannmachine are visible and hidden nodes. The state of a restricted Boltzmann
machine is associated with the energy of the restricted Boltzmann machine; a higher
energy of restricted Boltzmann machine gives a lower probability of node activation
[59].
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Fig. 6 Large-scale data processing using big data analytics tools such as computational intelligent
algorithms

6 A Proposed Framework for Big Data Analytics Using
Computational Intelligent Algorithms

Previously, several big data analytics techniques have required an investment in com-
puter hardware and software in order to overcome energy computations. This can
result in the downgrading of the performance of the systems used in highly com-
putational environments, which need to process massive amounts of energy data.
However, cloud computing and software as a service (SaaS) have now made on-
premise solutions unnecessary. In addition, fog computing now allows much of the
analytics for these tasks to bemoved to the grid edge, to further support the implemen-
tation of forecasting and optimisation programmes in real time and at large scales.
Two primary big data intelligence applications are load modelling and forecasting,
which have been used for energy. These applications are necessary to understand
the behaviour of the system in achieving efficient energy management and to enable
generic load forecasting [17].

One of the forces driving the adoption of big data analytics is the development of
smart grids, although the data generated through these smart grids is increasing in size
and difficult to process. Advancements in big data and cloud computing technologies
are therefore crucial for a sustainable energy system. Figure 6 shows the processing of
large-scale data using big data analytics techniques such as computational intelligent
algorithms.

The framework proposes three steps in big data analytics. The first is to collect
the required data from sources such as smart industry, smart grid and smart home
applications. Subsequently, these data can be stored in a database and servers using
cloud storage. A parallel algorithm for optimal power flow based on MapReduce,
proposed by Liang et al. [60], is to be applied for power flow calculation in a smart
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grid, since this reduces computational complexity. Lastly, the stored data can be
processed using computational intelligent algorithms in order to gain insights from
the big data.

The application of computational intelligent algorithms consumes a large amount
of energy during the training phase as discussed earlier. The proposed framework
involves the application of an energy-efficient emerging memristor, which is embed-
ded with an artificial neural network for big data analytics. New and unexpected
challenges have been created for the research community, since the current theories
and techniques cannot handle big data analytics. Therefore, extension and upgrading
of the existing techniques and theories are required to handle big data analytics [4].
As a result, there is no need to propose additional computational intelligent algo-
rithms in the literature (refer to Sect. 2 for a justification); attention should be focused
on the modification of the existing ones, since these all have limitations that require
improvements in order to allow them towork on big data. The existing computational
intelligent algorithms should be modified to handle big data analytics and to require
a low energy consumption during the training phase. When processing big data for
analytics using a computational intelligent algorithm, a hybrid storage device which
combines hard disks and solid-state disks, as proposed by Polato et al. [61], should be
used for data storage, as this reduces energy consumption and enhances performance.
In addition, the storage of only a proportion of the data in solid-state disks has the
potential to significantly save energy and speed up convergence. One typical example
of the very high volumes of data generated from smart meters that have the potential
to be analysed by computational intelligent algorithms is the case of the 200 TB
data generated in Jiangsu, China. Data generation is increasing by 90 GB each day.
These data were generated by over 1.81 million acquisition terminals, 1.54 million
concentrated meter-reading terminals and 38million smart meters [62]. Modern data
centres should give priority to massive parallel processing in order to enhance com-
puting speeds and reduce energy consumption. In turn, large amounts of data can
be moved between the various virtual machines [63]. This framework suggests the
use of the following techniques to cushion the high cost of energy consumption by
distributed system clusters:

Proportioning the Use of Power The power consumed by hardware components can
be proportioned to optimise the operational efficiency of a particular server. The
proportioning can also be based on a capped budget, within which the server can be
underprovided, in order to be more efficient, or oversubscribed, to operate at high
load levels in carrying out its task [31, 62, 64].

Performance Improvement High energy consumption can also be optimised by
improving the performance of big data analytical platforms. One example of these
improvements is the indexing approach, which works with the main analytical pro-
cesses and ensures that a full scan of the input data is prevented. This indexing helps
to restrict the range of input data to be processed to only that required to carry out
the task. Another approach in this category is the scheduling of jobs by considering
data locality [65].
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Iqbal et al. [66] have pointed out the potential application areas of computational
intelligent algorithms within big data analytics which are as follows: personalised
health services, biometrics and surveillance, transportation, visualisation of data and
interpretation, business and governance, sentimental analysis, models for population
displacement, effective computation, fault detection and manufacturing.

7 Conclusions

This chapter presents a theoretical perspective of energy issues within big data ana-
lytics, as related to computational intelligent algorithms. Theoretical issues of energy
consumption related to big data analytics are described based on computational intel-
ligent algorithms. It is found that the high consumption of energy in big data analytics
using computational intelligent algorithms occurs mostly during the training phase
of big data processing. We propose a big data analytics theoretical framework based
on computational intelligent algorithms with the potential for low energy consump-
tion and performance improvement. The theoretical study presented in this chapter
may guide researchers to apply computational intelligent algorithms efficiently and
effectively in big data analytics, with the possibility of consuming low energy, and
improve performance. Future research directions should be focused on the applica-
tion of a deep belief network in big data analytics, which consists of the stack of a
restricted Boltzmann machine.
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19. Păun G (2005) Bio-inspired computing paradigms (natural computing). In: Unconventional
programming paradigms, pp 97–97

20. Fister Jr I, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired
algorithms for optimization. arXiv preprint arXiv:1307.4186

21. Yang X-S, He X (2016) Nature-inspired optimization algorithms in engineering: overview and
applications. In: Nature-inspired computation in engineering. Springer, Berlin, pp 1–20

22. Fister Jr I, Mlakar U, Brest J, Fister I (2016) A new population-based nature-inspired algorithm
every month: is the current era coming to the end. In: StuCoSReC: proceedings of the 2016
3rd student computer science research conference. University of Primorska, Koper, pp 33–37

23. Yang X-S (2014) Cuckoo search and firefly algorithm: overview and analysis. In: Cuckoo
search and firefly algorithm. Springer, Berlin, pp 1–26

24. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature &
biologically inspired computing, NaBIC 2009, pp 210–214

25. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International con-
ference on unconventional computing and natural computation, 2012, pp 240–249

26. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical
report-tr06. Erciyes University, Engineering Faculty, Computer Engineering Department

27. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of
the sixth international symposium on micro machine and human science, MHS’95, pp 39–43

28. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor, MI. Reprinted in 1998

29. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209
30. Chen CP, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technolo-

gies: a survey on Big Data. Inf Sci 275:314–347
31. Gupta A, Gupta S, Ge R, Zong Z (2015) CRUSH: data collection and analysis framework

for power capped data intensive computing. In: 2015 sixth international green computing
conference and sustainable computing conference (IGSC), pp 1–6

32. YangH-C, ParkerDS (2009) Traverse: simplified indexing on largemap-reduce-merge clusters.
In: International conference on database systems for advanced applications, 2009, pp 308–322

33. Jlassi A, Martineau P (2016) Benchmarking Hadoop performance in the cloud-an in depth
study of resource management and energy consumption. In: The 6th international conference
on cloud computing and services science

http://static.googleusercontent.com/media/research.google.com
http://arxiv.org/abs/1307.4186


A Theoretical Framework for Big Data Analytics Based … 19

34. Rabl T,Gómez-Villamor S, SadoghiM,Muntés-MuleroV, JacobsenH-A,Mankovskii S (2012)
Solving big data challenges for enterprise application performance management. Proc VLDB
Endowment 5:1724–1735

35. Rong H, Zhang H, Xiao S, Li C, Hu C (2016) Optimizing energy consumption for data centers.
Renew Sustain Energy Rev 58:674–691

36. Kumar R,Mieritz L (2007) Conceptualizing green IT and data center power and cooling issues.
Gartner research paper, 2007

37. Johnson P, Marker T (2009) Data centre energy efficiency product profile. Pitt & Sherry, report
to equipment energy efficiency committee (E3) of The Australian Government Department of
the Environment, Water, Heritage and the Arts (DEWHA)

38. Karpowicz M, Niewiadomska-Szynkiewicz E, Arabas P, Sikora A (2016) Energy and power
efficiency in cloud. In: Resource management for big data platforms. Springer, Berlin, pp
97–127

39. Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the
design of warehouse-scale machines. Synth Lect Comput Archit 8:1–154

40. Lefurgy C, Rajamani K, Rawson F, FelterW, KistlerM, Keller TW (2003) Energymanagement
for commercial servers. Computer 36:39–48

41. Mastelic T, Oleksiak A, Claussen H, Brandic I, Pierson J-M, Vasilakos AV (2015) Cloud
computing: survey on energy efficiency. ACM Comput Surv (CSUR) 47:33

42. Wang L, Khan SU (2013) Review of performance metrics for green data centers: a taxonomy
study. J Supercomput 63:639–656

43. Dongarra J, Beckman P, Moore T, Aerts P, Aloisio G, Andre J-C et al (2011) The international
exascale software project roadmap. Int J High Perform Comput Appl 25:3–60

44. Khalifa S, Elshater Y, Sundaravarathan K, Bhat A,Martin P, Imam F et al (2016) The six pillars
for building big data analytics ecosystems. ACM Comput Surv (CSUR) 49:33

45. Cheng S, LiuB, ShiY, JinY, LiB (2016) Evolutionary computation and big data: key challenges
and future directions. In: International conference on data mining and big data, pp 3–14

46. Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int
J Inf Manage 35:137–144

47. Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A et al (2016) The role of big
data in smart city. Int J Inf Manage 36:748–758

48. Chiroma H, Abdul-Kareem S, Abubakar A (2014) A framework for selecting the optimal
technique suitable for application in a data mining task. In: Future information technology.
Springer, Berlin, pp 163–169

49. Jiang H, Wang K, Wang Y, Gao M, Zhang Y (2016) Energy big data: a survey. IEEE Access
4:3844–3861

50. Hu H, Wen Y, Chua T-S, Li X (2014) Toward scalable systems for big data analytics: a tech-
nology tutorial. IEEE Access 2:652–687

51. Kang D, Kim S, Lee T, Hwang J, Lee S, Jang S et al (2016) Energy information analysis using
data algorithms based on big data platform. In: High performance computing and communica-
tions; IEEE 14th international conference on smart city; IEEE 2nd international conference on
data science and systems (HPCC/SmartCity/DSS), 2016 IEEE 18th international conference
on, pp 1530–1531

52. Alsheikh MA, Niyato D, Lin S, Tan H-P, Han Z (2016) Mobile big data analytics using deep
learning and apache spark. IEEE Network 30:22–29

53. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scal-
able unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual
international conference on machine learning, pp 609–616

54. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural
Comput 18:1527–1554

55. Wang Y, Li B, Luo R, Chen Y, Xu N, Yang H (2014) Energy efficient neural networks for big
data analytics. In: Design, automation and test in Europe conference and exhibition (DATE),
2014, pp 1–2



20 H. Chiroma et al.

56. Hu M, Li H, Wu Q, Rose GS (2012) Hardware realization of BSB recall function using mem-
ristor crossbar arrays. In: Proceedings of the 49th annual design automation conference, pp
498–503

57. Yoo H, Park S, Bong K, Shin D, Lee J, Choi S (2015) A 1.93 TOPS/W scalable deep learn-
ing/inference processor with tetra-parallel MIMD architecture for big data applications. In:
IEEE international solid-state circuits conference, pp 80–81

58. Mehdipour F, Noori H, Javadi B (2016) Chapter two-energy-efficient big data analytics in
datacenters. Adv Comput 100:59–101

59. Park S-W, Park J, Bong K, Shin D, Lee J, Choi S et al (2015) An energy-efficient and scalable
deep learning/inference processor with tetra-parallel MIMD architecture for big data applica-
tions. IEEE Trans Biomed Circuits Syst 9:838–848

60. Liang B, Jin S, Tang W, Sheng W, Liu K (2016) A parallel algorithm of optimal power flow on
Hadoop platform. In: Power and energy engineering conference (APPEEC), 2016 IEEE PES
Asia-Pacific, pp 566–570

61. Polato I, Barbosa D, Hindle, Kon F (2016) Hadoop energy consumption reduction with hybrid
HDFS. In: Proceedings of the 31st annual ACM symposium on applied computing, pp 406–411

62. Nan Z, Hanyong H, Haiyan Z (2016) Efficient stereo index technology for fast combination
query of electric power big data. In: 2016 IEEE international conference on computer commu-
nication and the internet (ICCCI), pp 329–333

63. Baccarelli E, Cordeschi N, Mei A, Panella M, Shojafar M, Stefa J (2016) Energy-efficient
dynamic traffic offloading and reconfiguration of networked data centers for big data stream
mobile computing: review, challenges, and a case study. IEEE Network 30:54–61

64. Zhu N, Rao L, Liu X, Liu J, Guan H (2011) Taming power peaks in mapreduce clusters. In:
ACM SIGCOMM computer communication review, pp 416–417

65. Lee S, Jo J-Y, Kim Y (2016) Performance improvement of mapreduce process by promot-
ing deep data locality. In: 2016 IEEE international conference on data science and advanced
analytics (DSAA), pp 292–301

66. Iqbal R, Doctor F, More B, Mahmud S, Yousuf U (2016) Big data analytics: computational
intelligence techniques and application areas. Int J Inf Manage



Artificial Bee Colony for Minimizing
the Energy Consumption in Mobile Ad
Hoc Network
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Abstract Wireless ad hoc network iswidely used nowadays, in particular themobile
type, known as the mobile ad hoc network (MANET). This type of network consists
of sets of mobile nodes that do not require a fixed infrastructure such as an access
point or base station. The common use ofMANET is to enable nodes contacting in the
absence of the typical communications infrastructure. Constantly changing topology
and having no fixed infrastructures are some of the challenges confronted through a
MANET designing. Hence, emphasizing the need to establish an efficient connection
inside the network we use for a routing protocol to explore paths among nodes. The
guarantee of finding optimum path formation among the nodes is the primary goal of
the routing protocol, in order to ensure that messages would be delivered timely. The
aim of this paper is to find the best possible route from the source to the destination
based on a method inspired by the searching behaviour of bee colonies, i.e. artificial
bee colony (ABC) algorithm.This algorithmworks onminimizing the average energy
consumption of the selected route. For evaluation purposes, the proposed model
has been applied on two protocols, i.e. the Destination-Sequenced Distance-Vector
Routing (DSDV) and Ad hoc On-demand Distance-Vector (AODV). The evaluation
is based on node speed and packet size topology parameters. The results show that
the network nodes can save more energy in AODV as compared to DSDV. As such,
it can be concluded that optimizing the path from the source to the destination has a
significant impact on the quality of the network performance.
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1 Introduction

The mobile ad hoc network (MANET) permits a promising future for wireless net-
works, with the ability of establishing networks at anytime, anywhere. MANET is a
wireless network that includes mobile nodes which has a dynamic topology without
infrastructure or centralized management. Ad hoc is a workable solution for var-
ious applications and environments including emergency operations (e.g. disaster
recover) and military environments. It is also easily deployed since it does not need
expensive infrastructure like other conventional wireless networks do [1, 2].

Wireless network topology enables nodes to communicate wirelessly with each
other within a fixed network that can be classified as either infrastructure or
infrastructure-less network [3]. In an infrastructure network, wireless nodes com-
municate through a base station or an access point connected to the fixed network
like the Internet. Figure 1 illustrates an example of infrastructure networks. Infras-
tructure networks have many advantages which include being reliable and is less
likely to undergo any changes. Furthermore, the existence of a base station facili-
tates resourcemanagement and the routing process, as routing decisions amongnodes
are centralized [4]. In contrast to centralized networks, infrastructure-less networks
or MANETs do not need access points or other base stations to communicate within
the wireless nodes, as shown in Fig. 2. In MANETs, nodes locations have dynamic
behaviour while communicating over wireless links. Typically, infrastructure-less
networks are invoked in situations where support from networking infrastructure or
administration is absent [4].

In MANET, the nodes have limited resources, and the connectivity to each other
is determined by a particular time. This type of networks is devoted to provide con-
nectivity among users, regularly raised in the area, where traditional infrastructures

Fig. 1 Infrastructure wireless network [4]
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Fig. 2 Infrastructure-less wireless network [4]

for communication between nodes are not available. Also, nodes are not able to play
the role of servers inMANETs all the time, due to its low capacity and battery energy
limitations. The connection among nodes is established only at the time of commu-
nication and mostly disconnected from the network because of a network partition,
link breakage and changes in topology. Routes are created in this network based on
hop-by-hop method, but these are limited by the range of transmission of nodes. The
data communication in MANETs is conducted by assigning a definite set of contents
or data to a node that are shared in the network, and each node manages its own
contents [5].

Routing protocols are categorized into threemain types: the proactive, reactive and
hybrid routing protocols. In the first category, a recent map of the network topology
is maintained. In a proactive mechanism, the packet transmission from the source
to the destination requires predefined routes to be available. While in the second
routing protocols type, which is also named on-demand-driven routing protocols,
the route availability is not continuous. Consequently, the data packet transmission
invokes a procedure for discovering the route, which is done by sending requests
that are flooded into the networks. The advantage of the first two categories can be
integrated to consist of a hybrid routing approach. This is achieved by calling the
reactive mechanism when a node does not exist within the transmission range and
switches to a proactive technique if a node is within the range [6, 7]. Specifically,
this paper is focused on optimizing two types of protocols that fall under reactive
and proactive categories.

In the context of protocols optimization, the applications of the tools that are based
on computational intelligence (CI) have grown dramatically since its initiation [8].
Previously, CI tools were limited to neural networks, fuzzy logic and evolutionary
computing as well as their hybrid methods [9]. However, in recent years, swarm
intelligence (SI) which is one of the CI classes is broadly used for many domains,
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in which the protocol optimization is one of them. SI is the collective behaviour
of decentralized and self-organized systems. The classic SI system consists of a set
of simple agents which can communicate with each other by acting on their local
environments. Though the agents in a swarm followvery simple rules, the interactions
between such agents can lead to the emergence of very complicated global behaviour,
far beyond the capability of a single agent [10, 11]. The natural system of SI includes,
but is not limited to, ant foraging, bird flocking and fish schooling. In specific, ABC
is one of the SIAs, which mimics the behaviour of honeybee swarms. ABC received
a lot of attention in various domains and specifically for protocols optimization [12].

In recent years, several works have been devoted to optimize the routing protocols
based on finding the best path from the source to the destination based on ABC algo-
rithm. These works employed the ABC algorithm for different types of protocols, i.e.
bee-inspired protocol (BeeIP) [13], predicted energy-efficient bee-inspired routing
(PEEBR) [14], sensorbee protocol [15] and energy-aware reliable routing protocol
(EARRP) [16, 17].

Based on the previous works of ABC algorithm in routing protocols domain,
we have investigated its efficiency to tackle the problem of finding the shorted path
in reactive and proactive protocols. The rest of this paper is organized into four
sections. The first one describes the routing protocols used in this study. The next
one illustrates the proposed ABC for the used protocols. The third section shows the
results obtained and a comparison of the effectiveness of ABC with other protocols.
Finally, the conclusion includes some directions and guidance for future works in
this field of study.

2 Energy-Aware Routing Protocol

Energy-aware routing protocols concentrate on the methods to reduce battery energy
usage by diverting traffic from low-energy nodes to ones with high battery energy
[17]. This approach increases the overall network lifetime by saving network nodes’
battery life.

These routing protocols suggest the use of various metrics, whereas finding the
routing path can help reduce the energy usage of the nodes. These metrics include
minimizing energy consumption, minimizing variance in node energy levels, maxi-
mizing time to a network partition, minimizing cost or minimizing maximum node
cost. These metrics are suggested for use instead of only finding the shortest route
from the source node to the destination node [18]. The metric ‘minimizing energy
consumed’ is useful for minimizing the overall energy consumption for delivering a
data packet from the source node to the destination node.

If a node is overused for a certain period of time due to the transmission of packets
through it, then the operational time of such nodes is reduced consistently, and the
system leads to energy exhaustion. In turn, this process results in the disconnection
of links and in network partitioning. Therefore, the best routing path is the one with
good energy sources in its intermediate nodes even if it costs an additional hop count.
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Maximizing the thirdmetric, time to a network partition, is considered as the ultimate
goal of a MANET because it directly addresses the lifetime of the network [19].

3 Routing Protocols in MANET

The process of exchanging information from one host to another in a network is
referred to as routing. This also refers to the way of forwarding packets towards its
destination using an effective path. The efficient performance of a path is determined
based on specific criteria, such as traffic, number of hops, security and so on. In ad
hoc networks, each host node represents a specialized router. Therefore, routing is
identified as an essential problem in MANETs [20]. Designing an effective routing
protocol encounter mainly the problem of maintaining and finding the best route
from the source to the destination [21].

MANETs have many protocols to address the networks’ typical limitations. Some
of these typical limitations include high energy consumption, node mobility, high
inaccuracy rates and low bandwidth. These routing protocols can be divided accord-
ing to the routing informationmechanism and are classified into threemain categories
(unicast, multicast and broadcast routing protocols) as shown in Fig. 3. Unicast rout-
ing protocols can be divided into reactive, proactive, hybrid, flow-oriented routing
and adaptive routing protocols.

This work aims to find the shortest path using two routing protocols, namely
Destination-Sequenced Distance-Vector Routing (DSDV) and Ad hoc On-Demand
Distance-Vector Routing Protocol (AODV). This section describes in detail each of
these protocols.

3.1 Destination-Sequenced Distance-Vector Routing

In 1994, Perkins and Bhagwat [22] developed a table-driven routing protocol known
as DSDV for MANET based on the Bellman–Ford algorithm.

The Bellman–Ford algorithm has been adjusted further to address the problem
of routing loops in the routing tables. Each node in this protocol maintains routing
table. This routing information must be continuously updated. Routing table lists
all available destinations, generally, all the possible destinations and the number of
hops to each destination of every node are maintained in the routing table. Using
such a routing table stored in each mobile node, the packets are transmitted between
the nodes of an ad hoc network. Each node of the ad hoc network updates the
routing table with advertisement periodically or when significant new information
is available to maintain the consistency of the routing table with the dynamically
changing topology of the ad hoc network. In the routing table, every entry is marked
by a sequence number which is allocated by the destination node. Using the assigned
number, themobile node recognizes old andnew routes, thus the routing loopproblem
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Fig. 3 Mobile ad hoc routing protocols [1]

is lowered. The node continuously uses the route associated with the most recent
sequence number, and in case two routes hold the same sequence, the route with the
smaller metric will be used to ensure an optimized path. The advantages of DSDV
are attributed to the algorithm’s simplicity, and it can be applied conveniently to few
numbers of nodes. However, this protocol consumes a lot of battery even when the
network is idle due to the continuous updates in the routing table [21, 23].

3.2 Ad Hoc On-Demand Distance-Vector Routing Protocol

AODV belongs to the reactive routing protocols, which is based on a unicast trans-
mission mode. This protocol creates paths among nodes only as wanted by source
nodes, and hence, it is an on-demand algorithm. It preserves these paths as long
as they are required by the sources. In AODV, every node stores the information
about active routes in the routing table. The stored data are a number of hops, next
hop, destination, sequence number for the destination, the expiration time for a route
table entry and active neighbours for a route. To find out and maintain links, AODV
protocol uses three control packets, namely route requests (RREQs), route replies
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(RREPs) and route error messages (RERRs). AODV consists of two mechanisms,
which are route discovery and route maintenance [24–28].

The source node would first check its routing table when it needs to send data to
the desired destination. If the route to the desired destination is found in the source
node routing table, it starts to send data to the next hop. Otherwise, it begins a route
discovery mechanism. In this mechanism, RREQs packets are sent throughout the
network. Nodes receiving this packet would update their information for the source
node and create reverse routing entries towards the source node in the route tables. In
addition to the source node’s IP address, broadcast ID and current sequence number,
the RREQ also contains the most recent sequence number for the destination of
which the source node is aware. An RREP would be sent by the destination node or
by an intermediate node that has a valid route to the destination. Nodes that receive
RREPs also create reverse routing entries towards the nodes that sent the RREQs
[24, 25, 27, 29].

Every node along an active route will send HELLOmessages to all nearby nodes.
The links between two neighbouring nodes would be broken if a node does not
receive a HELLO message or any data. A local repair procedure may be used to
repair broken links in a route if the destination of the route using this link is nearby
the next hop from the neighbour. Otherwise, a RERR message would be sent to the
nearby nodes, which then broadcasts the RERR message towards other nodes that
may have routes affected by the broken link. If the route is needed by the affected
source, the route discovery process will then be repeated [24, 25, 27, 30]. Figures 4
and 5 portray the RREQ packet and the RREP packet in AODV, respectively.

4 Artificial Bee Colony for AODV and DSDV

The proposed ABC applied to two types of protocols which are a unicast reactive
routing protocol called AODV, and the other one is table-driven routing protocols
named known asDSDV. This section describes theABCalgorithm and its application
to DSDV and AODV.

In recent years, a lot of studies concentrated on the ABC algorithm due to its
efficiency in solving the combinatorial optimization problem. ABC is inspired from
the natural foraging behaviour of honeybee swarms [31]. In ABC algorithm, the
artificial bee colony can be divided into three groups based on the functionality,
which are employed bees, onlookers and scouts. The employed bees are filling the
first half of the colony, and the second part includes the onlooker bees. These bees
will be waiting on the waggle dance area to make a decision on choosing a food
source. Onlooker bees watch the waggle dance of the employed bees within the
hive to choose a food source [12]. While scout bees are those that conduct random
searches to find new food sources. Figure 6 shows the process of the scout bee. In this
figure, A, B and C are the food sources, and the scout bee begins searching randomly
from one source to another [32].
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Fig. 4 AODV routing protocol RREQ packet [30]

Fig. 5 AODV routing protocol RREP packet [30]
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Fig. 6 Scouting process [32]

The population size of the employed bees equals to the number of food sources.
The search process of artificial bees can be shown as follows:

• Employed bees detect a food source within the neighbourhood of the food source
in their memory.

• Employed bees disseminate the information, i.e. distance, direction, and profitabil-
ity, of food sources when returning to their hive with the onlooker bees.

• Onlookers select a food source within the neighbourhood of the food sources
chosen by the onlookers themselves.

• Finally, if the source has been abandoned, the employed bees will be transformed
to scout and start searching randomly for new food sources.

The search behaviour of ABC shown above can be mapped to algorithmic steps
as follows:

• Initialize.
• REPEAT.
• The employed bees begin moving to their food sources to specify their nectar
amounts.

• Onlooker bees watch the waggle dance and go to the sources of food according to
their nectar amounts.

• Adjust the scouts to search for new sources of food.
• Throughout the search process, the best food will always be maintained.
• UNTIL (stopping criteria are met).

The searching cycle of food sources depends on three steps. First, the food source
locationwill be regenerated and randomly distributed. Second, moving the employed
bees onto the food source and calculating their nectar amounts [12]. Furthermore,
when the employed bees return to the hive they share the information of these food
sources (distance, direction and profitability) with the onlooker bees. Third, the for-
ager bees continue visiting the same food sources that are already stored in their
memory. Depending on the nectar amount, the onlooker bees will decide on the best
food sources to visit so that they can extract the nectar from it. After a while, when
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the nectar becomes exhausted, these food sources will be abandoned since the posi-
tion cannot be further improved over a number of cycles called limit. The value of
limit in our method adapts the original value in ABC algorithm to be equivalent to
a number of onlookers multiplied by the solution dimensions. Thereafter, a forager
bee will become a scout bee, and it starts a new journey of discovering new food
sources to replace abandoned ones. The ABC search procedure controlled by the
colony size was determined experientially to 50 bees divided equally into onlooker
and employed bees. Also, the stopping criterion is identified in the experiment to
stop after 30 successive non-improved cycles.

The foraging behaviour of ABC is similar to find a path from a source to the
destination. In the ad hoc network, all the nodes work cooperatively by sharing the
information through the links and the partial routes among the nodes. The nature of
ABC algorithm makes it suitable for dynamic and multi-objective problems. Due to
the mobility of the nodes in MANET, the best path from the source to destination
changes from time to time. Hence, the DSDV and AODV recruit the ABC to find
the best path that minimizes energy consumption. In ABC, the solution produced by
an employed bee via modification of its memory using the local information (visual
information). Thereafter, the new solution (new source) is evaluated bymeasuring its
energy consumption. An employed bee disseminates its position and energy infor-
mation to the onlooker bees after the employed bees complete the search process.
The onlooker bees evaluate the energy of the employed bees and then select the food
source of the probability related to the energy amount.

5 Experimental Results

This section discusses the results obtained from using ABC algorithm for DSDV
and AODV separately. The section is organized into three subsections discussing the
simulation settings, performance metrics, and simulation results, respectively. In the
simulation settings, the simulator and theABCparameters are described. Themetrics
subsection, on the other hand, portrays the formulations of each result obtained.
Finally, the simulation results subsection displays the yielded results, discuss and
compare the results for each of the used protocols.

5.1 Simulation Settings

The results of the used protocols, i.e. DSDV and AODV, were obtained using a
network simulation (NS2). This is developed to simulate a multi-hop wireless ad hoc
environment achieved with medium, data link and physical access control (MAC)
layer models. In this simulation, a network setting on OTcl script has been declared,
such as the routing protocol, network traffic, propagation model, packet size and
node speed to be used.
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Table 1 Simulation
parameters

Parameter Value Unit

Simulator NS-2.35 –

Number of runs 5 –

Number of nodes 50 Node

Simulation area 1670 × 970 m2

Routing protocols DSDV and AODV –

Mobility model Random Way Point –

Packet size 128, 256, 512 and 1024 Bytes

Node speed 5, 10, 15 and 20 m/s

Type of traffic CBR –

Initial energy 100 J

Idle energy consumption 0.05 mW

Transmission energy
consumption

1.35 mW

Receive energy
consumption

1.7 mW

Sleep energy 0.001 mW

Simulation time 50 s

To evaluate the performance of AODV and DSDV, two different scenarios were
used. In the first scenario, nodes are allowed to move within the speed range off
5–20 m/s. The second scenario packet size has different sizes 128, 256, 512 and
1024 bytes. The mobility model used in simulating the ‘Random Way Point (RWP)
model’, with dimensions of 1670 × 970 m, had 50 nodes. The rest of the settings
used in the simulation model are shown in Table 1.

5.2 Performance Metrics

Throughout the simulation experiments, different performancemetrics were used for
the AODV and DSDV routing protocols. These metrics are defined as follows [33]:

(i) Average End-to-End Delay (Average E2E delay)
This metric refers to the time consumed to transmit successfully a packet of
data from the source to the destination. E2E delay includes every possible
delay such as the buffering during discovery latency of the route, propaga-
tion, retransmission delay at the MAC, time of the transfer and queuing at the
interface queue. The average E2E delay can be calculated using the following
formula:
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E2E delay =
∑n

i=1 (Ri − Si )

n

where n is the number of packets successfully broadcasted, i is the unique
packet identifier, Ri is the total packet received, Si is the total packet sent and
n is the number of data packets.

(ii) Packet Delivery Ratio (PDR)
PDR is the ratio of data packets received by destinations divided to packets
sent by the sources. It is calculated using the following formula:

PDR = Received packets

Transmitted packets
∗ 100 (2)

(iii) Average Energy Consumption
It is measured as the ratio of average energy consumed by each node in the
network. The average energy consumption is calculated as follows:

AVG Energy Consumption = Consumed Energy

Initial Energy
∗ 100 (3)

(iv) Packet Loss Ratio (PLR)
PLR is the ratio of the difference between the data packets sent and data pack-
ets received to the data packets sent by the source. It is calculated using the
following formula:

PLR = S − R

S
∗ 100 (4)

where S refers to the data packet sent, while R is the data packet received.

5.3 Simulation Results and Performance Comparison

The simulation was carried out using NS-2.35, and the compression of the perfor-
mance analysis was conducted using average energy consumption, average end-to-
end delay, packet delivery ratio and packet loss ratio evaluation metrics. To demon-
strate the effectiveness of the DSDV and AODV routing protocols using ABC, a
simulation study was conducted using different node speeds and packet sizes. Ini-
tially, the nodes were placed at certain specific locations, and then, the nodes move
towards new locations. Five simulations were carried out for each of the two proto-
cols. In order to evaluate the performance of ad hoc network routing protocols, the
following parameters were considered:
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Fig. 7 E2E delay based on
node speed
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(i) Impact of node speed

The average E2E delay tested was from the time the data packet was sent by the
source until the time the data packet was received at the destination. Figure 7 shows
the average E2E delay for the DSDV and AODV protocols as a function of the
node speed. The result clearly shows that the average E2E delay increased when the
mobility of the nodes increases from 5 to 20 m/s in both of the DSDV and AODV
routing protocols. DSDV keeps a steady performance and slightly deteriorating as
the mobility of the nodes increases. It can be observed that DSDV performs better
than AODV.

In terms of PDR in Fig. 8, the routing protocols studied decreased in a similar
manner. The result clearly shows the PDR decreased when the speed of the nodes
was increased from 5 to 20 m/s in both of the DSDV and AODV routing protocols.
DSDV is, again, proven to perform better than AODV.

Figure 9 presents the average energy consumption for DSDV and AODV routing
protocols. Due to the highly dynamic networkwhen the node speed range is 5–20m/s,
AODV has less energy consumption than the DSDV. Average energy consumption
increases when the nodes’ speed increases from 15 to 20.
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Fig. 9 Energy based on
node speed
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Figure 10 shows the number of packet loss ratio for the two routing protocols as a
function of the mobility of nodes speed. The result clearly shows the PLR increased
when the mobility of the nodes increases in both of the DSDV and AODV routing
protocols. It can be observed that the nodes’ speed has less effect on the performance
of the DSDV as compared to AODV.

Obviously, the node speed affects overall performance protocols. Also, it affects
each of the testedmetrics.Generally, the high speed of the nodes has a negative impact
on the calculated metrics. As this study is concerned about energy consumption, the
node speed is directly proportionate to the energy consumption. Hence, the high
speed reflects a high energy consumption and vice versa. The AODV shows less
energy consumption as compared to the DSDV in terms of the use of node speeds.

(ii) Impact of Packet Size

Average E2E delay is affected by high rate of packets transfer as well. The buffers
become full much quicker before the packets sent it has to stay in the buffers for a
period of time. This can be seen at the AODV routing protocol. Figure 11 shows the
average E2E delay for the DSDV and AODV protocols as a function of the packet
size. The performance result shows the averageE2Edelay slightly deterioratingwhen
the packet size increased in both of the DSDV and AODV routing protocols. This
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Fig. 11 E2E delay based on
packet size
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Fig. 12 PDR based on
packet size
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is because of the extremely high data rate and low mobility. It can be observed that
DSDV has less delay compared to AODV.

Figure 12 presents the performance of the DSDV and AODV protocols as a func-
tion of the packet size. The result of PDR decreased when the packet size increased
in both routing protocols. It can be seen from the graph that the DSDV is able to
perform better than AODV.

Figure 13 depicts that the energy consumption for AODV and DSDV routing pro-
tocols is increased especially from the packet size 256 bytes. It can be observed that
AODV outperforms DSDV. The energy consumption for DSDV protocol increases
for each successful data delivery because the probability of link breakage also
increases. That needs additional energy to establish new routes.

Figure 14 shows the number of packet loss ratio for the AODV and DSDV pro-
tocols as a function of packet size. The result of PLR increased when the packet
size increased. AODV has higher PLR than DSDV protocol. As the PDR decreased
means that more packet loss in the network.

In the context of packet size impact, the AODV and DSDV protocols show ret-
rograde performance in the bigger packet size. The energy consumption in both
protocols increased with each increment in the packet size. However, AODV is less
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Fig. 13 Energy based on
packet size
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energy consuming at each point of the packet size increment. In conclusion, AODV
outperforms the DSDV in term of energy saving under the changes in node speed
and packet size.

6 Conclusion

The proposed study in this paper wouldwork on optimizing two ad hoc routing proto-
cols AODV and DSDV, based on a swarm intelligence method, namely artificial bee
colony (ABC) algorithm. The ABC for protocol optimizations mimics the behaviour
natural bees foraging, to determine the best routing paths for reducing the energy
consumption that is caused by overloading packets and nodes speed. Our compar-
ison is based on two testing network parameters which are node speed and packet
size. We conclude that the node speed and packet size have a severe effect on the
performance metrics of the studied routing protocols. From the energy perspective,
we found that AODV outperforms the DSDV in terms of energy consumption under
the changes in node speed and packet size. Due to continuous updates in the routing
table, DSDV consumes a lot of battery even when the network is idle. On the other
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hand, AODV routing protocol makes update only when the packet sends from source
to the destination.

References

1. Safdar M, Khan IA, Ullah F, Khan F, Jan SR (2016) Comparative study of routing protocols
in mobile adhoc networks. Int J Comput Sci Trends Technol ISSN 2347–8578

2. Zhao X, Hung WN, Yang Y, Song X (2013) Optimizing communication in mobile ad hoc
network clustering. Comput Ind 64:849–853

3. Duggi MR (2008) Apparatus and method for collecting active route topology information in a
mobile ad hoc network. Google Patents

4. Taneja S, Kush A (2010) A survey of routing protocols in mobile ad hoc networks. Int J Innov
Manage Technol 1:279

5. Amin R, Akhtar MB, Khan AA (2010) Analyzing performance of ad hoc network mobility
models in a peer-to-peer network application overmobile ad hoc network. In: 2010 International
conference on electronics and information engineering (ICEIE), pp V2-344–V2-348

6. Abolhasan M, Wysocki T, Dutkiewicz E (2004) A review of routing protocols for mobile ad
hoc networks. Ad Hoc Netw 2:1–22

7. Raut SH, Ambulgekar HP (2013) Proactive and reactive routing protocols in multihop mobile
ad hoc network. Int J Adv Res Comput Sci Softw Eng 3:152–157

8. Alba E, Dorronsoro B, Luna F, Nebro AJ, Bouvry P, Hogie L (2007) A cellular multi-objective
genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Comput Com-
mun 30:685–697

9. Tettamanzi AG, Tomassini M (2013) Soft computing: integrating evolutionary, neural, and
fuzzy systems. Springer Science & Business Media

10. Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, New York
11. Zhang S, Lee CK, Chan HK, Choy KL, Wu Z (2015) Swarm intelligence applied in green

logistics: a literature review. Eng Appl Artif Intell 37:154–169
12. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial

bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57
13. Giagkos A, Wilson MS (2014) BeeIP–A Swarm Intelligence based routing for wireless ad hoc

networks. Inf Sci 265:23–35
14. Choudhury D et al (2015) Energy efficient routing in mobile ad-hoc networks. In: 2015 Inter-

national conference and workshop on computing and communication (IEMCON). IEEE
15. Sridhar H, Siddappa M, Prakash GB (2013) Power aware routing protocol for MANET’s using

swarm intelligence. Power 2
16. Phil M, Arumugam N (2012) Energy aware reliable routing protocol (EARRP) for mobile ad

hoc networks using bee foraging behavior and ant colony optimization
17. Mohan BC, Baskaran R (2011) Energy aware and energy efficient routing protocol for adhoc

network using restructured artificial bee colony system. In: High performance architecture and
grid computing. Springer, Berlin, pp 473–484

18. FengD, Jiang C, LimG, Cimini LJ, FengG, Li GY (2013) A survey of energy-efficient wireless
communications. IEEE Commun Surv Tutor 15:167–178

19. Manweiler J, Santhapuri N, Sen S, Choudhury RR, Nelakuditi S, Munagala K (2012) Order
matters: transmission reordering in wireless networks. IEEE/ACM Trans Netw 20:353–366

20. Jiang D, Xu Z, Li W, Chen Z (2015) Network coding-based energy-efficient multicast routing
algorithm for multi-hop wireless networks. J Syst Softw 104:152–165

21. Loo J, Mauri JL, Ortiz JH (eds) (2016) Mobile ad hoc networks: current status and future
trends. CRC Press, Boca Raton

22. Perkins CE, Bhagwat P (1994) Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. ACM SIGCOMM Comput Commun Rev 24(4):234–244



38 M. Tareq and S. A. Abed

23. Valivety S (2009) Affect of handover on the performance of routing protocols in WiMax.
California State University, Long Beach

24. Shaheen A, Gaamel A, Bahaj A (2016) Comparison and analysis study between AODV and
DSR routing protocols in VANET with IEEE 802.11 b. J Ubiquitous Syst Pervasive Netw
7(1):07–12

25. Liu J, Wan J, Wang Q, Deng P, Zhou K, Qiao Y (2016) A survey on position-based routing for
vehicular ad hoc networks. Telecommun Syst 62(1):15–30

26. Royer EM, Perkins CE (1999) Multicast operation of the ad-hoc on-demand distance vector
routing protocol. In: Proceedings of the 5th annual ACM/IEEE international conference on
Mobile computing and networking, pp 207–218

27. Xiong W, Li Q-Q (2015) Performance evaluation of data disseminations for vehicular ad hoc
networks in highway scenarios. Int Arch Photogrammetry Remote Sens Spat Inf Sci 37

28. Tareq M, Alsaqour R, Abdelhaq M, Uddin M (2017) Mobile ad hoc network energy cost
algorithm based on artificial bee colony. Wirel Commun Mob Comput 2017:1–14

29. Royer EM, Toh C-K (1999) A review of current routing protocols for ad hoc mobile wireless
networks. Personal Commun IEEE 6:46–55

30. Tariq M, Fareed H, Alsaqour R (2016) Performance analysis of reactive routing protocols in
mobile ad hoc network using NS2

31. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical
report-tr06. Erciyes University, Engineering Faculty, Computer Engineering Department

32. Sivakumar D, Suseela B, Varadharajan R (2012) A survey of routing algorithms for MANET.
In: 2012 International conference on advances in engineering, science and management
(ICAESM), pp 625–640

33. Macker J (1999) Mobile ad hoc networking (MANET): routing protocol performance issues
and evaluation considerations

34. Zafar S, Tariq H, Manzoor K (2016) Throughput and delay analysis of AODV, DSDV and DSR
routing protocols in mobile ad hoc networks. Int J Comput Netw Appl (IJCNA) 3(2):1–7



A Novel Chicken Swarm Neural Network
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Abstract For optimization applications, an innovative bio inspired algorithm of
Chicken Swarm Optimization (CSO) is suggested, the CSO represents hierarchy of
chicken swarm. Chicken Swarm Optimization extracts the chickens swarm intelli-
gence that can be used efficiently to optimize problems. This research investigates
performance of proposed model Chicken-Swarm Optimization in hybrid with neural
network (Chicken S-NN) to find the local minima and slow convergence. Perfor-
mance of the Chicken S-NNmodel is compared with ABCNN (Artificial Bee Colony
Neural Network) and ABCBP (Artificial Bee Colony Back-Propagation). From the
results of training and tested data, this is evident that the proposed (Chicken S-NN)
algorithm performs better than the other models with respect to accuracy and Mean
Square Error (MSE).
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1 Introduction

Forecasting the consumptions of crude oil prices has become one of the hot questions
in the area of research due to its wide usage and importance in the world economic
arrangements. Crude Oil price has been a part of the process of decision-making for
the growth in industries and the government planning in the short-term and long-term,
export strategy and for national reserves [1].

Generally, crude Oil prices forecast shows the future possibility in development
of relevant marketplace. Crude oil is crucial to the world economy. Similarly from
industrial point of view, it is vigorous production inputswhile the prices are controlled
by supply and demand. Changes in crude Oil prices are driven at various levels with
collective or precautionary demands that are linked to the market concerns about the
availability of oil supplies in the future [2].

Unpredictability of the crude Oil prices has been debated and gagged in numerous
researches. The determination of this unpredictability in the prices of crude Oil gets
more importance for the periods during which crude Oil prices show fast and sudden
variations. Secondly, to predict the prices of crude Oil gets more significance in the
future, especially in periods of high volatility. There is considerable works aimed
in improving the abilities of econometric models to model the price of crude Oil
[3]. Many articles have already been successfully submitted ANN applications for
modeling and predicting a series of crude oil prices likewise for predicting time series
of the real world [4–10].

ANN offers other approaches to solve complex problems. In many different ANN
models, the most famous ANN is Multi layer Feed Neural Network (MLFF) and
Recurrent Neural Network (RNN). Feed forward neural network sends unidirectional
signals, from the level of input, hidden layers to output layer.While Recurrent Neural
Network hold a short term memory for activation feedback [11]. The network has
local feedback loops allowing storing previous state of hidden unit. This opportunity
makes it progressive as compared to a feed forward network, because the network
outputs are calculated from current inputs and hidden states, so it has at least one
feedback link [12].

The results of experiments prove that ANN performance is much higher in numer-
ous conventionalmodels used for statistical purposes.Ability ofANN is to learn com-
plex as well as nonlinear time-series that are hard to using the traditional models.
ANN also has some disadvantages such as the performance of ANN is inconsistent
in some explicit situation. ANN can do accurate prediction [13]. While RNN can
perform particular nonlinear and dynamic behaviour. Which is applicable in differ-
ent area such are classification models of space and time, electrical power demand,
financial data forecasting [14], associative memories, forecasting, management opti-
mization and simplify sequences of patterns [12].
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The complex application such as time-series prediction and nonlinear modeling
makes RNN topologically more powerful and compact than FFNN. For complex
problem fully recurrent networks are still complex, so using the partially recurrent
networks, where the connections have particularly feedback, but contain selected set
of association’s feedback. Without any complication such model allows the system
to memorize past history. Elman neural network is an example of partial RNN [11].

Some features make RNN algorithms less efficient and often requires a huge
amount of time to form a network of even for moderate size of problem. RNN has
complex error surface which makes many other training algorithms more flat stuck
in local minima [14]. An artificial neural network is famous algorithm because of
its ability to simplify and solve problems in function approximation, pattern clas-
sification, pattern matching and associative memories as well as its flexibility and
competence. The success of ANN depends largely on their design, learning algo-
rithm, and the choice of structures used during training [15]. ANN has ability to
solve complex problem by classification prediction and forecasting nonlinear sys-
tem and huge datasets with high accuracy. Without having prior knowledge, the
neuron store, recognized, estimates and adopt new patterns on training, which make
it superior and attractive model.

To overcome the weakness ANNmany evolutionary techniques and global search
techniques such as genetic algorithm, Ant Bee Colony (ABC), Particle Swarm Opti-
mization (PSO), Cuckoo Search and Bat algorithm were used that formulates a kind
of neural network more superior than conventional neural network models. CS algo-
rithm provides more optimal solution then an efficient particle swarm algorithm and
genetic algorithm [15]. Different modification have been done by various researchers
such as GANN [16], CSBP, [17], BAT-BP, [18], ACPSOBP [14].

But this research proposed a new technique Chicken Swarm optimization (CSO)
algorithm probes to boost the performance of neural network (NN). CSO develop-
ment was credited to Xianbing Mengin 2014. Through observations of an individual
or whole flock of chicken, the researchers extracted the chicken that have of mature
intellectual ability, communication-skills and ability to learn and they exists in a
strict hierarchical order in the flock. The CSO has the characteristics of simplicity
and scalability, is a naturalmulti-swarm adaptive algorithm.CSO, a type of stochastic
optimization algorithm that uses repetitive approach for solving the objective prob-
lem. CSO can only not handle continuous problems as well as discrete problems. In
addition, configuration of parameters is simple [19].

The proposed model is trained on crude oil data to check the performance and
then compared with others similar algorithms. The next remaining sections of the
paper is organized such is Sect. 2, and Sect. 3, give the basic idea of Neural Network
and Cuckoo search algorithm. Proposed technique is discussed in Sect. 4. Section 5,
will represent experimental setup and results and discussion. Section 6, presents
conclusion.
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Fig. 1 Artificial Neural Network [25]

2 Artificial Neural Network

The concept of ANN is an engineering approach which is inspired by the concept
of biological neurons. These neurons consist of inputs and outputs neurons that are
interconnected with each other. Each neuron receives data from other neurons and
weight of neurons link is added and output is generated for target neurons by applying
activation function [20]. Layers of input feeds input to hidden layers and move
forward direction to nodes in output layer. Nodes of input layer are configured based
upon variables that are independent in dataset while dependent variables determined
the output nodes. [21, 22]. There may more than one layer, but theoretical works
such as [23] argues stating this that one hidden layer is enough for approximation
any complex non linear function. Nodes in hidden layer is usually determined using
trial an error [24]. Structure of ANN is shown in Fig. 1. ANN algorithm is used to
process information in parallel. This can also be applied to model complex and non
linear relationships through input output training from data sets that are collected
from application domain.

The inherent capabilities of the Neural Network allow the algorithm to facilitate
a non linear mapping of both input and output vectors [22, 25].

3 Chicken Swarm Optimization

Chicken Swarm optimization a new bio inspired algorithm developed by Meng et al.
[26]. The Chicken Swarm optimization algorithm selected the behaviors of chickens
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by the following rules. For simplicity, the behavior of chickens can be idealized in
the procedures [27].

(1) In a chicken flock, there are several groups and each group consists of a rooster,
some hens and chickens.

(2) As the chicken flock can be further divided into different groups and establish
the identity of chickens, hens (hens and chicks). They all are dependent on the
values of fitness of the chickens. The chicken with the best range of fitness
values precede as roosters. The worst chickens with different health values will
be elected as the chicks. Rest is to be considered as hens. Hens selects group
randomly that which group to join. The relationship of mother and their child
is also determined randomly.

(3) The hierarchy, relations of domination and the relationship between parents and
children in a group remain unchanged.

(4) Chicken rate after network group to find food, and can avoid those that eats their
own food. Assuming steal chickens were randomly good food that is found by
others. Chicks look for food near to their own mother (hen). Prominent one has
a benefit in the race for food.

The pseudo code of the Chicken Swarm optimization algorithm is

1. Initialize a population of N chickens and define the related parameters;
2. Evaluate the N chickens fitness values, t = 0;
3. While MSE < Stopping Criteria
4. If (t % G = 0)
5. Rank the chickens’ fitness values and establish a hierarchal order in the swarm;
6. Divide the swarm into different groups, and determine the relationship between
7. the chicks and mother hens in a group;
8. End if
9. For i = 1 : N
10. If i == rooster
11. Update its solution/location using Eq. (1);
12. End if
13. If i == hen
14. Update its solution/location using Eq. (3);
15. End if
16. If i == chick
17. Update its solution/location using Eq. (6);
18. End if
19. Evaluate the new solution;
20. If the new solution is better than its previous one, update it;
21. End for
22. End wile



44 A. Khan et al.

4 The Proposed Chicken S-NN Algorithm

Chicken swarm optimization is bio inspired constructed on behavior of chicken
swarm. Like other bio-inspired algorithms of global researchmetaheuristic keep both
local search and global search. Chicken swarm is composed of distinct groups and
every individual group revising chicks, hens, and a rooster. Head rooster is a chicken
with excellent value given the conditions. In mean while the worst chickens with
peculiar fitness values are considered as chicks. The remaining is seen as chickens.
Chicken will try the best food around parent (Hen). Chickens without exceptions
indicate rational solutions in the proposed CS-NN algorithm (i.e. weight density and
linked basis to optimize neural network in this investigation). The weight optimizing
as well as the sizes of pack dilemma imitates the solution for various application
[28]. Weight of optimization problem and size of the populace serve as quality of
solution. In the beginning cycle, the initial values are taken for weights and biases
for the said Chicken S-NN algorithm and pass these weights values to NN. In the
following approach, Chicken swarm will modify weights and the value of biases
with probable nest or solutions and the search will be continued by Chicken swarm
for best possible solution or research for best possible weight value till last round of
network or objective MSE is obtained.

The proposed Chicken S-NN algorithm Pseudo code is as under:

Step 1: initializes Chicken swarm population
Step 2: Load the training data
Step 3: While MSE < stopping criteria

If (t % G = 0)
Rank the chickens’ fitness values and establish a hierarchal order in the swarm;
Divide the swarm into different groups, and determine the relationship between
the
chicks and mother hens in a group; End if
For i = 1 : N
If i = rooster Update its solution/location using Eq. (1);

xt+1
i, j = xti, j ∗ (

1 + rand
(
0, ∂2

))
(1)

∂ =
{
1 if fi ≤ fk
exp

(
( fk− fi )
| f1|+ε

)
,
otherwise, kε[1, N ] K �= i. (2)

where rand(0 ~ ∂2) is a Gaussian distribution with mean 0 and standard deviation ∂2.
ε which is used to avoid zero-division-error, is the smallest constant in the computer.
k, a rooster’s index, is randomly selected from the roosters group, f is the fitness
value of the corresponding x. End if

If i == hen Update its solution/location using Eq. (3)
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xt+1
i, j = xti, j + S1 ∗ rand ∗

(
xtr1, j − xzi, j

)
+ S2 ∗ rand ∗ (

xtr2, j − xti, j
)

(3)

S1 = exp(( fi − fr1)/(abs( fi ) + ε)) (4)

S2 = exp( fr2 − fi ) (5)

End if
If i = chick Update its solution/location using Eq. (6)

xt+1
i, j = xti, j + FL ∗ (

xtm, j − xti, j
)

(6)

End if
Evaluate the new solution;
If the new solution is better than its previous one, update it;
End for
Step 4: Pass the chicken as weights to network
Step 5: Feed forward neural network runs using the weights initialized with chicken
swarm
Step 6: Calculate the error
Step 7: Chicken Swarm keeps on calculating the best possible weight at each epoch
until the network is converged.
End While

5 Results & Discussion

Primarily, the core concept behind this research is to improve slow convergence
and obtains high accuracy. Before heading towards the results of simulation some
terminologies used suchas structure of network, tools and technologies, as well as
the dataset used for experiments have to be explained. Discussion of these are given
below.

5.1 Preliminaries

Workstations used for experimentations comes equipped with a processor 2.33 GHZ
(Intel Core i5 Processor) and Microsoft Windows 7 is used as Operating system.
MATLAB version 2012 is used for simulation purposes. In comparison evaluation,
learning rate and hidden layers are kept same. Three layers feed-forward neural
networks have been used for models training. 5 nodes are fixed for hidden layers.
Whereas the activation function used is log sigmoid function as transfer function
from input till hidden layers and from hidden up to output layers. For evaluation
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of each problem, 1000 Epochs is restricted for solitary trial. 25 trails are executed
for every value to validate the algorithm. Result of each trail is saved in result file.
Number of failures as well as Mean Square Error (MSE) is documented in one by
one distinct files for independent trial on crude oil classification.

5.2 Data

The dataset for OPEC petroleum consumption in thousands of barrels per day (tb/d)
are obtained from the EIA of the US Department of Energy, which is freely avail-
able online on the organization’s official website [29]. Dataset are collected for the
domestic petroleum consumption of each 12 OPEC member countries, including
Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia,
UAE, and Venezuela. Also, the total petroleum consumption for OPEC is collected,
given that it is the target forecasting value. The dataset are collected on yearly basis
from 1980 to 2012 [30]. This research is based upon predicting OPEC of crude oil.
Two different experiments are carried out on data division. Firstly the data is divided
in two ways. In the first of applied technique, data is partitioned into 70 and 30%.
70% of the given data is used as training set and the rest of 30% data are used as
testing set. While using second technique, data is partitioned into two slices of 60
and 40%. The first slice of 60% is used for training and on the other hand 40% of
the remaining data is used for testing the data.

The dataset is normalized into a specified range of [0, 1] with the help of Eq. (7)
to improve accuracy and convergence speed of prediction.

n0 =
ki−Xmin

Pmax−Xmin
(7)

where

no normalize dataset,
ki raw dataset,
xmin lowest value of dataset,
pmax largest value of dataset [25].

5.3 Discussion

This section illustrates the performance of proposedChicken SwarmNeural Network
(Chicken S-NN) algorithm which is compared with Artificial Bee Colony Neural
Network (ABCNN) and Artificial Bee Colony Back Propagation (ABCBP). The
performance of the mentioned algorithm is measured in term of Epochs, Accuracy,
Mean Square Error and CPU Time that can be seen in Table 1.
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From Table 1 this can be viewed that the performance of proposed Chicken S-NN
algorithm is better on crude oil data set as compared to ABCNN and ABCBP. From
these results, this is evident that for 70% of training data, the proposed Chicken S-NN
algorithm converges to the global minimum in 30 Epochs, consuming 86.52 s of CPU
time and attain 99.99 accuracy with an average MSE equals to 0.0001. While the
other models such as ABCNN obtain an accuracy of 99.87 together with an average
MSE is 0.0012. Similarly, the accuracy of ABCBP is 99.81 with the average MSE
is 0.001271.

Furthermore for 30% testing data, the proposedChickenS-NNalgorithmperforms
well and converges to the global minimum in 127 Epochs obtaining 99.99 percent
of average accuracy with an MSE equals to 0.000104. The accuracy of ABCNN and
ABCBP is 99.82674 and 99.70366 respectively, with an average MSE of ABCNN is
0.001311 and ABCBP has an average MSE equals to 0.000544. Results of different
models applied on data set has been illustrated below.

Figures 2, 3 and 4 display convergence performance of suggested Chicken S-NN
algorithm, ABCNN and ABCBP on 70% Training data set of crude oil dataset.

The convergence of proposed Chicken S-NN algorithm, ABCNN and ABCBP
can be seen in Figs. 1, 2 and 3 together with their MSE.

Figures 1, 2 and 3 shows that the proposed Chicken S-NN algorithm performs
well and reaches to global minima in 30 Epochs.

Figures 5, 6 and 7 showed the Convergence Performance of proposed Chicken
S-NN algorithm, ABCNN and ABCBP on 30% testing data of crude oil.

Fig. 2 MSE convergence performance of Chicken S-NN algorithm for 70% training dataset
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The accuracy of proposed Chicken S-NN algorithm, ABCNN and ABCBP can
be seen in Figs. 5, 6 and 7 together with their MSE.

Figures 5, 6 and 7 show that the proposed Chicken S-NN algorithm performs
better and converges to the global minima in 127 Epochs.

Figures 8 and 9 displays a comparison of actual and predicted value of proposed
Chicken S-NN algorithm. This can be seen clearly that the predicted value of pro-
posed Chicken S-NN algorithm is near to the actual value.

Table 2 represents the performance of proposed Chicken S-NN Algorithm,
ABCNN and ABCBP algorithm. Results show that the proposed Chicken S-NN
algorithm performs superior than rest of the models. This is apparent from results
that for 60% of training data, the proposed Chicken S-NN algorithm meets to global
minima in 15 Epochs while consuming 47 s of CPU time with an average accuracy
matches to 99.99% and 9.23E−05 is their average MSE. Whereas ABCNN model
shows 99.50 average accuracy and reach an MSE of 0.000366. The accuracy of
ABCBP model is 99.60 and gets an MSE of 0.004226.

Similarly on 40% testing data Chicken S-NN algorithms perform better and
reaches to the global minima in 36 Epochs while gaining 99.99 percent of aver-
age accuracy and MSE equals to 0.004226. The other two models ABCNN and
ABCBP gain 99.80 and 99.30 average accuracy respectively. ABCNN achieve MSE
of 0.001054 while ABCBP gets 0.004226 averages MSE.

Figures 10, 11 and 12 of Chicken S-NN algorithm, ABCNN and ABCBP shows
the convergence performance on 60% training data of crude oil prices. The average
accuracy of suggested algorithm Chicken S-NN and other two models ABCNN and
ABCBP can be viewed in Figs. 10, 11 and 12 with their MSE. In Fig. 9 show that the

Fig. 3 MSE convergence performance of ABCNN algorithm for 70% training dataset
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Fig. 4 MSE convergence performance of ABCBP algorithm for 70% training dataset

Fig. 5 MSE convergence performance of Chicken S-NN algorithm for 30% testing dataset
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Fig. 6 MSE convergence performance of ABCBP algorithm for 30% testing dataset

Fig. 7 MSE convergence performance of ABCNN algorithm for 30% testing dataset
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Fig. 8 Actual via predict
data convergence of
proposed algorithms for 70%
training and 30% testing
dataset
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Fig. 9 Actual via predict data convergence of proposed algorithms for 70% training and 30%
testing dataset

suggested Chicken S-NN algorithm performs better and converges to global minima
in 15 Epochs.

The average accuracy of suggested algorithmChicken S-NNand other twomodels
ABCNNandABCBPcanbeviewed inFigs. 13, 14 and15with theirMSE.Figures 13,
14 and 15 shows that the suggested Chicken S-NN algorithm performs better and
converges to global minima in 36 Epochs.

Figure 16 illustrates comparison of predicted value and actual value. Proposed
algorithm Chicken S-NN performs very well and predicts almost near to the actual
value.

6 Conclusion

Chicken Swarm is an assumptive based optimization algorithm inspired by chicken
capabilities. Chicken-swarm algorithm has capability to search both local and global
large space in the candidate solution. This paper proposed Chicken swarm based
NeuralNetwork to investigate and to overcome the shortcomingofNNalgorithm.The
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Fig. 10 MSE convergence performance of Chicken S-NN algorithm for 60% training dataset

Fig. 11 MSE convergence performance of ABCBP algorithm for 60% training dataset
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Fig. 12 MSE convergence performance of ABCNN algorithm for 60% training dataset

Fig. 13 MSE convergence performance of Chicken S-NN algorithm for 40% testing dataset



56 A. Khan et al.

Fig. 14 MSE convergence performance of ABCBP algorithm for 40% testing dataset

Fig. 15 MSE convergence performance of ABCNN algorithm for 40% testing dataset
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Fig. 16 Actual via predict
data convergence of
proposed algorithms for 40%
testing dataset
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performance of the proposed Chicken S-NNmodel is better to Artificial Bee Colony
Back Propagation (ABCBP) and Artificial Bee Colony Neural Network (ABCNN).
The network is trained as well tasted on the basis of Crude Oil price dataset. The
simulation result concludes that the proposed model outperforms existing methods
likeABCBP, andABCNN in termofMSEaccuracy. FromExperiments it is also clear
thatwithChicken swarmneural network avoid the slowconvergence and convergence
to optimal solution.
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Forecasting OPEC Electricity
Generation Based on Elman Network
Trained by Cuckoo Search Algorithm

Abdullah Khan, Rahmat Shah, Nasreen Akhter, Awais Qureshi,
Kamran Ullah, Hilal Ahmad and Muhammad Idrees

Abstract All over the world, energy is vitally important because it affects life-
standard economy, and social growth. Electricity is one of the main significant forms
of energy which is usually needed to be generated and cannot be stored physically. It
was themain goal to generate the required electricity tomeet a future need in previous
studies. To maintain the level of electricity needed constantly, a good system needs
to be designed for avoiding waste or shortage. This paper proposes an alternative
topology of neural network which is known as Elman network. In the case of Elman
networks (ENs), majority techniques only identify topologies in which neurons are
connected to each other from hidden to input layer. However, training algorithm of
Elman network has a number of disadvantages, like network stagnation and get-
ting stuck in a minimum and low local speed of convergence. This study suggests
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Cuckoo search algorithm (CS) to enhance training time of EN for high precision and
fast convergence. Performance of Cuckoo search Elman (CSElman) is compared to
artificial bee colony (ABC) and with similar hybrid techniques. Simulation results
are displayed that prove the proposed CSElman is better than the other algorithms
in this research with respect to accuracy and the speed of convergence.

Keywords Slow convergence · Local minima · Cuckoo search algorithm ·
Artificial bee colony · Elman network

1 Introduction

The world has become more populated and the electricity demand has increased
extremely in the world in recent years. In daily lives of people, electricity-consuming
devices and appliances have become more common. For a country, it is very impor-
tant to be able to supply exactly equal electricity to the demand. If blackouts occur,
it will affect negatively electricity-dependent industry; If a country’s electricity gen-
eration capacity is lower than the demand, or on the other hand, electricity demand
is higher than the electricity generation capacity leads to the power plants with idle
capacity. Hence, to maintain the electricity demand and supply balance, it is very
important to correct plan and develop new electricity generation investments for
accurate prediction of the electricity demand for the future [1, 2].

Nowadays, several organizations adopting information technologies are used to
help their working, providing enough memory units for storing up-to-date informa-
tion and used this information formaximumbenefitwith differentmethods. Program-
ming to anticipate changes. In future to find a change a way to analyze the statistical
knowledge in the past that relates to applying to the current event. The results were
used to predict future events. This seems like the future predict event are like that
group data or observations that have been recorded according to a continuous period
of time, such as yearly, quarterly, monthly, weekly, and daily, or format depending
on appropriate to use [3].

To forecast the electricity demand with good accuracy, need to determine accu-
rately the variables that can influence the demand for electricity in the country. One of
itsmain factors is a population that strongly correlatedwith the demand for electricity
(most people consume more electricity). However, the population is insufficient for
clarifying variations in demand for electricity in the past years. This is also fair com-
mon to study some common considerations and some economic gages in correlation
together with the demand for electricity [4].

One of the main scales for the living people in a country is the gross domestic
product (GDP); it is the main factor that may be used for such purpose. And, it
is also a scale of the capital for living people in a country [5]. GDP per capita
increases the standard of living of the people and their lifestyles that dependent on
devices of energy generation and utilization. Another two other economic factors
employment and inflation that can influence the demand for electricity in addition
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to per capita GDP [6]. Electricity price is another possible factor that can affect
electricity generation. If there are alternatives available for the electricity generation
in a country, this is expected that the demand for electricity is price elastic (a price
increase leads to a significant reduction in demand); otherwise, the application must
be inelastic (a price increase caused a slight drop in demand) [7].

Different forecasting techniques based on dataminingwere used for the prediction
of electricity or future demand of energy, such as artificial neural network (ANN)-
based models [8], support vector regression models [9], and methodologies based on
fuzzy logic [10].

Artificial neural network is a famous algorithm for function approximation, pat-
tern classification, pattern matching, and associative memories because of its ability
to simplify and solve problems as well as its flexibility and competence [11]. ANN
has the ability to solve complex problems of huge data sets with high accuracy
by classification, prediction, and forecasting nonlinear system. Without having prior
knowledge, the neuron store recognized estimates and adopted new patterns on train-
ing, whichmakes it superior and attractivemodel [12].Mostly, ANNdepends on their
design, learning algorithm, and the choice of structures used during training [11].
ANN offers other approaches to solve complex problems. In many different ANN
models, the most famous ANN is multi-feed neural network (MLFF) and recurrent
neural network (RNN). The FNN sent data only in a single direction from input layer
to hidden layers and then to the output layer. The RNN has feedback connection form
hidden layer to input layer with short term memory has activation-feedback short-
term memory [12], the network has local feedback loops allow to store the previous
state of hidden unit. This opportunity makes it progressive as compared to a feed-
forward network because the network outputs are calculated from current inputs and
hidden layers; so, it has at least one feedback link [13].

RNN has dynamic and nonlinear behaviour. It’s is used for different application
such as classification electrical power demand, financial data forecasting [14], asso-
ciative memories, forecasting, management optimization, and simplified sequences
of patterns [13]. The complex application like nonlinear modeling and time-series
prediction makes RNN topologically more powerful and compact than FFNN. For
complex and large problem fully recurrent networks are still has some limitation,
so using the partially recurrent networks with the particularly feedback connections
from hidden layer to input layer. Without any complication, such model allows the
system to memorize past history [12]. Elman neural network is an example of partial
RNN. Some features make RNN algorithms often require a huge amount of time
to form a network even for the moderate size of the problem and also less efficient.
RNN has complex error surface which makes other training algorithms stuck in local
minima [14].

To overcome the limitation of Elman network different global search techniques
such as genetic algorithm, Ant Bee Colony (ABC), Particle Swarm Optimization
(PSO), Cuckoo Search and Bat algorithm used [11], that formulated a type of neural-
network that is more superior than conventional Neural-Network models [14]. CS
algorithm provides more optimal solution than efficient particle swarm algorithm
and genetic algorithm [11].
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This paper is organized in such away that Sect. 2 and Sect. 3 provide the basic idea
of Elman network and Cuckoo search algorithm. Proposed technique is discussed
in Sect. 4. Section 5 will represent experimental setup with results and discussion.
Section 6 presented as conclusion.

2 Elman Network

Elman network was first developed by Elman in 1990 [3, 15–18]. It has hidden input
and output layer and, in addition, it has context layer. Context units are equal to the
number of neurons in hidden layer that takes values at t iteration from hidden layer
being calculated at t − 1 iteration. Thus, at each iteration, the value of hidden unit
being calculated and feed back to the context unit. The value from the hidden unit
are feedback to the context unite by set of weights The feedback is improved by set
of weights that enables regular adaptation by means of learning. This research uses
three-layer network with a single input layer, one hidden or “state” layer, and one
“output” layer [12].

In this network structure, each layer has its own index variable: for input nodes,
this network uses i similarly j and l for hidden and context layer nodes, while k is
used for output nodes. In a feed-forward network, the input vector, x is propagated
through a weight layer, V ;

y(t) =
n∑

i

xi (t)v j i + b j (1)

where n the number of inputs b j is a bias.

Y j (t) = f (y(t)) (2)

Y j (t − 1) =
n∑

i

xi (t)v j i +
m∑

l

Y j (t)u jl + b j (t) (3)

Yk(t) = g
(
Y j (t − 1)

)
(4)

outk(t) = purline

⎛

⎝
m∑

j

Yk(t)wkj + bk

⎞

⎠ (5)

where g is an output function andwkj represents weights from hidden to output layer.
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3 Cuckoo Search

“Cuckoo search (CS) is meta-heuristic approach developed by Yang and Deb [11,
19, 20] and is applied to solve numerous engineering design optimization problems,
such as the design of springs and welded beam structures, and forecasting [13].

The idea of this algorithm was inspired by the obligate brood parasitism of some
cuckoo species that use the nest of the host birds and laying their eggs in it. The
cuckoos hatch their eggs to increase the likelihood of other eggs in the nest by
eliminating some host’s eggs [12, 21–24]. Each egg in nest represents solution and
cuckoo egg represents new solution; so, the idea of using Cuckoo search is to select
optimal solution and discarding the previous one.

There are three main rules that CS algorithm follow

1. At a time, each cuckoo lays only one egg and dumps it in randomly chosen host’s
nest.

2. The nest with high-quality egg will be the best and selected for future generation.
3. The total numbers of available host’s nests arefixed and the probability to discover

the cuckoo egg by the host bird is pa ε [0, 1]”.

Based on these rules, if cuckoo’s egg is discovered by host bird, it either abundant
that nest and built a new one or either simply throw the egg away.

4 The Proposed CS Elman Algorithm

In the proposed Cuckoo search Elman (CSElman) algorithm, each best nest in CS
algorithm represents a possible solution (i.e., the initial weight space and the cor-
responding biases for Elman network (EN)). The weight optimization problem and
the size of the population represent the quality of the solution. In the first epoch, the
best weights and biases are initialized with CS and then those weights are passed
on to the ERN. The weights in the EN are calculated. In the next cycle, CS updates
the weights with the best possible solution and CS will continue searching for the
best weights until the last cycle/epoch of the network is reached or either the MSE
is achieved. Figure 1 shows the proposed flowchart for the CSElman algorithm.

The CS is a population-based optimization algorithm; it starts with a random
initial population. In the proposed CSElman algorithm, the weight value of a matrix
is calculated as follows;

Wn = Un =
N∑

n=1

α

(
rand − 1

2

)
(6)

Bn =
N∑

n=1

α

(
rand − 1

2

)
(7)
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Fig. 1 Flowchart for proposed CSElman algorithm
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where,Wn = N th is the weight value in a weight matrix. The rand in Eqs. (6 and 7)
is the random number between

[
0 1

]
, α is any constant parameter for the proposed

method it being less than one, and Bn bias value. So, the list of weight matrix is as
follows;

Wc = [
W 1

n ,W 2
n ,W 3

n , . . .WN−1
n ,

]
(8)

Now from the neural network process,MSE is easily calculated from everyweight
matrix, in Wc.

E = (Tk − Yk) (9)

The performance index for the network is calculated as;

V (x) = 1

2

K∑

k=1

(Tk − Xk)
T(Tk − Yk) (10)

VF (x) = 1

2

K∑

k=1

ET .E (11)

In the proposed method, the MSE is considered as the performance index and
calculated as;

Vμ(x) =
∑N

j=1 VF (x)

Pi
(12)

where, yr is the output of the network when the kth input neti is presented, and
E = (Tk − Yk) is the error for the kth input, Vμ(x) is the average performance,
VF (x) is the performance index, and Pi is the number of cuckoo population in ith
iteration. At the end of each epoch, the list of average sum of square error of i th
iteration MSE can be calculated as;

MSEi = {
V 1

μ(x), V 2
μ(x), V 3

μ(x) . . . V n
μ (x)

}
(13)

The Cuckoo search duplicates the MSE and is found when all the inputs are
processed for each population of the cuckoo nest. So, the Cuckoo search nest x j is
calculated as;

x j = Min
{
V 1

μ(x), V 2
μ(x), V 3

μ(x) . . . V n
μ (x)

}
(14)

And the rest of the average sum of square is considered as other Cuckoo nest.
A new solution xt+1

i for Cuckoo i is generated, using a levy flight according to
the following Eq. (15);
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xt+1
i = xti + α ⊕ levy(λ) (15)

So, the movement of the other Cuckoo xi toward x j can be drawn from Eq. (16);

X =
{
xi + rand · (

x j − xi
)
randi > pα

xi else

}
(16)

The Cuckoo search can move from
pα ∈ [ 0 1 ]

toward x j through levy fight and

can be written as;

∇Xi =
⎧
⎨

⎩
xi + α ⊕ levy(λ) ∼ 0.01 ·

(
Uj

|Vj | 1
μ

)
· (X − Xbest)randi > pα

xielse
(17)

where ∇Vi is a small movement of xi toward x j . The weights and biases for each
layer are then adjusted as;

Ws+1
n = Us+1

n = Ws
n − ∇Xi (18)

Bs+1
n = Bs

n − ∇Xi (19)

The pseudocode for the CSElman is given as:

1. Initializes CS population size dimension and Elman structure
2. Load the training data
3. While MSE < stopping criteria
4. Pass the cuckoo nests as weights to network
5 Feed forward network runs using the weights initialized with CS
6 Calculate the error using the Eq. (9)
7 Minimize the error by adjusting network parameter using CS.
8 Generate Cuckoo egg

(
x j

)
by taking levy flight from random nest.

xi = x j

9. Abandon a fraction pα ∈ [ 0 1 ] of the worst nest. Build new nest at new location
via levy flight to replace the old one.

10. Evaluate the fitness of the nest, Chose a random nest i
11. If

X j > Xi Then
12. xi ← xj
13. Xi ← Xj

14. End if
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15. CS keeps on calculating the best possible weight at each epoch until the network
is converged.

16. End While

5 Results and Discussion

The workstation used for evaluation of results is equipped with an (Inter Processor
Core i5) and Microsoft Windows 7 is used as Operating-System (OS). With the help
ofMATLAB version 2012, results have been simulated for data. Keeping the number
of layers same in hidden as well as in learning layer. A total number of three feed-
forward layers have been used to train the model, while the quantity of hidden layers
remained fixed to five. Log sigmoid transfer function is used from input to hidden
layers, and from hidden to output layers purlin function is used. One thousand epochs
have been kept static for the evaluation of each problem. For validation of algorithms,
25 numbers of trails are executed for each model. A different file has been used to
record number of failures and mean square errors (MSE) of each independent trial
for the classification of electricity data.

The OPEC Electricity Generation Data Set Collection and Pre-Processing

The data set for the OPEC electricity generation in billion kilowatt hours (Bkwh) are
collected fromEnergy InformationAdministration (EIA), 2015 on a yearly frequency
from 1980 to 2012. The data set is freely available and is the current data set at the
time of conducting the research. A revisit to the EIA (2015) data repository, on
the February 10, 2016, indicated that the data set for 2013, 2014, and 2015 are
not yet available. As such, we believed that the data set from 1980 to 2012 are the
updated data set. The EIA is one of the credible sources of energy data in which
many researchers rely on it to collect their energy research data set [25]. The data set
contained OPEC electricity generation in Bkwh for each of the 12 OPEC member
countries as listed in the introduction section of the paper as well as totals for the
OPEC. In this study, the NN also requires initial parameter settings. The number of
inputs and output neurons is set to 12 and 1, respectively, because the number of
OPEC countries is 12 and the total OPEC electricity generation in is 1.

DATA: This research will forecast the generation of electricity. Two different
experiments are conducted on data. Data is divided using two techniques. By using
the first technique, data is divided into two sets, 70% set of data is used for training
while the remaining set of 30% data is used for testing the suggested model. In the
second technique, 60% data used to train while 40% to test the model. In another
technique, suggested model is trained with 80% of electricity generation data and
then tested with 20% of data.
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5.1 Discussion

This part of research reveals performance of proposed CSElman algorithm in com-
parison to artificial bee colonywithElman (ABCElman) and genetic algorithmneural
network (GANN). Performance is distinguished with respect to CPU time, epochs,
accuracy, and mean square error that have been elaborated in Table 1.

All the simulation results are given in Table 1. Table 1 represents the perfor-
mance of different models in term of epochs, CPU time, accuracy, and MSE used for
forecasting the generation of electricity. From simulation result, it shows that the sug-
gested CSElman model is good for the generation of electricity data as compared to
ABCElman and GANN. Results display that for the evaluation of 70% training data,
suggested CSElman algorithms reach to global minima in six numbers of epochs

Table 1 Convergence
performance in term epochs,
CPU time, accuracy and MSE

Data set Algorithms CSElman ABCElman GANN

Training
70%

Epochs 6 1000 1000

CPU Time 3 539 12

Accuracy 99.99 99.58 99.54

MSE 9.36E-07 3.30E-05 9.38E-03

Testing
30%

Epochs 3 1000 1000

CPU Time 2 529 11

Accuracy 99.99 99.79 99.53

MSE 4.68E-08 1.52E-05 0.009047

Training
60%

Epochs 8 1000 1000

CPU Time 5 534 12

Accuracy 99.99 99.56 99.44

MSE 1.64E-07 1.07E-05 1.12E-02

Testing
40%

Epochs 4 1000 1000

CPU Time 4 511 12

Accuracy 99.97 99.39 99.68

MSE 4.86E-06 3.06E-05 0.006354

Training
80%

Epochs 8 1000 1000

CPU Time 5 534 12

Accuracy 99.99 99.69 99.57

MSE 8.00E-08 1.86E-05 0.008502

Testing
20%

Epochs 3 1000 1000

CPU Time 2 215 12

Accuracy 99.97 98.79 99.35

MSE 4.70E-06 9.25E-05 0.01284
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with a time spent of 3 s. Obtained accuracy of CSElman is 99.99 having an average
mean square error equals to 9.36E-07.

The secondmodel ABCElman attains average accuracy equals to 99.58 withMSE
of 3.30E-05. Likewise, GANNgets an average accuracy equals to 99.54 togetherwith
average MSE is 9.38E-03. Similarly the performance of the model on 30% testing
data, suggested model CSElman performs very well and reaches to global minima
in three epochs while attaining 99.99 accuracy with generation of CPU time is 2 s.
CSElman achieves an average MSE of 4.68E-08. ABCElman attains 99.79 accuracy
while GANN gets 99.53 accuracy. MSE of ABCElman is 3.30E-05 and GANN is
0.009047.

Figure 2 shows the simulation results of the used models in the study. This can
be obtained from Fig. 2 that suggested CSElman algorithm performs better in terms
of mean square error than rest of the applied models and reaches to global minimum
in three epochs. Comparison of the actual and predicted value can be seen in the
next figure, i.e., Fig. 3. After analyzing Fig. 3, this can be extracted that suggested
CSElman prediction value is nearer to the actual value. Figure 2 displays the per-
formance of convergence of suggested CSElman, ABCElman, and GANNmodel on
30% testing data of electricity generation.

Similarly, Table 1 further shows the performance analyses of applied algorithmson
60% training data of electricity generation. Results suggest that CSElman algorithms
act better than others two algorithms. CSElman achieved global minima in three
epochs with CPU time generation equals to 2 s. CSElman has the highest accuracy
among the implemented models, an average accuracy of 99.99 with average MSE
of 1.64E-07. On the hand, the ABCElman and GANN take 1000 epochs to accuracy
is 99.56 having MSE 1.07E-05, and GANN obtains 99.44% accuracy with average
MSE is 1.12E-02.

Also to check the performance of the proposed models on 40% tested data, it
shows that the performance of suggested CSElman algorithm is better than others
implemented models in term of epoch, accuracy, and MSE. CSElman touches to
global minima in four epochs taking 4 s of CPU time while attaining 99.9 accuracy.
Average MSE of CSElman is 4.86-06. Similarly, ABCElman and GANN obtain
accuracy of 99.39 with 3.06 E-05 MSE and GANN has an MSE equals to 0.00635
with 99.68, respectively.

Figure 4 illustrates convergence performance of the CSElman, ABCElman and
GANNalgorithms on 40%electricity generation tested data set. This can be judged in
Fig. 4 that suggestedCSElmanmodel performs better in comparisonwithABCElman
and GANN and converges to global minima in four epochs.

Figure 5 displays the comparison of the actual value of electricity data and pre-
dicted value of suggested CSElman model. This is evident that CSElman predicted
value is much nearer to actual value. From the predicted value, it shows that the
proposed CSElman model predicated well as compared to the other used algorithms.

Furthermore, Table 1 illustrates more details of the proposed model for the elec-
tricity generation data on 80% training and 20% testing data. For 80% of training
data, results suggest that CSElman algorithm performed better than other two algo-
rithms. The proposed CSElman achieved global minima in eight epochs with CPU
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Fig. 2 MSE convergence
performance of the used
algorithm 30% testing data
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Fig. 3 Comparison of the actual versus predicted value of CSElman on 30% test data

time generation equals to 5 s. CSElman has the highest average accuracy of 99.99
with average MSE of 8.00E-08. On the other hand, ABCElman’s accuracy is 99.69
having MSE 1.86E-05, and similarly GANN obtains accuracy equals to 99.57 with
average 0.008502 MSE.

Also on 20% tested data, performance of suggested CSElman algorithm is bet-
ter than other implemented models. CSElman converges to global minima in three
epochs taking 2 s of CPU time while attaining 99.97 accuracy. Average MSE of
CSElman is 4.70E-06. Similarly, ABCElman and GANN obtain accuracy of 99.79
and 99.35, respectively. 9.25E-05 is the MSE of ABCElman while GANN has an
MSE equals to 0.01284.

Figure 6 illustrates convergence performance of 20% tested data of electricity
generation. This can be judged from Fig. 6 that suggested CSElman model performs
better in comparison with ABCElman and GANN and converges to global minima
in three epochs.

Figure 7 shows the comparison of the actual versus predicted value of suggested
CSElman model for electricity generation data. This is evident that CSElman pre-
dicted value is much nearer to actual value.
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Fig. 4 MSE convergence
performance of the used
algorithm 40% test data
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Fig. 5 Comparison of the actual versus predicted value of CSElman on 40% test data

6 Conclusions

To improve the accuracy of forecasting electricity generation, convergence time,
robustness, and consistency, the Elman network modeling of OPEC electricity gen-
eration based on CS via levy flights has been proposed in this study code named
CSElman. For evaluation purpose, the performance of the CS on training Elman net-
work to build a model for the forecasting of OPEC electricity generation is compared
with GANN and ABCElman. The CSElman is found to be effective, efficient, robust,
and consistent compared to the comparison algorithms. The CSElman forecasting
method can be an alternative approach for forecasting the consumption of OPEC
electricity, which can be of benefits to the 12 OPEC member countries. This paper
proved that the CSElman can effectively, efficiently, robustly, consistently, and reli-
ably model the generation of electricity by OPEC. Performance of proposed Cuckoo
search Elman (CSElman) algorithm is compared to artificial bee colony (ABC) as
well as with hybrid similar variants. Simulation results illustrate that suggested algo-
rithmCSElman is better as compared to othermodelswith respect to convergence and
accuracy rate. We believed that the approach presented in the study can be explored
in another domain of applications such as electricity consumption, nuclear energy,
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Fig. 6 MSE convergence
performance of the used
algorithm 20% test data
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renewable energy, weather, andOECD energy consumption. Futureworkwill mainly
focus on the application of soft computing techniques in energy big data analytics.
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for Energy-Efficient Scheduling
of Virtual Machine in Cloud Data Center
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Abstract The quest for energy-efficient virtual machine placement algorithms has
attracted significant attention of researchers in the cloud computing platform. This
paper applied a novel symbiotic organisms search (SOS) algorithm to minimize
the number of active server by consolidation VMs on few servers for energy sav-
ings. SOS algorithm was inspired by symbiotic relationship exhibit by organisms in
an ecosystem to boost their chances of survival. Essentially, SOS mimics mutual-
ism, commensalism, and parasitism forms of relationship for traversing the search
space. Hybridized with variable neighborhood search, the hybrid algorithm is termed
SOS-VNS. SOS-VNS algorithm is efficient in minimizing energy consumption and
improving resource utilization. The SOS-VNS algorithm is applied to various work-
load instances with varying number of VMs in a simulated IaaS cloud. The results
obtained showed that SOS-VNS outperforms the heuristics and achieved reasonable
energy savings while improving resource utilization.
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1 Introduction

Cloud computing is a large-scale distributed computing system which presents vir-
tualized computing resources that are dynamically controlled, supervised, sustained,
and administered using market principles [1, 2]. It is a subscription-based computing
facility, which makes available an appropriate platform for user applications because
of its features like application scalability, heterogeneous resources, dynamic resource
provisioning, and pay-as-you-go cost model.

Cloud computing technology is rapidly emerging as the de facto paradigm of
cybercomputing, storage space and host virtual infrastructures, platforms, and soft-
ware both in the industries and academia. The vast scalability prospects presented by
cloud infrastructures can be simply exploited not just for services and applications
hosting but also as an on-demand computing paradigm [3, 4]. Modern cloud data
centers consume a huge sum of energy, and the expended energy largely comes from
the conventional energy that is produced using fossil fuels. The consequence of this
is the high cost of electricity that is being accumulated by the day, and in addition,
it leads to high carbon radiations and the large quantity of pollution [5]. With the
speedy growth in cloud computing technology, minimizing energy consumption in
addition to sustaining high-level computation capacity has become a timely and vital
issue in such an environment. Current virtual machines (VMs) scheduling systems
have primarily concentrated on improving the resource utilization and minimizing
energy usage by improving some of the classical optimization schemes. Nonetheless,
many large resource demanding cloud systems are executing VMs in a very realis-
tic situation to have substantial effects on the organization performance and energy
consumption. Likewise, sudden peak loads could result in serious scheduling error
that can considerably hinder the energy efficiency of scheduling schemes [6].

The approaches that shut down VMs that are not in use can have an undesirable
influence in relation to performance of the entire scheme. The idle VMs would
not be able to perform using large workloads in a short period. Thus, the optimum
energy-aware schemes are required to assure a proper level ofminimization of energy
consumption. To assess these approaches and to measure the level of impact of
performance and energy consumption, a very reliable computational intelligence
(CI) technique needed. Furthermore, the selected CI technique has to be able to
work with the current conditions of cloud data centers. CI algorithms are inspired
by natural process, animals’ behavior, or sports to optimize complex real-world
problems or systems. CIs as used in cloud scheduling for energy minimization in
cloud data centers can be classified into population-based like genetic algorithms
[7], ant colony algorithm [8], symbiotic organisms search [9], and particle swarm
optimization [10]; and trajectory-based like the simulated annealing [11].

Researchers have employed different metaheuristic algorithms [5, 12–14] (such
as PSO, GA, ABC, and ACO) to solve energy-efficient optimization problems in
cloud. The results obtained by these algorithms are superior to other heuristic algo-
rithms. However, these metaheuristic algorithms still suffer from the shortcoming of
being time-consuming or inefficient in optimizing energy consumption and resource
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utilization. Therefore, more effective alternative metaheuristic algorithms need to
be developed to improve the optimization of energy-efficient parameters. SOS algo-
rithm is a metaheuristic optimization algorithm based on symbiotic association of
organisms in an ecosystem, it was first introduced in [15], and being widely applied
to optimization problems in various domains such as economic dispatch [16, 17],
power optimization [18, 19], construction project scheduling [20], task scheduling
[9, 21, 22], design optimization of engineering structures [23, 24], wireless commu-
nication [25], andmachine learning [26, 27]. SOS is influenced by randomoscillation
effect in later evolution, which makes it to be easily trapped in local minima, thereby
making the convergence rate very slow. The VNS is a robust local search proce-
dure that systematically uses the concept of neighborhood change for search space
exploitation and avoidance of likely entrapment in local minima [28, 29]. SOS-VNS
combines SOS and VNS to enhance the ability of the proposed algorithm to jump
out of likely local maxima, and speed up convergence rate.

In this chapter, we present a variable neighborhood search (VNS)-based symbiotic
organisms search (SOS) algorithm for energy-efficient scheduling of VM in cloud
data center. The main contributions of this chapter are to:

1. Formulate an energy-efficient VM scheduling optimization technique model for
minimizing energy in a cloud data center.

2. Design a variable neighborhood search-based symbiotic organisms search algo-
rithm for energy-aware scheduling in the cloud data center.

3. Evaluate of the proposed technique using standard energy efficiency performance
metrics for VM scheduling.

The remaining parts of the chapter are organized as follows. In Sect. 2, literature
related to cloud scheduling and energy awareness of VM management in cloud
data centers is presented. Section 3 chronicles the formulation and design of energy-
efficient VM scheduling optimization using VNS and SOS algorithms. In Sect. 4, the
performance metrics were used to comparatively evaluate the proposed technique,
and Sect. 5 presents conclusion and future works.

2 Related Works

Computing and VM management in data centers with different features to achieve
a particular goal, using computations intelligence algorithms. These include genetic
algorithm [30, 31], ant colony optimization [32], particle swamp optimization [33],
SOS [9, 21, 22], and BAT [34]. Scheduling of VMs to different virtual resources has
a substantial effect on both energy consumption and resource utilization in the cloud
data center [35, 36]. Conversely, it is vital to develop an energy-aware VM schedul-
ing technique that retains a balance between energy efficiency and VM utilization
in this environment. Ibrahim et al. [12] present an integer linear programming (ILP)
algorithm, which reduces the energy used in a cloud computing data centers. In addi-
tion, an adaptive genetic algorithm (AGA) was put forward for the reflection of the
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dynamicity of the data centers and to deliver an optimal scheduling result that reduces
the energy usage in the cloud network. Experimental results show that the ILP-AGA
method used performs comparatively well in terms of response time and energy min-
imization. However, the ILP-AGA technique did not consider of task preemption in
the process of dynamic scheduling decisions. Similarly, a repairing genetic algo-
rithm (RGA) was developed to address the problem of the large-scale optimization
problem in cloud data centers for energy efficiency. It was designed to improve the
penalty-based GA scheme by integrating it with Longest Cloudlet Fastest Processor
(LCFP) algorithm, through which a preliminary population size was produced with
an infeasible solution repairing procedure (ISRP). The VM scheduling with RGA
was incorporated into a three-stage energy-awaremethodology for cloud data centers.
The simulation results show that the proposed framework produces minimization of
23% of energy usage and 43% increase in resource utilization as compared with the
steady-state GA in the simulated case study [37]. However, the proposed framework
did not consider multi-objectivity and instances in a heterogeneous distributed cloud
data centers.

A Euclidean distance founded multi-objective resource scheduling algorithms for
VMs and a migration strategy in the cloud data center for energy efficiency was
proposed. In addition, the sharing of VMs to physical machines (PMs) was done
using the proposed hybrid method of GA and PSO called the HGAPSO [14]. The
method, HGAPSO, uses VM scheduling and migration to minimize energy usage
and consumption of cloud resources but also it avoids SLA violation in the cloud
environment. In order to evaluate the performance of the HGAPSO technique and
VMmigration policy in relation to energy usage, VM utilization, and SLA violation,
an experiment was conducted in both heterogeneous and homogeneous cloud com-
puting systems. The investigation outcomes show the supremacy of HGAPSO and
the VM migration strategy over legacy algorithm in terms of energy minimization
and best resources utilization strategy. However, the HGAPSO did not consider the
effect of computational complexity on the makespan time. Duan et al. [6] present
a novel scheduling method termed PreAntPolicy, which comprises of a prediction
model using fractal mathematics with scheduling algorithm by improving the ACO
algorithm. It uses the proposed model to generate the implementation of the schedul-
ing algorithm through the load tendency estimate. Also, the scheduler is account-
able for VM scheduling while reducing the energy usage to guarantee the quality
of service (QoS). Experimental results show that using real workload traces gath-
ered from the compute clusters of Google, the PreAntPolicy method demonstrations
good energy minimization and resource usage. Furthermore, the method provides
an effective dynamic capability scheduling technique for resource-intensive tasks in
a distributed environment and may minimize the usage of VMs and energy when
scheduling is started by prompt peak loads. However, the computation intelligence
algorithm used for optimization is inherently deficient in local entrapment avoidance
during scheduling.

Fernandez-Caro et al. [38] developed a tool called SCORE, which was design to
simulate energy-aware huge and parallel scheduling techniques and for the imple-
mentation of varied and artificial workloads. The experimental outcome shows that



Variable Neighborhood Search-Based Symbiotic … 81

the SCORE performance well in terms of energy awareness, security, and scheduling
policies in cloud data centers. However, the SCORE simulations need to be com-
pared with real-world data and emulators’ results. Similarly, another study by Luo
et al. [39] concentrates on the IaaS cloud model, where convention VMs were ran in
applicable servers accessible in cloud environment. The research work presented a
cloud data center resource scheduling algorithm. The systemwas designed to deliver
QoS (via SLAs) and also reduces energy usage and green computing objectives.
Taking into account that the cloud data center host is regularly in thousands of mag-
nitude and that using an exact procedure to address the resource scheduling problem
is difficult. The modified shuffled frog leaping algorithm (MSFLA) and enhanced
extremal optimization are deployed to resolve the dynamicity of scheduling problem
of cloud resources. Investigative outcomes show that theMSFLA system shows good
performance in the cloud computing environment. However, the MSFLA schedul-
ing method is relatively weak in energy management in heterogeneous cloud data
centers. A computational intelligence algorithm is used for VM placement to reduce
the amount of active physical servers running, in order to allocate underutilized
servers to minimize energy lost. Encouraged by the performance of the ACO algo-
rithm for undeterministic social problems, an ACO-based method is advanced to
accomplish the VM placement objective. In addition to order exchange and migra-
tion (OEM) local search procedure, the hybridized system is called an OEMACS.
It minimizes the number of active servers used for the scheduling of VMs from
exploration viewpoint through an innovative approach for pheromone deposition
that guides the artificial ants to encouraging results that cluster contestant VMs in
the same place. The proposed hybrid scheme is used in a diverse VM placement
with divergent sizes in cloud data centers of different cloud servers. Experimental
outcome indicates that the OEMACS largely overtakes some computation intelli-
gence algorithms and other evolutionary algorithms, particularly on VM placement
with logjam resource features, and presents substantial savings of energy and more
efficient usage of diverse VMs [13]. However, the OEMACS algorithm performs
better in a homogeneous cloud data center environment than in a heterogeneous
cloud data center environment. Likewise, another similar research presented a multi-
objective energy-aware VM scheduling problem for cloud data centers within the
concept of green computing. This is partly driven by renewable energy computing
strategy, where the computing VMs of the cloud data centers are based on DVFS.
Therefore, an improved multi-objective computational intelligence algorithm called
OL-PICEA-g was put forward to address the issue. The PICEA-g system with the
general opposition-based learning was used for searching the appropriate comput-
ing VM in the cloud data center. Experimental results of the OL-PICEA-g system
were evaluated with the PICEA-g method. The outcome shows the dominance and
efficiency of the OL-PICEA-g algorithm over PICEA-g scheme [5]. However, the
OL-PICEA-g algorithm cannot handle the energy-aware scheduling of tasks and
VMs on a data center on batteries. Therefore, our proposed variable neighborhood
search-based symbiotic organisms search algorithm for energy-aware scheduling of
VMs in the cloud data center environment is put forward to address this problem.
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3 Energy-Efficient Virtual Machine Scheduling
Optimization

In cloud computing, users’ applications requirements are stated in the form of VMs
features (CPU, memory, and storage) and operating system for executing user appli-
cation. Then, the VMs that meet the user application requirements are assigned to a
server based on a placement strategy. The choice of a suitable server for VMs assign-
ment while minimizing energy consumption is a challenging problem. This paper
studies the VM placement problem for optimizing the number of running servers
where VMs are servers are balanced and consolidated based on CPU, memory, and
storage constraints.

3.1 Problem Definition

Suppose there are m VMs and n servers, with V = {V1, V2, V3, . . . , Vm} and H =
{H1, H2, H3, . . . , Hn} as sets of VMs and servers, respectively. Also, let cVj, mVj,
and sV j be the CPU,memory, and storage requirements of a VMVj ∈V, respectively.
In a similarmanner, let cHj,mHj, and sHj be theCPU,memory, and storage capacities
of server Hj ∈ H, respectively. The objective is to obtain a VM assignment schedule
that will reduce the energy consumption and improve the resource utilization. It is
assumed that a server has the capacity to meet the resource needs of a VM. That is,
in a VM assignment schedule, a VM can only be mapped to one and only one server
which is a kind of zero-one adjacency matrix P, where its element pij indicates the
VM Vj is mapped to a server Hi. If Vj is mapped to Hi then pij = 1, otherwise pij
= 0. Each server Hi must be able to meet the resource requirements of all the VMs
assigned to it.

The VM placement problem for reducing the number of active servers can be
formally written as:

minimize f (p) =
n∑

i=1

qi (1)

subject to pi j

{
1; if Vj is assigned to Hj

0; otherwise (2)

pi j

⎧
⎨

⎩
1; if

m∑
j=1

pi j ≥ Vj for all Vj ∈ V is assigned to Hj

0; otherwise
(3)

n∑

i=1

pi j = 1; for Vj ∈ V (4)
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m∑

j=1

cVj pi j ≤ cHiqi (5)

m∑

j=1

mVj pi j ≤ mHiqi (6)

m∑

j=1

sVj pi j ≤ sHiqi (7)

The constraint 3 indicates that a serverHi is selectedwhenqi =1while constraint 4
ensures that a VM is assigned to one and only one server. Constraints 5, 6, and 7make
sure that a server assigned to aVMmust be able to satisfy its requirements. The power
consumption model of a server is linearly dependent on its CPU utilization [40]. An
active server in an idle state consumes about 50–70% of its power consumption when
active at full load [41]. The power model is defined in Eq. 8.

P(α) = βPmax + α(1 − β)Pmax (8)

where Pmax is the power consumption at full load, α ∈ [0,1] is the CPU utilization,
β is the fraction of power consumed in an idle state. Since a reasonable amount of
energy is wasted when a server is in an idle state, minimization of the number of
active servers will amount to significant energy savings. During the experiment, the
power consumption of a serve will be estimated using Eq. 8.

3.2 Basic Concepts of Symbiotic Organisms Search

SOS is a new and promising metaheuristic algorithm inspired by forms of interaction
adopted by organisms for their survival in the ecosystem. The algorithm simulates
mutualism, commensalism, and parasitism forms of interaction to evolve candidate
solutions. Mutualism interaction involves two organisms which cohabit together
for the benefit of each other, none of the organisms loose in the interaction. In
commensalism interaction, one of the pair of the organisms involved in the interaction
benefits while another organism neither loses nor gained from the relationship. In the
parasitism relationship, one organism benefits from the relationship while the other
is harmed.

In SOS algorithm, potential solutions are represented by a population of organisms
which evolved through successive iterations. An initial ecosystem (population) of
organisms (candidate solutions)with ecosize (number of organisms in the ecosystem)
is generated as E = {X1,X2,X3,…,Xecosize}. The position of organism i is denoted
as Xi = [xi1,xi2,xi3,…,xid]T for optimizing a d–dimensional problem. The positions
of each organism in the ecosystem are updated using mutualism, commensalism,
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and parasitism phases, respectively. The following sections describe the mutualism,
commensalism, and parasitism phases of SOS algorithms.

Mutualism Phase In this phase, an organism Xi randomly selects an organism Xj

(i �= j) for mutual interaction to improve the survival of both Xi and Xj. The new
organisms are obtained according to Eqs. 9 and 10. MV is the mutual relationship
vector between Xi and Xj as defined in Eq. 11. Xbest represents the organismwith best
fitness value. B1 and B2 represent the benefit factors between organism Xi and Xj. B1

and B2 stochastically determined are either 1 or 2. The values 1 and 2 denote light
and heavy benefits, respectively. The fitness value of the new organisms f

(
xnewi

)
and

f
(
xnewj

)
are evaluated, then Xi and Xj are updated to xnewi and xnewj , respectively,

if the fitness of the new organisms are better as represented in Eqs. 12 and 13,
respectively.

Xi,new = Xi + R1(0, 1 − β) ∗ (Xbest + MV ∗ β1) (9)

X j,new = X j + R2(0, 1 − β) ∗ (Xbest + MV ∗ β2) (10)

MV = 1

2
(xi + x j ) (11)

X =
{
Xnew
i if f

(
Xnew
i

)
> f (Xi )

Xi if f
(
Xnew
i

) ≤ f (Xi )
(12)

X =
⎧
⎨

⎩
Xnew

j if f
(
Xnew

j

)
> f (X j )

X j if f
(
Xnew

j

)
≤ f (X j )

(13)

where R1(0,1) and R2(0,1) are vectors of random numbers in the range 0–1; f (.) is
the fitness function.

Commensalism Phase In commensalism phase, an organism Xi interacts with a
random organism x j ( j �= i) for the improvement of survival of Xi. The new
organism is obtained using Eq. 14; Xbest is the fittest organism. Xi is updated to Xnew

i ,
if f

(
Xnew
i

)
is better than that of f (Xi ) according to the relation in Eq. 15.

Xnew
i = Xi + R(−1, 1) ∗ (Xbest + X j ) (14)

Xi =
{
Xnew
i if f

(
Xnew
i

)
> f (Xi )

Xi if f
(
Xnew
i

) ≤ f (Xi )
(15)

where R(−1,1) is a vector of random numbers between −1 and 1.

Parasitism Phase In parasitism phase, an organism Xi is utilized to create an artifi-
cial parasite called parasite vector by mutating Xi using uniformly generated random
number. The parasite vector is evaluated against a randomly selected organism Xj,
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and the parasite vector replaces Xj if the parasite vector is fitter. The relationship in
Eq. 16

X j =
{
PV if f (PV) > f (X j )

X j if f (PV) ≤ f (X j )
(16)

where PV is the parasite vector.

Solution Encoding The meaning and dimension of an organism determine the
encoding for the problem at hand. In the proposed algorithm, each organism
is an individual in the ecosystem that represents a part of the solution search
space. To define the solution representation for the problem, each organism
represents a complete VM allocation; thus, the dimension of an organism is
the same as the number of VMs. The real values are used to represent the
servers to be selected. The coordinate system for determining the position of an
organism in the solution search space is dependent on the dimension of the organ-
ism. The organism is a five-dimensional one and its position on the search space
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is defined by coordinates 1 through 5. For instance, an organism which encodes an
allocation with five VMs and three servers can have a solution S = {(1), (1,5), (2,3),
(3,4), (2,3)}; the first element of the ordered pair represents the index of server and
the second element of the ordered pair represents the index of the VM. For instance,
the ordered (1) indicates that VM 1 is allocated to server 1, the ordered pair (2,3)
indicates that VM 2 is allocated to server 3.

Initialization Uniformly generated random numbers are used to initialize the
ecosystem (population) which also serves as the source of the randomness for updat-
ing the positions of the organisms during the searching procedure.

SOS Operators for Position Update The candidate solutions are represented by
ecosystem (population) of organisms, while mutualism, commensalism, and para-
sitism operators to direct the search process by candidate solutions. Each organism is
represented by a coordinate system in the search space, and organisms keep an update
of global best position Xbest which is determined based on the fitness function of the
problem at hand. The fitter organisms are allowed to proceed to the next generation
of potential solution, while the unfitted organisms are discarded. The fitter organisms
are those with good solution, while the unfitted organisms hold bad solution. The
positions of the organisms are then updated toward the Xbest locations using mutu-
alism, commensalism, and parasitism phases, respectively. The rate of movement of
organisms toward the Xbest locations is moderated by chaotic random sequence to
improve global search ability of the organisms. The SOS operators are continuously
applied to the population of organisms which represents candidate solutions until the
stopping criterion are reached.

Local Search Using Variable Neighborhood Search Variable neighborhood
search (VNS) is a robust local search procedure that systematically uses the concept
of neighborhood change for search space exploitation and avoidance of likely
entrapment in local minima [28, 29]. VNS incrementally explores the distant
neighborhoods of the present solution and move to the next neighborhood if there
is an improvement in the current solution which makes VNS more robust than is in
contrast to other local search approaches that traverse the trajectory of the solutions
[42]. With this, the current solution is used to identify the potential neighborhood
solutions. VNS has been successfully hybridized with metaheuristic algorithms
in improving their search efficiency. Considering the fact that VNS has a strong
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local search ability, a novel hybrid algorithm (SOS-VNS) is presented in order to
further improve the local search ability of SOS algorithm. The proposed SOS-VNS
algorithm utilizes the exploration ability of SOS and exploitation ability of VNS to
improve the efficiency of cloud data centers. The framework of VNS algorithm is
given as Algorithm 3.

The neighborhood structures must ensure that the imposed optimization con-
straints are not violated. This study employs four different kinds of neighborhood
structures.

Neighborhood Structure N1: The neighborhood structure N1 intends to change
the server that a VM belongs to, seeking to improve resource utilization, thereby
improving energy efficiency. Suppose that s is a candidate solution and i is the index
of the randomly selected VM. Let s[i] = hi be the server that host VM i. The value
of s[i] = hi is changed as follows: First, a check is done if VM with index i can be
moved to a new server without violating the imposed constraints, in this case, the
processing, memory, and storage constraints. The choice of the server to which VM
i will be moved to is determined as follows: for each VM j (i �= j), if s[i] �= s[j] then
[j] is a candidate server to accept the VMi . If the candidate servers are more than
one, then VM i is moved to the server with lesser utilization. As a result, a solution
s0 is better than a solution x if and only if it has a better resource utilization with
respect to s.

Neighborhood Structure N2: While N1 changes the server that a VM belongs to,
seeking to improve resource utilization, neighborhood structure N2 migrates a VM
i to another server to improve the degree of load balance. For a candidate solution
s, the value of s[i] = ci is changed by the neighborhood as follows: the first step is
to ensure that the server constraints (CPU, memory, and storage capacity) are not
violated which is similarly done like for the N1 neighborhood. If the constraints
are not violated, then N2 is applied. The server to which VM i will be migrated to
is determined as follows: For each VM VM j (i �= j), if s[i] �= s[j], then [j] is a
candidate server to accept the VM i. If the candidate servers are more than one, then
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VM i is moved to the server with lesser load. As a result, a solution s0 is better than
a solution x if and only if its degree of load balance is lower than that of s.

Neighborhood Structure N3: Like N1 neighborhood, neighborhood structure N3

is to achieve a better resource utilization. This is achieved by exchanging the VM i
and VM j belonging to different servers hi and hj. In particular, to exchange VMs
between servers hi and hj, the following conditions must be satisfied.

– The removal of VM i from server hi does not violate the imposed constraints.
– The removal of VM j from server hj does violate the imposed constraints.
– If VM i shares the same server with at least one VM k (k �= j), in server hj
– If VM j shares the same server with at least one VM k (k �= i) in server hi.

If the above conditions are satisfied, then VM i is migrated to server hj and VM j
is migrated to server hi. In this case, a solution s0 is better that s if and only if it has
a better resource utilization with regard to s.

Neighborhood Structure N4: Like N3 neighborhood, neighborhood structure N4

exchanges VM i and VM j belonging to different servers hi and hj. Different from
N3. In contrast to N3, the essence of N4 is to achieve more compact servers. As for
N3, to exchange VMs between servers hi and hj, the following conditions must be
satisfied.

– The removal of VM i from server hi does not violate the imposed constraints.
– The removal of VM j from server hj does violate the imposed constraints.
– If VM i shares the same server with at least one VM k (k �= j) in server hj.
– If VM j shares the same server with at least one VM k (k �= i) in server hi.

If the above conditions are satisfied, then VM i is migrated to server hj and VM j
is migrated to server hi. In this case, a solution s0 is better that s if and only if it has
a better degree of load balance with regard to s.

The Proposed VM Scheduling Algorithm In this section, the VM scheduling
algorithm is presented. The various components of the proposed algorithms have
been given in the previous sections. Hence, the problem initialization, application of
SOS algorithm to optimize the objective function, and the use of variable neighbour-
hood search. The different constituents of the technique address different problems
as they affect existing VM scheduling techniques. More specifically:

– The initialization method produces initial solutions to speed up the convergence
rate of the SOS algorithm.

– The SOS algorithm optimizes the objective function in a more efficient manner.
– The use of VNS further improves the quality of the obtained solution, hybridizing
the ability of SOS in efficiently exploring the solution search space with the capa-
bility of VNS (local search) in exploiting a specific region of the solution search
space.
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The resulting VM scheduling technique is given as Algorithm 4, while the VNS
algorithm is given as Algorithm 5.
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4 Performance Evaluation

This section presents the performance evaluation of the proposed VM scheduling
algorithm.

4.1 Experimental Setup

This study used CloudSim simulator toolkit [43] for performance evaluation of the
proposed technique. The simulator toolkit is themost popular simulator used by cloud
computing researchers because of its support modeling and simulation of cloud com-
puting infrastructures [44]. It provides support for simulating resource management
and scheduling algorithms through its cloud information service andDataCenterBro-
ker components for the realization of resource discovery and information exchange.
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Table 1 Workload traces characteristics in CPU utilization

Instance name Date Number of VMs Mean (%) STD (%)

t1 03/03/2011 1052 12.31 17.09

t2 06/03/2011 898 11.44 16.83

t3 09/03/2011 1061 10.70 15.57

t4 22/03/2011 1516 9.26 12.78

t5 25/03/2011 1078 10.56 14.14

t6 03/04/2011 1463 12.39 16.55

t7 09/04/2011 1358 11.12 15.09

t8 11/04/2011 1233 11.56 15.07

t9 12/04/2011 1054 11.54 15.15

t10 20/04/2011 1033 10.43 15.21

The development of new algorithms is carried in theDataCenterBrokerwhich equally
provides support for the development of energy-aware algorithms (Table 1).

The simulated IaaS cloud platform is configured with two data centers, 200 hosts
of two types, each type consisting of 100 hosts. The configuration settings of the
hosts are given as Table 2. Equation 8 is used to estimate the energy consumption of
each host withEmax value of 259W. The popular workload frommonitoring facilities
of PlanetLab was used to generate tasks for VMs which is available in CloudSim
simulator. The workload primarily contains CPU utilization of VMs across 500 data
centers for about 5 min. The workload traces were collected for 10 days, and the
characteristics of the traces for each day are shown in Table 1. All the workload
traces were used for the evaluation of the proposed algorithm. The study adopted a
task scheduling algorithm of CloudSim for scheduling of tasks on VMs.

The performance of SOS and SOS-VNS algorithmswas carried using similar con-
ditions. Each algorithm is run independently for 30 times using each workload. For
each run, 100 organisms (individuals) constitute the ecosystem (population) which
evolves for 100 generations as the stopping criteria. The values of the benefit factors
β1 and β2 are, respectively, determined stochastically as either 1 or 2. The probability
of applying VNS to an organism is 0.2 and Tmax of Algorithm 5. A comparison was
conducted in terms of SLAV and energy consumption in the data center to evaluate
the performance of the algorithm. Resource utilization and energy consumption are
used as the performance metrics for evaluating the proposed technique.

4.2 Results and Discussion

This section reports the experimental results obtained from the simulation of the
proposed technique. Energy consumption and resource utilization are used as per-
formance metrics to evaluate the efficiency of the proposed SOS-VNS algorithm.
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Table 2 Host configuration
settings

Host type Parameter Value

ProLiant ML110
G3

Number 2

Processor 3000 MHz * dual-
core

RAM 6 GB

Storage 8 GB

Bandwidth 1 GB

Operating system Linux

VMM Xen

ProLiant DL360
G4p

Number 2

Processor 3400 MHz * dual-
core

RAM 8 GB

Storage 6 GB

Bandwidth 1 GB

Operating system Linux

VMM Xen

Figures 1, 2, and 3, respectively, show statistics (best, average, and standard
deviation) of the energy consumption of the hosts for different workload instances
(t1,t2,t3,t4,t5,t6,t7,t8,t9,t10). The SOS algorithm allocates VMs using the standard
SOS concepts, while SOS-VNS algorithm dynamically allocates VMs to achieve
lower energy consumption while improving the utilization of compute resources.
Each workload instance was executed 30 times, and the best, average, and standard
deviation of energy consumption of the hosts are recorded. As it can be observed
from Figs. 1, 2, and 3, the proposed technique produces the server schedules with
lower energy consumption. According to the results of the experiments, the SOS
and SOS-VNS can the performance of the system in terms of energy consumption
and resource utilization. This is due to the strong global search ability of SOS algo-
rithm and robust local search ability of VNS algorithm which equips the SOS-VNS
with both exploration and exploitation capability, thereby leading to the enhanced
performance. Clearly, the proposed SOS-VNS algorithm produces lower energy con-
sumption as compared to SOS and LR-MMT algorithm [44].

The average CPU, memory, and storage utilization for different number of VMs
on workload instance t4 obtained by SOS-VNS, SOS, and LR-MMt algorithms are
shown in Figs. 4, 5, and 6, respectively. The SOS-VNS algorithm outperformed SOS
and LR-MMT algorithm in terms CPU, memory, and storage utilization, the SOS-
VNS algorithm obtained the highest CPU, memory, and storage utilization averaged
90.52, 86.71, and 86.33%, respectively. The average CPU, memory, and storage
utilization obtained by SOS algorithm are 82.89, 81.85, and 80.41%, respectively,
while those of LR-MMT algorithm are 73.83, 71.66, and 74.36%, respectively. The
proposed algorithm obtained better resource (CPU, memory, and storage) utilization
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Fig. 1 Best energy consumption

Fig. 2 Average energy consumption

Fig. 3 Standard deviation of energy consumption
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Fig. 4 Average CPU utilization

Fig. 5 Average memory utilization

compared to SOS and LR-MMT algorithm. This higher performance is likely due to
the efficient local search capability of VNS algorithm integrated into SOS algorithm.
Utilizing the SOS-VNS algorithm to optimize energy consumption parameters of the
cloud model can improve the energy consumption optimization for cloud computing
data centers.
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Fig. 6 Average storage utilization

5 Conclusion and Future Work

High energy consumption of data centers has been a major concern for cloud for
researchers and cloud stakeholder, the cost of settling energy bills constitutes a sig-
nificant cost of running cloud systems. This concern motivated the development of
an efficient SOS-VNS algorithm for energy-efficient management in cloud comput-
ing. The optimal VM allocation has been achieved with minimal number of active
hosts and turning off the idle servers for energy saving. VM scheduling problem is a
NP-Complete problem, and a SOS-VNS algorithm has been proposed to solve this
problem. The schedule of VMs is constructed using symbiotic organism search algo-
rithm which is characterized by strong global convergence to optimal solution. The
strong global convergence of SOS makes it suitable for optimizing large-scale prob-
lems. This is a great advantage over heuristic algorithms which fail to find optimal
solutions for relative large-scale cloud computing scheduling problems. The SOS-
VNSalgorithm is applied IaaS cloud systemof different sizes and characteristics. The
results of the experiment prove that SOS-VNS algorithm is able to minimize number
of active servers, resource balancing, improve resource utilization, and reduction in
consumption. The enhanced performance is enabled by robust local search ability of
variable neighborhood search. Conclusively, the SOS-VNS is an efficient approach
to VM scheduling problem. As part of future work, rigorous experimentation of the
proposed technique can be considered. Also, design and development of efficient
VM allocation algorithms for large-scale heterogeneous and distributed data centers
will be our focus of future.
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Abstract Heterogeneous network (HetNet) deployment of a large number of low-
power small base stations (SBS) is expected to meet up coverage and capacity chal-
lenges arising from the global upsurge of mobile data traffic volumes, driven mostly
by increase of data-intensive devices, such as smartphones and tablets. However,
effective backhaul implementation for the SBS still remains the main bottleneck, as
the ever-increasingSBSdensitywill lead to amore complexbackhauling and, as such,
increased risk of raising capital, and operational and network energy costs. In this
paper, the conventional microwave backhauls are compared with self-backhauling
for typical dense and spare environments. A heterogeneous network backhaul-energy
model is proposed and used to investigate the energy efficiency of the two systems.
The impacts of network traffic load and small cells density on power consumption
for both backhaul systems were investigated. Furthermore, we present a break-even
power point and load threshold level for safe operating regions toward achieving
optimum utilization of self-backhauling in a way for higher energy-efficient and
sustainable networks compared to traditional homogeneous macro network deploy-
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1 Introduction

The demand for wireless data services, coupled with the global upsurge in mobile
connected devices, has created a capacity challenge for the next-generation networks.
The number of global mobile connected devices is increasing and has exceeded the
world population. This is expected to reach 24 billion in 2019 as predicted by Cisco
Visual Networking Index [1]. This has pushed the world’s Information Communica-
tion Technology (ICT) systems’ power consumption to grow by 8% in 2013 from 2%
as it was in 2007 [2]. A large share of this growth is due to the power consumption of
mobile networks. Globally, mobile network operators (MNOs) have been challenged
by this increase of mobile data traffic which is mostly driven by the adoption of data-
intensive devices, such as smartphones, leading to continuous network capacity and
coverage enhancements so as to meet users’ quality of experience thereby to remain
competitive and sustain themarket share. Network densification using small base sta-
tions (SBS) is highly anticipated to meeting up this constraint [3]. This is achieved
by replacing the high-powered macro base stations (MBS) with numerous SBS. This
approach was found to be efficient in meeting up the network capacity constraints.
However, increasing the number of base station (BS) sites would, in turn, increase
the energy consumption of the network, rendering the approach to be unsustainable.
Typically, in developed countries with stable power supplies, the energy consump-
tion costs for the MNOs contribute to 15% relative to the total network operation
expenses [4]. This could exceed 50% in countries, mostly in Africa where there are
power generation deficits. In most of these countries, the energy supply is far below
the demand; this forced the MNOs to be operating mainly off-grid sites thereby
relying on alternative power sources such as the diesel generators and recently solar
and battery inverters. Moreover, the on-grid sites still experienced irregular power
supply.

Most implementations of the energy-saving strategies are mainly in the radio
access network (RAN) and cooling. Some of these include: remote radio units (RRU),
radio standby mode, passive cooling, advanced climate control for air conditioners,
higher efficiency rectifiers, and DC power system ECO mode [5], little or no effort
has been devoted to backhauling. The strategy of scaling network capacity through
heterogeneous network (HetNet) deployment of a large number of low-power small
base stations (SBS) to complement existing macro base stations (MBS) umbrella
coverage (see Fig. 2) is an approach that also has the potential to minimize over-
all network energy consumption [6]. However, while energy-efficient operation is
possible in the small cell radio access, there is always a need for powering in the
high-capacity backhaul connection between SBS and the mobile core network.

Currently, SBS backhauling is mostly implemented using point-to-point (PtP) or
point-to-multipoint (PtMP) microwave radio links, due to unavailability of cabling
and prohibitive cost of using awired backhaul link toward each SBS [7]. The need for
powering of the SBS backhaul links would, in turn, increases risk of raise in capital
and operational costs associatedwith the energy consumption of the SBS sites beyond
what could be supported with low-cost renewable energy solutions. Some efforts in
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[8–10] were made to investigate the effect of backhaul power consumption and it
was established that this cannot be neglected as it affects the total power of a HetNet.
The increased SBS deployment density would, in turn, requires more backhauling
and almost certainly accompanied by increased overall energy consumption mostly
attributed to the SBS backhauling. In addition, complexities of the backhaul network
could be a big issue since the SBSs would be placed both indoors and outdoors
and, considering the usual height of the SBSs that could be in the range 3-6 m
above the ground level, the presence of building structures and urban clutter could,
therefore, make line-of-sight (LOS) configuration for PtP very challenging. The time
required for setting up the network, as well as manpower and network management
systems could also be challenging. Self-organizing backhaul networks [11] or self-
backhauling is a general concept where the MBS provides backhauling to SBSs via
the existing macro RAN. This automation would mitigate backhaul connectivity and
management bottlenecks associated with existing backhaul system such as the PtP.
Furthermore, it would help in faster deployment and network rollout with minimal
human intervention.

This paper, therefore, proposes an energy-efficient backhaul solution for next-
generation wireless systems. The conventional microwave backhauls are compared
with self-backhauling for typical dense and sparse environments. The paper also
presents a break-even power point and the load threshold level for safe operation
regions toward achieving optimumutilization of self-backhaul deployment and green
backhauling for the deployment of HetNets in a way that is more energy-efficient
and sustainable compared to traditional homogeneous macro network deployments.

2 Base Station Types in HETNET and Power System
Consideration

2.1 Base Station Types in HetNet

HetNet architecture consists of various base station types, each having different
coverage and operating functionalities. In a typical LTE-Advanced multitier Het-
Net rollout, the network may consist of macro, micro, pico, and femto base stations,
remote radio heads (RRHs), and as well as relay stations. Each of these base stations,
aside the macro BS, is commonly referred to as low-power nodes (LPN). We gener-
alize this concept as small base stations (SBS). Figure 1 shows typical deployment
scenario of HetNet which consists of macro base station and small base stations.

I. Macro Base Station (MBS)

Macro base stations are deployed outdoors and are able to provide 2G, 3G, and
4G services in the range of kilometers. They are backhauled via fiber optics and/or
microwave. A macro base station consists of three main segments: the transmission
equipment (TE), cooling equipment, and auxiliary equipment (AE). The TE includes
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Fig. 1 Typical heterogeneous network deployment scenario

Fig. 2 Block diagram of base transceiver station (BTS) site and complete power system

the power amplifiers (PA), transceivers (TRX), digital signal processing (DSP), and
rectifiers, and these are deployed per sector or cell at a given BS site as shown in
Fig. 2.

Therefore, the overall power consumption budget of the BS site is per sector
consumption multiplied by the number of sectors and the number of TXR per sector
in the case of MIMO antenna systems. The cooling systems, lightning, security
alarms, and backhauls are all common to all sectors and are deployed to serve the
whole BS site. Among these components, the PA and air conditioners (ACs) are the
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most power-consuming components with AC consuming about 50–60% of the total
power consumed by the BS site (see for instance, measurement conducted in [12]).

II. Small Base Stations (SBS)

Compared to MBS, a micro BS consumes less power since it does not need power
hungry cooling solution. Moreover, the power consumption of the PA, which is a
function of the radiated power is also reduced significantly due to smaller coverage
footprint of the micro BS. The power consumption of pico and femto BSs is even
a smaller fraction of the MBS power consumption (see Table 1), as only TRX, PA,
microprocessor, and FPGA are present to make up the functioning BS. Moreover,
omnidirectional (single sector) antenna configuration is being used. Pico BS could
be deployed outdoor or indoor, while Femto BS is completely meant for indoor
deployments in the residential or business premises. Relay nodes (RNs) are used
to improve coverage at cell edge of the existing network. It is defined in LTE-A
relay standard [13]. This could be deployed in indoor or outdoor locations and could
exhibit similar features of the femto cells. RNs are backhauled using themacro RAN.
Remote radio heads (RRHs) are high powered, lowweights nodes with the capability
of reducing cost, improving efficiency and performance when deploying new base
stations. RRHs can operate in multimode where different standards such as GSM,
HSPA, LTE, and WiMAX could be operated [14]. They can be used to extend the
coverage of BTS/NodeB/eNodeB in rural locations and tunnels. Table 1 provides the
power consumption and coverage range for different base station types.

2.2 Power System Consideration of BS Sites

The geographical location, deployment sites (e.g., urban, suburban, or rural rollout),
and climatic condition are some factors that may influence the power requirements
for a BS site. In tropical dry climates (e.g., Nigeria), two ACs with minimum power
capacity of 2500 W each may be needed to maintain the indoor temperature of the
BS shelter, usually, below 25 °C [18]. This is to avoid excessive heat dissipation from
the TE; this means additional cooling for the SBS which was originally omitted from

Table 1 Base station types in HetNet [12, 15–17]

Base
state type

Coverage Radiated power (W) Power consumption
(W)

Commonly used
backhaul typeIndoor Outdoor

Macro <35 km – 5–40 1000–5000 Fiber/Microwave

Micro <2 km – 0.5–2 100–300 Microwave

Pico <200 m 0.1 0.25–2 9–15 Microwave/Fiber/DSL

Femto
RRH
Relay

10–15 m
<2 km
<2 km

<0.1
–
<1

–
5–20
0.25–7

6–14
550–760
10–120

Fiber/DSL
Fiber
via DeNB
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the new green design architecture (Refer to [9 and 16] for EARTH project). However,
deployments in polar climate may not require any cooling as the climate is charac-
terized by average temperatures below 10 °C throughout the year, with temperatures
typically ranging from −47 °C in February to −11 °C in August [19]. Base stations
TEs in these locations could therefore be cooled by natural air convention. It is on
this note that the BS power requirement varies with geographical locations due to
differences in climatic conditions. In addition, temporal variability of the traffic den-
sity associated with the location-dependent population distribution is another factor
as the BS consumes more power during the peak hours [15, 17, 20].

Provision of sustainable energy source to the BS sites, while minimizing the
network energy cost which constitutes about 60% of the total network OPEX, has
been a major bottleneck in most emerging markets. The requirement of achieving
99.95% availability necessitates the MNO to provide power 24 × 7 throughout the
year, thus the need for reliable power supply. However, developing countries are
faced with limited grid power infrastructure, limited grid coverage, and erratic power
supply. The unreliability of the grid power and grid reach (coverage) forces theMNOs
to rely on diesel generators to power up their BS sites. In some situations, diesel
generators (DGs) are used as both primary and backup power sources depending on
the grid and power supply situation. For example, in Europe and North America,
one diesel generator is used for emergency backup, while two generators are used in
developing countries for primary and backup [21]. For off-grid sites, DGs act as the
primary source only as efforts have been made recently to cut down on the carbon
footprint, thus making the MNOs to look inward to renewable energy sources such
as wind and solar. In Fig. 2, we provide different power sources options to a BS site.

3 Small Cells Deployment and Backhauling Options

Network densification through the use of small cells has been identified as the key
enabler for the success of next-generation wireless systems [6]. The market growth
for small cells have been very encouraging, from less than 2 million units in 2011
to about 4 million units in 2015, and this is expected to grow up to 10 million in
2018 according to Small Cell Forum [22]. From the technical and economic points
of view, deployment of small cells would enable the mobile operators to ease signif-
icant amount of traffic from the macro base stations and this would, subsequently,
reduce the network overhead and increase the network capacity without necessarily,
adding new macro sites which are inherently costlier. Small cells could boost spec-
tral efficiency per unit area through spatial reuse of the spectrum, thereby improving
both network coverage and capacity. Furthermore, deployment of small cells would
drastically reduce the network energy expenditures, both capital (CAPEX) and oper-
ation (OPEX). Figure 3 provides an illustration of network densification. However,
this paradigm shift from the use of conventional macro cells only to small cells have
been seen to improve the network performance but also introduces challenges. For
instance, effective backhaul implementation still remains the main challenge as the
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Fig. 3 Network densification (ND) a single-tier cellular network. b ND with small cells

ever-increasing number of small cells or SBS to meet up the need to support more
services may lead to a more complex backhaul and, as such, increase risk of rising
operational costs.

It is therefore very essential for the network operators when designing backhaul
solution to consider scalability, maintainability, fast and efficient installation, and
cost [7]. In this section, we provide various backhaul options for SBS deployments
and some challenges that may be encountered during rollout.

3.1 Wired Backhaul Options for Small Cells

Wired backhaul solutions have been deployed and proved promising for years for
cellular mobile base stations. There are so many options available for small cells
such as:

i. Direct Fiber Optics

Fiber optics could provide direct end-to-end, point-to-point high speed, and unlimited
backhaul capacity with minimal latency. Gigabit passive optical network (GPON),
which is based on PtMP technology that incorporates passive filters, could link mul-
tiple small cells’ nodes. This is particularly attractive in dense urban rollout [10].
Direct fiber backhaul infrastructure for new small cell sites could be cost prohibitive
and may take years to roll out, aside difficulties that might arise laying the fiber
cables to each closet location of the small cells. Terrain and clutter features along
the backhaul-access path could hinder deployments; bypassing such features could
increase both CAPEX and manpower costs.

ii. Digital Subscriber Line (xDSL)

xDSL is a general term for the broadband access technologies based on digital sub-
scriber line (DSL) technology. It uses the existing copper wires and due to its lower
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cost compared with fiber, it could be used for small cell backhaul. Cost of deploy-
ment may relatively be the same as in the case for fiber, but the speed provided will
be very limited. The backhaul capacity of xDSL depends on the technology type and
the distance from the exchange. Typical urban rollout is usually 300–400 m from the
cabinet [23]. Very-high-bit-rate digital subscriber line 2 (VDSL 2) is based on ITU
G.993.2 standard and can provide peak data rates above 100 Mbps [23]. However,
this may require careful planning to ensure that the distance between the VDSL2
and the digital subscriber line access multiplexer (DSLAM) does not exceed the
maximum 300 m required by the VDSL2.

iii. Hybrid Backhaul Solutions

Hybrid approach could also be used where the fiber from the exchange will terminate
at the cabinet (i.e., fiber to the cable (FTTC)) and thereafter, VDSL 2 cable will take
the capacity to the locations where the small cells are deployed. In the case of fiber to
the node (FTTN), each small cell is connected to a VDSL 2modem that is connected
to a DSLAMwhich is connected to a fiber switch using 1 Gbps point-to-point optical
link [23]. This type of solution is usually available for dense urban areas and can
provide capacity to urban small cells.

iv. Cloud Radio Access Network (Cloud-RAN)

Cloud-RAN (C-RAN) is one candidate technology aimed at solving the challenges
related to densification and increased base station cooperation. In C-RAN architec-
ture, remote radio units (RRU) of different cells are connected to the cloud server via
a high-speed front-haul link, such as a fiber network [24]. Recent deployment trials
by China Mobile [24] provide 30 and 53% CAPEX and OPEX reduction, respec-
tively. Ericsson-LG also showed the possibility of replacing 28 3G NodeBs with
195 RRUs which reduced the total network power consumption by 2/3; from user’s
experience, the call drop ratio reduced by 70% with increase in throughput gain of
100%. However, the latency requirements for the base band unit (BBU) impose an
upper bound for BBU processing time and the front-haul transport latency. Real-time
requirement for operating system, clock synchronization, and capacity requirement
for the front-hauls could be challenging [24]. Despite this, the network would in
practice eliminate the need for local backhaul since end user data traffic will be
delivered to and from the centralized location. Still, it will require high-speed fiber
front-haul connections to the small cells and therefore, may not be cost-effective for
massive small cell deployments particularly in the developing economies.

3.2 Wireless Backhaul Options

The deployment of small cells in outdoor urban and rural areas or inside building
where cabling infrastructure is not available makes the adoption of wired backhaul
very challenging. It is also important to note that the increasing traffic demandswould
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require the installation ofwired backhauls, supposedly fiber, in all new small cell sites
locations; this approach may therefore not be cost-effective. Wireless backhauling
could therefore provide cost-effective means of connecting these cells.

i. Microwave Radio links

Microwave links still remain the most dominant backhaul solution in the mobile
industry. It provides an alternative to complement the fiber optics which is inher-
ently costly and almost practically impossible to deploy in some designated locations.
With the advent of millimeter waves, i.e., 60 GHz V-band and 70/90 GHz E-band,
end-to-end high-capacity backhaul could be achieved. Microwave radio links could
operate in line of sight (LOS) or non-line of sight (NLOS) depending on the operat-
ing frequency, and these could be in PtP or PtMP topology depending on the choice
of deployment and capacity requirements. The LOS typically requires the use of
parabolic dishes which could be unsuitable for many small cells since the outdoor
small cells are typically 3–6 m above the ground level and direct LOS is not always
the case in urban deployments. Moreover, at extremely high frequencies, there is a
risk of increased rain attenuation, oxygen absorption, and, possibly, antenna align-
ment complications. These problems could hinder the performance of the network.
From technical design perspectives, the realization of suitable integrated circuits in
those bands could be challenging due to nonlinear distortion of power amplifiers,
IQ imbalance, and the need for highly directional antennas [25]. The need for more
backhauls as the cells become dense would, in turn, consume more energy and also
increase the complexity in designing the network.

ii. Satellite Backhaul

This type of solution is preferred in remote areas where fiber, copper, or microwave
solutions are uneconomical to deploy. Satellites have universal availability and could
provide data rate up to 350 Mbit/s with the size of the dish and power amplifier
constraints. A typical capacity that a satellite can provide to small cells will be
in the range 1 M–10 Mbps [22]. The most commonly used satellite band is Ku-
band which has operating frequency of 10–12 GHz and is slightly affected by rain.
The lower-frequency bands (i.e., C-band: 4–6 GHz) is practically unaffected by
weather conditions. However, the 20–30 GHz Ka-band, which is predominantly
used, is heavily affected by weather and fading [23]. In addition, delay and jitter
are constraints to deployment of satellite backhaul. For example, typical expected
average jitter is between 5 and 50 ms [22], while the round trip signal propagation
delay could be 240–260 ms depending on the small cell location, hub site and, also
the satellite. Moreover, packetization and processing delay is typically 35–50 ms,
which would increase the total delay to 275–310 ms far, beyond the acceptable
thresholds [22]. The adoption of satellite for small cell backhauling has not been
widely reported, but there is a huge market potential for the system.
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iii. Free Space Optics

Free space optics (FSO) [26] is given attention due its associated lower cost as no
underlaying fiber cabling is needed. In addition, very high-capacity data rates could
be achieved with minimal interference. However, atmospheric disturbance, such as
absorption and scattering, could hinder the signal propagation. Most importantly,
eye safety regulations for the use of laser beams, designing backhaul systems in
dense environments while meeting up with the international safety regulations, and
specifications defined by international standard could be very challenging.

iv. TVWhite Space

Unused portion of the electromagnetic spectrum within the TV bands is referred to
as TV white space (TVWS). Secondary operation on TVWS is still under process
although some countries, such as USA, UK, Japan, Finland, and Singapore, have
already developed a regulatory framework for its use [23]. Substantial research stud-
ies and piloting have been conducted globally; there are also success stories from
Africa [27]. Due to its favorable propagation characteristics, TVWS has been found
to be very attractive for small cell deployment [28]. The availability of TVWS varies
with location and the transmit power of the primary users (i.e., TV broadcast sta-
tions); these could limit the number of available TV channels to be used in dense
environments. Although considerable capacity up to 18 Mb/s with 600 MHz band
could be achieved in NLOS, radio design, and secondary user coexistence to comply
with the regulator standard on interference could still pose some challenges.

v. Long-Range Wi-Fi

Wi-Fi was primarily designed for local area networks and it uses the 2.4 and 5 GHz
ISM radio bands to provide telecommunication services such as VoIP. This tech-
nology is based on 802.11 standards and has recently been proved to provide cost-
effective communication for long-distance applications. Very long-distance PtP Wi-
Fi network was proposed wherein 279 and 133 km links were successfully connected
in Venezuela and in northern Italy, respectively [29]. The long-range capabilities of
Wi-Fi networks could be leveraged to provide backhaul services to small cell sites,
particularly given the constraints where fiber POP is unlikely to be deployable due to
the small cell locations and microwave point-to-point (PtP) links that could exacer-
bate both the OPEX and CAPEX costs. Sites acquisition, backhaul installation, and
maintenance will drastically reduce and no license fee for the spectrum is required
since it operates in the ISMband.However, long-rangeWi-Fi backhaulwould require
LOS. It is also vulnerable to interference since it operates in an unlicensed band,
though enhanced technologies such as the adaptive directional antennas coupled
with smart meshing and predictive channel management [30] could drastically mini-
mize the interference. However, in typical dense urban deployments where hundreds
of cells could be deployed within a close proximity, the backhaul interference will be
very high and unsustainable. Moreover, the predictive channel management may not
attain maximum throughput due to the available frequency pool within the 2.4 and
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5 GHz ISM bands. Therefore, interference avoidance by simply frequency hopping
may still not yield sufficient gain.

vi. Self-Backhauling of Small Cells

Self-backhauling is a general concept where a macro base station (MBS) provides
backhaul to a small base station (SBS) via the existing macro RAN. This has already
been introduced by mobile standardization bodies, such as in the Third Genera-
tion Partnership Project (3GPP) in the form of the relaying concept standardized
for 3GPP Release 10 LTE-Advanced networks [13]. The relay base stations are
low-power nodes that enhance achievable performance of macro UEs in areas of
poor coverage, such as the cell edge. In 3GPP standard, the relay node backhaul
is connected to a “donor” macro cell. The LTE or LTE-Advanced (Release 8/9 or
10) UEs are then connected to a macro cell via the relay access network within a
relay BS coverage area. Self-backhauling generalizes this approach by considering
other radio access technologies (not only LTE or LTE-Advanced) in both the SBS
backhaul and SBS radio access. As a result of this flexibility in radio technology
selection, self-backhauling is able to be implemented with little or no impact on the
existing standards. For instance, Qualcomm proposed a so-called Velcro relays self-
backhauling approach, whereby macro LTE provides backhauling for evolved 3G
BS (e.g., HSPA+) to efficiently exploit the spare LTE resources in places with low
LTE UE penetration [31]. Recent deployment case studies in Addis Abba show the
feasibility of self-backhauling [32]. When compared with other backhaul systems,
self-backhauling could help in reducing the cost of deployment as a result of mini-
mal on-site installation efforts from the operators. This could drastically also reduce
the cost of maintenance; moreover, network management and control entities such
as the radio resource management and security management are been shared. The
RANmainly is operating on lower frequencies usually below the 6-GHz bands. This
would further simplify the installation cost, time, and efforts since the string LOS
requirements that could demand careful installation is no longer needed, thereby
making the deployment faster and flexible for dense urban environments. The need
for building another infrastructure as in the case of fixed-wireless backhauling is also
not needed since self-backhauling reuses the macro site infrastructures.

Backhaul capacity could be an issue in self-backhauling, since the base station
serves multiple small cells, and access and backhaul links shared the total pool of the
available resources. This might cause capacity bottleneck. Also, with the large num-
ber of SBS, signaling load and excessive handover could manifest. However, there
have been active research efforts trying tomitigate these problems. In [33], significant
spectral efficiency and throughput gains was achieved for the SBS backhaul through
the use of selected CoMP technique under realizable feedback overhead, even under
feedback bit error. In [34], LTE-based backhaul concept (self-backhauling) for het-
erogeneous networks was simulated using microwave frequencies for two virtual
cities (European and USA) and sufficient capacity was obtained.
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4 System Concept

The system concept introduced in this paper, as illustrated in Fig. 4, consists of a con-
ventional fixedmicrowave backhauling and the self-backhauling. The first scenario is
a fixed-wireless backhauling which is achieved with PtP or PtMP radio links. In most
cases, this requires LOS clearance between the radio links backhaul (wireless hub)
and the SBS due to operation in higher-frequency bands (Fig. 4a). The LOS require-
ment for fixed-wireless backhauling links can be relaxed through use of alternative
multihop topologies (e.g., mesh) to route the fixed-wireless links around shadowing
objects (e.g., buildings, mountains, etc.). In the second scenario, we assume the SBS
to be distributed within the MBS coverage area. The MBS users (MBS UE) and SBS
users (SBS UE) are randomly distributed within the MBS and SBS coverage areas,
respectively, while the SBSs are uniformly distributed. The MBS radio access link
is used to transmit the backhaul traffic between the SBS and MBS. However, due
to the capacity requirements of the traffic aggregates from multiple SBS within the
coverage area of the MBS, all other UE traffics both from the MBS and SBS are
routed to the core network via fiber links as shown in Fig. 4b. For fairness, in the
two scenarios, we assumed that all the SBS transmits on the same power level, and
therefore under normal condition, their power consumption, sizes of their coverage
footprint are expected to be same. Moreover, the number of SBSs and the aggregated
backhaul capacity for both scenarios are also assumed to be the same. The SBSs
are connected to the MBS and RRL with star topology. It is a natural connection
configuration since star topology is more power efficient than ring and mesh [9].

Fig. 4 Backhauling SBS using a fixed-wireless microwave backhauling and b self-backhauling
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5 Backhaul-Energy Model

Using the HetNet architecture presented in Fig. 4, the power consumption of each
HetNet scenario is the sumof the power consumption of the SBS and the backhauling.
Let Pbh

c,t and Pbh
SBS,t represent the power consumption of the microwave unit(s) at the

wireless hub and SBS, respectively. The total power consumption ofmicrowave radio
link (RRL) Pbh

tot,t can be written as:

Pbh
tot,t = Pbh

c,t + Pbh
SBS,t (1)

Let SBS (CSBS
j ) be the aggregated backhaul capacity of the RRL at the SBS at

site j and NSBS
k the total number of RRLs at SBS, then the power consumption of

the RRL at the central point is derived as:

Pbh
SBS,t = Pagg

SBS(C
SBS
j ) + PSBS

switch(N
SBS
k ,CSBS

j ) (2)

Pbh
c,t = Pagg

c (Cc) + Pc
switch(N

c
k ,C

c) (3)

A threshold capacity Cth is defined to classify two traffic conditions: low and high
demands. With this assumption, the aggregated power consumption limits for the
central hub Pagg

c (Cc) and SBS Pagg
SBS(C

SBS
j ) are derived as follows:

Pagg
SBS(C

SBS
j ) =

{
Plow, if CSBS

j ≤ Cth

Phigh, otherwise
(4)

PSBS
switch(N

SBS
k ,CSBS

j ) =

⎧⎪⎨
⎪⎩
0, if NSBS

k = 1

Pswitch,t ×
[

CSBS
j

CMax−Switch,t

]
, otherwise

(5)

And

Pagg
c (Cc) =

{
Plow, if Cc ≤ Cth

Phigh, otherwise
(6)

Pc
switch(N

c
k ,C

c
j ) =

⎧⎪⎨
⎪⎩
0, if Nc

k = 1

Pswitch,t ×
[

Cc
j

CMax−Switch,t

]
, otherwise

(7)

In [9], Cth was assumed to be 500 Mbps. We, therefore, generalize the total
backhaul power consumption for the RRL (i.e., PtP and PtMP) network topology as:

Pbh
tot,t =

{
Pbh
c,t + Nk P

bh
SBS,t t ∈ PtMP

(Pbh
c,t + Pbh

SBS,t )Nkt ∈ PtP
(8)
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where Plow and Phigh are the power consumption of the microwave antennas associ-
atedwith the low and high traffic conditions, respectively. PSBS

switch and Pc
switch represent

the power consumption of the switches used at SBS and central hub, respectively.
CSBS

j and Cc
j are the total backhaul capacity at the SBS and hub site, while NSBS

k and
Nc
k are the respective number of microwave links at the SBS and hub site, respec-

tively. CMax−Switch,t is the maximum capacity of the switch of type t . Pswitch,t is the
fixed power consumed by switch of type t irrespective of the load, and ψbh is the
backhaul type (PtP or PtMP).

We introduce an indicator variable χ j
k,t
, the site selector, which indicates whether

the backhaul device t located in j is PtP or PtMP type. The total backhaul power
consumption could be written as:

Pbh
tot,t =

∑
t∈ψbh

∑
k∈Kt

Pbh
tot,t (Nk)χ

j
k,t

(9)

where k represents the set of backhaul devices of type t , and

χ j
k,t

=
{
1, if type t used in location j
0, otherwise

(10)

Therefore, the power consumption of the HetNet for the SBS backhauled with
RRL and also self-backhauled are derived in Eqs. (11) and (12).

PRRL( fb) =
∑
i∈Mt

Ni P
SBS
i ( f b) +

∑
t∈ψbh

∑
k∈Kt

Pbh
tot,t (Nk)χ

j
k,t

(11)

PSelf( fa, fb) =
∑
j∈Qt

N j P
MBS
j ( fa) +

∑
v∈St

NvP
SBS
v ( fb) (12)

where fa , fb, and f are load factors for MBS, SBS, and HetNet, respectively, and
the HetNet load factor, f, is given by:

f = fa + fb and fa + fb ≤ 1 (13)

Using Eqs. (11) and (12), the power savings for the self-backhauling compared
with point-to-point (PtP) or point-to-multipoint (PtMP) fixed-wireless backhaul is
expressed as:

PS = λp

⎡
⎣∑

i∈Mt

Ni P
SBS
i ( f b) +

∑
t∈ψbh

∑
k∈Kt

Pbh
tot,t (Nk)χ

j
k,t

−
⎧⎨
⎩

∑
j∈Qt

N j P
MBS
j ( fa) +

∑
v∈St

NvP
SBS
v ( fb)

⎫⎬
⎭

⎤
⎦ (14)
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The power savings can be represented by an indicator function 1D(PS),

1D(PS) =
{
Gain, if PS ≥ 0
Loss, otherwise

(15)

whereM and S represent set of SBS types t used in the networks.Ni and Nv represent
the total number of SBS of specific type. Q represents the set of MBS type t used as
self-backhaul. N j represents the total number ofMBS of specific type t . PMBS

j , PSBS
i ,

and PSBS
v are the power consumption of MBS and SBS of types t , respectively. f ,

fa , and fb are the instantaneous load on the HetNet, MBS and SBS, respectively, λp

is the self-backhaul factor representing the percentage of number of sites equipped
to have self-backhauling capabilities and p is the number of mobile operator’s MBS
sites.

6 Results and Discussions

In this work, simple and validated power consumption models presented in [15–17,
35] for macro and micro base stations were adopted. These were used to analyze
the power consumption of a typical three-sector macro base station, PtP, and PtMP
microwave backhauls. The BS equipment power consumption without cooling and,
other auxiliary equipments is between 1 and 2 kW and, that of two ACs as used in
most tropical and dry climate regions ranges between 2 and 4 kW [36].

6.1 Typical Power Consumption of Macro BS and Microwave
Backhaul Hub Sites

Figure 5 shows the load-dependant power consumption of theMBSwith and without
backhaul; the peak power is 4.3 kW at maximum traffic load condition. We also
present the power consumption of the backhaul system. The backhauling power
varies from less than 50 W for fiber backhaul to about 500 W for long-range PtMP
microwave links. The most widely used backhaul system in emerging markets is
PtP backhaul link which consumes 100–200 W [36]. In this analysis, we use 100
and 500 W for PtP and PtMP backhauls, respectively, while and the load-dependent
component is neglected. The results show that for microwave backhaul with 50 PtP
backhaul links (i.e., Nc

k = 50), the peak power is 5 kW and this increases to 10.025W
when 25% of the backhauls are PtMP. This is power consumption at the hub site only
and did not include that of the SBS links (NSBS

k ). When SBS links are included, the
overall backhaul power requirement for the PtP backhaul system will be 10 kW and
that of PtMP will depend on the mapping of PtMP to SBS backhauls.
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Fig. 5 Power consumption of macro BS and microwave backhaul hub

In Fig. 5, we have also illustrated the power consumption of a hub site with three-
sector MBS. In Fig. 6, we show the distribution of power consumption of the BS
site. The power consumption share of the BS equipment, cooling, backhauling, and
auxiliary equipments are 35, 59, 2, and 4%, respectively. Recent energy-efficient BS
equipment consumes less energy and the MBS site’s power is between 1 and 1.5 kW
[36] as opposed to the 4 kW for the current deployed networks. In the EARTH
project, highly energy-efficient power amplifiers for the MBS, SBS, and feeder loss
factor of 38.8, 28.5 and 0.5%, respectively, were used [16]. Passive cooling system
of 170 W was used for the MBS and no active cooling for SBS [16]. In our analysis,
we considered worst-case scenario that could occur in tropical areas, for instance,
where 60 W of cooling would be required for the SBS. This is in accordance with
the assumption presented in [15].

The transmitter power levels for the MBS and SBS can be assumed to be 20
and 2 W, respectively, and power consumption of the DSP, transceiver, rectifier, and
backhaul, respectively, are 29.5, 13, 100, and 35 W [37]. Then, the load-dependent
power consumption for three-sector LTE system with 10 MHz bandwidth and 2 × 2
MIMO system for the MBS and SBS gave the highest value at peak load as 1109 and
166.3 W, respectively. These values are few watts higher than the values obtained in
the EARTH project [16] as active cooling, which could reduce the power for SBS to
about 106 W, was not considered. However, these values are still within the range
obtained from various publications for MBS and SBS [16, 37]. Deployment of the
SBS has decreased the power consumption significantly from 4300 to 166 W, but
the proportion of the backhaul power increased from 2 to 21% which is expected to
increase further to 43% if the current 100 W PtP link is used at the SBS site.
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Fig. 6 Distribution of power
consumption of a BS site

6.2 Power Consumption of HetNet and the Break-Even Load

Using Eqs. (11) and (12), we analyzed a future HetNet power consumption by mod-
eling the whole MBS and SBS power consumption. In this analysis, we consider a
HetNet with 10 SBSs. We also considered specific implementation for the energy-
efficient microwave links based on realistic power consumption typically, varying
from 25 to 50 W [8]. However, in this analysis, we focused more on the average
value of 35 W and assumed to be the maximum power consumption of each unit
from the backhaul side (i.e., the wireless hub) and the SBSs locations. Even though,
it is expected that the power consumption to be higher at the hub than the SBSs. For
simplicity, we did not consider the load varying power consumption of themicrowave
units. In Fig. 7a, we show the power consumption of (i) MSB (macro) cell only with-
out any SBSs deployment, (ii) PtPwireless backhaul only, (iii) SBSs backhauledwith
microwave links and finally, and (iv) SBSs backhauledwithMBS (self-backhauling).
Starting with the PtP wireless backhaul only, 25 W microwave units were deployed,
sincewe have neglected the load varying power consumption part, it is easy to deduce
that the total power consumption for the hub is 250 W (i.e., 10 PtP links serving 10
SBSs). For theMSB (macro only), the power consumption increases with an increase
in traffic load with maximum peak achieved when the traffic load reached 100%. The
power consumption at this load is around 1 kW. It should be noted that this is antici-
pated power consumptionwhen highly efficient systems are used based on the system
parameters such as air conditioning with a power rating of 170 W, provided in [37].
The current deployedMBS particularly the ones in temperate regions consumes high
power as described I Sect. 6.1.

Furthermore, in Fig. 7a, we have analyzed the power consumption of the two
systems backhauling 10 SBSs in the HetNet. For the microwave HetNet systems,
the traffic load effect of the SBS manifested on the total power consumption as the
power consumption increases with the traffic load which was earlier invariant when
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Fig. 7 Power consumption for fixed-wireless and self-backhaul networkswith a 25WRRL,b 35W
RRL, c 40 W RRL, and d 50 W RRL

backhaul links were deployed only. In this analysis, the power consumption of the
traffic aggregating switch Pc

swtich at the hub was not included. This was considered to
be negligible when compared to the HetNet power demand. Based on this analysis,
the numerical result as shown in Fig. 7a indicated that backhauling the 10 SBS with
25 W microwave units is more energy-efficient solution than the self-backhauling at
all traffic loads. However, in Fig. 7b, when the 25 W radio units are being replaced
with 35 W radio units, at lower traffic conditions (i.e., f < 0.5), the self-backhauling
becomes a better solution. Even though, it’s rare to have 100% loaded BS and sites
with less than 50% load may not be popular. This type of configuration may be
favoured in a site with low traffics typically in rural area deployments. It is worthy to
mention that at some traffic load, there exists a point named break-even power point
(BPP), where one backhaul solution becomes more energy efficient than the other.
In Fig. 7b, the point exist when the traffic load is about 45%, below this load, the
self-backhaul solution is more preferable and above, otherwise. When high power
radio units are used as backhaul (i.e., RRL = 40 W/50 W) in Fig. 7c and d, the BPP
shift to almost 100% of the traffic load. This is an indication that the Self-B could be
useful at low traffic condition or high traffics when the RRL power rating is above
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Fig. 8 Impact of load factor and self-backhaul factor on power saving. Network size, 1 MBS p =
1, 10 SBS, 35 W RRL

25 W. However, in view of the fact that the self-backhaul does not need radio link
infrastructure as the case may be, but, it is clear that it is not an optimal solution
at high load conditions, particularly when the radio links of 25 W and below are
deployed. However, due to its simplicity and relatively, low loss of power efficiency
still make it an attractive solution.

Figure 8 shows the impact of load factor and self-backhaul factor onpower savings.
The figure demonstrates how much power network operator would lose (or gain) if
only self-backhauling solution is deployed. The percentage of the SBS that is self-
backhauled is indicated by λ. The curves are presented as the difference from the
network when all the SBS use RRL. The negative power saving is indicating that
the network wastes power with respect to all RRL connections. We define the BPP
as a point where the two backhaul options consume the same amount of power at
a predefined traffic load and this is characterized in Fig. 9. When the curves reach
100% of load, it means self-backhaul solution would always be preferred for higher
RRL power. For instance, we would always prefer self-backhaul if wireless links
consume more than 17, 26, 35, and 55 W for 30, 20, 15, and 10 SBS per HetNet,
respectively.
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Fig. 9 Break-even load and power point as a function of SBS density [37]

6.3 Impact of Macro Base Station Load on Power
Consumption

Power consumption largely depends on how traffic load is distributed on the network
as illustrated in Fig. 7. The MBS serves as self-backhauling SBS but it also can
serve UEs within its coverage area as illustrated in Fig. 4. In Fig. 10, the ratio of UE
traffic served by MBS to UE traffic served by SBS is used as a parameter. The traffic
loads for MBS and SBS are defined in Eq. (14) as f a and f b. We implement different
load scenarios, whereby the MBS is fully loaded (i.e., 100%, f a = 1), or partially
loaded (i.e., 60%, f a = 0.6) with the remaining 40% of the traffic loads routed to
the SBS. The load-sharing effects on power consumption for the self-backhauled
HetNet is observed. At low MBS: SBS load ratios of 40:60, even when the SBS is
fully loaded with the remaining 60% (i.e., f b= 100%), the self-backhauled network
is more energy efficient than the conventional RRL.

6.4 Energy Savings of Self-Backhauling

Assume a HetNet system consisting of 20 MBS, each of them containing 10 SBS
some of which are connected over the microwave links, while the rest are self-
backhauled. In Eq. (14), λ represents the percentage of SBS that are self-backhauled.
The negative power saving (i.e.,PS < 0) indicates that the self-backhauled network
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Fig. 10 Impact of macro base station load on power consumption

losses powerwith respect tomicrowave backhauled network and otherwise if PS ≥ 0
as indicated in Eq. (15). Figure 11 shows that when the network is fully loaded and
RRLusesmore than 50W, then it ismore preferable to use self-backhauling solutions.
For lower loads, the self-backhauling is energy efficient and provides higher gains
over the microwave backhauls. We also vary the percentage of SBS connected with
self-backhauling, λ, and provide the curves for different traffic load. For lightly
loaded network of 50%, the gain due to the use self-backhauling for all SBS (i.e.,
λ = 100%) over 50 W RRL backhaul is about 5 k; this increases to 7.5 kW when
the network load decreases to 30%.

Therefore, with the current deployed 100WPtPmicrowave backhauls, we provide
energy-saving prospects for deploying self-backhauling in emerging markets. Our
analysis is focused on Asia and Africa. As an illustration, Nigeria, Ghana, Kenya,
Tanzania, Uganda, Bangladesh, Indonesia, Pakistan, and India are projected to have
at least 37,651, 7052, 7029, 5801, 3874, 41,686, 88,425, 40,422, 400,000MBS sites,
respectively, in 2015 [38–40]. With 8.1% CAGR, except India where 3.1% is used,
in the next five years, about 13,762 newMBS sites will be added in Nigeria and 2578
in Ghana. Assuming 1:10 ratio of MSB-SBS replacement, the network densification
projection will be 137, 620 and 25,780 SBS, respectively.

If all the SBS are self-backhauled (i.e., λ = 100%) the resulting energy saving
in the year 2020 will be 383.35 MWh/day (i.e., about 16 MW power) and 71.82
MWh/day (3 MW). This is expected to be higher for countries like India with
over 400,000 MBS sites and which is expected to grow to 511,000 by 2020 [41]
amounting to savings of 4.07 GWh/day (170 MW) and 32 GWh/day (1336 MW)
in 2035. Figure 12 shows the energy-saving forecast for the selected countries for
the period of 20 years, from 2015 to 2035. Already,e energy production in most of
the developing countries is far below the demand. For example, Nigeria has a per
capita consumption of 115 kWh/year [39]. Also, India, Tanzania, and Bangladesh
have 565, 68.55, and 234 kWh/year, respectively [42], these are very insignificant
when compared with some developed countries like the USA’s 12,185 kWh/year,
Finland’s 16,100.44 kWh/year, and Denmark’s 6026 kWh/year [43]. In Table 2,
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Fig. 11 Power savings for different RRL backhaul

Fig. 12 Energy-saving forecast

we provide a summary of basic power indicators for some selected countries and
prospective energy saving in 2035. Therefore, this energy-saving strategy would
relieve the extra burden on the power network which will be more beneficial to the
developing economies with a shortfall in energy production.While for the developed
economies, it would yield a significant decrease in network energy costs.
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Table 2 Electricity indicator indicies and energy savings

Country Population
(Thousand)

GDP
per
capita

Power
consump-
tion per
capita
(Kwh)

Land
mass
(Km2)

No. of
BTS

Electricity
produc-
tion
(GWh)

Energy
savings
(MWh/day)

Nigeria 182,201.96 2640.3 115.04 923,768 37,651 3.3 3018

Ghana 27,409.89 1369.7 206.19 239,460 7052 3.5 565

Kenya 46,050.30 1376.7 136.64 582,650 7029 1.8 564

Tanzania 53,470.42 879.0 68.55 945,087 5801 1.7 465

Uganda 39,032.38 705.3 61.03 236,040 3874 1.5 311

Bangladesh 160,995.64 1211.7 233.88 130,170 41,686 7.349 3341

Indonesia 257,563.82 3346.5 623 1,811,570 88,425 232,000 7087

Pakistan 188,924.87 1434.7 357.34 770,880 40,422 7487 3239

India 1,311,050.53 1598.3 565.21 2,973,190 400,000 1,368,000 32,059

7 Conclusions

Network densification using a large number of small cells (small base stations) has
been identified as the key enabling strategy for meeting up coverage and capac-
ity demands in next-generation cellular systems. Providing effective backhauling to
the SBS locations have also been identified as the main bottleneck, as the ever-
increasing SBS density will lead to a more complex backhauling and, as such,
increase risk of raising capital, and operational and network energy costs. This
paper highlighted various backhauling options for SBS deployments and some of
the key challenges the mobile network operators may be encountered during rollout.
The paper also provides power system requirements for various network config-
uration and their respective power options that would be sustainable. The use of
self-organizing backhaul networks (i.e., self-backhauling) for SBS is highlighted
and compared in terms of energy efficiency with existing microwave backhauling
solutions. Numerical results of the comparison show that when the network is fully
loaded and the microwave backhaul uses more than 50 W, then it is more preferable
to use self-backhauling solutions. For lower loads, the self-backhauling is energy
efficient and provides higher gains over the microwave backhauls. Furthermore, a
break-even power point and load threshold level for safe operation regions are pre-
sented, and this will help toward achieving optimum utilization of self-backhaul
deployment and green backhauling for the deployment of HetNets in a way that is
more energy efficient and sustainable compared to traditional homogeneous macro
network deployments. The prospect of the self-backhauling in terms of energy sav-
ing is presented by providing energy-saving forecast for some selected emerging
economies for the period of 20 years, from 2015 to 2035. These energy savingswould
relieve the overburden on the power network which will be more beneficial to the
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developing economies with shortfall in energy production. While for the developed
economies, it would yield significant a decrease in network energy costs.
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Abstract Cloud is transmigrating to network edgewhere they are seen as virtualized
resources called “Fog Computing” that expand the idea of Cloud Computing per-
spective to the network edge. This chapter proposes an integrated resource allocation
model for energy-efficient Infrastructure as a Service (IaaS) that extends from the
network edge of the Fog to the Cloud datacenter. We first developed a new architec-
ture and introduced a policy on the Fog end where a decision will be made to either
process the user request on the Fog or it will be moved to the Cloud datacenter. We
developed a decision model on top of the architecture. The decision model takes into
consideration of the resource constraints of CPU, Memory, and Storage. Using this
will improve resource utilization as well as the reduction in energy consumption by
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a datacenter. Finally, we addressed future research direction considering the model
components and its performance.

Keywords Virtual machine · Cloud datacenter · Resource allocation · Energy
efficiency · Fog Computing

1 Introduction

Cloud Computing is a universal term used for the delivery of hosted services and
resources connected with the Internet that are pre-packaged using virtualization tech-
nology. The technology allows the creation of duplicate servers or computer system
known as a virtual machine (VM). The concept of utilizing Cloud Computing allows
companies, industries, and organization to have their Computing resources as a utility
that is on a pay-per-use basis instead of building and keeping computing infrastruc-
tures in your premises. More so, Cloud Computing has rapidly become known as
a successful paradigm for providing ICT infrastructure support. There is an enor-
mous growth in this area for the past few years. The broader acceptance of Cloud
Computing domain contributes to the development of large-scale datacenters. The
datacenters provide services through their respective deployment and service mod-
els presented in various means and at different stages of the datacenters as shown
in Fig. 1. The services are IaaS, Software as a Service (SaaS), and Platform as a
Service (PaaS) [1, 2]. There are a lot of benefits using Cloud which includes pay-
per-use, instant on-demand self-service provisioning, rapid elasticity, and resource
pooling [3].

Cloud datacenters are the strength of today’s demanding ICT infrastructure.
Therefore, energy-efficient resource utilization is growing gradually and becom-
ing important [4, 5]. Furthermore, the Cloud is transmigrating to the network edge
where they are seen as virtualized resources called “Fog Computing” that expand
the idea of Cloud Computing perspective to the network edge. The Fog and Cloud
used similar resources that are identical in characteristics such as networking and
computing devices with storage. They also share the same techniques associated
with energy-efficient resource allocation and utilization. Although Fog Computing
relies on routers and edge devices that are usually away from the hub datacenter.
On the other hand, there are applications such as mobility-based services, health-
monitoring devices, sensor networks with actuators, and emergency response ser-
vices that require real-time response. If Cloud Computing alone will be used, it will
require many resources from the sources to the edge and round it back to the Cloud
datacenter. This leads to inefficient usage of the Cloud datacenter infrastructure, poor
scheduling policies, and resource wastage are the reason for high-energy consump-
tion in datacenters, not their size. Therefore, energy efficiency remains a serious
problem for datacenter service providers.

Among the means to address this problem is to reduce the potentialities of the
Cloud datacenters due to the used of virtualization technology [2]. The virtualization
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allows Cloud administrators to create many VM instances on a physical machine
(PM) or server. Thereby demanding few physical resources unlike in the past, thus
the resource utilization is improved. Alternatively, reducing energy consumptionwill
be realizedby turningoff or switchingPMs that are in the idle state to low-powermode
state (i.e., sleep, hibernation). This approach also reduces the idle power consumption
in the datacenters. This method enhances the condition of power consumption in
the datacenter, but it is often not sufficient, due to the dynamic and heterogeneous
nature of the Cloud environment. Yi et al. [6] in their survey they have find out
unsolved Cloud Computing challenges because of their underlying problems such
as resource utilization, central access, inadequate mobility support, and location
awareness. Therefore, Fog Computing can address these challenges if properly apply
in the Cloud domain. Combining the Fog with Cloud Computing is one of the most
logical steps for building an adaptable and scalable platform that strengthens the IoT
[7]. This will continue to support and increase the inescapable interplay of the Fog
and the Cloud domain in years to come. Therefore, there is a need for integrating
the Cloud and Fog Computing architecture for realizing energy efficiency in Cloud
datacenter IaaS.

The focus of this research work is how to realize energy efficiency using resource
allocation strategies and policies that can be applied to virtualized Cloud datacenter.
Unlike existing studies [8–13], our approachwill integrateCloud IaaSwith FogCom-
puting resources on a single datacenter. The integrationwill bring a new formof appli-
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cations and services within the Cloud datacenter environment that reduces resource
under-utilization and energy consumption. We also develop a decision model that
takes into consideration of the resource constraints and their capacity at the Fog edge.
Furthermore, themodel determineswhether the user’s request will be executed on the
computational infrastructure of Fog or Cloud datacenter. Also, we recommend future
research direction considering the operational components, execution environment,
and performance of the integrated environment.

The rest of the book chapter is organized as follows. Section 2 discusses the related
work. Section 3 presents the Cloud and FogComputing overview. Section 4 describes
the needs for Cloud and Fog Computing with the proposed model. Section 5 outlines
the future issues and direction of the research and Section 6 concludes the book
chapter.

2 Related Works

Deng et al. [14] and Al Faruque and Vatanparvar [15] presented their work with
resource provisioning of Fog and its related services. They focus mainly on the
energy consumption of Fog–Cloud interaction of devices installed at smart houses
or cities. Furthermore, they consider the different stages of energy consumption as
well as the latency trade-off between the Cloud–Fog. Deng et al. [14] and Tang
et al. [16] introduce a distributed architecture of Fog Computing that has big data
analysis capabilities used in smart cities. They designed a four-layered architec-
ture that supports immediate response and intelligence report for future smart cities.
The computing nodes at each layer of the architecture execute applications that are
latency-sensitive and support quick control loop to protect the safeness of some vital
infrastructure resource components. They focus on the integration of Cloud IaaS
with next-generation smart cities. It provides high computing performance that sup-
ports future intelligence smart cities. However, the authors consider response time
only. Thus, leaving abundant resources under-utilized. Stojmenovic [17] expands the
concept of Fog and Cloud Computing to the decentralized smart controller in survey
paper. They recognize cloudlets often known as task as defined in Fog domain. The
authors describe the cloudlets using scenarios in software-defined networks (SDN).
They make a recommendation on the existing approach, which needs modification to
adopt two layers Fog–Cloud Computing. Smart Cargo concept has been introduced
by Costa et al. [18]. The authors integrate traditional technologies and frameworks
ascertain from the cargo environment. Besides, the concept combined the capabilities
of a Fog Computing centralization and scalability offered by Cloud paradigm applied
to the freight transport domain. They explore home energy management (HEM) and
a micro-grid-level energy management over a Fog Computing platform with a cus-
tomized controller. This method shows a paradigm shift that takes away computing
application and data services control from Cloud to Fog Computing. Therefore,
the approach makes multimodal freight transport attained real-time awareness with
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future environmental prediction, but they did not consider the limitation of the Fog
devices and/or nodes.

FogComputing has been used as a newplatform for energymanagement byVatan-
parvar et al. [19] and Al Faruque and Vatanparvar [15]. The platform allows the inter-
action of different devices’ interoperability and operational flexibility. Furthermore,
they implemented two prototypes of HEM and micro-grid-level energy management
that separates control and data communication layers. The platform is adaptive and
scalable due to its open architecture. However, they focus on energy management
of residential houses, not datacenters. Masip-Bruin et al. [20] proposed a layered
architecture that shows the need for the coordinated management of Fog–Cloud sys-
tems. The authors use medical emergency scenario to evaluate the performance of
the architecture. The F2C (Fog 2 Cloud) architecture optimizes and improves the
execution time of applications compared with traditional Cloud services.

Madsen et al. [21] present the challenges and reliability posed by current Comput-
ing paradigms for reliable Fog platforms. The approach incorporates the networks of
smart devices communicating with the Cloud. While it may be true, the authors con-
clude that the design and development of Fog Computing projects are demanding.
Therefore, this strategy did not offer a new approach that is reliable for the network
of smart devices in Fog Computing standard. Thus, the acceptance of Fog-based
access call for the implementation of algorithms that deals with network reliability
of smart devices. The authors focus on Fog devices that are operating under specific
circumstances that inquire for fault tolerant technique, not resource utilization or
energy management. Similarly, Bonomi et al. [22] analyze key distinct features of
Fog and how it complements Cloud Computing. Main goal of this research work is to
examine the used instances that motivate the need for Fog. This approach emphasizes
the relevancy of Fog to IoT and Big Data Space (BDS) paradigm. Finally, the authors
provide a high-level characterization of Fog’s software architecture, giving promi-
nence to the different components and the technological requirement to achieve the
Fog vision.

A placement resource migration technique for Cloud and Fog is presented by
Ottenwälder et al. [23]. The authors demonstrate how application understanding of
complex event processing (CEP) system is applied to make live VM migration bet-
ter. The needed bandwidth for the technique to perform the VM migration has been
reduced substantially. The resources that are considered to be network-intensive are
directed on distributed Fog nodes. On the other hand, the computationally intensive
resources were hosted in the datacenter. This method reduces the migration cost due
to the direct selection of the destination of resources to be migrated which assures
sufficient network utilization over a period of time. The network utilization and
mobility pattern have been improved. Thus, other resources and workload mobil-
ity have not been optimized due to the computationally intensive task by the Fog
devices. The immense demand for geo-distribution, mobility support, low latency,
and location-based application is becoming high in both Fog and Cloud domains.
Therefore, to solve the above-mentioned problem, a resource-provisioning mecha-
nism for VM-based tactical cloudlets has been proposed by Lewis et al. [24]. It is
a strategy that can be hosted on a vehicle or other platforms for providing IaaS that
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endorses computation offloading and data forwarding at the edges of the Fog devices.
The aim is to increase position awareness that will improve the decision making of
moving the resources used in Cloud close to the Fog. This will encourage energy
efficiency in mobile devices, lower latency and change provisioning policy in tactical
environment. Although the cloudlets has been successful in supporting the mobile
devices, the approach did not consider the limitation of the mobile devices in terms
of running applications.

Aazam and Huh [25] proposed a solution using smart gateway-based communi-
cation (SMBC) with Fog Computing to realize smart communication and resource
management. It alleviates the core network communication overhead of the Cloud
datacenter. Using this method makes it easier to create better services for the Cloud
in an efficient manner. However, resource utilization and energy saving are not their
focus. Similarly, Aazam and Huh [26] presented another service-oriented resource
management model (SORMM) for Fog Computing. The model performs adequate
resource management for IoT deployments. It also uses a framework for resource
management to predict user’s resource usage and to also pre-allocate resources based
on the probabilistic behavior that determines the future usage by the user. The used of
this prediction strategyby the consumed resources bringgood standard and efficiency.
However, they did not present any evaluation or simulation result that supports their
model. Nishio et al. [27] presented a mathematical framework for service-oriented
utility in heterogeneous resource environment. In mobile Cloud concept, the hetero-
geneous resources are measured in standards, such as power, bandwidth, and latency.
Neighboring nodes within a local area network (LAN) form a cluster group termed
local Cloud. The nodes shared the resources within the LAN and other nodes from
the clusters in the same local Cloud. Then from there, the Fog device is selected from
the nodes in each local Cloud by local resource coordinator. However, the model did
not take into consideration of resource utilization and energy consumption.

Dsouza et al. [28] proposed a relevant schema with a preliminary policy manage-
ment framework followed by a detail description of the policy. The authors identified
Fog Computing novel features. These key features have been identified with chal-
lenges that are inherent in managing the policies. It becomes vital to endorse ensure
resource sharing and collaboration to reuse data within heterogeneous Fog environ-
ment. The model is effective in resource management for enterprise used but not
Cloud datacenter. Recent development of Fog Computing is presented by Dastjerdi
et al. [29], and the authors design a reference architecture for Fog and discussed
their challenges. They pointed out issues that need urgent attention including secu-
rity, resource management, and energy usage minimization are still in needs of the
solution.

3 Overview of Cloud–Fog Computing

TheCloudComputing is theClouddatacenter structural system,which is a buildingor
room full of computing servers on premises or remote location. It also includes other
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related equipment and resources. Whereas the Fog Computing is being considered
as a term that is originally coined by Cisco, that is, in many ways the same or nearly
the same with edge Computing or nano-Cloud. The main distinct feature of the Fog
when compare with the Cloud is that the platform and resources used by Fog are
always at the network edge of an enterprise or institution with limited computational
capabilities. The attribute of the Fog and other associated components and platforms
are discussed in the following sections.

3.1 The Cloud Computing Architecture

The Cloud Computing architecture is the structure and organization of the system,
which comprise on premises and computing resources (physical or logical) such
as available services, middleware, software components, storages, geo-location, the
externally visible properties of resources and their relationships to provide services
to users through the network [30]. Recently, Cloud Computing reference architecture
recognizes the major actors and classifies them based on types, models, as well as
their behavior. More so, Cloud architecture has been considered as a generic high
level that is proposed to help the understanding of the user demands, characteristics,
and principles used in this domain.

This architecture comprises two parts: the front end and the back end. The front
cannot operate independently without the support of the back and vice versa. All
requests coming into theCloudmostly come from the front end. This connects usually
with the back end through a network communication system.What differentiates the
front with the back end is the source of the request. The request always comes from
the userswho are usually known as client or consumers of services from the front end.
The back end is where the requested services by the clients are hosted which is the
Cloud side of the system. The users do not care where the request or information is
stored or processes rather they are after service delivery and reliability from theCloud
side. Therefore, the front end is composed of user’s resources such as computing and
network resources with the required application to access the Cloud Computing
resources. The Cloud Computing resources usually include physical machines (PM)
also known as servers, storages, network communications, and different applications
and operating systems running concurrently to service user’s request. Requests of
application in the Cloud are usually run on virtual machines (VM) hosted on the PM.
These resources are managed by the administrator who manages and monitors the
resource as well as the traffic within the Cloud environment. The management of the
resources in the Cloud has to follow a set of rules known as a protocol with the special
help of middleware. The middleware will allow the computers to communicate with
each other over the network [30].
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3.2 The Fog Computing Architecture

The Fog Computing system-level architecture has been modified to achieve maxi-
mumefficiency for the scatteredComputing nodes used to perform the computational
task with storages, processes, and networking capabilities according to various crite-
ria within an Internet of Everything (IoE) domain [31]. The Fog Computing encom-
passes a tiered organization of Fog nodes all over the network amid sensors and the
Cloud at the central core of the network system [32]. The Fog architecture constitutes
a change from conventional access systems and trust on Cloud models, to the latest
computationmodel thatmoves computational request close to the network edge often
referred to edge Computing [33]. The nodes are not completely fixed to the edge but
should be seen as a variable within the system of connectivity.

The Fog architecture provides the correct support and attempts to bring into the
balance between resource content of the three most basic capabilities at the edge of
the network level where they are optimally located. The Fog layers as shown in the
figure above are located between different network levels of the Cloud and the Fog
resources known as nodes. As a result, the Fog makes a connected graph, with the
corresponding Fog nodes located at different levels, which forms an interconnected
topology between core smart objects and layers Cloud components [32–35]. Stor-
age and network bandwidth are the essential attributes of Fog architecture found at
different levels.

4 The Need for Integrating Cloud and Fog Computing

There is always a need to utilize the Computing power available at the edge of the
network which is the Fog. This can only be realized by taking Cloud concept which
includes flexibility, agility, and distributed nature as well as network storages and
moving them toward the devices that generate the data. Integrating Fog with Cloud
Computing is more convenient than migration. The Cloud has been standardized in
terms of information exchange and emerging use of services such as web, machine-
to-machine communication (M2M) and used open sources. As the Fog devices are
becoming smarter and intelligence that serve as the extension of the Cloud where
user’s requests are no longer centralized. Therefore, bringing in new concept of
decentralization due to the massive computation at the edges of the network. The
integrated architecture has been designed based on the Cloud and Fog characteristics
as shown in Fig. 2.

This clearly shown the limitation of each of the architecture in terms of latency,
hardware used, location awareness, and response time. Moreover, this has also lead
to the need for their complimentary services toward energy efficiency in the Cloud
datacenter. The integration of the Fog–Cloud architecture take into consideration the
limitation of both Cloud and Fog Computing, thereby providing a new solution that
improves energy efficiency, resource utilization, and data optimization.
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Fig. 2 Challenges of Cloud and Fog Computing architecture

4.1 Operational Framework of Cloud–Fog Computing

Figure 3 shows the framework for the integrated model of Cloud–Fog Computing.
The framework is divided into four distinct parts with the objective of achieving
energy efficiency in the Cloud datacenter. The users are the consumers of the ser-
vices and always make application request. These requests are usually processed at
the datacenter which consumed high energy due to inefficient resource utilization.
Therefore, we have introduced a new concept whereby a user’s request is process
on the Fog using workload allocation model. This model has three decision criteria
due to the inherent limitation of the Fog resources in terms of processing, storage,
and memory else the request will be sent to the Cloud. The Cloud will now look at
the request and allocate appropriate resource for it using resource allocation linear
model. We also show how the Fog interacts with the Cloud through the gateway.

4.2 The Proposed System Architecture of Cloud–Fog
Computing

Figure 4 shows the overall system component of the proposed architecture with
a brief explanation of their role while Fig. 5 shows the integrated architecture of
Fog/Cloud.

The proposed system architecture shows the integration of Cloud and Fog archi-
tecture. The datacenter resources such as server processor and network which enable
on-demand and dynamic allocation of resources while minimizing the datacentre
energy consumption. The approach is model-based using resource allocation linear
model of the IaaS that is handled by the Cloud Management System (CMS) which
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include brokers, servicemonitors, and energy optimizers.While for the Fog is handle
by the integrated resource management system (IRMS) which includes the sensor
as well as resource constraints. The technique will overcome the limitations of both
the Cloud and the Fog.

The Cloud Computing players include users, application request, service
providers, and CMS and the other side of the architecture is connected with the com-
munication gateway through the IRMS. The Fog physical resources are organized
based on their application areas and execution environment. In Cloud datacenter set-
ting, users are regarded as one of the important entities since they are the end users

Gateway

Cloud
resource allocation using 

linear programming 
model

Users

Fog
workload allocation 

using decision model

Energy Efficiency 

Fig. 3 Operational framework of energy efficient Cloud–Fog Computing

Fig. 4 Components of the architecture
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of the services provided by the Cloud IaaS. They sent application requests that are
operated in distinguish VMs hosted on different servers while the service providers
owned the applications that provide services to the users.

More so, users submit their request to the Cloud provider through the CMS,
specifying the number of VMs needed for each application and their requirement in
terms of memory, storage, CPU, and network. Other functional components of the
CMS collect run-time statistics of the resources including availability, utilization,
and status of the resources. This information will be published for decision making
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by the data center based on their resource policy requirement define in the service
level agreement (SLA).

On the other part of the architecture, we push away the applications, data, and
services from distributed nodes to the network edge. Therefore, this will allow the
IRMS to perform its function and decide where to place the applications and data
based on the application requirement.

4.3 Assumption of the Cloud–Fog Model

The integration of Cloud–Fog Computing separates the workloads between the two
components. This also leads to the efficient utilization of resources hence reduces
the energy consumption. The detail assumptions of our architecture are as follows:

1. A request represents a user’s computational request or task.
2. All requests come from Fog Computing environment considering three con-

straints such as CPU, storage, and memory.
3. The constraints are presented as U(R1), U(R2), and U(R3).
4. U(Ri) is the cumulative resource requirement of the user request,∅ is the threshold

of the fog resource capacity, where α, β, and γ represent resource requirement
of a given task, where the task will be T 1, T 2, T 3, …, Tn.

5. Based on the assumption, the workload forwarded to the Cloud is in the form of
tasks.

6. The resource allocation requests by users must provide the detail of resource
usage for the task. Otherwise, if the user requests are more than the available
resources, the request has to wait in the queue for the next allocation.

7. All hosts in Cloud–Fog consume energy in idle state and denoted as Pmin.
8. Hosts consume maximum energy at the highest stage of utilization which is

denoted as Pmax.
9. Hosts put the request in the waiting queue if its CPU utilization is at pick level

or it reaches its threshold.

4.4 Decision Model for Cloud–Fog Architecture

In optimization, the resource constraints usually affect the solution. Therefore, how
to select and decidewhere the resourcewill be run is an essential element for realizing
efficient resource utilization and energy consumption in optimization, the resource
constraints usually affect the solution. Therefore, how to select and decide where the
resource will be run is an essential element for realizing efficient resource utilization
and energy consumption. For the Fog Computing resources, the assumption is that
the number of constraints which includes CPU, storage, and memory are presented
as U(R1), U(R2), and U(R3). U(Ri) is the cumulative resource requirement of the
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user request, ∅ is the threshold of the fog resource capacity, and where α, β, and γ

represent resource requirement of a given task, where the task will be T 1, T 2, T 3, …,
Tn.

Thus, the resource utilization function for single resource can be denoted as:

U (R1) =
n∑

i = 1

αi (1)

Single Decision Creteria

{
U (R1) < θ; assign to Fog resources

Otherwise; assign to Cloud resources

The decision criteria for single-resource constraint take into consideration the
size of the resource αi which is being requested by the user. It checks the requested
resource threshold ∅ capacity whether it can be processed at the fog level else it will
forward the request to the cloud.

For double-resource constraint’s request, assuming we have a task that requires
more than one resource at a time for execution. Thus, the resource utilization function
can be denoted as:

U (R1) =
n∑

i = 1

αi (2)

U (R2) =
n∑

i = 1

βi (3)

Double Decision Creteria

{
U (R1) < ∅1; and U (R2) < ∅2; assign to Fog resources

Otherwise; assign to Cloud resources

The decision criteria for double-resource constraint also take into consideration
the size of the resource αi and β i which is being requested by the user. It checks
the requested resource threshold ∅ capacity whether it can be processed at the fog
level else it will forward the request to the cloud. Whereas the multiple resource
constraints request, assuming we have a task that requires more than two resource at
a time for execution. Thus, the resource utilization function can be denoted as:

U (R1) =
n∑

i = 1

αi (4)

U (R2) =
n∑

i = 1

βi (5)

U (R3) =
n∑

i = 1

γi (6)
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Multiple Decision Creteria

⎧
⎪⎨

⎪⎩

U (R1) < ∅1;U (R2) < ∅2; and U (R3) < ∅3;
assign to Fog resources

Otherwise; assign to Cloud resources

The decision criteria for multiple resource constraints take into consideration the
size of the resource αi, β i, and γ i which are being requested by the user. It checks the
requested resource threshold ∅ capacity whether it can be processed at the fog level
else it will forward the request to the cloud. The Fog Computing resource capacity
is given as

{
0 ≤ θ ≤ fi ; allocate to fog i

otherwise; allocate to cloud
(7)

N is the number of available fog devices i
f i resource capacity in terms of RAM, CPU, and storage.

4.5 Optimization Problem

Resource allocation and energy efficiency of the overall Cloud datacenter can be
denoted as linear programming (LP) problem to reduce the energy consumed E, as
represented in Eq. (8).

Minimize E =
n∑

r = 1

r∑

i = 1

Ei (τ ) (8)

Subject to

Ei (τ ) = (
Pmax − Pmin

) ∗ Ui (τ )

100
+ Pmin (9)

Ui (τ ) =
n∑

j = 1

Ui j ≤ Peakload at time τ, ∀ Ri ∈ R and ∀ t j ∈ T (10)

Ui j = 0, when the user request j is not serve on node Ri

Ui j = 1, when the user request j is serve on node Ri

Equations (8) and (9) indicate that minimization of energy consumption is pro-
portionally subjected to the utilization of resources based on the user request for
the time τ . Our models relate to the overall Cloud Computing environment’s energy
consumption to total utilization represented by U as can be formulated in Eq. (8).
In the equation, u is the percentage value of the processor utilization, E(u) is the
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energy consumed by CPU at the utilization u%, and Pmax − Pmin are the power
consumption at maximum performance in watt and at idle, respectively.

4.6 Performance Evaluation

Fog does not replace the Cloud which have lots of advantages because of its central
and scalable features. The Cloud datacenters offer unlimited virtual processing capa-
bilities and an on-demand resource usage model. To explain our contribution, the
storage, processing, and memory constraints have been considered in the decision
criteria model. Therefore, we use the idea of resource modeling criteria as the key
idea for the integration of Cloud and Fog to reduce energy consumption and maxi-
mize resource utilization of IaaS. To ensure the quality of our developed model, we
cautiously perform some experiments based on assumption. From the assumption,
all requests are coming from the Fog environment handle by IRMG. Therefore, the
decision models will now decide where the request will be processed based on the
threshold limit set by the model. In the following, we show some results obtained
by using the decision model which includes single-, double- and multiple decision
criteria.

From Fig. 6, it shows the uses of single-resource request from fog environment.
When the requested resource by the user has not exceeded the fog capacity as define
in the model, we can say that it has an upper and lower boundary of the requested
resource. If resource happens to be at the lower boundary (less than θ ). Then, the
request will be handled by the Fog schedulers. Likewise, when the request is greater
than θ then the resource request will be forwarded to the cloud datacenter through
the gateway. In the datacenters, the CMS will handle the request and allocate an
appropriate resource for the user request. The request will be executed based on
first-come first-serve. As shown in Fig. 6 anything above the θ will be processed in
the cloud datacenter. This will improve resource utilization of the Fog and Cloud, as
well as the energy efficiency of the datacenters.

Figure 7 shows the user request for double resource. In this case, the decision
model will make a complex decision when the requested resources are not same.
This is due to the nature of the application. Some applications require much memory
than storage and vice versa. In this case, the decision criteria will not compare the two
requests and in case of any of the request exceed Fog capacity θ , then the request will
be moved to the cloud datacenter. However, when the request has not been exceeded
θ , then it will be processed within the Fog environment. In addition, Figs. 8 and
9 show multiple decision criteria. In this case, the user’s request is treated in the
same way as single- and double-decision criteria. However, we have shown how the
multiple resource requests will be processed in Fog. This can only be achieved when
the user request has not exceeded the threshold for the three constraints. In case of
any of the requests have been exceeded the threshold, the resource request will be
moved to the Cloud datacenter.
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Based on this model and its analysis, we can say that the energy efficiency of
the datacenter and resource utilization has been improved. This is due to the work-
load and application processing migration when the user’s request exceeded the
threshold of the Fog environment. Therefore, this triggers the interaction of the two-
environment Fog–Cloud resource. But when the average workload is less than the
threshold value then the user’s request will be processed at the Fog environment.
Therefore, only application that require much CPU, Memory and Storage will be
sent to Cloud datacenter for processing. This allows the efficient use of the Cloud—
Fog resource that eliminates the loss of data, massive communication bandwidth,
and energy consumption.

5 Future Issues and Direction

Based on our discussion in the literature, there are important aspects of Fog and
Cloud Computing paradigm due to their inherent finite resource capacity offered
as a service to users. Therefore, there is a need to explore the issues that are left
behind because of the compromise in solving the existing problems. This will bring
advancement in finding solutions to the existing issues that require urgent attention
of the researchers in this domain. Some of the issues and future research direction
are discussed in the following section.

Resource Provisioning This deals with choosing and deployment of programs run
time for applications which can be dynamic or static. It is found from the literature,
very few research works have considered dynamic resource provisioning or using
both static and dynamic in Cloud–Fog environment. Many important aspects such
as latency, mobility, network traffic, and resource availability are still unexplored.
To efficiently use both Cloud and Fog resources, application of different techniques
on resource provisioning and service management will be a promising subject in the
theme of Cloud–Fog research.

Multitenancy Resource Management Existing Fog Computing resources can be vir-
tualized and at the same time allocated to numerous user requests. The current multi-
tenants’ research works do not take into consideration of Fog Computing resource
scheduling of computational tasks and request based on the user application require-
ments (performance degradation, makespan and throughput). This can be carried out
in future researches.

Parameters The parameters used by the implemented techniques to determine their
performance are shown in the table. The choice of the parameters on Cloud–Fog user
perspective or Cloud service provider are not the same. The provider is concerned
more about efficient resource utilization while the users are focused on application
performance. In that regards, the user’s parameters include latency, response time,
execution time, fairness, turnaround time and tardiness, and the provider parameters
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include energy consumption reduction, resource utilization, VM migration, work-
load, budget, and other dependency constraints (death line, reliability and priority
constraint). Not all these parameters were used. There is a need to explore more on
the parameters to see their performances in Cloud–Fog environment.

The Sustainable of the Cloud–Fog Architecture The Fog Computing sustainability
reflects both economic and the effect of the environmental to certain degree. Though,
sustaining the Fog Computing architecture has been struggling with issues such as
the QoS, service availability, energy efficiency, and resource utilization. Additional
research in this domain is highly required for the performance and accomplishment
of Fog Computing. This is because the present research work presents a limited
analysis of sustainability and reliability of the Fog Computing architecture.

Interoperability It is the ability to share information between systems and application
in a meaningful way. This will enable users to understand why they are receiving and
sending information over the network with different configurations. Although, the
CloudComputing is already standardized and the operational risk isminimal. Current
future of the Cloud Computing is on the federation of different infrastructure across
different sites. But when they are interacting with Fog nodes that are on premises
platform which are entirely different in terms of processing and storage capabilities.
This shows that the users are now operating in a highly diverse environment, different
facilities located around the world. There is a need to support this diversity in that
environment so that they can run their applications on Cloud environment without
service interruption or resource luck-in. In general, interoperability will allow new
efficiency that will not be interrupted by some constraints from the Fog environment.
Therefore, there is a need to adapt standard or common interface that will createmore
innovation, support for different applications by different vendors and data-driven
insight.

6 Conclusion

Energy efficiency is important for Cloud datacenters and Fog Computing. Fog Com-
puting is becoming a desirable answer to application processing issues in the IoT
paradigm. In this chapter, three parts of the developed model have been explained
which include Cloud-only applicationmodule placement and a technique that pushes
applications toward Fog devices. The technique allows the Fog to operate while dis-
connected from a larger network. It also supports the intelligent decision of pro-
cessing, storing, memory, and actuating when enough resources are available. Nev-
ertheless, we recommend that the usage of Cloud Computing paradigm has several
advantages as a support infrastructure and large-scale reasoning, but part of the
control and trust decisions should be shifted to the Fog and allow for innovative
computing applications. The model has been tested using the origin platform. Some
issues related to double and multi-resource constraints have not been addressed in
this work. This limitation will be addressed in future work.
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Abstract Heterogeneous network (HetNet) deployment is a promising technique
for improving energy efficiency in 4G and beyond wireless cellular systems. The
major challenge of enhancing energy efficiency in HetNet is a poor cell selection
when the conventional reference signal received power (RSRP) or biased RSRP
(BRSRP) cell selection algorithm is employed. These cell selection techniques limit
the potential of HetNet in improving transmission energy efficiency. The proposed
energy-efficient bias setting strategy is an adaptiveBRSRP cell selection algorithm. It
uses energy efficiency as cell loadmetric for adaptive picocell range extension (CRE).
The algorithm efficiently estimates the varying energy efficiency in each cell, then,
based on the optimality gap of the energy efficiency, it adopts an optimized bias value
per cell. Simulations using LTE system level simulator shows the proposed adaptive
bias setting improves energy efficiency, average UE throughput and system capacity
by 6.7, 9.7 and 6.9%, respectively when compared with BRSRP with a fixed bias of
6 dB. Although the proposed adaptive bias exhibits low offloading gain from PeNB
to MeNB as against BRSRP, the system load balance has improved when compared
with RSRP.
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1 Introduction

The demand for mobile broadband services and improved device capabilities drives
the strong increase in the unprecedented traffic volumes and consumer data rate [1].
Deploying more macro base stations (BS) hereinafter referred to as Macro evolved
NodeB (MeNB) onto an existing homogeneous network is limited by poor cell split-
ting gain due to high co-channel interference [2]. More so, the high cost of site
acquisition and operational cost due to high energy consumption associated with
MeNB deployment make it difficult to achieve desired revenue and quality of ser-
vice. Therefore, with homogeneous deployment, the mobile data traffic revenues
are not commensurate with the actual traffic growth. The mobile network operators
spend about 25% of the total network operation cost on electric energy, which is
largely generated from fossil fuel [3]. Therefore, the challenge is providing quality
service while operating within acceptable cost of operation to the expanding mobile
networks. To cope with this challenge, Heterogeneous Network (HetNet) deploy-
ment strategy was proposed and standardized by the 3rd Generation Partnership
Program (3GPP) [4]. HetNet is realized by overlaying low power nodes (LPNs) onto
high power macro area through spectrum reuse of one. The LPNs deployed in Het-
Net includes Pico eNodeB (PeNB), femtocell and relay nodes. HetNets are being
increasingly deployed by operators, and PeNB is most preferred because of ease
of planning and deployment [5]. Apart from improving capacity, another benefit of
deploying PeNBs is to reduce coverage holes. Especially where radio signal strength
from MeNB is low that user equipment (UE) is not served by MeNB [6]. More also,
network deployment based on PeNB is a potential solution for reducing total power
consumption of a cellular network [7]. The fact being that a base station referred to
as eNodeB (eNB), closer to mobile users, lowers the required transmit power due to
advantageous lower path loss [8].

However, HetNet deployment brings about new challenges due to the diverse
transmit power levels of MeNB and PeNB in HetNet. Most UEs prefer to associate
with the MeNBs, with the conventional reference signal received power (RSRP)-
based user association scheme. This results in uneven distribution of traffic load
and in turn underutilization of the resource in PeNBs [9]. In order to solve the
problem of traffic imbalance, 3GPP as part of its standardization effort proposed
the biased reference signal received power (BRSRP) user association also known as
cell range expansion (CRE). This is aimed to proactively offload users to PeNBs by
utilizing an association bias [10]. However, CRE with fixed bias lacks information
on traffic load conditions in the cell due to the dynamic UE distribution as well as
varying environmental conditions in the system [11]. This shortcoming results in a
wrong bias setting, consequently, poor traffic load balance, reduced throughput, and
hence reduced energy efficiency in the system. Therefore, bias for CRE needs to be
dynamically set to adapt to traffic load for improved system performance [6].

In this chapter, an energy-efficient adaptive bias setting for optimal system per-
formance is proposed. The proposed technique uses energy efficiency threshold esti-
mated per macrocell area coverage, to represent cell load condition in order to set
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PeNB bias value per cell. On one hand, the estimated energy efficiency per macro
area represents the load condition in the cell and reduces the complexity associated
with UE distribution. On the other hand, configuring bias values per cell reduces high
signaling overhead and UE frequent handover associated with setting bias value per
UE. More so, the bias value is dynamically set, if and only if a defined network
energy efficiency threshold is reached in order to avoid frequent handover. The bias
value is dynamically set to avoid poor bias setting due to varying load conditions and
UE service demand.

Therefore, the main contributions of this chapter are as follows;

1. It proposed an adaptive bias cell association which uses energy efficiency as cell
load metric and considers spatial distribution of UEs.

2. It developed a dynamic bias configuration strategy which enhances energy effi-
ciency and traffic load balance with reduced network complexity and signaling
overhead.

This chapter is organized as follows: Section 2 present related literature, Sect. 3
introduces cell association and its procedures and Sect. 4 presents the system model.
Description of the proposed algorithm is presented in Sect. 5. Section 6 deals with
the scenario description and the simulation assumptions, Sect. 7 presents results and
discussion while Sect. 8 provides the conclusion of the chapter.

2 Related Literature

The fixed CRE bias value method implemented by authors in [11] is not practical due
to the fact that networks need to adapt to the variations in environmental conditions.
Hence, the adaptive bias proposed and studied by the authors in [11–16] wasmeant to
address the issues of dynamics in environmental conditions. Proposed also by authors
in [12, 15] was an adaptive cell range control in HetNet utilizing the cell edge UE
capacity. This scheme assumed cell load metric to be represented by the number
of pieces of UE as resource block utilization ratio (RBUR) acquired through the
network. Near-optimal cell edge UE throughput gain of over 6 dB static bias setting
was achieved by this scheme. Furthermore, since cell load estimation is acquired
from the network side, this makes the scheme simple, devoid of feedback delays
and errors. However, since traffic load varies with user mobility and the scheme is
lacking criteria for deciding the cell load threshold, then number of pieces of UE
employed by the authors cannot efficiently represent cell load condition.

The work in [13] presented a distributed Q-learning-based CRE in HetNet to
improve both cell edge and average UE throughput, and outage reduction was
employed as performance metric. The ratio of resource blocks to the UE distri-
bution was also considered as cell load metric. The input to the algorithm is based
on the previous experience of distributed pieces of UE that learn their optimal bias
values. The algorithm achieves maximized network throughput since pieces of UE
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learn its bias values from past experience. However, due to the long convergence
time associated with the Q-learning, it is therefore not suitable for real systems.

Further, parameter optimization for adaptive control CRE in HetNet based on
SINR was studied by the authors in [14]. The scheme utilizes the ratio of the number
of pieces of UE connected to PeNBs and MeNBs as cell load metric. The scheme
input centralization was achieved due to the SINR feedback from UE. The ability of
the algorithm to solve the trade-off between cell edge UE throughput and the average
UE throughputmakes it simple andwith a near-optimal performance. However, since
traffic load depends on resource block and SINR, the feedback from each UE also
brought about delay in the system; therefore, the number of pieces of UE cannot
efficiently estimate the cell’s load condition.

The authors in [15] presented a simple cell association method for HetNets based
on expected minimum average UE throughput. A combined metric comprising of
MeNB index and resource index to maximize the UE throughput was employed as
cell load metric. The decentralization of the inputs in the algorithm has therefore
removed the need for coordination among MeNBs. It was evident that faster conver-
gence was achieved by the algorithm, and further improved performance was also
recorded with enhanced interference and inter-coordination (eICIC). The algorithm
is robust in canceling the effect of interference because the eICIC has the ability to
adapt according to the variation of UE distribution. However, large overheads due
to feedbacks were observed in the algorithm which leads to frequent handover prob-
lems with multiple pieces of UE. It is a known fact that frequent handover leads to
scheduling outage.

The authors in [16] proposedPeNBCRE-based cell association algorithmemploy-
ing adaptive CRE bias in HetNet. The algorithm utilized the measurement in the
uplink interference to adjust PeNB coverage areas dynamically. For the PeNB that
suffers high interference, small CRE bias values are acquired to shrink their coverage
areas. On the other hand, PeNBs subjected to less interference has their coverage
areas extended to provide services for those areas previously covered by the loaded
neighboring cells. To increase the uplink transmission rates, the algorithmmakes cell
selection decision based on the uplink interference. However, this may not necessar-
ily provide the best downlink rates because the PeNB UEs in the range extended are
exposed to severe interference from MeNB in the downlink, consequently, reducing
their downlink data rates. Therefore, MeNB that gives the maximum uplink rates can
be different from the one for the downlink.

The authors in [17] proposed a distributed, priority and non-biased-based channel
access and load-aware association technique with interference mitigation in their
most recent work. Their work proposed combined priority access based on maxi-
mum channel gain for high priority UEs and hybrid channel gain and access-based
cell association for low priority UEs for rate maximization and load balancing. The
work achieved a good traffic load balance and the best offloading gain from MeNB
to PeNB when compared with RSRP and PeNB CRE with the fixed bias of 6 dB,
respectively. Lower UE throughput was achieved despite employing interference
mitigation because the resource blocks available in the PeNB were not able to com-
pensate for the severe interference suffered by PeNB cell edge UEs. This ultimately
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affects the overall system performance and thereby reducing the energy efficiency
of the network.

In the most recent work of authors in [18], the effect of RSRP cell selection
algorithm and BRSRP with the different bias on energy efficiency and traffic load
balance of downlink in LTE-Advanced HetNet was investigated and verified through
simulation. The modeling of power consumption of base station was based on base
station power consumption parameters, where power consumption was assumed to
be constant irrespective of traffic [19]. The data rate was modeled based on link
adaption considering spatial distribution of UEs. From simulation result, RSRP per-
formed better in terms of total throughput and overall energy efficiency. However,
RSRP achieved poor traffic load balance due to poor offloading gain from MeNB to
PeNB. BRSRP with a bias of 16 dB achieved the worst performance due to severe
interference. BRSRPwith a bias between 3 dB and 9 dB achieved a trade-off between
traffic load balance and system performance. Therefore, adaptive bias setting has the
potential to improve system performance and traffic load balance.

3 Theoretical Background

Cell selection is the process in which pieces of UE attach themselves to the serving
cell for communication based on certain criteria [11]. The cell selection criteria are
determined by utilizing quality, coverage and load-based cell selection [16]. The
quality-based cell selection is initiated when the UE has better channel quality with
a candidate eNB than its serving eNB. And the coverage-based cell selection occurs
when UE has measured better RSRP with a candidate eNB than it serving eNB.
While in load-based cell selection, the congested eNB needs to handover some users
to a neighboring eNB to balance the traffic load [16].

3.1 RSRP Cell Selection

The RSRP cell selection is a coverage-based cell selection, where UE connects to
eNB that has the highest RSRP. For a HetNet, let RSRP from eNB n be denoted by
Pn in dB and defined according to [6] as follows:

RSRP = arg maxn{Pn} (1)

Themethod in Eq. (1) results in the underutilization of the resource at lowpowered
eNB(s) having lower transmit power, and it also tends to overload the high power
eNB(s) having higher transmit power thereby reducing system performance [9].
This is due to the fact that data rate varies linearly with resource block. Hence, load
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balancing is very critical in achieving high data rates which is the key performance
metric [17].

3.2 Biased RSRP (BRSRP)-Based Cell Selection

To tackle the traffic load balancing problem, the BRSRP-based association also
knownas cell range extension (CRE) is considered [10]. In such a scheme, an arbitrary
bias is added to the RSRP from PeNBs which offloads users from MeNBs to PeNBs
[18, 20]. CRE connects UEs to PeNB(s) rather than MeNB(s) by adding a bias value
called the “PCRE bias value,” to the signal level received from PeNBs transmission
power [18]. Hence, with CRE, PeNBs seem to have greater reference signal strength
than usual. Let RSRP from PeNB n and the CRE bias value for the PeNB be denoted
by Pn [dB] and Bn [dB], respectively. Then, the UE selects the serving eNB that
connects with the UE by the following equation according to [2].

BRSRP = arg maxn{Pn + Bn} (2)

For the purpose of pico CRE, Bn is selected to be a positive value so that the
handover boundary is shifted closer to the MeNB as in [6] depicted in Fig. 1.

CRE bias value does not increase the transmission power from the PeNBs but
makes UEs do handovers earlier to the PeNBs since they have a positive CRE bias
value [6]. The coverage area is not affected by load imbalance in the uplink because
the UE holds equal transmit power [16]. CRE provides significant improvement
for UEs in the uplink as a result of reduced path loss since the link distance are

                          PeNB RSRP

H
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MeNB
PeNB

MeNB RSRP
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Fig. 1 Biased receive signal power based association scheme
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reduced. However, in the downlink transmission, picocell edge UEs are exposed to
severe interference from MeNB for two reasons: First, the picocell edge UEs are
furthest away from the serving PeNB. Secondly, this UEs are much closer to the
interfering macrocells. These consequently reduce the throughput of the picocell
edge UEs as data rate varies logarithmically with SINR. CRE for picocells leads to
uplink-downlink traffic imbalance [16].

Therefore, with RSRP, heavily loaded MeNB provides lower data rates despite
holding higher SINR, and with BRSRP, the available resource in PeNB cannot com-
pensate for the lower SINR. Hence, adaptive bias setting that considers the dynamic
distribution of UEs will achieve a better system performance.

4 System Model

The default cell selection criteria in HetNet are the conventional RSRP for 3GPP
release 8/9 and BRSRP for 3GPP release 10/11 [17]. However, both RSRP and
BRSRP cell selection criteria suffer the same problem of poor energy efficiency and
traffic imbalance even with the best network configuration. Therefore, an energy-
efficient cell selection criterion is proposed based on adaptive bias setting. RSRP for
MeNB and PeNB was modeled according to [5] as follows:

RSRPm = PTXm − PL(m) − SF(m) + GA(m) − Lmisc (3)

RSRPp = PTXp − PL(p) − SF(p) + GA(p) − Lmisc (4)

where RSRPm and RSRPp are RSRP from MeNB and PeNB, respectively, PTXm

and PTXm are transmit power of MeNB and PeNB, respectively in dB, PL(m) and
PL(p) are path loss of UE fromMeNB and PeNB, respectively, SF(m) and SF(p) are
shadows fading for MeNB and PeNB, respectively, GA(m) and GA(p) are antenna
gain of MeNB and PeNB, respectively, and Lmisc is any miscellaneous losses. The
conventional RSRP and BRSRP cell association was modeled as follows:

RSRP = max
{
RSRPm,RSRPp

}
(5)

The BRSRP was modeled as follows:

BRSRP = max
{
RSRPm,RSRPp + Bn

}
(6)

whereas the proposed energy-efficient bias setting (EEBS) was modeled as follows:

EEBS = max
{
RSRPm,RSRPp + βn(EEH )

}
(7)
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where Bn is the fixed CRE bias value for PeNB in dB, βn is the variable CRE bias
value which varies in the range of 0–16 dB and EEH is highest downlink energy
efficiency for each network realization. Therefore, UE to eNB association decision
will vary for different association schemes as follows:

i. RSRP: The new users will likely associate to MeNB due to higher transmitted
power.

ii. BRSRP: For reasonably large values of bias which is static, the new user will
be forced to select the PeNB.

iii. EEBS: Depending on the estimated downlink energy efficiency, a dynamic bias
value is set and the new users can choose to associate betweenMeNB and PeNB.

Other benchmark models for measuring system performance such as throughput,
energy efficiency and load balance are also presented in this section. In this section
data rate and throughput are used interchangeably. The detailed scenario description
is presented in Sect. 6.

4.1 Capacity Model

For this chapter, round-robin resource allocationwas used, where it was assumed that
users within a cell share the available resource block equally so that they can attain
higher data rate [21]. Therefore, the number of resource block allocated to a user at
distance d from an eNB per transmission time interval was modeled according to
[22]:

NRB(uid, d) = NRB/TTI

NumUEpercell
(8)

where NRB is the number of resource block per cell, NumUEperCell is the number
of UE per cell; TTI is the transmission time interval. Therefore, from Eq. (8), the
number of resource block for a pico UE and a macro UE was modeled respectively
as follows:

NRBPico(h, k) = NRB

q
(9)

NRBmacro(h) = NRB

p
(10)

where h has values from 1 to the number of MeNB and k has values from 1 to
the number of PeNB per macrocell, NRBPico(h, k) is the resource block available
to a user connected to a picocell k in a macrocell h, NRBmacro(h) is the resource
block available to a user connected to a macrocell h, while q and p are the number
of users connected to picocell k and macrocell h, respectively. The data rate for a
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UE is calculated based on the UE distance d from the eNB, the average signal to
interference and noise ratio (SINR) at the UE is defined according to [22, 23] as;

SINR(uid, d) = PTX + GA − N − I − SF(d) − PL(d) − Lmisc (11)

where PTX is the eNB transmission power (per cell sector); GTx and GRx are
the eNB and UE antenna gains, respectively. N and I are the noise and the inter-cell
interference (ICI) power from all the interfering eNBs at theUE location respectively.
Lmisc is any miscellaneous loss e.g. the wall penetration loss for signals received
by indoor UE. Finally, PL(d) and SF(d) are the path loss and shadow loss in dB,
respectively, measured at different UE positions.

InLTE, theMediaAccessControl (MAC) layer allocate the physical Transmission
Block Size (TBS) which depends on the Modulation and Coding Scheme (MCS)
selected by the MAC layer scheduler. This is based on the Channel Quality Indicator
(CQI) reported by the UE after every Transmission Time interval (TTI) of 1 ms [22].
Link adaptation requires the selection of a proper MCS according to the channel
quality which is usually indicated by the SINR reported by each UE [24]. Following
the LTE specification in [25], three modulation levels of QPSK 16-QAM and 64-
QAM are supported. Together with turbo coding, there are 26 MCSs, this implies
that there are 26 CQI. The SINR to TBS mapping for these MCSs, assuming a block
error rate (BLER) target of 10% was modeled using the following procedure. First,
the effective SINR of a UE was modeled according to [24] as;

SINReff(uid, d) = min{SINR(uid, d),SINRthreshold} (12)

where SINReff(uid) is the effective SINR of a UE for mapping to corresponding CQI
and TBS. SINR(uid, d) is the SINR as a result of the UE’s instantaneous channel
conditions as in Eq. (11). And SINRthreshold is the SINR value corresponding to the
26 MCSs level. The mapping of SINR to TBS was modeled as follows:

TBS(uid, d) = TBS(SINReff(uid, d)) (13)

where TBS(uid,d) is the TBS in bits allocated to UE based on SINReff(uid).
In LTE, there are 7 OFDMA symbols in a resource block (RB) and TTI of 0.5 ×

10−3 s. For two RB pairs, the TTI is 1 × 10−3 s and number of subcarriers is 12 [22].
Hence, the number of symbols in an RB is equal to 7 multiplied by 12 which is 84
in TTI of 0.5 × 10−3 s and 168 in TTI of 1 × 10−3 s for an RB pair. The number of
bits in an RB is the number of symbols multiplied by the number of bits per symbol.
The number of bits per symbol is the modulation index multiplied by the coding rate
which is the symbol efficiency. Therefore, the number of bits in an RB pair is the
symbol efficiency multiplied by 168, and this is the TBS. Therefore, data rate (R) for
a UE i is given according to [22] as follows:

R(i) = TBS(i) × NRB(i)

TTI
(1 − BLER(i)) (14)
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where TBS(i) is the physical transmission block information capacity (in bits) for
the CQI state I, and BLER(i) is the average block error rate (BLER), TTI is the
transmission time interval and NRB(i) is the number of resource block allocated to
UE i. The achievable data rate for each UE has been modeled based on instantaneous
channel conditions. Therefore, from Eq. (14), the data rate R(uid,d) delivered to a
UE (uid) placed at distance d from the eNB assuming constant targeted BLER was
modeled as follows:

R(uid, d) = TBS(uid, d) × NRB(uid, d)

TTI
(1 − BLER) (15)

Hence, putting the value of NRB(uid, d) of macro and pico UE from Eqs. (9) and
(10), respectively, the data rate for macrocell UE and picocell UE was modeled as
follows:

RMUE = TBS(uid, d) × NRBmacro(h)

TTI
(1 − BLER) (16)

RPUE = TBS(uid, d) × NRBPico(h, k)

TTI
(1 − BLER) (17)

whereRMUEandRPUEare the data rate forUE connected tomacrocell and picocell,
respectively. Therefore, the total data rate within a macro area coverage was modeled
as follows:

RallUE =
∑

RMUE +
∑

RPUE (18)

where RallUE is the total data rate. Therefore, from Eq. (18), the average macro area
throughput and average UE throughput was modeled as follows:

Average Macro Area Throughput = RallUE

NumCell
(19)

Average UE Throughput = RallUE

NumUE
(20)

where NumCell is the total number of MeNB and NumUE the total number of UE.

4.2 Energy Efficiency Model

Assuming static power consumption irrespective of traffic load situations, the base
station power consumption is defined as in [19] by:

Pci = Nsec Nant(Ai PTX + Bi) (21)
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whereNsec andNant denote the eNBs’s number of sectors and thenumber of antennas
per sector, respectively. Pci is the average total power per base station, and PTX is
the power fed to the antenna as in Eq. (3). The coefficient Ai accounts for the part of
the power consumption that is proportional to the transmitted power, which includes
radio frequency amplifier power and feeder losses. While Bi denotes the power that
is consumed independently of the average transmit power which includes signal
processing and site cooling [19]. The energy efficiency is defined as the ratio of the
total data rate (RCi) delivered within a cell and power consumption of the cell (Pci),
which is defined as in [19] by:

EECi = overall data rate

total power consumed
= RCi

PCi
(22)

where RCi is the overall data rate in bits/s within a cell, and PCi is the total power
consumption of the cell in watts and EECi is the transmission energy efficiency for
all UE in bits/joule within the cell. Therefore, from Eq. (22), the total transmission
energy efficiency for HetNet was modeled as follows:.

EEHetNet = RallUE

Pcmacro + Pcpico × k
(23)

where RallUE is the total data rate obtained using Eq. (18). Pcmacro and Pcpico are the
power consumption of MeNB(s) and PeNB(s), respectively, obtained using Eq. (20),
while k is the number of PeNB per macrocell. Also from Eq. (23), the transmission
energy efficiency of macrocell and picocell was modeled as follows:

EEmacro(i) = RMUE

Pcmacro
(24)

EEpico(i) = RPUE

Pcpico
(25)

where EEmacro(i) is the energy efficiency of macrocell in bits/joule, EEpico(i) is the
energy efficiency of picocell in bits/joule. Pcmacro is the power consumption ofMeNB
in watts, Pcpico is the power consumption PeNB in Watts. The average energy effi-
ciency is given as follows:

AV.EE =
∑

EEHetNet

NumCell
(26)

where AV.EE is the average energy efficiency in bits/joules, NumCell is the number
of macrocells.
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4.3 Load Balancing Fairness Measure

The total number of UEs in a MeNB area comprises of UEs connected to MeNB and
UEs connected to PeNB(s). The same frequency is reused in the MeNB and PeNB,
and using round-robin resource allocations, equal time resources are assigned to
each UE. Therefore, it is expected that the average MeNB (MUE) throughput and
average PeNB UE (PUE) throughput given as UM and UP , respectively, is the same
for optimal load balance between MeNB and PeNB(s) according to [2]. Hence, the
load balancing fairness index UK is formulated as follows:

UK = |UM −UP | (27)

where |UM −UP | is the difference between the average MeNB (MUE) throughput
and average PeNB UE (PUE) throughput or vice versa. The smaller the value ofUK

the more balanced the system load distribution between MeNB and PeNB.

5 Description of Proposed Energy-Efficient Bias Setting

In the conventional BRSRP cell selection algorithm, fixed bias values are set. Due
to varying load condition in each cell of a mobile wireless HetNet, fixed bias setting
will lead to poor network performance [11]. It will only make sense if the bias value
is set based on current traffic load. Therefore, an improved cell selection algorithm
is proposed to dynamically set bias value based on estimated energy efficiency as a
load metric. The algorithm efficiently estimates the varying load in each cell, then,
based on the estimated load, a bias value is set per cell. This will ensure that an
optimized energy efficiency and traffic balance are achieved in the HetNet system.

The proposed algorithm requires that transmission energy efficiency for different
bias values (α) is first estimated, and then the bias value that yields the optimal
energy efficiency is configured per cell. It is noteworthy that energy efficiency is
estimated for every network realization, but adaptive bias configuration is carried
out only when an energy efficiency optimality gap is exceeded. This is to ensure
that frequent handover especially for cell edge UE is avoided. The optimality gap
(λ) is modeled as the ratio of the absolute difference between the energy efficiency
associated with configured bias (EEH ) and measured energy efficiency (EEM). The
energy efficiency optimality gap is expressed as follows:

λ =
( |EEH − EEM |
max(EEH ,EEM)

)
∗ 100 (28)

where EEH is the energy efficiency of the bias value initially configured, and EEM

is the new energy efficiency measured for each network realization. The higher the
difference between EEH and EEM or vice versa the higher the value of λ, and the
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higher the value of λ the more significant change between the estimated energy
efficiency and the previous value of energy efficiency. Therefore, for a small value of
λ, the current bias value remains unchanged else the process of adaptive configuration
is initialized to obtain the new bias value that yields an optimized performance. In
this chapter, the value of λ was set to be 10%. This value was obtained after running
several simulation runs, and worst case was considered for the same number of UE
to mitigate frequent handover.

There must be a limit to the value of CRE bias to be selected even though a
larger value of bias yields high offloading gain; however, the larger the bias value
the poorer the SINR of picocell edge UEs [2]. In the proposed algorithm, 16 dB
is considered as the maximum CRE bias value βn . This is because the difference
between MeNB and PeNB transmit power is 16 dB. CRE bias interval of 3 dB is
considered to minimize the number of bias values for each network realization. This
is done to avoid frequent handover and reduce simulation time. This means for each
network realization energy efficiency for each of the bias values will be estimated
and stored with the corresponding bias value. The bias value that yields the overall
highest energy efficiency will be automatically configured on the PeNB. The bias
value will be configured per macro area coverage and it will be implemented by the
MeNB. Therefore, PeNB(s) in the same macro area coverage will have the same
bias value and will be controlled by the MeNB following similar procedure with
the X-2-based handover [26]. The energy efficiency estimation will be carried out
periodically such that as the load condition varies, the network will automatically
adapt a new bias setting that will yield optimized performance.

The input to the proposed algorithm is acquired from the network side. The pro-
posed method is similar to the CRE-based cell selection which is employed in the
3GPP standard. In both methods, the RSRP measurement and CRE bias values are
used to consider the best serving cell. The novelty in this chapter is the development
of an adaptive CRE bias setting using energy efficiency as cell loadmetric. Algorithm
1 further explains the process of adaptive bias setting.

Algorithm 1: Energy Efficient Adaptive Bias Setting
1.0 initializations
2.0 βn= 1:3:βnmax, EETH= 0
3.0 For k = 1: Number of Drops
4.0 For u = NumUEs
5.0 For m = NumMeNB
6.0 Calculate UE RSRPm according to eqn (3)
7.0 For n = NumPeNB
8.0 Calculate UE RSRPp according to eqn (4)
9.0 If RSRPm > RSRPp+ βn
10.0 MeNB UE
11.0 Else
12.0 PeNB UE
13.0 End
14.0 Compute SINR for all UEs according to eqn (11)
15.0 End
16.0 Compute PeNB throughput according to eqn (16)
17.0 Compute PeNB energy efficiency according to eqn (24)
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18.0 End
19.0 Compute MeNB throughput according to eqn (17)
20.0 Compute MeNB energy efficiency according to eqn (25)
21.0 End
22.0 Compute overall energy efficiency according to equation (26)
23.0 If βn < βnmax
24.0 Increment βn by 3 and repeat step 1.0 to 23.0
25.0 Else
26.0 End
27.0 Compute λ according to eqn (28)
28.0 If λ < 10%
29.0 Repeat 1.0 to 28.0
30.0 else
31.0 Configure bias with highest energy efficiency
32.0 Compute load balance fairness according to eqn (27)
33.0 End
34.0 End

6 Scenario Description and Simulation Assumption

Based on the 3rd Generation Partnership Project (3GPP) LTE system level simula-
tions toolbox defined in [27], a system of seven wraparounds sectored MeNB (21
cells) with four PeNB per sector is considered in this chapter. The PeNBs are ran-
domly dropped within a MeNB area with minimum inter-site distance constraints.
Each sector has a directional antenna at 120° apart one for each sector, while the
PeNB has an omni-directional antenna. Users are uniformly distributed throughout
the coverage area. Mobility is represented by users having different locations in each
drop. Other related system level simulation parameters are specified in Table 1.

6.1 Propagation Models

For this chapter, single antenna receivers and transmitters are assumed, and therefore,
only large-scale parameters are considered in the channel model according to [25].

PRX − PTX = PL + SF + GA + Lmisc (29)

where PRX and P are the received and transmit powers,respectively, and PL and SF
are the path loss and fading due to shadowing, respectively. The directional antenna
gain is given asGA and Lmisc is any miscellaneous loss such as feeder cable loss. The
path loss and shadow fading are carrier frequency dependent, andUE communication
link is either line of sight (LoS) or non-line of sight (NLoS) depending on whether
the location of the UE is indoor or outdoor. The path loss models ofMeNB and PeNB
are expressed by Eqs. (30) and (31), respectively, according to [25].
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Table 1 System level simulation parameters

Parameter Setting/Description

Cell layout 7 Hexagonal MeNBs; 3 sectors; reuse 1

MeNBs radius 500 m

Bandwidth and carrier frequency 10 MHz at 2000 MHz

Number of PeNBs per sector 4

Hotspot radius 40 m

Minimum distances
between

MeNBs and
PeNBs

75 m

Among PeNBs 40 m

MeNBs and UE 35 m

PeNBs and UEs 10 m

Transmission power MeNBs 46 dBm

PeNBs 30 dBm

Path loss MeNBs 128.1 + 37.6 log10 (r [km])
[24]

PeNBs 140.7 + 36.7 log10 (r [km])
[24]

Number of UEs per sector 10, 20, …, 100

UE distribution Uniform distribution [27]

Packet scheduler Round-Robin

Power consumption parameters Macro: Ai = 21.45; Bi = 354.44,
Pico: Ai = 5.5; Bi= 38 [19]

128.1 + 37.6 log(r [km]) (30)

140.7 + 37.6 log(r [km]) (31)

where r is the three-dimensional (3D) distance between the UE and the MeNB or
PeNB which is expressed as follows:

r =
√
a2 + b2 (32)

where the absolute antenna height difference between an eNB and a UE is denoted
by b and a, respectively, is the two-dimensional (2D) distance between an eNB and
a UE.
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6.2 Antenna Patterns

The 3-sector antenna pattern used for each sector, reverse link and forward link is
specified according to [25] by:

Aθ = −min

[

12

(
θ

θ3dB

)2

, Am

]

(33)

θ is defined as the angle between the direction of interest and the boresight of the
antenna, is the 3 dB beamwidth in degrees, and Am is the maximum attenuation. For
a 3-sector scenario, θ3dB is 70°, and Am is 20 dB.

7 Results and Discussion

This section evaluates the performance of the proposed adaptive bias setting and
draws comparisons with the existing cell association techniques. The metrics to be
compared are the connection proportion of UEs to PeNBs, SINR, load balancing fair-
ness using the difference between average UE throughput for PeNB and MeNB [2],
MeNB area throughput and average UE throughput and energy efficiency, respec-
tively.

7.1 Proportions of UEs Connected to PeNB

The simulation was carried out for different number of UEs for the HetNet config-
uration 1. The proposed adaptive bias setting has the highest proportions of UEs
connected to the PeNBs when 10 UEs per cell were allowed into the network, after
which the BRSRP with 6 dB bias maintains the highest, as shown in Fig. 2.

This is due to the offloading of more UEs from MeNB to PeNBs as a result
of the effect of pico CRE associated with BRSRP and the proposed adaptive bias.
The proportion of UEs connected to PeNB for BRSRP with bias of 6 dB is about
10% higher than the conventional RSRP for the different number of UE simulated,
whereas, for the proposed adaptive bias, it is about 15% for 10 UE per cell, about 5%
for 20 and 30 UE per cell, after which there is no significant difference with RSRP.
This implies that as the number of UE increases, the proposed adaptive bias tends to
configure smaller bias values.

For the proposed adaptive bias, the proportion of PeNB UEs decreases for up
to 20 UEs in the system, but allowing up to 30 UEs into the system; however, the
connection ratio stabilizes. Therefore, it can be deduced that the best offloading gain
for the proposed adaptive bias is achieved when 10 UEs are allowed in the system.
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Fig. 2 PeNB UE proportion

Nevertheless, for both RSRP and BRSRP with 6 dB bias, the connection ratio does
not show a significant difference in all the number of UE considered.

7.2 SINR CDF

The cumulative distribution functions (CDF) of the SINR of BRSRP with 6 dB bias
and the proposed adaptive bias with 4 PeNBs lie slightly above the SINR CDF of
RSRP as the reference cell association scheme, as shown in Fig. 3.

The worst affected UE by interference in all the cell association schemes is the
cell edge (worst 5%) UE categories according to [2]. Essentially, any offloading due
to increase in PeNB cell range will result in SINR performance degradation of the
offloaded UEs. This is due to the interference effect suffered by picocell edge UEs
from the high transmission power of MeNBs. Consequently, the SINR CDF for the
cell edge UEs of the BRSRP with 6 dB was found to be slightly worse than the SINR
CDF of the RSRP. Nevertheless, the proposed adaptive bias shows no significant
difference with the RSRP. This shows that, with the proposed adaptive bias, the
picocell edge UEs will not be in an outage; however, with BRSRP and larger bias
value, the picocell edge UEs will be in an outage.
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7.3 Average UE Throughput as Load Balancing Fairness
Measure

Even though the proposed adaptive bias improves the traffic load balance in the
system when compared with RSRP, RSRP with a bias of 6 dB exhibited a more
balanced average UE throughput performance between PeNB and MeNB. The dif-
ference between the average throughput performance of the PeNB UEs and MeNB
UEs is 5.32, 3.62 and 1.6 Mbps for RSRP, proposed adaptive bias and BRSRP with
6 dB, respectively, as shown in Fig. 4.

Hence, BRSRP with 6 dB has the lowest difference in the average UE throughput
between theMeNBUEs and PeNBUEs, which shows amore balance in the system’s
load condition.

7.4 Throughput Performance

For all the traffic load considered, the average UE throughput and average macrocell
area throughput decrease with the proposed adaptive bias and BRSRP with a bias of
6 dB as depicted in Fig. 5.

This can be attributed to the fact that BRSRP and the proposed adaptive bias
essentially offload UE from MeNB to PeNB, and the larger the bias the more the
offloadinggain. Therefore, large bias tends to overload thePeNB thereby lowering the
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average achievable throughput of the PUE due the round-robin scheduler employed.
The round-robin resource allocation makes UEs share the limited resource blocks in
the picocell equally. Also as the bias increase, picocell edge UE increase, such UEs
are greatly impacted by interference from MeNB which consequently reduce their
rate. Conversely, the average UE throughput and average macrocell area throughput
increase with the proposed adaptive bias and BRSRP with a bias of 6 dB. This can
be attributed to the fact that, as UEs are offloaded to PeNBs fromMeNB, fewer UEs
are left in the MeNB to share the available resources and such UEs are not affected
by interference. Therefore, such UEs achieve higher throughput.

Even thoughBRSRPwith 6 dBbias achieves the best traffic load balance, it has the
worst averageUE throughput and averagemacrocell area throughput performance for
the traffic load considered. This can be attributed to poor SINRperformancewith 6 dB
and redundancy introduced to theMeNB due to limited UE allowed in theMeNB as a
result of biasing. It can also be observed that the proposed adaptive bias achieved the
best average UE throughput and average macrocell area throughput. This is because
the proposed adaptive bias was able to dynamically configure an optimized bias that
maximizes throughput and energy efficiency. However, the proposed adaptive bias
and RSRP achieve a poor traffic load balance. This is due to low offloading of UEs
from PeNB to MeNB.

7.5 Energy Efficiency Performance

The proposed adaptive bias achieved the best energy efficiency for all the traffic load
simulated as depicted in Fig. 6.

BRSRP with 6 dB achieved the worst energy efficiency due to poor SINR per-
formance which lowers the total achievable throughput. The PeNB have very high
energy efficiency compared to MeNB. This can be attributed to the fact the PeNB
utilizes a lower amount of power due to its small area coverage and delivers higher
throughput due to its lower path loss. On the other hand, the MeNB utilizes a higher
amount of power due to large area coverage and delivers lower throughput due to
higher path loss. Consequently, the energy efficiency of HetNet is greatly impacted
by the high power consumption of the MeNB.

8 Conclusion

HetNet deployment has the potential to improve capacity as well as energy efficiency.
However, cell selection based on BRSPwith fixed bias limits the energy efficiency in
LTE-Advanced HetNet. Therefore, in this chapter, an energy-efficient adaptive bias
setting strategy is proposed to dynamically configure bias using energy efficiency
as a cell load metric. The energy efficiency was modeled as a ratio of data rate to
base station power consumption. Thus, the power consumption is evaluated using
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Fig. 6 Average macrocell area energy efficiency

power consumption parameters while the system capacity was modeled based on
link adaptation, considering spatial distribution of UEs. From simulation results, it
was found that the proposed adaptive model achieves an improved energy efficiency,
average UE throughput and system capacity by 6.7, 9.7 and 6.9%, respectively,
when compared with BRSRP with a fixed bias of 6 dB as benchmark algorithms.
The proposed adaptive bias improves traffic to load balance in the system when
compared with RSRP. However, BRSRP with a fixed bias of 6 dB performs better in
terms of traffic load balance between PeNB and MeNB.
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Energy Efficiency of Backhauling
Options for Future Heterogeneous
Networks

Nasir Faruk, Abubakar Abdulkarim, Nazmat T. Surajudeen-Bakinde
and Segun I. Popoola

Abstract Deployment of heterogeneous networks (HetNets) is a veritable solution
to the challenges of coverage and capacity in meeting the unprecedented future
mobile data traffic. However, the high density of small base stations (SBS) in future
HetNets may increase the complexity of backhauling with higher capital expenditure
(CAPEX), operating expenditure (OPEX), and energy cost. In this paper, a compre-
hensive review of various backhauling options for future HetNet is provided. For a
HetNet system of seven SBS scenario, the efficiencies of the backhauling technolo-
gies are evaluated based on power consumption analysis. The implementation of
energy-efficient microwave communication links is also considered based on realis-
tic power consumption. Findings show that massiveMIMO (M-MIMO) backhauling
system consumes the highest power at maximum load. Power consumption in M-
MIMO tends to rise as the number of transmitting antennas increases. In the same
vein, power consumption in self-backhauling is relatively high when compared with
conventional backhauling systems such as the microwave point-to-point (P2P) and
point-to-multipoint (P2MP). On the other hand, total power consumed by satellite
hub site, fiber optics, and cloud radio access network (CRAN) technologies are found
to be relatively low (271.0571, 96.8083 and 90.1920 W, respectively). Fiber optics,
CRAN, satellite hub site, and P2MP backhauling options proved to be more energy
efficient in a decreasing order, when coverage and capacity are considered. The con-
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tribution of this work will help mobile network operators (MNO) in better decision
making toward achieving a sustainable backhauling in future HetNet deployments.

Keywords Backhaul technologies · Small cells · Heterogeneous networks ·
Energy efficiency

1 Introduction

In this era of Internet of Things (IoT), the unprecedented and continuous growth
in the demand for mobile data services by wireless devices and sensor nodes has
compelledmobile networkoperators (MNOs) to seek for how to significantly increase
their network capacity while decreasing the cost per bit of data delivered [1]. The
traditional cellular architectures cater for large coverage area but they often fail in
achieving the expected throughput due to high inter-cell interference, bandwidth,
and backhauling air interface and network configuration [2]. Hence, the need for
disruption in the network architecture of future mobile communication system so
as to meet the ever-increasing mobile data traffic. Meanwhile, most of the methods
proposed in the literature seek to increase network capacity and fill coverage gaps
at the expense of increased network energy consumption. The bulk of the energy is
consumed by the active nodes such as the macrobase stations (MBSs) and cooling
systems. Therefore, the cost of energy consumed may introduce new challenges in
the bid to finding traditional network energy solutions [3].

Several methods have been proposed to reduce the high power consumption in
future mobile networks. For instance, network densification can be achieved through
cell shrinking, wherein a large number of low power base stations are deployed to
complement existingMBSs. The deployment of these SBS (femto-, micro-, and pico-
base stations) have small coverage areas, may be exploited to improve the spectral
efficiencies and to achieve low path losses and low power consumption. This low
power can be as small as 500 W, which is feasible and sustainable, especially when
renewable energy sources are employed. The 4 kW power consumed by the MBS is
quite high when compared to that of SBS [3–5]. The resulting network consists of
various types of base stations each with different coverage areas, typically referred
to as heterogeneous network (HetNet) [1, 2].

Interestingly, an energy-efficient operation can be achieved by the deployment
of SBS since they consume less power. However, the high-capacity backhaul con-
nection between the SBS and the mobile core network since more SBS would be
required to complement a single high-poweredMBS. These SBS-backhaul linksmay
in turn increase the energy consumption of the overall SBS sites beyond what could
be supported with low-cost renewable energy solutions. An extensive deployment
of SBS will eventually increase the overall energy consumption due to SBS back-
hauling energy requirements [3]. Therefore, it is of paramount necessity to provide a
holistic and comprehensive approach toward achieving a more energy-efficient and
sustainable green backhauling for future HetNets.
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This paper, therefore, explores and provides a critical and systematic review of the
various backhauling options available today for future HetNet. Considering a HetNet
system of seven SBS scenario, the efficiencies of the backhauling technologies are
evaluated based on power consumption analysis. The implementation of energy-
efficient microwave communication links is also considered based on realistic power
consumption. The backhauling options covered in this paper include:massiveMIMO
(M-MIMO), satellite hub site, fiber optics, and cloud radio access network (CRAN)
technologies. The contribution of this paper will help mobile network operators
(MNO) in better decision making toward achieving a sustainable backhauling in
future HetNet deployments. The descriptions of the mathematical notations used in
this paper are provided in Table 1.

Table 1 Mathematical
notations and their
descriptions

Notation Description

H Efficiency
∑

Summation

� Delta

α Alpha

ϕ Quotient

PPA Power of transceiver

PRF Power amplifier

PDSP Power of baseband processing

Pcool Power of cooling unit

W Transmission bandwidth

PBB Baseband engine

PRF Small-signal transceiver

nPA PA efficiency

δfeed Feeder cable loses

Pmax Maximum transmission power

PSBS Power consumption of the SBS

Nj and Nv Represent the total number of MBS and
SBS, respectively

PMBS
j and PSBS

v The power consumption of each MBS and
SBS

f, f a and f b The instantaneous load on the HetNet,
MBS and SBS, respectively

n Power amplifier efficiency

Pt Transmit power

M Number of transmit antennas

Pc Circuit power of the corresponding RF
chain

(continued)
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Table 1 (continued) Notation Description

Po Determined by the non-transmission power
consumption

f a The load factor representing the number of
active users served by MBS network

Pt Transmit power

Pc Power consumption of the transceiver

Pbh
c,t , P

bh
SBS,t Power consumption of microwave unit(s)

at the wireless hub and SBS, respectively

Pbh
tot,t

Total power consumption of microwave
radio link (RRL)

SBS(CSBS
j ) Aggregate backhaul capacity of the RRL at

the SBS at site j .

NSBS
k

Total number of microwave at SBS

Plc, Phc Power consumption of the microwave
antennas associated with low and
high-capacity demand, respectively.

PSBS
Switch, P

c
Switch Power consumption of the switches used at

SBS and the hub site, respectively

CSBS
j and Cc

j Total backhaul capacity at the SBS and
hub site

NSBS
k and N c

k Number of microwave links at the SBS and
hub site, respectively

CMax - Switch,t Maximum capacity of the switch of type t

PSwitch,t Fixed power consumed by switch type t
irrespective of the load

ϕbh Backhaul type (either P2P or P2MP)

N Number of base station types used in the
network

Mi Total number of base stations of a specific
type i

Psat
bh Entire backhaul power consumption

Psat
hub The power consumption of the area hub

node

Mbs Total number of base stations in the entire
area

Psbs
j

Power associated with satellite backhaul
operations at the base station site j

Cth Threshold capacity

Vlow and Vhigh Power consumption of the very small
aperture terminal associated with low and
high-capacity demand, respectively

(continued)
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Table 1 (continued) Notation Description

pi Wireless transmission power of the RRH

η Power amplifier efficiency

PRF Circuit power consumption for a RRH

P0 and Pmax Power consumption of BBU in idle mode
and in full usage mode, respectively

�p Slope of the equivalent linear power model

k Relevant coefficient

Xcap Baseband processing capacity of one BBU
in the BBU pool

Ptx Average radiated power

ai Power consumption that scales with the
transmit power due to RF amplifier and
feeder losses

bi Models the power consumed
independently of the transmit power due to
signal processing and site cooling

ci Power consumption of the SFP used to
transmit over the backhauling fiber

Pbh Power consumed by the backhaul

Pi Power consumption of a base station of
type i

Pdl Power consumed by one downlink
interface in the aggregation switch used to
receive the backhauled traffic

Nul and Pul Total number of uplink interfaces and the
power consumption of one uplink interface

Ps Power consumed by a switch

Pmax Maximum power consumption of the
switch when all the downlink interfaces are
in use

Agmax Maximum amount of traffic a switch can
handle

2 Heterogeneous Networks (HetNets)

HetNet architecture involves the interconnection of different base station types
(macro-, micro-, pico-, and femto-base stations) with varying coverage footprints
and power requirements. The primary aim of introducing HetNet is to increase the
network capacity while ensuring higher Quality of Service (QoS) and bandwidth
usage in an energy-efficient manner. Table 2 presents the different base stations,
their coverage distances, power radiated, and consumed with the various backhaul-
ing technologies for connecting the base stations and the core networks. Figure 1



174 N. Faruk et al.

Table 2 Various base station types [3–5]

Base station
type

Coverage
distance (m)

Radiated power (kW) Consumed
power (kW)

Backhaul type

Indoor Outdoor

Macrocell <35,000 N/A 0.005–0.040 1–5 Fiber or
microwave

Microcell <2000 N/A 0.0005–0.002 0.1–0.3 Microwave

Picocell <200,000 0.0001 0.00025–0.002 0.009–0.015 Microwave or
fiber or DSL

Femtocell 10,000–15,000 >0.0001 N/A 6–14 Fiber/DSL

RRH-cell <2000 N/A 5–20 550–760 Fiber

Relay-cell <2000 <0.001 0.25–7 10–120 via DeNB

Fig. 1 Typical HetNet deployment scenario

is a schematic diagram which shows how the SBS are connected to the MBS. The
figure also shows the different links vis-à-vis backhaul, fronthaul, wireless access,
and relay backhaul links. This is a typical scenario of how the core network, which
accesses the Internet, can be connected to the various SBS.

3 Backhaul Technology Options

HetNet is described as the combination of different types of base stations with var-
ious building components, form factor, coverage area, operation, and cost of pro-
curements. The coverage footprints of the SBS are called small cells while those of
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Table 3 Copper cables available for backhaul [7]

Cable Standard Types Maximum
downstream
(Gbps)

Maximum
upstream
(Gbps)

Data over cable
service interface
specification
(DOCSIS)

ITU DOCSIS 1.0 1.0 0.01 0.01

1.1 0.01 0.01

2.0 0.03 0.03

3.0 0.2 0.2

3.1 1–2 1–2

3.1 full duplex 10 10

Digital
subscriber line
(DSL)

ITU G992 SADSL 0.012 0.0018

ADSL 2 0.012 0.0035

ADSL 2+ 0.024 0.0013

ADSL 2 + M 0.0033

VDSL 0.055 0.003

VDSL 2+ 0.055 0.003

G. FAST 1 1

Fiber optics
cable

ITU G.707,
G.783, G.784,
and G.803

Single mode >10 >10

Multimode

Plastic

MBS are referred to as macrocells [6]. Backhauling, which is of two types, wired
and wireless, is the connection between the SBS and the MBS. It also links the MBS
to the core network.

3.1 Wired Backhauling

Wired backhauling is a type of backhauling that uses cables to connect nodes together.
It is the most suitable solution for dense urban deployment due to its high reliability,
high data rate, and high availability. However, these advantages come with an extra
cost [6]. The two types of wired backhauling are copper and optical fiber cables.
Table 3 presents the different types of copper cables available for backhauling with
their corresponding maxima downstream and upstream data rates.

3.1.1 Wired Backhauling

Copper cables are in different kinds; they can be the E1/T1 or the Digital Subscriber
Line (DSL). E1/T1 cables are the ancient backhaul medium between base transceiver
stations (BTS) and base station controller (BSC). They operate using time division
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multiplexing techniques known as plesiochronous digital hierarchy (PDH). There are
two standard PDHdelivering different bit rates: the T-carriers (T1–T4) and E-carriers
(E1–E5). Leased T1/E1 copper lines dominate the backhaul solutions in the 1G and
2G networks as they provide suitable support for voice traffic, deterministic QoS, low
latency, and low delay variations (jitter). However, the increase in the required back-
haul capacity with the later generations of mobile networks has caused a huge growth
in the number of T1/E1 connections and cost. As a result, leased T1/E1 is not a suit-
able backhaul option for future networks [8]. DSL over existing copper infrastructure
is a good backhaul option for short distances. This is mostly used for indoor back-
hauling and for broadband applications [8]. However, its backhaul capacity depends
on the technology and the distance from the exchange. The continuous improve-
ments in DSL technology led to the evolution of ADSL2+, GSHDSL.DOC, VDSL2,
VDSL2+, etc. making them viable for mobile backhaul in future networks [9].

3.1.2 Optical Fiber Cable

Anoptical fiber cable comprises of a transparent core and a claddingwith rays of light
kept in the core by total internal refraction, while information is transmitted as rays
of light from one point to another within the cable. Fiber, which is widely used for
a shorter length, can support multiple propagation paths known as multimode Fiber
(MMF). A single-mode fiber (SMF) has a single path, and it provides high-speed
connectivity, making it suitable for future networks because any backhaul capacity
can be served [10]. On the other hand, a huge capital expenditure (CAPEX) of up
to $100,000 per km is incurred by the MNOs. It also requires permits, trenching,
boring, and ducting leading to high deployment duration [11]. Direct fiber could be
used to connect SBS or a hybrid or fiber and any other backhauling technologies
such as microwave. Figure 2 shows a typical fiber optics backhaul architecture.

3.1.3 Cloud Radio Access Network (C-RAN)

Cloud RAN (C-RAN) is a network architecture which maximizes baseband unit
(BBU) utilization by pooling network resources into a centralized, virtual pool called
the BBU/DU pool/hotel. These resources are then shared between the remote radio
heads (RRH). This architecture was first referred to as wireless network cloud by
IBM, but its name was later changed to C-RAN where the letter “C” could mean
“Cloud” or “Centralized.” However, in massive deployment, its high-speed fronthaul
connection makes it less cost-effective. Also, the latency requirements for the BBU,
real-time requirement for the operating system, clock synchronization, and capacity
requirement are its major limitations [12].
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Fig. 2 Fiber optic backhaul architecture a fiber–copper architecture, b fiber–microwave, c direct
fiber

3.2 Wireless Backhauling

Although wireless backhauling, when compared to the wired counterpart, has lesser
capacity and reliability, it becomes useful in areas wherewired backhauls are difficult
to deploy in terms of location or cost [10].Wireless backhauls are of twomajor types:
line of sight (LoS) and non-line of sight (NLoS). LoS backhaul requires that both
communicating antennas have clear visibility to each other for communication to
be made, while the NLoS does not require clear visibility to establish information
exchange [13].Wireless backhaul includesmicrowave, satellite, TVwhite space, self-
backhauling, etc. Parameters such as communication channel, spectrum efficiency,
cost of the backhauling, and backhaul capacity among others, for the two types of
wireless backhauls, are compared in Table 4.

3.2.1 Self-backhauling System

Self-backhauling system uses the existing cellular network infrastructures to provide
backhaul traffic. It involves the use of existing macro-RAN to provide backhaul to
SBS as shown in Fig. 4. Itsmerits include flexible deployment in dense SBS scenarios
using NLoS requirement, cost saving through reusing of macrocell infrastructures
such as spectrum, and leveraging the existing macrosite management and control
(such as security management, resource management, and fault management) [14].
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Table 4 Comparison of LoS and NLoS wireless backhauls

Parameters LoS NLoS

Communication channel Requires a clear unobstructed
visibility between antenna

Requires only to be placed
within range of the backhaul
radio unit

Multipath fading and signal
interference

A highly directional beam
transmits the data in a straight
line with little or no fading or
multipath radio interference

NLoS systems using OFDM
present a level of tolerance to
multipath fading and other
wireless channel impairments
not possible with LoS
systems

Spectrum efficiency This is a highly efficient use
of spectrum, as multiple
microwave transceivers can
function within a close
proximity to each other and
reuse the frequency band for
transmitting separate data
streams

It has limited spectrum
efficiency; hence, frequency
planning would have to be
planned to avoid too much
interference

Areas of application Mainly used for
high-bandwidth applications
for outdoor small cell
deployments rather than
indoor cells

It can provide coverage for
various types of small cell
setups with proper design

Tolerance to environment
changes

Pole tilting or swaying are
problems for deploying small
cell backhaul on structures
like utility, lighting, and
traffic poles. Also,
environments with many
trees, such as park, could
block LoS making them
impractical location for small
cells backhauled through LoS
technology

A single NLoS base station
can provide coverage for
multiple small cells within
the coverage area without the
need for an unobstructed path
between the transceivers, this
makes the technology highly
helpful for future planning
and upgrades

Cost of the backhauling The cost of the backhaul rises
quickly when compared to
NLoS in cases of huge
deployment especially if
daisy chains are involved as
significant number of skilled
technicians are usually
required for antenna
alignment for LoS
technologies

NLoS technologies are easy
to deploy as they are mostly
“plug and play” and can be
set up in a short time with
reduced labor costs

Backhaul capacity LoS technologies have no
upper limit lower than that
offered by the network

NLoS technology has an
upper limit to the amount of
data that each coverage area
can backhaul
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3.2.2 Microwave and Millimeter Wave Backhaul

Microwave and millimeter wave backhauls have dominated mobile networks for
years, especially in challenging geographical areas. They are easy to deploy and they
support a distance of up to 50 km. New innovations (such as adaptive coding and
modulation (ACM), compression accelerators) are being made so as to increase the
bandwidth on both links, hence making them operate in both LoS and NLoS (but
microwave is mostly used in LoS backhaul) using point-to-point (P2P) or point-to-
multipoint (P2MP) topologies [15]. The setback to microwave is that operating in
the licensed band increases the CAPEX while operating in the unlicensed band and
E-band takes less CAPEX (which is lightly licensed and relatively easy permission,
with frequency ranging from 70 to 80 GHz). However, it suffers attenuation from
atmospheric effects and other signals. In addition, it has been established that the
operating frequency and bandwidth of E-band are inversely proportional to coverage
distance. This makes the E-band mostly used in small cell backhauling and short
distance links. Also, when the gap between coverage areas is large and unpopulated,
it is not economically feasible to add towers to bridge the distance.

3.2.3 Satellite Backhauling

This type of backhaul is preferred in remote areas where other backhaul solutions
are uneconomical to deploy [6]. Backhaul over satellite was demonstrated in 2012 to
deliver a speed of 10 Mbps at download speed and 7 Kbps upload speed [7]. In many
areas where terrestrial infrastructure is limited satellite becomes the primary option
for transporting voice and data services. Satellite communication is not affected by
topological variations such as distance, terrain or LoS, making it the most viable
option for backhauling. Although satellite might be more expensive than other wire-
less solutions, it is scalable, highly reliable and can be deployed quickly, even under
the most challenging geographical and climatic conditions. Also, the invention of
small cell technology has motivated some MNOs to consider the use of carrier-class
satellite backhaul as a viable option to more traditional backhaul types. Compared to
macrocell solutions, these small cell networks are less expensive; when coupled with
a low-cost satellite MODEM/router. Moreover, it enables MNOs to expand cover-
age into rural areas quickly and economically or operate smaller networks on board
ships, in aircraft, or in remote mining areas [16]. In future network, the satellite will
contribute in areas like coverage extension, enhanced spectral utilization integrated
signaling systems, and providing resilience [17–19].

3.2.4 Wireless Fidelity (Wi-Fi) Network Technology

Wi-Fi has been modified from its initial indoor usage to feasible backhaul connec-
tivity of up to 38 km. It is based on the IEEE 802.11 standard using 5.8 and 2.4 GHz
unlicensed band. This feature, together with its low cost and flexible deployment,
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makes it a good alternative for microwave backhaul. However, it has design limita-
tions relevant to the achieved throughput, distance coverage, packet overhead, timing,
and synchronization [8, 9].

3.2.5 Massive Multiple-Input Multiple-Output (M-MIMO)
Backhauling

Massive MIMO system involves scaling up the antenna system of MIMO whereby
hundreds of MBS antennas serve thousands of Mobile terminals in the same
time–frequency resource. With aggressive spatial multiplexing and array gain,
massive MIMO could achieve capacity increase and energy efficiency improvement
[20, 21]. However, M-MIMO provides limited throughput to mobile end users
in high path loss channels, but this could be improved with the introduction of
small cells. This results in M-MIMO-based HetNet [22]. Other merits of M-MIMO
include energy and cost efficient components, reduced air interface latency, and
in-band wireless backhaul [23].

3.2.6 Worldwide Interoperability for Microwave Access (WiMAX)

WiMAX is a broadband broadcasting technology designed using IEEE 802.16 stan-
dards, and researches are done for outdoor purposes [8, 24]. It uses orthogonal fre-
quency division multiplexing (OFDM) to provide higher throughput, guaranteed
QoS, and larger coverage area than Wi-Fi. Theoretically, it can deliver data rates
from 75 Mbps in a single channel and up to 350 Mbps via multiple channels). It
can work in both unlicensed (typically 2.4 and 5.8 GHz) and licensed (typically
700 MHz, 2.3, 2.5, and 3.5 GHz) bands. Hence, the technology reduces the CAPEX
more than microwave as it offers a cheaper license spectrum as well as unlicensed
option. It uses the IEEE 802.16-2004 standard for backhauling in fixed connectivity
applications, P2P, P2MP, and mesh topology. It also supports high-throughput data
aggregation [6]. There are two main sets of WiMAX: the fixed WiMAX and the
IEEE 802.6e-2005 [24].

The fixed WiMAX was originally designed using IEEE 802.16-2001 standard
for fixed wireless broadband air interface with LoS and P2MP applications only
but was modified in subsequent standards up to 802.16d-2014 to target NLOS and
add WiMAX system profiles and Errata for 2–11 GHz. The 802.16e-2015 is an
amendment of the fixed WiMAX for mobile wireless broadband providing up to
vehicular speeds in licensed bands from 2 to 8 GHz. It also enables roaming for
portable users (laptops, tablets, etc.) within and between service areas [25].
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4 Performance Evaluation of Different Backhauling
Options

Minimum delay and latency, low cost and time to deploy, high-energy efficiency, and
availability of bandwidth for future improvements are the vital backhaul requirements
to sustain a network for future HetNet. These requirements vary with the available
backhaul options.Hence, there is a need to provide a critical and thorough comparison
among the available backhauling options as shown in Tables 5 and 6.

5 System Concept

The system concept introduced in this paper, as illustrated in Figs. 2, 3, 4, 5, 6, and 7,
consists of a conventional fixedmicrowave backhauling that is configured in P2P and
P2MP topology, the self-backhauling, M-MIMO, satellite, fiber, and C-RAN. These
are used to backhaul seven (7) SBS. For the microwave backhauls, we assume LOS
clearance between the microwave units (wireless hubs) and the SBS due to operation
in higher frequency bands. However, this LoS requirement can be relaxed by using
alternative multihop topologies (e.g., mesh) to route the fixed wireless links around
shadowing objects (e.g., buildings, mountains, etc.). For C-RAN, the SBS/RRHs are
connected to the BBU. Then, a fronthaul fiber is used to link the BBU to the core
network. In the case of fiber, we consider direct fiber connections to each SBS. The
satellite system consists of VSAT hubs connecting remote SBS. The M-MIMO and
self-backhaul require umbrella macrocells since the macroradio access link is used
to backhaul the small cells. We assume the SBS to be distributed within the MBS
cell coverage area. TheMBS users (MBS UE) and SBS user (SBS UE) are randomly
distributed within the MBS and SBS coverage areas, respectively, while the SBS are
uniformly distributed. The MBS radio access link is used to transmit the backhaul
traffic between the SBS and MBS. However, due to the capacity requirements of the
traffic aggregates from multiple SBS within the coverage area of the MBS, all other
UE traffics, both from the MBS and SBS, are routed to the core network via fiber
links. For fairness, in all the scenarios, we assumed that all the SBS transmits on the
same power level. Therefore, under normal condition, their power consumption and
the sizes of their coverage footprint are expected to be the same.

6 Backhaul Power Consumption Models

6.1 Power Consumption in MBS

The power consumption of the MBS (in watts) is given in Eq. (1) [3]:
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Table 5 Performance evaluation of fiber cable, copper cables, self-backhauling, and microwave
and millimeter wave backhauling options

Parameters Fiber cable Copper cables Self-
backhauling

Microwave and
millimeter wave

Cost Huge CAPEX
because it
requires permits,
trenching,
boring and
ducting

Low if already
existing but the
cost is high for
new deployment
or leasing

Low as existing
cellular network
infrastructures
are used

Operating in the
licensed band
cost more
CAPEX while
operating in the
unlicensed band
and E-band
requires lower
cost

Energy efficiency Highest High Moderate Moderate but
can be improved
using
energy-saving
devices

Quality of
Service (QoS)

Excellent Guaranteed Depends on the
presence of a
regulatory
framework for
sharing of
network
resources

Guaranteed

Delay and
latency

Low Low Low Low

Network
capacity

Unlimited
capacity

High with recent
brands
(10 Gbps)

Limited but can
be improved by
adding more
carriers

High
(2–170 Mbps)

Available
bandwidth for
future
improvement

High Not imminent as
capacity
depends on
number of
cables

Medium with
modifications

High available
spectrum
especially in the
V and E-band

Suitability for
heterogeneous
network

Aggregation and
core

Indoor small
sites and for low
traffic MBS
backhauling

Small cell
backhauling

MBS and SBS
backhauling

Duration of
deployment

Months and
possibly years

Months and
possibly years

Days Weeks

License required No, but permit
required for
laying cables

No but permit
required for
laying cables

No new
licensing is
required as same
licensing for
RAN

Licensed for
microwave but
light
licensed/unlicensed
for V-band

(continued)
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Table 5 (continued)

Parameters Fiber cable Copper cables Self-
backhauling

Microwave and
millimeter wave

Synchronization
and timing

Available Available Not available Available

Power
consumption

Least Least Low Moderate

Ease of
deployment

Difficult Difficult Easy Easy

Table 6 Performance evaluation of Wi-Fi, M-MIMO, satellite, and WiMAX backhaul options

Parameters Wi-Fi M-MIMO Satellite WiMAX

Cost Low Low Small cell
satellite requires
low CAPEX

Low but
standardization
is expected to
decrease the
CAPEX

Energy efficiency Moderate as it
has low power,
low
consumption but
low throughput
also

Better spectral
efficiency and
energy
efficiency

Energy-saving
mechanism such
as split
architecture can
improve the
energy
efficiency

Moderate but
better than
Wi-Fi as it
offers greater
throughput

QoS Not guaranteed Guaranteed Suffers
propagation
delay

Guaranteed in
P2MP model

Delay and
latency

Low Low High Low

Network
capacity

High (11, 54 or
600 Mbps)

High as it
multiplies the
capacity without
requesting for
more spectrum

Medium (384
Kbps to 4.81
Mbps)

High (75–359
Mbps)

Available
bandwidth for
future
improvement

High Sufficient
bandwidth using
same frequency
resources

Bandwidth
depends on
some
parameters such
as size of
antenna, etc.

Higher than
Wi-Fi

Suitability for
heterogeneous
network

Small cell
backhauling

MBS and SBS
backhauling

Geographically
challenged areas
and low density
area
backhauling

Outdoor and
indoor Small
cell
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Fig. 3 Architecture of C-RAN HetNet

Fig. 4 Architecture of self-backhauling network
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Fig. 5 Architecture of microwave and millimeter wave backhaul

Fig. 6 Satellite backhaul architecture
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Fig. 7 Architecture of M-MIMO HetNet

PMBS( fa) = nsector ×
(

fa ×
(

nTXX

(

PPA + PTRX
PRF

)

+ PDSP

)

+ Prec

)

+
n∑

i=1

P link
i + Pcool (1)

6.2 Power Consumption in SBS

The power consumption of the SBS PSBS (in watts) is given in Eq. (2) [3]:

PSBS( fb) = Prec + fb × (PPA + PDSP + Prec) + Pcool (2)

6.3 Self-backhauling

The power consumption for the self-backhaul is given in Eq. (3) [3]:

PselfB( fa) =
r=1∑

j=Q

N j P
MBS
j fa (3)
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6.4 M-MIMO Backhauling

The power consumption of M-MIMO MBS can be modeled adopting a linear BS
power consumption model as shown in Eq. (4).

PMB( fa) = fa × (1/nPA × Pt + M × Pc) + PDSP + Prec + Pcool (4)

6.5 Microwave Backhauling

Given SBS
(
CSBS

j

)
be the aggregate backhaul capacity of the microwave links at the

SBS at the site j and NSBS
k the total number of microwave at SBS, then the power

consumption of the microwave at the central point is given as [3]:

Pbh
SBS,t = Pagg

SBS

(
CSBS

j

) + PSBS
switch

(
NSBS
k , CSBS

j

)
(5)

Pbh
c,t = Pagg

c (Cc) + Pc
switch

(
N c
k ,C

c
)

(6)

If Cth is assumed to be 500 Mbps, therefore, generalize the total backhaul con-
sumption for the microwave (i.e., P2P and P2MP) network topology as:

Pbh
tot,t =

{
Pbh
c,t + NkPbh

SBS,t t ∈ P2MP
(
Pbh
c,t + Pbh

SBS,t

)
Nk t ∈ P2P

(7)

6.6 Satellite Backhaul Power Model

The power consumption of a heterogeneous satellite VSAT network including the
backhaul part can be written as:

P sat
tot =

N∑

i=1

Mi Pi + P sat
hub + Pswitch + P sat

sbs (8)

P sat
bh = P sat

hub +
Mbs∑

j=1

P sbs
j (9)
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6.7 C-RAN Backhauling

Regarding the total power consumption in C-RANwhere power consumed by RRHs
as well as that by the BBU pool is concerned. It can be expressed as follows:

Ptotal =
∑

iEN

PR + PB, (10)

As for the power consumption at RRH, PR can be expressed as:

PR = xi .Pi
η

+ PRF, (11)

Thus, PB can be expressed as follows:

PB = m.
(
P0 + �p · Pmax · y), (12)

wherem denotes the number of activeBBUs,P0, andPmax are the power consumption
of BBU in idle mode and in full usage mode, respectively. Besides, �p is the slope
of the equivalent linear power model which depends on the specific server adopted,
and y denotes the average utilization of each active BBU. Furthermore, the number
of active BBUs and the average utilization of each active BBU are related to the load
of each RRH. Based on this fact, parameters m and y can be expressed as follow:

m =
[∑

iEN k.xi
Xcap

]

y =
∑

iEN k · xi
m · Xcap

(13)

where k is a relevant coefficient, Xcap denotes the baseband processing capacity of
one BBU in the BBU pool. In addition, load balancing is considered in calculating
the average utilization of each active BBU. Also, PB can be further expressed as
follows:

PB =
[∑

iEN k · xi
Xcap

]

P0 + �p.Pmax
Xcap

∑

iEN

k · xi (14)

In summary, the total power consumption in C-RAN, where both wireless transmis-
sion power and baseband processing power are concerned, can be written as follows:

ptotal = m · P0 +
∑

iEN

(a · pi · xi + b · xi + PRF) (15)

where a = 1 = η, b = �p · Pmax · k/Xcap.
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6.8 Fiber Optic Backhauling

For the fiber-based case, the total power consumption of a heterogeneous mobile
radio network including the mobile backhaul can be written as:

PFIB
tot =

m∑

i=1

Ni Pi + PFIB
bh (16)

where according to the parameters defined below:

Pi = ai Ptx + bi + ci (17)

Pbh =
[

1

maxdl

(
m∑

i=1

Ni

)]

ps +
(

m∑

i=1

Ni

)

Pdl + NulPul

7 Simulation Parameters and Energy Efficiency Metrics

The energy consumption metric is used to quantify the energy consumption of
HetNets in order to characterized and measure our findings. This is to compare
the various HetNets system under investigation and to evaluate their efficiency and
identify where backhaul solution can be deployed while highlighting the trade-off
for such deployment. Our metrics were defined energy consumption per some
entities which include coverage area (w/m2), capacity (w/bits), and per load factor.
The two major energy standard metrics are the energy consumption ratio (ECR) and
the telecommunications energy efficiency ratio (TEER).

The ECR metric is defined as the ratio of the peak power (measured in Watts) to
the peak data throughput rate in bits per second and thus can be described as energy
consumed per bit of information transported express in joules per bit. This can be
mathematically express as:

ECR = POWER

DATA RATE
= Watt

Bps
= joul

bit
(18)

The TEER metric is a generic metric which is defined the ratio of useful work
done to the total power consumed; hence, we defined our TEER as coverage area per
consumed power which is mathematically expressed as:

TEER = POWER

COVERAGE
= Watt

Area
= joul

m2
(19)
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8 Results and Discussion

The power consumption of different backhaul systems is given by Eqs. (10)–(19).
In this analysis, a HetNet system with 7 SBS was considered. Specific implementa-
tion of the energy-efficient microwave links was also considered based on realistic
power consumption. This typically ranges from 25 to 50 W. We also considered the
load-varying power consumption of the microwave units. In Fig. 8, the power con-
sumption profiles (i) M-MIMO, (ii) self-backhauling, (iii) P2P wireless backhaul,
(iv) P2MP wireless backhaul, (v) satellite backhauling, (vi) CRAN, and (vii) fiber
are shown. The HetNet system comprises of seven (7) small base stations (SBS). The
power consumption of the SBS was kept low (<200W) as possible, even though, the
load-dependent components only contributed 39.5 W of the total power consump-
tion, while the non-load dependent amounted to 160 W and this is about 80% of the
total power which is mainly attributed to cooling. The MIMO backhaul system con-
sumes the highest power of 3.6341 kW atmaximum load. In this analysis, we used 48
transmitting antennas (M = 48). This power budget is rather conservative as 48 trans-
mitting antennas were used since no specific figure is set that constitutes M-MIMO
setup. However, Huawei, ZTE, and Facebook used as many as 96–128 antennas to
demonstrate M-MIMO systems. Therefore, the power requirement would be high.
For the self-backhauling, the transmitter power levels for the MBS is assumed to
be 20 W and the power consumption of the DSP, transceiver, rectifier, and back-
haul, respectively, are 29.5, 13, 180, and 35 W [3]. Then, the load-dependent power
consumption for a 3-sector LTE system with 10 MHz bandwidth and 2 × 2 MIMO
system for the MBS gave the highest value at peak load as 2.7693 kW.

Fig. 8 Power consumption profile of different backhaul systems
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The power consumption of the microwave P2P backhaul for both at the hub
site and SBS location are 528.6 and 216.44 W, respectively. The backhaul power
was computed for the P2MP HetNet at both hub site and SBS as 302.0571 and
216.4400 W, respectively. In this analysis, a microwave unit that supports up to
seven small cells was considered. Furthermore, the power consumption of the switch
at the hub site and SBS were observed to be 53 and 37 W, respectively. As shown in
Fig. 8, the load-dependent component of the power is negligible. The P2MP system
consumed less power as few backhaul units are needed to support many cells. In this
situation, one microwave unit was used to backhaul seven SBS. On the other hand,
the satellite, fiber, and C-RAN are at the lower part of the curve with fiber optics
backhaul consuming the least.Moreover, the load-dependent component of the power
is negligible, and little effects were observed. Almost no load impact was observed
for C-RAN and fiber as both backhaul system operates similarly. The total power
consumed by the satellite hub site (backhaul) and SBS are 271.0571 and 216.4400W,
respectively. Component power of 25, 30, 96.8083, and 90.1920 W were consumed
by the transponder, VSAT hub, fiber, and C-RAN backhaul, respectively.

Figures 9 and 10 depict the capacity efficiencies of all the backhaul systems
under consideration. The capacity efficiency shows howmuch power is consumed to
receive, process, and transmit a bit of information. This is computed by normalizing
the power consumption for each backhaul system relative to the backhaul capacity. In
this analysis, we used a fixed and uniform capacity of 500Mbps. Figure 9 shows that
fiber is the most efficient as it consumed less power to deliver the expected capacity,
followed by the CRAN, satellite, P2MP in that order. Figure 10 shows how this power
demand varies with capacity requirements. Similarly, peak power consumption for
each backhaul was used, although this is expected to significantly higher than the
values used. For a simple illustration, we maintained these peak values. Also, Fig. 10
shows that the capacity efficiency decreases with an increase in data rates, fiber, and
C-RAN yielding best results as only about 10W is required to process and transmit a
bit of information at 10 Gbps for fiber, whereas, about 364 W is needed for massive
MIMO and 278 W for self-backhauls.

Figure 11 presents the coverage effectiveness for each backhaul system. This is
defined as the amount of power consumed per unit square area for each backhaul
system. It indicates how much area is covered when 1 W power is consumed. We
obtained the coverage effectiveness of self-backhaul and massive MIMO backhaul
to be in a range of 0.0016–0.0025 and 0.0015–0.0028, respectively. At medium and
high network load, self-backhaul consumes less power than the M-MIMO backhaul
because the lower the W/m2 the better the efficiency. But at extremely low network
traffic, less than 10%, the massive MIMO backhaul is more efficient. We obtained
the coverage effectiveness of point-to-point, point-to-multipoint microwave, and
satellite backhauls to be in a range of 0.3898–0.04996 W/m2, 0.4503–0.5619, and
0.3808–0.4911, respectively. Fiber and C-RANbackhauls consume negligible power
to cover the area.
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Fig. 9 Capacity efficiency of different backhaul systems

Fig. 10 Capacity efficiency of different data rates
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Fig. 11 Coverage effectiveness of different backhaul systems

9 Conclusion

HetNet densification, by the means of deploying a large number of SBS, has been
identified as a key enabling strategy in meeting up the unprecedented mobile data
demands in next-generation cellular systems. Provision of effective backhaul system
for a large number of SBS without a high risk of increasing the CAPEX, OPEX, and
network energy costs still remains the main bottleneck.

This paper highlights various backhauling options for future SBS HetNet deploy-
ments. The pros and cons for each backhaul system technologies are compared with
respect to popular performance metrics that are major drivers for future networks.
Fiber optics and C-RAN still remain the most contending options as they are the
most energy efficient and could provide unlimited data rates with minimal delay and
latencies. The initial CAPEX and ease of deployment, however, may be the issue.
Self-backhauling and M-MIMO consumed high power. The power demand varies
with capacity requirements. The finding of this study will help the network service
providers to make more informed decisions in achieving optimum, sustainable, and
energy-efficient backhaul deployment for future heterogeneous networks.
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Analysis of Energy Consumption Model
in Cloud Computing Environments

Zhou Zhou, Jemal H. Abawajy and Fangmin Li

Abstract Cloud computing offers software as a service (SaaS), infrastructure as
a service (IaaS), and platform as service (PaaS) on pay-as-you-go model over the
Internet. Although Cloud have been attractive to businesses and other domains to
accommodate their increasing demand for computational power on demand bases,
the high energy consumption of Cloud data centers has recently become a serious
issue. The high energy consumption not only causes the energy wastes and system
instability but also generates low return on the investment (ROI) and adverse effects
on the environment. Therefore, it is extremely necessary to reduce energy consump-
tion while meeting the quality of service (QoS). This chapter presents a fine-grained
energy consumption model and analyzes its effectiveness in energy consumption of
data centers.

Keywords Energy consumption · Energy models · Cloud computing · Quality of
service

1 Introduction

Large-scale applications with high computational power demand continue to grow
exponentially. At the same time, the construction of large-scale Cloud data centers
to meet the requirements of the end-user applications continue to evolve rapidly. As
a result, Cloud computing has gained more and more attention from both industrial
and academic circles. Cloud computing provides access to a large pool of shared
computational resources as a service over the Internet in an on-demand, self-service,
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automatically scalable, and pay-per-use model [1, 2]. Although Cloud computing
providesmany benefits, the high energy consumption of Cloud data center is a serious
concern [3]. The global data center electricity consumption in 2013 is estimated to
be more than 4.35 GW with an estimated annual growth rate of up to 15% [4, 5].
Moreover, it is reported that only 10–15% of the supplied electricity to the data
center is consumed by servers in data centers [6, 7]. The high Cloud data centers
energy consumption has received significant attention recently due to its (i) high
operating costs, (ii) adverse effect on the environment, and (iii) a significant impact
on performance.

The problem of high energy consumption in Cloud data centers has recently
received unprecedented attention. This is because of the fact that the high energy
consumption not only causes the energy wastes and system instability, but also gen-
erates low return on the investment (ROI) and adverse effects on the environment.
Therefore, it is extremely necessary to reduce energy consumption while meeting
the quality of service (QoS). As Cloud data centers energy consumption has been
steadily increasing over the last few years, the minimization of Cloud data center
power and energy consumption has become a challenging problem. A variety of
energy-aware algorithms and mechanisms have been proposed to manage and con-
trol energy consumption in Cloud data centers. Energy consumption model plays an
important role in Cloud data center energy management and control [8]. Thus, any
practical approach for minimizing Cloud data center energy consumption requires
an accurate modeling of the Cloud data center energy consumption. An energy con-
sumption model is essential for guiding energy-aware algorithms such as resource
provisioning policies and mechanisms such as virtual machine migration policies.
Moreover, it affects the pricing mechanism which Cloud service providers charge
their customers. Therefore, it is necessary to propose an accurate energy consumption
model to perform effective management and control.

This chapter presents and analyzes a fine-grained energy consumption model. A
fine-grained energy consumption model is essential for guiding energy-aware algo-
rithms such as resource provisioning policies and VMmigration policies, while VM
migration algorithms leverage bothVMmigration and host consolidation technology
to reduce the energy consumption of data centers. In this chapter, we will explore
the fine-grained energy consumption model in data centers, for the purpose of saving
energy consumption.

The rest of this chapter is organized as follows: Sect. 2 describes related work.
The fine-grained energy consumption model is presented in Sect. 3. Performance
analysis of the fine-grained energy consumption model is discussed in Sect. 4. The
chapter is concluded with a discussion in Sect. 5.

2 Related Work

The need for managing energy consumption level has become important in various
domains [9–14]. Generally speaking, computational resources (e.g., CPU, memory,
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disk, and networking) and cooling system such as air conditioning equipment are
the main energy consumption sources in data centers. There are many energy-aware
algorithms such as resource provisioning policies and virtual machine migration
policies that aim to minimize the energy consumption of Cloud data center. For
example, a three-threshold energy-saving algorithm based on the empirical power
model is proposed in Zhou et al. [9, 10]. Beloglazov and Buyya [15] explored the
virtual machinemigration based on an empirical powermodel. This powermodel can
be obtained through recording energy consumption and CPU utilization at different
load level. An approach that tracks per-VMpower consumption is proposed inKansal
et al. [16]. These energy-aware algorithms generally depend on the underlying power
models used to develop them. Therefore, an accurate power model is the prerequisite
to achieve the fine-grained power control and management in the Cloud data center.

Prior works on power modeling focus on three main aspects: (i) performance-
monitor-counter (PMC)-based models [17–23]; (ii) resource utilization-based model
[24–30]; and (iii) their usage to guide energy-aware algorithms [9, 10, 15, 16]. PMC-
based approaches have three main steps. In the first step, events related to hardware
units such as CPU, memory, disk, and NIC are monitored. In the second step, the
events are analyzed, and those events that are related to the PMC set are screened
out. In the final step, the energy consumption model is built based on the relationship
between the PMC events and energy consumption by the system components.

Min et al. [17] proposed a surrogate model that is based on the PMCmethod. The
model can sustain the absolute estimation error of 5.32% when running the SPEC
benchmark. In addition, the authors validated the nonlinear relationship between the
server energy consumption andCPUutilization. In Bircher and John [18] andBertran
et al. [19], the authors used the microprocessor performance counters to account
for the entire system power consumption. Although the approach is promising, the
power model did not solve the high relative error problem. The PMC-based model
proposed by Bertran et al. [20] utilized the CPU and memory models for virtualized
environments. The analysis confirmed that: (1) Virtual machines (VMs) assigned the
same amount of CPU cycles do not consume an equal amount of energy; (2) PMC-
based method can be used in virtualized environments; (3) Dynamic voltage and
frequency scaling (DVFS) method does not affect the accuracy of the power model.
The methodology proposed in this paper is promising, albeit it did not consider the
consumption of disk and NIC.

In Singh et al. [21], Contreras andMartonosi [22], the authors leveraged the PMC
method to build real-time power model. In order to accurately measure the energy
consumption of a virtual machine, authors in Xiao et al. [23] proposed a new virtual
machine power model based on a concept called a “relative PMC.” Based on the
power model, the authors proposed a virtual machine scheduling algorithm to reduce
the energy consumption and minimized service level agreement (SLA) violations.
However, the approach is complicated as it collects too many events leading to high
overheads. Furthermore, the approach is not suitable to extend to other servers or
VMs in a data center.

The resource utilization-based approaches leverage the resource utilization of
a server (such as CPU utilization, memory utilization, and so on) to construct an
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energy consumption model. Garg et al. [24] proposed an approach based on the CPU
utilization. This model does not reflect the true energy consumption in data centers
[26]. Beloglazov et al. [25] leveraged the maximum power consumption, idle power
consumption, and CPU utilization of a server to build a power model. Hsu and Poole
[26] proposed an exponential model based on CPU-intensive tasks. Zhang et al. [27]
argue that the relationship between the energy consumption and the CPU utilization
is not linear and instead it is a cubic. Thus, the authors proposed a modified power
model named Cubic Model in order to improve the accuracy of the power model.
The model proposed in Fan et al. [28] and Economou et al. [29] estimates the energy
consumption of the system component (such as CPU) and then builds a linear power
model based on statistics. The E-mc2 framework [30] models the requirements of
energy consumption in Cloud computing systems. This framework is easy to perform
although the accuracy of the power model should be further improved.

There are many energy-aware algorithms such as resource provisioning policies
and virtual machine migration policies that aim to minimize the energy consumption
of Cloud data center. For example, a three-threshold energy-saving algorithm based
on the empirical power model is proposed in Zhou et al. [9, 10]. Beloglazov and
Buyya [15] explored the virtual machine migration based on an empirical power
model. This power model can be obtained through recording energy consumption
and CPU utilization at different load levels. An approach that tracks per-VM power
consumption is proposed in Kansal et al. [16]. These energy-aware algorithms gen-
erally depend on the underlying power models used to develop them. Therefore, an
accurate power model is the prerequisite to achieve the fine-grained power control
and management in the Cloud data center.

In summary, although both the disk and NIC subsystems consume considerable
energy as compared to CPU and memory subsystems, they are generally ignored in
the development of the model. Moreover, different application characteristics lead to
different energy consumption. Thus, an accurate Cloud data center energy consump-
tion model must consider not only the CPU, memory, disk, and NIC subsystems but
also the application characteristics. By accounting for CPU, memory, disk, and NIC
subsystems contribution to the total energy consumption as well as the application
characteristics, our approach tackles the shortcomings of the existing models.

3 Fine-Grained Energy Consumption Model of Servers

Existing approaches [20, 24, 27] on energy management models in data centers
primarily focus on CPU energy consumption [31], while ignoring the energy con-
sumption by other subsystems such as memory, disk, and NIC subsystems. As CPU
is only one of the critical resources in Cloud data centers, data center energy con-
sumption minimization techniques should consider all resources contributing to the
overall energy consumption at the same time. With Cloud data centers using huge
storage subsystems to store and process data and the increasing communication traffic
seen by the data centers make the disk and NIC subsystems significant contributors
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to the energy consumption of the data centers. Therefore, in addition to the energy
consumed by CPU and memory subsystems, the energy consumed by the disk and
NIC subsystems should be considered in building the energy consumption model
for Cloud data centers. Furthermore, existing approaches do not consider applica-
tion characteristics when modeling the energy consumption model for Cloud data
centers. The fact that different applications impose different resource requirements,
considering application characteristics in the development of themodel also becomes
a primary concern.

In this section, we propose a holistic Cloud data center energy consumptionmodel
that is based on the Principal Component Analysis (PCA) and regression methods.
Unlike the existing approaches that focus on a single system components in the
data center, the proposed approach takes into account the energy consumption of
the processing unit, memory, disk, and network interface card (NIC) as well as the
application characteristics. The experimental results of the proposed approach show
that the proposed energy consumption model achieves more than 95% prediction
accuracy. The main contributions of the section are summarized as follows.

• A novel holistic Cloud data center energy consumption model that considers CPU,
memory, disk, and NIC subsystems, as well as the application characteristics
(CPU-intensive task, transactional web task, and I/O-intensive task).

• Principal Component Analysis (PCA) and regression methods are used to analyze
each subsystem parameter’s contribution accounting for total energy consumption.

• Extensive experimental analysis to validate the proposed model using widely
adopted benchmarks to evaluate the power and performance characteristics of
servers [27].

• Comparison of the proposed model with three baseline energy consumption mod-
els, the Ramon Model [20], Linear Model [24], and Cubic Model [27].

3.1 Methodology

Figure 1 shows the general steps used to develop the proposed energy consumption
model. The methodology consists of the feature extraction, feature selection, mod-
eling, and evaluation steps. The feature extraction step is responsible for collecting
features of the resources and applications relevant to energy consumption model-
ing. This step can be performed by using either resource utilization-based method
or PMC-based method. Some features extracted in this step may be related to the
power model while others may not be related to the power model.

The feature selection step is responsible for finding good feature representation.
This step can be accomplished by deploying approaches such as Correlation Matrix
(CM) or Principal Component Analysis (PCA). The power model is then built using
the subset features returned from the feature selection step. In this section, we will
use regressionmethods to build themodel. An effective powermodel is characterized
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Fig. 1 Construction of energy consumption modeling approach

by its accuracy, representativeness, and extensibility. Finally, in the “evaluate” step,
the accuracy of the model is assessed in order to insure its effectiveness.

3.2 Feature Extraction and Selection

In this section, we discussed the steps performed to produce the collection of features
used to build the energy consumption model.

3.2.1 Feature Extraction

In building a proper power model, it is necessary to include appropriate subsystem
parameters related to energy consumption. Let Psystem be the total power that can be
consumed by a server in a data center. Therefore, Psystem can be modeled with the
following equation:

Psystem = PCPU + Pmemory + Pdisk + Pnetwork + σ (1)

where PCPU, Pmemory, Pdisk, and Pnetwork are the power of CPU, memory, disk, and
NIC, respectively. The parameter σ can be considered as a constant and represents
the power of other subcomponents of a system excluding CPU, memory, disk, and
NIC. The parameter PCPU can be modeled with the following equation [30]:

PCPU = (Pmax − Pidle) ×U + Pidle (2)
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wherePmax represents themaximum power of the server,Pidle is the power consumed
when the server is idle while U denotes the CPU utilization of the server. As the
value of PCPU is related to U, we choose parameter “Processor Time” as energy
consumption representative of the CPU. Note that the “Processor Time” refers to the
percentage of an elapsed time that the processor spends executing a non-idle thread.
We can monitor the value of “Processor Time” to get the CPU utilization.

The parameter Pmemory, it can be modeled as follows [30]:

Pmemory = PPRE + PACT + PRD + PWR + PREF (3)

where PPRE, PACT, PRD, PWR, and PREF are the power of pre-charge (PPRE), activate
(PACT), read (PRD), write (PWR), and refresh (PREF), respectively. As the value of
Pmemory is associated with writing and reading, we choose “Memory Used” and
“Page Fault/Sec” parameters as energy consumption representative of the memory
subsystem. “Memory Used” and “Page Fault/Sec” represent the memory utilization
and an average number of error pages per second, respectively.

For the parameter Pdisk, it could be modeled with the following equation [30]:

Pdisk = PREAD + PWRITE + PIDLE (4)

where PREAD, PWRITE, and PIDLE represent the power needed for reading, writing, and
remain idle, respectively. We select parameters “Disk time” and “Disk Bytes/Sec” as
the energy consumption representative of the disk. “Disk time” is the percentage of
elapsed time that the selected disk drive was busy servicing the read or write requests.
The “Disk Bytes/Sec” refers to the total number of bytes sent to the disk (write) and
retrieved from the disk (read) over a period of one second.

As for the parameter of Pnetwork, it can be modeled as [30]:

Pnetwork = C0 + C1 × S

B
(5)

where parameters C0 and C1 can be considered as constants, parameter S is the file
size inMB; parameter B is the bandwidth inMB/s. We choose the parameters “Bytes
Total/Sec” and “Current Bandwidth” as energy consumption representative of the
NIC. “Bytes Total/Sec” is the rate at which the network adapter is processing data
bytes; “Current Bandwidth” is the bandwidth.

3.2.2 Feature Selection

In this section, we discuss the process used to select a subset of relevant features from
those extracted in the preceding section for use in building power model. In order to
determine the subset features, we use a Principal Component Analysis (PCA) [32].
To select a subset features, we deployed three application domains: CPU-intensive
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applications, transactional web and I/O-intensive applications on DELL PowerEdge
R720 with the configuration shown in Table 1.

The SPEC CPU2006 benchmark [33] is a typical example of CPU-intensive task,
and it includes “401.bzip2,” “403.gcc,” “429.mcf,” “453.povray,” and “450.soplex”
subsets. For the transactional web application, we used the HP LoadRunner [34],
which is a typical transactional web application. For I/O intensive application, we
used Iozone dataset [35], which is a typical I/O-intensive task.

Table 2 shows the feature values (Processor Time, Memory Used, Page Fault/Sec,
Disk Time, Disk Bytes Total/Sec, Bytes Total/Sec, and Current Bandwidth) and
corresponding energy consumption under three application domains (CPU-intensive
applications, Transactional Web, and I/O-intensive applications).

For example, regarding CPU-Intensive application, when “Processor Time” =
4.23%, “Memory Used” = 4.47%, “Page Fault/Sec” = 512.78, “Disk Time” =
0.66, “Disk Bytes/Sec”= 4102.28, “Bytes Total/Sec”= 562.00, and “Current Band-
width” = 9.22 × 1018, the total energy consumption is 122.49 W. Similarly, for
transactional web application, when “Processor Time” = 6.90%, “Memory Used”
= 4.29%, “Page Fault/Sec” = 28,192.04, “Disk Time” = 2.86, “Disk Bytes/Sec” =
689,229.22, “Bytes Total/Sec” = 64.13, and “Current Bandwidth” = 9.22 × 1018,
the total energy consumption is 107.00 W.

How these features influence the energy consumption?Which feature is related to
energy consumption? Which feature is not related to energy consumption? To solve
these problems, we make a Principal Component Analysis (PCA) [32] for factors’
contribution, and each factors’ contribution is listed in Table 3.

As shown in Table 3, the top three features (i.e., Processor Time, Disk Bytes/Sec,
and Disk Time) contribute significantly while Page Fault/Sec, “Memory Used,” and
“Bytes Total/Sec” contribute very little while “Current Bandwidth” does not con-
tribute at all. This is because a CPU-intensive application also called a compute-
intensive task requires a lot of processing power as compared to other resources.

The transactional web application is similar to CPU-intensive application regard-
ing the contribution of the features. As shown in Table 3, the top three features (i.e.,
Processor Time, Disk Bytes/Sec, and Disk Time) contribute significantly while Page
Fault/Sec and “Memory Used” contribute very little with and “Bytes Total/Sec” and

Table 1 Configuration of
DELL PowerEdge R720

Component name Parameter

CPU architecture 2 × (intel)Xeon E5-2620 six-core

CPU frequency 12 × 2.0 GHz

Level 1 cache 6 × 32 KB

Level 2 cache 6 × 256 KB

Level 3 cache 15 MB

Memory size 20 GB DDR3

Disk size 2 × 1 TB

NIC Intel quad-port gigabit network adapter
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Table 3 Contributions of
various features

Parameter Application contribution (%)

CPU
intensive

Transactional
web

I/O intensive

Processor
Time

62 63 53

Disk
Bytes/Sec

19 21 27

Disk Time 14 11 15

Page
Fault/Sec

4 3 4

Memory
Used

1 1 1

Bytes
Total/Sec

0 1 0

Current
bandwidth

0 0 0

“Current Bandwidth” contributing nothing. The results for the I/O intensive applica-
tion are similar to the other two applicationswith the top three features (i.e., Processor
Time, Disk Bytes/Sec, and Disk Time) contribute significantly while Page Fault/Sec
and “Memory Used” contribute very little with and “Bytes Total/Sec” and “Current
Bandwidth” contributing nothing.

Therefore, we choose the nonzero features (i.e., Processor Time, Disk Bytes/Sec,
Disk Time, Page Fault/Sec, and Memory Used) to build the energy consumption
model.

3.3 Energy Consumption Modeling

We used the subset features from the previous section and a regression method
to construct the energy consumption model. In this section, we use four modeling
methods namely a linear regression, a power regression, an exponential regression,
and a polynomial regression in combination with the representative parameter (see
Sect. 3.2) and EViews 8.0 [36] software to build the energy consumption models. In
the following subsection, we use y, x1, x2, x3, x4, x5, and x6 to represent the features
used for use in building power model as shown in Table 4.

3.3.1 Multivariate Linear Regression Model

The multivariate linear regression model is defined as follows:
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Table 4 Parameters used Parameter Description

y Energy consumption

x1 Processor Time

x2 Disk Bytes/Sec

x3 Disk Time

x4 Page Fault/Sec

x5 Memory Used

x6 Bytes Total/Sec

y = β0 + β1x1 + β2x2 + · · · + βmxm + ε (6)

where y is the real energy consumption, β0, β1, β2, …, βm are the regression coeffi-
cients and ε represents a stochastic error. For the CPU2006 benchmark [33], which
is CPU-intensive task, the energy consumption model of linear regression is given
in Eq. (7).

y = 102.9169+ 1.967511× x1 − 1.37× 10−5 × x2 − 0.001408× x3

+ 1.29× 10−5 × x4 + 2.528892× x5 (7)

For the transactional web task LoadRunner [34], the energy consumption model
based on the linear regression is given in Eq. (8):

y = −869.7− 14.18× x1 − 8.68× 10−5 × x2 + 22.92× x3
+ 0.002449× x4 + 234.2339× x5 − 0.067755× x6 (8)

For I/O-intensive task Iozone dataset [35], the energy consumption model based
on the linear regression is given in Eq. (9).

y = 111.5943+ 9.173805× x1 − 1.51× 10−6 × x2 + 2.037900× x3
− 0.000781× x4 − 19.46270× x5 (9)

3.3.2 Power Regression Model

The power regression model is represented as follows:

y = b0x
b1
1 · xb22 · xb33 · · · xbmm + ε (10)

where y is the real energy consumption, b0, b1, b2, …, bm are the regression coeffi-
cients and ε represents a stochastic error. The energy consumption model based on
power regression approach for CPU2006 benchmark [33] is shown in Eq. (11).
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y = e4.840775 × (x1)
0.219818 × (x2)

−0.056527

× (x3)
0.067893 × (x4)

0.000708 × (x5)
0.096609 (11)

For the transactional web task LoadRunner [34], the energy consumption model
based on the power regression is given in Eq. (12):

y = e8.920533 × (x1)
0.198811 × (x2)

−0.008926 × (x3)
−0.028378

× (x4)
−0.016527 × (x5)

−2.920025 × (x6)
−0.014455 (12)

For I/O-intensive task Iozone dataset [35], the energy consumption model based
on the power regression is given in Eq. (13).

y = e5.626638 × (x1)
0.038072 × (x2)

−0.000339 × (x3)
−0.054210

× (x4)
0.010081 × (x5)

−0.751834 (13)

3.3.3 Exponential Regression Model

The exponential regression model is defined as follows:

y = β0e
β1x1+β2x2+···+βmxm + ε (14)

where y is the real energy consumption, β0, β1, β2, …, βm are the regression coeffi-
cients and ε represents a stochastic error. The energy consumption model based on
exponential regression approach for CPU2006 benchmark [33] is shown in Eq. (15).

y = e4.641940 × e

(
0.016× x1 − 1.35× 10−7 × x2 + 0.00085× x3
+1.56× 10−7 × x4 + 0.022× x5

)
(15)

For the transactional web task LoadRunner [34], the energy consumption model
based on the exponential regression is given in Eq. (16):

y = e−4.67 × e

(−0.13× x1 − 8.18× 10−7 × x2 + 0.217× x3
+2.30× 10−5 × x4 + 2.23× x5 − 0.0006× x6

)
(16)

For I/O-intensive task Iozone dataset [35], the energy consumption model based
on the exponential regression is given in Eq. (17).

y = e4.741696 × e

(
0.078× x1 − 1.27× 10−8 × x2 + 0.017× x3
−6.53× 10−6 × x4 − 0.1736× x5

)
(17)
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3.3.4 Polynomial Regression Model

As for polynomial regression, the regression model is defined as follows:

y = β0 + β1(x1)
2 + β2x2 + · · · + βmxm + ε (18)

where y is the real energy consumption, β0, β1, β2, …, βm are the regression coef-
ficients and ε represents a stochastic error. The energy consumption model for the
CPU2006 benchmark [33] based on the polynomial regression model is shown in
Eq. (19).

y = 111.4598+ 0.151606× (x1)
2 − 1.83× 10−5 × x2

+ 0.420755× x3 + 1.08× 10−7 × x4 + 1.816320× x5 (19)

For the transactional web task LoadRunner [34], the energy consumption model
based on the polynomial regression is given in Eq. (20):

y = −334.1569− 0.115852× (x1)
2 − 6.70× 10−5 × x2

+ 16.867× x3 + 0.000406× x4 + 102.1× x5 − 0.0797× x6 (20)

For I/O-intensive task Iozone dataset [35], the energy consumption model based
on the polynomial regression is given in Eq. (21).

y = 78.99736+ 1.459156× (x1)
2 − 1.51× 10−6 × x2

+ 2.667544× x3 − 0.000969× x4 − 12.17560× x5 (21)

4 Performance Analysis

In this part, we discuss the experimental analysis of the energy consumption model
proposed in this section. All experiments were run on DELL PowerEdge R720 with
2.0 GHz (2 × Six-core), 20 GB RAM, and 2 TB disk storage. The parameters and
values for the server configuration are given in Table 1. The benchmark for CPU-
intensive task is SPECCPU2006 [33] (it includes “401.bzip2,” “403.gcc,” “429.mcf,”
“453.povray,” and “450.soplex” subsets), and the benchmark for transactional web
task is HP LoadRunner [34] and for I/O-intensive task is Iozone [35].

To evaluate the accuracy of the energy consumption model, we define the follow-
ing metric:

Powererror = Powerpredict − Powerture
Powertrue

(22)
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where Powerpredict is the predicted value of the energy consumption by the model,
Powerture is the true value of the energy consumption, and Powererror is the rela-
tive error of the energy consumption. The true value of the energy consumption is
measured using the Power Bay-SSM tool.

We compared the proposed approach with three baseline approaches: the Ramon
Model [20], the Linear Model [24], and the Cubic Model [27]. The Ramon Model
focuses on CPU and memory, while the Linear Model and the Cubic Model focus
on CPU alone.

4.1 Results and Discussion

In this section, we discuss the experimental results for the seven models (i.e., linear
regression, power regression, exponential regression, and polynomial regression,
Ramon Model [20], Linear Model [24], and Cubic Model [27]) under the execution
of various applications.

4.1.1 Analysis for CPU-Intensive Task

Figure 2 shows the energy consumption of the seven models while Fig. 3 shows the
relative error generated by the seven models for the CPU-intensive task CPU2006
[33].

Fig. 2 Energy consumption for the seven models
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Fig. 3 Relative error for the seven models

Compared to Ramon Model [20], Linear Model [24], and Cubic Model [27], the
four modeling methods (linear regression, power regression, exponential regression,
and polynomial regression) perform slightly better. The reason is two folds. Firstly,
the four modeling methods consider all components related to energy consumption
such as CPU, memory, disk, and NIC during the construction of power model, while
RamonModel only takes into account the consumption of the CPU and memory, and
Linear Model and Cubic Model only consider the consumption of CPU. Secondly,
the four modeling methods leverage the PCA method to improve the accuracy of the
power model based on the application characteristics.

4.1.2 Analysis for Transactional Web Task

For the transactional web task LoadRunner [34], Figs. 4 and 5 show the energy
consumption and relative error under the transactional web task, respectively.

The four modeling methods (linear regression, power regression, exponential
regression, and polynomial regression) perform better than Ramon Model [20], Lin-
ear Model [24], and Cubic Model [27]. The reason includes two aspects. On the one
hand, the characteristic of the transactional web task determines that this task visits
memory and network frequently. Therefore, only considering CPU or memory factor
is not enough to build a power model. Conversely, the four modeling methods not
only consider CPU and memory factors, but also disk and NIC factors. On the other
hand, the four modeling methods utilize the PCA method to improve the accuracy
of the power model based on task characteristics. Figures 4 and 5 also illustrate that
Ramon Model is better than Linear Model and Cubic Model; this can be explained
by the fact that RamonModel considers both CPU and memory factors, while Linear
Model and Cubic Model only consider CPU factor.
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Fig. 4 Energy consumption for the seven models

Fig. 5 Relative error for the seven models

4.1.3 Analysis for I/O-Intensive Task

Figures 6 and 7 show the energy consumption and the relative error for the seven
models under the I/O-intensive task, respectively.

In comparison with the Ramon Model [20], the Linear Model [24], and the Cubic
Model [27], the proposed four models (i.e., linear regression, power regression,
exponential regression, and polynomial regression) improve more than 2% accuracy
of the energy consumption model. The reason can be explained by the fact that the
four modeling methods consider tack characteristics and all factors related to energy
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Fig. 6 Energy consumption for the seven models

Fig. 7 Relative error for the seven models

consumption (such asCPU,memory, disk, andNIC) during the construction of power
modeling. Figures 6 and 7 also show that RamonModel has better performance than
Linear Model and Cubic Model; this reason is that Ramon Model considers both
CPU and memory factors, while Linear Model and Cubic Model only consider CPU
factor.
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Fig. 8 Energy consumption for the four modeling methods

Fig. 9 Relative error for the four modeling methods
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4.1.4 The Comparison of the Four Modeling Methods

Figures 8 and 9, respectively, show the comparison for the four modeling methods
(linear regression, power regression, exponential regression, and polynomial regres-
sion) in terms of energy consumption and relative error. Figures 8 and 9 reveal that,
no matter the task belongs to CPU-intensive task or transactional web task or I/O-
intensive task, power regression leads to the highest accuracy of power model in
most cases. Therefore, we recommend using power regression to build power model
in further research.

5 Conclusion

This section proposed an energy consumption model for data centers based on appli-
cation characteristics (such as CPU-intensive task, transactional web task, and I/O-
intensive task) and various subsystems (i.e., CPU, memory, disk, and NIC). Exper-
imental results show that: (1) during the process of building energy consumption
model, considering all components related to energy consumption such as CPU,
memory, disk, and NIC is more effective than only considering CPU and memory;
(2) taking into account, the task characteristics (CPU-intensive task, transactional
web task, and I/O-intensive task) provide a better performance than only focusing
on CPU-intensive task during the construction of the power model. Moreover, the
energy consumptionmodel proposed in this section ismore accurate than the existing
ones. The proposed energy consumption model can be extended to other servers in
data centers, so as to guide the energy-saving algorithm to save energy consumption.
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