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Abstract. This paper presents a new autonomous system that allows
for the capturing and analysis of root systems of hydroponic crop plants
without removing them from the growing environment. Disturbing the
delicate roots of these plants can cause stress and increase the chance of
mechanically spreading diseases. The first task carried out was the tak-
ing of simple measurements of root thickness and assess the feasibility
of this concept. The second task involved inflicting two of four plants
with an arbitrarily chosen plant sickness, in this case aluminum toxic-
ity, and autonomously capture pictures of each plant over the course of
approximately three weeks. Then, image analysis and machine learning
techniques were applied to identify sick plants from healthy plants.

1 Introduction

The need for food across the globe is in more demand than ever before, and tra-
ditional agriculture methods are straining to sustain this need. In 2012, United
States Department of Agriculture (USDA) found that general agriculture devel-
opment accounted for over 40% of land use in America [1]. Of this, approximately
42% was used for food crops, with the remaining land used for pasture, grazing,
and other needs. A 2011 Report from the United Nations Food and Agriculture
Organization explains that worldwide agriculture land use for food crops range
by geographic location, from under 5% in places like Northern Africa, to 50% in
South Asia [2]. Many areas, in both developed and under-developed countries,
are putting stress on their water resources due to an increase in agriculture activ-
ities. Over the last 40 years, irrigated farmland has increased substantially, and
the amount of water consumption has nearly doubled as well. General agricul-
ture activities account for approximately 70% of water use worldwide [3]. On top
of that, approximately 1.8 to 2.9 billion people live in areas with severe water
scarcity 4 to 6 months out of the year, and half a billion people live in areas
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with severe water scarcity year round [4]. Numerous statistics can be found that
correlate with these figures above. What do these figures say? Worldwide pop-
ulation is always growing, increasing the demand for food, which increases the
land required for agriculture activities, and this increase in agriculture activities
increases the overall water usage.

Hydroponic farming offers a unique solution to the complicated problem of
efficiently providing a food source on a large scale with reduced usage of our nat-
ural resources. A study conducted by Arizona State University concluded that
lettuce grown in a hydroponic farm offers 11 times higher yield per m2 and uses
13 times less water than conventional methods [5]. Another benefit of hydro-
ponic farming is the capability to grow produce throughout the entire year [6,8].
Another study conducted by the University of Nevada with strawberries, found
that the strawberries grown in soil used 30% more water than their hydroponi-
cally grown counterparts [7]. Had they been grown in a field rather than buckets
water usage would have been even more. The hydroponic strawberry plants in
this study had a 17% higher yield than those plants grown in soil, by individual
strawberry count. The survival rate for hydroponic strawberry plants was also
almost twice that of those grown in soil. These are just two of many studies
that provide clear evidence of the benefits of hydroponic farming and how it
relates to reduced water consumption, greater yeilds, and less space required.
The hydroponic farming industry is growing rapidly, and estimated to be worth
over $550M, and growing [8]. This method can solve major world problems but
it does not come without problems of its own.

One of those problems lies in root inspections. The current method for view-
ing hydroponic plant roots require an individual to remove the plants one at a
time for visual inspection and assessment. This exposes the roots to the out-
side environment and creates an opening for undesired contaminants to enter
the system. The plant is easily stressed, which can cause stunted growth and
increased susceptibility to further complications. Maintaining a hydroponic sys-
tem requires an immense amount of time and the precise control of several
factors, and outside of nutrient delivery systems there is currently there is no
autonomous system capable of such task. There are many cases where the roots
of a plant would need to be viewed in both commercial and research applica-
tions. Some diseases spread so rapidly they can affect an entire crop, such as the
common Pythium pathogen [9]. Early detection of a contagion can prevent an
entire crop from harm and alleviate some of the additions and attention a farmer
would need to place on their system. Also, researchers will have a new tool to
study hydroponic plant roots in a completely new way. Our primary goal is to
develop an autonomous system capable of root growth monitoring and problem
identification. To these ends we ultimately aim to increase the productivity of
hydroponic crop farms, and provide a new platform for advanced agriculture
research.
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2 System Design

The only notable work discovered during a literature review measured the growth
of leaf crops with a system designed to take overhead pictures of the crops at
predefined intervals, and then use various image analysis techniques to attain
accurate measurements [10]. That system is designed more for research than
commercial applications, and does not measure or analyze root health. Using
some of the ideas from the above research, the new system detailed below solely
focuses on the roots.

Fig. 1. System overview

Initially, a simple setup consisting of only one grow chamber was constructed
to test the quality of images captured of roots submerged in water. This was the
root measurement phase of the project and proved fruitful, as will be detailed
below. Figure 1 shows the second prototype built capable of growing four plants,
and is ready for immediate use, complete with a wireless keyboard and mouse
as well as a 7” HDMI monitor. An intuitive manual control program allows any
user to harness the power of the complete setup with only a few keypresses. A
linear actuator traverses left and right, while a pan and tilt camera unit moves up
and down inside the sealed glass dome, and takes pictures of the roots growing
between the glass dome and outer PVC tubing.
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2.1 Setup and Operation

Figures 2 and 3 provide detailed views of the system and components. Figure 2
is a view from the backside, where the air pump and solution tubing can be
seen, as well as a close up of the OV 5647 5MP infrared camera, the sealed glass
dome, and the Raspberry Pi 3, a quad-core single board computer (SBC).

Fig. 2. System detailed view (A)

Figure 3 is a more detailed diagram of the setup. At the top left is the RFID
reader, which rests on an extended support connected to the top of the linear
actuator housing and isn’t visible in the main picture. A geared 12v dc motor
drives a 5 mm geared-tooth pully system that connects to the horizontal move-
ment sled where the linear actuator rests upon. On either side of the sled is an
extension that contacts a limit switch on either side of the movement bed to
bound the left and right traversal limits. The timers control the light for a 13 h
on, 11 h off light cycle, as well as the airpump to run on and off every 30 min.
Central to controlling all electromechanical components is an Atmel ATmega
2560 based microcontroller (MCU) development board, enlarged at the bottom
right. The linear actuator and pully motor connect to a 2 amp dual H-bridge
L298 motor driver, which passes signals from the MCU to the motors. The power
distribution board passes 12v to the L298 motor driver, the air pump, and the
MCU, and 5v to the SBC and RFID reader.

This system operated for one month and captured pictures either automat-
ically or manually. For manual operation, the user would first move the linear
actuator into position horizontally, then extend the actuator vertically into posi-
tion where he or she can then pan the camera left or right as well as move the sled
in increments as small as 5 mm forward or reverse to adjust the focus. An RFID
tag is directly below each plant which is used to properly identify and label the
pictures as they are captured. Automatic mode is just like manual mode, only
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Fig. 3. System detailed view (B)

it works off a timer stops at the plants by an RFID tag read-interrupt, where
it navigates to pre-determined locations and takes a predetermined number of
pictures.

2.2 Root Measurement

In this phase, the primary goal was to attain quality pictures and accurate
measurements of roots. A root system was closely monitored for almost one
month and pictures were captured every 4 h. After collecting the pictures, the
root system was removed for a scale picture next to a quarter and tape measure.
Root thickness measurements of two arbitrarily chosen points were manually
made, to provide a comparison for the measurements made by simple image
analysis. The image processing was carried out using Python and OpenCV. The
same section of roots that were manually measured were first highlighted a solid
red or green (Fig. 4), then color-matching, bounding boxes, and dimensional
measurements were used to determine the thickness of the root section.

2.3 Problem Identification

In this phase, the primary goal was to distinguish between a healthy plant and a
sick plant. Aluminum Toxicity was artificially induced in two of the four plants
by the Agriculture Department. After collecting 1000 images from 16 individual
roots from four different plants, they were divided into two groups, a training
set and a validation set. The training set consisted of 1000 images, and was used
to build a support vector machine with a linear kernel. The model is able to
classify an image into one of two groups, either a healthy root, or a sick root.
The linear kernel was chosen over other kernels such as the radial based function
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Fig. 4. Root measurement

because it is less complex and depending on the data size or number of features
the mapping to non-linear space may be unnecessary [11]. The polynomial kernel
was not implemented because of two reasons, first, the linear kernel worked, and
second, there are more parameters to fine tune and over fitting could results.
Also, the goal was to use the simplest model that worked, and in this case, that
was with the linear kernel.

Figure 5 depicts a process diagram for binary classification. First, a local
binary pattern is calculated for each gray-scale image. The arbitrarily chosen
sickness, aluminum toxicity, affects the root morphology and the root system of a
sick plant has a different contour, or texture, when compared to that of a healthy
plant. Using the rotation-invariant principle outlined in [12], the orientation of
the roots can vary like they would in a real-world setting and the accuracy will
not be affected. A uniform density distribution histogram is then calculated and
passed along with its corresponding label to the fit function of the linear support
vector classifier. After the entire training set is processed the model is complete

Fig. 5. Binary classification
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and ready for validation. The validation set images are processed in the same
way and fed to the predict function of the model without the corresponding
label. The model makes a prediction on 200 images, and the final accuracy is
calculated based on the resulting number of matches.

3 Results

The results for both phases exceeded expectations. The camera is able to resolve
sub-millimeter root features and the supervised learning approach achieved 100%
identification accuracy. Below are the details.

3.1 Root Measurements

Figure 6(A) shows the root system at the beginning of the study. (B) is a high-
resolution close up where each red circle points out root features of approximately
1/8 to 1/2 mm in size. (C) is the root system after 22 days of growth, and in

Fig. 6. Root measurement results



320 E. Erdemir and T. Darrah

(D) a visual scale shows how small the root system actually is. Figure 7 is the
output from the program written to process and measure root thickness. An arbi-
trarily chosen point on the main root stem was measured by hand to be 1.48 mm
in diameter. The image analysis measured it at 1.54, providing a marginal dif-
ference of approximately 4%. Accounting for errors in hand measurements and
the accuracy rating of the program, this is well within acceptance.

Fig. 7. Root measurement results

3.2 Problem Identification

On the left side of Fig. 8 is the output of three trial runs of the root identification
program, and on the right is a sample output of a properly predicted group A
(top) and group B (bottom) root. The r and p values that change from the var-
ious trial runs refer to the radius and number of points property of the rotation

Fig. 8. Problem identification results
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invariant local binary pattern algorithm. As these change the patterns of uni-
formity also change. Modifying the histogram properties also affected accuracy.
In the last trial, 100% prediction accuracy was obtained. The human eye can
rather quickly distinguish the difference between these two roots, however here
it was done at the rate of 15 images a second, and becomes a very appealing
platform for the commercial industry to incorporate into their systems.

A random selection of histograms is shown in Fig. 9. The top comparison,
Fig. 9(a), is of a group A training histogram and group A validation histogram.
The middle comparison, Fig. 9(b), depicts a group A histogram and a group

Fig. 9. Problem identification histograms
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B histogram together. The bottom comparison, Fig. 9(c), compares a group B
training histogram with a group B validation histogram. Also in Fig. 9, the three
group A samples are outlined in orange, and the three group B histogram samples
are outlined in green. This is to bring attention to the similarities within each
group, and makes the differences between the groups easier to see. The x-axis of
the histograms represents the scaled distrobution of local binary patterns, and
the y-axis represents the percentage of pixels per pattern.

4 Further Work

The technique presented here only carries out simple classification of an image
into one of two pre-exesting groups. A more robust machine learning approach
should be implemented to classify more than one plant ailment. The system
should be implemented on a larger scale to allow for training sets to be developed
for multiple root problems, which can be used on mobile or other autonomous
systems. Another area to explore is the effectiveness of unsupervised learning
on an unknown set of images, which would have many practical applications.
Also, an improved horizontal carriage system should be used as well, since dur-
ing travel the vertical height of the linear actuator fluctuates by approximately
5 mm. Another improvement to the system would include a high precision lin-
ear actuator with a motor encoder, which would increase the image processing
information by providing reliable position data of the camera.

5 Conclusion

The system presented has numerous commercial and research applications that
should be explored. The feasibility to capture viable root images in situ is
readily apparent. This type of setup has the potential to substantially increase
the quality of research in the areas of agriculture, agriculture engineering, bio-
engineering, genomics, and more. The system was buiilt with cheap, readily
available materials and components, with a total cost less than $300usd. No
proprietary software was used either. This will allow for easy replication in any
lab so that more researchers can begin to set up new experiments themselves. As
detailed above many improvements can be made, however a milestone has been
achieved in the advancement of engineering techniques used in cross-disciplinary
research areas.
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