
Path Following Control of Bike Robot

Ryotaro Miyahara and Masaki Yamakita(B)

Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan
yamakita@ctrl.titech.ac.jp

http://www.ac.ctrl.titech.ac.jp/

Abstract. In this paper we consider about path following control of a
bike robot which have been studied for a long time in our laboratory
and propose a method to generate paths to avoid obstacles based on the
sensor information. In the proposed path generation algorithm, BiRRT,
smoothing method, and RRT* are combined to generate paths on line.
The validity of the proposed method is demonstrated by numerical sim-
ulations.

Keywords: Bike robot · Path following · Output zeroing control

1 Introduction

In our laboratory, automatic bike robots have been studied for more than a
decade [1–12] since such bike robots have a narrow bodies compering to 4 wheel
cars and they have higher potential mobility as those in motocross races.

In [1–4,6] basic control model and control algorithm for an automatic bike
robot were proposed using output zeroing controller and the validity of the con-
troller were shown by experiments. In [5] an acrobatic motion was realized with
2 D.O.F. balancer, and in [6–8] a new type of flywheel balancer was introduced
and the advantages of it were demonstrated. In [9,10] control algorithm and
experimental results were summarized, and new type of control algorithms were
tested in [11,12].

In this paper we propose to install a laser range finder to a bike robot which
have been studied for a long time and a method to generate paths to avoid obsta-
cles based on the sensor information. In the proposed path generation algorithm,
BiRRT, smoothing method, and RRT* are combined to generate paths on line.
The validity of the proposed method will be demonstrated by numerical simu-
lations.

This paper consists of the following sections. In Sect. 2 the considered bike
robot and its mathematical model and control methods are explained. In Sect. 3
path generation algorithm is proposed and the validity of the method is demon-
strated in Sect. 4 followed by concluding remarks in Sect. 5.

c© Springer International Publishing AG 2018
V.H. Duy et al. (eds.), AETA 2017 - Recent Advances in Electrical Engineering
and Related Sciences: Theory and Application, Lecture Notes in Electrical Engineering 465,
https://doi.org/10.1007/978-3-319-69814-4_57



598 R. Miyahara and M. Yamakita

2 Bicycle Robot

In Fig. 1 the considered bike robot in this research is shown. It consists of an
electric bicycle, flywheel balancer, gyro sensor, laser range finder, and control
unit. It has four motors for rotating a flywheel balancer, shifting CG of the
balancer, steering and driving a rear tire. The flywheel balancer can be configured
as a flywheel or an inverted pendulum by changing the position of CG as in Fig. 2.

Fig. 1. Unmanned bicycle robot with variable configured balancer.

Fig. 2. Flywheel mode and balancer mode

For the balancing control, the system is considered as a two-link system where
a first link consists of bike body, rear tire, steering, and front tire, and the second
link is the flywheel balancer. The schematic mathematical model of the system



Path Following Control of Bike Robot 599

is shown in Fig. 3. For the model, we use an input-output linearization with
1 d.o.f. zero dynamics using a special output function is used. For the details,
please refer to [2,9].

To control the system and conduct numerical simulations, we construct a 3D
model as shown in Fig. 4. Since a precise model becomes very complex, the model
is simplified by introducing several assumptions. Using the simplified model, we
constructed a path following controller using PVFC. Please refer the details of
PVFC and the modifications to [12]. Please notice that if the desired trajectory
is defined using a scalar parameter like a time, we can define a desired velocity
field by introducing a virtual time and can realize a path following control using
PFVC.

Fig. 3. Two-link system.

3 Path Generation

In this section, we propose a fast method to generate a local path for the bike
robot by combining BiRRT (Bidirectional Rapidly exploring Random Trees)
method, heuristic smoothing algorithm, RRT* (Rapidly exploring Random Trees
Star)[14] with considering the non-holonomic nature of the system.

3.1 Proposed Method

RRT (Rapidly exploring Random Trees)[13] is used to generate paths for systems
as mobile robots with non-holonomic constraints in high dimensional spaces.
RRT randomly generates branches of a tree to search paths, and it is simple and
fast and does not give a local minimum for a cost function. RRT* is a modified
version of RRT in which branches are re-connected so that the cost function
becomes smaller. BiRRT is a fast version of RRT in which paths are generated



600 R. Miyahara and M. Yamakita

Fig. 4. Coordinate system of the bike with steering angle in a plane.

from both starting and goal positions. Palmieri et al. proposed a heuristic method
in which a candidate path is modified by RRT [15]. In the proposed method
their method is combined with a method in which a path is represented by an
intermediate variable and is modified to minimize a cost function of the length
and the curvature to generate paths for the bike robot.

3.2 Algorithm

First, by BiRRT a path PBiRRT which connects start point xinit and goal point
xgoal is generated. In this phase the non-holonomic constraint of the system is
not considered. Second, two points on the path PBiRRT is randomly selected and
connected by a straight line. If the new path does not collide with an obstacle on
a field, the path is remained as a new smoothed path. Finally, within a distance of
w from the new path it is modified by considering the non-holonomic constraint
by RRT*. The algorithm is shown in Algorithm 1.

In 1st line BiRRT(xinit, xgoal,X ) generates a path PBiRRT by BiRRT where
xinit is an initial position, xgoal is a goal position, X is a search area, Xobst

represents obstacles where Xobst ∈ X . In 5th line Smooth(PBiRRT ) generates a
smoothed version of PBiRRT as Psmooth. In the process it is repeated that two
points on PBiRRT are randomly generated and if there is no obstacle on the line
connecting the two points, the line is becomes a part of the path. In 6th line,
xinit is added to a node set X and initialize edge set E. From 7th line a searching
loop is initiated (Fig. 5).

In 8th line PathWidthSampling(Psmooth,X ) randomly samples a candidate
in a near neighbor of Psmooth within a distance w where the candidate consists



Path Following Control of Bike Robot 601

Fig. 5. Path based sampling

of a position of the robot (xx, xy) and a moving direction xθ. Let assume that
θi is a moving direction at x′ which is a nearest point on the path Psmooth from
the sample point x. xθ is sampled randomly within between θi − δθ and θi + δθ
where δθ is a bias angle and if the distance between a reference point Pi and x′

is less or equal to w, θ is calculated using the distance di between Pi and x′ and
as

θ =
di

w
θi +

1 − di

2w
(θi + θi+1). (1)

Similarly, if a distance between a reference point Pi−1 and x′ is less or equal to w,
θ is calculated using the distance di−1 Pi−1 and x′ and as

θ =
di−1

w
θi +

1 − di−1

2w
(θi + θi−1). (2)

In 9th line Nearest(X,xrand) picks up the nearest node xnearest in a node
set xrand. In 10th line if a distance between xrand and xnearest is larger than e,
Steer(xrand, xnearest) define a point xnew which is located on a line connecting
xrand and xnearest and whose distance from xnearest is e. If the distance between
xrand and xnearest is less or equal to e, xrand is defined as xnew.

In 11th line SplineCurve(xnew, xnearest) generates a spline curve connecting
xnew and xnearest. Since the desired velocity field for PVFC should be defined in
term of an intermediate parameter τ , Ferguson-Coons curve is used. When the
initial position is x0, initial velocity is v0, terminal position is x1, and terminal
velocity is v1, the function can be represented using an intermediate parameter
T as

P (T ) =
[
T 3 T 2 T 1

]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x0

x1

v0
v1

⎤

⎥
⎥
⎦ (3)



602 R. Miyahara and M. Yamakita

v = k
[
cos(xθ) sin(xθ)

]
(4)

where T is within [0, 1] and the maximum velocity is k, and path is a set of
points on the curve, σmax is a maximum curvature, and c is a cost for the
curve connecting xnew and xnearest. The cost is a weighted sum of the curve
length and an integration of square of change of curvature along the curve and
is represented by

c = wpL + wσ

∫ 1

0

∣
∣
∣
∣
1
L

dσ

ds

∣
∣
∣
∣

2
ds

dT
dT, (5)

where s is a segment length and L is the length of the curve, and

s(T ) =
∫ T

0

∥
∥
∥
∥

dP

dT

∥
∥
∥
∥ dT (6)

L = s(1), (7)

and wp and wσ are weights and σ(s) represents a curvature at s.
In 12th line if the curvature is larger than a critical curvature which the robot

can track, the following loop is started. In 15th line Near(X,xnew) defines a set
Xnear whose distances from xnew are less than r. During 15th line and 33th line
new connections to points Xnear are searched so that the new connections gives
lower cost, which is equivalent to RRT* where Cost(x) is a total cost from xinit

to x and Parent(x) returns a parent node of x.

4 Numerical Simulation

4.1 Path Generation

In this section the proposed path generation algorithm in the previous section
is applied for a test field and the validity of it is verified.

Parameters in the algorithm are shown in Table 1.
The considered field is represented as a square area defined by 100× 100

grids as shown in Fig. 6, and the yellow color area corresponds to obstacles. The
numerical simulation was conducted by a personal computer with Intel Pentium
B940 (2.00GHz) CPU and the software was written by MATLAB.

In the table Roughness means a nature of jaggy of the path which is calculated
as the integration of the change of curvature and the path is better if the value is
smaller. When a random process is used in an algorithm, the value is an average
one over 10 executions (Table 2).

From the results, it can be seen that the proposed method gave the shortest
and the second smoothest path next to the one by MPC. The computational
time is 1.41 [s] which is quick enough for online generation of the path though
the computation of MPC is quite long (188 [s]).



Path Following Control of Bike Robot 603

Algorithm 1. BiRRT + Smooth + RRT*
1: PBiRRT ⇐ BiRRT(xinit, xgoal, X )
2: if PBiRRT = ∅ then
3: return failure
4: end if
5: Psmooth ⇐ Smooth(PBiRRT )
6: X ⇐ {xinit}; E ⇐ ∅
7: for i = 1 to n do
8: xrand ⇐ PathWidthSampling(Psmooth, X )
9: xnearest ⇐ Nearest(X, xrand)

10: xnew ⇐ Steer(xrand, xnearest)
11: path, σmax, c ⇐ SplineCurve(xnew, xnearest)
12: if path ∈ Xobst ∨ σmax > MAX CURVATURE then
13: continue
14: end if
15: Xnear ⇐ Near(X, xnew)
16: X ⇐ X ∪ {xnew}
17: xmin ⇐ xnearest; cmin ⇐ Cost(xnearest) + c
18: for all xnear ∈ Xnear do
19: path, σmax, c ⇐ SplineCurve(xnew, xnear)
20: if path ∈ Xobst ∨ σmax > MAX CURVATURE ∨ cmin ≤ Cost(xnear) + c then
21: continue
22: end if
23: xmin ⇐ xnear; cmin ⇐ Cost(xnear) + c
24: end for
25: E ⇐ E ∪ {(xmin, xnew)}
26: for all xnear ∈ Xnear do
27: path, σmax, c ⇐ SplineCurve(xnew, xnear)
28: if path ∈ Xobst ∨ σmax > MAX CURVATURE ∨ Cost(xnear) ≤ Cost(xnew) + c

then
29: continue
30: end if
31: xparent ⇐ Parent(xnear)
32: E ⇐ (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}
33: end for
34: if xnew ∈ Xgoal then
35: return Path(X,E)
36: end if
37: end for
38: return failure

4.2 Path Following

The generated path is applied for PVFC and the performance is evaluated where
the parameters of PVFC are same as in [12]. The initial configuration is (1 [m],
1 [m], 0 [deg]) and the desired configuration is set (8 [m], 8 [m], 90 [deg]) and
obstacles are located as in Fig. 7. The generated path and trajectory of the



604 R. Miyahara and M. Yamakita

Table 1. Parameters of path generation

Parameter Symbol Value

Max. distance between nodes e 5

Max. repeat number for smoothing ismooth 200

Search distance from path P w 2

Angle bias δθ 22.5 [deg]

Max. velocity on curve k 1

Max. tracking curvature σMAX 1

Reach tolerance l 3

Weight for path length wp 1

Weight for curvature wσ 1

Table 2. Path planning result

Limit of
curvature

Algorithm Planning
time [s]

Path
length [m]

Roughness

Not apply LP 16.0 198.1 7.61e − 04

RRT 0.651 270.2 3.40e − 02

RRT* 1.30 263.6 1.02e − 03

BiRRT 0.304 261.2 1.45e − 03

BiRRT + Smooth 0.372 178.7 3.70e + 00

Apply MPC + LP 2.70e + 3 188.2 6.08e − 07

BiRRT + Smooth
+ RRT*

1.41 177.2 5.61e − 05

Fig. 6. Proposed path (red: RRT, green: RRT+ Smooth, blue: RRT+ Smooth
+ RRT*)



Path Following Control of Bike Robot 605

Fig. 7. Desired path and actual path

Fig. 8. Velocity and curvature

reference point are shown in Fig. 7, and the history of velocity changes of the
reference point is shown in Fig. 8.

From Fig. 7 it can be seen that the bike robot followed the path, and from
Fig. 8 it can be also confirmed that the velocity at corners became slow and side
slippages were avoided.

5 Concluding Remarks

In this research we have proposed a path generation algorithm for a bike robot
by combining BiRRT, smoothing, and RRT*. By a numerical simulation it was



606 R. Miyahara and M. Yamakita

confirmed that practical paths can be generated for the robot so that the robot
can track the path and avoid collisions against obstacle online.

Future problem is to apply the proposed method for an experimental robot.

References

1. Yamakita, M., Utano, A.: Automatic control of bicycles with a balancer. In: Pro-
ceedings of AIM2005,1245/1250 (2005)

2. Yamakita, M., Utano, A., Sekiguchi, K.: Experimental study of automatic control
of bicycle with balancer. In: Proceedings of IROS2006 (2006)

3. Murayama, A., Yamakita, M.: Development of autonomous bike robot with bal-
ancer. In: Proceedings of SICE2007 (2007)

4. Keo, L., Yamakita, M.: Trajectory control for an autonomous bicycle with balancer.
In: Proceedings of AIM2008 (2008)

5. Okawa, S., Keo, L., Yamakita, M.: Realization of acrobatic turn via wheelie for a
bicycle with a balancer. In: Proceedings of ICRA09 (2009)

6. Keo, L., Yamakita, M.: Controller design of an autonomous bicycle with both
steering and balancer controls. In: Proceedings of MSC09 (CCA09) (2009)

7. Lychek, K.E.O., Yamakita, M., Ito, K.: Stabilizing of an unmanned bicycle with
flywheel balancer. In: Proceedings of NOLCOS 2010 (2010)

8. Kawaguchi, M., Yamakita, M.: Stabilizing of bike robot with variable configured
balancer. In: Proceedings of SICE2011 (2011)

9. Lychek, K., Yamakita, M.: Control of an autonomous electric bicycle with both
steering and balancer controls. Adv. Robot. 25(1), 1–22 (2011)

10. Lychek, K.E.O., Yoshono, K., Kawaguchi, M., Yamakita, M.: Experimental results
for stabilization of a bicycle with a flywheel balancer. In: Proceedings of ICRA
2011 (2011)

11. Noda, Y., Sumioka, T., Yamakita, M.: An application of fast MPC for bike robot.
In: Proceedings of SICE Annual Conference (2012)

12. Yin, S., Yamakita, M.: Passive velocity field control to bicycle robot path following.
In: Proceedings of SICE 2016 (2016)

13. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot.
Res. 20, 378–400 (2001)

14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
In: Robotics: Science and Systems (RSS) (2010)

15. Palmieri, L., Koenig, S., Arras, K.O.: RRT-based nonholonomic motion plan-
ning using any-angle path biasing. In: International Conference on Robotics and
Automation (2016)


	Path Following Control of Bike Robot
	1 Introduction
	2 Bicycle Robot
	3 Path Generation
	3.1 Proposed Method
	3.2 Algorithm

	4 Numerical Simulation
	4.1 Path Generation
	4.2 Path Following

	5 Concluding Remarks
	References


