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Abstract. It is a challenging and hard problem to control the multi-joint robot
manipulators due to the nonlinearities which are extremely and strongly coupled
in the set of dynamic equations governing the motion dynamics of the robot
system. This paper presents a robot control technique for definitely recon-
structing motions. The controlled robot is used in small industries such as
welding and painting work. The proposed method is a simple one and decen-
tralized linear joint control strategy. Exactly describing, it is an user-oriented
method and no need complex computation. In this study, at first, the mathe-
matical model of each joint of the 5 DOF robot arm is derived individually.
Secondly, to improve the control performance in transient response, nonlinear
controllers such as feedback linearization as well as sliding mode control are
exploited to compensate the nonlinearities and uncertainties. Finally, experi-
ments are carried out to verify the effectiveness and feasibility of the presented
approach, and the results are compared to those of the tuned PID controller. The
results point out that the proposed control scheme is simple, realistic and can be
easily employed on robot manipulators in the real world.

Keywords: Motion control � Sliding mode control � Decentralized control �
Motion regeneration

1 Introduction

Nowadays, robotic manipulators have been popularly used in all kinds of industries
such as welding and painting work places due to the ability to meet the requirements of
high-quality welding and perfect repeatability on the desired path. However, control
system design for robotic manipulators is a challenging mission for researchers because
of natural high nonlinearities, strong couplings, and time-varying parameters in robot
dynamic equations [1]. To obtain acceptable control performance, researchers have
developed robust advanced control approaches such as conventional computed torque
control [2], sliding mode control [3, 4] and adaptive control [5]. Nonetheless, the
above-mentioned control techniques require the exact dynamic models of the robot
systems which are not always achievable, therefore, such that implementation of these
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control schemes for practical applications is not easy. To deal with this issue, fuzzy
control and neural network may be the methods to consider uncertain and nonlinear
robot dynamics; however, they introduce many design parameters and complicated
rules that limit their feasibility for implementation in the real world [6–8].

In this paper, a straightforward approach for certainly regenerating robot motion is
applied on a five degree-of-freedom robot system. Firstly, the dynamic motion of each
joint actuator is modeled as a free-inertial system with a constant inertia moment.
Secondly, robust controllers are designed based on sliding mode control and feedback
linearization control to cope with the parametric uncertainties and nonlinearities for
good control performance. Finally, the practical feasibility and effectiveness of the
presented design approach are verified through experiments on the 5 DOF robot
manipulator, and the results are compared to those of the conventional tuned PID
controller.

The rest of the paper is organized as follows: The studied system is described and
its mathematical models are obtained individually in Sect. 2. Control design is explored
in Sect. 3. Section 4 shows experimental results. The conclusion and future work are
summarized in Sect. 5.

2 System Modeling

2.1 Problem Statement

Designing the control system for a specified system must base on the mathematical
model which represents the dynamic characteristics of the system. In general, in the
field of robotics, most researchers usually apply the Iterative Newton – Euler dynamic
formulation, the Lagrangian dynamic formulation of motion or model-based identifi-
cation method to obtain the entire mathematical model of the robot manipulator.

Consider the standard form of the dynamic equation of an n-DOF robot
manipulator:

MðqÞ€qþCðq; _qÞþGðqÞþFðq; _qÞþ sd ¼ s ð1Þ

where q; _q; €q 2 Rn denote the joint position, velocity, and acceleration, respectively;
MðqÞ 2 Rnxn is the inertia matrix; Cðq; _qÞ 2 Rnx1 stands for the Coriolis (centripetal)
vector; GðqÞ 2 Rn the gravitational vector; Fðq; _qÞ 2 Rn denotes the friction forces;
sd 2 Rn is the disturbance torques; and s 2 Rn is the joint torque. Generally, this
equation is a set of strong coupling and high nonlinearity differential equations [9]. As an
illustrated example, an n-link manipulator with all rotational joints, the required com-
putations for dynamic formulation using Lagrangian method are 32n2 þ 86n3 þ 171n2 þ
53n� 128 multiplications and 25n4 þ 66n3 þ 129n2 þ 42n� 96 additions [10]. It is
clear that the implementation based on this approach is extremely complicated and,
hence, not realistic.

In this study, we present a reachable method to obtain the models of joints on a
robot system. Our studied system is a 5 DOF robot system (RRRRR) in which each
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joint is driven by a permanent magnet DC motor with a reduction gear, and an
incremental encoder to sense angular displacement is attached to each joint. The
structure of a 1-DOF robot arm in the following section will precisely describe the
method.

2.2 Method Demonstration

The structure of a 1-DOF robot arm driven
by a DC motor through a gear transmission
is described in Fig. 1. Where vaðtÞ applied
voltage (V), ia armature current (A), Ra

armature resistance (X), La armature
induction (H), Ki torque constant (N�m/A),
Ke back-emf constant (V�s/rad), Jm rotor
inertia (kg�m2), Bm viscous friction coeffi-
cient (N�m/(rad/s)), Kg ¼ GL=Gm gear
ratio, hm rotor position (rad).

As well known, under the assumption
that the load torque sL ¼ 0, the transfer
function between rotor position and the
applied voltage is the third-order as
follows [11]:

hmðsÞ
VaðsÞ ¼

Ki

LaJms3 þðRaJm þBmLaÞs2 þðKbKi þRaBmÞs ð2Þ

However, many DC motors present in use, armature induction La is negligible;
therefore,

hmðsÞ
VaðsÞ ¼

Ki

s½RaðJmsþBmÞþKbKi� ¼
K

sðTsþ 1Þ ð3Þ

It is extremely important to know that most present-day robot manipulators employ
DC motors with high gear ratios whose typical values range from 20 to 250. Hence,
nonlinearity and coupling terms of the other links effecting on the driving joint are
significantly reduced. This point allows designers to design controllers for joints
individually based on Eq. (2) or (3) with external interactions considered as a
disturbance.

2.3 Mathematical Model

The studied system is demonstrated schematically in Fig. 2(a). Specifications of
apparatus for obtaining the mathematical models are shown in Table 1.

The procedure in order to attain the model of each joint is described as follows:
Firstly, the authors fix all joints of the robot system to make a whole rigid body.
Secondly, the corresponding joint in which we want to take the model will let be free,

Fig. 1. Structure of 1 DOF robot arm
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and then apply the suitable type of input voltage to output response. Finally, from the
applied voltage and the experimental response, by using Identification Toolbox sup-
ported by Matlab, the model for each joint can be obtained.

Figure 3 exhibits an experiment example for the first joint. Table 2 summarizes the
fitness rates calculated automatically.

From the results shown in Table 2, the model with the best fitness rate is selected.
After that, the model is simulated in Matlab/Simulink, after some trial and tuning times
to fit the simulated response to the experimental response, the joint actuator model is
obtained.

The process is performed in the same manner for the other joints to achieve the
models. Finally, the model for each joint is obtained and expressed in the time domain
as follows:

vh1 þ 5:443€h1 þ 138 _h1 þ 0:5787h1 ¼ 4004u1 ð4Þ

Fig. 2. System description: (a) schematic diagram, (b) real system for experiment

Table 1. Specifications of the main components of the system

Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Motor (maker) GGM GGM maxon maxon maxon
Rated voltage [v] 24 24 48 48 48
Rated power [w] 120 120 150 90 60
Rated torque [N�m] 0.39 0.39 0.192 0.106 0.0897
Rated speed [rpm] 3000 3000 1510 1720 7760
Gear ratio 120:1 150:1 53:1 51:1 51:1
Resolution [pulses/rev] 3000 3000 3000 500 500
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vh2 þ 3:8€h2 þ 293 _h2 þ 0:01h2 ¼ 9050u2 ð5Þ
€h3 þ 140 _h3 þ 0:0001h3 ¼ 2362u3 ð6Þ
€h4 þ 82 _h4 þ 0:002h4 ¼ 6480u4 ð7Þ
€h5 þ 31 _h5 þ 0:2h5 ¼ 1730u5 ð8Þ

where uiði ¼ 1; . . .; 5Þ indicates applied voltage to the ith joint actuator, hiði ¼ 1; . . .; 5Þ
indicates the ith joint shaft angle.

3 Control Design

The control goal for the angle position h is to follow the desired position hd .

Fig. 3. Experiment example for the first joint: (a) square signal response, (b) comparison
between real response and simulated response

Table 2. Fitness rate of different models for actual actuator

Model candidate Fitness ratio (%)

3 poles 68.32
3 poles with time delay 67.93
2 poles 67.67
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3.1 Control Design for the First Joint and the Second Joint

It should be noted that the first and second joint are subject to large backlash gap whose
values are 4.2° and 6.2°, respectively. As a result, the system order is the third-order as
can be seen in Fig. 3 and Eqs. (4) and (5). Among many control techniques have been
employed, the authors found out that Higher-Order Sliding Mode Controller is
appropriate to control these two joint actuators.

In this section, the second order sliding mode control using Super Twisting
Algorithm (STA) is exploited [12, 13]. Sliding mode control is a robust control
technique that is insensitive to external disturbances and parameter uncertainties. The
steps to design the controllers for the first and second joint are the same.

The dynamic model of the first joint is represented by the following differential
equation:

vhþ 5:443€hþ 138 _hþ 0:5787h ¼ 4004u ð9Þ

where u stands for control input, h stands for output position.
Let hd denote the desired position, and e ¼ h� hd is the tracking error.
Sliding variable is defined as

s ¼ €eþ c0 _eþ c1e ð10Þ

Hence, the sliding variable dynamics can be written as

_s ¼ /ðx; tÞþ cðx; tÞu ð11Þ

with the bounding conditions

/ðx; tÞj j �U; 0\Cm � cðx; tÞ�CM ; sj j � s0 ð12Þ

where Cm; CM ; s0 and U are some positive constants.
The general control law:

u ¼ u1 þ u2 ð13Þ

where

u1 ¼ �k s0j jqsignðsÞ; sj j[ s0
�k sj jqsignðsÞ; sj j � s0

�
; _u2 ¼ �u; uj j[ 1

�WsignðsÞ; uj j � 1

�
ð14Þ

and the corresponding sufficient conditions for finite time convergence are:

W [
U
Cm

[ 0; k2 � 4UCMðW þUÞ
C3
mðW � UÞ ; 0\q� 0:5 ð15Þ

For the system which is linearly dependent on the control, u, the simplified con-
troller is given as follows:
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u ¼ �k sj jqsignðsÞþ u2; _u2 ¼ �WsignðsÞ ð16Þ

Let q be 0.5, the two controller gains k and W are chosen through trial and tuning.
Parameters of controllers for the first and second joint are shown in Table 3.

3.2 Control Design for the Other Joints

In this section, the feedback linearization (FL) control method is employed. The
shortcoming of this method is canceling the nonlinearities and introducing the desired
linear dynamics. The control design procedure for the fourth and fifth joint is carried
out the same as that of the third joint.

• The dynamic equation of the third joint is described as

€hþ 140 _hþ 0:0001h ¼ 2362u ð17Þ

where u is the control input, h is the angle position. This lead to,

€h ¼ �140 _h� 0:0001hþ 2362u ð18Þ

Let hd denote the reference position, and e ¼ h� hd is the tracking error.
Feedback linearization control law:

u ¼ 1
2362

ð140 _hþ 0:0001hþ vÞ ð19Þ

where v is the control law designed as the following
From Eqs. (18) and (19), we have

Table 3. Parameters of the designed controllers

No. of joint
Control law 1 2 3 4 5

PID P ¼ 0:00319
I ¼ 0:000643
D ¼ �0:00062
N ¼ 6:299

P ¼ 0:0676
I ¼ 0:0015
D ¼ �0:0075
N ¼ 8:332

P ¼ 0:441
I ¼ 0
D ¼ 0:0056
N ¼ 10:82

P ¼ 0:142
I ¼ 0
D ¼ 0:0038
N ¼ 28:31

P ¼ 0:164
I ¼ 0
D ¼ 0:0076
N ¼ 24:817

STA1/FL2 ð1Þ

k ¼ 0:07
W ¼ 0:01
c0 ¼ 10
c1 ¼ 180

ð1Þ

k ¼ 0:08
W ¼ 0:01
c0 ¼ 12
c1 ¼ 250

ð2Þ

k1 ¼ 90
k2 ¼ 1000

ð2Þ

k1 ¼ 60
k2 ¼ 1000

ð2Þ

k1 ¼ 40
k2 ¼ 475
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€h ¼ v ð20Þ

Choosing v as

v ¼ €hd � k1 _e� k2e ð21Þ

where k1 and k2 are positive constants.
From Eqs. (20) and (21), we can obtain

€eþ k1 _eþ k2e ¼ 0 ð22Þ

As a result, e ! 0 as t ! 1.
Therefore, the control law:

u ¼ 1
2362

ð140 _hþ 0:0001hþ €hd � k1 _e� k2eÞ ð23Þ

• As mentioned earlier, the control laws for the fourth and fifth joint are calculated in
the same fashion as that of the third joint. As a result, the control laws are

u4 ¼ 1
6480

ð82 _h4 þ 0:002h4 þ €hd4 � k14 _e� k24eÞ (for the fouth joint) ð24Þ

u5 ¼ 1
1730

ð31 _h5 þ 0:02h5 þ €hd5 � k15 _e� k25eÞ (for the fifth joint) ð25Þ

4 Experiment

4.1 Experimental Setup

To verify the efficiency of the presented control scheme, experiments were imple-
mented on the 5 DOF robot manipulator as shown in Fig. 2(b). Specifications of
experimental components are summarized in Table 1. The resolution at joints 1, 2, 3, 4,
and 5 are 3� 10�2, 3� 10�2, 5� 10�2, 3:39� 10�2, and 2� 10�2 deg (quadrature
encoder), respectively. An embedded controller named NI PXIe-8115 equipped the
acquisition card PXI-e 6363 and PXI 6221 was used. The controllers are written in
LabVIEW language 2009 with the sampling time 0.01 s.

To create the desired trajectory, the robot arm should be moved to the desired
positions, and then store the corresponding positions in the memory, these data will be
used later for playback.
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Fig. 4. Experimental results of the presented method and PID scheme. (a), (b), (g), (h), and
(m) are plots of desired path and positions of joints 1, 2, 3, 4, and 5, respectively. (c), (d), (i), (j),
and (o) are plots of tracking errors of joints 1, 2, 3, 4, and 5, respectively. (e), (f), (k), (l), and
(n) are plots of control inputs for joints 1, 2, 3, 4, and 5, respectively. The presented approach
shows the extreme smaller errors than those of PID scheme.
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Fig. 4. (continued)
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4.2 Experimental Results

Two control strategies (PID and nonlinear control) have been carried out to validate the
presented control scheme and its efficiency. The tuned PID controllers have the general
form as shown in Eq. (26). Parameters of the designed controllers are summarized in
Table 3.

GPIDðsÞ ¼ Pþ I
1
s
þD

N
1þN 1

s

ð26Þ

The experimental results are shown in Fig. 4 and Table 4. It is noticeable that two
control methods can follow the target trajectory, then we can find out the efficiency of
the presented identification and control design method. However, by introducing the
second order sliding mode controller for joints 1 and 2, the control performance is
improved noticeably as shown in Figs. 4(a), (c); (b), (d).

But the most interesting thing here is the tracking performance with respect to the
desired positions of joints 3, 4 and 5 as shown in Figs. 4(g), (i); (h), (j), and (m), (o),
where they can follow the desired trajectory very well with remarkable small errors.
For more details, root-mean-squared errors (RMSE) is listed in Table 4. It is clear that
high precision control can be achieved through the presented method.

5 Conclusion and Future Work

This paper presented a straightforward process to design and control a 5-DOF robot
manipulator subject to gravity force and etc. The control design based on nonlinear
control approach is introduced to ensure the robustness of the system under the
interaction effects among joints of the system. Experimental results show that the
presented control system is practical, simple in form, and highly precise. These indicate
that the proposed procedure is straightforward and simple to implement for practical
applications.

For future work, to solve backlash issue and enhance the control performance for
position control, control methods such as adaptive control as well as backlash inverse
should be deployed.
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Table 4. Comparison of RMS errors [deg]

Control method Joint 1 Joint 2 Joint 3 Joint 4 Joint5

PID 1.5072 1.3317 1.8855 0.8596 2.0360
STA/FL 0.4554 0.9840 0.1167 0.045 0.1547
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