
Chapter 4
Analytical Study of the Oblique Impact
of an Elastic Sphere with a Rigid Flat

Ozdes Cermik, Hamid Ghaednia and Dan B. Marghitu

Abstract In this study, an analytical model of the elastic impact of a solid rubber
sphere with a rigid flat is analyzed. The linear and angular motion of the sphere
have been simulated for the oblique (60°) and normal (0°) impact cases. The impact
of the sphere with the rigid flat has been represented with a nonlinear contact force.
The damping term of a previous normal contact force has been modified with a new
expression. The normal contact force as a function of deflection has been studied
for different cases.

4.1 Introduction

Impact is an important phenomena which plays an important role in many sports
such as baseball, golf, tennis, and soccer since it affects rebound parameters of a
ball; speed, angle, and spin etc. A normal and oblique impact of a ball with a
flexible or rigid surface have been studied by many researches for decades. Authors
mainly focus on dynamic properties of a ball and measure parameters before and
after an impact. On the other hand, the behavior of a ball during the impact still
attracts researchers. Measuring the motion of the ball during the impact is hard
experimentally, since the impact duration is short. The friction force between a ball
and a surface is also another challenge because it is difficult to measure.

A spring-damper system has been used by several authors in order to model the
impact between a ball and a surface. Dignall and Haake [1] developed an analytical
model of the normal impact of a tennis ball on a tennis court using a spring-damper
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system. The stiffness and damping coefficients were calculated analytically using
the coefficient of restitution and the contact time from the experiments. Haake et al.
[2] studied the impact of tennis ball with racket using the model from [1]. It was
shown that the stiffness and damping coefficients of the tennis ball increase with
higher initial velocity of the ball, [1, 2]. Goodwill and Haake [3] developed a new
spring-damper model for the impact between a tennis ball and a head-clamped
racket by adding a new linear spring in series. This extra spring is used to simulate
the influence of the string-bed. Goodwill and Haake [4] developed a viscoelastic
model of normal impact of a tennis ball on a rigid surface. A new damper repre-
senting the large deformation on the ball was added in parallel with the classical
spring-damper model. Carre et al. [5] studied the impact of a cricket ball on a rigid
surface. The spring-damper model was used to predict the force-deflection
behavior. Yang et al. [6] developed a nonlinear impact model for a tennis ball
and a racket. A nonlinear spring for the string-bed was connected in series with the
spring-damper model. Ghaednia et al. [7] studied the oblique impact of a tennis ball
with a racket. The impact is presented with a spring damper model. The stiffness
and damping coefficients were found experimentally for the normal impact case,
and the theory was verified with experiments for the oblique impact.

In this work, the normal and oblique impact of an elastic ball with a rigid flat has
been studied theoretically. We have used a spring damper model in order to present
the impact. A new expression for the damping term has been proposed in order to
overcome the weakness of using a spring damper system for an impact problem.

4.2 Dynamics of the Ball

The elastic ball impacting the rigid surface is shown in Fig. 4.1. The impact angle
of the rigid flat with the x0 horizontal axis is b. R is the radius, and m is the mass of
the ball. C is the center of the mass, and E is the contact point between the ball and
the rigid flat. A global reference frame of unit vectors [I0, J0, k0] and a local
reference frame, with the origin at E, of unit vectors [I, J, k] are considered as
shown in Fig. 4.1. The x-axis is tangential, and the y-axis is perpendicular to the
rigid flat.

The impact is divided into two phases; compression and restitution. Restitution
phase is considered to be fully elastic. Compression phase starts when the ball
contacts the surface and at this moment the normal contact force, P, and the
indentation, d, are zero. This phase ends at maximum compression, dm, and
maximum normal force, Pm, when the normal component of the velocity of the
contact point of the ball is zero. Restitution phase starts at the moment of maximum
compression, and the normal contact force decreases from maximum value to zero.

The elasto-plastic normal contact force, P, acts upward alongside the y-axis.
Contact force is defined as:
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P ¼ Pstatic þPdynamic P ¼ kd� b _d ð4:1Þ

where d ¼ q2 tð Þ is the normal elastic displacement during the impact, _d is its rate
and k, b are stiffness and damper coefficients, respectively.

The model above is modified with a new expression to overcome discontinuous
problem because of the damping term. In reality, both elastic and damping forces
should be initially at zero at the beginning of the impact. Equation 4.1 is modified
with a new expression for the dynamic part of the contact force and it can be seen
below:

P ¼ kd� b _dð1� e100d=RÞ ð4:2Þ

The total force at the point E is

T ¼ Ff IþPJ ð4:3Þ

where Ff represents the friction force that is opposite to the tangential component of
the velocity of the contact point of the ball. The friction force is given by

Ff ¼ lPI ð4:4Þ
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Fig. 4.1 The ball in contact
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where l is the kinetic coefficient of friction. For the case of a rigid ball the equations
of motion are

maC ¼ GþT; ICa ¼ rCE � T; ð4:5Þ

where G is the weight of the ball, IC is the mass moment of inertia about
C. Diameter, D = 63 mm and a mass, m = 145 g, kinetic coefficient of friction,
l = 0.2, stiffness coefficient, k = 60,000 N/m, and damping coefficient,
b = 10.5 Ns/m have been used for the simulation.

4.3 Results

The impact angle of 0° (normal impact) and 60° are used for the simulations. Initial
impact velocity of the center of the ball, vC = −3J0 m/s in the global coordinates is
used for both the normal and oblique impacts. Figures 4.2 and 4.3 present the
normal and tangential displacement of the center of the ball during the normal and
oblique impact, respectively. For the normal impact, the maximum displacement is
dm ¼ �4:31� 10�3 m, and compression phase ends when tm = 2.4�10−3 s. At
this moment, the contact force reaches its highest point, and the restitution phase
starts. Tangential displacement stays at zero since there is no force in the tangential
direction. For the oblique impact, the maximum normal displacement of the center
of the ball is dm ¼ �2:17� 10�3 m, and compression phase ends when tm =
2.44�10−3 s. The displacement in the tangential direction increases throughout the
impact as seen in Fig. 4.3.

Figure 4.4 shows the normal and tangential velocities of the center of the ball
during the normal impact. For the normal impact, initial impact velocity is
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vE(t0) = −3J m/s, and the impact ends at tf = 4.8 � 10−3 s. The final velocity at the
end of the impact is vE(tf) = 2.55J m/s. The tangential velocity is zero throughout
the impact since no friction affects the ball. Figure 4.5 depicts the normal and
tangential velocities of the center of the ball during the oblique impact for 60°. The
initial impact velocity for the oblique is vE(t0) = 2.6I − 1.5J m/s in local coordi-
nates. The normal component of the velocity becomes zero at tm = 2.44 � 10−3 s.
At this point, maximum displacement and maximum normal contact force occur,
compression phase ends, and restitution phase starts. Impact ends at
tf = 4.9 � 10−3 s.
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tangential displacement
during the oblique impact at
b = 60°
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The final velocity at the end of the impact is vE(tf) = 0.64I + 1.3J m/s.
Newtonian, coefficient of restitution is calculated as

e ¼ vE tf
� � � J=vE t0ð Þ � J�� ��

For 60° and 0° impact angles, COR, e, is found 0.86 and 0.85, respectively.
Figure 4.6 presents the angular velocity of the ball during the oblique impact for
60°. Angular velocity increases throughout the impact. Rebound angular velocity
after the impacts predicted as xf = 44 rad/s.

For the normal contact force, P, as a function of displacement, the Eqs. 4.1 and
4.2 have been plotted for both the oblique and normal impact cases. The dashed and
solid lines in Figs. 4.7 and 4.8 show the previous model and modified model,

0 1 2 3 4 5

Time (s) ×10-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

V
el

oc
ity

 (
m

/s
)

Tangential Component
Normal Component

Fig. 4.5 Normal and
tangential velocity of the
center of the ball during the
impact at b = 60o

0 1 2 3 4 5

Time (s) ×10-3

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

Fig. 4.6 Angular velocity of
the ball during the oblique
impact at b = 60°

38 O. Cermik et al.



respectively. Figures 4.7 and 4.8 depict the normal contact force during the normal
and oblique impact cases, respectively. Contact force reaches its highest point at the
end of compression phase, and at this point, maximum displacement occurs.
Restitution phase starts, and contact force starts to decrease from this moment. For
the previous model, the contact force is not zero at the beginning of the impact as
seen in both Figs. 4.7 and 4.8. This discontinuous comes from the damping term. In
reality both elastic and damping forces should be zero at the beginning of the
impact. On the other hand, a negative force is present at the end of the impact for
the previous model as well. For the modified model with the new expression, the
normal contact force starts at zero and decreases back to zero at the end of the
impact as seen in both Figs. 4.7 and 4.8.
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4.4 Conclusions

The normal and oblique impact of an elastic ball with a rigid surface has been
studied theoretically. The linear and angular motion of the ball during the impact
have been simulated. Previous model consisting linear spring and damper is
modified with a new expression for the damping term. With modified model, the
normal contact force discontinuity problem is fixed and it starts at zero at the
beginning of the impact. A negative contact force at the end of the impact which is
seen in the previous model is not present for the modified model.
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