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Abstract. In this paper, we are presenting an interesting method for controlling
population diversity of the Firefly Algorithm (FA). Presented method is using
the advantages of complex networks and their several characteristics, that can be
helpful for the detailed analysis of metaheuristic algorithm inner dynamic.
Through this work, we are trying to present a simple workflow for building and
analysis of network and the most suitable choices in each step to achieve better
results of FA, especially, when focusing on population diversity.
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1 Introduction

The Firefly Algorithm (FA) [1, 2] is one of a typical representative of swarm intelli-
gence (SI) group. This algorithm tries to bring the fireflies mating behavior into
optimization. Nevertheless, like many others SI-based as well as other non-bio-inspired
algorithms, the FA has some drawbacks. One of those is quite dreadful premature
convergence and rapid stagnation of population and decrease of its diversity. Many
algorithms are struggling with this issue. Another typical member of SI, which is the
Particle Swarm Optimization (PSO) algorithm [3], has attracted many researchers and
several different advanced techniques have been developed over the years [4] to deal
with the aforementioned issue.

In this paper, we are trying to improve the FA through the analysis of complex
network [5] non-trivial features (attributes). For example, those can be the degree
distribution, clustering coefficient, centralities, betweenness and much more [6, 7].
These attributes provide partly a clear description of a state or a health of the population
(population diversity, that we are trying to improve), and partly the insight into the
internal communication between particles, in this case between fireflies. Finally, the
complex network analyses for metaheuristic algorithms have already been successfully
adapted [8–11].

Choosing the most suitable technique for improving the FA algorithm is a certainly
challenging task. In this research, we are analyzing different steps to select the best one
possible. Starting with the selection of a partial population restart technique, continuing
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over the complex network attribute readings and ending with assembling of all steps
together. The paper is structured as follows. The FA is briefly described in the next
section. The proposed method with complex network description and implementation
follows afterward. Later, a description of the test functions for the verification of
proposed method, results and conclusions are given.

2 Firefly Algorithm

FA was firstly introduced in 2008 by Yang [1, 2]. This nature-based algorithm tries to
simulate the mating behavior of fireflies at night. Every firefly emits flashing light to
lure appropriate mating partner. For the formulation of the FA, the flashing light is
associated with the objective function value that is optimized. For simplicity, the three
following rules are used:

• All fireflies are sexless (each firefly can attract, or be attracted by, any of the
remaining ones).

• The attractiveness of fireflies is proportional to their brightness. Thus the less bright
firefly will move toward the brighter one. The brightness decreases with the distance
between fireflies. If there is no brighter firefly, the particular one will move
randomly.

• The firefly brightness is based on the objective function value.

The brightness I (1) of firefly consists of three factors: the objective function value,
the distance between two compared fireflies and absorption of media in which the
fireflies are

I rð Þ ¼ I0
1þ krm

ð1Þ

where I(r) is the brightness of particular firefly based on distance r. I0 is the initial
brightness or in this case the objective function value. The k is the light absorption
coefficient of media and the m � 1.

The attractiveness b(r) (2) is proportional to brightness as mentioned before and
then very similar to previous equation

b rð Þ ¼ b0
1þ krm

ð2Þ

where b(r) is the attractiveness between fireflies based on their distance r. The b0 is the
initial attractiveness. The r is defined as a Euclidean distance between two fireflies
as (3)

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
xi;k � xj;k
� �2

r
ð3Þ

where rij is Euclidean distance between fireflies i and j. The d is dimension size of the
optimized problem.
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The movement of a firefly i is then defined as (4)

xi ¼ xi þ b rð Þ � xj � xi
� �þ a � sign ð4Þ

where xi and xj are fireflies i and j. The variable a serves as a randomization parameter.
The sign provides a random sign or direction. The pseudo-code below summarizes the
FA.

1. FA initialization 
2. while(terminal condition not met) 
3. for i = 1 to all fireflies 
4.  for j = 1 to all fireflies 
5.   if(Ij < Ii) then
6.    Move xi to xj

7.    Evaluate xi

8.   end if 
9.  end for j
10. end for i
11. Record the best firefly 
12. end while 

3 Proposed Complex Network Approach

To improve the search ability of the FA, we have chosen a verified technique, which is
a partial population restart [12]. Several ways of population restarts can be performed
and selection of the most appropriate and suitable approach is a difficult task. The
selection of the best technique encompasses several minor but necessary steps. In this
chapter, all the relevant steps are compared and hybridized together to get the most
suitable population restart method. All the preliminary tests were performed on Rast-
rigin function (f3) (See Sect. 4) and for dimension size 10 with a population size of 30
particles.

The partial population restart will be dependent on the complex network analysis.
Respectively on one of its non-trivial features (attributes). The choosing of the appli-
cable feature is given in next sub chapters.

Various ways for building and analysis of the complex network are possible [13].
The basic oriented network was chosen here. Each firefly represents a node in the
network. The edge between nodes emerges thanks to the successful interaction between
fireflies; i.e. when one firefly gets improved, it flies toward another firefly. Such a kind
of network is shown in Fig. 1.

3.1 Centralities

Various features can be calculated on the complex network [14]. Centralities, in
general, can identify the most important nodes within a graph, in our case the most
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influential firefly in the population. It means that these centralities can be useful to
determine the stagnation of population of fireflies.

In general, there are many different centralities, which can be considered - closeness
centrality, betweenness centrality, degree centrality and much more. Each of these
centralities assigns a value for every node in the network. For our approach (and
maximal simplicity), it is beneficial to observe only one value. Following statistical
values for centralities are compared: max (a node with a maximal value is controlled),
min (controlled node is the one with a minimal value), median (controlled is a median
value of all nodes) and standard deviation (a standard deviation of values from all
nodes is controlled).

The comparison itself is given in Fig. 2, where the orange line with filling to axis
shows a diversity of population over the time (fitness evaluation), the blue line rep-
resents an eigenvector centrality, the red line is a closeness centrality, the green line is a
betweenness centrality, and the last one is a degree centrality that is depicted in brown
color. All presented values in graphs have been rescaled for easy comparison.

Some conclusions can be obtained from the data in Fig. 2. If we select to analyze
only max value, the most promising centralities are an eigenvector and a betweenness
centrality. In the case of minimal value, the optimal seems to be a closeness centrality.

For a median value, the comparisons have given interesting findings. The most
suitable seem to be again an eigenvector centrality since the other centralities seem to
show radical change quite a bit early during the metaheuristic run, and by using such
data, the decrease of exploitation ability can occur. The last graph in Fig. 2 shows that
the most promising centralities are: eigenvector, betweenness, and degree centrality.
Based on the data in Fig. 2 one important question arose. Why focus on the features of
the complex network when the similar data can be achieved from population diversity
value? The answer can be formulated as follows. The population diversity only mea-
sures the distribution of particles over the optimized landscape. On the other hand, the

Fig. 1. An example of a basic oriented network for a population of 30 fireflies.
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centralities are also covering the communication between fireflies. This feature is quite
beneficial as the communication (active searching in the space of solutions) between
fireflies can stop or at least decrease, but at the same time, the diversity remains
unchanged.

The eigenvector centrality in particular [14] has been chosen based on the analysis
given above. This feature measures the influence of a node (firefly) in a network.
Higher centrality value is assigned to the nodes that are connected with many other
well-connected nodes. We can assume that presence of high values of this eigenvector
centrality over the network represents active communication between fireflies i.e. the
search or optimization process is currently running. On the other side, the decrease of
these values serves as a hint that the optimization process is stopping or the swarm is
stuck in the local optima. The median value of eigenvector centrality has been selected
because it showed the greatest degree of change in the short period of time.

3.2 Partial Population Restart Control

Next step lies in the decision of how to use the centrality based knowledge to control
the partial population restart. We decided to compare the eigenvector median from
previous evaluation t − 1 with a median of an actual evaluation t. If the median of
iteration t is a greater than the median t − 1, the number ‘+1’ is stored in a FIFO (First
In First Out) memory of size n. Otherwise, the ‘−1’ value is stored in this memory.
Thus, if the sum in the memory is a negative number or equal to zero, the partial
population restart is activated. This procedure is shown in Fig. 3, where the orange line
with filling to an axis shows population diversity again, the blue line represents a
median of eigenvector value and the last one, the red line, is reflecting an activation of
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Fig. 2. Comparison of different statistical methods on various centralities.
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population restart (logical 0 or 1). This figure is only outlining the simulation of partial
population restart without real execution. Specifically showing the time when the
partial population restart should be done according to this metric (given by the logical 1
peak of the red line).

The last two things remain to answer. Firstly, how big should the FIFO memory be
- what is the ideal size of n. Secondly, what is the most efficient population size
determined for restarting? Figure 4 depicts the influence of restarting to population
diversity and comparison of adaptive memory sizes.

The tested versions for the adaptive size of memory (See Fig. 4, left graph) are:

• 1% of FEs (blue line),
• 0.5% of FEs (red line),
• 0.25% of FEs (green line),
• 0.1% of FEs (brown line).
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Fig. 3. Simulation of partial population restart.
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Fig. 4. Influence of restarting to population diversity. (Left image: influence of memory size;
right image: influence of proportion of population determined to restart)
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The ideal setting should have equally distributed ratio between exploration and
exploitation phases. The most promising one seems to be an option with 0.25% of FE.
The adaptive version could be more useful for situations, where the number of FEs is
dependent on the dimension size of an optimization problem.

The very last important setting remains - the number of fireflies determined to
restart. The comparison for five possible scenarios is given also in Fig. 4 (right figure),
where the options are:

• 90% of the population (blue line),
• 75% of the population (red line),
• 50% of the population (green line),
• 20% of the population (brown line),
• 10% of the population (pink line).

Based on the graphical comparison in Fig. 4, the most promising option seems to
be a restart of 75% of swarm’s population.

4 Test Functions

A set of 4 standard functions have been chosen for the simulation experiment. This set
consists of simple unimodal (f1 and f2) and multimodal (f3 and f4) functions:

• f1, Sphere function (5),
• f2, Rosenbrock function (6),
• f3, Rastrigin function (7),
• f4, Schwefel function (8).

f1 xð Þ ¼
Xd

i¼1
x2i ð5Þ

f2 xð Þ ¼
Xd�1

i¼1
100 � xiþ 1 � x2i

� �2 þ xi � 1ð Þ2
� �

ð6Þ

f3 xð Þ ¼ 10dþ
Xd

i¼1
x2i � 10 � cos 2pxið Þ� � ð7Þ

f4 xð Þ ¼ 418:9829d �
Xd

i¼1
xi � sin

ffiffiffiffiffiffi
xij j

p� �
ð8Þ

5 Results

The performance comparisons of the FA with proposed population restarting method
and the canonical FA were carried out on dimensions 2, 5 and 10 for all 4 test functions.
The number of function evaluations (FEs) was set to 1500 ∙ d, where d stands for the
selected dimension size. Both compared FA versions had fixed number of fireflies (NP)
set to 30. The parameters of the FA were set as k ¼ 0:01;m ¼ 1; b0 ¼ 0:5; a ¼ 0:2.
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Table 1 shows simple statistical results for both versions of the FA. The canonical one is
labeled as ‘firefly’ and the version with proposed partial population restart is labeled as
‘fireflyCN’. The best obtained results for particular dimension size and test function are
highlighted by bold numbers.

Table 1 gives some interesting results and observations. Regarding the optimized
problem dimension size, the proposed modification of FA seems to be much more
successful for smaller dimension settings. From the test function type point of view, the
simplest unimodal Sphere function (f1) seems to be better suited for the original version
of FA than for the upgraded one. With increasing complexity of the test functions, the
results reveal almost equal performance (f2 and f3) or better performance (f4) in favor of
the modified version of the FA.

Overall, the modified version has obtained more good results than the original one,
but there are still some exceptions to this statement, and more experiments have to be
executed. The experiment results are also supported by Fig. 5, which contains the
graphic grid of convergence plots for the selected combinations of dimension setting
and test function.

Table 1. Statistical results

Function Dimension

2 5 10
firefly fireflyCN firefly fireflyCN firefly fireflyCN

f1 Avg. 0.00025 0.00046 0.011 0.0.16 0.093 0.093
Std.Dev. 0.00022 0.00048 0.0048 0.0067 0.021 0.020

f2 Avg. 3.49 0.014 5.78 5.86 26.86 30.86
Std.Dev. 2.42 0.014 2.98 2.90 26.14 27.70

f3 Avg. 0.94 0.22 7.18 6.39 22.06 23.06
Std.Dev. 0.72 0.23 2.59 1.60 4.27 4.15

f4 Avg. 130.14 2.00 1724.97 558.23 3224.55 2268.71
Std.Dev. 0.80 90.6 131.54 249.94 19.32 424.58
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Fig. 5. The convergence plots (minimal average value over time) for selected experiments;
where the blue line represents the original FA, and the orange line stands for the improved
version.

66 T. Kadavy et al.



6 Conclusion

In this paper, the FA has been enhanced with the aid of complex network analysis and
one of the network features. This modification was developed with the objective to stop
the premature convergence of the population and to prevent the lack of diversity.

This research is aimed at the understanding of difficulties and insights into the
internal dynamics leading to successful improvement of an existing metaheuristic
algorithm with complex network analysis technique. The paper explains each necessary
step and explains the decisions made based on several tests.

Finally, the modified version of the FA is compared to the original one, and the
results are discussed in details. Results lend weight to the argument that the modified
version provides overall better performance. Nevertheless, in few case studies, the
original algorithm performed equally or even better. Those findings fully support the
idea that more and detailed studies and complex experiments with complex networks
analysis approach and its impact on controlling of the internal dynamics of the swarm
based algorithms are required for better understanding of the problem.
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