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Abstract. Most of controllers for nonlinear systems are designed by using
linearly approximated models and by applying linear control theory. In most of
such cases, nonlinear control theory cannot improve control performance as long
as we are controlling the systems in the vicinity of the equilibrium point.
However, there are many under-actuated systems which are not stabilized with
this linearization strategy: some sorts of singularity at the equilibrium point
cause uncontrollability of the approximated linear model even though the sys-
tem is controllable in nonlinear control theory. This note will present such nature
of under-actuated systems and their control strategies.
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1 Nonlinear Control Theory

Why should we research Nonlinear Control Theory? Some say, “Every real systems
have nonlinearity, thus, we need nonlinear control theory.” In my opinion, this answer
is partially correct, but not perfectly.

The commonly used controller design strategy for nonlinear systems is as follows,
first deriving approximate linear model of the system, and then designing controller
using linear control theory. For example, stabilizing controllers for famous inverted
pendulum [1, 2] are designed with this strategy.

It should also be noted that “Even though we design nonlinear optimal controllers
for nonlinear systems by using nonlinear optimal control theory, linear approximations
of those nonlinear controllers are identical to the linear optimal controllers for
approximately linearized systems designed by using linear optimal control theory,
where their performance indices are quadratic approximation of those of the original
nonlinear optimal control.” Thus, approximate linearization is a powerful tool as long
as we are controlling the systems in the vicinity of the equilibrium point.

This is not a bad news for nonlinear control researchers, however, since this also
implies that NONLINEAR CONTROL THEORY is NEEDED in the following cases:
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– we should control the system away from the equilibrium point.
– the linearized system is uncontrollable even though the original system is controllable in

nonlinear control theory, i.e., the equilibrium point is a singular point of controllability.

The former case includes swing-up control of the inverted pendulum and other
motion controls, i.e., not stabilization problem. The latter case includes theoretically
interesting nonlinear systems.

Under-Actuated Systems have many of those control difficulties. This note will
introduce our control challenges to those problems.

2 Under-Actuated Systems

Under-Actuated Systems are mechanical systems whose number of inputs (actuators) is
strictly less than the degrees of freedom (DOF). A commonly used 3-link manipulator
has 3 DOF and 3 motors (inputs), therefor this system is not an under-actuated system
but is a full-actuated system.

Examples of under-actuated systems include the followings:

– The cart-pendulum (inverted pendulum) system [1, 2] is 2 DOF (cart position and
pendulum orientation) and should be controlled with 1 input (cart acceleration).

– TheQuad-Rotor Drone has 6 DOF (3D position and 3 orientation) and 4 inputs (rotors).
– The Car has 3 DOF (2D position and 1 orientation) and 2 inputs (forward/backward

velocity and steering).

In the following sections, we will show several under-actuated systems and our
control approaches to them.

3 Velocity Constrained Systems (Driftless System)

Brockett’s Theorem [3] shows a necessary condition for the systems to be stabilized
with static continuous feedbacks, such as linear feedbacks u ¼ Fx.

If the system does not satisfy Brockett’s condition, it cannot be stabilized with any
static continuous feedbacks, i.e., at least we should design time-varying or discontin-
uous controllers.

It is known that the wheeled vehicle is modeled as driftless system and does not
satisfy Brackett’s condition [4]. Thus many researchers have worked on its control and
have proposed time-varying controllers and discontinuous controllers [for example, 4,
5, 6, 7]. Our approach is time-state control form [8, 9] based on time scale transfor-
mation [10], a hybrid type controller.

One of the canonical forms of driftless system is the following chained form.

_x1 ¼ u1;
_x2 ¼ u2;
_x3 ¼ x2u1:
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Since all terms in the right hand side are activated by the input u, i.e., there are no drift
term, it is called “driftless system.” Its linear approximation is uncontrollable as
follows.

_x1 ¼ u1;
_x2 ¼ u2;
_x3 ¼ O2 x; uð Þ:

If we ignore O2 x; uð Þ, _x3 ¼ 0 and x3 is uncontrollable. But if we set u1 ¼ 1,

_x2 ¼ u2;
_x3 ¼ x2;

and if we set u1 ¼ �1,

_x2 ¼ u2;
_x3 ¼ �x2:

Since those systems are linear controllable systems, we can stabilize x2 and x3 while
u1 ¼ 1 or u1 ¼ �1. x1 can be controlled by changing u1 ¼ 1 and u1 ¼ �1. x1 is called
“generator.” Our time-state control approach is more sophisticated way to use
non-constant u1 to control the system. In the case of wheeled car system, u1 corre-
sponds to the forward or the backward movement, and u2 corresponds to the rotation of
the vehicle (Fig. 1).

We showed that our controller can control many driftless systems such as a
wheeled vehicle, a trailer [11], and a double-trailer [12] (Fig. 2). We also showed that
an under-actuated space robot [13, 14] (Fig. 3) and a dexterous manipulation of the

Fig. 2. Double trailer systemFig. 1. Control strategy with time-state con-
trol form
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ball/plate position (a ball sandwiched by two plates: the plate’s movement is the input)
[15] (Fig. 4) can be modeled as chained forms, and controlled with our strategy. We
showed that the dexterous manipulation of the ball/plate position together with the ball
orientation is more difficult problem, i.e., it cannot be approximated to chained form
since one generator is not enough for the controllability of the rest of the system. We
proposed using two generators to control this system [16] (Fig. 5).

Recently, we proposed a discontinuous controller, whose trajectory is similar to
time varying controllers, using Semiconcave Control Lyapunov Function [17].

4 Velocity Constrained Systems (Constant Drift)

If the velocity constrained system has some constant drift, how the control strategy
should be changed. When we model the space robot as the driftless system, we assume
that the initial momentum of the space robot is zero. In such a case, any positions or
orientations of the space robot are equilibria. On the other hand, if it has non-zero initial

Fig. 3. Space robot simulator Fig. 4. Dexterous manipulation (ball/plate
position)

Fig. 5. Dexterous manipulation (position and orientation)
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momentum, no configurations are equilibria. In this case, we should change the control
objective. In [18], we proposed controllers for the spacecraft with only two reaction
wheels with non-zero initial momentum (Fig. 6). Our control objective was to make the
antenna of the spacecraft face to the earth. By choosing the appropriate output, we
succeeded in controlling the direction of the antenna, and left the angular momentum as
the rotating motion of the craft (zero-dynamics).

Another example is landing control [19]. Our problem was to control a flying
under-actuated mechanism to land at the specified posture, i.e., we should control its
posture at a certain time. We assumed that it had non-zero initial angular momentum.
Since we could not control the angular momentum, we decided to use the change of the
moment of inertia as an input, i.e., by moving its joints, we could change the moment
of inertia. The change of the moment of inertia with the constant angular momentum
caused a change of the angular velocity. In this case, we could design a conventional
trajectory tracking controller for its posture.

Another example is surface vessel with unknown disturbances [20]. We assumed
that the dynamics of surface vessel was same as wheeled vehicle, except it suffered
from constant tidal stream (Fig. 7).

5 Under-Actuated Systems Without Gravity

What would happen if we try to control manipulators with passive joints in a horizontal
plane (without gravity)? Such systems do not satisfy Brockett’s condition and cannot
be stabilized with static continuous feedbacks. Arai et al. [21] proposes such a problem,

Fig. 6. Spacecraft with initial angular momentum Fig. 7. Surface vessel with tidal stream
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and solves it using the concept of “the center of percussion.” Our group mathematically
formulated this system as a second order chained system as follows, and proposed a
discontinuous controller [22].

€x1 ¼ u1;
€x2 ¼ u2;
€x3 ¼ x2u1:

6 Under-Actuated Systems with Gravity

Manipulators with passive joints without gravity are quite hard to control. If there is a
gravity, however, they are quite easy to be controlled. The inverted pendulum can be
modeled as a manipulator with a passive joint. Since its approximate linearization is
controllable, it is easy to be controlled. This is because of the structure of equilibria. If
there are no gravity, any angles of the pendulum are equilibria. However, if there is a
gravity, the equilibrium point of the pendulum is the upright position. This implies that
the dimension of the equilibrium manifold is changed. It is known that if the dimension
of the equilibrium manifold is strictly greater than the number of inputs, the system
cannot be stabilized with any static continuous feedback [23].

Similarly, the quadrotor system is 6 DOF with 4 inputs. Since the dimension of the
equilibrium manifold of the quadrotor is 4 (pitch and roll should be zero), the quadrotor
can be controlled with linear controllers.

7 Bilinear Systems

The conventional inverted pendulums are controlled by using the horizontal movement
of the cart (actuated part) (Fig. 8). In contrast, human uses not only the horizontal
movement but also the vertical movement to control the pendulum (Fig. 9). How can
we design controllers for the inverted pendulum using both horizontal and vertical
movement? This problems is not easy because the controllability of this system has a
singularity at the origin.

You can easily imagine that, if the pendulum is at the upright position, the vertical
movement will not affect the pendulum’s angle. On the other hand, if the pendulum is
declined, then the vertical movement affects the pendulum’s angle. This implies that
the controllability from the vertical input to the pendulum has a singularity at the
upright position, i.e., it is controllable almost everywhere except the upright position.

We found that this system can be modeled (or approximated) as a bilinear system.
We proposed an inverse optimal type controller for bilinear systems and showed that
our controller efficiently used the vertical movement to control the pendulum [24, 25]
(Fig. 10).
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Similarly, the semi-active suspension (Fig. 11) of the vehicle is modeled as a
bilinear system, and can be controlled with a similar strategy [26, 27]. This controller
was employed by TOYOTA as H-infinity TEMS.

8 Motion Control (Unstable Zero-Dynamics)

Can we control under-actuated manipulators to throw a ball? When we use a fully
actuated manipulator, we first design a time trajectory and control the manipulator to
follow this trajectory. However, it is well known that, in the case of human throwing,
torque of the elbow joint is small. That is why we made a throwing machine with
passive elbow joint. Since the elbow joint did not have a heavy motor, the arm was
light and moved quickly. However, since this was an under-actuated system, it could
not exactly follow the designed time trajectory.

Fig. 8. Conventional inverted pendulum Fig. 9. Human control of inverted pendulum

Fig. 11. Semi-active suspensionFig. 10. Inverted pendulum on the drone
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For this system, we designed a controller based on Un-Stable Zero-Dynamics.
Since there was only one input (shoulder motor), we could control only 1 degree of
freedom. Thus, we decided to control the end-effector to stay on the path designed for
throwing motion. The controller was only to make the end-effector on the path, and the
dynamics along the path was not controlled, i.e., zero-dynamics. We designed this path
unstable, i.e., the end-effector was accelerated along the path so that it could throw the
ball [28] (Figs. 12 and 13).

The key point of this control was the choice of the output function which made the
zero-dynamics unstable. We proposed the Relative Degree Structure [29] which helped
us to design such an output function.

9 Motion Control (Periodic Motion)

If the path for the unstable zero-dynamics is a closed path, we may activate a periodic
motion of the system. Of course, if the path is merely unstable, the zero-dynamics in the
path continuously accelerates the motion and the periodic motion becomes unstable. In
order to stabilize the periodic motion (control the velocity of the zero-dynamics), we
should find some factors to control the velocity of the zero- dynamics. We designed
controller for Devil Stick (Juggling) [30] (Figs. 14 and 15), Biped Running [31]
(Fig. 16), Denglibot (Rolling Acrobot: such motion is called “DENGURIGAESHI” in
Japanese) [32, 33] (Figs. 17 and 18).

A similar concept, Hybrid Zero-Dynamics, was proposed by Westervelt, Grizzle
and Koditschek [34], which design a stable periodic motion path. Our control forces the
periodic motion stable by modifying the path (or other parameter) as a control
input.

Fig. 12. Human throwing Fig. 13. Under-actuated throwing machine
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Fig. 14. Devil stick: propeller motion Fig. 15. Devil stick experiment

Fig. 16. Biped running

Fig. 17. Denguribot (simulation) Fig. 18. Dengribot (experiment)
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10 Motion Control (Snake)

Another example of the motion control is seen in the manipulation of the snake-like
robot. It is known that the Serpentine Motion causes the forward movement of the
snake-like robot [35]. We showed that the Serpentine-Like Motion was automatically
generated if the robot tried to move the head forward while suppressing the side force
arisen on the body (wheel) [36] (Figs. 19 and 20).

11 Concluding Comment

This note showed the results of our work regarding the control of under-actuated
systems. As shown in this note, many under-actuated systems need advanced nonlinear
control theory. Thus, under-actuated systems are the show case of advanced nonlinear
control theory.
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