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Abstract. This paper proposes the PI sliding mode control approach in order to
control the nonlinear multiple-input-multiple-output active magnetic bearing
system in flywheel. A nonlinear model of a one degree of freedom (DOF) active
magnetic bearing system in flywheel obtained using Lagrange’s equation is
proposed. In this model, the current in each coil is treated as a state variable and
the control input is the voltage applied to each coil, this approach offers more
advantages than current control input approach. The proportional and integral
switching surface is constructed for active magnetic bearing system to improve
system dynamic performance in reaching intervals. The robust controller is
proposed by the reaching law method to assure that the rotor stays close at the
desired displacement even when disturbance and dynamic effect of rotating are
taken into considering.
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1 Introduction

The alternative solution of the clean energy storage system are flywheels [1, 2]. The
traditional (low speed) Flywheel Energy Storage System has a steel wheel supported by
the mechanical contact bearings and coupled with motor/generator, such that they
increase moment of inertia and limit rotational speed. The traditional Flywheel Energy
Storage System is capable of delivering approximately 70% of the flywheel’s energy as
usable. Thus, they have many disadvantages such as low power density, high
mechanical friction and aerodynamic losses and noise.

Magnetic bearings are electromechanical devices that use magnetic forces to com-
pletely levitate a rotor or suspend it in an air gap without physical contact. Based on the
noncontact and frictionless characteristics, active magnetic bearing (AMB) offers many
practical and promising advantages over conventional bearings such as longer life,
lower rotating frictional losses, higher rotational speed, and elimination of the lubri-
cation. The active magnetic bearing system in flywheel energy storage system has
emerged as a viable option, as it encompasses these aforementioned properties. [3–7].
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Sliding mode control (SMC) is known to be an effective robust control technique,
and has been successfully and widely applied for both linear and nonlinear systems
such as robot manipulators, aircrafts, underwater vehicles, spacecraft, flexible space
structures, electrical motors, power systems, and automotive engines [1]. The main
advantages of SMC are fast response and strong robustness with respect to uncer-
tainties and external disturbances [2–4]. Also, as SMC was developed in the process
industry where slower processes with larger time constants are usually encountered,
another challenge will be to implement real-time control on the active magnetic bearing
system in flywheel where fast time-constants are required [8–12].

In this paper, a nonlinear model of a one degree of freedom (DOF) active magnetic
bearing system in flywheel obtained using Lagrange’s equation is proposed. In this
model, the current in each coil is treated as a state variable and the control input is the
voltage applied to each coil, this approach offers more advantages than current control
input approach. The proportional and integral switching surface is constructed for
active magnetic bearing system to improve system dynamic performance in reaching
intervals. The robust controller is proposed by the reaching law method to assure that
the rotor stays close at the desired displacement even when disturbance and dynamic
effect of rotating are taken into considering.

2 Active Magnetic Bearing System in Flywheel Modeling

In this section, a model of AMB in flywheel with single mechanical degree of freedom
is introduced in Fig. 1.

The energy contributions entering the Lagrangian function that characterizes an
electromechanical system are as follows

Fig. 1. Single DOF AMB in flywheel model
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where: Em, VM are the kinetic and potential energy of mechanical part; Ee and Ve are
the kinetic and potential energy of electrical part; The electrical charge in each coil,
qxþ ; qx� is generalized coordinates of electrical part; x is the displacement of the rotor;
Lxþ ; Lx� are coil inductances.

The dynamic equation of single DOF AMB model can be derived from Lagrange’s
equation
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where s is the generalized coordinate vector

s ¼ qxþ ; qx�; _x; x½ �T ; ð4Þ

Q is a vector of generalized external forces (control input voltage and mechanical
force)

Q ¼ uxþ ; ux�; 0;Fx½ �T ; ð5Þ

and P is the dissipation of copper losses in the coils as follow

P ¼ 1
2
RR _q

2
xþ þ 1

2
RR _q

2
x� ð6Þ

The equations of motion of the system can be derived in a standard form of
differential equation

N _sstate ¼ h; ð7Þ

where N 2 Rnxn is the inertial matrix and h 2 Rn�m is the vector of nonlinear function.
The Eq. (7) have nonlinear relationships with the control currents and displacements of
rotor. Using Maple and from (7) we obtain
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Substitute Eq. (8) into (7), where N 2 R4x4 and h 2 R4x1
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Jacobian (9) follow states, we consider a system described by the state-space form as

_sðtÞ ¼ AsðtÞþBuðtÞþ f ð10Þ

where A ¼
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nominal air gap; R is coil resistance; C is summarizes the coil characterizing param-
eters, m is the body mass, x is the displacement with respect to the nominal air gap C;
Fx is mechanical force i1 and i2 are AMB currents. We consider disturbance effect
direct on the coils.

3 PI Sliding Mode Control Design

3.1 PI Sliding Surface

To improve the dynamic performance and robustness during the reaching phase against
the matched and unmatched perturbations, the PI switching surface is selected as

rðtÞ ¼ GsðtÞ � GðA� BKÞ
Z t

0

sðsÞds ð11Þ
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where G and K are constant matrices. Matrix G is selected to assure that matrix GB is
nonsingular. Matrix K is designed through pole assignment such that the eigenvalues of
matrix are less than zero.

By using the equivalent control method and setting rðtÞ ¼ _rðtÞ ¼ 0, we can see
that the equivalent control is given by

ueqðtÞ ¼ �ðGBÞ�1fGBKsðtÞþGf g ð12Þ

By setting rðtÞ ¼ _rðtÞ ¼ 0 and substituting uðtÞ with ueq, we can show that the
sliding mode dynamics restricted to the switching surface (11) is given by

_sðtÞ ¼ ðA� BKÞsðtÞþ ðI � BðGBÞ�1GÞf ð13Þ

Because there is a gain matrix K for stable ðA� BKÞ, a symmetric positive definite
matrix exists for the following Lyapunov equation:

ðA� BKÞPþPðA� BKÞT ¼ �Q ð14Þ

where P is the solution of (14) for a given positive definite symmetric matrix Q.

Theorem 1: For sðtÞ 2 BcðjÞ system dynamic performance in sliding mode is stable at
any time, where BcðjÞ is the complement of the closed ball centered at sðtÞ ¼ 0 with
radius.

j ¼ 2 ðI � BðGBÞ�1GÞf�� �� Pk k
kminðQÞ ð15Þ

Proof: Let us consider the following positive definition function.

VðtÞ ¼ sTðtÞPsðtÞ ð16Þ

where P 2 Rn�n [ 0. Then, the time derivative of V along the state trajectories of
system (10) is given by

_VðtÞ ¼sTðtÞðA� BKÞTPsðtÞþ sTðtÞPðA� BKÞsðtÞÞ
þ ½ðI � BðGBÞ�1GÞf �TPsðtÞþ sTðtÞP½ðI � BðGBÞ�1GÞf �
¼ �sTðtÞQsðtÞþ ½ðI � BðGBÞ�1GÞf �TPsðtÞ
þ sTðtÞP½ðI � BðGBÞ�1GÞf �
� � kminðQÞ sðtÞk k2 þ 2 ðI � BðGBÞ�1GÞf�� �� Pk k sðtÞk k

ð17Þ

when the state trajectory enter into the closed ball BcðjÞ and the eigenvalue kminðQÞ,
the Lyapunov function satisfy _VðtÞ\0. Therefore, the system is stable in the sliding
mode.
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3.2 Control Law Design

In this section, the result of designing of reaching control law is given.

Theorem 2: Let us consider the system (10) with the sliding surface given by
Eq. (11). The trajectory of the closed loop system (10) can be driven onto the sliding
manifold rðtÞ in finite time by using the controller given by (18).

uðtÞ ¼ �ðGBÞ�1fGBKsðtÞþGf g � ðGBÞ�1a
rðtÞ
rðtÞk k ð18Þ

where a[ 0.

Proof: Let us define a Lyapunov function V0 as follows.

V0 ¼ rTðtÞrðtÞ ð19Þ

The time derivative of V0ðtÞ is obtained as

_V0 ¼2rTðtÞ _rðtÞ ¼ 2rTðtÞfG_sðtÞ � GðA� BKÞsðtÞg
¼2rTðtÞfGBuðtÞþGDf þGBKsðtÞg ð20Þ

According to Eqs. (18) and (20), we achieve

V0 � � a rðtÞk k ð21Þ

Therefore the hitting condition (21) is assured by the designed controller (18) in
Theorem 2.

4 Simulation

The physical parameters of this Flywheel Energy Storage System model for simulation
are given follow Table 1

In this section, dynamic behaviors of the system and control performance are
discussed in simulation results.

Table 1. Rotor parameters

Parameters Symbol Value Unit
Axial Radial Axial Radial

Air permeability l0 l0 4pe−3 4pe−3 H=m½ �
Nominal air gap TA TR 0.6e−3 0.5e−3 m½ �
Cross section area AA AR 2.1e−3 0.6e−3 m2½ �
Number of coil NA NR 150 208 –

Coil resistance RA RR 0.2 0.515 X½ �
Sensor gain KAV KRV 1000 1000 V=m½ �
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Fig. 2. Current inside each coil

Fig. 3. Displacements of the rotor
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Fig. 4. Control input coil 1

Fig. 5. Control input coil 2
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Fig. 6. Sliding surface

Fig. 7. Sliding surface
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Figures 2, 3, 4, 5, 6 and 7 show the simulation results, i.e., Current inside each coil,
displacements of rotor, control input and sliding surface. The simulation results indicate
that the rotor can be stabilized to the bearing center with settling time around 3.5 s. The
steady state errors are all less than 1 lm, approaching the resolution of the position
sensors. The results show the good performance of the levitation controller, and clearly
verify the accuracy of the magnetic force models.

5 Conclusion

PI sliding mode control for AMB rotor system of Flywheel Energy Storage System is
presented in this paper. The results show that the proposed PI sliding mode control has
better floating performance compared with the conventional sliding mode control, and
is insensitive to system disturbance. The simulation results show that the rotor can be
stabilized to the bearing center, confirming the accuracy of the magnetic force model.
The proposed PI sliding mode control method shows good potential for AMB rotor
system in the Flywheel Energy Storage System.
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