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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

v



vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
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The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park, MD, USA Series Editor



Preface

The key challenge of compressed sensing arises from the task of recovering
signals from a small collection of measurements, exploiting the fact that high-
dimensional signals are typically governed by intrinsic low-complexity structures,
for instance, being sparse in an orthonormal basis. While the reconstruction from
such compressed, typically randomly selected measurements is well studied from
a theoretical perspective, there also exist numerous efficient recovery algorithms
exhibiting excellent practical performance and thereby making compressed sensing
relevant to many different applications. In fact, from an early stage on, the field has
greatly benefited from the interaction between mathematics, engineering, computer
science, and physics, leading to new theoretical insights as well as significant
improvements of real-world applications.

From the point of view of applied mathematics, the field makes use of tools
from applied harmonic analysis, approximation theory, linear algebra, convex
optimization, and probability theory, while the applications encompass many areas
such as image processing, sensor networks, radar technology, quantum computing,
or statistical learning, to name just a very few. Nowadays, it is fair to say that more
than 10 years after its emergence, the field of compressed sensing has reached a
mature state, where many of the underlying mathematical foundations are quite well
understood. Therefore, some of the techniques and results are now being transferred
to other related areas, leading to a broader conception of compressed sensing and
opening up new possibilities for applications.

This book is the second volume in the Applied and Numerical Harmonic Analysis
book series on Compressed Sensing and its Applications, presenting state-of-the-art

ix

In December 2015, the editors of this volume organized the Second International
MATHEON Conference on Compressed Sensing and its Applications at the Tech-
nische Universität Berlin. This conference was supported by the research center for
Mathematics for Key Technologies (MATHEON), as well as the German Research
Foundation (DFG). It was attended by more than 150 participants from 18 different
countries, and as in the first workshop of this series in 2013, experts in a variety of
different research areas were present. This diverse background of participants led to
a very fruitful exchange of ideas and to stimulating discussions.
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monographs on various topics in compressed sensing and related fields. It is aimed at
a broad readership, reaching from graduate students to senior researchers in applied
mathematics, engineering, and computer science.

This volume features contributions by two of the plenary speakers (chapters “On
the Global-Local Dichotomy in Sparsity Modeling” and “Fourier Phase Retrieval:
Uniqueness and Algorithms”), namely, Michael Elad (Technion—Israel Institute of
Technology) and Yonina C. Eldar (Technion—Israel Institute of Technology), and
by ten invited speakers (chapters “Compressed Sensing Approaches for Polynomial
Approximation of High-Dimensional Functions,” “Multisection in the Stochas-
tic Block Model Using Semidefinite Programming,” “Recovering Signals with
Unknown Sparsity in Multiple Dictionaries,” “Compressive Classification and the
Rare Eclipse Problem,” “Weak Phase Retrieval,” “Cubatures on Grassmannians:
Moments, Dimension Reduction, and Related Topics,” “A Randomized Tensor Train
Singular Value Decomposition,” “Versatile and Scalable Cosparse Methods for
Physics-Driven Inverse Problems,” “Total Variation Minimization in Compressed
Sensing,” “Compressed Sensing in Hilbert Spaces”), namely, Ben Adcock (Simon
Fraser University), Alfonso S. Bandeira (Massachusetts Institute of Technology),
Peter G. Casazza (University of Missouri, Columbia), Mike E. Davies (University of
Edinburgh), Martin Ehler (University of Vienna), Rémi Gribonval (INRIA Rennes),
Felix Krahmer (Technische Universität München), Dustin G. Mixon (Air Force
Institute of Technology), Reinhold Schneider (Technische Universität Berlin), and
Philip Schniter (The Ohio State University, Columbus).

Two of the chapters focus on phase retrieval: chapter “Fourier Phase Retrieval:
Uniqueness and Algorithms” contains a detailed overview on Fourier phase retrieval
and practical algorithms, whereas chapter “Weak Phase Retrieval” introduces a
weaker formulation of the classical phase retrieval. Another key topic is the question
how sparsity-promoting transformations are used in compressed sensing. In this
realm, chapter “On the Global-Local Dichotomy in Sparsity Modeling” analyzes the
gap between local and global sparsity in dictionaries, chapter “Versatile and Scalable
Cosparse Methods for Physics-Driven Inverse Problems” focuses on the use of the
analysis formulation in physics-driven inverse problems, chapter “Total Variation
Minimization in Compressed Sensing” gives an overview over total variation min-
imization in compressed sensing, and chapter “Recovering Signals with Unknown
Sparsity in Multiple Dictionaries” uses iterative reweighting for recovering signals
with unknown sparsity in multiple dictionaries. Several chapters focus entirely on
mathematical aspects, such as chapter “Compressed Sensing Approaches for Poly-
nomial Approximation of High-Dimensional Functions” which exploits compressed
sensing for approximating functions with polynomials. In chapter “Compressed
Sensing in Hilbert Spaces,” compressed sensing is considered in the abstract

In the following, we will give a brief outline of the content of each chapter. For
an introduction and a self-contained overview on compressed sensing and its major
achievements, we refer the reader to chapter “A Survey of Compressed Sensing” of
the first volume of this book series (Boche, H., Calderbank, R., Kutyniok, G., and
Vybiral, J. (eds.), Compressed Sensing and its Applications: MATHEON Workshop
2013. Birkhäuser Boston, 2015).
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framework of Hilbert spaces, and chapter “Compressive Classification and the Rare
Eclipse Problem” deals with random projections of convex sets. The other chapters
study new frontiers in related areas, such as detecting community-like structures
in graphs via the stochastic block model (chapter “Multisection in the Stochastic
Block Model Using Semidefinite Programming”), cubatures on Grassmannians and
their connection to the recovery of sparse probability measures (chapter “Cubatures
on Grassmannians: Moments, Dimension Reduction, and Related Topics”), and an
examination of randomized tensor train singular value decompositions (chapter “A
Randomized Tensor Train Singular Value Decomposition”).

We would like to thank the following current and former members of the research
group “Applied Functional Analysis” at the Technische Universität Berlin without
whom this conference would not have been possible: Axel Flinth, Martin Genzel,
Mijail Guillemard, Anja Hedrich, Sandra Keiper, Anton Kolleck, Maximilian
Leitheiser, Jackie Ma, Philipp Petersen, Friedrich Philipp, Mones Raslan, Martin
Schäfer, and Yizhi Sun.

München, Germany Holger Boche
Berlin, Germany Giuseppe Caire
Durham, USA Robert Calderbank
Berlin, Germany Gitta Kutyniok
Berlin, Germany Maximilian März
Aachen, Germany Rudolf Mathar
July 2017
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On the Global-Local Dichotomy in Sparsity
Modeling

Dmitry Batenkov, Yaniv Romano, and Michael Elad

Abstract The traditional sparse modeling approach, when applied to inverse
problems with large data such as images, essentially assumes a sparse model for
small overlapping data patches and processes these patches as if they were indepen-
dent from each other. While producing state-of-the-art results, this methodology is
suboptimal, as it does not attempt to model the entire global signal in any meaningful
way—a nontrivial task by itself.

In this paper we propose a way to bridge this theoretical gap by constructing a
global model from the bottom-up. Given local sparsity assumptions in a dictionary,
we show that the global signal representation must satisfy a constrained underdeter-
mined system of linear equations, which forces the patches to agree on the overlaps.
Furthermore, we show that the corresponding global pursuit can be solved via local
operations. We investigate conditions for unique and stable recovery and provide
numerical evidence corroborating the theory.
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1 Introduction

1.1 The Need for a New Local-Global Sparsity Theory

The sparse representation model [17] provides a powerful approach to various
inverse problems in image and signal processing such as denoising [18, 37],
deblurring [14, 57], and super-resolution [47, 56], to name a few [38]. This model
assumes that a signal can be represented as a sparse linear combination of a few
columns (called atoms) taken from a matrix termed dictionary. Given a signal, the
sparse recovery of its representation over a dictionary is called sparse coding or
pursuit (such as the orthogonal matching pursuit, OMP, or basis pursuit, BP). Due to
computational and theoretical aspects, when treating high-dimensional data, various
existing sparsity-inspired methods utilize local patched-based representations rather
than the global ones, i.e., they divide a signal into small overlapping blocks
(patches), reconstruct these patches using standard sparse recovery techniques, and
subsequently average the overlapping regions [11, 17]. While this approach leads to
highly efficient algorithms producing state-of-the-art results, the global signal prior
remains essentially unexploited, potentially resulting in suboptimal recovery.

As an attempt to tackle this flaw, methods based on the notion of structured
sparsity [19, 29, 30, 32, 55] started to appear; for example, in [14, 37, 47] the
observation that a patch may have similar neighbors in its surroundings (often
termed the self-similarity property) is injected to the pursuit, leading to improved
local estimations. Another possibility to consider the dependencies between patches
is to exploit the multi-scale nature of the signals [36, 40, 53]. A different direction
is suggested by the expected patch log likelihood (EPLL) method [40, 52, 60],
which encourages the patches of the final estimate (i.e., after the application of the
averaging step) to comply with the local prior. Also, a related work [45, 46] suggests
promoting the local estimations to agree on their shared content (the overlap) as a
way to achieve a coherent reconstruction of the signal.

Recently, an alternative to the traditional patch-based prior was suggested in the
form of the convolutional, or shift-invariant, sparse coding (CSC) model [10, 25,
27, 28, 49, 54]. Rather than dividing the image into local patches and processing
each of these independently, this approach imposes a specific structure on the global
dictionary—a concatenation of banded circulant matrices—and applies a global
pursuit. A thorough theoretical analysis of this model was proposed very recently in
[41, 42], providing a clear understanding of its success.

The empirical success of the above algorithms indicates the great potential of
reducing the inherent gap that exists between the independent local processing of
patches and the global nature of the signal at hand. However, a key and highly
desirable part is still missing—a theory which would suggest how to modify the
basic sparse model to take into account the mutual dependencies between the
patches, what approximation methods to use, and how to efficiently design and learn
the corresponding structured dictionary.
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1.2 Content and Organization of the Paper

In this paper we propose a systematic investigation of the signals which are
implicitly defined by local sparsity assumptions. A major theme in what follows
is that the presence of patch overlaps reduces the number of degrees of freedom,
which, in turn, has theoretical and practical implications. In particular, this allows
more accurate estimates for uniqueness and stability of local sparse representations,
as well as better bounds on performance of existing sparse approximation algo-
rithms. Moreover, the global point of view allows for development of new pursuit
algorithms, which consist of local operation on one hand, while also taking into
account the patch overlaps on the other hand. Some aspects of the offered theory are
still incomplete, and several exciting research directions emerge as well.

The paper is organized as follows. In Section 2 we develop the basic framework
for signals which are patch-sparse, building the global model from the “bottom-
up,” and discuss some theoretical properties of the resulting model. In Section 3 we
consider the questions of reconstructing the representation vector and of denoising
a signal in this new framework. We describe “globalized” greedy pursuit algorithms
[43] for these tasks, where the patch disagreements play a major role. We show
that the frequently used local patch averaging (LPA) approach is in fact suboptimal
in this case. In Section 4 and Appendix E: Generative Models for Patch-Sparse
Signals, we describe several instances/classes of the local-global model in some
detail, exemplifying the preceding definitions and results. The examples include
piecewise constant signals, signature-type (periodic) signals, and more general
bottom-up models. In Section 5 we present results of some numerical experiments,
where in particular we show that one of the new globalized pursuits, inspired by
the ADMM algorithm [9, 23, 24, 33], turns out to have superior performance in all
the cases considered. We conclude the paper in Section 6 by discussing possible
research directions.

2 Local-Global Sparsity

We start with the local sparsity assumptions for every patch and subsequently
provide two complimentary characterizations of the resulting global signal space.
On one hand, we show that the signals of interest admit a global “sparse-like”
representation with a dictionary of convolutional type and with additional linear
constraints on the representation vector. On the other hand, the signal space is in fact
a union of linear subspaces, where each subspace is a kernel of a certain linear map.
To complement and connect these points of view, in Appendix E: Generative Models
for Patch-Sparse Signals, we show that the original local dictionary must carry a
combinatorial structure, and based on this structure, we develop a generative model
for patch-sparse signals. Concluding this section, we provide some theoretical
analysis of the properties of the resulting model, in particular uniqueness and



4 D. Batenkov et al.

stability of representation. For this task, we define certain measures of the dictionary,
similar to the classical spark, coherence function, and the restricted isometry
property, which take the additional dictionary structure into account. In general,
this additional structure implies possibly better uniqueness as well as stability to
perturbations; however, it is an open question to show they are provably better in
certain cases.

2.1 Preliminaries

Let Œm� denote the set f1; 2; : : : ;mg. If D is an n�m matrix and S � Œm� is an index
set, then DS denotes the submatrix of D consisting of the columns indexed by S.

Definition 1 (Spark of a Matrix). Given a dictionary D 2 R
n�m, the spark of D is

defined as the minimal number of columns which are linearly dependent:

� .D/ WD min fj W 9S � Œm� ; jSj D j; rank DS < jg : (1)

Clearly � .D/ 6 nC 1.

Definition 2. Given a vector ˛ 2 R
m, the `0 pseudo-norm is the number of nonzero

elements in ˛:

k˛k0 WD #
˚
j W ˛j ¤ 0

�
:

Definition 3. Let D 2 R
n�m be a dictionary with normalized atoms. The �1

coherence function (Tropp’s Babel function) is defined as

�1 .s/ WD max
i2Œm�

max
S�Œm�nfig; jSjDs

X

j2S

ˇ̌
hdi; dji

ˇ̌
:

Definition 4. Given a dictionary D as above, the restricted isometry constant of
order k is the smallest number ık such that

.1 � ık/ k˛k
2
2 6 kD˛k22 6 .1C ık/ k˛k

2
2

for every ˛ 2 R
m with k˛k0 6 k.

For any matrix M, we denote by R .M/ the column space (range) of M.

2.2 Globalized Local Model

In what follows we treat one-dimensional signals x 2 R
N of length N, divided into

P D N overlapping patches of equal size n (so that the original signal is thought
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to be periodically extended). The other natural choice is P D N � n C 1, but for
simplicity of derivations, we consider only the periodic case.

Let R1 WD
�
In�n 0 0 : : : 0

�
2 R

n�N , and for each i D 2; : : : ;P, we define Ri 2

R
n�N to be the circular column shift of R1 by n � .i � 1/ entries, i.e., this operator

extracts the i-th patch from the signal in a circular fashion.

Definition 5. Given local dictionary D 2 R
n�m, sparsity level s < n, signal length

N, and the number of overlapping patches P, the globalized local sparse model is
the set

M DM .D; s;P;N/ WD
˚
x 2 R

N ; Rix D D˛i; k˛ik0 6 s 8i D 1; : : : ;P
�
: (2)

This model suggests that each patch, Rix is assumed to have an s-sparse represen-
tation ˛i, and this way we have characterized the global x by describing the local
nature of its patches.

Next we derive a “global” characterization of M . Starting with the equations

Rix D D˛i; i D 1; : : : ;P;

and using the equality IN�N D
1
n

PP
iD1 RT

i Ri, we have a representation

x D
1

n

PX

iD1

RT
i Rix D

PX

iD1

�
1

n
RT

i D

�
˛i:

Let the global “convolutional” dictionary DG be defined as the horizontal concate-
nation of the (vertically) shifted versions of 1

n D, i.e., (see Figure 1 on page 5)

DG WD

��
1

n
RT

i D

��

iD1;:::P

2 R
N�mP: (3)

Let � 2 R
mP denote the concatenation of the local sparse codes, i.e.,

Fig. 1 The global dictionary DG. After permuting the columns, the matrix becomes a union of
circulant Toeplitz matrices, hence the term “convolutional”.
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� WD

2

666
4

˛1
˛2
:::

˛P

3

777
5
:

Given a vector � as above, we will denote by QRi the operator of extracting its i-th
portion,1, i.e., QRi� � ˛i.

Summarizing the above developments, we have the global convolutional repre-
sentation for our signal as follows:

x D DG�: (4)

Next, applying Ri to both sides of (4) and using (2), we obtain

D˛i D Rix D RiDG�: (5)

Let ˝i WD RiDG denote the i-th stripe from the global convolutional dictionary DG.
Thus (5) can be rewritten as

�
0 : : : 0 D 0 : : : 0

�

„ ƒ‚ …
WDQi

� D ˝i�; (6)

or .Qi �˝i/ � D 0. Since this is true for all i D 1; : : : ;P, we have shown that the
vector � satisfies

2

6
4

Q1 �˝1

:::

QP �˝P

3

7
5

„ ƒ‚ …
WDM2RnP�mP

� D 0:

Thus, the condition that the patches Rix agree on the overlaps is equivalent to the
global representation vector � residing in the null-space of the matrix M.

An easy computation provides the dimension of this null-space (see proof in
Appendix A: Proof of Lemma 1), or in other words the overall number of degrees
of freedom of admissible � .

1Notice that while Ri extracts the i-th patch from the signal x, the operator QRi extracts the
representation ˛i of Rix from � .
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Lemma 1. For any frame D 2 R
n�m (i.e., a full rank dictionary), we have

dim ker M D N .m � nC 1/ :

Note that in particular for m D n, we have dim ker M D N, and since in this case D
is invertible, we have Rix D D˛i where ˛i D D�1Rix, so that every signal admits a
unique representation x D DG� with � D

	
D�1R1x; : : : ;D�1RPx


T
.

As we shall demonstrate now, the equation M� D 0 represents the requirement
that the local sparse codes f˛ig are not independent but rather should be such that
the corresponding patches D˛i agree on the overlaps.

Definition 6. Define the “extract from top/bottom” operators ST 2 R
.n�1/�n and

SB 2 R
.n�1/�n:

ST.op/ D
�
In�1 0

�
; SB.ottom/ D

�
0 In�1

�
:

The following result is proved in Appendix B: Proof of Lemma 2.

Lemma 2. Let � D Œ˛1; : : : ; ˛P�
T . Under the above definitions, the following are

equivalent:

1. M� D 0I
2. For each i D 1; : : : ;P; we have SBD˛i D STD˛iC1.

Definition 7. Given � D Œ˛1; : : : ; ˛P�
T 2 R

mP, the k � k0;1 pseudo-norm is defined
by

k� k0;1 WD max
iD1;:::;P

k˛ik0:

Thus, every signal complying with the patch-sparse model, with sparsity s for each
patch, admits the following representation.

Theorem 1. Given D; s;P, and N, the globalized local sparse model (2) is equiva-
lent to

M D
˚
x 2 R

N W x D DG�; M� D 0; k� k0;1 6 s
�

(7)

D
˚
x 2 R

N W x D DG�; M�� D 0; k� k0;1 6 s
�
;

where the matrix M� 2 R
.n�1/P�mP is defined as

M� WD

2

666
4

SBD �STD
SBD �STD

: : :
: : :

3

777
5
:
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Proof. If x 2M (according to (2)), then by the above construction x belongs to the
set defined by the RHS of (7) (let’s call it M � for the purposes of this proof only).
In the other direction, assume that x 2M �. Now Rix D RiDG� D ˝i� , and since
M� D 0, we have Rix D Qi� D D QRi� . Denote ˛i WD QRi� , and so we have that
Rix D D˛i with k˛ik0 6 s, i.e., x 2M by definition. The second part follows from
Lemma 2. ut

We say that ˛i is a minimal representation of xi if xi D D˛i such that the matrix
Dsupp˛i has full rank—and therefore the atoms participating in the representation are
linearly independent.2

Definition 8. Given a signal x 2 M , let us denote by � .x/ the set of all locally
sparse and minimal representations of x:

� .x/ WD
n
� 2 R

mP W k� k0;1 6 s; x D DG�; M� D 0; Dsupp QRi�
is full rank

o
:

Let us now go back to the definition (2). Consider a signal x 2M , and let � 2 � .x/.
Denote Si WD supp QRi� . Then we have Rix 2 R .DSi/, and therefore we can write
Rix D PSi Rix, where PSi is the orthogonal projection operator onto R .DSi/. In fact,

since DSi is full rank, we have Psi D DSi D
�
Si

where D�
Si
D
	
DT

Si
DSi


�1
DT

Si
is the

Moore-Penrose pseudoinverse of DSi .

Definition 9. Given a support sequence S D .S1; : : : ; SP/, define the matrix AS

as follows:

AS WD

2

66
6
4

.In � PS1 /R1

.In � PS2 /R2
:::

.In � PSP/RP

3

77
7
5
2 R

nP�N :

The map AS measures the local patch discrepancies, i.e., how “far” is each local
patch from the range of a particular subset of the columns of D.

Definition 10. Given a model M ; denote by ˙M the set of all valid supports, i.e.,

˙M W D f.S1; : : : ; SP/ W 9x 2M ; � amma 2 � .x/ s.t. 8i D 1; : : : ;P W

Si D supp QRi�
�
:

With this notation in place, it is immediate to see that the global signal model is a
union of subspaces.

Theorem 2. The global model is equivalent to the union of subspaces

M D
[

S2˙M

ker AS :

2Notice that ˛i might be a minimal representation but not a unique one with minimal sparsity. For
discussion of uniqueness, see Subsection 2.3.
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Remark 1. Contrary to the well-known union of subspaces model [7, 35], the
subspaces fker AS g do not have in general a sparse joint basis, and therefore our
model is distinctly different from the well-known block-sparsity model [19, 20].

An important question of interest is to estimate dim ker AS for a given S 2 ˙M .
One possible solution is to investigate the “global” structure of the corresponding
signals (as is done in Subsection 4.1 and Subsection 4.2), while another option is to
utilize information about “local connections” (Appendix E: Generative Models for
Patch-Sparse Signals).

2.3 Uniqueness and Stability

Given a signal x 2 M , it has a globalized representation � 2 � .x/ according to
Theorem 1. When is such a representation unique, and under what conditions can it
be recovered when the signal is corrupted with noise?

In other words, we study the problem

min k� k0;1 s.t. DG� D DG�0; M� D 0 .P0;1/

and its noisy version

min k� k0;1 s.t. kDG� � DG�0k 6 "; M� D 0
	
P"0;1



:

For this task, we define certain measures of the dictionary, similar to the classical
spark, coherence function, and the restricted isometry property, which take the
additional dictionary structure into account. In general, the additional structure
implies possibly better uniqueness as well as stability to perturbations; however,
it is an open question to show they are provably better in certain cases.

The key observation is that the global model M imposes a constraint on the
allowed local supports.

Definition 11. Denote the set of allowed local supports by

T WD fT W 9 .S1; : : : ;T; : : : ; SP/ 2 ˙M g :

Recall the definition of the spark (1). Clearly � .D/ can be equivalently rewritten as

� .D/ D min fj W 9S1; S2 � Œm� ; jS1 [ S2j D j; rank DS1[S2 < jg : (8)

Definition 12. The globalized spark �� .D/ is

�� .D/ WD min fj W 9S1; S2 2 T ; jS1 [ S2j D j; rank DS1[S2 < jg : (9)

The following proposition is immediate by comparing (8) with (9).
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Proposition 1. �� .D/ > � .D/ :
The globalized spark provides a uniqueness result in the spirit of [15].

Theorem 3 (Uniqueness). Let x 2 M .D; s;N;P/. If there exists � 2 � .x/ for
which k� k0;1 < 1

2
�� .D/ (i.e., it is a sufficiently sparse solution of P0;1), then it is

the unique solution (and so � .x/ D f� g).

Proof. Suppose that there exists �0 2 � .x/ which is different from � . Put �1 WD
� � �0, then k�1k0;1 < �� .D/ , while DG�1 D 0 and M�1 D 0. Denote ˇj WD
QRj�1. By assumption, there exists an index i for which ˇi ¤ 0, but we must have

Dˇj D 0 for every j, and therefore Dsuppˇi must be rank-deficient—contradicting
the fact that kˇik < �

� .D/. ut

In classical sparsity, we have the bound

� .D/ > min fs W �1 .s � 1/ > 1g ; (10)

where �1 is given by Definition 3. In a similar fashion, the globalized spark ��

can be bounded by an appropriate analog of “coherence”—however, computing this
new coherence appears to be in general intractable.

Definition 13. Given the model M , we define the following globalized coherence
function

��1 .s/ WD max
S2T [T ;jSjDs

max
j2S

X

k2Snfjg

ˇ
ˇhdj; dki

ˇ
ˇ ;

where T [T WD fS1 [ S2 W S1; S2 2 T g :

Theorem 4. The globalized spark �� can be bounded by the globalized coherence
as follows3:

�� .D/ > min fs W ��1 .s/ > 1g :

Proof. Following closely the corresponding proof in [15], assume by contradiction
that

�� .D/ < min fs W ��1 .s/ > 1g :

Let S� 2 T [ T with jS�j D �� .D/ for which Ds� is rank-deficient. Then
the restricted Gram matrix G WD DT

S� DS� must be singular. On the other hand,
��1 .jS

�j/ < 1, and so in particular

max
j2S�

X

k2S�nfjg

ˇ̌
hdj; dki

ˇ̌
< 1:

3In general min
˚
s W ��

1 .s� 1/ > 1
�
¤ max

˚
s W ��

1 .s/ < 1
�

because the function ��

1 need not
be monotonic.
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But that means that G is diagonally dominant and therefore det G ¤ 0, a
contradiction. ut

We see that ��1 .sC 1/ 6 �1 .s/ since the outer maximization is done on a
smaller set. Therefore, in general the bound of Theorem 4 appears to be sharper
than (10).

A notion of globalized RIP can also be defined as follows.

Definition 14. The globalized RIP constant of order k associated to the model M
is the smallest number ık;M such that

.1 � ık;M / k˛k22 6 kD˛k22 6 .1C ık;M / k˛k22

for every ˛ 2 R
m with supp˛ 2 T .

Immediately one can see the following (recall Definition 4).

Proposition 2. The globalized RIP constant is upper bounded by the standard RIP
constant:

ık;M 6 ık:

Definition 15. The generalized RIP constant of order k associated to signals of
length N is the smallest number ı.N/k such that

�
1 � ı

.N/
k

�
k� k22 6 kDG� k

2
2 6

�
1C ı

.N/
k

�
k� k22

for every � 2 R
mN satisfying M� D 0; k� k0;1 6 k.

Proposition 3. We have

ı
.N/
k 6 ık;M C .n � 1/

n
6 ık C .n � 1/

n
:

Proof. Obviously it is enough to show only the leftmost inequality. If � D .˛i/
N
iD1

and k� k0;1 6 k, this gives k˛ik0 6 k for all i D 1; : : : ;P. Further, setting x WD
DG� we clearly have � 2 � .x/ and so supp� 2 ˙M . Thus supp˛i 2 T , and
therefore

.1 � ık;M / k˛ik
2
2 6 kD˛ik

2
2 6 .1C ık;M / k˛ik

2
2:

By Corollary 3 we know that for every � satisfying M� D 0, we have

kDG� k
2
2 D

1

n

NX

iD1

kD˛ik
2
2:
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Now for the lower bound,

kDG� k
2
2 > 1 � ık;M

n

NX

iD1

k˛ik
2
2 D

�
1 � 1C

1 � ık;M

n

�
k� k22

D

�
1 �

ık;M C .n � 1/

n

�
k� k22:

For the upper bound,

kDG� k
2
2 6 1C ık;M

n

NX

iD1

k˛ik
2
2 <

�
1C

ık;M C 1

n

�
k� k22

6
�
1C

ık;M C .n � 1/

n

�
k� k22:

ut

Theorem 5 (Uniqueness and Stability of P0;1 via RIP). Suppose that ı.N/2s < 1,
and suppose further that x D DG�0 with k�0k0;1 D s and kDG�0 � xk2 6 ". Then
every solution O� of the noise-constrained P"0;1 problem

O�  arg min
�
k� k0;1 s:t: kDG� � xk 6 "; M� D 0

satisfies

k O� � �0k
2
2 6 4"2

1 � ı
.N/
2s

:

In particular, �0 is the unique solution of the noiseless P0;1 problem.

Proof. Immediate using the definition of the globalized RIP:

k O� � �0k
2
2 <

1

1 � ı
.N/
2s

kDG

�
O� ��0

�
k226

1

1 � ı
.N/
2s

�
kDG O� � xk2CkDG�0 � xk2

�2

6 4"2

1 � ı
.N/
2s

:

ut

3 Pursuit Algorithms

In this section we consider the problem of efficient projection onto the model M .
First we treat the “oracle” setting, i.e., when the supports of the local patches (and
therefore of the global vector � ) are known. We show that the local patch averaging
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(LPA) method is not a good projector; however, repeated application of it does
achieve the desired result.

For the non-oracle setting, we consider “local” and “globalized” pursuits. The
former type does not use any dependencies between the patches, and tries to
reconstruct the supports ˛i completely locally, using standard methods such as
OMP—and as we demonstrate, it can be guaranteed to succeed in more cases than
the standard analysis would imply. However a possibly better alternative exists,
namely, a “globalized” approach with the patch disagreements as a major driving
force.

3.1 Global (Oracle) Projection, Local Patch Averaging (LPA)
and the Local-Global Gap

Here we briefly consider the question of efficient projection onto the subspace
ker AS , given S .

As customary in the literature [12], the projector onto ker AS can be called an
oracle. In effect, we would like to compute

xG .y;S / WD arg min
x
ky � xk22 s:t: AS x D 0; (11)

given y 2 R
N .

To make things concrete, let us assume the standard Gaussian noise model:

y D xCN
	
0; �2I



; (12)

and let the mean squared error (MSE) of an estimator f .y/ of x be defined as
usual, i.e., MSE .f / WD Ekf .y/ � xk22. The following is well-known.

Proposition 4. In the Gaussian noise model (12), the performance of the oracle
estimator (11) is

MSE .xG/ D .dim ker AS / �
2:

Let us now turn to the local patch averaging (LPA) method. This approach suggests
denoising an input signal by (i) breaking it into overlapping patches, (ii) denoising
each patch independently, followed by (iii) averaging the local reconstructions to
form the global signal estimate. The local denoising step is done by solving pursuit
problems, estimating the local supports Si, while the averaging step is the solution
to the minimization problem:

Ox D arg min
x

PX

iD1

kRix � PSi Riyk
2
2 ;
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where y is the noisy signal. This has a closed-form solution:

OxLPA D

 
X

i

RT
i Ri

!�1  X

i

RT
i PSi Ri

!

y D

 
1

n

X

i

RT
i PSi Ri

!

„ ƒ‚ …
WDMA

y: (13)

Again, the following fact is well-established.

Proposition 5. In the Gaussian noise model (12), the performance of the averaging
estimator (13) is

MSE .OxLPA/ D �
2

NX

iD1

�i;

where f�1; : : : ; �Ng are the eigenvalues of MAMT
A.

Thus, there exists a local-global gap in the oracle setting, illustrated in Figure 2
on page 14. In Subsection 4.1 we estimate this gap for a specific case of piecewise
constant signals.

The following result is proved in Appendix C: Proof of Theorem 6.

Theorem 6. For any S ; we have

lim
k!1

Mk
A D Pker AS ;

where Pker AS is the orthogonal projector onto ker AS . Therefore for any y,
iterations of (13) starting at y converge to xG .y/ with a linear rate.
From the proof it is evident that the rate of convergence depends on the eigenvalues
of MA (which turn out to be related to the singular values of AS ). Analyzing these

local-global gap

x̂ = MA(y)

RT
1PS1R1y

RT
2PS2R2yxG(y)

y

ker((I — PS1)R1)

ker((I — PS2)R2)

Fig. 2 The local-global gap, oracle setting. Illustration for the case P D 2. In details, the noisy
signal y can be either projected onto ker AS (the point xG .y/) or by applying the LPA (the point
Ox D MA .y/). The difference between those two is the local-global gap, which can be significant.
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eigenvalues (and therefore the convergence rate) appears to be a difficult problem
for general M and S . In Theorem 8 we show one example where we consider the
related problem of estimating the sum

PN
iD1 �i appearing in Proposition 5, in the

case of the piecewise constant model (providing estimates for the local-global gap
as well).

To conclude, we have shown that the iterated LPA algorithm provides an efficient
method for computing the global oracle projection xG.

3.2 Local Pursuit Guarantees

Now we turn to the question of projection onto the model M when the support of
� is not known.

Here we show that running OMP [13, 43] on each patch extracted from the signal
in fact succeeds in more cases than can be predicted by the classical unconstrained
sparse model for each patch. We use the modified coherence function (which is
unfortunately intractable to compute):

	�1 .s/ WD max
S2T

0

@max
j2S

X

k2Snfjg

ˇ̌
hdk; dji

ˇ̌
Cmax

j…S

X

k2S

ˇ̌
hdk; dji

ˇ̌
1

A :

The proof of the following theorem is very similar to proving the guarantee for
the standard OMP via the Babel function (Definition 3); see e.g., [22, Theorem
5.14]—and therefore we do not reproduce it here.

Theorem 7. If 	�1 .s/ < 1, then running OMP on each patch extracted from any
x 2M will recover its true support.
Since the modified coherence function takes the allowed local supports into
consideration, one can readily conclude that

	�1 .s/ 6 �1 .s/C �1 .s � 1/ ;

and therefore Theorem 7 gives in general a possibly better guarantee than the one
based on �1.

3.3 Globalized Pursuits

We now turn to consider several pursuit algorithms, aiming at solving the
P0;1=P"0;1 problems, in the globalized model. The main question is how to project
the patch supports onto the nonconvex set ˙M .
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The core idea is to relax the constraint M�� D 0; k� k0;1 6 s and allow for
some patch disagreements, so that the term kM��kk is not exactly zero. Intuitive
explanation is as follows: the disagreement term “drives” the pursuit, and the
probability of success is higher because we only need to “jump-start” it with the first
patch, and then by strengthening the weight of the penalty related to this constraint,
the supports will “align” themselves correctly. Justifying this intuition, at least in
some cases, is a future research goal.

3.3.1 Q-OMP

Given ˇ > 0, we define

Qˇ WD

�
DG

ˇM�

�
:

The main idea of the Q-OMP algorithm is to substitute the matrix Qˇ as a proxy
for the constraint M�� D 0, by plugging it as a dictionary to the OMP algorithm.
Then, given the obtained support S , as a way to ensure that this constraint is met,
one can construct the matrix AS and project the signal onto the subspace ker AS

(in Subsection 3.1 we show how such a projection can be done efficiently). The
Q-OMP algorithm is detailed in Algorithm 1. Let us reemphasize the point that
various values of ˇ correspond to different weightings of the model constraint
M�� D 0 and this might possibly become useful when considering relaxed models
(see Section 6).

Algorithm 1 The Q-OMP algorithm—a globalized pursuit
Given: noisy signal y, dictionary D, local sparsity s, parameter ˇ > 0

1. Construct the matrix Qˇ .

2. Run the OMP algorithm on the vector Y WD

�
y
0

�
, with the dictionary Qˇ and sparsity sN. Obtain

the global support vector O� with supp O� D OS .
3. Construct the matrix A OS and project y onto ker A OS .

3.3.2 ADMM-Inspired Approach

In what follows we extend the above idea and develop an ADMM-inspired pursuit
[9, 23, 24, 33].

We start with the following global objective:

Ox arg min
x
ky � xk22 s.t. x D DG�;M�� D 0; k� k0;1 6 K:
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Clearly, it is equivalent to Ox D DG O� , where

O�  arg min
�
ky � DG� k

2
2 s.t. M�� D 0; k� k0;1 6 K: (14)

Applying Corollary 3, we have the following result.

Proposition 6. The following problem is equivalent to (14):

O�  arg min
f˛ig

PX

iD1

kRiy � D˛ik
2
2

s.t. SBD˛i D STD˛iC1 and k˛ik0 < K for i D 1; : : : ;P:

(15)

We propose to approximate solution of the nonconvex problem (15) as follows.
Define new variables zi (which we would like to be equal to ˛i eventually), and
rewrite the problem by introducing the following variable splitting (here Z is the
concatenation of all the zi’s):

n
O� ; OZ

o
 arg min

�;Z

PX

iD1

kRiy � D˛ik
2
2 s:t: SBD˛i D STDziC1; ˛i D zi; k˛ik0 6 K:

The constraints can be written in concise form

�
I

SBD

�

„ƒ‚…
WDA

˛i D

�
I 0

0 STD

�

„ ƒ‚ …
WDB

�
zi

ziC1

�
;

and so globally we would have the following structure (for N D 3/

2

4
A

A
A

3

5

„ ƒ‚ …
WDQA

0

@
˛1
˛2
˛3

1

A D

2

6
66666
6
4

I
STD

I
STD

I
STD

3

7
77777
7
5

„ ƒ‚ …
WDQB

0

@
z1
z2
z3

1

A

Our ADMM-inspired method is defined in Algorithm 2.
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Algorithm 2 The ADMM-inspired pursuit for P"0;1.

Given: noisy signal y, dictionary D, local sparsity s, parameter � > 0. The augmented Lagrangian
is

L� .f˛ig ; fzig ; fuig/ D

PX

iD1

kRiy� D˛ik
2
2 C

�

2

PX

iD1

kA˛i � B

�
zi

ziC1

�
C uik

2
2:

1. Repeat until convergence:

a. Minimization wrt f˛ig is a batch-OMP:

˛
kC1
i  arg min

˛i
kRiy� D˛ik

2
2 C

�

2
kA˛i � B

�
zk

i

zk
iC1

�
C uk

i k
2
2; s:t:k˛ik0 6 K

˛
kC1
i  OMP

0

@ QD D

"
Dq
�

2
A

#

; Qyk
i D

0

@
Riy

q
�

2

�
B

�
zk

i

zk
iC1

�
� uk

i

�
1

A ;K

1

A :

b. Minimization wrt z is a least squares problem with a sparse matrix, which can be
implemented efficiently:

ZkC1 arg min
Z
kQA� kC1 C Uk � QBZk22

c. Dual update:

UkC1 QA� kC1 � QBZ C Uk:

2. Compute Oy WD DG O� .

4 Examples

We now turn to present several classes of signals that belong to the proposed
globalized model, where each of these is obtained by imposing a special structure
on the local dictionary. Then, we demonstrate how one can sample from M and
generate such signals. Additional examples are given in Appendix E: Generative
Models for Patch-Sparse Signals.

4.1 Piecewise Constant (PWC) Signals

The (unnormalized) Heaviside n � n dictionary Hn is the upper triangular matrix
with 1’s in the upper part (see Figure 3 on page 19). Formally, each local atom di

of length n is expressed as a step function, given by dT
i D Œ1i ; 0n�i�

T , 1 � i � n,
where 1i is a vector of ones of length i. Similarly, 0n�i is a zero vector of length n� i.
The following property is verified by noticing that H�1n is the discrete difference
operator.
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Fig. 3 Heaviside dictionary
H4. Red is 1, blue is 0. 0

0

1

2

3

4

1 2 3 4
Dictionary: Heaviside

Proposition 7. If a patch xi 2 R
n has L � 1 steps, then its (unique) representation

in the Heaviside dictionary Hn has at most L nonzeros.

Corollary 1. Let x 2 R
N be a piecewise constant signal with at most L � 1 steps

per each segment of length n (in the periodic sense). Then

x 2M .Hn;L;N;P D N/ :

Remark 2. The model M .Hn;L;N;P D N/ contains also some signals having
exactly L steps in a particular patch, but those patches must have their last segment
with zero height.
As an example, one might synthesize signals with sparsity k� k0;1 � 2 according
to the following scheme:

1. Draw at random the support of � amma with the requirement that the distance
between the jumps within the signal will be at least the length of a patch (this
allows at most two nonzeros per patch, one for the step and the second for the
bias/DC).

2. Multiply each step by a random number.

The global subspace AS and the corresponding global oracle denoiser xG (11) in
the PWC model can be explicitly described.

Proposition 8. Let x 2 R
N consist of s constant segments with lengths `r, r D

1; : : : ; s, and let � be the (unique) global representation of x in M (i.e., � .x/ D
f� g). Denote B WD diag .Br/

s
rD1, where Br D

1
`r

1`r�`r Then
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1. We have

ker Asupp� D ker .IN � B/ ; (16)

and therefore dim ker Asupp� D s and MSE .OxG/ D s�2 under the Gaussian noise
model (12).

2. Furthermore, the global oracle estimator xG is given by

xG .y; supp� / D By; (17)

i.e., the global oracle is the averaging operator within the constant segments of
the signal.

Proof. Every signal y 2 ker Asupp� has the same “local jump pattern” as x, and
therefore it also has the same global jump pattern. That is, every such y consists
of s constant segments with lengths `r. It is an easy observation that such signals
satisfy y D By, which proves (16). It is easy to see that dim ker .I`r � Br/ D 1, and
therefore

dim ker
	
IN � diag .Br/

s
rD1



D s:

The proof of 1) is finished by invoking Proposition 4.
To prove (17), notice that by the previous discussion the null-space of Asupp�

is spanned by the orthogonal set er D
1p
`r

2

6
40; : : : ; 0; 1; 1; : : : ; 1„ ƒ‚ …

`r

; 0; : : : ; 0

3

7
5

T

; r D

1; : : : ; s. Let K D Œe1; : : : ; es�, then xG D KK� D KKT : It can be easily verified by
direct computation that KKT D B: ut

It turns out that the LPA performance (and the local-global gap) can be accurately
described by the following result. We provide an outline of proof in Appendix D:
Proof of Theorem 8.

Theorem 8. Let x 2 R
N consist of s constant segments with lengths `r, r D

1; : : : ; s, and assume the Gaussian noise model (12). Then

1. There exists a function R .n; ˛/ W N � N! R
C, with R .n; ˛/ > 1, such that

MSE .OxLPA/ D �
2

sX

rD1

R .n; `r/ :

2. The function R .n; ˛/ satisfies:

a. R .n; ˛/ D 1C
˛
�
2˛H

.2/
˛ �3˛C2

�
�1

n2
if n > ˛, where H.2/

˛ D
P˛

kD1
1
k2

;

b. R .n; ˛/ D 11
18
C 2˛

3n C
6˛�11
18n2

if n 6 ˛
2

.
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Corollary 2. The function R .n; ˛/ is monotonically increasing in ˛ (with n fixed)
and monotonically decreasing in n (with ˛ fixed). Furthermore,

1. limn!1 R .n; n/ D 
2

3
� 2 � 1:29;

2. limn!1 R .n; 2n/ D 35
18
� 1:94:

Thus, for reasonable choices of the patch size, the local-global gap is roughly a
constant multiple of the number of segments, reflecting the global complexity of the
signal.

For numerical examples of reconstructing the PWC signals using our local-global
framework, see Subsection 5.2.

4.2 Signature-Type Dictionaries

Another type of signals that comply with our model are those represented via a
signature dictionary, which has been shown to be effective for image restoration [3].
This dictionary is constructed from a small signal, x 2 R

m, such that its every patch
(in varying location, extracted in a cyclic fashion), Rix 2 R

n, is a possible atom
in the representation, namely, di D Rix. As such, every consecutive pair of atoms
.i; i C 1/ is essentially a pair of overlapping patches that satisfy SBdi D STdiC1

(before normalization). The complete algorithm is presented for convenience in
Algorithm 3.

Algorithm 3 Constructing the signature dictionary
1. Choose the base signal x 2 R

m.
2. Compute D.x/ D ŒR1x;R2x; : : : ;Rmx�, where Ri extracts the i-th patch of size n in a cyclic

fashion.
3. Normalization: QD.x/ D Œd1; : : : ; dm�, where di D

Rix
kRixk2

.

Given D as above, one can generate signals y 2 R
N , where N is an integer

multiple of m, with s nonzeros per patch, by the easy procedure outlined below.

1. Init: Construct a base signal b 2 R
N by replicating x 2 R

m N=m times (note that
b is therefore periodic). Set y D 0.

2. Repeat for j D 1; : : : ; s:

a. Shift: Circularly shift the base signal by tj positions, denoted by shift.b; tj/,
for some tj D 0; 1; : : : ;m � 1 (drawn at random).

b. Aggregate: y D yC !j�shift.b; tj/, where ! is an arbitrary random scalar.

Notice that a signal constructed in this way must be periodic, as it is easily seen that

ker AS D span fshift .b; ti/g
s
iD1 ;
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while the support sequence S is

S D .Œt1; t2; : : : ; ts� ; Œt1; t2; : : : ; ts�C 1; : : : ; Œt1; t2; : : : ; ts�C N/ . mod m/ :

Assuming that there are no additional relations between the single atoms of D
except those from the above construction, all S 2 ˙M are easily seen to be of the
above form.

In Figure 4 on page 23, we give an example of a signature-type dictionary D for
.n;m/ D .6; 10/ and a signal x with N D P D 30 together with its corresponding
sparse representation � .

Remark 3. It might seem that every n � m Hankel matrix such as the one shown in
Figure 4 on page 23 produces a signature-type dictionary with a nonempty signal
space M . However this is not the case, because such a dictionary will usually fail
to generate signals of length larger than nC m � 1.

4.2.1 Multi-Signature Dictionaries

One can generalize the construction of Subsection 4.2 and consider k-tuples of initial
base signals xi; : : : ; xk, instead of a single x. The desired dictionary D will consist of
corresponding k-tuples of atoms, which are constructed from those base signals. In
order to avoid ending up with the same structure as the case k D 1, we also require
a “mixing” of the atoms. The complete procedure is outlined in Algorithm 4.

Algorithm 4 Constructing the multi-signature dictionary
1. Input: n;m; k such that k divides m. Put r WD m

k .
2. Select a signal basis matrix X 2 R

r�k and r nonsingular transfer matrices Mi 2 R
k�k; i D

1; : : : ; r.
3. Repeat for i D 1; : : : ; r:

a. Let Yi D
�
yi;1; : : : ; yi;k

�
2 R

n�k, where each yi;j is the i-th patch (of length n) of the
signal xj.

b. Put the k-tuple
�
di;1; : : : ; di;k

�
D Yi �Mi as the next k atoms in D.

In order to generate a signal of length N from M , one can follow these steps
(again we assume that m divides N ):

1. Create a base signal matrix XG 2 R
N�k by stacking k N

m copies of the original
basis matrix X. Set y D 0.

2. Repeat for j D 1; : : : ; s:

a. Select a base signal bj 2 R
	
XG



and shift it (in a circular fashion) by some
tj D 0; 1; : : : ;R � 1.

b. Aggregate: y D yC shift.bj; tj/ (note that here we do not need to multiply by
a random scalar).
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(a) The dictionary matrix D

(b) The signal x ∈ kerAS for S generated by t1 = 6 and s = 1, with
P = N = 30.

(c) The coefficient matrix G corresponding to the signal x in (c)

Fig. 4 An example of the signature dictionary with n D 6; m D 10. See Remark 3.



24 D. Batenkov et al.

This procedure will produce a signal y of local sparsity k � s. The corresponding
support sequence can be written as

S D .s1; s2; : : : ; sN/ ;

where si D s1 C i . mod m/ and

s1 D Œ.t1; 1/ ; .t1; 2/ ; : : : ; .t1; k/ ; : : : ; .ts; 1/ ; .ts; 2/ ; : : : ; .ts; k/� :

Here
	
tj; i



denotes the atom dtj;i in the notation of Algorithm 4. The corresponding
signal space is

ker AS D span
˚
shift

	
XG; tj


�s

jD1 ;

and it is of dimension k � s.
An example of a multi-signature dictionary and corresponding signals may be

seen in Figure 5 on page 25.

4.3 Convolutional Dictionaries

An important class of signals is the sparse convolution model, where each signal
x 2 R

N can be written as a linear combination of shifted “waveforms” di 2 R
n, each

di being a column in the local dictionary D0 2 R
n�m. More conveniently, any such

x can be represented as a circular convolution of di with a (sparse) “feature map”
 i 2 R

N :

x D
mX

iD1

di 	N  i: (18)

Such signals arise in various applications, such as audio classification [6, 26,
50], neural coding [16, 44], and mid-level image representation and denoising
[31, 58, 59].

Formally, the convolutional class can be recast into the patch-sparse model of
this paper as follows. First, we can rewrite (18) as

x D
�
C1 C2 : : : Cm

�

„ ƒ‚ …
WDE

� ;

where each Ci 2 R
N�N is a banded circulant matrix with its first column being equal

to di and� 2 R
Nm is the concatenation of the i’s. It is easy to see that by permuting

the columns of E, one obtains precisely the global convolutional dictionary nDG

based on the local dictionary D0 (recall (3)). Therefore we obtain
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(a) The dictionary D

(b) The first signal and its sparse representation in kerAS with N = 24; s = 1 and t1 = 5.

(c) The second signal and its sparse representation in kerAS .

Fig. 5 Example of multi-signature dictionary with n D 10; m D 12; and k D 2.

x D DG
	
D0



„ ƒ‚ …
WDD0

G

� 0: (19)

While it is tempting to conclude from comparing (19) and (4) that the con-
volutional model is equivalent to the patch-sparse model, an essential ingredient
is missing, namely, the requirement of equality on overlaps, M� 0 D 0: Indeed,
nothing in the definition of the convolutional model restricts the representation �
(and therefore � 0/; therefore, in principle the number of degrees of freedom remains
Nm, as compared to N .m � nC 1/ from Proposition 15.
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To fix this, following [42], we apply Ri to (19) and obtain Rix D RiD0G�
0. The

“stripe” ˝ 0i D RiD0G has only .2n � 1/m nonzero consecutive columns, and in
fact the nonzero portion of ˝ 0i is equal for all i. This implies that every xi has a
representation xi D ��i in the “pseudo-local” dictionary

�
	
D0


WD
h
Z.n�1/B D0 : : : D0 : : : Z.n�1/T D0

i
2 R

n�.2n�1/m;

where the operators Z.k/B and Z.k/T are given by Definition 6 in Appendix B: Proof of
Lemma 2. If we now assume that our convolutional signals satisfy

k�ik0 6 s 8i;

then we have shown that they belong to M .� .D0/ ; s;P;N/ and thus can be
formally treated by the framework we have developed.

It turns out that this direct approach is quite naive, as the dictionary � .D0/
is extremely ill-equipped for sparse reconstruction (e.g., it has repeated atoms,
and therefore � .� .D0// D 1). To tackle this problem, a convolutional sparse
coding framework was recently developed in [42], where the explicit dependencies
between the sparse representation vectors �i (and therefore the special structure
of the corresponding constraint M .D0/� 0 D 0) were exploited quite extensively,
resulting in efficient recovery algorithms and nontrivial theoretical guarantees. We
refer the reader to [42] for further details and examples.

5 Numerical Experiments

In this section, we test the effectiveness of the globalized model for recovering the
signals from Section 4, both in the noiseless and noisy cases. For the PWC, we show
a real-world example. These results are also compared to several other approaches
such as the LPA, total variation denoising (for the PWC), and a global pursuit based
on OMP.

5.1 Signature-Type Signals

In this section we investigate the performance of the pursuit algorithms on signals
complying with the signature dictionary model elaborated in Subsection 4.2,
constructed from one or two base signals (k D 1; 2), and allowing for varying
values of s. We compare the results to both LPA and a global pursuit, which uses
the dictionary explicitly constructed from the signature model. In detail, the global
dictionary D� is an N � .km/ matrix consisting of the base signal matrix XG and all
its shifts, i.e. (recall the definitions in Subsection 4.2.1)
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D� D
h
shift

	
XG; i


m�1

iD0

i
:

Given that, the global OMP algorithm is defined to run for k � s steps on D�.

5.1.1 Constructing the Dictionary

In the context of the LPA algorithm, the condition for its success in recovering the
representation is a function of the mutual coherence of the local dictionary—the
smaller this measure, the larger the number of nonzeros that are guaranteed to be
recovered. Leveraging this, we aim at constructing D 2 R

n�m of a signature type
that has a small coherence. This can be cast as an optimization problem

D D eD .x0/ ; x0 D arg min
x2Rm

�
	
QD .x/



;

where QD .x/ is computed by Algorithm 3 (or Algorithm 4) and � is the (normalized)
coherence function.

In our experiments, we choose .n;m/ D .15; 20/ for k D 1 and .n;m/ D .10; 20/
for k D 2. We minimize the above loss function via gradient descent, resulting in
�. QD.x// D 0:20 for k D 1 and � D 0:26 for k D 2. We used the TensorFlow
open source package [1]. As a comparison, the coherence of a random signature
dictionary is about 0:5:

5.1.2 Noiseless Case

In this setting, we test the ability of the globalized OMP (Subsection 3.3.1) to
perfectly recover the sparse representation of clean signature-type signals. Figure 6
compares the proposed algorithm (for different choices of ˇ 2 f0:25; 0:5; 1; 2; 5g)
with the LPA by providing their probability of success in recovering the true sparse
vectors, averaged over 103 randomly generated signals of length N D 100. For
brevity we show only the results for k D 1 here.

From a theoretical perspective, since �.D/ D 0:20, the LPA algorithm is
guaranteed to recover the representation when k� k0;1 � 3, as indeed it does.
Comparing the LPA approach to the globalized OMP, one can observe that for
ˇ 
 1 the latter consistently outperforms the former, having a perfect recovery
for k� k0;1 � 4. Another interesting insight of this experiment is the effect of ˇ on
the performance; roughly speaking, a relatively large value of this parameter results
in a better success rate than the very small ones, thereby emphasizing importance
of the constraint M�� D 0. On the other hand, ˇ should not be too large since
the importance of the signal is reduced compared to the constraint, which might
lead to deterioration in the success rate (see the curve that corresponds to ˇ D 5 in
Figure 6).
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Fig. 6 Probability of the success (%) of the globalized OMP (for various values of ˇ) and the
LPA algorithms to perfectly recover the sparse representations of test signals from the signature
dictionary model, averaged over 103 realizations, as a function of sparsity per patch.

5.1.3 Noisy Case

In what follows, the stability of the proposed globalized ADMM-inspired pursuit
is tested and compared to the traditional LPA algorithm, as well as to the global
OMP. In addition to the above, we provide the restoration performance of the
oracle estimator, serving as an indication for the best possible denoising that can
be achieved. In this case, the oracle projection matrix AS is constructed according to
the ground-truth support S.

We generate ten random signature-type signals, where each of these is corrupted
by white additive Gaussian noise with standard deviation � , ranging from 0.05
up to 0.5. The global number of nonzeros is injected to the global OMP, and the
information regarding the local sparsity is utilized both by the LPA algorithm as
well as by our ADMM-inspired pursuit (which is based on local sparse recovery
operations). Following Figure 7 parts .a; c/, which plot the mean squared error
(MSE) of the estimation as a function of the noise level, the ADMM-inspired
pursuit achieves the best denoising performance, having similar results to the oracle
estimator for all noise levels and sparsity factors. The source of superiority of
the ADMM-inspired pursuit might be its inherent ability to obtain an estimation
that perfectly fits to the globalized model. The second best algorithm is the global
OMP; using complete global information about the signal space, this fact is to be
expected. The LPA algorithm is the least accurate; it shows that for our signals the
assumption of patch independence severely degrades performance. This sheds light
on the difficulty of finding the true supports, the nontrivial solution of this problem,
and the great advantage of the proposed globalized model.



On the Global-Local Dichotomy in Sparsity Modeling 29

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-4

10-3

10-2

M
S

E

Oracle Projection
Global OMP
LPA
Globalized ADMM

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20
Stability LPA
Stability Globalized ADMM

(a) k = 1;s = 3, denoising. The globalized
ADMM-inspired (green curve) and oracle
projection (black curve) coincide with Global OMP
(magenta curve).

(b) k = 1;s = 3, stability
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Fig. 7 .a; c/ Denoising performance of the global OMP, ADMM-inspired pursuit, and LPA
algorithm for signals from the signature model with .a/ k D 1; s D 5 and .c/ k D 2; s D 1.
The performance of the oracle estimator is provided as well, demonstrating the best possible
restoration that can be achieved. .b; d/ Stability of the ADMM-inspired pursuit and LPA algorithm
for .b/ k D 1; s D 5 and .d/ k D 2; s D 1. For .a; b/ the signal size was N D 100, while for .c; d/
it was N D 80.

Similar conclusion holds for the stable recovery of the sparse representations.
Per each pursuit algorithm, Figure 7 parts .b; d/ illustrate the `2 distance between
the original sparse vector � and its estimation O� , averaged over the different noise
realizations. As can be seen, the ADMM-inspired pursuit achieves the most stable
recovery, outperforming the LPA algorithm especially in the challenging cases of
high noise levels and/or large sparsity factors.
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5.2 Denoising PWC Signals

5.2.1 Synthetic Data

In this scenario, we test the ability of the globalized ADMM-inspired pursuit to
restore corrupted PWC signals and compare these to the outcome of the LPA
algorithm.

In addition, we run the total variation (TV) denoising [48] on the signals, which
is known to perform well on PWC. We chose the regularization parameter in the
TV by running an exhaustive search over a wide range of values per input signal
and picked the one that minimizes the MSE between the estimated and the true
signal. Notice that this results in the best possible denoising performance that can
be obtained by the TV.

The projected versions of both ADMM-inspired pursuit and LPA are provided
along with the one of the oracle estimator. Following the description in Section 4.1,
we generate a signal of length N D 200, composed of patches of size n D m D
20 with a local sparsity of at most 2 nonzeros in the `0;1 sense. These signals
are then contaminated by a white additive Gaussian noise with � in the range of
0:1 to 0:9.

The restoration performance (in terms of MSE) of the abovementioned algo-
rithms and their stability are illustrated in Figure 8, where the results are averaged
over 10 noise realizations. As can be seen, the globalized approach significantly
outperforms the LPA algorithm for all noise levels. Furthermore, when � � 0:5, the
ADMM-inspired pursuit performs similarly to the oracle estimator. One can also
notice that the ADMM-inspired pursuit and its projected version result in the very
same estimation, i.e., this algorithm forces the signal to conform with the patch-
sparse model globally. On the other hand, following the visual illustration given in
Figure 9, the projected version of the LPA algorithm has only two nonzero segments,
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Fig. 8 .a/Denoising performance and .b/ stability for various noise levels, tested for signals from
the piecewise constant model with k� k0;1 � 2.
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Fig. 9 Denoising of a PWC
signal contaminated with
additive Gaussian noise
(� D 1:1/ via several pursuit
algorithms: input noisy signal
(MSE = 1.0), LPA algorithm
(MSE = 0.25), projected LPA
(MSE = 17), ADMM-inspired
pursuit (MSE = 0.094), and
TV (MSE=0.19). Projected
ADMM is identical to the
ADMM-inspired pursuit.
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which are the consequence of almost complete disagreement in the support (local
inconsistency). This is also reflected in Figure 8a, illustrating that even for a very
small noise level (� D 0:1), the projected version of the LPA algorithm has a very
large estimation error (MSE � 0:18) compared to the one of the ADMM-inspired
pursuit (MSE � 0:0004), indicating that the former fails in obtaining a consistent
representation of the signal. The TV method is unable to take into account the local
information, resulting in reconstruction of lesser quality than both the ADMM-
inspired and the LPA.

5.2.2 Real-World Data

Here we apply the globalized ADMM for the PWC model on a real-world DNA
copy number data from [51]. The data (see also [34]) come from a single experiment
on 15 fibroblast cell lines with each array containing over 2000 (mapped) BACs
(bacterial artificial chromosomes) spotted in triplicate. The results (see Figure 10)
appear to be reasonably significant.

6 Discussion

In this work we have presented an extension of the classical theory of sparse
representations to signals which are locally sparse, together with novel pursuit
algorithms. We envision several promising research directions which might emerge
from this work.
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Fig. 10 Applying the PWC reconstruction to a single fibroblast cell line, as described in [51]. The
value of � in TV was chosen empirically based on visual quality. For the ADMM, we chose n D 40

and k D 2. The ordinate is the normalized average of the log base 2 test over reference ratio of the
cell line.

6.1 Relation to Other Models

Viewed globally, the resulting signal model can be considered a sort of “structured
sparse” model; however, in contrast to other such constructions ([29, 30, 32, 55] and
others), our model incorporates both structure in the representation coefficients and
a structured dictionary.

The recently developed framework of convolutional sparse coding (CSC) [41, 42]
bears some similarities to our work, in that it, too, has a convolutional representation
of the signal via a dictionary identical in structure to DG. However, the underlying
local sparsity assumptions are drastically different in the two models, resulting in
very different guarantees and algorithms. That said, we believe that it would be
important to provide precise connections between the results, possibly leading to
their deeper understanding. First steps in this direction are outlined in Subsec-
tion 4.3.

6.2 Further Extensions

The decomposition of the global signal x 2 R
N into its patches,

x 7! .Rix/
P
iD1 ; (20)
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is a special case of a more general decomposition, namely,

x 7! .wiPix/
P
iD1 ; (21)

where Pi is the (orthogonal) projection onto a subspace Wi of RN and wi are some
weights. This observation naturally places our theory, at least partially, into the
framework of fusion frames, a topic which is generating much interest recently in
the applied harmonic analysis community [21, Chapter 13]. In fusion frame theory,
which is motivated by applications such as distributed sensor networks, the starting
point is precisely the decomposition (21). Instead of the reconstruction formula
x D

P
i
1
n RT

i Rix, in fusion frame theory we have

x D
X

i

w2i S�1W .Pix/ ;

where SW is the associated fusion frame operator. The natural extension of our work
to this setting would seek to enforce some sparsity of the projections Pix. Perhaps
the most immediate variant of (20) in this respect would be to drop the periodicity
requirement, resulting in a slightly modified Ri operators near the endpoints of the
signal. We would like to mention some recent works which investigate different
notions of fusion frame sparsity [2, 4, 8].

Another intriguing possible extension of our work is to relax the complete
overlap requirement between patches and consider an “approximate patch sparsity”
model, where the patch disagreement vector M� is not zero but “small.” In some
sense, one can imagine a full “spectrum” of such models, ranging from a complete
agreement (this work) to an arbitrary disagreement (such as in the CSC framework
mentioned above).

6.3 Learning Models from Data

The last point above brings us to the question of how to obtain “good” models,
reflecting the structure of the signals at hand (such as speech/images, etc.). We
hope that one might use the ideas presented here in order to create novel learning
algorithms. In this regard, the main difficulty is how to parametrize the space
of allowed models in an efficient way. While we presented some initial ideas in
Appendix E: Generative Models for Patch-Sparse Signals, in the most general
case (incorporating the approximate sparsity direction above), the problem remains
widely open.
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Appendix A: Proof of Lemma 1

Proof. Denote Z WD ker M and consider the linear map A W Z ! R
N given by the

restriction of the “averaging map” DG W R
mP ! R

N to Z.

1. Let us see first that im .A/ D R
N . Indeed, for every x 2 R

N , consider its patches
xi D Rix. Since D is full rank, there exist f˛ig for which D˛i D xi. Then setting
� WD .˛1; : : : ; ˛P/, we have both DG� D x and M� D 0 (by construction, see
Section 2), i.e., � 2 Z and the claim follows.

2. Define

J WD ker D � ker D � : : : ker D � R
mP:

We claim that J D ker A.

a. In one direction, let � D .˛1; : : : ; ˛P/ 2 ker A, i.e., M� D 0 and DG� D 0.
Immediately we see that 1n D˛i D 0 for all i, and therefore ˛i 2 ker D for all i,
thus � 2 J.

b. In the other direction, let � D .˛1; : : : ; ˛P/ 2 J, i.e., D˛i D 0. Then the local
representations agree, i.e., M� D 0, thus � 2 Z. Furthermore, DG� D 0 and
therefore � 2 ker A.

3. By the fundamental theorem of linear algebra, we conclude

dim Z D dim im .A/C dim ker A D N C dim J

D N C .m � n/N D N .m � nC 1/ :
ut

Appendix B: Proof of Lemma 2

We start with an easy observation.

Proposition 9. For any vector � 2 R
N, we have

k�k22 D
1

n

NX

jD1

kRj�k
2
2:

Proof. Since

k�k22 D

NX

jD1

�2j D
1

n

NX

jD1

n�2j D
1

n

NX

jD1

nX

kD1

�2j ;
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we can rearrange the sum and get

k�k22 D
1

n

nX

kD1

NX

jD1

�2j D
1

n

nX

kD1

NX

jD1

�2.jCk/ mod N D
1

n

NX

jD1

nX

kD1

�2.jCk/ mod N

D
1

n

NX

jD1

kRj�k
2
2:

ut

Corollary 3. Given M� D 0, we have

ky � DG� k
2
2 D

1

n

NX

jD1

kRjy � D˛jk
2
2:

Proof. Using Proposition 9, we get

ky � DG� k
2
2 D

1

n

NX

jD1

kRjy � RjDG� k
2
2 D

1

n

NX

jD1

kRjy �˝j� k
2
2:

Now since M� D 0, then by definition of M, we have ˝j� D D˛j (see (6)), and
this completes the proof. ut

Recall Definition 6. Multiplying the corresponding matrices gives

Proposition 10. We have the following equality for all i D 1; : : :P:

SBRi D STRiC1: (22)

To facilitate the proof, we introduce extension of Definition 6 to multiple shifts as
follows.

Definition 16. Let n be fixed. For k D 0; : : : ; n � 1 let

1. S.k/T WD
�
In�k 0

�
and S.k/B WD

�
0 In�k

�
denote the operators extracting the top (resp.

bottom) n � k entries from a vector of length n; the matrices have dimension
.n � k/ � n.

2. Z.k/B WD

"
S.k/B

0k�n

#

and Z.k/T WD

"
0k�n

S.k/T

#

.

3. W.k/
B WD

"
0k�n

S.k/B

#

and W.k/
T WD

"
S.k/T

0k�n

#

.

Note that SB D S.1/B and ST D S.1/T . We have several useful consequences of the
above definitions. The proofs are carried out via elementary matrix identities and
are left to the reader.
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Proposition 11. For any n 2 N, the following hold:

1. Z.k/T D
�

Z.1/T

�k
and Z.k/B D

�
Z.1/B

�k
for k D 0; : : : ; n � 1;

2. W.k/
T W.k/

T D W.k/
T and W.k/

B W.k/
B D W.k/

B for k D 0; : : : ; n � 1;

3. W.k/
T W.j/

B D W.j/
B W.k/

T for j; k D 0; : : : ; n � 1;

4. Z.k/B D Z.k/B W.k/
B and Z.k/T D Z.k/T W.k/

T for k D 0; : : : ; n � 1;

5. W.k/
B D Z.1/T W.k�1/

B Z.1/B and W.k/
T D Z.1/B W.k�1/

T ZT for k D 1; : : : ; n � 1;

6. Z.k/B Z.k/T D W.k/
T and Z.k/T Z.k/B D W.k/

B for k D 0; : : : ; n � 1;

7. .n � 1/ In�n D
Pn�1

kD1

�
W.k/

B CW.k/
T

�
:

Proposition 12. If the vectors u1; : : : ; uN 2 R
n satisfy pairwise

SBui D STuiC1;

then they also satisfy for each k D 0; : : : ; n � 1 the following:

W.k/
B ui D Z.k/T uiCk; (23)

Z.k/B ui D W.k/
T uiCk: (24)

Proof. It is easy to see that the condition SBui D STuiC1 directly implies

Z.1/B ui D W.1/
T uiC1; W.1/

B ui D Z.1/T uiC1 8i: (25)

Let us first prove (23) by induction on k. The base case k D 1 is precisely (25).
Assuming validity for k � 1 and 8i, we have

W.k/
B ui DZ.1/T W.k�1/

B Z.1/B ui .by Proposition 11, item 5/

DZ.1/T W.k�1/
B W.1/

T uiC1 .by (25)/

DZ.1/T W.1/
T W.k�1/

B uiC1 .by Proposition 11, item 3/

DZ.1/T W.1/
T Z.k�1/T uiCk .by the induction hypothesis/

DZ.1/T Z.k�1/T uiCk .by Proposition 11, item 4/

DZ.k/T uiCk: .by Proposition 11, item 1/

To prove (24) we proceed as follows:
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Fig. 11 Illustration to the
proof of Proposition 12. The
green pair is equal, as well as
the red pair. It follows that the
blue elements are equal as
well.

ui

ui+1

ui+2

Z.k/B ui D Z.k/B W.k/
B ui .by Proposition 11, item 4/

D Z.k/B Z.k/T uiCk .by (23) which is already proved/

D W.k/
T uiCk: .by Proposition 11, item 6/

This finishes the proof of Proposition 12. ut

Example 1. To help the reader understand the claim of Proposition 12, consider the
case k D 2, and take some three vectors ui; uiC1; uiC2: We have SBui D STuiC1 and
also SBuiC1 D STuiC2. Then clearly S.2/B ui D S.2/T uiC2 (see Figure 11 on page 37)

and therefore W.2/
B ui D Z.2/T uiC2.

Let us now present the proof of Lemma 2.

Proof. We show equivalence in two directions.

• .1/ H) .2/: Let M� D 0. Define x WD DG� , and then further denote xi WD Rix.
Then on the one hand:

xi D RiDG�

D ˝i� (definition of ˝i/

D D˛i: .M� D 0/

On the other hand, because of (22) we have SBRix D STRiC1x, and by combining
the two, we conclude that SBD˛i D STD˛iC1.

• .2/ H) .1/: In the other direction, suppose that SBD˛i D STD˛iC1. Denote
ui WD D˛i. Now consider the product ˝i� where ˝i D RiDG. One can easily be
convinced that in fact
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˝i� D
1

n

 
n�1X

kD1

�
Z.k/B ui�k C Z.k/T uiCk

�
C ui

!

:

Therefore

.˝i � Qi/ � D
1

n

 

ui C

n�1X

kD1

�
Z.k/B ui�k C Z.k/T uiCk

�!

� ui

D
1

n

 
n�1X

kD1

�
W.k/

T ui CWk
Bui

�
� .n � 1/ ui

!

.by Proposition 12/

D 0: .by Proposition 11, item 7/

Since this holds for all i, we have shown that M� D 0.
ut

Appendix C: Proof of Theorem 6

Recall that MA D
1
n

P
i RT

i Psi Ri. We first show that MA is a contraction.

Proposition 13. kMAk2 6 1.

Proof. Closely following a similar proof in [45], divide the index set f1; : : : ;Ng into
n groups representing non-overlapping patches: for i D 1; : : : ; n let

K .i/ WD


i; iC n; : : : ; iC

��
N

n

�
� 1

�
n

�
mod N:

Now

kMAxk2 D
1

n

�
����

NX

iD1

RT
i Psi Rix

�
����
2

D
1

n

���
���

nX

iD1

X

j2K.i/

RT
j Psj Rjx

���
���
2

6 1

n

nX

iD1

�����
�

X

j2K.i/

RT
j PjRjx

�����
�
2

:

By construction, RjRT
k D 0n�n for j; k 2 K .i/ and j ¤ k. Therefore for all i D

1; : : : ; n we have
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�
�����

X

j2K.i/

RT
j Psj Rjx

�
�����

2

2

D
X

j2K.i/

��RT
j Psj Rjx

��2
2

6
X

j2K.i/

��Rjx
��2
2

6 kxk22 :

Substituting in back into the preceding inequality finally gives

kMAxk2 6 1

n

nX

iD1

kxk2 D kxk2 :

ut

Now let us move on to prove Theorem 6.

Proof. Define

OPi WD .I � Psi/Ri:

It is easy to see that

X

i

OPT
i
OPi D AT

S AS :

Let the SVD of AS be

AS D U˙VT :

Now

V˙2VT D AT
S AS D

X

i

OPT
i
OPi D

X

i

RT
i Ri �

X

i

RT
i Psi Ri

„ ƒ‚ …
WDT

D nI � T:

Therefore T D nI � V˙VT , and

MA D
1

n
T D I �

1

n
V˙2VT D V

�
I �

˙2

n

�
VT :

This shows that the eigenvalues of MA are �i D 1 �
�2i
n where f�ig are the singular

values of AS . Thus we obtain

Mk
A D V diag

˚
� k

i

�
VT :
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If �i D 0 then �i D 1, and in any case, by Proposition 13, we have j�ij 6 1. Let
the columns of the matrix W consist of the singular vectors of AS corresponding to
�i D 0 (and so span W D N .AS /), then

lim
k!1

Mk
A D WWT :

Thus, as k ! 1, Mk
A tends to the orthogonal projector onto N .AS /. The

convergence is evidently linear, the constant being dependent upon f�ig. ut

Appendix D: Proof of Theorem 8

Recall that the signal consists of s constant segments of corresponding lengths
`1; : : : ; `s. We would like to compute the MSE for every pixel within every such
segment of length ˛ WD `r. For each patch, the oracle provides the locations of the
jump points within the patch.

Let us calculate the MSE for pixel with index 0 inside a constant (nonzero)
segment Œ�k; ˛ � k � 1� with value v (Figure 12 on page 41 might be useful). The
oracle estimator has the explicit formula

Oxr;k
A D

1

n

nX

jD1

1

bj � aj C 1

bjX

iDaj

.v C zi/; (26)

where j D 1; : : : ; n corresponds to the index of the overlapping patch containing the
pixel, intersecting the constant segment on

�
aj; bj

�
, so that

aj D �min .k; n � j/ ;

bj D min .˛ � k � 1; j � 1/ :

Now, the oracle error for the pixel is

Oxr;k
A � v D

1

n

nX

jD1

1

bj � aj C 1

bjX

iDaj

zi

D

˛�k�1X

iD�k

ci;˛;n;kzi;

where the coefficients ci;˛;n;k are some positive rational numbers depending only on
i; ˛; n and k. It is easy to check by rearranging the above expression that
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−k a−k−1

O

aj

bj

Fig. 12 The oracle estimator for the pixel O in the segment (black). The orange line is patch
number j D 1; : : : ; n, and the relevant pixels are between aj and bj. The signal itself is shown to
extend beyond the segment (blue line).

˛�k�1X

iD�k

ci;˛;n;k D 1; (27)

and furthermore, denoting di WD ci;˛;n;k for fixed ˛; n; k, we also have that

d�k < d�kC1 < : : : d0 > d1 > : : : d˛�k�1: (28)

Example 2. n D 4; ˛ D 3

• For k D 1:

Oxr;k
A � v D

1

4

�
1

2
C
1

3
C
1

3
C
1

2

�
z0 C

1

4

�
1

2
C
1

3
C
1

3

�
z�1 C

1

4

�
1

3
C
1

3
C
1

2

�
z1

D
7

24„ƒ‚…
d�1

z�1 C
5

12„ƒ‚…
d0

z0 C
7

24„ƒ‚…
d1

z1

• For k D 2:

Oxr;k
A � v D

1

4

�
1

3
C
1

3
C
1

2
C 1

�
z0 C

1

4

�
1

3
C
1

3
C
1

2

�
z�1 C

1

4

�
1

3
C
1

3

�
z�2

D
13

24
z0 C

7

24
z�1 C

1

6
z�2

Now consider the optimization problem

min
c2R˛

cTc s.t 1Tc D 1:
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It can be easily verified that it has the optimal value 1
˛

, attained at c� D ˛1. From
this, (27) and (28), it follows that

˛�k�1X

iD�k

c2i;˛;n;k >
1

˛
:

Since the zi are i.i.d., we have

E

�
Oxr;k

A � v
�2
D �2

˛�k�1X

iD�k

c2i;˛;n;k;

while for the entire nonzero segment of length ˛ D `r

Er WD E

 
˛�1X

kD0

�
Oxr;k

A � v
�2
!

D

˛�1X

kD0

E

�
Oxr;k

A � v
�2
D �2

˛�1X

kD0

˛�k�1X

iD�k

c2i;˛;n;k:

Defining

R .n; ˛/ WD
˛�1X

kD0

˛�k�1X

iD�k

c2i;˛;n;k;

we obtain that R .n; ˛/ > 1 and furthermore

E kOxA � xk2 D
sX

rD1

Er D �
2

sX

rD1

R .n; `r/ > s�2:

This proves item .1/ of Theorem 8. For showing the explicit formulas for R .n; ˛/
in item .2/, we have used automatic symbolic simplification software MAPLE [39].

By construction (26), it is not difficult to see that if n > ˛ then

R.n; ˛/ D
1

n2

˛�1X

kD0

� kX

jD0

	
2H˛�1 � Hk C

n � ˛ C 1

˛
� H˛�1�j


2

C

˛�1X

jDkC1

	
2H˛�1 � H˛�k�1 C

n � ˛ C 1

˛
� Hj


2�
;

where Hk WD
Pk

iD1
1
i is the k-th harmonic number. This simplifies to

R.n; ˛/ D 1C
˛.2˛H.2/

˛ C 2 � 3˛/ � 1

n2
;
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where H.2/
k D

Pk
iD1

1
i2

is the k-th harmonic number of the second kind.
On the other hand, for n 6 ˛

2
we have

R.n; ˛/ D
n�2X

kD0

c.1/n;k C

˛�nX

kDn�1

c.2/n;k C

˛�1X

kD˛�nC1

c.1/n;˛�1�k;

where

c.1/n;k D
1

n2

 
n�1X

jDk

	
Hn�1�HjC

kC 1

n


2
C

n�1X

iDn�k

	n � i

n


2
C

k�1X

iD0

	
Hn�1�HkC

k � i

n


2
!

and

c.2/n;k D
1

n2

 
kX

jDk�nC1

�
j � kC n

n

�2
C

kCn�1X

jDkC1

�
kC n � j

n

�2!

:

Automatic symbolic simplification of the above gives

R .n; ˛/ D
11

18
C
2˛

3n
�

5

18n2
C
˛ � 1

3n3
:

Appendix E: Generative Models for Patch-Sparse Signals

In this section we propose a general framework aimed at generating signals from
the patch-sparse model. Our approach is to construct a graph-based model for the
dictionary and subsequently use this model to generate dictionaries and signals
which turn out to be much richer than those considered in Section 4.

Local Support Dependencies

We start by highlighting the importance of the local connections (recall Lemma
2) between the neighboring patches of the signal and therefore between the corre-
sponding subspaces containing those patches. This in turn allows to characterize
˙M as the set of all “realizable” paths in a certain dependency graph derived from
the dictionary D. This point of view allows to describe the model M using only the
intrinsic properties of the dictionary, in contrast to Theorem 2.

Proposition 14. Let 0 ¤ x 2M and � amma 2 � .x/ with supp� D .S1; : : : ; SP/.
Then for i D 1; : : : ;P
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rank
�
SBDSi � STDSiC1

�
< jSij C jSiC1j 6 2s; (29)

where by convention rank; D �1.

Proof. x 2M implies by Lemma 2 that for every i D 1; : : :P

ŒSBD � STD�

�
˛i

˛iC1

�
D 0:

But

ŒSBD � STD�

�
˛i

˛iC1

�
D
�
SBDSi � STDSiC1

� � ˛ijSi

˛iC1jSiC1

�
D 0;

and therefore the matrix
�
SBDSi � STDSiC1

�
must be rank-deficient. Note in

particular that the conclusion still holds if one (or both) of the fsi; siC1g is empty.
ut

The preceding result suggests a way to describe all the supports in ˙M .

Definition 17. Given a dictionary D, we define an abstract directed graph GD;s D

.V;E/, with the vertex set

V D f.i1; : : : ; ik/ � f1; : : : ;mg W rank Di1;:::;ik D k < ng ;

and the edge set

E D


.S1; S2/ 2 V � V W rank ŒSBDS1 � STDS2 � < min fn � 1; jS1j C jS2jg

�
:

In particular, ; 2 V and .;;;/ 2 E with rank Œ;� WD �1.

Remark 4. It might be impossible to compute GD;s in practice. However we set this
issue aside for now and only explore the theoretical ramifications of its properties.

Definition 18. The set of all directed paths of length P in GD;s, not including the
self-loop .;;;; : : :;/

„ ƒ‚ …
�P

, is denoted by CG .P/.

Definition 19. A path S 2 CG .P/ is called realizable if dim ker AS > 0. The set
of all realizable paths in CG .P/ is denoted by RG .P/.
Thus we have the following result.

Theorem 9. Suppose 0 ¤ x 2M . Then

1. Every representation � D .˛i/
P
iD1 2 � .x/ satisfies supp� 2 CG .P/, and

therefore

˙M � RG .P/ : (30)
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2. The model M can be characterized “intrinsically” by the dictionary as follows:

M D
[

S2RG .P/

ker AS : (31)

Proof. Let supp� D .S1; : : : ; SP/ with Si D supp˛i if ˛i ¤ 0, and Si D ; if
˛i D 0. Then by Proposition 14, we must have that

rank
�
SBDSi � STDSiC1

�
< jSij C jSiC1j 6 2s:

Furthermore, since � 2 � .x/ we must have that Dsi is full rank for each i D
1; : : : ;P. Thus .Si; SiC1/ 2 GD;s, and so supp� 2 RG .P/. Since by assumption
supp� 2 ˙M , this proves (30).

To show (31), notice that if supp� amma 2 RG .P/, then for every x 2
ker Asupp� , we have Rix D PSi Rix, i.e., Rix D D˛i for some ˛i with supp˛i � Si.
Clearly in this case jsupp˛ij 6 s and therefore x 2M . The other direction of (31)
follows immediately from the definitions. ut

Definition 20. The dictionary D is called “.s;P/-good” if

jRG .P/j > 0:

Theorem 10. The set of “.s;P/-good” dictionaries has measure zero in the space
of all n � m matrices.

Proof. Every low-rank condition defines a finite number of algebraic equations on
the entries of D (given by the vanishing of all the 2s� 2s minors of

�
SBDSi STDSj

�
).

Since the number of possible graphs is finite (given fixed n;m and s), the resulting
solution set is a finite union of semi-algebraic sets of low dimension and hence has
measure zero. ut

Constructing “Good” Dictionaries

The above considerations suggest that the good dictionaries are hard to come by;
here we provide an example of an explicit construction.

We start by defining an abstract graph G with some desirable properties, and
subsequently look for a nontrivial realization D of the graph, so that in addition
RG ¤ ;.

In this context, we would want G to contain sufficiently many different long
cycles, which would correspond to long signals and a rich resulting model M .
In contrast with the models from Subsection 4.2 (where all the graphs consist of
a single cycle), one therefore should allow for some branching mechanism. An
example of a possible G is given in Figure 13 on page 46. Notice that due to the
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Fig. 13 A possible dependency graph G with m D 10. In this example, jCG .70/j D 37614.

structure of G , there are many possible paths in CG .P/. In fact, a direct search
algorithm yields jCG .70/j D 37614.

Every edge in G corresponds to a conditions of the form (29) imposed on the
entries of D. As discussed in Theorem 10, this in turn translates to a set of algebraic
equations. So the natural idea would be to write out the large system of such
equations and look for a solution over the field R by well-known algorithms in
numerical algebraic geometry [5]. However, this approach is highly impractical
because these algorithms have (single or double) exponential running time. We
consequently propose a simplified, more direct approach to the problem.

In detail, we replace the low-rank conditions (29) with more explicit and
restrictive ones below.

Assumptions(*) For each
	
Si; Sj



2 G we have jSij D

ˇ̌
Sj

ˇ̌
D k. We require that

span SBDSi D span STDSj D i;j with dimi;j D k. Thus there exists a non-
singular transfer matrix Ci;j 2 R

k�k such that

SBDSi D Ci;jSTDSj : (32)

In other words, every column in SBDSi must be a specific linear combination of the
columns in STDSj . This is much more restrictive than the low-rank condition, but
on the other hand, given the matrix Ci;j, it defines a set of linear constraints on D.
To summarize, the final algorithm is presented in Algorithm 5. In general, nothing
guarantees that for a particular choice of G and the transfer matrices, there is a
nontrivial solution D; however, in practice we do find such solutions. For example,
taking the graph from Figure 13 on page 46 and augmenting it with the matrices
Ci;j (scalars in this case), we obtain a solution over R6 which is shown in Figure 14
on page 47. Notice that while the resulting dictionary has a Hankel-type structure
similar to what we have seen previously, the additional dependencies between the
atoms produce a rich signal space structure, as we shall demonstrate in the following
section.

Algorithm 5 Finding a realization D of the graph G
1. Input: a graph G satisfying the Assumptions(*) above, and the dimension n of the realization

space R
n.

2. Augment the edges of G with arbitrary nonsingular transfer matrices Ci;j.
3. Construct the system of linear equations given by (32).
4. Find a nonzero D solving the system above over Rn.
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Fig. 14 A realization
D 2 R

6�10 of G from Figure
13 on page 46.

Generating Signals

Now suppose the graph G is known (or can be easily constructed). Then this gives
a simple procedure to generate signals from M , presented in Algorithm 6.

Algorithm 6 Constructing a signal from M via G

1. Construct a path S 2 CG .P/.
2. Construct the matrix AS .
3. Find a nonzero vector in ker AS .

Let us demonstrate this on the example in Figure 13 on page 46 and Figure 14 on
page 47. Not all paths in CG are realizable, but it turns out that in this example we
have jRG .70/j D 17160. Three different signals and their supports S are shown
in Figure 15 on page 48. As can be seen from these examples, the resulting model
M is indeed much richer than the signature-type construction from Subsection 4.2.

An interesting question arises: given S 2 CG .P/, can we say something about
dim ker AS ? In particular, when is it strictly positive (i.e., when S 2 RG .P/?)
While in general the question seems to be difficult, in some special cases this number
can be estimated using only the properties of the local connections .Si; SiC1/, by
essentially counting the additional “degrees of freedom” when moving from patch i
to patch iC 1. To this effect, we prove two results.

Proposition 15. For every S 2 RG .P/, we have

dim ker AS D dim ker M.S /
� :

Proof. Notice that

ker AS D
n
D.S /

G �S ; M.S /
� �S D 0

o
D im

�
D.S /

G j
ker M

.S /
�

�
;
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Fig. 15 Examples of signals from M and the corresponding supports S .
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and therefore dim ker AS 6 dim ker M.S /
� . Furthermore, the map D.S /

G j
ker M

.S /
�

is

injective, because if D.S /
G �S D 0 and M.S /

� �S D 0, we must have that DSi˛ijSi D

0 and, since Dsi has full rank, also ˛i D 0. The conclusion follows. ut

Proposition 16. Assume that the model satisfies Assumptions(*) above. Then for
every S 2 RG .P/

dim ker AS 6 k:

Proof. The idea is to construct a spanning set for ker M.S /
� and invoke Proposi-

tion 15. Let us relabel the nodes along S to be 1; 2; : : : ;P. Starting from an arbitrary
˛1 with support jS1j D k, we use (32) to obtain, for i D 1; 2; : : : ;P � 1, a formula
for the next portion of the global representation vector � amma

˛iC1 D C�1i;iC1˛i: (33)

This gives a set� consisting of overall k linearly independent vectors � ammai with
supp�i D S . It may happen that equation (33) is not satisfied for i D P. However,
every � with supp� D S and M.S /

� � ammaS D 0 must belong to span�, and
therefore

dim ker M.S /
� 6 dim span� D k:

ut

We believe that Proposition 16 can be extended to more general graphs, not
necessarily satisfying Assumptions(*). In particular, the following estimate appears
to hold for a general model M and S 2 RG .P/:

dim ker AS 6 jS1j C
X

i

	
jSiC1j � rank

�
SBDSi STDSiC1

�

:

We leave the rigorous proof of this result to a future work.

Further Remarks

While the model presented in this section is the hardest to analyze theoretically,
even in the restricted case of Assumptions(*) (when does a nontrivial realization of
a given G exist? How does the answer depend on n? When RG .P/ ¤ ;? etc?), we
hope that this construction will be most useful in applications such as denoising of
natural signals.



50 D. Batenkov et al.

References

1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R.
Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.
org/. Software available from tensorflow.org

2. R. Aceska, J.L. Bouchot, S. Li, Local sparsity and recovery of fusion frames structured signals.
preprint (2015). http://www.mathc.rwth-aachen.de/~bouchot/files/pubs/FusionCSfinal.pdf

3. M. Aharon, M. Elad, Sparse and redundant modeling of image content using an image-
signature-dictionary. SIAM J. Imag. Sci. 1(3), 228–247 (2008)

4. U. Ayaz, S. Dirksen, H. Rauhut, Uniform recovery of fusion frame structured sparse signals.
Appl. Comput. Harmon. Anal. 41(2), 341–361 (2016). https://doi.org/10.1016/j.acha.2016.03.
006. http://www.sciencedirect.com/science/article/pii/S1063520316000294

5. S. Basu, R. Pollack, M.F. Roy, Algorithms in Real Algebraic Geometry. Algorithms and
Computation in Mathematics, 2nd edn., vol. 10 (Springer, Berlin, 2006)

6. T. Blumensath, M. Davies, Sparse and shift-invariant representations of music. IEEE Trans.
Audio Speech Lang. Process. 14(1), 50–57 (2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1561263

7. T. Blumensath, M.E. Davies, Sampling theorems for signals from the union of finite-
dimensional linear subspaces. IEEE Trans. Inf. Theory 55(4), 1872–1882 (2009). http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4802322

8. P. Boufounos, G. Kutyniok, H. Rauhut, Sparse recovery from combined fusion frame measure-
ments. IEEE Trans. Inf. Theory 57(6), 3864–3876 (2011). https://doi.org/10.1109/TIT.2011.
2143890

9. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1–122 (2011). http://dx.doi.org/10.1561/2200000016

10. H. Bristow, A. Eriksson, S. Lucey, Fast convolutional sparse coding. in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 391–398

11. A.M. Bruckstein, D.L. Donoho, M. Elad, From sparse solutions of systems of equations to
sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009). http://epubs.siam.
org/doi/abs/10.1137/060657704

12. E.J. Candes, Modern statistical estimation via oracle inequalities. Acta Numer. 15, 257–325
(2006). http://journals.cambridge.org/abstract_S0962492906230010

13. S. Chen, S.A. Billings, W. Luo, Orthogonal least squares methods and their application to
non-linear system identification. Int. J. Control. 50(5), 1873–1896 (1989)

14. W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally centralized sparse representation for image
restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

15. D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dic-
tionaries via l1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003).
doi:10.1073/pnas.0437847100. http://www.pnas.org/content/100/5/2197

16. C. Ekanadham, D. Tranchina, E.P. Simoncelli, A unified framework and method for
automatic neural spike identification. J. Neurosci. Methods 222, 47–55 (2014).
doi:10.1016/j.jneumeth.2013.10.001. http://www.sciencedirect.com/science/article/pii/
S0165027013003415

17. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing (Springer, New York, 2010)

http://tensorflow.org/
http://tensorflow.org/
http://www.mathc.rwth-aachen.de/~bouchot/files/pubs/FusionCSfinal.pdf
https://doi.org/10.1016/j.acha.2016.03.006
https://doi.org/10.1016/j.acha.2016.03.006
http://www.sciencedirect.com/science/article/pii/S1063520316000294
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1561263
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1561263
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4802322
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4802322
https://doi.org/10.1109/TIT.2011.2143890
https://doi.org/10.1109/TIT.2011.2143890
http://dx.doi.org/10.1561/2200000016
http://epubs.siam.org/doi/abs/10.1137/060657704
http://epubs.siam.org/doi/abs/10.1137/060657704
http://journals.cambridge.org/abstract_S0962492906230010
http://dx.doi.org/10.1073/pnas.0437847100
http://www.pnas.org/content/100/5/2197
http://dx.doi.org/10.1016/j.jneumeth.2013.10.001
http://www.sciencedirect.com/science/article/pii/S0165027013003415
http://www.sciencedirect.com/science/article/pii/S0165027013003415


On the Global-Local Dichotomy in Sparsity Modeling 51

18. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

19. Y.C. Eldar, M. Mishali, Block sparsity and sampling over a union of subspaces, in 2009 16th
International Conference on Digital Signal Processing (IEEE, New York, 2009), pp. 1–8.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5201211

20. Y.C. Eldar, M. Mishali, Robust recovery of signals from a structured union of subspaces. IEEE
Trans. Inf. Theory 55(11), 5302–5316 (2009)

21. Finite Frames - Theory and Applications. http://www.springer.com/birkhauser/mathematics/
book/978-0-8176-8372-6

22. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer, New
York, 2013). http://link.springer.com/content/pdf/10.1007/978-0-8176-4948-7.pdf

23. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

24. R. Glowinski, On alternating direction methods of multipliers: a historical perspective, in
Modeling, Simulation and Optimization for Science and Technology (Springer, Dordrecht,
2014), pp. 59–82

25. R. Grosse, R. Raina, H. Kwong, A.Y. Ng, Shift-invariance sparse coding for audio classification
(2012). arXiv preprint arXiv: 1206.5241

26. R. Grosse, R. Raina, H. Kwong, A.Y. Ng, Shift-invariance sparse coding for audio classifica-
tion. arXiv: 1206.5241 [cs, stat] (2012). http://arxiv.org/abs/1206.5241. arXiv: 1206.5241

27. S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, L. Zhang, Convolutional sparse coding for image
super-resolution, in Proceedings of the IEEE International Conference on Computer Vision
(2015), pp. 1823–1831

28. F. Heide, W. Heidrich, G. Wetzstein, Fast and flexible convolutional sparse coding, in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, New York, 2015),
pp. 5135–5143

29. J. Huang, T. Zhang, D. Metaxas, Learning with structured sparsity. J. Mach. Learn. Res. 12,
3371–3412 (2011)

30. J. Huang, T. Zhang, et al., The benefit of group sparsity. Ann. Stat. 38(4), 1978–2004 (2010)
31. K. Kavukcuoglu, P. Sermanet, Y.l. Boureau, K. Gregor, M. Mathieu, Y.L. Cun, Learning

convolutional feature hierarchies for visual recognition, in Advances in Neural Information
Processing Systems, ed. by J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel,
A. Culotta, vol. 23 (Curran Associates, Red Hook, 2010), pp. 1090–1098. http://papers.nips.
cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf

32. A. Kyrillidis, L. Baldassarre, M.E. Halabi, Q. Tran-Dinh, V. Cevher, Structured sparsity:
discrete and convex approaches, in Compressed Sensing and Its Applications. Applied and
Numerical Harmonic Analysis, ed. by H. Boche, R. Calderbank, G. Kutyniok, J. Vybíral
(Springer, Cham, 2015), pp. 341–387. http://link.springer.com/chapter/10.1007/978-3-319-
16042-9_12. https://doi.org/10.1007/978-3-319-16042-9_12

33. P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J.
Numer. Anal. 16(6), 964–979 (1979)

34. M.A. Little, N.S. Jones, Generalized methods and solvers for noise removal from piecewise
constant signals. II. New methods. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. rspa20100674
(2011). doi:https://doi.org/10.1098/rspa.2010.0674. http://rspa.royalsocietypublishing.org/
content/early/2011/06/07/rspa.2010.0674

35. Y.M. Lu, M.N. Do, A theory for sampling signals from a union of subspaces. IEEE Trans.
Signal Process. 56, 2334–2345 (2007)

36. J. Mairal, G. Sapiro, M. Elad, Learning multiscale sparse representations for image and video
restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)

37. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image
restoration. in 2009 IEEE 12th International Conference on Computer Vision (IEEE, New
York, 2009), pp. 2272–2279

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5201211
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-8372-6
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-8372-6
http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/978-0-8176-4948-7.pdf
http://arxiv.org/abs/1206.5241
http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf
http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-16042-9_12
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-16042-9_12
https://doi.org/10.1007/978-3-319-16042-9_12
http://dx.doi.org/https://doi.org/10.1098/rspa.2010.0674
http://rspa.royalsocietypublishing.org/content/early/2011/06/07/rspa.2010.0674
http://rspa.royalsocietypublishing.org/content/early/2011/06/07/rspa.2010.0674


52 D. Batenkov et al.

38. J. Mairal, F. Bach, J. Ponce, Sparse modeling for image and vision processing. Found. Trends
Comput. Graph. Vis. 8(2–3), 85–283 (2014). https://doi.org/10.1561/0600000058. http://www.
nowpublishers.com/article/Details/CGV-058

39. Maplesoft, a division of Waterloo Maple Inc. http://www.maplesoft.com
40. V. Papyan, M. Elad, Multi-scale patch-based image restoration. IEEE Trans. Image Process.

25(1), 249–261 (2016). https://doi.org/10.1109/TIP.2015.2499698
41. V. Papyan, Y. Romano, M. Elad, Convolutional neural networks analyzed via convolutional

sparse coding. J. Mach. Learn. Res. 18(83), 1–52 (2017)
42. V. Papyan, J. Sulam, M. Elad, Working locally thinking globally: theoretical guarantees for

convolutional sparse coding. IEEE Trans. Signal Process. 65(21), 5687–5701 (2017)
43. Y.C. Pati, R. Rezaiifar, P. Krishnaprasad, Orthogonal matching pursuit: Recursive function

approximation with applications to wavelet decomposition, in Asilomar Conference on Signals,
Systems and Computers (IEEE, New York, 1993), pp. 40–44

44. R. Quiroga, Spike sorting. Scholarpedia 2(12), 3583 (2007). https://doi.org/10.4249/
scholarpedia.3583

45. Y. Romano, M. Elad, Boosting of image denoising algorithms. SIAM J. Imag. Sci. 8(2), 1187–
1219 (2015)

46. Y. Romano, M. Elad, Patch-disagreement as away to improve K-SVD denoising, in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, New
York, 2015), pp. 1280–1284

47. Y. Romano, M. Protter, M. Elad, Single image interpolation via adaptive nonlocal sparsity-
based modeling. IEEE Trans. Image Process. 23(7), 3085–3098 (2014)

48. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algo-
rithms. Physica D 60(1), 259–268 (1992). http://www.sciencedirect.com/science/article/pii/
016727899290242F

49. C. Rusu, B. Dumitrescu, S. Tsaftaris, Explicit shift-invariant dictionary learning. IEEE Signal
Process. Lett. 21, 6–9 (2014). http://www.schur.pub.ro/Idei2011/Articole/SPL_2014_shifts.pdf

50. E. Smith, M.S. Lewicki, Efficient coding of time-relative structure using spikes. Neural
Comput. 17(1), 19–45 (2005). http://dl.acm.org/citation.cfm?id=1119614

51. A.M. Snijders, N. Nowak, R. Segraves, S. Blackwood, N. Brown, J. Conroy, G. Hamilton, A.K.
Hindle, B. Huey, K. Kimura, S. Law, K. Myambo, J. Palmer, B. Ylstra, J.P. Yue, J.W. Gray, A.N.
Jain, D. Pinkel, D.G. Albertson, Assembly of microarrays for genome-wide measurement of
DNA copy number. Nat. Genet. 29(3), 263–264 (2001). https://doi.org/10.1038/ng754. https://
www.nature.com/ng/journal/v29/n3/full/ng754.html

52. J. Sulam, M. Elad, Expected patch log likelihood with a sparse prior, in International Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition (Springer, New
York, 2015), pp. 99–111

53. J. Sulam, B. Ophir, M. Elad, Image denoising through multi-scale learnt dictionaries, in
2014 IEEE International Conference on Image Processing (ICIP) (IEEE, New York, 2014),
pp. 808–812

54. J.J. Thiagarajan, K.N. Ramamurthy, A. Spanias, Shift-invariant sparse representation of images
using learned dictionaries, in IEEE Workshop on Machine Learning for Signal Processing,
2008, MLSP 2008 (2008), pp. 145–150 https://doi.org/10.1109/MLSP.2008.4685470

55. J.A. Tropp, A.C. Gilbert, M.J. Strauss, Algorithms for simultaneous sparse approximation. Part
i: greedy pursuit. Signal Process. 86(3), 572–588 (2006)

56. J. Yang, J. Wright, T.S. Huang, Y. Ma, Image super-resolution via sparse representation. IEEE
Trans. Image Process. 19(11), 2861–2873 (2010)

57. G. Yu, G. Sapiro, S. Mallat, Solving inverse problems with piecewise linear estimators: From
gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499
(2012). https://doi.org/10.1109/TIP.2011.2176743

58. M.D. Zeiler, D. Krishnan, G.W. Taylor, R. Fergus, Deconvolutional networks, in 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE, New York, 2010),
pp. 2528–2535. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5539957

https://doi.org/10.1561/0600000058
http://www.nowpublishers.com/article/Details/CGV-058
http://www.nowpublishers.com/article/Details/CGV-058
http://www.maplesoft.com
https://doi.org/10.1109/TIP.2015.2499698
https://doi.org/10.4249/scholarpedia.3583
https://doi.org/10.4249/scholarpedia.3583
http://www.sciencedirect.com/science/article/pii/016727899290242F
http://www.sciencedirect.com/science/article/pii/016727899290242F
http://www.schur.pub.ro/Idei2011/Articole/SPL_2014_shifts.pdf
http://dl.acm.org/citation.cfm?id=1119614
https://doi.org/10.1038/ng754
https://www.nature.com/ng/journal/v29/n3/full/ng754.html
https://www.nature.com/ng/journal/v29/n3/full/ng754.html
https://doi.org/10.1109/MLSP.2008.4685470
https://doi.org/10.1109/TIP.2011.2176743
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5539957


On the Global-Local Dichotomy in Sparsity Modeling 53

59. M. Zeiler, G. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and high
level feature learning, in 2011 IEEE International Conference on Computer Vision (ICCV),
pp. 2018–2025 (2011). doi:10.1109/ICCV.2011.6126474

60. D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration,
in 2011 IEEE International Conference on Computer Vision (ICCV) (IEEE, New York, 2011),
pp. 479–486. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6126278

http://dx.doi.org/10.1109/ICCV.2011.6126474
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6126278


Fourier Phase Retrieval: Uniqueness and
Algorithms

Tamir Bendory, Robert Beinert, and Yonina C. Eldar

Abstract The problem of recovering a signal from its phaseless Fourier trans-
form measurements, called Fourier phase retrieval, arises in many applications in
engineering and science. Fourier phase retrieval poses fundamental theoretical and
algorithmic challenges. In general, there is no unique mapping between a one-
dimensional signal and its Fourier magnitude, and therefore the problem is ill-posed.
Additionally, while almost all multidimensional signals are uniquely mapped to
their Fourier magnitude, the performance of existing algorithms is generally not
well-understood. In this chapter we survey methods to guarantee uniqueness in
Fourier phase retrieval. We then present different algorithmic approaches to retrieve
the signal in practice. We conclude by outlining some of the main open questions in
this field.
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1 Introduction

The task of recovering a signal from its Fourier transform magnitude, called Fourier
phase retrieval, arises in many areas in engineering and science. The problem
has a rich history, tracing back to 1952 [112]. Important examples for Fourier
phase retrieval naturally appear in many optical settings since optical sensors, such
as a charge-coupled device (CCD) and the human eye, are insensitive to phase
information of the light wave. A typical example is coherent diffraction imaging
(CDI) which is used in a variety of imaging techniques [26, 35, 39, 94, 107, 111].
In CDI, an object is illuminated with a coherent electromagnetic wave, and the far-
field intensity diffraction pattern is measured. This pattern is proportional to the
object’s Fourier transform, and therefore the measured data is proportional to its
Fourier magnitude. Phase retrieval also played a key role in the development of the
DNA double helix model [57]. This discovery awarded Watson, Crick, and Wilkins
the Nobel Prize in Physiology or Medicine in 1962 [1]. Additional examples for
applications in which Fourier phase retrieval appears are X-ray crystallography,
speech recognition, blind channel estimation, astronomy, computational biology,
alignment, and blind deconvolution [2, 11, 23, 56, 64, 102, 119, 126, 133, 138].

Fourier phase retrieval has been a long-standing problem since it raises difficult
challenges. In general, there is no unique mapping between a one-dimensional sig-
nal and its Fourier magnitude, and therefore the problem is ill-posed. Additionally,
while almost all multidimensional signals are uniquely mapped to their Fourier
magnitude, the performance and stability of existing algorithms are generally not
well-understood. In particular, it is not clear when given methods recover the true
underlying signal. To simplify the mathematical analysis, in recent years attention
has been devoted to a family of related problems, frequently called generalized
phase retrieval. This refers to the setting in which the measurements are the
phaseless inner products of the signal with known vectors. Particularly, the majority
of works studied inner products with random vectors. Based on probabilistic
considerations, a variety of convex and non-convex algorithms were suggested,
equipped with stability guarantees from near-optimal number of measurements; see
[4, 5, 34, 37, 46, 60, 125, 132, 134] to name a few works along these lines.

Here, we focus on the original Fourier phase retrieval problem and study it
in detail. We begin by considering the ambiguities of Fourier phase retrieval
[13, 16, 17]. We show that while in general a one-dimensional signal cannot be
determined from its Fourier magnitude, there are several exceptional cases, such
as minimum phase [68] and sparse signals [73, 103]. For general signals, one can
guarantee uniqueness by taking multiple measurements, each one with a different
mask. This setup is called masked phase retrieval [34, 72] and has several interesting
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special cases, such as the short-time Fourier transform (STFT) phase retrieval
[20, 47, 75] and vectorial phase retrieval [83, 104–106]. For all aforementioned
setups, we present algorithms and discuss their properties. We also study the
closely related frequency-resolved optical gating (FROG) methods [24, 25] and
multidimensional Fourier phase retrieval [80].

The outline of this chapter is as follows. In Section 2 we formulate the Fourier
phase retrieval problem. We also introduce several of its variants, such as masked
Fourier phase retrieval and STFT phase retrieval. In Section 3 we discuss the
fundamental problem of uniqueness, namely, conditions under which there is a
unique mapping between a signal and its phaseless measurements. Section 4 is
devoted to different algorithmic approaches to recover a signal from its phaseless
measurements. Section 5 concludes the chapter and outlines some open questions.
We hope that highlighting the gaps in the theory of phase retrieval will motivate
more research on these issues.

2 Problem Formulation

In this section, we formulate the Fourier phase retrieval problem and introduce
notation.

Let x 2 C
N be the underlying signal we wish to recover. In Fourier phase

retrieval, the measurements are given by

yŒk� D

ˇ̌
ˇ̌
ˇ

N�1X

nD0

xŒn�e�2
 jkn= QN

ˇ̌
ˇ̌
ˇ

2

; k D 0; : : : ;K � 1: (1)

Unless otherwise mentioned, we consider the over-sampled Fourier transform, i.e.,
QN D K D 2N � 1, since in this case the acquired data is equivalent to the
autocorrelation of x as explained in Section 3.1. We refer to this case as the classical
phase retrieval problem. As will be discussed in the next section, in general the
classical phase retrieval problem is ill-posed. Nevertheless, some special structures
may impose uniqueness. Two important examples are sparse signals obeying a
nonperiodic support [73, 103] and minimum phase signals [68]; see Section 3.2.

For general signals, a popular method to guarantee a unique mapping between
the signal and its phaseless Fourier measurements is by utilizing several masks to
introduce redundancy in the acquired data. In this case, the measurements are given
by

yŒm; k� D

ˇ̌
ˇ̌
ˇ

N�1X

nD0

xŒn�dmŒn�e
�2
 jkn= QN

ˇ̌
ˇ̌
ˇ

2

; k D 0; : : : ;K � 1; m D 0; : : : ;M � 1;

(2)
where dm are M known masks. In matrix notation, this model can be written as

yŒm; k� D
ˇ̌
f �k Dmx

ˇ̌2
; k D 0; : : : ;K � 1; m D 0; : : : ;M � 1; (3)
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Fig. 1 An illustration of a
typical masked phase retrieval
setup (courtesy of [34]).

where f �k is the kth row of the DFT matrix F 2 C
K�N and Dm 2 C

N�N is a diagonal
matrix that contains the entries of the mth mask. Classical phase retrieval is a special
case in which M D 1 and D0 D IN are the identity matrix.

There are several experimental techniques to generate masked Fourier measure-
ments in optical setups [34]. One method is to insert a mask or a phase plate after the
object [86]. Another possibility is to modulate the illuminating beam by an optical
grating [87]. A third alternative is oblique illumination by illuminating beams hitting
the object at specified angles [51]. An illustration of a masked phase retrieval setup
is shown in Figure 1.

An interesting special case of masked phase retrieval is signal reconstruction
from phaseless STFT measurements. Here, all masks are translations of a reference
mask, i.e., dmŒn� D dŒmL�n�, where L is a parameter that determines the overlapping
factor between adjacent windows. Explicitly, the STFT phase retrieval problem
takes on the form

yŒm; k� D

ˇ̌
ˇ̌
ˇ

N�1X

nD0

xŒn�dŒmL � n�e�2
 jkn= QN

ˇ̌
ˇ̌
ˇ

2

;

k D 0; : : : ;K � 1; m D 0; : : : ; dN=Le � 1:

(4)

The reference mask d is referred to as STFT window. We denote the length of the
STFT window by W, namely, dŒn� D 0 for n D W; : : : ;N � 1 for some W � N.

The problem of recovering a signal from its STFT magnitude arises in several
applications in optics and speech processing. Particularly, it serves as the model of a
popular variant of an ultrashort laser pulse measurement technique called frequency-
resolved optical gating (FROG) which is introduced in Section 3.5 (the variant is
referred to as X-FROG) [24, 25]. Another application is ptychography in which a
moving probe (pinhole) is used to sense multiple diffraction measurements [89, 92,
108]. An illustration of a conventional ptychography setup is given in Figure 2. A
closely related problem is Fourier ptychography [138].

The next section is devoted to the question of uniqueness, namely, under what
conditions on the signal x and the masks dm there exists a unique mapping between
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Fig. 2 An illustration of a conventional ptychography setup (courtesy of [120]).

the signal and the phaseless measurements. In Section 4 we survey different
algorithmic approaches to recover the underlying signal x from the acquired data.

3 Uniqueness Guarantees

The aim of this section is to survey several approaches to ensure uniqueness of the
discrete phase retrieval problem. We begin our study in Section 3.1 by considering
the ambiguities arising in classical phase retrieval and provide a complete charac-
terization of the solution set. Although the problem is highly ambiguous in general,
uniqueness can be ensured if additional information about the signal is available. In
Section 3.2, we first consider uniqueness guarantees based on the knowledge of the
absolute value or phase of some signal entries. Next, we study sparse and minimum
phase signals, which are uniquely defined by their Fourier magnitude and can be
recovered by stable algorithms. In Sections 3.3 and 3.4, we show that for general
signals, the ambiguities may be avoided by measuring the Fourier magnitudes of the
interaction of the true signal with multiple deterministic masks or with several shifts
of a fixed window. In Section 3.5 we study uniqueness guarantees for the closely
related FROG methods. Finally, in Section 3.6 we survey the multidimensional
phase retrieval problems and their properties that differ significantly from the one-
dimensional setting.

3.1 Trivial and Non-Trivial Ambiguities

Considering the measurement model (1) of the classical phase retrieval problem,
we immediately observe that the true signal x 2 C

N cannot be recovered uniquely.
For instance, the rotation (multiplication with a unimodular factor), the translation,
or the conjugate reflection do not modify the Fourier magnitudes. Without further
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a priori constraints, the unknown signal x is hence only determined up to these
so-called trivial ambiguities, which are of minor interest. Besides the trivial
ambiguities, the classical phase retrieval problem usually has a series of further
non-trivial solutions, which can strongly differ from the true signal. For instance,
the two non-trivially different signals

x1 D .1; 0;�2; 0;�2/
T and x2 D ..1 �

p
3/; 0; 1; 0; .1C

p
3//T

yield the same Fourier magnitudes yŒk� in (1); see [119].
To characterize the occurring non-trivial ambiguities, one can exploit the close

relation between the given Fourier magnitudes yŒk� with k D 0; : : : ; 2N � 2 in (1)
and the autocorrelation signal

aŒn� D
N�1X

mD0

xŒm� xŒmC n�; n D �N C 1; : : : ;N � 1;

with xŒn� D 0 for n < 0 and n 
 N, [16, 29]. For this purpose, we consider the
product of the polynomial X.z/ D

PN�1
nD0 xŒn� zn and the reversed polynomial QX.z/ D

zN�1X.z�1/, where X denotes the polynomial with conjugate coefficients. Note that
X.z�1/ coincides with the usual z-transform of the signal x 2 C

N . Assuming that
xŒ0� ¤ 0 and xŒN � 1� ¤ 0, we have

X.z/ QX.z/ D zN�1
N�1X

nD0

xŒn� zn �

N�1X

mD0

xŒm� z�m D

2N�2X

nD0

aŒn � N C 1� zn DW A.z/;

where A.z/ is the autocorrelation polynomial of degree 2N � 2.
Since the Fourier magnitude (1) can be written as

yŒk� D e2
 jk.N�1/= QN X
	
e�2
 jk= QN



QX
	
e�2
 jk= QN



D e2
 jk.N�1/= QN A

	
e�2
 jk= QN



;

the autocorrelation polynomial A.z/ is completely determined by the 2N�1 samples
yŒk�. The classical phase retrieval problem is thus equivalent to the recovery of X.z/
from

A.z/ D X.z/ QX.z/:

Comparing the roots of X.z/ and QX.z/, we observe that the roots of the autocor-
relation polynomial A.z/ occur in reflected pairs .�j; �

�1
j / with respect to the unit

circle. The main problem in the recovery of X.z/ is now to decide whether �j or
� �1j is a root of X.z/. On the basis of this observation, all ambiguities—trivial and
non-trivial—are characterized in the following way.

Theorem 1 ([16]). Let x 2 C
N be a complex-valued signal with xŒ0� ¤ 0 and

xŒN � 1� ¤ 0 and with the Fourier magnitudes yŒk�, k D 0; : : : ; 2N � 2, in (1). Then
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the polynomial X0.z/ D
PN�1

nD0 x0Œn� zn of each signal x0 2 C
N with y0Œk� D yŒk� can

be written as

X0.z/ D ej˛

vuu
tjaŒN � 1�

N�1Y

iD1

jˇij�1 �

N�1Y

iD1

.z � ˇi/;

where ˛ 2 Œ�
; 
/ and where ˇi is chosen from the reflected zero pairs .�i; �
�1
i / of

the autocorrelation polynomial A.z/. Moreover, up to 2N�2 of these solutions may
be non-trivially different.

Since the support length N of the true signal x is directly encoded in the degree of
the autocorrelation polynomial, all signals x0 with y0Œk� D yŒk� in Theorem 1 have the
same length, and the trivial shift ambiguity does not occur. The multiplication by ej˛

is related to the trivial rotation ambiguity. The trivial conjugate reflection ambiguity
is also covered by Theorem 1, since this corresponds to the reflection of all zeros ˇi

at the unit circle and to an appropriate rotation of the whole signal. Hence, at least
two of the 2N�1 possible zero sets fˇ1; : : : ; ˇN�1g always correspond to the same
non-trivial solution, which implies that the number of non-trivial solutions of the
classical phase retrieval problem is bounded by 2N�2.

The actual number of non-trivial ambiguities for a specific phase retrieval
problem, however, strongly depends on the zeros of the true solution. If L denotes
the number of zero pairs .�`; � �1` / of the autocorrelation polynomial A.z/ not lying
on the unit circle, and m` the multiplicities of these zeros, then the different zero
sets fˇ1; : : : ; ˇN�1g in Theorem 1 can consist of s` roots �` and .m`� s`/ roots � �1` ,
where s` is an integer between 0 and m`. Due to the trivial conjugation and reflection
ambiguity, the corresponding phase retrieval problem has exactly

&
1

2

LY

`D1

.m` C 1/

'

non-trivial solutions [13, 53]. If, for instance, all zero pairs .�`; � �1` / are unimodular,
then the problem is even uniquely solvable.

3.2 Ensuring Uniqueness in Classical Phase Retrieval

To overcome the non-trivial ambiguities, and to ensure uniqueness in the phase
retrieval problem, one can rely on suitable a priori conditions or further information
about the true signal. For instance, if the sought signal represents an intensity or a
probability distribution, then it has to be real-valued and nonnegative. Unfortunately,
this natural constraint does not guarantee uniqueness [14]. More appropriate priors
like minimum phase or sparsity ensure uniqueness for almost every or, even, for
every possible signal. Additional information about some entries of the true signal
like the magnitude or the phase also guarantee uniqueness in certain settings.
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3.2.1 Information About Some Entries of the True Signal

One approach to overcome the non-trivial ambiguities is to use additional infor-
mation about some entries of the otherwise unknown signal x. For instance, in
wave-front sensing and laser optics [114], besides the Fourier intensity, the absolute
values jxŒ0�j; : : : ; jxŒN�1�j of the sought signal x are available. Interestingly, already
one absolute value jxŒN�1�`�jwithin the support of the true signal x almost always
ensures uniqueness.

Theorem 2 ([17]). Let ` be an arbitrary integer between 0 and N � 1. Then almost
every complex-valued signal x 2 C

N with support length N can be uniquely
recovered from yŒk�, k D 0; : : : ; 2N � 2, in (1) and jxŒN � 1 � `�j up to rotations
if ` ¤ .N � 1/=2. In the case ` D .N � 1/=2, the reconstruction is almost surely
unique up to rotations and conjugate reflections.

The uniqueness guarantee in Theorem 2 cannot be improved by the knowledge
of further or, even, all absolute values jxŒ0�j; : : : ; jxŒN � 1�j of the true signal.
More precisely, one can explicitly construct signals that are not uniquely defined by
their Fourier magnitudes yŒk� and all temporal magnitudes jxŒn�j for every possible
signal length [17]. In order to recover a signal from its Fourier magnitudes and all
temporal magnitudes numerically, several multilevel Gauss-Newton methods have
been proposed in [81, 82, 114]. Under certain conditions, the convergence of these
algorithms to the true solution is guaranteed, and they allow signal reconstruction
from noise-free as well as from noisy data.

The main idea behind Theorem 2 exploits jxŒN � 1 � `�j to show that the zero
sets fˇ1; : : : ; ˇN�1g of signals that cannot be recovered uniquely (up to trivial
ambiguities) form an algebraic variety of lesser dimension. This approach can be
transferred to further kinds of information about some entries of x. For instance,
the knowledge of at least two phases of the true signal also guarantees uniqueness
almost surely.

Theorem 3 ([17]). Let `1 and `2 be different integers in f0; : : : ;N � 1g. Then
almost every complex-valued signal x 2 C

N with support length N can be uniquely
recovered from yŒk�, k D 0; : : : ; 2N�2, in (1), arg xŒN�1�`1�, and arg xŒN�1�`2�
whenever `1C `2 ¤ N� 1. In the case `1C `2 D N� 1, the recovery is only unique
up to conjugate reflection except for `1 D 0 and `2 D N � 1, where the set of
non-trivial ambiguities is not reduced at all.

As a consequence of Theorems 2 and 3, the classical phase retrieval problem is
almost always uniquely solvable if at least one entry of the true signal x is known.
Unfortunately, there is no algorithm that knows how to exploit the given entries to
recover the complete signal in a stable and efficient manner.

Corollary 1. Let ` be an arbitrary integer between 0 and N � 1. Then almost every
complex-valued signal x 2 C

N with support length N can be uniquely recovered
from yŒk�, k D 0; : : : ; 2N � 2, in (1) and xŒN � 1 � `� if ` ¤ .N � 1/=2. In the case
` D .N�1/=2, the reconstruction is almost surely unique up to conjugate reflection.
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Corollary 1 is a generalization of [137], where the recovery of real-valued signals
x 2 R

N from their Fourier magnitude yŒk� and one of their end points xŒ0� or xŒN�1�
is studied. In contrast to Theorems 2 and 3, the classical phase retrieval problem
becomes unique if enough entries of the true signal are known beforehand.

Theorem 4 ([16, 96]). Each complex-valued signal x 2 C
N with signal length N is

uniquely determined by yŒk�, k D 0; : : : ; 2N�2, in (1) and the dN=2e left end points
xŒ0�; : : : ; xŒdN=2e � 1�.

3.2.2 Sparse Signals

In the last section, the true signal x could be any arbitrary vector in C
N . In the

following, we consider the classical phase retrieval problem under the assumption
that the unknown signal is sparse, namely, that only a small number of entries are
non-zero. Sparse signals have been studied thoroughly in the last two decades;
see, for instance, [32, 43, 45]. Phase retrieval problems of sparse signals arise in
crystallography [78, 103] and astronomy [29, 103], for example. In many cases,
the signal is sparse under an unknown transform. In the context of phase retrieval,
a recent paper suggests a new technique to learn, directly from the phaseless
data, the sparsifying transformation and the sparse representation of the signals
simultaneously [127].

The union of all k-sparse signals in C
N , which have at most k non-zero entries, is

here denoted by S N
k . Since S N

k with k < N is a k-dimensional submanifold of CN

and hence itself a Lebesgue null set, Theorem 2 and Corollary 1 cannot be employed
to guarantee uniqueness of the sparse phase retrieval problem. Further, if the k non-
zero entries lie at equispaced positions within the true signal x, i.e., the support is
of the form fn0 C LmWm D 0; : : : ; k � 1g for some positive integers n0 and L, this
specific phase retrieval problem is equivalent to the recovery of a k-dimensional
vector from its Fourier intensity [73]. Due to the non-trivial ambiguities, which are
characterized by Theorem 1, the assumed sparsity cannot always avoid non-trivial
ambiguities.

In general, the knowledge that the true signal is sparse has a beneficial effect on
the uniqueness of phase retrieval. Under the restriction that the unknown signal x
belongs to the class T N

k of all k-sparse signals in C
N without equispaced support,

which is again a k-dimensional submanifold, the uniqueness is ensured for almost
all signals.

Theorem 5 ([73]). Almost all signals x 2 T N
k can be uniquely recovered from their

Fourier magnitudes yŒk�, k D 0; : : : ; 2N � 2, in (1) up to rotations.
Although Theorem 5 gives a theoretical uniqueness guarantee, it is generally a

non-trivial task to decide whether a sparse signal is uniquely defined by its Fourier
intensity. However, if the true signal does not possess any collisions, uniqueness is
always given [103]. In this context, a sparse signal x has a collision if there exist
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four indices i1, i2, i3, i4 within the support of x so that i1 � i2 D i3 � i4. A sparse
signal without collisions is called collision-free. For instance, the signal

x D .0; 0; 1; 0;�2; 0; 1; 0; 0; 3; 0; 0/T 2 R
12

is not collision-free since the index difference 6 � 4 D 2 is equal to 4 � 2 D 2.

Theorem 6 ([103]). Assume that the signal x 2 S N
k with k < N has no

collisions.

• If k ¤ 6, then x can be uniquely recovered from yŒk�, k D 0; : : : ; 2N � 2, in (1)
up to trivial ambiguities;

• If k D 6 and not all non-zero entries xŒn� have the same value, then x can be
uniquely recovered from yŒk�, k D 0; : : : ; 2N � 2, in (1) up to trivial ambiguities;

• If k D 6 and all non-zero entries xŒn� have the same value, then x can be
uniquely recovered from yŒk�, k D 0; : : : ; 2N � 2, in (1) almost surely up to
trivial ambiguities.

The uniqueness guarantees in Theorem 6 remain valid for k-sparse continuous-
time signals, which are composed of k pulses at arbitrary positions. More precisely,
the continuous-time signal f is here given by f .t/ D

Pk�1
iD0 ci ı.t � ti/, where ı is

the Dirac delta function, ci 2 C and ti 2 R. In this setting, the uniqueness can be
guaranteed by O.k2/ samples of the Fourier magnitude [18].

In Section 4.4, we discuss different algorithms to recover sparse signals x 2 C
N

that work well in practice.

3.2.3 Minimum Phase Signals

Based on the observation that each non-trivial solution of the classical phase
retrieval problem is uniquely characterized by the zero set fˇ1; : : : ; ˇN�1g in
Theorem 1, one of the simplest ideas to enforce uniqueness is to restrict these
zeros in an appropriate manner. Under the assumption that the true signal x is a
minimum phase signal, which means that all zeros ˇi chosen from the reflected zero
pairs .�i; �

�1
i / of the autocorrelation polynomial A.z/ lie inside the unit circle, the

corresponding phase retrieval problem is uniquely solvable [67, 68].
Although the minimum phase constraint guarantees uniqueness, the question

arises on how to ensure that an unknown signal is minimum phase. Fortunately,
each complex-valued signal x may be augmented to a minimum phase signal.

Theorem 7 ([68]). For every x 2 C
N, the augmented signal

xmin D .ı; xŒ0�; : : : ; xŒN � 1�/
T ;

with jıj 
 kxk1 is a minimum phase signal.
Consequently, if the Fourier intensity of the augmented signal xmin is available,

then the true signal x can always be uniquely recovered up to trivial ambiguities.
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Moreover, the minimum phase solution x can be computed (up to rotations) from
the Fourier magnitude y as in (1) by a number of efficient algorithms [68]. Due to
the trivial conjugate reflection ambiguity, this approach can be applied to maximum-
phase signals whose zeros lie outside the unit circle.

The minimum phase solution of a given phase retrieval problem may be deter-
mined in a stable manner using an approach by Kolmogorov [68]. For simplicity,
we restrict ourselves to the real case x 2 R

N with xŒN � 1� > 0. The main idea is
to determine the logarithm of the reversed polynomial QX.z/ D zN�1

PN�1
nD0 xŒn� z�n

from the given data yŒk�. Under the assumption that all roots of x strictly lie inside
the unit circle, the analytic function log QX.z/ may be written as

log QX.z/ D
1X

nD0

˛n zn; .˛n 2 R/

where the unit circle jzj D 1 is contained in the region of convergence. Substituting
z D e�j! with ! 2 R, we have

<
�

log QX.e�j!/
�
D

1X

nD0

˛n cos!n and =
�
log QX.e�j!/

�
D �

1X

nD0

˛n sin!n;

where <Œ�� and =Œ�� denote the real and imaginary parts, respectively. Since the
real and imaginary parts are a Hilbert transform pair, =

�
log QX.e�j!/

�
is completely

defined by <
�
log QX.e�j!/

�
. Because of the identity j QX.e�j!/j2 D jA.e�j!/j, the real

part may be computed from the autocorrelation polynomial A.z/ by

<
�
log QX.e�j!/

�
D 1

2
log jA.e�j!/j:

Finally, the autocorrelation polynomial A.z/ is completely determined by the Fourier
magnitudes yŒk�, k D 0; : : : ; 2N � 2, leading to the recovery of the true minimum
phase signal x. Based on this idea, one can construct numerical algorithms that
guarantee stable signal recovery under the presence of noise [68].

3.3 Phase Retrieval with Deterministic Masks

A further possibility to obtain additional information about the underlying signal
x is to measure its Fourier magnitude with respect to different masks as described
in (2) and (3). Assuming that the masks are constructed randomly, one can show
that the corresponding phase retrieval problem has a unique solution up to rotations
almost surely or, at least, with high probability. Depending on the random model,
the number of employed masks to recover a one-dimensional signal x 2 C

N varies
from O.log N/ over O..log N/2/ to O..log N/4/; see [6, 63], and [33], respectively.
Moreover, in the multidimensional case, two independent masks are sufficient to
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guarantee uniqueness of almost every signal up to rotations [50]. As the following
results show, in the deterministic setup, already a very small number of specifically
constructed masks ensure uniqueness for most signals.

Theorem 8 ([72]). Almost all complex-valued signals x 2 C
N can be uniquely

recovered from yŒm; k�, m D 1; 2, and k D 0; : : : ; 2N � 2, as in (2) up to rotations if
the two masks d1, d2 2 C

N satisfy

• d1Œn� ¤ 0 or d2Œn� ¤ 0 for each 0 � n � N � 1,
• d1Œn�d2Œn� ¤ 0 for some 0 � n � N � 1.

For some masks d1 and d2, one can overcome the “almost all” in Theorem 8 and
obtain uniqueness of the corresponding phase retrieval problem.

Theorem 9 ([72]). If the diagonal matrices D1, D2 correspond to the two masks

d1Œn� D 1 .0 � n � N � 1/ and d2Œn� D

(
0 n D 0

1 1 � n;� N � 1;
(5)

then every complex-valued signal x 2 C
N with xŒ0� ¤ 0 can be uniquely recovered

from yŒm; k�, m D 1; 2 and k D 0; : : : ; 2N � 2, up to rotations.
A different approach to exploit deterministic masks in order to overcome the

ambiguity in phase retrieval is discussed in [71] and can be proven by using the
characterization in Theorem 1. More explicitly, here the two masks

d1Œn� D

(
1; 0 � n � L � 1;

0; L � n � N � 1;
and d2Œn� D

(
0; 0 � n � L � 1;

1; L � n � N � 1;
(6)

for some L between 1 and N � 2 are used. Pictorially, the mask d1 blocks the right-
hand side of the underlying signal x and d2 the left-hand side.

For the signals x, D1x, and D2x, where Di is the diagonal matrix with respect to
the mask di, we define the polynomials X, X1, and X2 by

X.z/ D
N�1X

nD0

xŒn� zn; X1.z/ D
L�1X

nD0

xŒn� zn and X2.z/ D
N�L�1X

nD1

xŒnC L� zn:

Different from the autocorrelation functions of D1x and D2x, which are simply given
by A1.z/ D X1.z/ QX1.z/ and A2.z/ D X2.z/ QX2.z/, the autocorrelation function A.z/
of the true signal x can be written as

A.z/ D
	
X1.z/C zLX2.z/


	
zN�L�1 QX1.z/C QX2.z/




D zN�L�1A1.z/C X1.z/ QX2.z/C zN�1 QX1.z/X2.z/C zLA2.z/;
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since X.z/ D X1.z/ C zLX2.z/. Due to the fact that X1.z/ QX2.z/ and zN�1 QX1.z/X2.z/
have no common monomials with the same degree, one can determine the polyno-
mials

X1.z/ QX1.z/; X1.z/ QX2.z/; QX1.z/X2.z/; and X2.z/ QX2.z/; (7)

from the autocorrelation functions A.z/, A1.z/, and A2.z/.
As mentioned before, the reversed polynomials QXi.z/ correspond to the reflected

zero set of Xi.z/ with respect to the unit circle. Hence, assuming that the zeros of
D1x and D2x are pairwise different, one can determine both zero sets by comparing
the roots of the four polynomials (7), which yields the following result.

Theorem 10 ([71]). Let x 2 C
N, and assume that the zeros �i and 	` of

X1.z/ D xŒL � 1�
L�1Y

iD1

.z � �i/; and X2.z/ D xŒN � 1�
N�L�1Y

`D1

.z � 	`/;

are pairwise different. Then the signal x can be uniquely recovered up to rotations
from the Fourier magnitudes yŒm; k�, m D 0; 1; 2 and k D 0; : : : ; 2N � 2, with the
masks d0 � 1 and d1, d2 in (6).

The phase retrieval problem in Theorem 10 is equivalent to the recovery of x1 D
D1x and x2 D D2x with support f0; : : : ;L � 1g and fL; : : : ;N � 1g from the Fourier
magnitudes of x1, x2, and x1 C x2. More generally, the recovery of two arbitrary
signals x1, x2 2 C

N from their Fourier magnitudes and the Fourier magnitude of the
interference x1 C x2 has been studied in [16, 79]. Theorem 10 is a specific instance
of the uniqueness guarantee given in [16]. Furthermore, these problems are closely
related to the vectorial phase retrieval problem introduced in [84, 104, 105], where
the Fourier magnitudes of a second interference x1 C jx2 are employed.

A further example for phase retrieval with deterministic masks is considered in
[34], where the three masks are defined by

d0Œn� D 1; d1Œn� D 1C e2
 jsn=N ; and d2Œn� D 1C e2
 j.sn=N�1=4/; (8)

for a nonnegative integer s. The masks d1 and d2 here interfere the unknown signal
x with a modulated version of the unknown signal itself, which yields the Fourier
magnitudes jOxŒk� C OxŒk � s�j2 and jOxŒk� � j OxŒk � s�j2. Together with the Fourier
magnitudes jOxŒk�j2, for almost every signal, the relative phases �Œk � s� � �Œk� of
the Fourier transform OxŒk� D jxŒk�j ej�Œk� can be determined. If s is relatively prime
with N, then the Fourier transform Ox and thus the true signal x are recovered up to
rotations.

Theorem 11 ([34]). Let x 2 C
N be a signal with non-vanishing DFT. Then x is

uniquely recovered from yŒm; k� with K D QN D N and the masks in (8) up to
rotations if and only if the nonnegative integer s is relatively prime with N.
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The masks in (8) as well as the uniqueness guarantee in Theorem 11 can be
generalized to multidimensional phase retrieval [34]. If QN is replaced by 2N � 1,
every signal x 2 C

N is uniquely recovered up to rotation from its Fourier magnitudes
yŒm; k� in (2) with masks d0Œn� D 1 and diŒn� D 1 C ej˛i e2
 jsn=N , i D 1; 2, where
˛i 2 Œ�
; 
/ and where s can be nearly every real number [15]. Several further
examples of deterministic masks which allow a unique recovery are detailed in
[15, 34, 71, 72] and references therein. In Section 4.2, we consider semidefinite
relaxation algorithms which stably recover the unknown signal from its masked
Fourier magnitudes (2) under noise.

3.4 Phase Retrieval from STFT Measurements

We next consider uniqueness guarantees for the recovery of an unknown signal from
the magnitude of its STFT as defined in (4). This problem can be interpreted as a
sequence of classical phase retrieval problems, where some entries of the underlying
signals have to coincide. Obviously, the STFT phase retrieval problem cannot be
solved uniquely if the parameter L is greater than or equal to the window length W,
since the classical problems are then independent from each other.

Under the assumption that the known window d does not vanish, i.e., dŒn� ¤ 0

for n D 0; : : : ;W � 1, some of the first uniqueness guarantees were established in
[96].

Theorem 12 ([96]). Let d be a non-vanishing window of length W > 2, and let
L be an integer in f1; : : : ; bW=2cg. If the signal x 2 C

N with support length N
has at most W � 2L consecutive zeros between any two non-zero entries, and if the
first L entries of x are known, then x can be uniquely recovered from yŒm; k� with
K D 2W � 1 in (4).

The main idea behind Theorem 12 is that the corresponding classical phase
retrieval problems are solved sequentially. For instance, the case m D 1 is equivalent
to recovering a signal in C

LC1 from its Fourier intensity and the first L entries. The
uniqueness of this phase retrieval problem is guaranteed by Theorem 4. Since the
true signal x has at most W � 2L consecutive zeros, the remaining subproblems can
also be reduced to the setting considered in Theorem 4.

Knowledge of the first L entries of x in Theorem 12 is a strong restriction in
practice. Under the a priori constraint that the unknown signal is non-vanishing
everywhere, the first L entries are not needed to ensure uniqueness.

Theorem 13 ([75]). Let d be a non-vanishing window of length W satisfying L <
W � N=2. Then almost all non-vanishing signals can be uniquely recovered up to
rotations from their STFT magnitudes yŒm; k� in (4) with 2W � K � N and QN D N.

For some classes of STFT windows, the uniqueness is guaranteed for all non-
vanishing signals [20, 47]. Both references use a slightly different definition of
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the STFT, where the STFT window in (4) is periodically extended over the support
f0; : : : ;N�1g, i.e., the indices of the window d are considered as modulo the signal
length N.

Theorem 14 ([47]). Let d be a periodic window with support length W 
 2 and
2W � 1 � N, and assume that the length-N DFT of jdŒn�j2 is non-vanishing. If N
and W � 1 are co-prime, then every non-vanishing signal x 2 C

N can be uniquely
recovered from its STFT magnitudes yŒm; k� in (4) with L D 1 and K D QN D N up
to rotations.

Theorem 15 ([20]). Let d be a periodic window of length W, and assume that
the length-N DFT of jdŒn�j2 and dŒn�dŒn � 1� are non-vanishing. Then every non-
vanishing signal x 2 C

N can be uniquely recovered from its STFT magnitudes
yŒm; k� in (4) with L D 1 and K D QN D N up to rotations.

If we abandon the constraint that the underlying signal is non-vanishing, then
the behavior of the STFT phase retrieval problem changes dramatically, and the
recovery of the unknown signal becomes much more challenging. For example, if
the unknown signal x possesses more than W � 1 consecutive zero entries, then
the signal can be divided in two parts, whose STFTs are completely independent.
An explicit non-trivial ambiguity for this specific setting is constructed in [47].
Depending on the window length, there are thus some natural limitations on how
far uniqueness can be ensured for sparse signals.

Theorem 16 ([75]). Let d be a non-vanishing window of length W satisfying L <
W � N=2. Then almost all sparse signals with less than minfW � L;Lg consecutive
zeros can be uniquely recovered up to rotations from their STFT magnitudes yŒm; k�
in (4) with 2W � K � N and QN D N.

In [27], the STFT is interpreted as measurements with respect to a Gabor frame.
Under certain conditions on the generator of the frame, every signal x 2 C

N is
uniquely recovered up to rotations. Further, the true signal x is given as a closed-
form solution. For the STFT model in (4), this implies the following uniqueness
guarantee.

Theorem 17 ([27]). Let d be a periodic window of length W, and assume that the
length-N DFT of dŒn�dŒn � m� is non-vanishing for m D 0; : : : ;N � 1. Then every
signal x 2 C can be uniquely recovered from its STFT magnitudes yŒm; k� in (4) with
L D 1 and K D QN D N up to rotations.

The main difference between Theorem 17 and the uniqueness results before is
that the unknown signal x 2 C

N can have arbitrarily many consecutive zeros. On
the other hand, the STFT window must have a length of at least N=2 in order to
ensure that dŒn�dŒn�m� is not the zero vector. Thus, the theorem is only relevant for
long windows. A similar result was derived in [20], followed by a stable recovery
algorithm; see Section 4.3.
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3.5 FROG Methods

An important optical application for phase retrieval is ultrashort laser pulse char-
acterization [128, 130]. One way to overcome the non-uniqueness of Fourier phase
retrieval in this application is by employing a measurement technique called X-
FROG (see also Section 2). In X-FROG, a reference window is used to gate the
sought signal, resulting in the STFT phase retrieval model (4). However, in practice
it is quite hard to generate and measure such a reference window. Therefore, in
order to generate redundancy in ultrashort laser pulse measurements, it is common
to correlate the signal with itself. This method is called frequency-resolved optical
gating (FROG).

FROG is probably the most commonly used approach for full characterization of
ultrashort optical pulses due to its simplicity and good experimental performance.
A FROG apparatus produces a 2D intensity diagram of an input pulse by interacting
the pulse with delayed versions of itself in a nonlinear-optical medium, usually
using a second harmonic generation (SHG) crystal [42]. This 2D signal is called
a FROG trace and is a quartic function of the unknown signal. An illustration of
the FROG setup is presented in Figure 3. Here we focus on SHG FROG, but other
types of nonlinearities exist for FROG measurements. A generalization of FROG,
in which two different unknown pulses gate each other in a nonlinear medium, is
called blind FROG. This method can be used to characterize simultaneously two
signals [136]. In this case, the measured data is referred to as a blind FROG trace
and is quadratic in both signals. We refer to the problems of recovering a signal
from its blind FROG trace and FROG trace as bivariate phase retrieval and quartic
phase retrieval, respectively.

In bivariate phase retrieval, we acquire, for each delay step m, the power spec-
trum of

xmŒn� D x1 Œn� x2 ŒnC mL�;

Fig. 3 Illustration of the SHG FROG technique (courtesy of [24]).
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where L, as in the STFT phase retrieval setup, determines the overlap factor between
adjacent sections. The acquired data is given by

y Œm; k� D

ˇ̌
ˇ̌
ˇ

N�1X

nD0

xm Œn� e
�2
 jkn=N

ˇ̌
ˇ̌
ˇ

2

D

ˇ̌
ˇ
ˇ̌
N�1X

nD0

x1 Œn� x2 ŒnC mL�e�2
 jkn=N

ˇ̌
ˇ
ˇ̌

2

:

(9)

Quartic phase retrieval is the special case in which x1 D x2.
The trivial ambiguities of bivariate phase retrieval are described in the following

proposition.

Proposition 1 ([24]). Let x1; x2 2 C
N, and let xmŒn� WD x1Œn�x2Œn C mL� for some

fixed L. Then, the following signals have the same phaseless bivariate measurements
yŒm; k� as the pair x1; x2:

1. multiplication by global phases x1ej 1 ; x2ej 2 for some  1;  2 2 R,
2. the shifted signal QxmŒn� D xmŒn � n0� for some n0 2 Z,
3. the conjugated and reflected signal JxmŒn� D xmŒ�n�,
4. modulation, x1Œn�e�2
 jk0n=N, x2Œn�e2
 jk0n=N for some k0 2 Z.

The fundamental question of uniqueness for FROG methods has been analyzed
first in [113] for the continuous setup. The analysis of the discrete setup appears
in [24].

Theorem 18 ([24]). Let L D 1, and let Ox1 and Ox2 be the Fourier transforms of x1
and x2, respectively. Assume that Ox1 has at least d.N � 1/=2e consecutive zeros (e.g.,
band-limited signal). Then, almost all signals are determined uniquely, up to trivial
ambiguities, from the measurements yŒm; k� in (9) and the knowledge of jOx1j and jOx2j.
By trivial ambiguities we mean that x1 and x2 are determined up to global phase,
time shift, and conjugate reflection.

For the FROG setup, i.e., x1 D x2, this result has been recently extended for
L > 1; see [25].

Several heuristic techniques have been proposed to estimate an underlying signal
from its FROG trace. These algorithms are based on a variety of methods, such as
alternating projections, gradient descent, and iterative PCA [77, 122, 129].

3.6 Multidimensional Phase Retrieval

In a wide range of real-world applications like crystallography or electron
microscopy, the natural objects of interest correspond to two- or three-dimensional
signals. More generally, the r-dimensional phase retrieval problem consists of
the recovery of an unknown r-dimensional signal x 2 C

N1�����Nr from its Fourier
magnitudes
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yŒk� D

ˇ
ˇ̌
ˇ̌
ˇ

X

n2ZN

xŒn�e�.2
/
r j k�n= QN1::: QNr

ˇ
ˇ̌
ˇ̌
ˇ

2

;

k 2 f0; : : : ;K1 � 1g � � � � � f0; : : : ;Kr � 1g;

(10)

with n D .n1; : : : ; nr/
T and ZN D f0; : : : ;N1 � 1g � � � � � f0; : : : ;Nr � 1g. Unless

otherwise mentioned, we assume QNi D Ki D 2Ni � 1.
Clearly, rotations, transitions, or conjugate reflections of the true signal lead to

trivial ambiguities. Besides these similarities, the ambiguities of the multidimen-
sional phase retrieval problem are very different from those of its one-dimensional
counterpart. More precisely, non-trivial ambiguities occur only in very rare cases,
and almost every signal is uniquely defined by its Fourier magnitude up to trivial
ambiguities.

Similarly to Section 3.1, the non-trivial ambiguities can be characterized by
exploiting the autocorrelation. Here the related polynomial

X.z/ D
X

n2Zn

xŒn� zn D

IY

iD1

Xi.z/;

with zn D zn1 � � � znr is uniquely factorized (up to multiplicative constants) into
irreducible factors Xi.z/, which means that the Xi cannot be represented as a
product of multivariate polynomials of lesser degree. The main difference with the
one-dimensional setup is that most multivariate polynomials consist of only one
irreducible factor Xi. Denoting the multivariate reversed polynomial by

QXi.z/ D zM Xi.z
�1/;

with zM D zM1 � � � zMr , where M` is the degree of Xi with respect to the variable
z`, the non-trivial ambiguities in the multidimensional setting are characterized as
follows.

Theorem 19 ([65]). Let x 2 C
N1�����Nr be the complex-valued signal related to the

polynomial X.z/ D
QI

iD1 Xi.z/, where Xi.z/ are non-trivial irreducible polynomials.
Then the polynomial X0.z/ D

P
n2ZN

x0Œn� zn of each signal x0 2 C
N1�����Nr with

Fourier magnitudes y0Œk� D yŒk� in (10) can be written as

X0.z/ D
Y

i2J

Xi.z/ �
Y

i…J

QXi.z/;

for some index set J � f1; : : : ; Ig.
Thus, the phase retrieval problem is uniquely solvable up to trivial ambiguities

if the algebraic polynomial X.z/ of the true signal x is irreducible or if all but one
factor Xi.z/ are invariant under reversion [65]. In contrast to the one-dimensional
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case, where the polynomial X.z/ may always be factorized into linear factors with
respect to the zeros ˇi, cf. Theorem 1, most multivariate polynomials cannot be
factorized as mentioned above.

Theorem 20 ([66]). The subset of the r-variate polynomials X.z1; : : : ; zr/ with r >
1 of degree M` > 1 in z` which are reducible over the complex numbers corresponds
to a set of measure zero.

Consequently, the multidimensional phase retrieval problem has a completely
different behavior than its one-dimensional counterpart.

Corollary 2. Almost every r-dimensional signal with r > 1 is uniquely defined by
its Fourier magnitudes yŒk� in (10) up to trivial ambiguities.

Investigating the close connection between the one-dimensional and two-dimen-
sional problem formulations, the different uniqueness properties have been studied
in [80]. Particularly, one can show that the two-dimensional phase retrieval problem
corresponds to a one-dimensional problem with additional constraints, which almost
always guarantee uniqueness. Despite these uniqueness guarantees, there are no
systematic methods to estimate an r-dimensional signal from its Fourier magnitude
[9, 80]. The most popular techniques are based on alternating projection algorithms
as discussed in Section 4.1.

4 Phase Retrieval Algorithms

The previous section presented conditions under which there exists a unique
mapping between a signal and its Fourier magnitude (up to trivial ambiguities). Yet,
the existence of a unique mapping does not imply that we can actually estimate the
signal in a stable fashion. The goal of this section is to present different algorithmic
approaches for the inverse problem of recovering a signal from its phaseless Fourier
measurements. In the absence of noise, this task can be formulated as a feasibility
problem over a non-convex set

findz2CN subject to yŒm; k� D
ˇ̌
f �k Dmz

ˇ̌2
;

k D 0; : : : ;K � 1; m D 0; : : : ;M � 1:
(11)

Recall that (11) covers the classical and STFT phase retrieval problems as special
cases.

From the algorithmic point of view, it is often more convenient to formulate the
problem as a minimization problem. Two common approaches are to minimize the
intensity-based loss function

minz2CN

K�1X

kD0

M�1X

mD0

�
yŒm; k� �

ˇ̌
f �k Dmz

ˇ̌2�2
; (12)



74 T. Bendory et al.

or the amplitude-based loss function (see, for instance, [54, 131, 134])

minz2CN

K�1X

kD0

M�1X

mD0

�p
yŒm; k� �

ˇ̌
f �k Dmz

ˇ̌�2
: (13)

The chief difficulty arises from the non-convexity of these loss functions. For
example, if x is a real signal, then (12) is a sum of MK quartic polynomials.
Hence, there is no reason to believe that a gradient algorithm will converge to
the target signal from an arbitrary initialization. To demonstrate this behavior, we
consider an STFT phase retrieval setup for which a unique solution is guaranteed
(see Theorem 15). We attempt to recover the signal by employing two methods:
a gradient descent algorithm that minimizes (12) and the classical Griffin-Lim
algorithm (see Section 4.1 and Algorithm 2). Both techniques were initialized from
100 different random vectors. As can be seen in Figure 4, even for long windows, the
algorithms do not always converge to the global minimum. Furthermore, the success
rate decreases with the window’s length. In what follows, we present different
systematic approaches to recover a signal from its phaseless Fourier measurements
and discuss their advantages and shortcomings.

Fig. 4 This figure examines the empirical success rate of a gradient algorithm (GD) that
minimizes (4) and the Griffin-Lim algorithm (GLA) as presented in Algorithm 2 for the STFT
phase retrieval problem with a rectangular window. For each value of W, 100 experiments were
conducted with N D 23 and L D 1 in a noise-free environment. Note that a unique solution is
guaranteed according to Theorem 15. The underlying signals and the initializations were drawn
from an i.i.d. normal distribution. A success was declared when the objective function is below
10�4.
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The rest of this section is organized as follows. We begin in Section 4.1 by
introducing the classical algorithms which are based on alternating projections.
Then, we proceed in Section 4.2 with convex programs based on semidefinite
programming (SDP) relaxations. SDPs have gained popularity in the recent years
as they provide good numerical performance and theoretical guarantees. We present
SDP-based algorithms for masked phase retrieval, STFT phase retrieval, and
minimum phase and sparse signals. In Section 4.3, we survey additional non-convex
algorithms with special focus on STFT phase retrieval. Section 4.4 presents several
algorithms specialized for the case of phase retrieval of sparse signals.

4.1 Alternating Projection Algorithms

In their seminal work [58], Gerchberg and Saxton considered the problem of
recovering a signal from its Fourier and temporal magnitude. They proposed an
intuitive solution which iterates between two basic steps. The algorithm begins with
an arbitrary initial guess. Then, at each iteration, it imposes the known Fourier
magnitude jOxj and temporal magnitude jxj consecutively. This process proceeds until
a stopping criterion is attained.

The basic concept of the Gerchberg-Saxton algorithm was extended by Fienup in
1982 to a variety of phase retrieval settings [54, 55]. Fienup suggested to replace the
temporal magnitude constraint by other alternative constraints in the time domain.
Examples for such constraints are the knowledge of the signal’s support or few
entries of the signal, nonnegativity, or a known subspace in which the signal lies.
Recently, it was also suggested to incorporate sparsity priors [95]. These algorithms
have the desired property of error reduction. Let Ox.`/ be the Fourier transform
of the estimation in the `th iteration. Then, it can be shown that the quantity
E` WD

P
k jjOxŒk�j�jOx

.`/Œk�jj2 is monotonically non-increasing. This class of methods
is best understood as alternating projection algorithms [48, 91, 99]. Namely, each
iteration consists of two consecutive projections onto sets defined by the spectral
and temporal constraints. As the first step projects onto a non-convex set (and in
some cases, the temporal projection is non-convex as well), the iterations may not
converge to the target signal. The method is summarized in Algorithm 1, where we
use the definition

sign.zŒn�/ WD

(
zŒn�
jzŒn�j ; zŒn� ¤ 0;

0; zŒn� ¤ 0:

Over the years, many variants of the basic alternating projection scheme have
been suggested. A popular algorithm used for CDI applications is the hybrid input-
output (HIO), which consists of an additional correction step in the time domain
[54]. Specifically, the last stage of each iteration is of the form
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Algorithm 1 General scheme of alternating projection algorithms
Input: Spectral magnitude jOxj and additional temporal constraint on x
Output: xest - estimation of x
Initialization: random input vector x.0/, ` D 0

while halting criterion false do:

• ` `C 1
• Compute the Fourier transform of current estimation Ox.`/

• Keep phase, update spectral magnitude Oz.`/ D jOxj sign.Ox.`//
• Compute z.`/, the inverse Fourier transform of Oz.`/

• Impose temporal constraints on z.`/ to obtain x.`/

end while
Return: xest  x.`/

x.`/Œn� D

(
z.`/Œn�; n … �;

x.`�1/Œn� � ˇz.`/Œn�; n 2 �;

where � is the set of indices for which z.`/ violates the temporal constraint (e.g.,
support constraint, nonnegativity) and ˇ is a small parameter. While there is no
proof that the HIO converges, it tends to avoid local minima in the absence of noise.
Additionally, it is known to be sensitive to the prior knowledge accuracy [119]. For
additional related algorithms, we refer the interested reader to [10, 38, 49, 88, 93,
109].

Griffin and Lim proposed a modification of Algorithm 1 specialized for STFT
phase retrieval [62]. In this approach, the last step at each iteration harnesses the
knowledge of the STFT window to update the signal estimation. The Griffin-Lim
heuristic is summarized in Algorithm 2.

Algorithm 2 Griffin-Lim algorithm
Input: STFT magnitude jOxdŒm; k�j
Output: xest - estimation of x
Initialization: random input vector x.0/, ` D 0

while halting criterion false do:

• ` `C 1
• Compute the STFT of current estimation Ox.`/d

• Keep phase, update STFT magnitudes Oz.`/ D jOxdj sign.Ox.`/d /

• For each fixed m, compute z.`/m , the inverse Fourier transform of Oz.`/

• Update signal estimate x.`/Œn� D
P

m z
.`/
m Œn� dŒmL�n�P

m jdŒmL�n�j2

end while
Return: xest  x.`/
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4.2 Semidefinite Relaxation Algorithms

In recent years, algorithms based on convex relaxation techniques have attracted
considerable attention [34, 132]. These methods are based on the insight that while
the feasibility problem (11) is quadratic with respect to x, it is linear in the matrix
xx�. This leads to a natural convex SDP relaxation that can be solved in polynomial
time using standard solvers like CVX [61]. In many cases, these relaxations achieve
excellent numerical performance followed by theoretical guarantees. However,
the SDP relaxation optimizes over N2 variables, and therefore its computational
complexity is quite high.

SDP relaxation techniques begin by reformulating the measurement model (3) as
a linear function of the Hermitian rank-one matrix X WD xx�:

yŒm; k� D .f �k Dmx/�.f �k Dmx/ D x�D�mfkf �k Dmx D trace.D�mfkf �k DmX/:

Consequently, the problem of recovering x from y can be posed as the feasibility
problem of finding a rank-one Hermitian matrix which is consistent with the
measurements:

find X 2H N subject to X � 0; rank.X/ D 1;

yŒm; k� D trace.D�mfkf �k DmX/;

k D 0; : : : ;K � 1; m D 0; : : : ;M � 1;

(14)

where H N is the set of all N � N Hermitian matrices. If there exists a matrix
X satisfying all the constraints of (14), then it determines x up to global phase.
The feasibility problem (14) is non-convex due to the rank constraint. A convex
relaxation may be obtained by omitting the rank constraint leading to the SDP [34,
59, 115, 132]:

find X 2H N subject to X � 0;

yŒm; k� D trace.D�mfkf �k DmX/;

k D 0; : : : ;K � 1; m D 0; : : : ;M � 1:

(15)

If the solution of (15) happens to be of rank one, then it determines x up to global
phase. In practice, it is useful to promote a low-rank solution by minimizing an
objective function over the constraints of (15). A typical choice is the trace function,
which is the convex hull of the rank function for Hermitian matrices. The resulting
SDP relaxation algorithm is summarized in Algorithm 3.

The SDP relaxation for the classical phase retrieval problem (i.e., M D 1 and
D0 D IN) was investigated in [68]. It was shown that SDP relaxation achieves the
optimal cost function value of (12). However, recall that in general the classical
phase retrieval problem does not admit a unique solution. Minimum phase signals
are an exception as explained in Section 3.2.3. Let a be the autocorrelation sequence
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Algorithm 3 SDP relaxation for phase retrieval with masks
Input: Fourier magnitudes yŒm; k� as given in (2) and the masks Dm; m D 0; : : : ;M � 1
Output: xest - estimation of x
Solve:

min
x2H N

trace.X/ subject to X � 0;

yŒm; k� D trace.D�

mfkf �

k DmX/;

k D 0; : : : ;K � 1; m D 0; : : : ;M � 1:

Return : xest - the best rank-one approximation of the SDP’s solution.

of the estimated signal from Algorithm 3. If x is the minimum phase, then it can be
recovered by the following program:

maxX2H N XŒ0; 0� subject to X � 0; trace.�kX/ D aŒk�;

k D 0; : : : ;N � 1;
(16)

where �k is a Toeplitz matrix with ones in the kth diagonal and zero otherwise.
The solution of (16), XMP, is guaranteed to be rank one so that XMP D xx�. See
Section 3.2.3 for a different algorithm to recover minimum phase signals.

An SDP relaxation for deterministic masks was investigated in [72], where the
authors consider two types of masks. Here, we consider the two masks, d1 and d2;
given in (5). Let D1 and D2 be the diagonal matrices associated with d1 and d2,
respectively, and assume that each measurement is contaminated by bounded noise
". Then, it was suggested to estimate the signal by solving the following convex
program

minX2H N trace.X/ subject to X � 0;

jyŒm; k� � trace.D�mfkf �k DmX/j � ";

k D 0; : : : ; 2N � 1; m D 0; 1:

(17)

This program achieves stable recovery in the sense that the recovery error is
proportional to the noise level and reduces to zero in the noise-free case. Note,
however, that in the presence of noise, the solution is not likely to be rank one.

Theorem 21 ([72]). Consider a signal x 2 C
N satisfying kxk1 � ˇ and jxŒ0�j 


� > 0. Suppose that the measurements are taken with the diagonal matrices D1 and
D2 (masks) associated with d1 and d2 given in (5). Then, the solutioneX of the convex
program (17) obeys

keX � xx�k2 � C.ˇ; �/"

for some numerical constant C.ˇ; �/.
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Phase retrieval from STFT measurements using SDP was considered in [75].
Here, SDP relaxation in the noiseless case takes on the form

minX2H N trace.X/ subject to X � 0;

yŒm; k� D trace.D�mfkf �k DmX/;

k D 0; : : : ;K � 1; m D 0; : : : ;M � 1;
(18)

where M D dN=Le is the number of STFT windows and QN D N (see (4)). In [75],
it was proven that (18) recovers the signal exactly under the following conditions.

Theorem 22 ([75]). The convex program (18) has a unique feasible matrix X D
xx� for almost all non-vanishing signals x if:

• dŒn� ¤ 0 for n D 0; : : : ;W � 1,
• 2L � W � N=2,
• 4L � K � N,
• xŒn� is known a priori for 0 � n �

�
L
2

˘
,

where W is the window’s length.
Note that for L D 1, no prior knowledge on the entries of x is required.

An interesting implication of this theorem is that recovery remains exact even
if we merely have access to the low frequencies of the data. This property is
called super-resolution and will be discussed in more detail in the context of sparse
signals. Numerically, the performance of (18) is better than Theorem 22 suggests.
Specifically, it seems that for W 
 2L, (18) recovers xx� exactly without any prior
knowledge on the entries of x, as demonstrated in Figure 5 (a similar example is
given in [75]). Additionally, the program is stable in the presence of noise.

Fig. 5 The empirical success
rate of the SDP relaxation for
STFT phase retrieval (18)
with a rectangular window of
length W, i.e., dŒn� D 1 for
n D 0; : : : ;W � 1. For each
pair .W;L/, 100 complex
signals of length N D 40

were drawn from an i.i.d.
normal distribution. The
figure presents the empirical
success rate. An experiment
was declared as a success if
the recovery error is below
10�4.
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4.3 Additional Non-Convex Algorithms

In this section, we present additional non-convex algorithms for phase retrieval with
special focus on STFT phase retrieval. A naive way to estimate the signal from its
phaseless measurements is by minimizing the non-convex loss functions (12) or (13)
by employing a gradient descent scheme. However, as demonstrated in Figure 4, this
algorithm is likely to converge to a local minimum due to the non-convexity of the
loss functions. Hence, the key is to introduce an efficient method to initialize the
non-convex algorithm sufficiently close to the global minimum.

A recent paper [20] suggests an initialization technique for STFT phase retrieval,
which we now describe. Consider the one-dimensional Fourier transform of the data
with respect to the frequency variable (see (4)), given by

QyŒm; `� D
N�1X

nD0

xŒn�xŒnC `�dŒmL � n�dŒmL � n � `�;

where QN D N and both the signal and the window are assumed to be periodic. For
fixed `, we obtain the linear system of equations

Qy` D G`x`; (19)

where Qy` D fQyŒm; `�g
dN=Le�1
mD0 , x` 2 C

N is the `th diagonal of the matrix xx� and
G` 2 C

dN=Le�N is the matrix with .m; n/th entry given by dŒmL � n�dŒmL � n � `�.
For L D 1, G` is a circulant matrix. Clearly, recovering x` for all ` is equivalent
to recovering xx�. Hence, the ability to estimate x depends on the properties of the
window which determines G`. To make this statement precise, we use the following
definition.

Definition 1. A window d is called an admissible window of length W if for all
` D �.W�1/; : : : ; .W�1/ the associated circulant matrices G` in (19) are invertible.
An example of an admissible window is a rectangular window with W � N=2 and
N a prime number. If the STFT window is sufficiently long and admissible, then the
STFT phase retrieval has a closed-form solution. This solution can be obtained by
the principal eigenvector of a matrix, constructed as the solution of a least-squares
problem according to (19). This algorithm is summarized in Algorithm 4.

Theorem 23 ([20]). Let L D 1, and suppose that d is an admissible window of
length W 


˙
NC1
2

�
(see Definition 1). Then, Algorithm 4 recovers any complex

signal up to global phase.
In many cases, the window is shorter than

˙
NC1
2

�
. However, the same technique

can be applied to initialize a refinement process, such as a gradient method or the
Griffin-Lim algorithm (GLA). In this case, the distance between the initial vector
(the output of Algorithm 4) and the target signal can be estimated as follows.
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Algorithm 4 Least-squares algorithm for STFT phase retrieval with L D 1

Input: The STFT magnitude yŒm; k� as given in (4) with QN D N
Output: xest - estimation of x

1. Compute Qy Œm; `�, the one-dimensional DFT of yŒm; k� with respect to the second variable.
2. Construct a matrix X0 such that

diag .X0; `/ D

(
G�

`Qy`; ` D � .W � 1/ ; � � � ; .W � 1/ ;

0; otherwise,

where G` 2 R
N�N and Qy` are given in (19).

Return:

xest D

sX

n2P

.G�
0y0/Œn�xp;

where P WD fn W .G�
0y0/Œn� > 0g and xp is the principle (unit-norm) eigenvector of X0.

Theorem 24 ([20]). Suppose that L D 1, kxk2 D 1, d is an admissible window of
length W 
 2 and that kxk1 �

p
B=N for some 0 < B � N=.2N � 4W C 2/.

Then, the output x0 of Algorithm 4 satisfies

min
�2Œ0;2
/

kx � x0e
j�k22 � 1 �

r

1 � 2B
N � 2W C 1

N
:

For L > 1, it is harder to obtain a reliable estimation of the diagonals of
xx�. Nevertheless, a simple heuristic is proposed in [20] based on the smoothing
properties of typical STFT windows. Figure 6 shows experiments corroborating the
effectiveness of this initialization approach for L > 1.

We have seen that under some conditions, the STFT phaseless measurements
provide partial information on the matrix xx�. In some cases, the main diagonal of
xx�, or equivalently the temporal magnitude of x, is also measured. Therefore, if the
signal is non-vanishing, then all entries of the matrix xx� can be normalized to have
unit modulus. This in turn implies that the STFT phase retrieval problem is equiva-
lent to estimating the missing entries of a rank-one matrix with unit modulus entries
(i.e., phases). This problem is known as phase synchronization. In recent years,
several algorithms for phase synchronization were suggested and analyzed, among
them are eigenvector-based methods, SDP relaxations, projected power methods,
and approximate message passing algorithms [7, 8, 28, 36, 100, 123]. Recent papers
[69, 70] adopted this approach and suggested spectral and greedy algorithms for
STFT phase retrieval. These methods are accompanied by stability guarantees and
can be modified for phase retrieval using masks. The main shortcoming of this
approach is that it relies on a good estimation of the temporal magnitudes which
may not always be available.



82 T. Bendory et al.

0 10 20 30 40 50 60

W

0

0.2

0.4

0.6

0.8

1

1.2
er

ro
r

20 25 30 35 40 45 50

SNR [db]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

er
ro

r

L=1
L=2
L=4

GD
GLA

Fig. 6 (left) Average error (over 50 experiments) of the initialization method of Algorithm 4
as a function of W and L. The experiments were conducted on a signal of length N D 101

with a Gaussian window dŒn� D e�n2=2�2 . The window length was set to W D 3� . (right)
Average normalized recovery error (over 20 experiments) of the gradient descent (GD) and Griffin-
Lim algorithm (GLA) in the presence of normal i.i.d. noise. Both algorithms were initialized by
Algorithm 4. The experiments were conducted on signals of length N D 53 with a rectangular
window of length W D 19 and L D 2.

Another interesting approach has been recently proposed in [101]. This paper
suggests a multistage algorithm based on spectral clustering and angular synchro-
nization. It is shown that the algorithm achieves stable estimation (and exactness
in the noise-free setting) with only O.N log N/ phaseless STFT measurements.
Nevertheless, the algorithm builds upon random STFT windows of length N, while
most applications use shorter windows.

4.4 Algorithms for Sparse Signals

In this section, we assume that the signal is sparse with a sparsity level defined as

s D f#n W xŒn� ¤ 0g:

In this case, the basic phase retrieval problem (12) can be modified to the constrained
least-squares problem

minz2CN

K�1X

kD0

M�1X

nD0

�
yŒm; k� �

ˇ̌
f �k Dmz

ˇ̌2�2
subject to kzk0 � s; (20)

where we use k � k0 as the standard `0 pseudo-norm counting the non-zero entries of
a signal.
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Many phase retrieval algorithms for sparse signals are modifications of known
algorithms for the non-sparse case. For instance, gradient algorithms were modified
to take into account the sparsity structure. The underlying idea of these algorithms is
to add a thresholding step at each iteration. Theoretical analysis of these algorithms
for phase retrieval with random sensing vectors is considered in [30, 135]. A similar
modification for the HIO algorithm was proposed in [95]. Modifications of SDP
relaxation methods for phase retrieval with random sensing vectors were considered
in [85, 97, 98]. Here, the core idea is to incorporate a sparse-promoting regularizer
in the objective function. However, this technique cannot be adapted directly to
Fourier phase retrieval because of the trivial ambiguities of translation and conjugate
reflection; see a detailed explanation in [74]. To overcome this barrier, a two-stage
sparse-phase retrieval (TSPR) algorithm was proposed in [73]. The first stage of the
algorithm involves estimating the support of the signal directly from the support of
its autocorrelation. This problem is equivalent to the turnpike problem of estimating
a set of integers from their pairwise distances [124]. Once the support is known,
the second stage involves solving an SDP to estimate the missing amplitudes. It
was proven that TSPR recovers signals exactly in the noiseless case as long as the
sparsity level is less than O.N1=2/. In the noisy setting, recovery is robust for sparsity
level lower than O.N1=4/. A different SDP-based approach was suggested in [115].
This method proposes to promote a sparse solution by the log-det heuristic [52] and
an `1 � `2 constraint on the matrix xx�.

An alternative class of algorithms that has been proven to be highly effective
for sparse signals is the class of greedy algorithms; see, for instance, [12, 90]. For
phase retrieval tasks, a greedy optimization algorithm called GESPAR (GrEedy
Sparse PhAse Retrieval) is proposed in [118]. The algorithm was applied for a
variety of optical tasks, such as CDI and phase retrieval through waveguide arrays
[116, 117, 121]. GESPAR is a local search algorithm, based on iteratively updating
the signal support. Specifically, two elements are being updated at each iteration
by swapping. Then, a non-convex objective function that takes the support into
account is minimized by a damped Gauss-Newton method. The swap is carried out
between the support element which corresponds to the smallest entry (in absolute
value) and the off-support element with maximal gradient value of the objective
function. A modification of GESPAR for STFT phase retrieval was presented in
[47]. A schematic outline of GESPAR is given in Algorithm 5; for more details, see
[118].

In practice, many optical measurement processes blur the fine details of the
acquired data and act as low-pass filters. In these cases, one aims at estimating
the signal from its low-resolution Fourier magnitudes. This problem combines two
classical problems: phase retrieval and super-resolution. In recent years, super-
resolution for sparse signals has been investigated thoroughly [3, 19, 21, 22, 31, 44].
In Theorem 22, we have seen that the SDP (18) can recover a signal from its
low-resolution STFT magnitude. The problem of recovering a signal from its low-
resolution phaseless measurements using masks was considered in [76, 110]. It was
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Algorithm 5 A schematic outline of GESPAR algorithm; for details see [118]
Input: Fourier magnitude y as in (2) and sparsity level s
Output: xest - estimation of x
Initialization:

• Generate a random support set S.0/ of size s
• Employ a damped Gauss-Newton method with support S.0/ and obtain an initial estimation x.0/

• Set ` D 0

while halting criterion false do:

• ` `C 1
• Update support by swapping two entries, one in S.`�1/ and one in the complementary set
• Minimize a non-convex objective with the given support S.`/ using the damped Gauss-Newton

method to obtain x.`/

end while
Return: xest  x.`/

proven that exact recovery may be obtained by only few1 carefully designed masks
if the underlying signal is sparse and its support is not clustered (this requirement
is also known as the separation condition). An extension to the continuous setup
was suggested in [41]. A combinatorial algorithm for recovering a signal from its
low-resolution Fourier magnitude was suggested in [40]. The algorithm recovers an
s-sparse signal exactly from 2s2 � 2s C 2 low-pass magnitudes. Nevertheless, this
algorithm is unstable in the presence of noise due to error propagation.

5 Conclusion

In this chapter, we studied the problem of Fourier phase retrieval. We focused on the
question of uniqueness, presented the main algorithmic approaches and discussed
their properties. To conclude the chapter, we outline several fundamental gaps in
the theory of Fourier phase retrieval.

Although many different methods have been proposed and analyzed in the last
decade for Fourier phase retrieval, alternating projection algorithms maintained
their popularity. Nevertheless, the theoretical understanding of these algorithms
is limited. Another fundamental open question regards multidimensional phase
retrieval. While almost all multidimensional signals are determined uniquely by
their Fourier magnitude, there is no method that provably recovers the signal.

In many applications in optics, the measurement process acts as a low-pass filter.
Hence, a practical algorithm should recover the missing phases (phase retrieval)
and resolve the fine details of the data (super-resolution). In this chapter, we

1Specifically, several combinations of masks are suggested. Each combination consists of three to
five deterministic masks.
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surveyed several works dealing with the combined problem. Nonetheless, the
current approaches are based on inefficient SDP programs [41, 75, 76, 110] or lack
theoretical analysis [20, 115]. Additionally, even if all frequencies are available, it is
still not clear what is the maximal sparsity that enables efficient and stable recovery
of a signal from its Fourier magnitude.

In ultrashort laser pulse characterization, it is common to use the FROG methods
that were introduced in Section 3.5. It is interesting to understand the minimal
number of measurements which can guarantee uniqueness for FROG-type methods.
Additionally, a variety of algorithms are applied to estimate signals from FROG-
type measurements; a theoretical understanding of these algorithms is required.
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Compressed Sensing Approaches for Polynomial
Approximation of High-Dimensional Functions

Ben Adcock, Simone Brugiapaglia, and Clayton G. Webster

Abstract In recent years, the use of sparse recovery techniques in the approxima-
tion of high-dimensional functions has garnered increasing interest. In this work
we present a survey of recent progress in this emerging topic. Our main focus is
on the computation of polynomial approximations of high-dimensional functions
on d-dimensional hypercubes. We show that smooth, multivariate functions possess
expansions in orthogonal polynomial bases that are not only approximately sparse
but possess a particular type of structured sparsity defined by so-called lower
sets. This structure can be exploited via the use of weighted `1 minimization
techniques, and, as we demonstrate, doing so leads to sample complexity estimates
that are at most logarithmically dependent on the dimension d. Hence the curse
of dimensionality – the bane of high-dimensional approximation – is mitigated to a
significant extent. We also discuss several practical issues, including unknown noise
(due to truncation or numerical error), and highlight a number of open problems and
challenges.

Keywords High-dimensional approximation · Weighted `1 minimization ·
Orthogonal polynomials · Lower sets

1 Introduction

The approximation of high-dimensional functions is a fundamental difficulty in a
large number of fields, including neutron, tomographic and magnetic resonance
image reconstruction, uncertainty quantification (UQ), optimal control, and parame-
ter identification for engineering and science applications. In addition, this problem
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naturally arises in computational solutions to kinetic plasma physics equations,
the many-body Schrödinger equation, Dirac and Maxwell equations for molecular
electronic structures and nuclear dynamic computations, options pricing equations
in mathematical finance, Fokker-Planck and fluid dynamics equations for complex
fluids, turbulent flow, quantum dynamics, molecular life sciences, and nonlocal
mechanics. The subject of intensive research over the last half-century, high-
dimensional approximation is made challenging by the curse of dimensionality, a
phrase coined by Bellman [7]. Loosely speaking, this refers to the tendency of naïve
approaches to exhibit exponential blow-up in complexity with increasing dimension.
Progress is possible, however, by placing restrictions on the class of functions to be
approximated, for example, smoothness, anisotropy, sparsity, and compressibility.
Well-known algorithms such as sparse grids [14, 54, 55, 69], which are specifically
designed to capture this behavior, can mitigate the curse of dimensionality to a
substantial extent.

While successful, however, such approaches typically require strong a pri-
ori knowledge of the functions being approximated, e.g., the parameters of the
anisotropic behavior, or costly adaptive implementations to estimate the anisotropy
during the approximation process. The efficient approximation of high-dimensional
functions in the absence of such knowledge remains a significant challenge.

In this chapter, we consider new methods for high-dimensional approximation
based on the techniques of compressed sensing. Compressed sensing is an appealing
approach for reconstructing signals from underdetermined systems, i.e., with far
smaller number of measurements compared to the signal length [16, 31]. This
approach has emerged in the last half a dozen years as an alternative to more
classical approximation schemes for high-dimensional functions, with the aim being
to overcome some of the limitations mentioned above. Under natural sparsity
or compressibility assumptions, it enjoys a significant improvement in sample
complexity over traditional methods such as discrete least squares, projection, and
interpolation [37, 38]. Our intention in this chapter is to both present an overview
of existing work in this area, focusing particularly on the mitigation of the curse of
dimensionality, and to highlight existing open problems and challenges.

1.1 Compressed Sensing for High-Dimensional Approximation

Compressed sensing asserts that a vector x 2 C
n possessing a k-sparse representa-

tion in a fixed orthonormal basis can be recovered from a number of suitably chosen
measurements m that are linear in k and logarithmic in the ambient dimension n. In
practice, recovery can be achieved via a number of different approaches, including
convex optimization (`1 minimization), greedy or thresholding algorithms.

Let f W D ! C be a function, where D � R
d is a domain in d  1 dimensions.

In order to apply compressed sensing techniques to approximate f , we must first
address the following three questions:

(i) In which orthonormal system of functions f�ig
n
iD1 does f have an approxi-

mately sparse representation?
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(ii) Given suitable assumptions on f (e.g., smoothness) how fast does the best k-
term approximation error decay?

(iii) Given such a system f�ig
n
iD1, what are suitable measurements to take of f ?

The concern of this chapter is the approximation of smooth functions, and as such
we will use orthonormal bases consisting of multivariate orthogonal polynomials. In
answer to (i) and (ii) in Section 2, we discuss why this choice leads to approximate
sparse representations for functions with suitable smoothness and characterize the
best k-term approximation error in terms of certain regularity conditions. As we
note in Section 2.2, practical examples of such functions include parameter maps of
many different types of parametric PDEs.

For sampling, we evaluate f at a set of points z1; : : : ; zm 2 D. This approach is
simple and particularly well-suited in practical problems. In UQ, for example, it is
commonly referred to as a nonintrusive approach [46] or stochastic collocation [52].
More complicated measurement procedures – for instance, intrusive procedures
such as inner products with respect to a set of basis functions – are often impractical
or even infeasible, since, for example, they require computation of high-dimensional
integrals. The results presented in Section 3 identify appropriate (random) choices
of the sample points fzig

m
iD1 and bound for the number of measurements m under

which f can be stably and robustly recovered from the data ff .zi/g
m
iD1.

1.2 Structured Sparsity

The approximation of high-dimensional functions using polynomials differs from
standard compressed sensing in several key ways. Standard compressed sensing
exploits sparsity of the finite vector of coefficients c 2 C

n of a finite-dimensional
signal x 2 C

n. However, polynomial coefficients of smooth functions typically
possess more detailed structure than just sparsity. Loosely speaking, coefficients
corresponding to low polynomial orders tend to be larger than coefficients corre-
sponding to higher orders. This raises several questions:

(iv) What is a reasonable structured sparsity model for polynomial coefficients of
high-dimensional functions?

(v) How can such structured sparsity be exploited in the reconstruction procedure,
and by how much does doing this reduce the number of measurements
required?

In Section 2.3 it is shown that high-dimensional functions can be approximated
with quasi-optimal rates of convergence by k-term polynomial expansions with
coefficients lying in so-called lower sets of multi-indices. As we discuss, sparsity in
lower sets is a type of structured sparsity, and in Section 3 we show how it can be
exploited by replacing the classical `1 regularizer by a suitable weighted `1-norm.
Growing weights penalize high-degree polynomial coefficients, and when chosen
appropriately, they act to promote lower set structure. In Section 3.2 nonuniform
recovery techniques are used to identify a suitable choice of weights. This choice of
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weights is then adopted in Section 3.5 to establish quasi-optimal uniform recovery
guarantees for compressed sensing of polynomial expansions using weighted `1

minimization.
The effect of this weighted procedure is a substantially improved recovery

guarantee over the case of unweighted `1 minimization, specifically, a measurement
condition that is only logarithmically dependent on the dimension d and polyno-
mially dependent on the sparsity k. Hence the curse of dimensionality is almost
completely avoided. As we note in Section 3.3, these polynomial rates of growth in
k agree with the best known recovery guarantees for oracle least-squares estimators.

1.3 Dealing with Infinity

Another way in which the approximation of high-dimensional functions differs from
standard compressed sensing is that functions typically have infinite (as opposed to
finite) expansions in orthogonal polynomial bases. In order to apply compressed
sensing techniques, this expansion must be truncated in a suitable way. This leads
to the following questions:

(vi) What is a suitable truncation of the infinite expansion?
(vii) How does the corresponding truncation error affect the overall reconstruction?

In Section 3 a truncation strategy – corresponding to a hyperbolic cross index
set – is proposed based on the lower set structure. The issue of truncation error
(question (vii)) presents some technical issues, both theoretical and practical, since
this error is usually unknown a priori. In Section 3.6 we discuss a means to
overcome these issues via a slightly modified optimization problem. Besides doing
so, another benefit of the approach developed therein is that it yields approximations
to f that also interpolate at the sample points fzig

m
iD1, a desirable property for

certain applications. Furthermore, the results given in Section 3.6 also address the
robustness of the recovery to unknown errors in the measurements. This is a quite
common phenomenon in applications, since function samples are often the result of
(inexact) numerical computations.

1.4 Main Results

We now summarize our main results. In order to keep the presentation brief, in this
chapter we limit ourselves to functions defined on the unit hypercube D D .�1; 1/d

and consider expansions in orthonormal polynomial bases f�igi2Nd
0

of Chebyshev
or Legendre type. We note in passing, however, that many of our results apply
immediately (or extend straightforwardly) to more general systems of functions.
See Section 4 for some further discussion.

Let � be the probability measure under which the basis f�igi2Nd
0

is orthonormal.
Our main result is as follows:
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Theorem 1. Let k 2 N, 0 < " < 1, f�igi2Nd
0

be the orthonormal Chebyshev or

Legendre basis on D D .�1; 1/d,  D HC
k be the hyperbolic cross of index k and

define weights u D .ui/i2Nd
0
, where ui D k�ikL1 . Suppose that

m & k�
	
log2.k/min fdC log.k/; log.2d/ log.k/g C log.k/ log.log.k/="/



;

where � D log.3/
log.2/ or � D 2 for Chebyshev or Legendre polynomials, respectively,

and draw z1; : : : ; zm 2 D independently according to �. Then with probability at
least 1 � " the following holds. For any f 2 L2�.D/ \ L1.D/ satisfying

����
�

f �
X

i2

ci�i

����
�

L1

� 	; (1)

for some known 	 
 0, it is possible to compute, via solving a `1u minimization
problem of size m � n where n D jj, an approximation Qf from the samples y D
.f .zj//

m
jD1 that satisfies

kf � QfkL2�
. �k;L.c/1;u

k�=2
C 	;

��f � Qf
��

L1
. �k;L.c/1;u C k�=2	: (2)

Here c are the coefficients of f in the basis f�igi2Nd
0

and �s;L.c/1;u is the `1u-norm
error of the best approximation of c by a vector that is k-sparse and lower.

Note that the condition (1) is strong, since it assumes an a priori upper bound on
the expansion error is available. Such a condition is unlikely to be met in practice. In
Section 3.6 we discuss recovery results for general f without such a priori bounds.

1.5 Existing Literature

The first results on compressed sensing with orthogonal polynomials in the one-
dimensional setting appeared in [60], based on earlier work in sparse trigonometric
expansions [58]. This was extended to the higher-dimensional setting in [72].
Weighted `1 minimization was studied in [61], and recovery guarantees given in
terms of so-called weighted sparsity. However, this does not lead straightforwardly
to explicit measurement conditions for quasi-best k-term approximation. The works
[1, 22] introduced new guarantees for weighted `1 minimization of nonuniform
and uniform types, respectively, leading to optimal sample complexity estimates for
recovering high-dimensional functions using k-term approximations in lower sets.
Theorem 1 is based on results in [22]. Relevant approaches to compressed sensing
in infinite dimensions have also been considered in [1, 2, 4, 11, 13, 66]

Applications of compressed sensing to UQ, specifically the computation of poly-
nomial chaos expansions of parametric PDEs, can be found in [10, 32, 47, 56, 59, 73]
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and references therein. Throughout this chapter we use random sampling from the
orthogonality measure of the polynomial basis. We do this for its simplicity, and the
theoretical optimality of the recovery guarantees in terms of the dimension d. Other
strategies, which typically seek a smaller error or lower polynomial factor of k in
the sample complexity, have been considered in [39, 41, 44, 52, 53, 64, 71]. Working
toward a similar end, various approaches have also been considered to learn a better
sparsity basis [43, 74] or to use additional gradient samples [57]. In this chapter, we
focus on fixed bases of Chebyshev or Legendre polynomials in the unit cube. For
results in R

d using Hermite polynomials, see [39, 41, 53].
In some scenarios, a suitable lower set may be known in advance or be computed

via an adaptive search. In this case, least-squares methods may be suitable. A series
of works have studied the sample complexity of such approaches in the context
of high-dimensional polynomial approximation [19, 24, 28, 29, 40, 48–51, 53]. We
review a number of these results in Section 3.3.

2 Sparse Polynomial Approximation of High-Dimensional
Functions

2.1 Setup and Notation

We first require some notation. For the remainder of this chapter, D D .�1; 1/d

will be the d-dimensional unit cube. The vector z D .z1; : : : ; zd/ will denote the
variable in D, and i D .i1; : : : ; id/ 2 N

d
0 will be a multi-index. Let �.1/; : : : ; �.d/ be

probability measures on the unit interval .�1; 1/. We consider the tensor product
probability measure � on D given by � D �.1/ ˝ � � � ˝ �.d/. Let f�.k/i g

1
iD0 be an

orthonormal polynomial basis of L2
�.k/
.�1; 1/ and define the corresponding tensor

product orthonormal basis f�igi2Nd
0

of L2�.D/ by

�i D �
.1/
i1
˝ � � � ˝ �

.d/
id
; i D .i1; : : : ; id/ 2 N

d
0:

We let k�kL2�
and h�; �iL2� denote the norm and inner product on L2�.D/, respectively.

Let f 2 L2�.D/ \ L1.D/ be the function to be approximated, and write

f D
X

i2Nd
0

ci�i; (3)

where ci D hf ; �iiL2� are the coefficients of f in the basis f�igi2Nd
0
. We define

c D .ci/i2Nd
0
2 `2.Nd

0/;

to be the infinite vector of coefficients in this basis.
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Example 1. Our main example will be Chebyshev or Legendre polynomials. In one
dimension, these are orthogonal polynomials with respect to the weight functions

d� D
1

2
dz (Legendre); d� D

1



p
1 � z2

dz (Chebyshev);

respectively. For simplicity, we will consider only tensor products of the same types
of polynomials in each coordinate. The corresponding tensor product measures on
D are consequently defined as:

d� D 2�d dz (Legendre); d� D
dY

jD1

1



q
1 � z2j

dz (Chebyshev):

We note also that many of the results presented below extend to more general
families of orthogonal polynomials, e.g., Jacobi polynomials (see Remark 5).

As discussed in Section 1.3, it is necessary to truncate the infinite expansion (3)
to a finite one. Throughout, we let  � N

d
0 be a subset of size jj D n, and define

the truncated expansion

f D
X

i2

ci�i:

We write c for the finite vector of coefficients with multi-indices in . Whenever
necessary, we will assume an ordering i1; : : : ; in of the multi-indices in , so that

f D
nX

jD1

cij�ij ; c D .cij/
n
jD1 2 C

n:

We will adopt the usual convention and view c interchangeably as a vector in C
n

and as an element of `2.Nd
0/ whose entries corresponding to indices i …  are zero.

2.2 Regularity and Best k-Term Approximation

In the high-dimensional setting, we assume the regularity of f is such that the
complex continuation of f , represented as the map f W Cd ! C, is a holomorphic
function on C

d. In addition, for 1 � k � n, we let

˙k D
˚
c 2 `2.Nd

0/ W jsupp.c/j � k
�
;

be the set of k-sparse vectors, and
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�k.c/1 D inf
d2˙k

kc � dk1;

be the error of the best k-term approximation of c, measured in the `1 norm.
Recently, for smooth functions as described above, sparse recovery of the poly-

nomial expansion (3) with the use of compressed sensing has shown tremendous
promise. However, this approach requires a small uniform bound of the underlying
basis, given by

� D sup
i2
k�ikL1.D/;

as the sample complexity m required to recover the best k-term approximation (up
to a multiplicative constant) scales with the following bound (see, e.g., [35])

m & �2k � log factors: (4)

This poses a challenge for many multivariate polynomial approximation strategies
as � is prohibitively large in high dimensions. In particular, for d-dimensional
problems, � D 2d=2 for Chebyshev systems and so-called preconditioned Legendre
systems [60]. Moreover, when using the standard Legendre expansion, the theo-
retical number of samples can exceed the cardinality of the polynomial subspace,
unless the subspace a priori excludes all terms of high total order (see, e.g., [41, 72]).
Therefore, the advantages of sparse polynomial recovery methods, coming from
reduced sample complexity, are eventually overcome by the curse of dimensionality,
in that such techniques require at least as many samples as traditional sparse
interpolation techniques in high dimensions [37, 54, 55]. Nevertheless, in the next
section we describe a common characteristic of the polynomial space spanned by
the best k-terms, that we will exploit to overcome the curse of dimensionality
in the sample complexity bound (4). As such, our work also provides a fair
comparison with existing numerical polynomial approaches in high dimensions
[6, 18–20, 65].

2.3 Lower Sets and Structured Sparsity

In many engineering and science applications, the target functions, despite being
high-dimensional, are smooth and often characterized by a rapidly decaying polyno-
mial expansion, whose most important coefficients are of low order [21, 25, 27, 42].
In such situations, the quest for finding the approximation containing the largest k
terms can be restricted to polynomial spaces associated with lower (also known as
downward closed or monotone) sets. These are defined as follows:
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Definition 1. A set S � N
d
0 is lower if, whenever i D .i1; : : : ; id/ 2 S and i0 D

.i01; : : : ; i
0
d/ 2 N

d
0 satisfies i0j � ij for all j D 1; : : : ; d, then i0 2 S.

The practicality of downward closed sets is mainly computational, and has
been demonstrated in different approaches such as quasi-optimal strategies, Taylor
expansion, interpolation methods, and discrete least squares (see [6, 18–22, 26, 27,
49, 51, 62, 65] and references therein). For instance, in the context of parametric
PDEs, it was shown in [21] that for a large class of smooth differential operators,
with a certain type of anisotropic dependence on z, the solution map z 7! f .z/
can be approximated by its best k-term expansions associated with index sets of
cardinality k, resulting in algebraic rates k�˛; ˛ > 0 in the uniform and/or mean
average sense. The same rates are preserved with index sets that are lower. In
addition, such lower sets of cardinality k also enable the equivalence property
k � kL2� .D/

� k � kL1 � k�k � kL2� .D/
in arbitrary dimensions d with, e.g., � D 2

for the uniform measure and � D log 3
log 2 for Chebyshev measure.

Rather than best k-term approximation, we now consider best k-term approxima-
tion in a lower set. Hence, we replace ˙k with

˙k;L D
˚
c 2 `2.Nd

0/ W jsupp.c/j � k; supp.c/is lower
�
;

and �k.c/1 with the quantity

�k;L.c/1;w D inf
d2˙k;L

kc � dk1;w: (5)

Here w D .wi/i2Nd
0

is a sequence of positive weights and kck1;w D
P

i2Nd
0

wijcij is

the norm on `1w.N
d
0/.

Remark 1. Sparsity in lower sets is an example of a so-called structured sparsity
model. Specifically, ˙k;L is the subset of ˙k corresponding to the union of all k-
dimensional subspaces defined by lower sets:

˙k;L �
[

jSjDk
S lower

fc W supp.c/ � Sg �
[

jSjDk

fc W supp.c/ � Sg � ˙k:

Structured sparsity models have been studied extensively in compressed sensing
(see, e.g., [5, 9, 30, 33, 66] and references therein). There are a variety of general
approaches for exploiting such structure, including greedy and iterative methods
(see, for example, [5]) and convex relaxations [66]. A difficulty with lower set
sparsity is that projections onto ˙k;L cannot be easily computed [22], unlike the
case of ˙k. Therefore, in this chapter we shall opt for a different approach based
on `1w minimization with suitably chosen weights w. See Section 4 for some further
discussion.
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3 Compressed Sensing for Multivariate Polynomial
Approximation

Having introduced tensor orthogonal polynomials as a good basis for obtaining
(structured) sparse representation of smooth, multivariate functions, we now turn
our attention to computing quasi-optimal approximations of such a function f from
the measurements ff .zi/g

m
iD1.

It is first necessary to choose the sampling points z1; : : : ; zm. From now on,
following an approach that has become standard in compressed sensing [35], we
shall assume that these points are drawn randomly and independently according
to the probability measure �. We remark in passing that this may not be the best
choice in practice. However, such an approach yields recovery guarantees with
measurement conditions that are essentially independent of d, thus mitigating the
curse of dimensionality. In Section 4 we briefly discuss other strategies for choosing
these points which may convey some practical advantages.

3.1 Exploiting Lower Set-Structured Sparsity

Let c 2 `2.Nd
0/ be the infinite vector of coefficients of a function f 2 L2�.D/. Suppose

that  � N
d
0, jj D n and notice that

y D Ac C e; (6)

where y 2 C
m and A 2 C

m�n are the finite vector and matrix given by

y D
1
p

m

	
f .zj/


m

jD1 ; A D
1
p

m

	
�ik.zj/


m;n

j;kD1 ; (7)

respectively, and

e D
1
p

m

	
f .zj/ � f.zj/


m

jD1 D
1
p

m

0

@
X

i…

ci�i.zj/

1

A

m

jD1

; (8)

is the vector of remainder terms corresponding to the coefficients ci with indices
outside . Our aim is to approximate c up to an error depending on �k;L.c/1;w,
i.e., its best k-term approximation in a lower set (see (5)). In order for this to be
possible, it is necessary to choose  so that it contains all lower sets of cardinality
k. A straightforward choice is to make  exactly equal to the union of all such sets,
which transpires to be precisely the hyperbolic cross index set with index k. That is,
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[

jSjDk
S lower

S D

8
<

:
i D .i1; : : : ; id/ 2 N

d
0 W

dY

jD1

.ij C 1/ � k

9
=

;
D HC

k : (9)

It is interesting to note that this union is a finite set, due to the lower set assumption.
Had one not enforced this additional property, the union would be infinite and equal
to the whole space N

d
0.

We shall assume that  D HC
k from now on. For later results, it will be useful

to know the cardinality of this set. While an exact formula in terms of k and d is
unknown, there are a variety of different upper and lower bounds. In particular, we
shall make use of the following result:

n D
ˇ̌
HC

k

ˇ̌
� min

˚
2k34d; e2k2Clog2.d/

�
: (10)

See [17, Thm. 3.7] and [45, Thm. 4.9], respectively.
With this in hand, we now wish to obtain a solution Oc of (6) which approximates

c, and therefore c due to the choice of , up to an error determined by its best
approximation in a lower set of size k. We shall do this by weighted `1 minimization.
Let w D .wi/i2 be a vector of positive weights and consider the problem

min
d2Cn
kdk1;w s.t. ky � Adk2 � 	; (11)

where kdk1;w D
Pn

jD1 wij jdij j is the weighted `1-norm and 	 
 0 is a parameter
that will be chosen later. Since the weights w are positive we shall without loss of
generality assume that

wi 
 1; 8i:

Our choice of these weights is based on the desire to exploit the lower set structure.
Indeed, since lower sets inherently penalize higher indices, it is reasonable (and will
turn out to be the case) that appropriate choices of increasing weights will promote
this type of structure.

For simplicity, we shall assume for the moment that 	 is chosen so that

	 
 kek2: (12)

In particular, this implies that the exact vector c is a feasible point of the problem
(11). As was already mentioned in Section 1.4, this assumption is a strong one
and is unreasonable for practical scenarios where good a priori estimates on the
expansion error f � f are hard to obtain. In Section 3.6 we address the removal of
this condition.
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3.2 Choosing the Optimization Weights: Nonuniform Recovery

Our first task is to determine a good choice of optimization weights. For this,
techniques from nonuniform recovery1 are particularly useful.

At this stage it is convenient to define the following. First, for a vector of weights
w and a subset S we let

jSjw D
X

i2S

w2i ; (13)

be the weighted cardinality of S. Second, for the orthonormal basis f�igi2Nd
0

we
define the intrinsic weights u D .ui/i as

ui D k�ikL1 : (14)

Note that ui D k�ikL1 
 k�ikL2�
D 1 since � is a probability measure. With this in

hand, we now have the following result (see [1, Thm. 6.1]):

Theorem 2. Let  � N
d
0 with jj D n, 0 < " < e�1, 	 
 0, w D .wi/i2 be a

set of weights, c 2 `2.Nd
0/ and S � , S ¤ ;, be any fixed set. Draw z1; : : : ; zm

independently according to the measure �, let A, y and e be as in (7) and (8),
respectively, and suppose that 	 satisfies (12). Then, with probability at least 1 � ",
any minimizer Oc of (11) satisfies

kc � Ock2 . �
p
jSjw .	C kc � ck1;u/C kc � cSk1;w; (15)

provided

m &
�
jSju C max

i2nS
fu2i =w2i gjSjw

�
L; (16)

where � D 1C
p

log."�1/

log.2n
p
jSjw/

and L D log."�1/ log
�
2n
p
jSjw

�
.

Suppose for simplicity that c were exactly sparse and let S D supp.c/ and 	 D 0.
Then this result asserts exact recovery of c, provided the measurement condition
(16) holds. Ignoring the log factor L, this condition is determined by

M .SIu;w/ D jSju C max
i2nS
fu2i =w2i gjSjw: (17)

1By nonuniform recovery, we mean results that guarantee recovery of a fixed vector c from a
single realization of the random matrix A. Conversely, uniform recovery results consider recovery
of all sparse (or structured sparse) vectors from a single realization of A. See, for example, [35] for
further discussion.
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The first term is the weighted cardinality of S with respect to the intrinsic weights
u and is independent of the choice of optimization weights w. The second term
depends on these weights, but the possibly large size of jSjw is compensated by the
factor maxi2nSfu2i =w2i g.

Seeking to minimize M .SIu;w/, it is natural to choose the weights w so that the
second term in (17) is equal to the first. This is easily achieved by the choice

wi D ui; 8i; (18)

with the resulting measurement condition being simply

m & jSju log."�1/ log.2n
p
jSju/: (19)

From now on, we primarily consider the weights (18).

Remark 2. Theorem 2 is a nonuniform recovery guarantee for weighted `1 min-
imization. Its proof uses the well-known golfing scheme [36], following similar
arguments to those given in [4, 15] for unweighted `1 minimization. Unlike the
results in [4, 15], however, it gives a measurement condition in terms of a fixed
set S, rather than the sparsity k (or weighted sparsity). In other words, no sparsity
(or structured sparsity) model is required at this stage. Such an approach was first
pursued in [8] in the context of block sampling in compressed sensing. See also
[23].

3.3 Comparison with Oracle Estimators

As noted above, the condition (19) does not require S to be a lower set. In Section 3.4
we shall use this property in order to estimate jSju in terms of the sparsity k. First,
however, it is informative to compare (19) to the measurement condition of an oracle
estimator. Suppose that the set S were known. Then a standard estimator for c is the
least-squares solution

LcS D .AS/
�y; (20)

where AS 2 C
m�jSj is the matrix formed from the columns of A with indices

belonging to S and � denotes the pseudoinverse. Stable and robust recovery via
this estimator follows if the matrix AS is well-conditioned. For this, one has the
following well-known result:

Proposition 1. Let 0 < ı; " < 1, S � N
d
0, jSj D k and suppose that m satisfies

m & ı�2jSju log.2k"�1/: (21)
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Draw z1; : : : ; zm independently according to the measure � and let A be as in (7).
Then, with probability at least 1 � ", the matrix AS satisfies

k.AS/
�AS � Ik2 � ı;

where I 2 C
k�k is the identity matrix and k�k2 is the matrix 2-norm.

See, for example, [1, Lem. 8.2]. Besides the log factor, (21) is the same sufficient
condition as (19). Thus the weighted `1 minimization estimator Oc with weights
w D u requires roughly the same measurement condition as the oracle least-squares
estimator. Of course, the former requires no a priori knowledge of S.

Remark 3. In fact, one may prove a slightly sharper estimate than (21) where jSju
is replaced by the quantity

sup
z2D

X

i2S

j�i.z/j2: (22)

See, for example, [24]. Note that
P

i2S j�i.z/j2 is the so-called Christoffel function
of the subspace spanned by the functions f�igi2S. However, (22) coincides with jSju
whenever the polynomials �i achieve their absolute maxima at the same point in
D. This is the case for any Jacobi polynomials whenever the parameters satisfy
maxf˛; ˇg 
 �1=2 [63, Thm. 7.32.1]; in particular, Legendre and Chebyshev
polynomials (see Example 1), and tensor products thereof.

3.4 Sample Complexity for Lower Sets

The measurement condition (19) determines the sample complexity in terms of the
weighted cardinality jSju of the set S. When a structured sparsity model is applied
to S – in particular, lower set sparsity – one may derive estimates for jSju in terms
of just the cardinality k D jSj and the dimension d.

Lemma 1. Let 2 � k � 2dC1. If f�igi2Nd
0

is the tensor Chebyshev basis then

klog.3/= log.2/=3 � max
˚
jSju W S � N

d
0; jSj � k; S lower

�
� klog.3/= log.2/;

where jSju and u are as in (13) and (14), respectively. If f�igi2Nd
0

is the tensor
Legendre basis then

k2=4 � max
˚
jSju W S � N

d
0; jSj � k; S lower

�
� k2:

Moreover, the upper estimates hold for all k 
 2.
See [19, Lem. 3.7]. With this in hand, we now have the following result:
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Theorem 3. Consider the setup in Theorem 2 with k 
 2, D HC
k the hyperbolic

cross (9), weights w D u, and f�igi2Nd
0

the tensor Legendre or Chebyshev basis.
Then any minimizer Oc of (11) with weights w D u satisfies

kc � Ock2 . �k�=2
	
	C kc � ck1;u



C �k;L.c/1;u;

with probability at least 1 � ", provided

m & k� log."�1/min fdC log.k/; log.2d/ log.k/g ;

where � D 1C
p

log."�1/

log.k/ and where � D log.3/= log.2/ or � D 2 in the Chebyshev
or Legendre case, respectively.

Proof. Let S � N
d
0, jSj � k be a lower set such that kc � cSk1;u D �k;L.c/1;u. By

Lemma 1 we have jSju � k� . We now apply Theorem 2 with w D u, and use this
result and the bound (10) for n D jHC

k j. ut

Remark 4. It is worth noting that the lower set assumption drastically reduces the
sample complexity. Indeed, for the case of Chebyshev polynomials one has

max
˚
jSju W S � N

d
0; jSj � k

�
D 2dk:

In other words, in the absence of the lower set condition, one can potentially suffer
exponential blow-up with dimension d. Note that this result follows straightfor-
wardly from the explicit expression for the weights u in this case: namely,

ui D 2
kik0=2; (23)

where kik0 D j
˚
j W ij ¤ 0

�
j for i D .i1; : : : ; id/ 2 N

d
0 (see, e.g., [1]). On the other

hand, for Legendre polynomials the corresponding quantity is infinite, since in this
case the weights

ui D

dY

jD1

p
2ij C 1; (24)

are unbounded. Moreover, even if S is constrained to lie in the hyperbolic cross
 D HC

k , one still has a worst-case estimate that is polynomially large in k [22].

Remark 5. We have considered only tensor Legendre and Chebyshev polynomial
bases. However, Theorem 3 readily extends to other types of orthogonal polynomi-
als. All that is required is an upper bound for

max
˚
jSju W S � N

d
0; jSj � k; S lower

�
;
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in terms of the sparsity k. For example, suppose that f�igi2Nd
0

is the tensor
ultraspherical polynomial basis, corresponding to the measure

d� D .c˛/
d

dY

jD1

.1 � z2j /
˛ dz; c˛ D

�Z 1

�1

.1 � z2/˛ dz

��1
:

If the parameter ˛ satisfies 2˛ C 1 2 N then [49, Thm. 8] gives that

max
˚
jSju W S � N

d
0; jSj � k; S lower

�
� k2˛C2:

This result includes the Legendre case (˛ D 0) given in Lemma 1, as well as the
case of Chebyshev polynomials of the second kind (˛ D 1=2). A similar result also
holds for tensor Jacobi polynomials for parameters ˛; ˇ 2 N0 (see [49, Thm. 9]).

3.5 Quasi-Optimal Approximation: Uniform Recovery

As is typical of a nonuniform recovery guarantee, the error bound in Theorem 3
has the limitation that it relates the `2-norm of the error with the best k-term, lower
approximation error in the `1u-norm. To obtain stronger estimates we now consider
uniform recovery techniques.

We first require an extension of the standard restricted isometry property (RIP) to
the case of sparsity in lower sets. To this end, for k 2 N we now define the quantity

s.k/ D max
˚
jSju W S � N

d
0; jSj � k; S lower

�
: (25)

The following extension of the RIP was introduced in [22]:

Definition 2. A matrix A 2 C
m�n has the lower restricted isometry property (lower

RIP) of order k if there exists as 0 < ı < 1 such that

.1 � ı/ kck22 � kAck22 � .1C ı/ kck
2
2; 8c 2 C

n; jsupp.c/ju � s.k/:

If ı D ık;L is the smallest constant such that this holds, then ık;L is the kth lower
restricted isometry constant (lower RIC) of A.

We shall use the lower RIP to establish stable and robust recovery. For this,
we first note that the lower RIP implies a suitable version of the robust null space
property (see [22, Prop. 4.4]):

Lemma 2. Let k 
 2 and A 2 C
m�n satisfy the lower RIP of order ˛k with constant

ı D ı˛k;L < 1=5;
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where ˛ D 2 if the weights u arise from the tensor Legendre basis and ˛ D 3 if
the weights arise from the tensor Chebyshev basis. Then for any S � HC

s with
jSju � s.k/ and any d 2 C

n,

kdSk2 �
�

p
s.k/
kdSck1;u C �kAdk2;

where � D 4ı
1�ı

< 1 and � D
p
1Cı
1�ı

.
With this in hand, we now establish conditions under which the lower RIP holds

for matrices A defined in (7). The following result was shown in [22]:

Theorem 4. Fix 0 < " < 1, 0 < ı < 1=13, let f�igi2Nd
0

be as in Section 2.1 and u
be as in (14) and suppose that

m & s.k/

ı2
L;

where s.k/ is as in (25) and

L D log

�
s.k/

ı2

��
1

ı4
log

�
2

s.k/

ı2
log

�
s.k/

ı2

��
log.2n/C

1

ı
log

�
1

�ı
log

�
k.s/

ı2

���
:

Draw z1; : : : ; zm independently according to � and let A 2 C
m�n be as in (7). Then

with probability at least 1 � ", the matrix A satisfies the lower RIP of order k with
constant ık;L � 13ı.

Combining this with the previous lemma now gives the following uniform
recovery guarantee:

Theorem 5. Let 0 < " < 1, k 
 2 and

m � k�L; (26)

where � D log.3/= log.2/ or � D 2 in the tensor Chebyshev or tensor Legendre
cases, respectively, and

L D
	
log2.k/min fdC log.k/; log.2d/ log.k/g C log.k/ log.log.k/="/



: (27)

Let  D HC
k be the hyperbolic cross index set, f�igi2Nd

0
be the tensor Legendre

or Chebyshev polynomial basis and draw z1; : : : ; zm independently according to the
corresponding measure �. Then with probability at least 1 � " the following holds.
For any f 2 L2.D/ \ L1.D/ the approximation

Qf D
X

i2

Oci�i;
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where Oc D .Oci/i2 is a solution of (11) with A, y and 	 given by (7) and (12),
respectively, and weights w D u, satisfies

��f � Qf
��

L1
� kc � Ock1;u . �k;L.c/1;u C k�=2	; (28)

and

��f � Qf
��

L2�
D kc � Ock2 . �k;L.c/1;u

k�=2
C 	; (29)

where c 2 `2.Nd
0/ are the coefficients of f in the basis f�igi2Nd

0
.

Proof. Let ˛ D 2 or ˛ D 3 in the Legendre or Chebyshev case, respectively.
Condition (26), Lemma 1 and Theorem 4 imply that the matrix A satisfies the lower
RIP of order ˛k with constant ı˛k;L � 1=6 < 1=5. Now let S be a lower set of
cardinality jSj D k such that

kc � cSk1;u D �k;L.c/1;u; (30)

set d D c � Oc and T D nS. Note that

kdTk1;u � kcTk1;u C kOcTk1;u

D 2kcTk1;u C kcSk1;u C kOcTk1;u � kck1;u

� 2kcTk1;u C kdSk1;u C kOck1;u � kck1;u � 2�k;L.c/1;u C kdSk1;u;

since Oc is a solution of (11) and c is feasible for (11) due to the choice of 	. By
Lemma 2 we have

kdTk1;u � 2�k;L.c/1;u C
p

s.k/kdSk2 � 2�k;L.c/1;u C �kdTk1;u C �
p

s.k/kAdk2;

where � � 4=5 and � �
p
42=5. Therefore

kdTk1;u . �k;L.c/1;u C
p

s.k/kAdk2 . �k;L.c/1;u C
p

s.k/	;

where in the second step we use the fact that d D c � Oc is the difference of two
vectors that are both feasible for (11). Using this bound and Lemma 2 again gives

kdk1;u . �k;L.c/1;u C
p

s.k/	; (31)

and since c � Oc D dC c � c, we deduce that

kc � Ock1;u � kdk1;u C kc � ck1;u . �k;L.c/1;u C
p

s.k/	: (32)
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Due to the definition of the weights u, we have
�
�f � Qf

�
�

L1
� kc � Ock1;u; and

therefore, after noting that s.k/ . k� (see Lemma 1) we obtain the first estimate
(28). For the second estimate let S be such that

kc � cSk2 D min fkc � dk2 W jsupp.d/ju � s.k/g ;

and set T D Sc. Let d D c � Oc and write kdk2 � kdSk2 C kdTk2: Via a weighted
Stechkin estimate [61, Thm. 3.2] we have kdTk2 �

1p
s.k/�kuk

1

kdk1;u: For tensor

Chebyshev and Legendre polynomials, one has kuk1 �
3
4
s.k/ (see [22, Lem. 4.1]),

and therefore kdTk2 . 1p
s.k/
kdk1;u: We now apply Lemma 2 to deduce that kdk2 .

1p
s.k/
kdk1;u C 	: Recall that s.k/ & k� due to Lemma 1. Hence (32) now gives

kdk2 . �k;L.c/1;u
k�=2

C 	; as required. ut

For the Legendre and Chebyshev cases, Theorem 5 proves recovery with quasi-
optimal k-term rates of approximation subject to the same measurement condition
(up to log factors) as the oracle least-squares estimator. In particular, the sample
complexity is polynomial in k and at most logarithmic in the dimension d, thus
mitigating the curse of dimensionality to a substantial extent. We remark in passing
that this result can be extended to general Jacobi polynomials (recall Remark 5).
Furthermore, the dependence on d can be removed altogether by considering special
classes of lower sets, known as anchored sets [29].

3.6 Unknown Errors, Robustness, and Interpolation

A drawback of the main results so far (Theorems 3 and 5) is that they assume the a
priori bound (12), i.e.

1

m

mX

jD1

ˇ̌
f .zj/ � f.zj/

ˇ̌2
� 	2; (33)

for some known 	. Note that this is implied by the slightly stronger condition

kf � fkL1 � 	:

Such an 	 is required in order to formulate the optimization problem (11) to recover
f . Moreover, in view of the error bounds in Theorems 3 and 5, one expects a poor
estimation of 	 to yield a larger recovery error. Another drawback of the current
approach is that the approximation Qf does not interpolate f , a property which is
sometimes desirable in applications.

We now consider the removal of the condition (12). This follows the work of
[3, 12]. To this end, let 	 
 0 be arbitrary, i.e., (33) need not hold, and consider the
minimization problem
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min
d2Cn
kdk1;u s.t. ky � Adk2 � 	: (34)

If Oc D .Oci/i2 is a minimizer of this problem, we define, as before, the
corresponding approximation

Qf D
X

i2

Oci�i:

Note that if 	 D 0 then Qf exactly interpolates f at the sample points fzjg
m
jD1.

An immediate issue with the minimization problem (34) is that the truncated
vector of coefficients c is not generally feasible. Indeed, y � Ac D e, where e
is as in (8) and is generally nonzero. In fact, is not even guaranteed that the feasibility
set of (34) is nonempty. However, this will of course be the case whenever A has full
rank m. Under this assumption, one then has the following (see [3]):

Theorem 6. Let ", k, m, � ,, f�igi2Nd
0

and z1; : : : ; zm be as in Theorem 5. Then with

probability at least 1�" the following holds. For any 	 
 0 and f 2 L2.D/\L1.D/
the approximation

Qf D
X

i2

Oci�i;

where Oc D .Oci/i2 is a solution of (34) with A and y given by (7) satisfies

�
�f � Qf

�
�

L1
� kc � Ock1;u . �k;L.c/1;u C k�=2 .	C kek2 C Tu.A; ; e; 	//

(35)
and

��f � Qf
��

L2�
D kc � Ock2 . �k;L.c/1;u

k�=2
C 	C kek2 C Tu.A; ; e; 	/; (36)

where c 2 `2.Nd
0/ are the coefficients of f in the basis f�igi2Nd

0
, e is as in (8) and

Tu.A; ; e; 	/ D min


kdk1;u
k�=2

W d 2 C
n; kAd � ek2 � 	

�
: (37)

Proof. We follow the steps of the proof of Theorem 5 with some adjustments to take
into account the fact that c may not be feasible. First, let S be such that (30) holds
and set d D c � Oc and T D nS. Then, arguing in a similar way we see that

kdTk1;u � 2�k;L.c/1;u C kdSk1;u C kOck1;u � kck1;u

� 2�k;L.c/1;u C kdSk1;u C kg � ck1;u;

where g 2 C
n is any point in the feasible set of (34). By Lemma 2 we have
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kdTk1;u � 2�k;L.c/1;u C �kdTk1;u C �
p

s.k/kAdk2 C kg � ck1;u:

Notice that kAdk2 D ky � e � AOck2 � kek2 C 	, and therefore

kdTk1;u . �k;L.c/1;u C
p

s.k/ .kek2 C 	/C kg � ck1;u:

Hence, by similar arguments, it follows that

kc � ck1;u . �k;L.c/1;u C k�=2 .kek2 C 	/C kg � ck1;u; (38)

for any feasible point g. After analogous arguments, we also deduce the following
bound in the `2-norm:

kc � ck2 . �k;L.c/1;u
k�=2

C .kek2 C 	/C k��=2kg � ck1;u: (39)

To complete the proof, we consider the term kg � ck1;u. Write g D c C g0 and
notice that g is feasible if and only if g0 satisfies kAg0 � ek � 	. Since g0 is arbitrary
we get the result. ut

The two error bounds (35) and (36) in this theorem are analogous to (28) and (29)
in Theorem 5. They remove the condition 	 
 kek2 at the expense of an additional
term Tu.A; ; e; 	/. We now provide a bound for this term (see [3]):

Theorem 7. Consider the setup of Theorem 6, and let Tu.A; ; e; 	/ be as in (37).
If A has full rank, then

Tu.A; ; e; 	/ �
k˛=2
p

L

�min
	pm

n A�

 max fkek2 � 	; 0g ; (40)

where L is as in (27) and ˛ D 1; 2 in the Chebyshev or Legendre cases, respectively.

Proof. If 	 
 kek2 then the result holds trivially. Suppose now that 	 < kek2.
Since kek2 ¤ 0 in this case, we can define d D .1 � 	=kek2/A

�e, where A�

denotes the pseudoinverse. Then d satisfies kAd � ek2 D 	, and therefore

k�=2Tu.A; ; e; 	/ � kdk1;u �
p
jjukdk2 �

p
jju

�min.A�/
.kek2 � 	/ :

Equation (26) implies that
p m

k� .
p

L, and hence

Tu.A; ; e; 	/ .
r
jj1;u

n

p
L

�min
	pm

n A�

 .kek2 � 	/ : (41)

It remains to estimate jj1;u. For the Chebyshev case, we apply (23) to give
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jj1;u D
X

i2

2kik0 �
X

i2

dY

jD1

	
ij C 1



� k

X

i2

1 D kn

where in the penultimate step we used the definition of the hyperbolic cross (9). For
the Legendre case, we use (24) to get

jj1;u D
X

i2

dY

jD1

	
2ij C 1



�
X

i2

2kik0
dY

jD1

	
ij C 1



� k2n:

This completes the proof. ut

The error bound (40) suggests that the effect of removing the condition 	 

kek2 is at most a small algebraic factor in k, a log factor and term depending on
the minimal singular value of the scaled matrix

pm
n A�. We discuss this latter term

further in below. Interestingly, this bound suggests that a good estimate of kek2
(when available) can reduce this error term. Indeed, one has Tu.A; ; e; 	/ ! 0

linearly in kek2 � 	 ! 0C. Hence estimation procedures aiming to tune 	 – for
example, cross validation (see Section 3.7) – are expected to yield reduced error
over the case 	 D 0, for example.

It is beyond the scope of this chapter to provide theoretical bounds on the
minimal singular value of the scaled matrix

pm
n A�. We refer to [12] for a more

comprehensive treatment of such bounds. However, we note that it is reasonable to
expect that �min.

pm
n A�/ � 1 under appropriate conditions on m and n. Indeed:

Lemma 3. Let B D E
	

m
n AA�



, where A is the matrix of Theorem 6. Then the

minimal eigenvalue of B is precisely 1 � 1=n.

Proof. We have E
	

m
n AA�



j;l
D E

	
1
n

P
i2 �i.zj/�i.zl/



: When l D j this gives

E
	

m
n AA�



j;j
D 1. Conversely, since f�igi2Nd

0
are orthogonal polynomials one has

R
D �i.z/ d� D h�i; �0iL2� D ıi;0, and therefore for l ¤ j one has E

	
m
n AA�



j;l
D

1
n

P
i2

	R
D �i.z/ d�


2
D 1

n : It is now a straightforward calculation to show that
�min.B/ D 1 � 1=n. ut

Remark 6. Although complete theoretical estimates Tu.A; ; e; 	/ are outside the
scope of this work, it is straightforward to derive a bound that can be computed.
Indeed, it follows immediately from (41) that

Tu.A; ; e; 	/ . Qu.A/
p

L max fkek2 � 	; 0g ;

where

Qu.A/ D

r
jj1;u

n

1

�min
	pm

n A�

 : (42)
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Hence, up to the log factor, the expected robustness of (34) can be easily checked
numerically. See Section 3.7 for some examples of this approach.

Remark 7. For pedagogical reasons, we have assumed the truncation of f to f is
the only source of error e affecting the measurements y (recall (8)). There is no
reason for this to be the case, and e may incorporate other errors without changing
any of the above results. We note that concrete applications often give rise to other
sources of unknown error. For example, in UQ, we usually aim at approximating a
function of the form f .z/ D q.u.z//, where u.z/ is the solution to a PDE depending
on some random coefficients z and q is a quantity of interest (see, e.g., [32, 73]).
In this case, each sample f .zj/ is typically subject to further sources of inaccuracy,
such as the numerical error associated with the PDE solver employed to compute
u.zj/ (e.g., a finite element method) and, possibly, the error committed evaluating q
on u.zj/ (e.g., numerical integration).

Remark 8. Our analysis based on the estimation of the tail error (37) can be
compared with the robustness analysis of basis pursuit based on the so-called
quotient property [35]. However, this analysis is limited to the case of basis pursuit,
corresponding to the optimization program (34) with u D 1 (i.e., unweighted
`1 norm) and 	 D 0. In the context of compressed sensing, random matrices
that are known to fulfill the quotient property with high probability are gaussian,
subgaussian, and Weibull matrices [34, 70]. For further details we refer to [12].

3.7 Numerical Results

We conclude this chapter with a series of numerical results. First, in Figures 1 and 2
we show the approximation of several functions via weighted `1 minimization.
Weights of the form wi D .ui/

˛ are used for several different choices of ˛. In
agreement with the discussion in Section 3.2, the choice ˛ D 1, i.e., wi D ui

generally gives among the smallest error. Moreover, while larger values of ˛
sometime give a smaller error, this is not the case for all functions. Notice that
in all cases unweighted `1 minimization gives a worse error than weighted `1

minimization. As is to be expected, the improvement offered by weighted `1

minimization in the Chebyshev case is less significant in moderate dimensions than
for Legendre polynomials.

The results in Figures 1 and 2 were computed by solving weighted `1 minimiza-
tion problems with 	 set arbitrarily to 	 D 10�12 (we make this choice rather than
	 D 0 to avoid potential infeasibility issues in the solver). In particular, the condition
(33) is not generally satisfied. Following Remark 6, we next assess the size of the
constant Qu.A/ defined in (42). Table 1 shows the magnitude of this constant for the
setups considered in Figures 1 and 2. Over all ranges of m considered, this constant
is never more than 20 in magnitude. That is to say, the additional effect due to the
unknown truncation error kek2 is relatively small.
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Fig. 1 The error kf � QfkL1 (averaged over 50 trials) against m for Legendre polynomials. Here
Qf D

P
i2 Oci�i, where Oc is a solution of (11) with weights wi D .ui/

˛ and D HC
k a hyperbolic

cross index set. The functions used were f .y/ D
Qd

kDd=2C1 cos.16yk=2
k/=

Qd=2
kD1.1 � yk=4

k/ and

f .y/ D exp
�
�
Pd

kD1 yk=.2d/
�

(top and bottom, respectively). The weighted `1 minimization

problem was solved using the SPGL1 package [67, 68] with a maximum of 100,000 iterations and
	 D 10�12.

In view of Remark 7, in Figure 3 we assess the performance of weighted `1 min-
imization in the presence of external sources of error corrupting the measurements.
In order to model this scenario, we consider the problem (11) where the vector of
measurements is corrupted by additive noise

y D
1
p

m
.f .zj//

m
jD1 C n; (43)

or, equivalently, by recalling (6),

y D Ac C e C n: (44)
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Fig. 2 The same as Figure 1 but with Chebyshev polynomials.

Table 1 The constant Qu.A/ (averaged over 50 trials) for the setup considered in Figures 1 and 2.

m 125 250 375 500 625 750 875 1000

.d; k; n/ D .8; 22; 1843/ Chebyshev 2.65 3.07 3.53 3.95 4.46 5.03 5.78 6.82

Legendre 6.45 7.97 8.99 10.5 12.1 13.7 15.8 18.6

m 250 500 750 1000 1250 1500 1750 2000

.d; k; n/ D .16; 13; 4129/ Chebyshev 2.64 2.93 3.30 3.63 3.99 4.41 4.95 5.62

Legendre 5.64 6.20 6.85 7.60 8.32 8.99 10.1 11.1

We randomly generate the noise as n D 10�3g=kgk2, where g 2 R
m is a standard

random gaussian vector, so that knk2 D 10�3. Considering weights w D .u˛i /i2,
with ˛ D 0; 1, we compare the error obtained when the parameter 	 in (11) is chosen
according to each of the following three strategies:
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Fig. 3 The error kf � QfkL2� against m. Here Qf D
P

i2 Oci�i, where Oc is a solution of (11)
with weights w D .u˛i /i2, with ˛ D 0 (left) and ˛ D 1 (right), and y defined as in (43).
Regarding f�igi2 and �, the Chebyshev polynomials with the Chebyshev measure are employed
in the top line and the Legendre polynomials with the uniform measure in the bottom line. We
choose d D 8 and  D HC

19 with n D jj D 1771. For each value of m, we average the
error over 50 trials considering three different strategies for the choice of 	: namely, 	 D 0,
estimation via oracle least squares, and cross validation (CV). The function approximated is

f .y/ D exp
�
�
Pd

kD1 cos.yk/=.8d/
�

.

1. 	 D 0, corresponding to enforcing the exact constraint Ad D y in (11);
2. 	 D 	oracle D kAOcoracle � yk2, where foracle D

P
i2.Ocoracle/i�i is the oracle

least-squares solution based on 10n random samples of f distributed according
to �;

3. 	 is estimate using a cross validation approach, as described in [32, Section 3.5],
where the search of 	 is restricted to the values of the form 10k � 	oracle, where
k belongs to a uniform grid of 11 equispaced points on the interval Œ�3; 3�,
3=4 of the samples are used as reconstruction samples and 1=4 as validation
samples.

The results are in accordance with the estimate (36). Indeed, as expected, for any
value of ˛, the recovery error associated with n D 0 and 	 D 0 is always lower
than the recovery error associated with n ¤ 0 and any choice of 	. This can be



Compressed Sensing Approaches for Polynomial Approximation of High. . . 119

10-5 10-4 10-3 10-2 10-1 100 101

10-3

10-2

10-1

100
 = 0

10-5 10-4 10-3 10-2 10-1 100 101

10-3

10-2

10-1

100
 = 1

10-5 10-4 10-3 10-2 10-1 100 101

10-3

10-2

10-1

100
 = 0

10-5 10-4 10-3 10-2 10-1 100 101

10-3

10-2

10-1

100
 = 1

Fig. 4 Recovery error kf � QfkL2� (averaged over 50 trials) against 	, in the same setting as in
Figure 3. We use Chebyshev and Legendre polynomials in the top and bottom rows, respectively.
We consider 	 D 10k, with k belonging to a uniform grid of 31 points on the interval Œ�5; 1�. The
vertical lines represent the estimated values of 	 (averaged over 50 trials) based on oracle least
squares (red-dashed line) and cross validation (yellow dashed-dotted line). The weights are chosen
as w D .u˛i /i2, with ˛ D 0 (left) and ˛ D 1 (right).

explained by the fact that, in the right-hand side of (36), the terms �k;L.c/=k�=2 and
kek2 are dominated by 	 C Tu.A; ; e; 	/ when n ¤ 0. Moreover, estimating
	 via oracle least squares (strategy 2) gives better results than cross validation
(strategy 3), which in turn is better than the neutral choice 	 D 0 (strategy 1).
Finally, we note that the discrepancy among the three strategies is accentuated as ˛
gets larger.

In the next experiment we highlight the importance of the parameter 	when solv-
ing (11) with measurements subject to external sources of error (recall Remark 7).
We corrupt the measurements by adding random noise n with norm knk2 D 10�3,
analogously to (43). Then, for different values of 	 from 10�5 to 10, we solve (11)
with weights w D .u˛i /i2 and ˛ D 0; 1. The resulting recovery errors with respect
to the L2� norm (averaged over 50 trials) are plotted as a function of 	 in Figure 4.
For every value of ˛, the resulting curve is constant for the smallest and largest
values of 	. In between, the curve exhibits a global minimum, which corresponds
to an optimal calibration of 	. The values of 	 estimated via oracle least squares
and cross validation are both able to approximate the global minimum on average.
However, cross validation has a larger standard deviation compared to the former
(see Table 2). This explains why the performance of cross validation is suboptimal
in Figure 3. We also notice that the global minimum is more pronounced as ˛ gets
larger, in accordance to the observations in Figure 3.
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Table 2 Mean ˙ standard deviation for the values of 	 estimated via oracle least squares and
cross validation over 50 trials in Figure 4.

˛
Chebyshev Legendre

Oracle Cross validation Oracle Cross validation

0 1.0e�03˙ 7.2e�09 9.3e�04˙ 3.8e�04 1.0e�03˙ 3.7e�09 9.0e�04˙ 4.0e�04

1 1.0e�03˙ 4.9e�09 9.1e�04˙ 4.0e�04 1.0e�03˙ 3.6e�09 9.7e�04˙ 3.6e�04

4 Conclusions and Challenges

The concern of this chapter has been the emerging topic of compressed sensing
for high-dimensional approximation. As shown, smooth, multivariate functions are
compressible in orthogonal polynomial bases. Moreover, their coefficients have
a certain form of structured sparsity corresponding to so-called lower sets. The
main result of this work is that such structure can be exploited via weighted
`1-norm regularizers. Doing so leads to sample complexity estimates that are at
most logarithmically dependent on the dimension d, thus mitigating the curse of
dimensionality to a substantial extent.

As discussed in Section 1.5, this topic has garnered much interest over the last
half a dozen years. Yet challenges remain. We conclude by highlighting a number
of open problems in this area:

Unbounded domains We have considered only bounded hypercubes in this
chapter. The case of unbounded domains presents additional issues. While Hermite
polynomials (orthogonal on R) have been considered in the case of unweighted
`1 minimization in [39, 41, 53], the corresponding measurement conditions exhibit
exponentially large factors in either the dimension d or degree k of the (total degree)
index space used. It is unclear how to obtain dimension-independent measurement
conditions in this setting, even for structured sparsity in lower sets.

Sampling strategies Throughout we have considered sampling i.i.d. according to
the orthogonality measure of the basis functions. This is by no means the only
choice, and various other sampling strategies have been considered in other works
[39, 41, 44, 52, 53, 64, 71]. Empirically, several of these approaches are known to
give some benefits. However, it is not known how to design sampling strategies
which lead to better measurement conditions than those given in Theorem 5. A
singular challenge is to design a sampling strategy for which m need only scale
linearly with k. We note in passing that this has been achieved for the oracle least-
squares estimator (recall Section 3.3) [28]. However, it is not clear how to extend
this approach to a compressed sensing framework.

Alternatives to weighted `1 minimization. As discussed in Remark 1, lower
set structure is a type of structured sparsity model. We have used weighted `1

minimization to promote such structure. Yet other approaches may convey benefits.
Different, but related, types of structured sparsity have been exploited in the past
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using greedy or iterative algorithms [5, 9, 30, 33], or by designing appropriate
convex regularizers [66]. This remains an interesting problem for future work.

Recovering Hilbert-valued functions. We have focused on compressed
sensing-based polynomial approximation of high-dimensional functions whose
coefficients belong to the complex domain C. However, an important problem in
computational science, especially in the context of UQ and optimal control, involves
the approximation of parametric PDEs. Current compressed sensing techniques
proposed in literature [10, 22, 32, 47, 56, 59, 73] only approximate functionals of
parameterized solutions, e.g., evaluation at a single spatial location, whereas a more
robust approach should consider an `1-regularized problem involving Hilbert-valued
signals, i.e., signals where each coordinate is a function in a Hilbert space, which
can provide a direct, global reconstruction of the solutions in the entire physical
domain. However, to achieve this goal new iterative minimization procedures as
well as several theoretical concepts will need to be extended to the Hilbert space
setting. The advantages of this approach over pointwise recovery with standard
techniques will include: (i) for many parametric and stochastic model problems,
global estimate of solutions in the physical domain is a quantity of interest; (ii)
the recovery guarantees of this strategy can be derived from the decay of the
polynomial coefficients in the relevant function space, which is well-known in the
existing theory; and (iii) the global reconstruction only assumes a priori bounds of
the tail expansion in energy norms, which are much more realistic than pointwise
bounds.
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Abstract We consider the problem of identifying underlying community-like
structures in graphs. Toward this end, we study the stochastic block model (SBM)
on k-clusters: a random model on n D km vertices, partitioned in k equal sized
clusters, with edges sampled independently across clusters with probability q and
within clusters with probability p, p > q. The goal is to recover the initial “hidden”
partition of Œn�. We study semidefinite programming (SDP)-based algorithms in this
context. In the regime p D ˛ log.m/

m and q D ˇ log.m/
m , we show that a certain natural

SDP-based algorithm solves the problem of exact recovery in the k-community
SBM, with high probability, whenever

p
˛ �

p
ˇ >

p
1, as long as k D o.log n/.
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p
ˇ >
p
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1 Introduction

Identifying underlying structure in graphs is a primitive question for scientists:
can existing communities be located in a large graph? Is it possible to partition
the vertices of a graph into strongly connected clusters? Several of these questions
have been shown to be hard to answer, even approximately, so instead of looking
for worst-case guarantees, attention has shifted toward average-case analyses. In
order to study such questions, the usual approach is to consider a random [26] or a
semi-random [19, 24] generative model of graphs and use it as a benchmark to test
existing algorithms or to develop new ones. With respect to identifying underlying
community structure, the stochastic block model (SBM) (or planted partition model)
has, in recent times, been one of the most popular choices. Its growing popularity
is largely due to the fact that its structure is simple to describe, but at the same time
it has interesting and involved phase transition properties which have only recently
been discovered [1, 2, 7, 14, 17, 21, 22, 27, 28, 30].

In this paper we consider the SBM on k-communities defined as follows. Let n
be a multiple of m, V D Œn� be the set of vertices, and P D fPig be a partition
of them into k equal sized clusters each of size m D n

k . Construct a random graph
G on V by adding an edge for any two vertices in the same cluster independently
with probability p and any two vertices across distinct clusters independently with
probability q where p > q. We will write G � Gp;q;k to denote that a graph G is
generated from the above model. Given such a G, the goal is to recover (with high
probability) the initial hidden partition P.

The SBM can be seen as an extension of the Erdős-Rényi random graph model
[18] with the additional property of possessing a nontrivial underlying community
structure (something which the Erdős-Rényi model lacks). This richer structure not
only makes this model interesting to study theoretically but also renders it closer to
real-world inputs, which tend to have a community structure. It is also worth noting
that, as pointed out in [14], a slight generalization of the SBM encompasses several
classical planted random graph problems including planted clique [4, 26], planted
coloring [3], planted dense subgraph [5], and planted partition [11, 16, 19].

There are two natural problems that arise in the context of the SBM: exact
recovery, where the aim is to recover the hidden partition completely, and detection,
where the aim is to recover the partition better than what a random guess would
achieve. In this paper we focus on exact recovery. Note that exact recovery neces-
sarily requires the hidden clusters to be connected (since otherwise there would be
no way to match the partitions in one component to another component), and it is
easy to see that the threshold for connectivity occurs when p D ˝ .log.m/=m/.
Therefore, the right scale for the threshold behavior of the parameters p; q is
� .log.m/=m/, which is what we consider in this paper.

In the case of two communities (k D 2), Abbe et al. [2] recently established
a sharp phase transition phenomenon from information theoretic impossibility
to computational feasibility of exact recovery. However, the existence of such a
phenomenon in the case of k > 2 was left open until solved, for k D O.1/, in
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independent parallel research [1, 22]. In this paper we resolve the above showing
the existence of a sharp phase transition for k D o.log.n//.

More precisely, in this work, we study a semidefinite programming (SDP)-based
algorithm that, for k D o.log.n//, recovers, for an optimal range of parameters,
exactly the planted k-partition of G � Gp;q;k with high probability. The range of the
parameters p; q is optimal in the following sense: it can be shown that this parameter
range exhibits a sharp phase transition from information theoretic impossibility
to computational feasibility through the SDP algorithm studied in this paper. An
interesting aspect of our result is that, for k D o.log.n//, the threshold is the same
as for k D 2. This means that, even if an oracle reveals all of the cluster memberships
except for two, the problem has essentially the same difficulty. We also consider the
case when k D �.log.n//. Unfortunately, in this regime we can no longer guarantee
exact recovery up to the proposed information theoretic threshold. Similar behavior
was observed and reported by Chen et al. [14], and in our work we observe that the
divergence between our information theoretic lower bound and our computational
upper bound sets in at k D �.log.n//. This is formally summarized in the following
theorems.

Theorem 1. Given a graph G � Gp;q;k with k D O.log.m// hidden clusters each of
size m and p D ˛ log.m/

m and q D ˇ log.m/
m , where ˛ > ˇ > 0 are fixed constants, the

semidefinite program (4), with probability 1�n�˝.1/, recovers the clusters when:

• for k D o.log n/, as long as

p
˛ �

p
ˇ > 1I

• for k D .� C o.1// log.n/ for a fixed � , as long as

p
˛ �

p
ˇ >

s

1C c
p
ˇ�

�
1C log

�r
˛

ˇ

��
;

where c is a universal constant.

We complement the above theorem by showing the following lower bound which
is a straightforward extension of the lower bound for k D 2 from [2].

Theorem 2. Given a graph G � Gp;q;k with k hidden clusters each of size m where k
is o.m��/ for any fixed � > 0, if p D ˛ log.m/

m and q D ˇ log.m/
m , where ˛ > ˇ > 0 are

fixed constants, then it is information theoretically impossible to recover the clusters
exactly with high probability if

p
˛ �

p
ˇ < 1 :

Note that Theorem 2 establishes a sharp phase transition between computational
feasibility and information theoretic impossibility when k D o.log.n//. At k �
log.n/ we see that our lower and upper bounds diverge. We leave it as an open
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problem to determine whether such divergence is necessary or a shortcoming of the
SDP approach.

At the heart of our argument is the following theorem which establishes a
sufficient condition for exact recovery with high probability.

Theorem 3. Let G � Gp;q;k, with probability 1� n�˝.1/ over the choice of G, if the
following condition is satisfied, the semidefinite program (4) recovers the hidden
partition:

min
i
�.i/ 
 Oc

�p
pn=kC qnC q

r
n

k
log.n/C

p
log.n/C log.k/

�
; (1)

where Oc is a universal constant and �.i/ is defined as the difference between the
number of neighbors a vertex i has in its own cluster and the maximum number of
neighbors it has in any other cluster (with respect to the hidden partition). In other
words, with probability 1 � n�˝.1/, (1) implies exact recovery.

We are able to give sharp guarantees for the semidefinite programming algorithm
based essentially on the behavior of inner and outer degrees of the vertices. This
is achieved by constructing a candidate dual certificate and using bounds on the
spectral norm of random matrices to show that the constructed candidate is indeed a
valid one. The problem is then reduced to the easier task of understanding the typical
values of such degrees. Remarkably, the conditions required for these quantities are
very similar to the ones required for the problem to be information theoretically
solvable (which essentially correspond to each node having larger in-degree than
out-degree). This helps explain the optimality of our algorithm. The approach
of reducing the validity of a dual certificate to conditions on an interpretable
quantity appeared in [7] for a considerably simpler class of problems where the
dual certificate construction is straightforward (which includes the stochastic block
model for k D 2 but not k > 2). In contrast, in the current setting, the dual
certificate construction is complex, rendering a different and considerably more
involved analysis. Moreover, the estimates we need (both of spectral norms and
of inner and outer degrees) do not fall under the class of the ones studied in [7].

We also show that our algorithm recovers the planted partitions exactly also in
the presence of a monotone adversary, a semi-random model defined in [19].

1.1 Related Previous and Parallel Work

Graph partitioning problem has been studied over the years with various different
objectives and guarantees. There has been significant recent literature concentration
around the bipartition (bisection) and the general k-partition problems (multisection)
in random and semi-random models [2, 14, 15, 17, 25, 27–32].

Some of the first results on partitioning random graphs were due to Bui et al. [12]
who presented algorithms for finding bipartitions in dense graphs. Boppana [11]
showed a spectral algorithm that for a large range of parameters recovers a planted
bipartition in a graph. Feige and Kilian [19] present an SDP-based algorithm to solve
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the problem of planted bipartition (along with the problems of finding independent
sets and graph coloring). Independently, McSherry [26] gave a spectral algorithm
that solved the problems of multisection, clique, and graph coloring.

More recently, a spate of results have established very interesting phase transition
phenomena for SBMs, both for the case of detection and exact recovery. For the
case of detection, where the aim is to recover partitions better than a random
guess asymptotically, recent works of [25, 27, 28] established a striking sharp phase
transition from information theoretic impossibility to computational feasibility for
the case of k D 2. For the case of exact recovery, Abbe et al. [2], and independently
[30], established the existence of a similar phase transition phenomenon albeit at a
different parameter range. More recently the same phenomenon was shown to exist
for a semidefinite programming relaxation, for k D 2 in [7, 21]. However, the works
described above established phase transition for k D 2, and the case for larger k
was left open. Our paper bridges the gap for larger k up to o.log.n// for the case of
exact recovery. To put our work into context, the corresponding case of establishing
such behavior for the problem of detection remains open. In fact, it is conjectured in
[17, 27] that, for the detection problem, there exists a gap between the thresholds for
computational feasibility and information theoretic impossibility for any k number
of communities greater than 4. In this paper, we show that this is not the case for the
exact recovery problem.

Chen et al. [14] also study the k-community SBM and provide convex
programming-based algorithms and information theoretic lower bounds for exact
recovery. Their results are similar to ours in the sense that they also conjecture a
separation between information theoretic impossibility and computation feasibility
as k grows. In comparison we focus strongly on the case of slightly superconstant
k (o.log.n//) and mildly growing k (˝.log.n//) and show exact recovery to the
optimal (even up to constants) threshold in the former case. Very recently in
independent and parallel work, Abbe and Sandon [1] studied the problem of
exact recovery for a fixed number of (k > 2) communities where the symmetry
constraint (equality of cluster sizes and the probabilities of connection are same
in different clusters) is removed. Our result, in contrast to theirs, is based on the
integrality of a semidefinite relaxation, which has the added benefit of producing
an explicit certificate for optimality (i.e., indeed when the solution is “integral,”
we know for sure that it is the optimal balanced k-partition). Abbe and Sandon [1]
comment in their paper that their results can be extended for slightly superconstant
k but leave it as future work. In another parallel and independent work, Hajek
et al. [22] study semidefinite programming relaxations for exact recovery in
SBMs and achieve similar results as ours. We remark that semidefinite program
in consideration in [22] is the same as the semidefinite program (4) considered
by us (up to an additive/multiplicative shift), and both works achieve the same
optimality guarantee for k D O.1/. They also consider the problem of SBM with
two unequal sized clusters and the binary censored block model. In contrast we
show that the guarantees extend to the case even k is superconstant o.log.n// and
provide sufficient guarantees for the case of k D �.log.n// pointing to a possible
divergence between information theoretic possibility and computational feasibility
at k D log.n/ which we leave as an open question.
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1.2 Preliminaries

In this section we describe the notation and definitions which we use through the
rest of the paper.

Notation Throughout the rest of the paper we will be reserving capital letters such
as X for matrices, and with XŒi; j� we will denote the corresponding entries. In
particular, J will be used to denote the all-ones matrix and I the identity matrix. Let
A � B be the element wise inner product of two matrices, i.e. A � B D Trace.ATB/.
We note that the all the logarithms used in this paper are natural logarithms i.e. with
the base e.

Let G D .V;E/ be a graph, n the number of vertices, and A.G/ its adjacency
matrix. With G � Gp;q;k we denote a graph drawn from the stochastic block model
distribution as described earlier with k denoting the number of hidden clusters each
of size m. We denote the underlying hidden partition with fPtg. Let P.i/ be the
function that maps vertex i to the cluster containing i. To avoid confusion in the
notation, note that with Pt we denote the tth cluster and P.i/ denotes the cluster
containing the vertex i. We now describe the definitions of a few quantities which
will be useful in further discussion of our results as well as their proofs. Define ıi!Pt

to be the “degree” of vertex i to cluster t. Formally

ıi!Pt ,
X

j2Pt

A.G/Œi; j� :

Similarly for any two clusters Pt1 ;Pt2 define ıPt1!Pt2
as

ıPt1!Pt2
,
X

i2Pt1

X

j2Pt2

A.G/Œi; j� :

Define the “in-degree” of a vertex i, denoted ıin.i/, to be the number of edges of
going from the vertex to its own cluster:

ıin.i/ , ıi!P.i/ ;

also define ıout
max.i/ to be the maximum “out-degree” of a vertex i to any other cluster:

ıout
max.i/ , max

Pt¤P.i/
ıi!Pt :

Finally, define

�.i/ , ıin.i/ � ıout
max.i/ ;
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where �.i/ will be the crucial parameter in our threshold. Remember that �.i/ for
A.G/ is a random variable and let � , EŒ�.i/� be its expectation (same for all i).

Organization The rest of this paper is structured as follows. In Section 2 we
discuss the two SDP relaxations we consider in the paper. We state sufficient
conditions for exact recovery for both of them as Theorems 4 and 3 and provide
an intuitive explanation of why the condition (1) is sufficient for recovery up to the
optimal threshold. We provide formal proofs of Theorems 1 and 2 in Sections 3.1
and 3.2, respectively. We provide the proof of Theorem 3 in Section 3.3. Further in
Section 4 we show how our result can be extended to a semi-random model with a
monotone adversary. We further provide an experimental evaluation of the SDPs in
Section 5 followed by a discussion and connections with multireference alignment
in Section 6.

2 SDP Relaxations and Main Results

In this section we present two candidate SDPs which we use to recover the hidden
partition. The first SDP is inspired from the Max-k-Cut SDP introduced by Frieze
and Jerrum [20] where we do not explicitly encode the fact that each cluster contains
an equal number of vertices. In the second SDP, we encode the fact that each
cluster has exactly m vertices explicitly. We state our main theorems which provide
sufficient conditions for exact recovery in both SDPs. Indeed the latter SDP, being
stronger, is the one we use to prove our main theorem, Theorem 1. Before describing
the SDPs, let’s first consider the maximum likelihood estimator (MLE) of the hidden
partition. It is easy to see that the MLE corresponds to the following problem which
we refer to as the multisection problem. Given a graph G D .V;E/, divide the set
of vertices into k-clusters fPtg such that for all t1; t2, jPt1 j D jPt2 j and the number
of edges .u; v/ 2 E such that u 2 Pt1 and v 2 Pt2 are minimized. (This problem
has been studied under the name of Min-Balanced-k-partition [23].) In this section
we consider two SDP relaxations for the multisection problem. Since SDPs can be
solved in polynomial time, the relaxations provide polynomial time algorithms to
recover the hidden partitions.

A natural relaxation to consider for the problem of multisection in the stochastic
block model is the Min-k-Cut SDP relaxation studied by Frieze and Jerrum [20]
(they actually study the Max-k-Cut problem, but we can analogously study the min
cut version too.) The Min-k-Cut SDP formulates the problem as an instance of Min-
k-Cut where one tries to separate the graph into k-partitions with the objective of
minimizing the number of edges cut by the partition. Note that the k-Cut version
does not have any explicit constraints for ensuring balancedness. However, studying
Min-k-Cut through SDPs has a natural difficulty; the relaxation must explicitly
contain a constraint that tells it to divide the graph into at least k-clusters. In the
case of SBMs with the parameters ˛ log.n/

n and ˇ log.n/
n , one can try and overcome the

above difficulty by making use of the fact that the generated graph is very sparse.
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Thus, instead of looking directly at the min-k-Cut objective, we can consider the
following objective: minimizing the difference between the number of edges cut
and the number of non-edges cut. Indeed for sparse graphs, the second term in the
difference is the dominant term, and hence the SDP has an incentive to produce
more clusters. Note that the above objective can also be thought of as doing Min-
k-Cut on the signed adjacency matrix 2A.G/ � J (where J is the all-ones matrix).
Following the above intuition, we consider the following SDP (2) which is inspired
from the Max-k-Cut formulation of Feige and Jerrum [20]. In Section 6 we provide
a reduction, to the k-Cut SDP we study in this paper, from a more general class
of SDPs studied by Charikar et al. [13] for unique games and more recently by
Bandeira et al. [10] in a more general setting:

max .2A.G/ � J/ � Y
s.t. Yii D 1 .8 i/

Yij 
 �
1

k � 1
.8 i; j/

Y < 0 .

(2)

To see that the above SDP is a relaxation of the multisection problem, note that
for the hidden partition fPtg, we can define a candidate solution Y� as follows.
Y�ij D 1 if i; j belong to the same cluster and � 1

k�1 if i; j belong to different clusters.
Note that although the objective does not directly minimize the number of edges
cut, it is an additive/multiplicative shift of it. Given G � Gp;q;k, define

�.i/ , ıin.i/ �max
i;j

�
ıi!P.j/ C ıj!P.i/ �

ıP.j/!P.i/

n=k

�

Theorem 4. Let G � Gp;q;k, with p D ˛
log.m/

m and q D ˇ
log.m/

m where ˛; ˇ are
constant. Consider the SDP given by (2). With probability 1 � n�˝.1/ over the
choice of G, if the following condition is satisfied, then the SDP recovers the hidden
partition:

min
i
�.i/ 
 Oc

�p
pn=kC qnC

p
log.n/

�
; (3)

where Oc is a universal constant.
In other words with probability 1 � n�˝.1/, condition (3) implies exact recovery.
We provide a proof of the above theorem in Section 3.4, but we note the above

condition is not an optimal one in terms of exact recovery, and we discuss this issue
next. It is quite possible that the above SDP recovers the planted multisection all
the way down to the threshold; however, we have not been able to establish this and
leave it as an open question. Indeed to prove our results, we consider a stronger SDP
with which we establish optimality. We have empirically tested the performance of
both the SDPs and include the results in Section 5. We now take a closer look at the
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above sufficient condition (3) and argue why the condition is not strong enough to
achieve optimal results. It is not hard to see that

EŒ�.i/� � p
n

k
� q

n

k
� O

�r
q

n

k
log.n/

�

Note that, in expectation, the maximization term in the definition of �.i/ has an extra
log.n/ term as the maximization runs through all i; j pairs. For the condition (3) to
hold with at least a constant probability, we expect that it needs to be the case that

p
n

k
� q

n

k
� O

�r
q

n

k
log.n/

�

 O

�r
p

n

k
C q

n

k
kC

p
log.n/

�

Substituting the parameter range that we are interested p D ˛ log.m/
m and q D ˇ log.m/

m ,
we require that

˛ � ˇ 
 O

 
p
ˇ C

s
ˇk

log.n/

!

Indeed from the above expression, it is clear that if k << log.n/ the first term above
dominates, and we cannot expect to get the tight results we hope for in Theorem 1. A
closer look at the above calculation reveals that the major barrier toward achieving
the optimal result is the additional log.n/ factor due to the maximization over all
i; j in the definition of �.i/. For instance, if one could replace the maximization
term above with a term that takes the maximum per vertex over all clusters, one
would pick up only a log.k/ term (as there are only k-clusters) and hopefully achieve
optimality.

In the context of the above discussion, we suggest the following SDP in which
we explicitly add a per-row constraint bounding the number of vertices belonging
to the same cluster as the vertex in contention:

max A.G/ � Y

s.t.
X

j

Yij C
X

j

Yji D 2n=k .8 i/

Yii D 1 .8 i/
Yij 
 0 .8 i; j/
Y < 0 :

(4)

To see that the above SDP is a relaxation of the MLE discussed above, note that
for any partition P D fPig, we can associate a canonical n � n matrix YP with it
defined as

YPŒi; j� D


1 vertices i and j belong to the same cluster
0 otherwise
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Note that YP satisfies the SDP constraints and the SDP maximizes the number of
edges within the cluster which is equivalent to minimizing the number of edges
across the clusters. The second constraint above, since Y is symmetric, says that the
sum of the values along the row is n=k, which represents the number of vertices in a
cluster. For the SDP above, we show the following theorem which is a restatement
of Theorem 3.

Theorem 3. Let G � Gp;q;k. With probability 1 � n�˝.1/ over the choice of G, if
the following condition is satisfied, then the SDP defined by (4) recovers the hidden
partition:

min
i
�.i/ 
 Oc

�p
pn=kC qnC q

r
n

k
log.n/C

p
log.n/C log.k/

�
; (5)

In other words with probability 1 � n�˝.1/, condition (5) implies exact recovery.
We remark that the above statement is indeed true for all values of p; q. For the

specific range that we are interested in, we show in Section 3.1 how condition (5)
leads to the optimal threshold. The following is an intuitive explanation of why this
is the case that condition in (5) for k << log.n/ in Theorem 3 is optimal. As stated
earlier the regime we consider is the case when p D ˛ log.m/

m and q D ˇ log.m/
m , where

˛ and ˇ are constants.
Note that for the MLE to succeed, the values of p and q should be such that

minifı
in.i/� ıout

max.i/g 
 0 w.h.p., since otherwise one expects there should be many
such vertices i for which ıin.i/ � ıi!Pt � 0 for some t ¤ P.i/ and in particular a
pair t1; t2 such that there exists i 2 Pt1 ; j 2 Pt2 such that ıin.i/ � ıi!Pt2

� 0 as well
as ıin.j/ � ıi!Pt1

� 0. This would imply that we can exchange the pairs i; j and get
a better partition than the planted partition and therefore that the MLE itself does
not recover the hidden partition. Recall that�.i/ D ıin� ıout

max.i/. We now show that
the deviation in�.i/ required by Theorem 3 is o .EŒ�.i/�/, and therefore informally
one can expect, intuitively, that

P.min
i
�.i/ 
 0/ � P

�
min

i
�.i/ 
 o .EŒ�.i/�/

�

which implies that the SDP in Theorem 3 recovers the partition optimally. Indeed,
the deviation required in Theorem 3 is o .EŒ�.i/�/:

�p
pn=kC qnC q

p
n=k log.n/C

p
log.n/

�

EŒ�.i/�

D
O
�p

log.m/.˛ C kˇ/
�
C O.

p
log.n//

˝ ..˛ � ˇ/ log.m//

D o.1/ :
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Above we assumed that k D o.log.n//. In the next section, following from the
intuition above, we prove Theorems 1 and 2 which imply that our SDP is optimal.

In Section 5 we present an experimental evaluation of the two SDPs considered
in this section. The experiments corroborate Theorem 1 and also show that the SDP
in (2) experimentally seems to have a similar recovery performance as the (stronger)
SDP in (4); however we could only prove a suboptimal result about it. We leave the
possible optimality of the SDP in (2) as an open question.

3 Proofs

In this section we collect all the proofs of the main theorems stated so far. We first
prove Theorem 1 assuming Theorem 3 in Section 3.1. Further in Section 3.2, we
prove Theorem 2. We then prove our main Theorem 3 in Section 3.3 regarding the
SDP defined in (4). Finally we provide the proof of Theorem 4 regarding the SDP
defined in (2) in Section 3.4.

3.1 Proof of Optimality: Theorem 1

Proof. We will use the condition of Theorem 3 and the following lemma to prove
theorem 1.

Lemma 1. Let p D ˛ log.m/
m and q D ˇ log.m/

m . Let k D � log.m/ (where � D O.1/).
Now we have that as long as

p
˛ �

p
ˇ >

s

1C c1
p
ˇ�

�
1C log

�r
˛

ˇ

��
(6)

then for sufficiently large n, we have that with probability at least 1 � n�˝.1/ 8i; t

ıin.i/ � ıi!Pt > c2
�p

ˇ� log.n/C
p
˛ log.n/

�

where c2 > 0 be any fixed number and c1 > 0 in (6) is a constant depending on c2.
To complete the proof of Theorem 1, we first observe that for the given range of

parameters p D ˛ log.m/
m and q D ˇ log.m/

m , condition (5) in Theorem 3 becomes

Oc

�p
pn=kC qnC q

r
n

k
log.n/C

p
log.n/C log.k/

�

� c2
�p

ˇk log.m/C
p
˛ log.n/

�
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However, Lemma 1 implies that with probability 1 � n�˝.1/ we have that if
condition 6 is satisfied, then 8i; t

ıin.i/ � ıi!Pt > c2
�p

ˇ� log.n/C
p
˛ log.n/

�

where c2 > 0 depends on Oc. Therefore, with probability 1 � n�˝.1/, the condition
in (5) of Theorem 3 is satisfied which in turn implies the SDP in Theorem 3 recovers
the clusters, which concludes the proof of Theorem 1. Note that setting � D o.1/we
get the case k D o.log.n// and the above condition reduces to

p
˛�
p
ˇ > 1Con.1/.

ut

In the rest of the section, we prove Lemma 1. For the remainder of this section,
we borrow the notation from Abbe et al. [2]. In [2, Definition 3, Section A.1], they
define the following quantity T.m; p; q; ı/ which we use:

Definition 1. Let m be a natural number, p; q 2 Œ0; 1�, and ı 
 0, define

T.m; p; q; ı/ D P

"
mX

iD1

.Zi �Wi/ 
 ı

#

;

where Wi are i.i.d Bernoulli.p/ and Zi are i.i.d. Bernoulli.q/, independent of the Wi.
Let Z D

Pm
iD1 Zi and W D

Pm
iD1 Wi. The proof is similar to proof of [2,

Lemma 8, Section A.1] with modifications.

Proof. (of Lemma 1) We will bound the probability of the bad event:

ıin.i/ � ıi!Pt � c2
�p

ˇ� log.n/C
p
˛ log.n/

�
:

Note that ıin.i/ is a binomial variable with parameter p and similarly ıi!Pt is a
binomial variable with parameter q, and therefore, following the notation of [2], we
have that the probability of this bad event is

T
�

m; p; q;�c2
�p

ˇ� log.n/C
p
˛ log.n/

��
:

We show the following strengthening of their lemma.

Lemma 2. Let Wi be a sequence of i.i.d Bernoulli
�
˛ log.m/

m

�
random variables and

Zi an independent sequence of i.i.d Bernoulli
�
ˇ log.m/

m

�
random variables; then the

following bound holds for m sufficiently large:
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T

�
m;
˛ log.m/

m
;
ˇ log.m/

m
;�c2

�p
ˇ� log.n/C

p
˛ log.n/

��
�

exp

�
�

�
˛ C ˇ � 2

p
˛ˇ � c1

p
ˇ�

�
1C log

�r
˛

ˇ

��
C o.1/

�
log.m/

�
(7)

where c2 > 0 is a fixed number and c1 > 0 depends only on c2.
Assuming the above lemma and taking a union bound over all clusters and

vertices, we get the following sequence of equations which proves Theorem 1:

P

�
.9 i; t/ ıin.i/ � ıi!Pt � c2

�p
ˇ� log.n/C

p
˛ log.n/

��

� mk2 exp

�
�

�
˛ C ˇ � 2

p
˛ˇ � c1

p
ˇ�

�
1C log

�r
˛

ˇ

��
C o.1/

�
log.m/

�

� exp

�
�

�
˛ C ˇ � 2

p
˛ˇ � 1 � c1

p
ˇ�

�
1C log

�r
˛

ˇ

��
C o.1/

�
log.m/

�

� m�˝.1/

� n�˝.1/

ut

3.2 Proof of Optimality: Theorem 2

Proof. The theorem follows directly from the lower bound presented in [2]. They
showed that [2, Theorem 1] when we sample G � Gp;q;2 with p D ˛0 log.n/

n and q D

ˇ0
log.n/

n , it is information theoretically impossible to correctly recover the clusters
with high probability if

p
˛0 �

p
ˇ0 <

p
2

Now consider G � Gp;q;k with p D ˛
log.m/

m and q D ˇ
log.m/

m . Suppose that the
algorithm was given the membership of vertices in all the clusters except two
of them. A direct application of the above theorem yields that it is information
theoretically impossible to correctly recover the two unrevealed clusters with high
probability if

s

2
log.m/

log.n/
.
p
˛ �

p
ˇ/ <

p
2
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which is equivalent to

p
˛ �

p
ˇ <

log.n/

log.m/
D 1C

log.k/

log.m/
D 1C on.1/

which proves the bound. ut

Proof of Lemma 2. The proof of Lemma 2 is a simple modification of the proof of
[2, Lemma 8, Section A.1]. We mention the proof here for completeness.

Define r D c2
�p

ˇ� log.n/C
p
˛ log.n/

�
� c1

p
ˇ� log.n/ (for some fixed

c1 > 0 depending only on c2), and let Z D
P

Zi and W D
P

Wi. We split T as
follows:

T.m; p; q;�r/ D P
	
�r � Z �W � log2.m/



C P

	
Z �W 
 log2.m/



:

Let’s bound the second term first. A simple application of Bernstein’s inequality
(the calculations are shown in [2, Lemma 8, Section A.1]) shows that

P
	
Z �W 
 log2.m/



� exp

 

�˝.1/
log2.m/

log.log.m//

!

:

We now bound the first term P
	
�r � Z �W � log2.m/



. Define

Or D argmaxxP.Z �W D �x/

Now it is easy to see that Or D O.log.m// (for p D ˛
log.m/

m and q D ˇ
log.m/

m ). Let
rmax D max.r; Or/ and rmin D min.r; Or/.

P
	
�r � Z �W � log2.m/



� .log2.m/C rmax/P.Z �W D �rmin/

�

.log2.m/C rmax/

0

@
log2.m/CrmaxX

k2Drmin

P.Z D k2 � r/P.W D k2/

C

mX

k2Dlog2.m/Crmin

P.Z D k2 � r/P.W D k2/

1

A

�

.log2.m/C rmax/
2 max

k2
fP.Z D k2 � rmin/P.W D k2/g

C.log2.m/C rmax/P.Z 
 log2.n//P.W 
 log2.m//

The first inequality follows easily from considering both the cases Or 
 r and Or � r.
Similar probability estimates (using Bernstein) as before give that both



Multisection in the SBM Using SDPs 139

P
	
Z 
 log2.m/



;P
	
W 
 log2.m/



� exp

�
�˝.1/

log.m/

log.log.m//

�

We now need to bound maxk2fP.Z D k2�r/P.W D k2/g for which we use Lemma 3
which is a modification of [2, Lemma 7, Section A.1]. Plugging the estimates from

above and noting that maxk2fP.Z D k2 � r/P.W D k2/g D T�
�

m; p; q; rmin
log.m/

�

(defined in Lemma 3), we get that

P
	
�r � Z �W � log2.m/



� O.log4.n//T�

�
m; p; q;

rmin

log.m/

�

C log2.n/ exp

�
�˝.1/

log.m/

log.log.m//

�

Putting everything together, we get that

T.m; p; q; 0/ � 2 log4.n/T�
�

m; p; q;
rmin

log.m/

�

C log2.n/ exp

�
�˝.1/

log.m/

log.log.m//

�
C exp

�
�˝.1/

log.m/

log.log.m//

�

Using Lemma 3 it follows from the above equation that

� log.T.m; p; q;�r// 
 �˝.log.log.m///C g

�
˛; ˇ;

rmin

log.n/

�
log.m/ � o.log.m//




�
˛ C ˇ � 2

p
˛ˇ � c1

p
ˇ�

�
1C log

�r
˛

ˇ

���
log.m/ � o.log.m//

For the first inequality, we use Lemma 3 and set � D rmin
log.n/ . For the second inequality,

we use the fact that � � c1
p
ˇ� . ut

Lemma 3. Let p D ˛ log.m/
m and q D ˇ log.m/

m and let Wi be a sequence of i.i.d
Bernoulli-p random variables and Zi an independent sequence of i.i.d Bernoulli-q
random variables. Define

V 0.m; p; q; �; �/ D P

�X
Zi D � log.m/

�
P

�X
Wi D .� C �/ log.m/

�

D

 
m

� log.m/

!

q� log.m/.1 � q/m�� log.m/

 
m

.� C �/ log.m/

!

p.�C�/ log.m/.1 � p/m�.�C�/ log.m/ ;
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where � D O.1/. We also define the function

g.˛; ˇ; �/ D .˛Cˇ/�� log.˛/�2

r� �
2

�2
C ˛ˇC

�

2
log

0

B
@˛ˇ

q
. �
2
/2 C ˛ˇ C �

2
q
. �
2
/2 C ˛ˇ � �

2

1

C
A :

Then we have the following results for T�.m; p; q; �/ D max�>0 V 0.m; p; q; �; �/.
We have that, for m 2 N and 8� > 0

� log.T�.m; p; q; �// 
 log.m/g.˛; ˇ; �/ � o .log.m// :

Proof. The proof of the above lemma is computational and follows from carefully
bounding the combinatorial coefficients. Note that

log.V.m; p; q; �; �//D log

 
m

� log.m/

!

Clog

 
m

.� C �/ log.m/

!

C � log.m/ log.pq/C

� log.m/ log

�
p

1 � p
C .m � � log.m// log..1 � p/.1 � q//

�

Substituting the values of p and q, we get

log.V.m; p; q; �; �// D log

 
m

� log.m/

!

C log

 
m

.� C �/ log.m/

!

C� log.m/ .log.˛ˇ/C 2 log log.m/ � 2 log.m//

C� log.m/

�
log.˛/C log log.m/ � log.m/C ˛

log.m/

m

�

� log.m/.˛ C ˇ/C o.log.m//

We now use the following easy inequality:

log

 
n

k

!

� k .log.ne/ � log.k//

and now replacing this in the above equation gives us

� log.V.m; p; q; �; �// 
 log.m/

�
.˛ C ˇ/C .� C �/ log

�
� C �

e

�
C � log

��
�

�

� � log.˛ˇ/ � � log.˛/

�
� o.log.m/ (8)

Now optimizing over � proves the lemma. ut
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3.3 Proof of Theorem 3

In this section we prove our main theorem, Theorem 3, about the SDP defined by (4).
We restate the SDP here:

max A.G/ � Y

s.t.
X

j

Yij C
X

j

Yji D 2n=k .8 i/

Yii D 1 .8 i/
Yij 
 0 .8 i; j/
Y < 0 :

(9)

Let Y� be the matrix corresponding to the hidden partition P� D fPtg, i.e.,
Y�Œi; j� D 1 if i; j belong to the same cluster and 0 otherwise. Let OPT.G/ be the
optimal value in the above SDP. We will show that Y� is the unique solution to
SDP (4) w.h.p as long as the conditions in Theorem 3 are satisfied. This would prove
Theorem 3. Our proof will be based on a dual certificate. In that context consider
the dual formulation of the above SDP which is the following:

min Trace.D/C .2n=k/
X

i

xi

s:t: DC
X

i

xi.Ri C Ci/ � Z � A < 0 :
(10)

where D is a diagonal matrix, xi are scalars, Z is a nonnegative symmetric matrix
(corresponding to the
 0 constraints) with 0 in the diagonal entries, Ri is the matrix
with 1 in every entry of row i and 0 otherwise, and Ci D RT

i is the matrix with 1 in
every entry of column i and 0 otherwise, and we write A instead of A.G/ when there
is no fear of confusion.

Let DUAL.G/ be the optimal value of the above dual program. We will first
exhibit a valid dual solution M� D .D�; fx�i g;Z

�/ which, with high probability, has
dual objective value ı such that A�Y� D ı. But since A�Y� � OPT.G/ � DUAL.G/
(by weak duality), we get that Y� is an optimal solution to the above SDP. We will
also show uniqueness via complementary slackness.

Before moving on further, it will be convenient to introduce the following
definition which will be used in the proof later. We also encourage the reader to
revisit the Notations section (Section 1.2) at this time as it would help with the
reading of what follows.

Definition 2. Given a partition of n vertices fPtg
k
tD1, we define the vectors fvtg to

be the indicator vectors of the clusters. We further define the following subspaces,
which are perpendicular to each other, and partition R

n.

• Rk: the subspace spanned by the vectors fvtg, i.e., the subspace of vectors with
equal values in each cluster,
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• Rnjk: the subspace perpendicular to Rk, i.e., the subspace where the sum on each
cluster is equal to 0.

At this point it is useful to look at what the complementary slackness condition
implies. Since strong duality holds in the case of our SDP (easy to check that
Slater’s conditions are satisfied), we have that complementary slackness is zero
which implies that

Trace.M�Y�/ D Trace
�

M�
X

vtv
T
t

�
D 0 :

for any optimal dual solution M�. The above condition implies that for any such M�

(since M� is PSD) it must be that the subspace Rk is an eigenspace with eigenvalue
0 which implies

.8i; t/ıi!Pt.M
�/ D 0 : (11)

Having established the conditions that must be satisfied by the optimal dual
solution M�, we describe our candidate dual solution

.D�; fx�i g;Z
�/ :

We begin by describing the choice of Z�. If vertex i and j belong to the same
cluster, then Z�Œi; j� D 0; otherwise

Z�Œi; j� D

�
ıout

max.i/

n=k
�
ıi!P.j/

n=k

�
C

�
ıout

max.j/

n=k
�
ıj!P.i/

n=k

�
C

�
ıP.j/!P.i/

.n=k/.n=k/
�min

t1;t2

ıPt1!Pt2

.n=k/.n=k/

�
:

It is easy to see that the matrix Z� is symmetric by noting that exchanging j and
i in the above expression leads to the same value. Also to see that each entry of Z�

is nonnegative, note that Z�Œi; j� is the sum of nonnegative terms. Having defined Z�

as above, we choose x�i to be such that the condition given in equation (11) holds
for the non-diagonal blocks, yielding:

x�i D
ıout

max.i/

n=k
�
1

2
min
t1;t2

ıPt1!Pt2

.n=k/.n=k/
:

And finally we define D� to balance out the sum along the diagonal blocks from
A as well as the x�i .

D�Œi; i� D ıin.i/ � ıout
max.i/ �

X

j2P.i/

ıout
max.j/

n=k
Cmin

t1;t2

ıPt1!Pt2

n=k
:
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Interestingly, this dual certificate construction seems to share some features with
the one proposed by Awasthi et al. [6] for an SDP relaxation for k-means clustering.
While we were not able to make a formal connection, it would be very interesting
if the reason for the similarities was the existence of some type of canonical way of
building certificates for clustering problems; we leave this for future investigations.

Now consider the objective for the dual program (10). It is easy to see that it is
equal to

Trace.D�/C 2n=k
X

i

x�i D
X

i

ıin.i/ D A.G/ � Y� :

The following lemma implies that the abovementioned solution is a valid dual
solution, proving that Y� is an optimal solution to the above program (by weak
duality).

Lemma 4. The matrix M� D D� C
P

i x�i .Ri C Ci/� A� Z� (as defined above) is
such that with probability 1 � n�˝.1/, if the condition (5) is satisfied, then

M� � 0 :

Proof. To prove this lemma, we first show that equation (11) is satisfied for M�.
This implies that the vectors fvtg which are indicator vectors for the clusters are an
eigenvector with eigenvalue 0. Consider the value of ıi!Pt.M

�/ when Pt D P.i/. In
this case

ıi!Pt.M
�/ D D�Œi; i�C

n

k
x�i C

X

i02P.i/

x�i0 �
X

i02P.i/

AŒi; i0�

D 0 :

where the last equality follows directly from the definitions of the dual certificate.
Now consider the value of ıi!Pt.M

�/ when Pt ¤ P.i/. In this case

ıi!Pt.M
�/ D

n

k
x�i C

X

j2Pt

x�j �
X

j2Pt

.ZŒi; j�C AŒi; j�/

D
n

k
x�i C

X

j2Pt

x�j �
X

j2Pt

�
ıout

max.i/

n=k
C
ıout

max.j/

n=k
�

�
ıi!P.j/

n=k
C AŒi; j�

�
C

�
�
ıj!P.i/

n=k
C

ıP.j/!P.i/

.n=k/.n=k/

�
�min

t1;t2

ıPt1!Pt2

.n=k/.n=k/

�

D
n

k
x�i C

X

j2Pt

x�j �
X

j2Pt

�
ıout

max.i/

n=k
C
ıout

max.j/

n=k
�min

t1;t2

ıPt1!Pt2

.n=k/.n=k/

�

D 0 :
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The third equality follows by noting that the terms in the parenthesis in the
expression in the second line go to zero in summation. The fourth equality follows
directly from the definitions.

The above implies that for all t, M�vt D 0. Therefore, we only need to show
that M� is PSD with high probability on the subspace Rnjk (which is perpendicular
to Rk D span.fvkg/). To that end, note that if a matrix W is such that for all i,
WŒi; j1� D WŒi; j2� when P.j1/ D P.j2/, then for any x 2 Rnjk;Wx D 0, and similarly
if for all j, WŒi1; j� D WŒi2; j� when P.i1/ D P.i2/, then for any x 2 Rnjk; xTW D 0.
Therefore, we have that xTZ�x D xT.RiCCi/x D 0 and so xTM�x D xTD�x�xTAx.

In order to finish the proof it is enough to show that for all x 2 Rnjk

xT.D� � A/x 
 0 :

In order to prove the above equation and conclude the proof of Theorem 3, we use
the following two lemmas.

Lemma 5. Define �max.A.G// to be the maximum over all x 2 Rnjk of xTA.G/x.
With probability 1 � n�˝.1/ over the choice of G, �max.A.G// is bounded by

�max.A.G// � 3
p

pn=kC qnC c
p

log.n/ : (12)

where c is a universal constant.

Proof. We use the following recent sharp concentration result [8, Corollary 3.12].

Theorem 5 (Bandeira et al. [8]). Let X be an n�n symmetric matrix whose entries
Xij are independent centered random variables. Then there exists for any 0 < � �

1=2 a universal constant Qc� such that for every t 
 0

P

�
jXj 
 .1C �/2

p
2 Q� C t

�
� ne�t2= Qc��2� ;

where

Q� D max
i

sX

j

EŒX2ij�; �� D max
ij
kXijk1 :

We apply the above theorem to the matrix A�EŒA�. It is easy to see that the variance
of any row Q� is upper bounded by

Q� �
p

p.1 � p/n=kC q.1 � q/n �
p

pn=kC qn ;

and �� � 1. Applying Theorem 5 with the above parameters Q� D
p

pn=kC qn and
�� D 1, we get that with probability 1 � n�˝.1/

jA � EŒA�j � 3
p

pn=kC qnC c0
p

log.n/ :



Multisection in the SBM Using SDPs 145

where c0 is a universal constant defined as c0 D 2 Qc� for � D 3

2
p
2
� 1 and Qc� defined

by the statement of Theorem 5. Also note that EŒA� C pI has the space Rnjk as an
eigenspace with eigenvalue 0. Therefore, we have that for any unit vector x 2 Rnjk

jxTAxj � jA � EŒA�j C jxT
EŒA�xj

� 3
p

pn=kC qnC c0
p

log.n/C p

� 3
p

pn=kC qnC c
p

log.n/ :

where c D c0 C 1. This proves Lemma 5. ut

Lemma 6. With probability 1 � n�˝.1/, we have that for all clusters Pt

X

j2Pt

ıout
max.j/

n=k
�

qn

k
C 30

 r
n log.k/

k
qC log.k/

C

r
n

k
log.n/ �max

(

q;

s
q log.n/

n=k
;

log.n/

n=k

)!

; (13)

and for all pairs of clusters Pt1 and Pt2

min
t1;t2

ıPt1!Pt2

n=k



qn

k
� 2

p
q log.n/ : (14)

Proof. We prove Lemma 6 using the following.

Lemma 7. For every vertex i we have that

E
�
ıout

max.i/
�
�

qn

k
C 28

 r
n log.k/

k
qC log.k/

!

:

Proof. Consider ıout
max.i/ for some i, this is defined to be the maximum of k random

variables Si with Si � Bin.n=k; q/ (the binomial distribution with parameters
n=k; q) with variance n

k�
2 where �2 D q.1 � q/. Consider QSi D Si � EŒSi�. Let

� D �

q
n log.k/

k C log.k/. From Corollary 1 we get that

P
	
QSi 
 4.tC 1/�



�

1

ktC1
I

therefore by a union bound, we get that the

P

�
max

i
QSi 
 4.tC 1/�

�
�
1

kt
:
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Hence, we can bound the expectation by

EŒmax
i
QSi� � 4� C

1X

tD1

4.tC 1/� P

�
max

i
QSi 
 4t�

�

� 4� C

1X

tD1

4.tC 1/�
1

kt�1

� 4� C 4�

 
1X

tD1

.tC 1/
1

2t�1

!

� 4� C 24�

� 28

 

�

r
n log.k/

k
C log.k/

!

:

It follows from the above that

EŒıout
max.i/� �

n

k
qC 28

 r
n log.k/

k
qC log.k/

!

:

ut

Using this, the proof of Lemma 6 is as follows. Note that by a direct application
of the Chernoff bound described in Corollary 1 and with a union bound over all
clusters and vertices, we get that with probability 1 � 1

n for all vertices i and all
clusters Pt ¤ P.i/

ıi!Pt �
qn

k
C 12

r
qn

k
log.n/C 12 log.n/ :

Lets call the event that the above holds E and consider the sum

S.i/ D

P
i02P.i/ ı

out
max.i/

n=k
:

Let

�D
qn

k
C30

 r
n log.k/

k
qC log.k/C

r
n

k
log.n/ �max

(

q;

s
q log.n/

n=k
;

log.n/

n=k

)!

:

We have that

P .9i S.i/ 
 �/ D P.E /P .9i S.i/ 
 � jE /C P.� E /P .9i S.i/ 
 � j � E /

� n�˝.1/ C P .9i S.i/ 
 � j � E / :
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Now for a fixed i we will consider P .S.i/ 
 � j � E /. Note that under the
conditioning the individual entries in the sum above are still independent, and
therefore the above is an average of independent random variables each of which

is bounded by qn
k C 12

q
qn
k log.n/C 12 log.n/ (by the conditioning). Also note that

for any positive random variable X

EŒX j � E � �
EŒX�

P.� E /
;

and since we have that P.� E / 
 1 � 1=n, we get that

EŒS.i/ j � E � � EŒS.i/�C
EŒS.i/�

n � 1
:

We now use Hoeffding’s inequality 9 in the conditioned probability space (and
remove the conditioning terms from the probability for ease of notation) to get that

P.S.i/ 
 EŒS.i/�C t/ � exp

0

B
@�

2 n2

k2
t2

n
k

�
qn
k C 12

q
qn
k log.n/C 12 log.n/

�2

1

C
A :

Now, if we choose

t D 25

r
n

k
log.n/ �max

(

q;

s
q log.n/

n=k
;

log.n/

n=k

)

;

and apply a union bound, we get that with

P .9i Si 
 EŒSi�C t j � E �/ � n�˝.1/ ;

and now substituting the value of EŒS.i/ jE � from before and being extremely liberal
with the constants for n large enough, we have that

P

�
9i S.i/ 


qn

k

C30

 r
n log.k/

k
qC log.k/C

r
n

k
log.n/ �max

(

q;

s
q log.n/

n=k
;

log.n/

n=k

)!!

� n�˝.1/ :
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To show the second equation, note that for any pair of clusters t1; t2, ıPt1!Pt2

is a sum of .n=k/2 independent random variables. Therefore, by a Chernoff bound
from the second part of Theorem 7 and a union bound, we get that with probability
1 � n�˝.1/

min
t1;t2

ıPt1!Pt2

n=k



qn

k
� 2

p
q log.n/ :

ut

Using those two lemmas, we can now conclude the proof of Theorem 3 as
follows:

We separate D� D D�1 � D�2 , where D�1 ;D
�
2 are diagonal matrices

D�1 Œi; i� D ı
in.i/ � ıout

max.i/

D�2 Œi; i� D
X

j2P.i/

ıout
max.j/

n=k
�min

t1;t2

ıPt1!Pt2

n=k
:

Now for any x 2 Rnjk let’s consider xT.D� � A/x:

xT.D� � A/x 
 min
i

D�1 Œi; i� �

�
max

i
D�2 Œi; i�C max

x2Rnjk

xTAx

�


min
i

D�1 Œi; i�

�

 

30

 r
n log.k/

k
qC log.k/C

r
n

k
log.n/ �max

(

q;

s
q log.n/

n=k
;

log.n/

n=k

)!

C3
p

pn=kC qnC c
p

log.n/
�


 min
i

D�1 Œi; i� � Oc

�p
pn=kC qnC q

r
n

k
log.n/C

p
log.n/C log.k/

�


 0 :

where Oc is a universal constant. The second inequality follows by direct substitutions
from equations (12), (13), and (14); the third inequality follows from noting that n
is large enough such that

p
qn >>

p
q log.n/ and

p
log.n/ log.n/p

n
k

<<
p

log.n/ and
q

qn log.k/
k �

p
qn. The last inequality follows from condition 5 of Theorem 3. ut

It is easy to show using complementary slackness that Y� is indeed the unique
optimal solution with high probability. For completeness we include the proof in the
next section.
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3.3.1 Proof of Uniqueness of the Solution

In this section we prove that Y� is the unique optimal solution to the SDP considered
in Section 3.3. To remind the reader, M� was the candidate dual solution. For the
rest of the section, we use the same notations we defined in Section 3.3. To show
uniqueness, we make use of complementary slackness which implies that for any
other optimal solution OY since with high probability M� D D��

P
i x�i Ri�A.G/�Z�

is an optimal solution of the dual program, we have that

OY �M� D 0 :

But it is easy to see from the proof of Lemma 4 that we can make a stronger
statement that the subspace Rk is the null space of M� and on the perpendicular
subspace Rnjk the lowest eigenvalue is strictly greater than 0. Combining this with
the complementary slackness condition in particular implies that the span of the
columns of OY is restricted to the span of Rk. Hence, the conditions of the SDP (sum
constraint, the diagonal value constraint, and the positivity constraint) force OY D Y�

if the column space of OY is the span of Rk which proves uniqueness.

3.4 Proof of Theorem 4

Proof. We extend the definitions of Section 1.2 to ease readability. We define the
notion of relative degree Nı by defining it as the number of edges present minus
the number of edges not present. In this light we define the following quantities
extending the definitions from Section 1.2.
ıi!Pt to be the “degree” of vertex i to cluster t. Formally

Nıi!Pt , 2ıi!Pt � jPtj

NıPt1!Pt2
, 2ıPt1!Pt2

� jPt1 jjPt2 j

Nıin.i/ , 2ıin.i/ � jP.i/j

We consider the following SDP in this section. Let J be the n � n matrix such
that JŒi; j� D 1 for all i; j.

max .2 	 A.G/ � J/ � Y
s.t. Yii D 1 .8 i/

Yij 
 �
1

k � 1
.8 i; j/

Y < 0 .

(15)
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The dual of the above SDP is as follows:

min Trace.D/C
1

k � 1

X

ij

ZŒi; j�

s.t. D � Z � .2A.G/ � J/ < 0 :

(16)

where Z is a symmetric entrywise nonnegative matrix with zeros in the diagonal and
D is a diagonal matrix.

The optimal solution Y� we have in mind is the matrix Y�ij D 1 if i; j belong to

the same cluster and � 1
k�1 if i; j belong to different clusters. Note that Y� is PSD

and is a valid solution of the primal. In this case it is easy to see that the value of the
SDP is equal to

.2 	 A.G/ � J/ � Y� D
X

i

 
Nıin.i/ �

P
tWP.i/¤Pt

Nıi!Pt

k � 1

!

We will exhibit a candidate dual solution D�;Z� such that

.2 	 A.G/ � J/ � Y� D Trace.D/C
1

k � 1

X

ij

ZŒi; j�

and with high probability D��Z��.2A.G/�J/ < 0 if condition (3) of the theorem is
satisfied. Note that this implies through weak duality that Y� is a solution of (2). The
uniqueness of the solution can be proven exactly in the same way as in Section 3.3.1.

Before we define our candidate dual solution, we define the following quantity
for ease of notation:

Nımin , min
i;j

 

�Nıi!P.j/ � Nıj!P.i/ C
NıP.j/!P.i/

.n=k/

!

D

�
n=k � 2max

i;j

�
ıi!P.j/ C ıj!P.i/ �

ıP.j/!P.i/

.n=k/

��
(17)

We begin by describing the choice of Z�. If vertex i and j belong to the same
clusters, then Z�Œi; j� D 0; otherwise,

Z�Œi; j� ,
 

�
Nıi!P.j/

n=k
�
Nıj!P.i/

n=k
C
NıP.j/!P.i/

.n=k/.n=k/
�
Nımin

n=k

!

D

 

1 � 2

�
ıi!P.j/

n=k
C
ıj!P.i/

n=k
�

ıP.j/!P.i/

.n=k/.n=k/

�
�
Nımin

n=k

!
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Note that by definition (17), Z� is a symmetric nonnegative matrix. We now
define the diagonal matrix D� as

D�Œi; i� , Nıin.i/C Nımin D 2

�
ıin.i/ �max

i;j

�
ıi!P.j/ C ıj!P.i/ �

ıP.j/!P.i/

.n=k/

��

A simple calculation now shows the first required property that

Trace.D/C
1

k � 1

X

ij

ZŒi; j� D
X

i

 
Nıin.i/ �

P
tWP.i/¤Pt

Nıi!Pt

k � 1

!

D .2	A.G/�J/�Y�

We now proceed to show that D�;Z� is a valid dual solution, i.e.,

M� D D� � Z� � .2A � J/ � 0

To see this consider the following extension of the decomposition of the space R
n

defined in Section 3.3.

Definition 3. Given a k-clustering of n vertices fPtg
k
tD1, we define the vectors vt to

be the indicator vectors of the clusters. We further define the following subspaces,
which are perpendicular to each other, and partition R

n.

• �: the vectors with 1 in each coordinate
• Rk�1: the k�1 dimensional subspace such that for every vector v 2 Rk�1, v.i/ D
v.j/ if P.i/ D P.j/ and < v;� >D 0

• Rnjk: the subspace perpendicular to Rk�1 [ �, i.e., the subspace where the sum
on each cluster is equal to 0.

The following are two easy observations that follow from simple calculations
similar to the calculations shown in Section 3.3.

Observation 1. .8 v 2 Rk�1/ .D� � Z� � .2A � J//v D 0

Observation 2. .8 v 2 Rnjk/ v
TZ�v D 0

We first focus on the subspace Rnjk and show that 8x 2 Rnjk

xT.D� � Z� � .2A � J/x D xT.D� � 2A/x 
 0 (18)

The proof of the above statement follows from the following set of inequalities:

xT.D� � 2A/x 
 mini D�Œi; i� � 2max
x

xTA.G/x


 2min
i
�.i/ � 2max

x
xTA.G/x


 2

�
min

i
�.i/ � Oc

�p
pn=kC qnCC

p
log.n/

��


 0
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where the second inequality above follows from substituting the values of Nıi!P.t/ in
terms of ıi!P.t/ in the expression for D�Œi; i� and using the definition of �.i/. The
second inequality follows from Lemma 5, and the third inequality follows from the
condition (3). Note that in condition (3) if we assume the constant to be OcC1 instead
of Oc, then we get a stronger property that the above quantity is in fact greater thanp

log.n/ and not just positive. We use this below.
The above analysis shows that the matrix M� D D��Z��.2A�J/ is PSD on the

subspace Rnjk. Let’s now focus on a vector y 2 Rnjk˚�. Let H� D D��Z��2A D
M� � J. By appropriate scaling we can consider any y D x C ı �p

n
(see footnote1)

where x 2 Rnjk is a unit vector and ı 
 0. In the analysis above, we explained that
xTH�x 


p
log.n/kxk2 D

p
log.n/. With these facts in place, consider yTM�y:

yTM�y D xTH�xC
ı2

n
�

TJ�C 2xTH�
ı
p

n
�



p

log.n/C ı2n � 2ıkH�k

where we use the fact that for unit vector x xT H�
�p

n
� kH�k. Therefore, as long as

we have that 4kH�k2 � 4n
p

log.n/, we have that yTM�y 
 0 (as the expression
is a quadratic in ı). Therefore, we need to control the spectral norm of H�. We can
show the above via very simple and fairly loose calculations:

kH�k � kD�k C 2kAk C kZ�k

� max D�Œi; i�C 2ımax C O.ımax/

� O.ımax/

where ımax is the degree of the vertex with maximum degree in the graph G. The
above equation follows with very loose approximations from the definitions. A
simple Chernoff bound shows that with high probability, ımax � pm C kqm Cp

pmC kqm log.n/ � O.k log.n/ C log3=2.n// where we have replaced p with
˛

log.m/
m and q with ˇ log.m/

m which implies that kH�k �
p

n which completes the
proof since we have shown that M� is PSD. ut

1Indeed by definition any vector y 2 Rnjk˚� can be written as xC ı �
p

n
for some ı and x 2 Rnjk.

For the purpose of proving positive definiteness, we can always divide by any positive number and
can therefore consider y

kxk
. Also note that we can consider y or �y equivalently and hence can

consider the case when ı > 0.
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4 Note About the Monotone Adversary

In this section, we extend our result to the following semi-random model considered
in the paper of Feige and Kilian [19]. We first define a monotone adversary (we
define it for the “homophilic” case). Given a graph G and a partition P D fPig,
a monotone adversary is allowed to take any of the following two actions on the
graph:

• Arbitrarily remove edges across clusters, i.e., .u; v/ s.t. P.u/ ¤ P.v/.
• Arbitrarily add edges within clusters, i.e., .u; v/ s.t. P.u/ D P.v/.

Given a graph G let Gadv be the resulting graph after the adversary’s actions. The
adversary is monotone in the sense that the set of the optimal multisections in Gadv

contains the set of the optimal multisections in G. Let B.G/ be the number of edges
cut in the optimal multisection. We now consider the following semi-random model,
where we first randomly pick a graph G � Gp;q;k and then the algorithm is given Gadv

where the monotone adversary has acted on G. The following theorem shows that
our algorithm is robust against such a monotone adversary.

Theorem 6. Given a graph Gadv generated by a semi-random model described
above, we have that with probability 1�o.1/ the algorithm described in Section 3.3
recovers the original (hidden) partition. The probability is over the randomness in
the production of G � Gp;q;k on which the adversary acts.

Proof. We consider the SDP relaxation (4) as in the proof of Theorem 1. Let Y�.G/
be the optimal solution of the SDP when we run it on the graph G. Now suppose
G � Gp;q;k. The proof of Theorem 1 shows that with high probability, Y�.G/ is
unique and it corresponds to the hidden partition. Suppose this event happens, we
then show that for any graph Gadv generated by the monotone adversary after acting
on G, Y�.Gadv/ is also unique and it is equal to Y�.G/. This will prove Theorem 6.

Define SDPG.Y/ to be the objective value (corresponding to the graph G) of a
feasible matrix Y , i.e., SDPG.Y/ D A.G/ � Y . Note that since Y has only positive
entries (since it is a feasible solution), we have that A.G0/ � Y � A.G/ � Y , if G0

is a subgraph of G. Also since Y � 0 and its diagonal entries Yii D 1, we have
that jYijj � 1. Therefore, A.G [ e/ � Y � A.G/ � Y C 2. Suppose the monotone
adversary adds a total of rC edges and removes r� edges. From the monotonicity
of the adversary, it is easy to see that A.Gadv/ � Y�.G/ D A.G/ � Y�.G/ C 2rC.
However, for any other solution by the argument above, we have that A.Gadv/ �Y �
A.G/ � Y C 2rC. Also by our assumption, we have that A.G/ � Y�.G/ < A.G/ � Y
for any feasible Y ¤ Y�.G/. Putting it together we have that

A.Gadv/ � Y�.G/ D A.G/ � Y�.G/C 2rC > A.G/ � Y C 2rC 
 A.Gadv/ � Y ;

for any feasible Y ¤ Y�.G/, which proves the theorem. ut
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5 Experimental Evaluation

In this section we present some experimental results on the SDPs presented above.
For both of the SDPs, we consider the case of p D ˛

log.m/
m and q D ˇ

log.m/
m with

k D 3 and m D 20. We vary ˛ and ˇ, and for each pair of values, we take 10
independent instances, and the shade of gray in the square represents the fraction of
instances for which the SDP was integral with lighter representing higher fractions
of integrality. The red lines represent the curve we prove in our main Theorem 1,
i.e.,
p
˛ �

p
ˇ > 1.

Figure 1 corroborates our Theorem 1 as for SDP in (4) we observe that
experimentally the performance almost exactly mimics what we prove. For the
other (possibly) weaker SDP in (2), we see in Figure 2 that the performance is
almost similar to the stronger SDP; however we were unable to prove it formally as
discussed in Section 2. We leave this as an open question to show that SDP in (2) is
integral all the way down to the information theoretic threshold (i.e.,

p
˛�

p
ˇ > 1).

We observe from the experiments above that this indeed seems to be the case.

Fig. 1 Performance of SDP in (4). We consider the case of p D ˛
log.m/

m and q D ˇ
log.m/

m with
k D 3 and m D 20. We vary ˛ and ˇ, and for each pair of values, we take 10 independent
instances, and the shade of gray in the square represents the fraction of instances for which the
SDP was integral with lighter representing higher fractions of integrality. The red line represents
the curve we prove in our main Theorem 1, i.e.,

p
˛ �
p
ˇ > 1
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Fig. 2 Performance of SDP in (2). We consider the case of p D ˛
log.m/

m and q D ˇ
log.m/

m with
k D 3 and m D 20. We vary ˛ and ˇ, and for each pair of values, we take 10 independent
instances, and the shade of gray in the square represents the fraction of instances for which the
SDP was integral with lighter representing higher fractions of integrality. The red line represents
the curve we prove in Theorem 1, for the SDP (4), i.e.,

p
˛ �
p
ˇ > 1

6 The Multireference Alignment SDP for Clustering

In this section we describe an interesting connection between the SDPs used for
clustering and partitioning problems and others such as the ones used for the
multireference signal alignment and the unique games problems.

For illustrative purposes we will consider a slightly different version of the
balanced k-cut (multisection) problem described earlier. Instead of imposing that
the graph is partitioned in equal sized clusters, we will consider the objective value
to be maximized to be the difference between the number of agreeing pairs and
disagreeing pairs where an agreeing pair is a pair of nodes connected by an edge
that was picked to be in the same cluster or a pair of points not connected by an edge
that is not in the same cluster, and disagreeing pairs are all the others. Note that, if
the balanced partition constraint was enforced, this objective would be equivalent to
the multisection one.

The multireference alignment problem in signal processing [9] consists of
aligning n signals y1; : : : ; yn with length k that are copies of a single signal but have
been shifted and corrupted with white Gaussian noise. For a 2 Œk�, we set Rli to be
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the k�k matrix that shifts the entries of vector by a coordinates. In this notation, the
maximum likelihood estimator for the multireference alignment problem is given
by the shifts l1; : : : ; ln 2 Œk� that maximize

nX

i;jD1

D
RT

li yi;R
T
lj yj

E
D

nX

i;jD1

Tr
h
yjy

T
i Rli R

T
lj

i
: (19)

A fruitful way of thinking about (19) is as a sum, over each pair i; j, of pairwise
costs that depends on the choices of shifts for the variable in each pair. An example
of a problem of this type is the celebrated unique games problem, and indeed
the SDP approach developed in [9] for the multireference alignment problem is
an adaptation of an SDP-based approximation algorithm for the unique games
problems by Charikar et al. [13]. The objective in the alignment problem (19) has,
however, an important property – the pairwise costs only depend on the relative
choices of shifts. More precisely, both li and lj being increased by the same amount
have no effect on the pairwise cost relative to .i; j/. In fact, there is a general
framework for solving problems with this group invariance-type property, called
nonunique games, when the group involved is compact [10]. The example above
and SDP (2) that we will derive below are particular cases of this framework, but
it is more enlightening to derive the SDP we will use for partitioning from the
multireference alignment one.

To obtain an SDP for the partitioning problem, one can think of each node i as a
signal yi in R

k and think of a shift label as a cluster membership; the cost associated
to the pair i; j should then, if the nodes are connected,C1 if the two signals are given
the same shift, and �1 otherwise; if the nodes are not connected, it should be �1 if
the two signals are given the same shift and C1 otherwise. This can be achieved by
replacing yjyT

i on the objective (19) by appropriate k�k matrices CT
ij D

1
k

	
2I � 11T




if i and j are connected and CT
ij D

1
k

	
11T � 2I



if not. Our objective would then be

kX

aD1

X

i;j2Ca

dij D �
X

i;j2Œn�

Tr
h
CT

ij Rli R
T
lj

i
;

where Rli is constrained to be a circulant permutation matrix (a shift operator).
The SDP relaxation proposed in [9] would then take the form

max Tr.CX/
s. t. Xii D Ik�k

Xij1 D 1
Xij is circulant
X 
 0
X � 0;

(20)

In this section X 
 0 for a matrix refers to entrywise 
 0.
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It is clear, however, that (20) has many optimal solutions. Given an optimal
selection of cluster labelings, any permutation of these labels will yield a solution
with the same objective. For that reason we can adapt the SDP to consider the
average of such solutions. This is achieved by restricting each block Xij to be a
linear combination of Ik�k and 11T (meaning that it is constant both on the diagonal
and on the off-diagonal). Adding that constraint yields the following SDP.

max Tr.CX/
s. t. Xii D Ik�k

Xij1 D 1
Xij is circulant	
Xij



aa D
	
Xij


11	

Xij



ab D
	
Xij


12
; 8a¤b

X 
 0
X � 0;

(21)

Since the constraints in (21) imply

	
Xij


11
C .k � 1/

	
Xij


12
D 1;

(21) can be described completely in terms of the variables
	
Xij


11

. For that reason we
consider the matrix Z 2 R

n�n with entries Zij D
	
Xij


11

. We can then rewrite (21) as

max Tr
	
QCZ



s. t. Zii D 1

Z 
 0
Z.k/ � 0;

(22)

where QCij D kCij and Z.k/ is the nk � nk matrix whose n � n diagonal blocks are

equal to Z and whose n � n non-diagonal blocks are equal to 11T�Z
k�1 . For example,

Z.2/ D

�
Z 11T � Z

11T � Z Z

�
and Z.3/ D

2

6
4

Z 11T�X
2

11T�Z
2

11T�Z
2

Z 11T�Z
2

11T�Z
2

11T�Z
2

Z

3

7
5 :

The following lemma gives a simpler characterization for the intriguing Z.k/ � 0
constraint.

Lemma 8. Let Z be a symmetric matrix and k 
 2 an integer. Z.k/ � 0 if and only
if Z � 1

k 11T .
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Before proving Lemma 8, we note that it implies that we can succinctly
rewrite (22) as

max Tr
	
QCZ



s. t. Zii D 1

Z 
 0
Z � 1

k 11T :

(23)

A simple change of variables Y D k
k�1Z � 1

k�111T allows one to rewrite (23) as (for
appropriate matrix C0 and constant c0)

max Tr .C0Y/ � c0

s. t. Yii D 1

Yij 
 �
1

k�1
Y � 0:

(24)

Remarkably,(24) coincides with the classical semidefinite relaxation for the Max-k-
Cut problem [20], which corresponds to (2) used in this paper.

Proof (of Lemma 8). Since, in this proof, we will be using 1 to refer to the all-
ones vector in two different dimensions, we will include a subscript denoting the
dimension of the all-ones vector.

The matrix Z.k/ is block circulant, and so it can be block diagonalizable by a
block DFT matrix, Fk�k ˝ In�n, where Fk�k is the k � k (normalized) DFT matrix
and˝ is the Kronecker product. In other words,

.Fk�k ˝ In�n/ Z.k/ .Fk�k ˝ In�n/
T

is block diagonal. Furthermore, note that

Z.k/ D

�
1k1T

k ˝
1n1T

n � Z

k � 1

�
�

�
Ik�k ˝

�
Z �

1n1T
n � Z

k � 1

��
:

Also, it is easy to check that

.Fk�k ˝ In�n/

�
Ik�k ˝

�
Z �

1n1T
n � Z

k � 1

��
.Fk�k ˝ In�n/

T D Ik�k˝

�
Z �

1n1T
n � Z

k � 1

�
;

and

.Fk�k ˝ In�n/

�
1k1T

k ˝
1n1T

n � Z

k � 1

�
.Fk�k ˝ In�n/

T D k

�
e1e

T
1 ˝

1n1T
n � Z

k � 1

�
;
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This means that .Fk�k ˝ In�n/ Z.k/ .Fk�k ˝ In�n/
T is a block diagonal matrix with

the first block equal to A and all other diagonal blocks equal to B where A and B
are given by

A D Z �
1n1T

n � Z

k � 1
C k

1n1T
n � Z

k � 1
D 1n1T

n and B D Z �
1n1T

n � Z

k � 1
:

Thus, the condition Z.k/ � 0 is equivalent to Z � 1n1T
n�Z

k�1 � 0 which can be
rewritten as

Z �
1

k
1n1T

n � 0:

ut
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Appendix

Forms of Chernoff Bounds and Hoeffding Bounds Used in the Arguments

Theorem 7 (Chernoff). Suppose X1 : : :Xn be independent random variables tak-
ing values in f0; 1g. Let X denote their sum and let � D EŒX� be its expectation.
Then for any ı > 0 it holds that

P .X > .1C ı/�/ <

�
eı

.1C ı/.1Cı/

��
; (25)

P .X < .1 � ı/�/ <

�
e�ı

.1 � ı/.1�ı/

��
: (26)

A simplified form of the above bound is the following formula (for ı � 1)

P .X 
 .1C ı/�/ � e�
ı2�
3 ;

P .X � .1 � ı/�/ � e�
ı2�
2 :

Theorem 8 (Bernstein). Suppose X1 : : :Xn be independent random variables tak-
ing values in Œ�M;M�. Let X denote their sum and let � D EŒX� be its expectation,
then
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P .jX � �j 
 t/ � exp

�
�
1

2

t2
P

i EŒ.Xi � EŒXi�/2�CMt=3

�
:

Corollary 1. Suppose X1 : : :Xn are i.i.d Bernoulli variables with parameter p. Let
� D �.Xi/ D p.1 � p/; then we have that for any r 
 0

P

�
X 
 �C ˛�

p
n log.r/C ˛ log.r/

�
� e�

˛ log.r/
4 :

Proof. We have that n�2 D np.1 � p/ and M D 1. We can now choose t D

˛�
p

n log.r/C˛ log.r/. This implies that n�2Ct=3
t2
� 1

log.r/

	
1=˛2 C 1=3˛



� 2

˛ log.r/

which implies from Theorem 8 that P

�
X > �C ˛�

p
n log.r/C ˛ log.r/

�
�

e�
˛ log.r/
4 : ut

Theorem 9 (Hoeffding). Let X1 : : :Xn be independent random variables. Assume
that the Xi are bounded in the interval Œai; bi�. Define the empirical mean of these
variables as

NX D

P
i
NXi

n
;

then

P
	
j NX � EŒ NX�j 
 t



� 2 exp

�
�

2n2t2
Pn

iD1.bi � ai/2

�
: (27)

References

1. E. Abbe, C. Sandon, Community detection in general stochastic block models: fundamental
limits and efficient recovery algorithms (2015). Available online at arXiv:1503.00609
[math.PR]

2. E. Abbe, A.S. Bandeira, G. Hall, Exact recovery in the stochastic block model (2014).
Available online at arXiv:1405.3267 [cs.SI]

3. N. Alon, N. Kahale, A spectral technique for coloring random 3-colorable graphs. SIAM J.
Comput. 26(6), 1733–1748 (1997)

4. N. Alon, M. Krivelevich, B. Sudakov, Finding a large hidden clique in a random graph,
in Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25–27
January 1998, San Francisco, CA (1998), pp. 594–598

5. E. Arias-Castro, N. Verzelen, Community detection in random networks (2013). Available
online at arXiv:1302.7099 [math.ST]

6. P. Awasthi, A.S. Bandeira, M. Charikar, R. Krishnaswamy, S. Villar, R. Ward, Relax, no need
to round: integrality of clustering formulations, in 6th Innovations in Theoretical Computer
Science (ITCS 2015) (2015)

7. A.S. Bandeira, Random Laplacian matrices and convex relaxations (2015). Available online
at arXiv:1504.03987 [math.PR]



Multisection in the SBM Using SDPs 161

8. A.S. Bandeira, R.V. Handel, Sharp nonasymptotic bounds on the norm of random matrices
with independent entries. Ann. Probab. 44(4), 2479–2506 (2016)

9. A.S. Bandeira, M. Charikar, A. Singer, A. Zhu, Multireference alignment using semidefinite
programming, in 5th Innovations in Theoretical Computer Science (ITCS 2014) (2014)

10. A.S. Bandeira, Y. Chen, A. Singer, Non-unique games over compact groups and orientation
estimation in cryo-em (2015). Available at arXiv:1505.03840 [cs.CV]

11. R.B. Boppana, Eigenvalues and graph bisection: an average-case analysis, in Proceedings of
the 28th Annual Symposium on Foundations of Computer Science, SFCS ’87, Washington, DC
(IEEE Computer Society, Washington, 1987), pp. 280–285

12. T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sipser, Graph bisection algorithms with good
average case behavior, in 25th Annual Symposium on Foundations of Computer Science, 24–26
October 1984, West Palm Beach, FL (1984), pp. 181–192

13. M. Charikar, K. Makarychev, Y. Makarychev, Near-optimal algorithms for unique games, in
Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06,
New York, NY (ACM, New York, 2006), pp. 205–214

14. Y. Chen, J. Xu, Statistical-computational tradeoffs in planted problems and submatrix
localization with a growing number of clusters and submatrices (2014). Available online at
arXiv:1402.1267 [stat.ML]

15. P. Chin, A. Rao, V. Vu, Stochastic block model and community detection in the sparse
graphs: A spectral algorithm with optimal rate of recovery (2015). Available online at:
arXiv:1501.05021

16. A. Condon, R.M. Karp, Algorithms for graph partitioning on the planted partition model.
Random Struct. Algor. 18(2), 116–140 (2001)

17. A. Decelle, F. Krzakala, C. Moore, L. Zdeborová, Asymptotic analysis of the stochastic block
model for modular networks and its algorithmic applications. Phys. Rev. E 84, 066106 (2011)

18. P. Erdös, A. Renyi, On random graphs. I. Publ. Math. 6, 290–297 (1959)
19. U. Feige, J. Kilian, Heuristics for semirandom graph problems. J. Comput. Syst. Sci. 63(4),

639–671 (2001)
20. A.M. Frieze, M. Jerrum, Improved approximation algorithms for max k-cut and max bisection,

in Proceedings of the 4th International IPCO Conference on Integer Programming and
Combinatorial Optimization (Springer-Verlag, London, 1995), pp. 1–13

21. B. Hajek, Y. Wu, J. Xu, Achieving exact cluster recovery threshold via semidefinite
programming (2014). Available online at arXiv:1412.6156 [stat.ML]

22. B. Hajek, Y. Wu, J. Xu, Achieving exact cluster recovery threshold via semidefinite
programming: extensions (2015). Available online at arXiv:1502.07738 [stat.ML]

23. R. Krauthgamer, J. Naor, R. Schwartz, Partitioning graphs into balanced components, in
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’09 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2009), pp. 942–949

24. K. Makarychev, Y. Makarychev, A. Vijayaraghavan, Constant factor approximation for
balanced cut in the PIE model, in Symposium on Theory of Computing, STOC 2014, New
York, NY, May 31–June 03 (2014), pp. 41–49

25. L. Massoulié, Community detection thresholds and the weak Ramanujan property, in
Symposium on Theory of Computing, STOC 2014, New York, NY, May 31–June 03 (2014),
pp. 694–703

26. F. McSherry, Spectral partitioning of random graphs, in Proceedings of the 42nd IEEE Sym-
posium on Foundations of Computer Science, FOCS ’01 (IEEE Computer SocietyWashington,
DC, 2001), p. 529

27. E. Mossel, J. Neeman, A. Sly, Stochastic block models and reconstruction (2012). Available
online at arXiv:1202.1499

28. E. Mossel, J. Neeman, A. Sly, A proof of the block model threshold conjecture (2013).
Available online at arXiv:1311.4115

29. E. Mossel, J. Neeman, A. Sly, Belief propagation, robust reconstruction and optimal recovery
of block models, in Proceedings of The 27th Conference on Learning Theory, COLT 2014,
Barcelona, June 13–15 (2014), pp. 356–370



162 N. Agarwal et al.

30. E. Mossel, J. Neeman, A. Sly, Consistency thresholds for binary symmetric block models
(2014). Available online at arXiv: 1407.1591

31. V. Vu, A simple SVD algorithm for finding hidden partitions. Available online at arXiv:
1404.3918 (2014)

32. S.-Y. Yun, A. Proutiere, Accurate community detection in the stochastic block model via
spectral algorithms (2014). Available online at arXiv: 1412.7335



Recovering Signals with Unknown Sparsity
in Multiple Dictionaries

Rizwan Ahmad and Philip Schniter

Abstract Motivated by the observation that a given signal x may admit sparse
representations in multiple dictionaries �d, but with varying levels of sparsity across
dictionaries, we propose two new algorithms for signal reconstruction from noisy
linear measurements. Our first algorithm extends the well-known basis pursuit
denoising algorithm from the L1 regularizer k�xk1 to composite regularizers of
the form

P
d �dk�dxk1 while self-adjusting the regularization weights �d. Our

second algorithm extends the well-known iteratively reweighted L1 algorithm to
the same family of composite regularizers. For each algorithm, we provide several
interpretations: i) majorization-minimization (MM) applied to a non-convex log-
sum-type penalty, ii) MM applied to an approximate `0-type penalty, iii) MM
applied to Bayesian MAP inference under a particular hierarchical prior, and iv)
variational expectation-maximization (VEM) under a particular prior with determin-
istic unknown parameters.A detailed numerical study suggests that, when compared
to their non-composite counterparts, our composite algorithms yield significantly
improvements in accuracy with only modest increases in computational complexity.
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1 Introduction

Consider the problem of recovering a signal or image x 2 C
n from noisy linear

measurements

y D ˚xC e 2 C
m; (1)

where the measurement operator ˚ 2 C
m�n is known and e 2 C

m is additive
noise. Such problems arise in imaging, communications, speech, radar, machine
learning, and many other applications. We are particularly interested in the case
where m� n, under which x cannot be uniquely determined from the measurements
y, even in the absence of noise. This latter situation arises in many of the applications
mentioned earlier, and it has recently been popularized under the framework of
compressive sensing (CS) [12, 22, 27].

1.1 `2-Constrained Regularization

By incorporating (partial) prior knowledge about the signal and noise power, it may
be possible to accurately recover x from m � n measurements y. In this work, we
consider signal recovery based on optimization problems of the form

arg min
x

R.x/ s.t. ky � ˚xk2 � "; (2)

where " 
 0 is a data-fidelity tolerance that reflects prior knowledge of the noise
power and R.x/ is a penalty, or regularization, that reflects prior knowledge about
the signal x [35]. We briefly summarize several common instances of R.x/ below.

1. If x is known to be sparse (i.e., contains sufficiently few non-zero coefficients)
or approximately sparse, then one would ideally like to use the `0 penalty
(i.e., counting “norm”) R.x/ D kxk0 , j supp.x/j. However, since this choice
makes (2) NP-hard, it is rarely considered in practice.

2. The `1 penalty, R.x/Dkxk1D
Pn

jD1 jxjj, is a commonly used surrogate to `0 that
makes (2) convex and thus solvable in polynomial time. Under this penalty, (2) is
known as basis pursuit denoising [17] or as the lasso [44]. It is commonly used
in synthesis-based CS [12, 22, 27].

3. Non-convex surrogates to the `0 penalty have also been proposed. Well-known
varieties include the `p penalty R.x/Dkxkp

pD
Pn

jD1 jxjj
p with p 2 .0; 1/, and the

log-sum penalty R.x/D
Pn

jD1 log.ı C jxjj/ with ı 
 0. Although (2) becomes
difficult to solve exactly in a guaranteed manner, it can be approximated, leading
to excellent empirical performance. Further details will be given below.

4. The choice R.x/ D k�xk1, with known matrix � 2 C
L�n, is familiar from

analysis-based CS [21]. Penalties of this form are appropriate when prior
knowledge suggests that the transform coefficients �x are (approximately)
sparse, as opposed to the signal x itself being sparse. In this case, (2) can be
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solved by the generalized lasso [45]. When � is a finite-difference operator,
k�xk1 yields anisotropic total variation regularization [42].

5. Non-convex penalties can also be placed on the transform coefficients �x,
leading to, e.g., R.x/ D k�xkp

p D
PL

lD1 j 
T
l xjp with p 2 .0; 1/ or R.x/ D

PL
lD1 log.ı C j T

l xj/ with ı 
 0, where  T
l denotes the lth row of � .

With a non-convex penalty R.x/, a popular approach to solving (2) is through
iteratively reweighted `Š (IRW-L1) [13, 46]. There, (2) with a fixed non-convex R.x/
is approximated by a sequence of convex problems

x.t/ D arg min
x

R.t/.x/ s.t. ky � ˚xk22 � " (3)

with R.t/.x/ D
Pn

jD1 w.t/j jxjj a weighted `1 norm, where the weights w.t/ are

computed from the previous estimate x.t�1/. When w.t/j D .ı C jx.t�1/j j/�1

for a small constant ı 
 0, the IRW-L1 algorithm can be interpreted [13]
as a majorization-minimization (MM) [29] approach to (2) under the log-sum
penalty R.x/ D

Pn
jD1 log.ı C jxjj/, which can be considered as a non-convex

surrogate to the `0 penalty. Various empirical and theoretical studies [13, 30, 46]
of this latter case have shown performance surpassing that of the `1 penalty.
Unconstrained formulations of IRW-L1 based on “arg minx R.t/.x/C �ky � ˚xk22”
have also been considered, such as in the seminal work [25]. Likewise, constrained
and unconstrained versions of iteratively reweighted `2 were considered in
[16, 19, 23, 25, 46]. See [35] for further discussion.

1.2 Sparsity-Inducing Composite Regularizers

In this work, we focus on sparsity-inducing composite regularizers of the form

R1.x/ ,
DX

dD1

�dk�dxk1; (4)

where each �d 2 C
Ld�n is a known analysis operator and �d 
 0 is its

regularization weight. Our goal is to recover the signal x from measurements (1)
using a constrained optimization (2) under the composite regularizer (4). Doing
so requires an optimization of the weights � , Œ�1; : : : ; �D�

T in (4). We are also
interested in iteratively re-weighted extensions of this problem that, at iteration t,
use composite regularizers of the form1

R.t/.x/ D
DX

dD1

�
.t/
d kW

.t/
d �dxk1; (5)

1Although (5) is over-parameterized, the form of (5) is convenient for algorithm development.
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where W.t/
d are diagonal matrices. This latter approach requires the optimization of

both �.t/d and W.t/
d for all d.

As a motivating example, suppose that f�dg is a collection of orthonormal bases
that includes, e.g., spikes, sines, and various wavelet bases. The signal x may be
sparse in some of these bases, but not all. Thus, we would like to adjust each �d

in (4) to appropriately weight the contribution from each basis. But it is not clear
how to do this when x is unknown. As another example, suppose that x contains a
(rasterized) sequence of images and that k�1xk1 measures temporal total-variation
while k�2xk1 measures spatial total-variation. Intuitively, we would like to weight
these two regularizations differently, depending on whether the image varies more
in the temporal or spatial dimensions. But it is not clear how to do this when x is
unknown.

1.3 Contributions

In this work, we propose novel iteratively reweighted approaches to sparse recon-
struction based on composite regularizations of the form (4)–(5) with automatic
tuning of the regularization weights � and Wd. For each of our proposed algorithms,
we will provide four interpretations:

1. MM applied to a non-convex log-sum-type penalty,
2. MM applied to an approximate `0-type penalty,
3. MM applied to Bayesian MAP inference based on Gamma and Jeffrey’s hyper-

priors [7, 24, 37], and
4. variational expectation maximization (VEM) [8, 36] applied to a Laplacian or

generalized-Pareto prior with deterministic unknown parameters.

We show that the MM interpretation guarantees convergence in the sense of
satisfying an asymptotic stationary point condition [34]. Moreover, we establish
connections between our proposed approaches and existing IRW-L1 algorithms, and
we provide novel VEM-based and Bayesian MAP interpretations of those existing
algorithms.

Finally, through the detailed numerical study in Section 4, we establish that our
proposed algorithms yield significant gains in recovery accuracy relative to existing
methods with only modest increases in runtime. In particular, when f�dg are chosen
so that the sparsity of �dx varies with d, this structure can be exploited for improved
recovery. The more disparate the sparsity, the greater the improvement.

1.4 Related Work

As discussed above, the generalized lasso [45] is one of the most common
approaches to L1-regularized analysis-CS [21], i.e., the optimization (2) under the
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regularizer R.x/ D k�xk1. The Co-L1 algorithm that we present in Section 2 can
be interpreted as a generalization of this L1 method to composite regularizers of the
form (4). Meanwhile, the iteratively reweighted extension of the generalized lasso,
IRW-L1 [13], often yields significantly better reconstruction accuracy with a modest
increase in complexity (e.g., [13, 14]). The Co-IRW-L1 algorithm that we present
in Section 3 can then be interpreted as a generalization of this IRW-L1 method to
composite regularizers of the form (5). The existing non-composite L1 and IRW-L1
approaches essentially place an identical weight �d D 1 on every term in (4)–(5)
and thus make no attempt to leverage differences in the sparsity of the transform
coefficients �dx across the sub-dictionary index d. However, the numerical results
that we present in Section 4 suggest that there can be significant advantages to
optimizing �d, which is precisely what our methods do.

The problem of optimizing the weights �d of composite regularizers R.xI�/ DP
d �dRd.x/ is a long-standing problem with a rich literature (see, e.g., the recent

book [33]). However, the vast majority of that literature focuses on the Tikhonov
case where Rd.x/ are quadratic (see, e.g., [11, 26, 28, 47]). One notable exception
is [6], which assumes continuously differentiable Rd.x/ and thus does not cover
our composite `1 prior (4). Another notable exception is [32], which assumes i) the
availability of a noiseless training example of x to help tune the L1 regularization
weights � in (4), and ii) the trivial measurement matrix ˚ D I. In contrast, our
proposed methods operate without any training and support generic measurement
matrices ˚ .

In the special case that each �d is composed of a subset of rows from the
n � n identity matrix, the regularizers (4)–(5) can induce group sparsity in the
recovery of x, in that certain sub-vectors xd , �dx of x are driven to zero,
while others are not. The paper [40] develops an IRW-L1-based approach to
group-sparse signal recovery for equal-sized non-overlapping groups that can be
considered as a special case of the Co-L1 algorithm that we develop in Section 2.
However, our approach is more general in that it handles possibly non-equal and/or
overlapping groups, not to mention sparsity in a generic set of sub-dictionaries �d.
Recently, Bayesian MAP group-sparse recovery was considered in [4]. However, the
technique described there uses Gaussian scale mixtures or, equivalently, weighted-
`2 regularizers R.xI�/ D

P
d �dkxdk2, while our methods use weighted-`1

regularizers (4)–(5).
A recent work [2] considered the unconstrained version of the problem consid-

ered in this chapter, where the aim is to solve a non-convex optimization problem of
the form

arg min
x

R.x/C �ky � ˚xk2; (6)

for some � > 0, through a sequence of convex problems

x.t/ D arg min
x

DX

dD1

�
.t/
d kW

.t/
d �dxk1 C �ky � ˚xk22; (7)
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where f�.t/d ;W
.t/
d g

D
dD1 are set using x.t�1/. Although the unconstrained case bears

some similarity to the constrained case considered in this chapter, each case leads
to a distinct set of algorithms, interpretations, and analyses.

1.5 Notation

We use capital letters like � for matrices, small letters like x for vectors, and .�/T

for transposition. We use kxkp , .
P

j jxjj
p/1=p for the `p norm of vector x, with xj

representing the nth coefficient in x. When referring to the “mixed `p;q norm” of a
matrix X, we mean .

P
d.
P

l jxd;lj
p/q=p/1=q as in [31], where xd;l is the dth row and

lth column of X. We adopt the index-set abbreviation ŒD� , f1; : : : ;Dg and use I
to denote the identity matrix. We use rg.x/ for the gradient of a functional g.x/
with respect to x and 1A for the indicator function that returns the value 1 when A
is true and 0 when A is false. We use p.xI�/ for the pdf of random vector x under
deterministic parameters � and p.xj�/ for the pdf of x conditioned on the random
vector �. We use DKL.qkp/ to denote the Kullback-Leibler (KL) divergence of the
pdf p from the pdf q, and we use R and C to denote the real and complex fields,
respectively.

2 The Co-L1 Algorithm

We first propose the Composite-L1 (Co-L1) algorithm, which is summarized in
Algorithm 1. There, Ld denotes the number of rows in �d.

Algorithm 1 The Co-L1 Algorithm
1: input: f�dg

D
dD1, ˚ , y, " 	 0, ı 	 0

2: initialization: �
.1/
d D 1 8d

3: for t D 1; 2; 3; : : :

4: x.t/ arg min
x

DX

dD1

�
.t/
d k�dxk1 s.t. ky� ˚xk2 � "

5: �
.tC1/
d  

Ld

ıC k�dx.t/k1
; d 2 ŒD�

6: end
7: output: x.t/

The main computational step of Co-L1 is the constrained `1 minimization in
line 4, which can be recognized as (2) under the composite regularizer R1 from (4).
This is a convex optimization problem that can be readily solved by existing
techniques (e.g., Douglas-Rachford splitting [18], ADMM [1, 10], NESTA-UP [5],
MFISTA via smoothing and decomposition [43], etc.), the specific choice of which
is immaterial to this paper.
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Note that Co-L1 requires the user to set a small regularization term ı 
 0 whose
role is to prevent the denominator in line 5 from reaching zero. For typical choices
of the analysis operators �d and ", the vector �dx.t/ will almost never be exactly
zero, in which case it suffices to set ı D 0. Also, Co-L1 requires the user to set the
measurement fidelity constraint " 
 0. For additive white Gaussian noise (AWGN)
of variance �2 > 0, the choice " D 0:8

p
�2m works empirically well, and we used

this setting for all numerical results in Section 4.
Co-L1’s update of the weights �, defined by line 5 of Algorithm 1, can be

interpreted in various ways, as we detail below. For ease of explanation, we first
consider the case where the signal x is real-valued and later discuss the complex-
valued case in Section 2.6. As we will see, the steps in Algorithm 1 apply to both
real- and complex-valued x.

Theorem 1 (Co-L1). The Co-L1 algorithm in Algorithm 1 has the following
interpretations:

1. MM applied to (2) under the log-sum penalty

RD
ls.xI ı/ ,

DX

dD1

Ld log.ı C k�dxk1/; (8)

2. as ı ! 0, an approximate solution to the weighted `1;0 [31] problem

arg min
x

DX

dD1

Ld 1k�dxk1>0 s.t. ky � ˚xk2 � "; (9)

3. for " D 0, MM applied to Bayesian MAP estimation under a noiseless likelihood
and the hierarchical prior

p.xj�/ D
DY

dD1

�
�d

2

�Ld

exp
	
��dk�dxk1



(10)

� � i.i.d. � .0; ı�1/ (11)

where zd ,�dx 2 R
Ld is i.i.d. Laplacian given �d, and �d is Gamma distributed

with scale parameter ı�1 and shape parameter zero, which becomes Jeffrey’s
non-informative hyperprior p.�d/ / 1�d>0=�d when ı D 0.

4. for " D 0, variational EM under a noiseless likelihood and the prior

p.xI�/ /
DY

dD1

�
�d

2

�Ld

exp
	
��d.k�dxk1 C ı/



; (12)

which, when ı D 0, is i.i.d. Laplacian on zd D �dx 2 R
Ld with deterministic

scale parameter �d > 0.
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Proof. See Sections 2.1 to 2.5 below.
Importantly, the MM interpretation implies convergence (in the sense of an

asymptotic stationary point condition) when ı > 0, as detailed in Section 2.2.

2.1 Log-Sum MM Interpretation of Co-L1

Consider the optimization problem

arg min
x

RD
ls.xI ı/ s.t. ky � ˚xk2 � " (13)

with RD
ls from (8). Inspired by [13, §2.3], we write (13) as

arg min
x;u

DX

dD1

Ld log

�
ı C

LdX

lD1

ud;l

�
s.t.

(
ky � ˚xk2 � "

j T
d;lxj � ud;l 8d; l;

(14)

where  T
d;l is the lth row of �d. Problem (14) is of the form

arg min
v

g.v/ s.t. v 2 C; (15)

where v D ŒuT ; xT �T , C is a convex set,

g.v/ D
DX

dD1

Ld log

�
ı C

X

k2Kd

vk

�
(16)

is a concave penalty, and the set Kd , fk W
Pd�1

d0D1 Ld0 < k �
Pd

d0D1 Ld0g contains
the indices k such that vk 2 fud;lg

Ld
lD1.

Majorization-minimization (MM) [29, 34] is a popular method to attack non-
convex problems of this form. In particular, MM iterates the following two steps: (i)
construct a surrogate g.vI v.t// that majorizes g.v/ at v.t/, and (ii) update v.tC1/ D
arg minv2C g.vI v.t//. By “majorize,” we mean that g.vI v.t// 
 g.v/ for all v with
equality when v D v.t/.

Due to the concavity of our g, we can construct a majorizing surrogate using the
tangent of g at v.t/. In particular, let rg denote the gradient of g w.r.t. v. Then

g.vI v.t// D g.v.t//Crg.v.t//T Œv � v.t/� (17)

majorizes g.v/ at v.t/, and so the MM iterations become

v.tC1/ D arg min
v2C
rg.v.t//Tv (18)
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after neglecting the v-invariant terms. From (16), we see that

Œrg.v.t//�k D

8
<̂

:̂

Ld.k/

ı C
P

i2Kd.k/
v
.t/
i

if d.k/ ¤ 0

0 else;

(19)

where d.k/ is the index d 2 ŒD� of the set Kd containing k, or 0 if no such set exists.
Thus MM prescribes

v.tC1/ D arg min
v2C

DX

dD1

X

k2Kd

Ldvk

ı C
P

i2Kd
v
.t/
i

; (20)

or equivalently

x.tC1/ D arg min
x

DX

dD1

Ld
PLd

lD1 j 
T
d;lxj

ı C
PLd

lD1 j 
T
d;lx

.t/j
s.t. ky � ˚xk2 � " (21)

D arg min
x

DX

dD1

�
.tC1/
d k�dxk1 s.t. ky � ˚xk2 � " (22)

for

�
.tC1/
d D

Ld

ı C k�dx.t/k1
; (23)

which coincides with Algorithm 1. This establishes Part 1 of Theorem 1.

2.2 Convergence of Co-L1

The recent paper [34] studies the convergence of MM algorithms. In particular, it
establishes that when the optimization objective g.v/ is differentiable in v 2 C with
a Lipschitz continuous gradient, the MM sequence fv.t/gt	1 satisfies an asymptotic
stationary point (ASP) condition. Although it falls short of establishing convergence
to a local minimum (which is very difficult for general non-convex optimization
problems), the ASP condition is based on a classical necessary condition for a local
minimum. In particular, using rg.vI d/ to denote the directional derivative of g at
v in the direction d, it is known [9] that v? locally minimizes g over C only if
rg.v?I v � v?/ 
 0 for all v 2 C. Thus, in [34], it is said that fv.t/gt	1 satisfies an
ASC condition if

lim inf
t!C1

inf
v2C

rg.v.t/I v � v.t//

kv � v.t/k2

 0: (24)
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In our case, g from (16) is indeed differentiable, with gradient given in (19).
Moreover, [2, App. A] shows that the gradient is Lipschitz continuous when ı >
0. Thus, the sequence of estimates produced by Algorithm 1 satisfies the ASP
condition (24).

2.3 Approximate `1;0 Interpretation of Co-L1

In the limit of ı ! 0, the log-sum minimization

arg min
x

nX

jD1

log.ı C jxjj/ s.t. ky � ˚xk2 � " (25)

is known [41] to be equivalent to `0 minimization

arg min
x
kxk0 s.t. ky � ˚xk2 � ": (26)

(See [2, App. B] for a proof.) This equivalence can be seen intuitively as follows. As
ı ! 0, the contribution to the regularization term

Pn
jD1 log.ıCjxjj/ from each non-

zero xj remains finite, while that from each zero-valued xj approaches �1. Since
we are interested in minimizing the regularization term, we get a huge reward for
each zero-valued xj, or—equivalently—a huge penalty for each non-zero xj.

To arrive at an `0 interpretation of the Co-L1 algorithm, we consider the
corresponding optimization problem (13) in the limit that ı ! 0. There we see that
the regularization term RD

ls.xI 0/ from (8) yields Ld huge rewards when k�dxk1D0,
or equivalently Ld huge penalties when k�dxk1 ¤ 0, for each d 2 ŒD�. Thus, we
can interpret Co-L1 as attempting to solve the optimization problem (9), which is a
weighted version of the “`p;q mixed norm” problem from [31] for pD1 and q! 0.
This establishes Part 2 of Theorem 1.

2.4 Bayesian MAP Interpretation of Co-L1

The MAP estimate [38] of x from y is

xMAP , arg max
x

p.xjy/ D arg min
x

˚
� log p.xjy/

�
(27)

D arg min
x

˚
� log p.x/ � log p.yjx/

�
; (28)

where (27) used the monotonicity of log and (28) used Bayes rule. In the case of a
noiseless likelihood (e.g., AWGN with variance �2 ! 0), the second term in (28) is
C1 unless y D ˚x, and so

xMAP D arg min
x

˚
� log p.x/

�
s.t. y D ˚x: (29)
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Recall that, with shape parameter � and scale parameter � , the Gamma pdf
is � .�dI �; �/ D 1�d>0�

��1
d ��� exp.��d=�/=� .�/ where � .�/ is the Gamma

function. Since � .�dI �; �/ / 1�d>0�
��1
d exp.��d=�/, we see that � .�dI 0;1/ /

1�d>0=�d, which is Jeffrey’s non-informative hyperprior [7, 24, 37] for the Laplace
scale parameter �d. Then, according to (10)–(11), the prior equals

p.x/ D
Z

RD
p.xj�/p.�/d� (30)

/

DY

dD1

Z 1

0

�
�d

2

�Ld

exp.��dk�dxk1/
exp.��dı/

�d
d�d (31)

D

DY

dD1

.Ld � 1/Š
	
2.k�dxk1 C ı/


Ld
; (32)

which implies that

� log p.x/ D constC
DX

dD1

Ld log
	
k�dxk1 C ı



: (33)

Thus (29), (33), and (8) imply

xMAP D arg min
x

RD
ls.xI 0/ s.t. y D ˚x: (34)

Finally, applying the MM algorithm to this optimization problem (as detailed in
Section 2.1), we arrive at the " D 0 version of Algorithm 1. This establishes Part 3
of Theorem 1.

2.5 Variational EM Interpretation of Co-L1

The variational expectation-maximization (VEM) algorithm [8, 36] is an iterative
approach to maximum-likelihood (ML) estimation that generalizes the EM algo-
rithm from [20]. We now provide a brief review of the VEM algorithm and describe
how it can be applied to estimate � in (12).

First, note that the log-likelihood can be written as

log p.yI�/ D
Z

q.x/ log p.yI�/dx (35)

D

Z
q.x/ log

�
p.x; yI�/

q.x/

q.x/

p.xjyI�/

�
dx (36)



174 R. Ahmad and P. Schniter

D

Z
q.x/ log

p.x; yI�/

q.x/
dx

„ ƒ‚ …
, F

	
q.x/I�




C

Z
q.x/ log

q.x/

p.xjyI�/
dx

„ ƒ‚ …
, DKL

	
q.x/

��p.xjyI�/



; (37)

for an arbitrary pdf q.x/, where DKL.qkp/ denotes the KL divergence of p from q.
Because DKL.qkp/ 
 0 for any q and p, we see that F.q.x/I�/ is a lower bound on
log p.yI�/. The EM algorithm performs ML estimation by iterating

q.t/.x/ D arg min
q

DKL
	
q.x/

��p.xjyI�.t//



(38)

�.tC1/ D arg max
�

F.q.t/.x/I�/; (39)

where the “E” step (38) tightens the lower bound and the “M” step (39) maximizes
the lower bound.

The EM algorithm places no constraints on q.x/, in which case the solution
to (38) is simply q.t/.x/ D p.xjyI�.t//, i.e., the posterior pdf of x under � D �.t/.
In many applications, however, this posterior is too difficult to compute and/or use
in (39). To circumvent this problem, the VEM algorithm constrains q.x/ to some
family of distributions Q that makes (38)–(39) tractable.

For our application of the VEM algorithm, we constrain to distributions of the
form

q.x/ / lim
�!0

exp
�
1
�

log p.xjyI�/
�
; (40)

which has the effect of concentrating the mass in q.x/ at its mode. Plugging this q.x/
and p.x; yI�/ D p.yjx/p.xI�/ into (37), we see that the M step (39) reduces to

�.tC1/ D arg max
�

log p.xI�/
ˇ̌
xDx

.t/
MAP

(41)

for x.t/MAP , arg max
x

p.xjyI�.t//; (42)

where (42) can be interpreted as the E step. For the particular p.xI�/ in (12), we
have that

log p.xI�/ D constC
DX

dD1

�
Ld log.�d/ � �d.k�dxk1 C ı/

�
; (43)

and by zeroing the gradient w.r.t. �, we find that (41) becomes

�
.tC1/
d D

Ld
���dx.t/MAP

��
1
C ı

; d 2 ŒD�: (44)
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Meanwhile, from the noiseless MAP expression (29) and (43), we find that (42)
becomes

x.t/MAP D arg min
x

DX

dD1

�
.t/
d k�dxk1 s.t. y D ˚x: (45)

In conclusion, our VEM algorithm iterates the steps (44)–(45), which match the
steps in Algorithm 1 for " D 0. This establishes Part 4 of Theorem 1.

2.6 Co-L1 for Complex-Valued x

In Theorem 1 and Sections 2.1–2.5, real-valued x was assumed for ease of
explanation. However, real-valuedness was employed only in defining the Laplacian
pdfs (10) and (12). As we now show, the Co-L1 algorithm in Algorithm 1 can also
be justified based on a complex-valued Laplacian pdf. For this, we focus on the
VEM interpretation (recall Part 4 of Theorem 1), noting that a similar justification
can be made based on the Bayesian MAP interpretation. In particular, we show that,
for " D 0, Algorithm 1 results from VEM inference under an noiseless likelihood
and the signal prior

p.xI�/ /
DY

dD1

�
�d

2


�2Ld

exp
	
��d.k�dxk1 C ı/



; (46)

which, when ı D 0, is i.i.d. Laplacian on zdD�dx 2 C
Ld with deterministic scale

parameter �d > 0. To show this, we follow the steps in Section 2.5 up to the log-
prior in (43), which now becomes

log p.xI�/ D constC
DX

dD1

�
2Ld log.�d/ � �d.k�dxk1 C ı/

�
: (47)

Zeroing the gradient w.r.t. �, we find that the VEM update in (41) becomes

�
.tC1/
d D

2Ld
���dx.t/MAP

��
1
C ı

; d 2 ŒD�; (48)

which differs from its real-valued counterpart (44) in a constant scaling of 2.
However, this scaling does not affect x.tC1/MAP in (45) and thus does not affect the
output x.t/ of Algorithm 1 and thus can be ignored.
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2.7 New Interpretations of the IRW-L1 Algorithm

The proposed Co-L1 algorithm is related to the analysis-CS formulation of the well-
known IRW-L1 algorithm from [13]. For clarity, and for later use in Section 3,
we summarize this latter algorithm in Algorithm 2 and note that the synthesis-CS
formulation follows from the special case that � D I.

Algorithm 2 The IRW-L1 Algorithm
1: input: � D Œ 1; : : : ;  L�

T , ˚ , y, " 	 0, ı 	 0
2: initialization: W.1/ D I
3: for t D 1; 2; 3; : : :

4: x.t/ arg min
x
kW.t/�xk1 s.t. ky� ˚xk2 � "

5: W.tC1/ diag


1

ıC j T
1 x.t/j

; � � � ;
1

ıC j T
L x.t/j

�

6: end
7: output: x.t/

Comparing Algorithm 2 to Algorithm 1, we see that IRW-L1 coincides with Co-
L1 in the case that every sub-dictionary �d has dimension one, i.e., LdD 1 8d and
DDL, where L ,

PD
dD1 Ld denotes the total number of analysis coefficients. Thus,

the Co-L1 interpretations from Theorem 1 can be directly translated to IRW-L1 as
follows.

Corollary 1 (IRW-L1). The IRW-L1 algorithm from Algorithm 2 has the following
interpretations:

1. MM applied to (2) under the log-sum penalty

RL
ls.xI ı/ D

LX

lD1

log.ı C j T
l xj/; (49)

recalling the definition of RL
ls from (8),

2. as ı ! 0, an approximate solution to the `0 problem

arg min
x

LX

lD1

1j T
l xj>0 s.t. ky � ˚xk2 � "; (50)

3. for " D 0, MM applied to Bayesian MAP estimation under a noiseless likelihood
and the hierarchical prior

p.xj�/ D
LY

lD1

�l

2
exp

	
��lj 

T
l xj



(51)

� � i.i.d. � .0; ı�1/; (52)
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where zl D  T
l x is Laplacian given �l, and �l is Gamma distributed with

scale parameter ı�1 and shape parameter zero, which becomes Jeffrey’s non-
informative hyperprior p.�l/ / 1�l>0=�l when ı D 0.

4. for " D 0, variational EM under a noiseless likelihood and the prior

p.xI�/ /
LY

lD1

�l

2
exp

	
��l.j 

T
l xj C ı/



; (53)

which, when ı D 0, is independent Laplacian on zD�x 2 R
L under the positive

deterministic scale parameters in �.

While Part 1 and Part 2 of Corollary 1 were established for the synthesis-
CS formulation of IRW-L1 in [13], we believe that Part 3 and Part 4 are novel
interpretations of IRW-L1.

3 The Co-IRW-L1 Algorithm

We now propose the Co-IRW-L1-ı algorithm, which is summarized in Algorithm 3.
Co-IRW-L1-ı can be thought of as a hybrid of the Co-L1 and IRW-L1 approaches
from Algorithms 1 and 2, respectively. Like with Co-L1, the Co-IRW-L1-ı algo-
rithm uses sub-dictionary dependent weights �d that are updated at each iteration
t using a sparsity metric on �dx.t/. But, like with IRW-L1, the Co-IRW-L1-ı
algorithm also uses diagonal weight matrices W.t/

d that are updated at each iteration.
As with both Co-L1 and IRW-L1, the computational burden of Co-IRW-L1-ı is
dominated by the constrained `1 minimization problem in line 4 of Algorithm 3,
which is readily solved by existing techniques like Douglas-Rachford splitting.

Algorithm 3 The Real-Valued Co-IRW-L1-ı Algorithm
1: input: f�dg

D
dD1, ˚ , y, " 	 0, ıd > 0 8d, � 	 0,

2: initialization: �
.1/
d D 1;W.1/

d D I; 8d 2 ŒD�
3: for t D 1; 2; 3; : : :

4: x.t/ arg min
x

DX

dD1

�
.t/
d kW

.t/
d �dxk1 s.t. ky� ˚xk2 � "

5: �
.tC1/
d  

"
1

Ld

LdX

lD1

log

�
1C �C

j T
d;lx

.t/j

ıd

�#�1

C 1; 8d 2 ŒD�

6: W.tC1/
d  diag


1

ıd.1C �/C j 
T
d;1x

.t/j
; � � � ;

1

ıd.1C �/C j 
T
d;Ld

x.t/j

�
; 8d 2 ŒD�

7: end
8: output: x.t/
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The Co-IRW-L1-ı algorithm can be interpreted in various ways, as we detail
below. For clarity, we first consider fixed regularization parameters ı, and later, in
Section 3.6, we describe how they can be adapted at each iteration, leading to the
Co-IRW-L1 algorithm. Also, to simplify the development, we first consider the case
where x is real-valued and later, in Section 3.7, discuss the complex-valued case.

Theorem 2 (Co-IRW-L1-ı). The real-valued Co-IRW-L1-ı algorithm in Algo-
rithm 3 has the following interpretations:

1. MM applied to (2) under the log-sum-log penalty

Rlsl.xI ı; �/ ,
DX

dD1

LdX

lD1

log

�	
ıd.1C �/C j 

T
d;lxj


 LdX

iD1

log

�
1C �C

j T
d;ixj

ıd

��
;

(54)
2. as �! 0 and ıd ! 0 8d, an approximate solution to the `0 C `0;0 problem

arg min
x
k�xk0 C

DX

dD1

Ld 1k�dxk0>0 s.t. ky � ˚xk2 � "; (55)

3. for " D 0, MM applied to Bayesian MAP estimation under a noiseless likelihood
and the hierarchical prior

p.xj�I ı/ D
DY

dD1

LdY

lD1

�d

2ıd

�
1C �C

j T
d;lxj

ıd

��.�dC1/

(56)

p.�/ D
DY

dD1

p.�d/; p.�d/ /

(
1
�d

�d > 0

0 else
; (57)

where, when � D 0, the variables zd D�dx 2 R
Ld are i.i.d. generalized-Pareto

[15] given �d, and p.�d/ is Jeffrey’s non-informative hyperprior [7, 24, 37] for
the random shape parameter �d.

4. for " D 0, variational EM under a noiseless likelihood and the prior

p.xI�; ı/ D
DY

dD1

LdY

lD1

�d � 1

2ıd

�
1C �C

j T
d;lxj

ıd

���d

; (58)

where, when � D 0, the variables zd D�dx 2 R
Ld are i.i.d. generalized Pareto

with deterministic shape parameter �d > 1 and scale parameter ıd > 0.

Proof. See Sections 3.1 to 3.5 below.
As with Co-L1, the MM interpretation implies convergence (in the sense of an

asymptotic stationary point condition) when � > 0, as detailed in Section 3.2.
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3.1 Log-Sum-Log MM Interpretation of Co-IRW-L1-ı

Consider the optimization problem

arg min
x

Rlsl.xI ı; �/ s.t. ky � ˚xk2 � "; (59)

with Rlsl defined in (54). We attack this optimization problem using the MM
approach detailed in Section 2.1. The difference is that now the function g is defined
as

g.v/ D
DX

dD1

X

k2Kd

log

�	
ıd.1C �/C vk


X

i2Kd

log

�
1C �C

vi

ıd

��
(60)

D

DX

dD1

2

4Ld log
X

i2Kd

log

�
1C �C

vi

ıd

�
C
X

k2Kd

log
	
ıd.1C �/C vk



3

5 ; (61)

which has a gradient of

Œrg.v.t//�k D

0

BBB
@

Ld.k/

P

i2Kd.k/

log
�
1C �C

v
.t/
i

ıd.k/

� C 1

1

CCC
A

1

ıd.k/.1C �/C v
.t/
k

(62)

when d.k/ ¤ 0 and otherwise Œrg.v.t//�k D 0. Thus, recalling (18), MM prescribes

v.tC1/ D arg min
v2C

DX

dD1

X

k2Kd

0

BB
@

Ld

P

i2Kd

log
�
1C �C

v
.t/
i
ıd

� C 1

1

CC
A

 
vk

ıd.1C �/C v
.t/
k

!

(63)
or equivalently

x.tC1/ D arg min
x

DX

dD1

LdX

lD1

�
.tC1/
d

 
j T

d;lxj

ıd.1C �/C j 
T
d;lx

.t/j

!

s.t. ky � ˚xk2 � "

(64)
for

�
.tC1/
d D

"
1

Ld

LdX

lD1

log

�
1C �C

j T
d;lx

.t/j

ıd

�#�1

C 1; (65)

which coincides with Algorithm 3. This establishes Part 1 of Theorem 2.



180 R. Ahmad and P. Schniter

3.2 Convergence of Co-IRW-L1-ı

The convergence of Co-IRW-L1-ı (in the sense of an asymptotic stationary point
condition) for � > 0 can be shown using the same procedure as in Section 2.2. To
do this, we only need to verify that the gradient rg in (62) is Lipschitz continuous
when � > 0, which was done in [2, App. C].

3.3 Approximate `0 C `0;0 Interpretation of Co-IRW-L1-ı

Recalling the discussion in Section 2.3, we now consider the behavior of the
Rlsl.xI ı; �/ regularizer in (54) as � ! 0 and ıd ! 0 8d. For this, it helps to
decouple (54) into two terms:

Rlsl.xI ı; �/ (66)

D

DX

dD1

LdX

lD1

log
	
ıd.1C �/C j 

T
d;lxj



C

DX

dD1

LdX

lD1

log

� LdX

iD1

log

�
1C �C

j T
d;ixj

ıd

��
:

As ıd ! 0 8d, the first term in (66) contributes an infinite valued “reward” for
each pair .d; l/ such that j T

d;lxj D 0, or a finite valued cost otherwise. As for the

second term, we see that lim�!0;ıd!0

PLd
iD1 log

	
1Cj T

d;ixj=ıdC�


D 0 if and only

if j T
d;ixj D 0 8i 2 ŒLd�, i.e., if and only if k�dxk0 D 0. And when k�dxk0 D 0, the

second term in (66) contributes Ld infinite valued rewards. In summary, as � ! 0

and ıd ! 0 8d, the first term in (66) behaves like k�xk0 and the second term like
the weighted `0;0 quasi-norm

PD
dD1 Ld1k�dxk0>0, as stated in (55). This establishes

Part 2 of Theorem 2.

3.4 Bayesian MAP Interpretation of Co-IRW-L1-ı

To show that Co-IRW-L1-ı can be interpreted as Bayesian MAP estimation under
the hierarchical prior (56)–(57), we first compute the prior p.x/. To start,

p.x/ D
Z

RD
p.�/p.xj�/d� (67)

/

DY

dD1

Z 1

0

1

�d

LdY

lD1

�d

2ıd

�
1C �C

j T
d;lxj

ıd

��.�dC1/

d�d: (68)
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Writing .1C �C j T
d;lxj=ıd/

�.�dC1/ D exp.�.�d C 1/Qd;l/ for Qd;l , log.1C �C
j T

d;lxj=ıd/, we get

p.x/ /
DY

dD1

1

.2ıd/Ld

Z 1

0

�
Ld�1
d e�.�dC1/

PLd
lD1 Qd;l d�d: (69)

Defining Qd ,
PLd

lD1 Qd;l and changing the variable of integration to �d , �dQd,
we find

p.x/ /
DY

dD1

e�Qd

.2ıdQd/Ld

Z 1

0

�
Ld�1
d e��d d�d

„ ƒ‚ …
.Ld � 1/Š

(70)
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PLd

iD1 log.1C �C
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ıd
/

#Ld LdY
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1C �C
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ıd

(71)

D
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dD1

LdY
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ıd.1C �/C j 

T
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� LdX

iD1

log

�
1C �C

j T
d;ixj

ıd

�#�1
; (72)

which implies that

� log p.x/ D constC Rlsl.xI ı; �/ (73)

for Rlsl.xI ı; �/ defined in (54).
Plugging (73) into noiseless MAP expression (29), we have

xMAP D arg min
x

Rlsl.xI ı; �/ s.t. y D ˚x; (74)

which is equivalent to the optimization problem in (59) when " D 0. We showed in
Section 3.1 that, by applying the MM algorithm to (59), we arrive at Algorithm 3.
This establishes Part 3 of Theorem 2.

3.5 Variational EM Interpretation of Co-IRW-L1-ı

To justify the variational EM (VEM) interpretation of Co-IRW-L1-ı, we closely
follow the approach used for Co-L1 in Section 2.5. The main difference is that now
the prior takes the form of p.xI�; ı/ from (58). Thus, (43) becomes

log p.xI�; ı/ D
DX

dD1

LdX

lD1

"

log

�
�d � 1

ıd

�
� �d log

�
1C �C

j T
d;lxj

ıd

�#

C const

(75)
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and by zeroing the gradient w.r.t. �, we see that the M step (44) becomes

1

�
.tC1/
d � 1

D
1

Ld
log

�
1C �C

j T
d;lx

.t/
MAPj

ıd

�
; d 2 ŒD�; (76)

where again x.t/MAP denotes the MAP estimate of x under � D �.t/. From (29)
and (58), we see that

x.t/MAP D arg min
x

DX

dD1

�
.t/
d

LdX

lD1

log
	
j T

d;lxj C ıd.1C �/



s.t. y D ˚x; (77)

which (for � D 0) is a �.t/-weighted version of the IRW-L1 log-sum optimization
problem (recall Part 1 of Corollary 1). To solve (77), we apply MM with inner
iteration i. With a small modification of the MM derivation from Section 2.1, we
obtain the two-step iteration

x.i/MAP D arg min
x

DX

dD1

�
.t/
d kW

.i/
d �dxk1 s.t. y D ˚x (78)

W.iC1/
d D diag


1

ıd.1C �/C j 
T
d;1x

.i/j
; � � � ;

1

ıd.1C �/C j 
T
d;Ld

x.i/j

�
; (79)

with �.t/d fixed at the value appearing in (77). Next, by using only a single MM
iteration per VEM iteration, the MM index “i” can be equated with the VEM index
“t,” in which case the VEM algorithm becomes

x.t/ D arg min
x

DX

dD1

�
.t/
d kW

.t/
d �dxk1 s.t. y D ˚x (80)

W.tC1/
d D diag


1

ıd.1C �/C j 
T
d;1x

.t/j
; � � � ;

1

ıd.1C �/C j 
T
d;Ld

x.t/j

�
;8d (81)

�
.tC1/
d D

"
1

Ld
log

�
1C �C

j T
d;lx

.t/j

ıd

�#�1
C 1; 8d; (82)

which matches the steps in Algorithm 3 under " D 0. This establishes Part 4 of
Theorem 2.
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3.6 Co-IRW-L1

Until now, we have considered the Co-IRW-L1-ı parameters ı to be fixed and
known. But it is not clear how to set these parameters in practice. Thus, in this
section, we describe an extension of Co-IRW-L1-ı that adapts the ı vector at
every iteration. The resulting procedure, which we will refer to as Co-IRW-L1, is
summarized in Algorithm 4.

In the case of real-valued x, the expression for log p.xI�; ı/ in line 6 of
Algorithm 4 is given in (75) for �d > 1 and ıd > 0. Although there does not
appear to be a closed-form solution to the joint maximization problem in line 6, it
is over two real parameters and thus can be solved numerically without a significant
computational burden.

Algorithm 4 The Co-IRW-L1 Algorithm
1: input: f�dg

D
dD1, ˚ , y, " 	 0; � 	 0

2: if x 2 R
n, use  D .1;1/ and log p.xI�; ı/ from (75);

if x 2 C
n, use  D .2;1/ and log p.xI�; ı/ from (84).

3: initialization: �
.1/
d D 1;W.1/

d D I; 8d 2 ŒD�
4: for t D 1; 2; 3; : : :

5: x.t/ arg min
x

DX

dD1

�
.t/
d kW

.t/
d �dxk1 s.t. ky� ˚xk2 � "

6: .�
.tC1/
d ; ı

.tC1/
d / arg max

�d2;ıd>0
log p.x.t/I�; ı/; d 2 ŒD�

7: W.tC1/
d  diag


1

ı
.tC1/
d .1C �/C j T

d;1x
.t/j
; � � � ;

1

ı
.tC1/
d .1C �/C j T

d;Ld
x.t/j

�
; d 2 ŒD�

8: end
9: output: x.t/

Algorithm 4 can be interpreted as a generalization of the VEM approach to Co-
IRW-L1-ı that is summarized in Part 4 of Theorem 2 and detailed in Section 3.5.
Whereas Co-IRW-L1-ı used VEM to estimate the � parameters in the prior (58) for
a fixed value of ı, Co-IRW-L1 uses VEM to jointly estimate .�; ı/ in (58). Thus,
Co-IRW-L1 can be derived by repeating the steps in Section 3.5, except that now the
maximization of log p.xI�; ı/ in (75) is performed jointly over .�; ı/, as reflected
by line 6 of Algorithm 4.

3.7 Co-IRW-L1 for Complex-Valued x

In Sections 3.1–3.6, the signal x was assumed to be real-valued. We now extend the
previous results to the case of complex-valued x. For this, we focus on the Co-IRW-
L1 algorithm, since Co-IRW-L1-ı follows as the special case where ı is fixed at a
user-supplied value.
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Recalling that Co-IRW-L1 was constructed by generalizing the VEM interpre-
tation of Co-IRW-L1-ı, we reconsider this VEM interpretation for the case of
complex-valued x. In particular, we assume an AWGN likelihood and the following
complex-valued extension of the prior (58):

p.xI�; ı/ /
DY

dD1

LdY

lD1

.�d � 1/.�d � 2/

2
ı2d

�
1C �C

j T
d;lxj

ıd

���d

; (83)

which is now i.i.d. generalized Pareto on zd D �dx 2 C
Ld with deterministic shape

parameter �d > 2 and deterministic scale parameter ıd > 0. In this case, the log-
prior (75) changes to

log p.xI�; ı/

D constC
DX

dD1

LdX

lD1

"

log

�
.�d � 1/.�d � 2/

ı2d

�
� �d log

�
1C �C

j T
d;lxj

ıd

�#

; (84)

which is then maximized over .�; ı/ in line 6 of Algorithm 4.

4 Numerical Results

We now present results from a numerical study into the performance of the
proposed Co-L1 and Co-IRW-L1 methods, given as Algorithm 1 and Algorithm 4,
respectively. Three experiments are discussed below, all of which focus on the
problem of recovering an n-pixel image (or image sequence) x from m-sample noisy
compressed measurements y D ˚x C e, with m � n. In the first experiment, we
recover synthetic 2D finite-difference signals; in the second experiment, we recover
the Shepp-Logan phantom and the Cameraman image; and in the third experiment,
we recover dynamic MRI sequences, also known as “cines.”

As discussed in Section 1.4, Co-L1 can be considered as the composite extension
of the standard L1-regularized L2-constrained approach to analysis CS, i.e., (2)
under the non-composite L1 regularizer R.x/ D k�xk1. Similarly, Co-IRW-L1 can
be considered as the composite extension of the standard IRW approach to the same
L1 problem. Thus, we compare our proposed composite methods against these two
non-composite methods, referring to them simply as “L1” and “IRW-L1” in the
sequel.
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4.1 Experimental Setup

For the dynamic MRI experiment, we constructed ˚ using randomly subsampled
Fourier measurements at each time instant with a varying sampling pattern across
time. More details are given in Section 4.4. For the other experiments, we used
a “spread spectrum” operator [39] of the form ˚ D DFC, where C 2 R

n�n is
diagonal matrix with i.i.d equiprobable˙1 entries, F 2 C

n�n is the discrete Fourier
transform (DFT), and D 2 R

m�n is a row-selection operator that selects m rows of
FC 2 C

n�n uniformly at random.
In all cases, the noise e was zero-mean, white, and circular Gaussian (i.e.,

independent real and imaginary components of equal variance). Denoting the
noise variance by �2, we define the measurement signal-to-noise ratio (SNR) as
kyk22=.m�

2/ and the recovery SNR of signal estimate Ox as kxk22=kx � Oxk
2
2.

Note that, when x is real-valued, the measurements y will be complex-valued
due to the construction of ˚ . Thus, to allow the use of real-valued L1 solvers, we
split each complex-valued element of y (and the corresponding rows of ˚ and e)
into real and imaginary components, resulting in a real-only model. However, to
avoid possible redundancy issues caused by the conjugate symmetry of the noiseless
Fourier measurements FCx, we ensured that D selected at most one sample from
each complex-conjugate pair.

To implement the existing non-composite L1 and IRW-L1 methods, we used
the Matlab codes linked2 to the paper [14], which are based on Douglas-Rachford
splitting [18]. All default settings were retained except that the maximum number
of reweighting iterations was increased from 10 to 25, which resulted in improved
recovery SNR. Then, to implement the weighted-`1 minimization step in Co-L1
and Co-IRW-L1, we used a similar Douglas-Rachford splitting technique. The
maximum number of reweighting iterations for Co-L1 and Co-IRW-L1 was set
at 25. For Co-L1, IRW-L1, and Co-IRW-L1, the t-indexed iterations in Algo-
rithm 1, Algorithm 2, and Algorithm 4, respectively, were terminated when kx.t/ �
x.t�1/k2=kx.t/k2 < 1 � 10�8. In all experiments we used " D 0:8

p
�2m and

ı D 0 D �.

4.2 Synthetic 2D Finite-Difference Signals

Our first experiment aims to answer the following question. If we know that the
sparsity of �1x differs from the sparsity of �2x, then can we exploit this knowledge
for signal recovery, even if we don’t know how the sparsities are different? This is
precisely the goal of composite regularizations like (4).

2Matlab codes for [14] are provided at https://github.com/basp-group/sopt.
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Fig. 1 Examples of the 2D finite-difference signal X used in the first experiment. On the left is a
realization generated under a transition ratio of ˛ D 14=14 D 1, and on the right is a realization
generated under ˛ D 27=1 D 27.

To investigate this question, we constructed 2D signals with finite-difference
structure in both the vertical and horizontal domains. In particular, we constructed
X D x11T C 1xT

2 , where both x1 2 R
48 and x2 2 R

48 are finite-difference signals
and 1 2 R

48 contains only ones. The locations of the transitions in x1 and x2 were
selected uniformly at random and the amplitudes of the transitions were drawn i.i.d.
zero-mean Gaussian. The total number of transitions in x1 and x2 was fixed at 28,
but the ratio of the number of transitions in x1 to the number in x2, denoted by ˛, was
varied from 1 to 27. The case ˛ D 1 corresponds to X having 14 vertical transitions
and 14 horizontal transitions, while the case ˛ D 27 corresponds to X having 27
vertical transitions and a single horizontal transition. (See Figure 1 for examples.)
Finally, the signal x 2 R

n appearing in our model (1) was created by vectorizing X,
yielding a total of n D 482 D 2304 pixels.

Given x, noisy observations y D ˚xCe were generated using the random “spread
spectrum” measurement operator ˚ described earlier at a sampling ratio of m=n D
0:3, with additive white Gaussian noise (AWGN) e scaled to achieve a measurement
SNR of 40 dB. All recovery algorithms used vertical and horizontal finite-difference
operators �1 and �2, respectively, with � D Œ� T

1 ; �
T
2 �

T in the non-composite case.
Figure 2 shows recovery SNR versus ˛ for the non-composite L1 and IRW-

L1 techniques and our proposed Co-L1 and Co-IRW-L1 techniques. Each SNR in
the figure represents the median value from 45 trials, each using an independent
realization of the triple .˚; x; e/. The figure shows that the recovery SNR of both L1
and IRW-L1 is roughly invariant to the transition ratio ˛, which makes sense because
the overall sparsity of �x is fixed at 28 transitions by construction. In contrast, the
recovery SNRs of Co-L1 and Co-IRW-L1 vary with ˛, with higher values of ˛
yielding a more structured signal and thus higher recovery SNR when this structure
is properly exploited.
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Fig. 2 Recovery SNR versus transition ratio ˛ for the first experiment, which used 2D finite-
difference signals, spread-spectrum measurements at m=n D 0:3, AWGN at 40 dB, and finite-
difference operators for �d . Each recovery SNR represents the median value from 45 independent
trials.

Fig. 3 Left: the Shepp-Logan phantom of size n D 96�96. Right: the cropped Cameraman image
of size n D 96� 104.

4.3 Shepp-Logan and Cameraman Recovery

For our second experiment, we investigate algorithm performance versus sampling
ratio m=n when recovering the well-known Shepp-Logan phantom and Cameraman
images. In particular, we used the n D 96 � 96 Shepp-Logan phantom and the
n D 96 � 104 cropped Cameraman image shown in Figure 3, and we constructed
compressed noisy measurements y using spread-spectrum ˚ and AWGN e at a
measurement SNR of 30 dB in the Shepp-Logan case and 40 dB in the Cameraman
case.
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Fig. 4 Recovery SNR versus sampling ratio m=n for the Shepp-Logan phantom. Measurements
were constructed using a spread-spectrum operator and AWGN at 30 dB SNR, and recovery used
the UWT-db1 2D wavelet transform at two levels of decomposition. Each recovery SNR represents
the median value from seven independent trials.

All algorithms used analysis operator � 2 R
7n�n constructed from the undeci-

mated Daubechies-1 2D wavelet transform (UWT-db1) with two levels of decom-
position. However, the Co-L1 and Co-IRW-L1 algorithms treated each of the seven
subbands of UWT-db1 as a separate sub-dictionary �d 2 R

n�n in their composite
regularizers.

Figure 4 shows recovery SNR versus sampling ratio m=n for the Shepp-Logan
phantom, while Figure 5 shows the same for the Cameraman image. Each recovery
SNR represents the median value from seven independent realizations of .˚; e/.
Both figures show that Co-L1 and Co-IRW-L1 outperform their non-composite
counterparts, especially at low sampling ratios; the gap between Co-IRW-L1 and
IRW-L1 closes at m=n 
 0:4. Although not shown, similar results were observed
with a level three decomposition of UWT-db1 and at higher (50 dB) and lower
(25 dB) measurement SNRs.

4.4 Dynamic MRI

For our third experiment, we investigate a simplified version of the “dynamic MRI”
(dMRI) problem. In dMRI, one attempts to recover a sequence of MRI images,
known as an MRI cine, from highly under-sampled “k-t-domain” measurements
fytg

T
tD1 constructed as

yt D ˚txt C et; (85)
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Fig. 5 Recovery SNR versus sampling ratio m=n for the cropped Cameraman image. Mea-
surements were constructed using a spread-spectrum operator and AWGN at 40 dB SNR, and
recovery used the UWT-db1 2D wavelet transform at two levels of decomposition. Each SNR
value represents the median value from 7 independent trials.

where xt 2 R
n1n2 is a vectorized (n1 � n2)-pixel image at time t, ˚t 2 R

m1�n1n2 is a
subsampled Fourier operator at time t, and et 2 R

m
1 is AWGN. This real-valued ˚t

is constructed from the complex-valued n1n2 � n1n2 2D DFT matrix by randomly
selecting 0:5m1 rows and then splitting each of those rows into its real and imaginary
components. Here, it is usually advantageous to vary the sampling pattern with time
and to sample more densely at low frequencies, where most of the signal energy lies
(e.g., [3]). Putting (85) into the form of our measurement model (1), we get

2
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; (86)

with total measurement dimension m D m1T and total signal dimension n D n1n2T .
As ground truth, we used a high-quality dMRI cardiac cine x of dimensions n1 D

144, n2 D 85, and T D 48. The left pane in Figure 6 shows a 144 � 85 image from
this cine extracted at a single time t, while the middle pane shows a 144�48 spatio-
temporal profile from this cine extracted at a single horizontal location. This middle
pane shows that the temporal dimension is much more structured than the spatial
dimension, suggesting that there may be an advantage to weighting the spatial and
temporal dimensions differently in a composite regularizer.
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Fig. 6 Left: A 144� 85 spatial slice from the 144� 85� 48 dMRI dataset. Middle: The 144� 48
spatio-temporal slice used for the dMRI experiment. Right: a realization of the variable-density
k-space sampling pattern, versus time, at m=n D 0:15.

To test this hypothesis, we constructed an experiment where the goal was to
recover the 144 � 48 spatio-temporal profile shown in the middle pane of Figure 6,
as opposed to the full 3D cine, from subsampled k-t-domain measurements. For this
purpose, we constructed measurements fygTtD1 as described above, but with n2 D 1

(and thus a 1D DFT), and used a variable density random sampling method. The
right pane of Figure 6 shows a typical realization of the sampling pattern versus
time. Finally, we selected the AWGN variance that yielded measurement SNR D
30 dB.

For the non-composite L1 and IRW-L1 algorithms, we constructed the analysis
operator � 2 R

3n�n from a vertical concatenation of the db1-db3 Daubechies
orthogonal 2D discrete wavelet bases, each with three levels of decomposition. For
the Co-L1 and Co-IRW-L1 algorithms, we assigned each of the 30 sub-bands in
� to a separate sub-dictionary �d 2 R

Ld�n. Note that the sub-dictionary size Ld

decreases with the level in the decomposition. By weighting certain sub-dictionaries
differently than others, the composite regularizers can exploit differences in spatial
versus temporal structure.

Figure 7 shows recovery SNR versus sampling ratio m=n for the four algorithms
under test. Each reported SNR represents the median SNR from seven independent
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Fig. 7 Recovery SNR versus sampling ratio m=n for the dMRI experiment. Each SNR value
represents the median value from 7 independent trials. Measurements were constructed using
variable-density subsampled Fourier operator and AWGN at 30 dB measurement SNR, and
recovery used a concatenation of db1–db3 orthogonal 2D wavelet bases at three levels of
decomposition.

realizations of .˚; e/. The figure shows that Co-L1 and Co-IRW-L1 outperform their
non-composite counterparts by 
 2 dB at all tested values of m=n, with larger
gains at small m=n. Interestingly, Co-L1 and Co-IRW-L1 gave nearly identical
recovery SNR in this experiment, which suggests that—for each d—the analysis
coefficients within �dx were of a similar magnitude. Although not shown here,
we obtained similar results with other cine datasets and with an UWT-db1-based
analysis operator.

For qualitative comparison, Figure 8 shows the spatio-temporal profile recovered
by each of the four algorithms under test at m=n D 0:15 for a typical realization
of .˚; e/. Compared to the ground-truth profile shown in the middle pane of
Figure 6, the profiles recovered by L1 and IRW-L1 show visible artifacts that appear
as vertical streaks. In contrast, the profiles recovered by Co-L1 and Co-IRW-L1
preserve most of the features present in the ground-truth profile.

4.5 Algorithm Runtime

Table 1 reports the average runtimes of the L1, Co-L1, IRW-L1, and Co-IRW-L1
algorithms for the experiments in Sections 4.3 and 4.4. There we see that the runtime
of Co-L1 ranged between 1:5� to 3� that of L1, and the runtime of Co-IRW-L1
ranged between 1:5� to 3� the runtime of IRW-L1.
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Fig. 8 Recovered dMRI spatio-temporal profiles at m=n D 0:15

Table 1 Computation times
(in seconds) for the presented
experimental studies. The
times are averaged over trial
runs and different sampling
ratios.

Shepp-Logan Cameraman MRI

L1 20.8 23.1 29.3

Co-L1 32.7 34.2 86.4

IRW-L1 45.9 48.4 54.1

Co-IRW-L1 72.1 96.4 131

5 Conclusions

Motivated by the observation that a given signal x admits sparse representations
in multiple dictionaries �d but with varying levels of sparsity across dictionaries,
we proposed two new algorithms for the reconstruction of (approximately) sparse
signals from noisy linear measurements. Our first algorithm, Co-L1, extends the
well-known lasso algorithm [17, 44, 45] from the L1 penalty k�xk1 to composite
L1 penalties of the form (4) while self-adjusting the regularization weights �d. Our
second algorithm, Co-IRW-L1, extends the well-known IRW-L1 algorithm [13, 14]
to the same family of composite penalties while self-adjusting the regularization
weights �d and the regularization parameters ıd.

We provided several interpretations of both algorithms: i) majorization-
minimization (MM) applied to a non-convex log-sum-type penalty, ii) MM applied
to an approximate `0-type penalty, iii) MM applied to Bayesian MAP inference
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under a particular hierarchical prior, and iv) variational expectation-maximization
(VEM) under a particular prior with deterministic unknown parameters. Also,
we leveraged the MM interpretation to establish convergence in the form of an
asymptotic stationary point condition [34]. Furthermore, we noted that the Bayesian
MAP and VEM viewpoints yield novel interpretations of the original IRW-L1
algorithm. Finally, we present a detailed numerical study that suggests that our
proposed algorithms yield significantly improved recovery SNR when compared
to their non-composite L1 and IRW-L1 counterparts with a modest (e.g., 1:5�-3�)
increase in runtime.
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Compressive Classification and the Rare Eclipse
Problem

Afonso S. Bandeira, Dustin G. Mixon, and Benjamin Recht

Abstract This paper addresses the fundamental question of when convex sets
remain disjoint after random projection. We provide an analysis using ideas from
high-dimensional convex geometry. For ellipsoids, we provide a bound in terms
of the distance between these ellipsoids and simple functions of their polynomial
coefficients. As an application, this theorem provides bounds for compressive
classification of convex sets. Rather than assuming that the data to be classified
is sparse, our results show that the data can be acquired via very few measurements
yet will remain linearly separable. We demonstrate the feasibility of this approach
in the context of hyperspectral imaging.

Keywords Compressive classification · Gordon’s theorem

A.S. Bandeira (�)
Department of Mathematics, Courant Institute of Mathematical Sciences
and Center for Data Science, New York University, New York, NY, USA
e-mail: bandeira@cims.nyu.edu

D.G. Mixon
Department of Mathematics, The Ohio State University, Columbus, OH, USA

Department of Mathematics and Statistics, Air Force Institute of Technology,
Wright-Patterson AFB, Dayton, OH, USA
e-mail: mixon.23@osu.edu; dustin.mixon@afit.edu

B. Recht
Department of Electrical Engineering and Computer Science, University of California,
Berkeley, CA, USA

Department of Statistics, University of California, Berkeley, CA, USA
e-mail: brecht@eecs.berkeley.edu

© Springer International Publishing AG 2017
H. Boche et al. (eds.), Compressed Sensing and its Applications,
Applied and Numerical Harmonic Analysis,
https://doi.org/10.1007/978-3-319-69802-1_6

197

mailto:bandeira@cims.nyu.edu
mailto:mixon.23@osu.edu; dustin.mixon@afit.edu
mailto:brecht@eecs.berkeley.edu
https://doi.org/10.1007/978-3-319-69802-1_6


198 A.S. Bandeira et al.

1 Introduction

A decade of powerful results in compressed sensing and related fields have
demonstrated that many signals that have low-dimensional latent structure can be
recovered from very few compressive measurements. Building on this work, many
researchers have shown that classification tasks can also be run on compressive
measurements, provided that either the data or classifier is sparse in an appropriate
basis [4, 8, 9, 11, 12, 20]. However, classification is a considerably simpler task than
reconstruction, as there may be a large number of hyperplanes which successfully
cleave the same data set. The question remains:

Can we successfully classify data from even fewer compressive measurements than required
for signal reconstruction?

Prior work on compressive classification has focused on preserving distances or
inner products between data points. Indeed, since popular classifiers including the
support vector machine and logistic regression only depend on dot products between
data points, it makes sense that if dot products are preserved under a compressive
measurement, then the resulting decision hyperplane should be close to the one
computed on the uncompressed data.

In this paper, we take a different view of the compressive classification problem,
and for some special cases, we are able to show that data can be classified
with extremely few compressive measurements. Specifically, we assume that our
data classes are circumscribed by disjoint convex bodies, and we seek to avoid
intersection between distinct classes after projection. By studying the set of sep-
arating hyperplanes, we provide a general way to estimate the minimal dimension
under which two bodies remain disjoint after random projection. In Section 3, we
specialize these results to study ellipsoidal classes and give our main theoretical
result—that k ellipsoids of sufficient pairwise separation remain separated after
randomly projecting onto O.log k/ dimensions. Here, the geometry of the ellipsoids
plays an interesting and intuitive role in the notion of sufficient separation. Our
results differ from prior work insofar as they can be applied to full dimensional
data sets and are independent of the number of points in each class. We provide a
comparison with principal component analysis in Section 4 by considering different
toy examples of classes to illustrate strengths and weaknesses and then by applying
both approaches to hyperspectral imaging data. We conclude in Section 5 with a
discussion of future work.

2 Our Model and Related Work

In this section, we discuss our model for the classes as well as the underlying
assumptions we apply throughout this paper. Consider an ensemble of classes
Ci � R

N that we would like to classify. We assume that these classes are pairwise
linearly separable, that is, for every pair i; j with i ¤ j, there exists a hyperplane
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Fig. 1 Two sufficiently separated convex sets remain separated when projected onto a subspace.
The rare eclipse problem asks for the smallest M such that this happens when projecting onto a
random subspace of dimension M. Solving this problem for a given ensemble of classes enables
dimensionality reduction in a way that ensures linear separability for classification

in R
N which separates Ci and Cj. Equivalently, we assume that the convex hulls

Si WD hull.Ci/ are disjoint, and for simplicity, we assume these convex hulls are
closed sets.

Linear separability is a particularly useful property in the context of classifica-
tion, since to demonstrate nonmembership, it suffices to threshold an inner product
with the vector normal to a separating hyperplane. Of course, in many applications,
classes do not enjoy this (strong) property, but the property can be weakened to
near linear separability, in which there exists a hyperplane that mostly distinguishes
a pair of classes. One may also lift to a tensored version of the vector space and find
linear separability there. Since linear separability is so useful, we use this property
as the basis for our notion of distortion: We seek to project the classes fCig

k
iD1 in

such a way that their images are linearly separable.
Our assumptions on the Cis and our notion of distortion both lead to a rather

natural problem in convex geometry (see Figure 1 for an illustration):

Rare Eclipse Problem. Given a pair of disjoint closed convex sets A;B � R
N and

	 > 0, find the smallest M such that a random M�N projection P satisfies PA\PB D
; with probability 
 1 � 	.

At this point, we discuss some related work in the community. It appears that
compressive classification was studied as early as 2006, when [12] considered
a model in which each class is a point in Euclidean space. Interestingly, this
bears some resemblance to the celebrated work in [14, 16], which used random
projections to quickly approximate nearest neighbor search. The work in [8, 9]
considered a more exotic family of classes, namely, low-dimensional manifolds—
this is particularly applicable to the classification of images according to the
primary object featured in each image. Along these lines of low-dimensional classes,
there has since been some work in the case where classes are low-dimensional
subspaces [18, 21] or unions thereof [3]. Specifically, [21] considers a Gaussian
mixture model in which each Gaussian is supported on a different subspace. From
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a slightly dual view, researchers have also shown that if the classifier is known to be
sparse, then we can subsample the data itself, and the separating hyperplane can be
determined from a number of examples roughly proportional to the sparsity of the
hyperplane [4, 11, 20].

It is striking that, to date, all of the work in compressive classification has
focused on classes of low dimension. This is perhaps an artifact of the mindset of
compressed sensing, in which the projection preserves all information on coordinate
planes of sufficiently small dimension. However, classification should not require
nearly as much information as signal reconstruction does, and so we expect to be
able to compressively classify into classes of full dimension; indeed, we allow two
points in a common class to be mapped to the same compressive measurement,
as this will not affect the classification. A Boolean version of this idea is studied
in [1], which considers both random and optimality constructed projections. In the
continuous setting, the closest existing work is that of Dasgupta [6, 7], which uses
random projections to learn a mixture of Gaussians. In particular, Dasgupta shows
that sufficiently separated Gaussians stay separated after random projection. In the
next section, we prove a similar result about ellipsoids, but with a sharper notion of
separation.

3 Theoretical Results

Given two disjoint closed convex bodies A;B � R
N and a projection dimension M,

the rare eclipse problem asks whether a random M �N projection P of these bodies
avoids collision, i.e., whether PA \ PB is typically empty. This can be recast as a
condition on the .N �M/-dimensional null space of P:

PA \ PB D ; ” Null.P/ \ .A � B/ D ;;

where A�B denotes the Minkowski difference of A and B. Of course, the null space
of P is closed under scalar multiplication, and so avoiding A � B is equivalent to
avoiding the normalized versions of the members of A � B. Indeed, if we take S to
denote the intersection between the unit sphere in R

N and the cone generated by
A � B, then

PA \ PB D ; ” Null.P/ \ S D ;:

Now suppose P is drawn so that its entries are iid N .0; 1/. Then by rotational
invariance, the distribution of its null space is uniform over the Grassmannian. As
such, the rare eclipse problem reduces to a classical problem in convex geometry:
Given a “mesh” (a closed subset of the unit sphere), how small must K be for
a random K-dimensional subspace to “escape through the mesh,” i.e., to avoid
collision? It turns out that for this problem, the natural way to quantify the size
of a mesh is according to its Gaussian width:
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w.S/ WD Eg

�
sup
z2S
hz; gi

�
;

where g is a random vector with iid N .0; 1/ entries. Indeed, Gaussian width plays
a crucial role in the following result, which is an improvement to the original
(Corollary 3.4 in [10]); the proof is given in the appendix and follows the proof
of Corollary 3.3 in [5] almost identically.

Gordon’s Escape Through a Mesh Theorem. Take a closed subset S of the unit
sphere in R

N , and denote �M WD Ekgk2, where g is a random M-dimensional vector
with iid N .0; 1/ entries. If w.S/ < �M , then an .N �M/-dimensional subspace Y
drawn uniformly from the Grassmannian satisfies

Pr
�

Y \ S D ;
�

 1 � exp

�
�
1

2

�
�M � w.S/

�2�
:

It is straightforward to verify that �M 

p

M � 1, and so rearranging leads to the
following corollary:

Corollary 1. Take disjoint closed convex sets A;B � R
N, and let w\ denote the

Gaussian width of the intersection between the unit sphere in R
N and the cone

generated by the Minkowski difference A � B. Draw an M � N matrix P with iid
N .0; 1/ entries. Then

M >
�

w\ C
p
2 log.1=	/

�2
C 1 H) Pr

	
PA \ PB D ;




 1 � 	:

Now that we have a sufficient condition on M, it is natural to wonder how tight
this condition is. Recent work by Amelunxen et al. [2] shows that the Gordon’s
results are incredibly tight. Indeed, by an immediate application Theorem I and
Proposition 10.1 in [2], we achieve the following characterization of a phase
transition for the rare eclipse problem:

Corollary 2. Take disjoint closed convex sets A;B � R
N, and let w\ denote the

Gaussian width of the intersection between the unit sphere in R
N and the cone

generated by the Minkowski difference A � B. Draw an M � N matrix P with iid
N .0; 1/ entries. Then

M 
 w2\ C
p
16N log.4=	/C 1 H) Pr

	
PA \ PB D ;




 1 � 	;

M � w2\ �
p
16N log.4=	/ H) Pr

	
PA \ PB D ;



� 	;

Considering the second part of Corollary 2, the bound in Corollary 1 is essentially
tight. Also, since Corollary 2 features an additional

p
N factor in the error term

of the phase transition, the bound in Corollary 1 is stronger than the first part of
Corollary 2 when w\ �

p
N�

p
log.1=	/, which corresponds to the regime where

we can compress the most: M � N.
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3.1 The Case of Two Balls

Corollaries 1 and 2 demonstrate the significance of Gaussian width to the rare
eclipse problem. In this subsection, we observe these quantities to solve the rare
eclipse problem in the special case where A and B are balls. Since each ball has
its own parameters (namely, its center and radius), in this subsection, it is more
convenient to write A D S1 and B D S2. The following lemma completely
characterizes the difference cone S1 � S2:

Lemma 1. For i D 1; 2, take balls Si WD fci C rix W x 2 Bg, where ci 2 R
N, ri > 0

such that r1 C r2 < kc1 � c2k, and B denotes the ball centered at 0 of radius 1.
Then the cone generated by the Minkowski difference S1 � S2 is the circular cone:

Circ.˛/ WD fz W hz; c1 � c2i 
 kzkkc1 � c2k cos˛g;

where ˛ 2 .0; 
=2/ is the angle such that sin˛ D .r1 C r2/=kc1 � c2k.
In three dimensions, the fact that the difference cone is circular makes intuitive

sense. The proof of Lemma 1 is routine and can be found in the appendix.
Considering the beginning on this section, it now suffices to bound the Gaussian

width of the circular cone’s intersection with the unit sphere S
N�1. Luckily, this

computation is already available as Proposition 4.3 in [2]:

�
w.Circ.˛// \ S

N�1
�2
D N sin2 ˛ C O.1/:

See Figure 2 for an illustration of the corresponding phase transition. By Lemma 1
(and Corollaries 1 and 2), this means a random M�N projection will keep two balls
from colliding provided

M 
 N

�
r1 C r2
kc1 � c2k

�2
C O.

p
N/:

Note that there is a big payoff in the separation kc1 � c2k between the balls. Indeed,
doubling the separation decreases the required projection dimension by a factor of 4.

3.2 The Case of Two Ellipsoids

Now that we have solved the rare eclipse problem for balls, we consider the slightly
more general case of ellipsoids. Actually, this case is somewhat representative of
the general problem with arbitrary convex sets. This can be seen by appealing to the
following result of Paouris [19]:

Theorem 1 (Concentration of Volume). There is an absolute constant c > 0 such
that the following holds: Given a convex set K � R

N, draw a random vector X
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Fig. 2 Phase transition for a random null space to avoid a circular cone. Fixing the ambient
dimension to be N D 100, then for each ˛ D 1 W 
=200 W 
=2 and M D 1 W 100, we randomly
drew 100 M � N matrices with iid N .0; 1/ entries and plotted the proportion whose null spaces
avoided the circular cone with angle ˛. As expected, if ˛ is large, then so must M so that the null
space is small enough to avoid the cone. In red, we plot the curve M D N sin2 ˛ C cos 2˛, which
captures the phase transition by Theorem I and Proposition 4.3 in [2]. By Lemma 1, the circular
cone is precisely the difference cone of two balls, and so this phase transition solves the rare eclipse
problem in this special case

uniformly from K. Suppose K has the property that EŒX� D 0 and EŒXX>� D I.
Then

Pr
�
kXk2 > r

�
� e�cr 8r 


p
N:

In words, the above theorem says that the volume of an isotropic convex set is
concentrated in a round ball. The radius of the ball of concentration is O.

p
N/,

which corresponds to the fact that EkXk22 D ETrŒXX>� D N. This result can be
modified to describe volume concentration of any convex set (isotropic or not). To
see this, consider any convex set K � R

N of full dimension (otherwise the volume
is zero). Then taking Y to be a random vector drawn uniformly from K, we define
the centroid c WD EŒY�. Also, since K has full dimension, the inertia matrix EŒ.Y �
c/.Y � c/>� is symmetric and positive definite, and we can take A0 WD .EŒ.Y �
c/.Y � c/>�/1=2. It is straightforward to verify that X WD A�10 .Y � c/ is distributed
uniformly over K0 WD A�10 .K�c/ and that K0 satisfies the hypotheses of Theorem 1.
We claim that Y is concentrated in an ellipsoid defined by

Sr WD fcC rA0x W x 2 Bg
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for some r 

p

N, where B denotes the ball centered at 0 of radius 1. Indeed,
Theorem 1 gives

Pr
�

Y 62 Sr

�
D Pr

�
kA�10 .Y � c/k2 > r

�
� e�cr:

Overall, the vast majority of any convex set is contained in an ellipsoid defined by
its centroid and inertia matrix, and so two convex sets are nearly linearly separable
if the corresponding ellipsoids are linearly separable. (A similar argument relates
the case of two ellipsoids to a mixture of two Gaussians.)

Note that any ellipsoid has the following convenient form:

fcC Ax W x 2 Bg;

where c 2 R
N is the center of the ellipsoid, A is some N � N symmetric and

positive semidefinite matrix, and B denotes the ball centered at the origin of radius
1. Intuitively, the difference cone of any two ellipsoids will not be circular in
general, as it was in the case of two balls. Indeed, the oblong shape of each ellipsoid
(determined by its shape matrix A) precludes most of the useful symmetries in the
difference cone, and as such, the analysis of the size of the cone is more difficult.
Still, we established the following upper bound on the Gaussian width in the general
case, which by Corollaries 1 and 2 translates to a sufficient number of rows for a
random projection to typically maintain separation:

Theorem 2. For i D 1; 2, take ellipsoids Si WD fci C Aix W x 2 Bg, where ci 2 R
N,

Ai is symmetric and positive semidefinite, and B denotes the ball centered at 0 of
radius 1. Let w\ denote the Gaussian width of the intersection between the unit
sphere in R

N and the cone generated by the Minkowski difference S1 � S2. Then

w\ �
kA1kF C kA2kF

� �
	
kA1ek2 C kA2ek2


 C
1
p
2


provided � > kA1ek2CkA2ek2; here, � WD kc2 � c1k and e WD .c1 � c2/=kc1 � c2k.
The proof is technical and can be found in the appendix, but the ideas behind

the proof are interesting. There are two main ingredients, the first of which is the
following result:

Proposition 1 (Proposition 3.6 in [5]). Let C be any nonempty convex cone in R
N,

and let g be an N-dimensional vector with iid N .0; 1/ entries. Then

w.C \ S
N�1/ � Eg

h
kg �˘C �.g/k2

i
;

where ˘C � denotes the Euclidean projection onto the dual cone C � of C .
Proposition 1 is essentially a statement about convex duality, and while it

provides an upper bound on w\, in our case, it is difficult to find a closed form
expression for the right-hand side. However, the bound is in terms of distance to the
dual cone, and so any point in this cone provides an upper bound on this distance.
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Fig. 3 Two examples of two ellipsoids along with their difference cone and dual cone. For each
pair, on the left, the vector c1� c2 is depicted, as are the extreme difference directions between the
ellipsoids—these form the boundary of the difference cone C�, which is illustrated on the right
along with its dual cone C �

�
, i.e., the cone of separating hyperplanes. The vector e 2 C� is a

normalized version of c1 � c2. In the first example, the pseudoprojection ĕ sends any point g to
the closest point in the dual cone C �

�
along the line spanned by e. Interestingly, in cases where

the ellipsoids are far apart, the cone C� will be narrow, and so the boundary of the dual cone will
essentially be the orthogonal complement of e. As such, the pseudoprojection is close to the true
projection onto the polar cone in this limiting case. For this pseudoprojection to be well-defined,
we require that for every g, the line which passes through g in the direction of e hits the dual cone
at some point. This is not always the case, as the second example illustrates. It is straightforward to
show that this pseudoprojection is well-defined if and only if the ellipsoids remain separated when
projecting onto the line spanned by e

This leads to the second main ingredient in our analysis: We choose a convenient
mapping ĕ that sends any vector g to a point in C � (but not necessarily the closest
point) while at the same time allowing the expectation of kg � ĕ.g/k2 to have a
closed form. Since kg�˘C �.g/k2 � kg� ĕ.g/k2 for every possible instance of g,
this produces a closed-form upper bound on the bound in Proposition 1.

Figure 3 illustrates how we chose the pseudoprojection ĕ . Interestingly, this
pseudoprojection behaves more like the true projection when the ellipsoids are more
distant from each other. At the other extreme, note that Theorem 2 does not hold if
the ellipsoids are too close, i.e., if kc1 � c2k � kA1ek2 C kA2ek2. This occurs, for
example, if the two ellipsoids collide after projecting onto the span of e; indeed,
taking x and y to be unit norm vectors such that e>.c1CA1x/ D e>.c2CA2y/, then
rearranging gives

kc1�c2k D e>c1�e>c2 D �e>A1xCe>A2y � je
>A1xjCje

>A2yj � kA1ek2CkA2ek2:
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As Figure 3 illustrates, our pseudoprojection even fails to be well-defined when
the ellipsoids collide after projecting onto the span of e. So why bother using a
random projection to maintain linear separability when there is a rank-1 projection
available? There are two reasons: First, calculating this rank-1 projection requires
access to the centers of the ellipsoids, which are not available in certain applications
(e.g., unsupervised or semi-supervised learning or if the projection occurs blindly
during the data collection step). Second, the use of a random projection is useful
when projecting multiple ellipsoids simultaneously to preserve pairwise linear
separability—as we will detail in the next subsection, randomness allows one to
appeal to the union bound in a way that permits several ellipsoids to be projected
simultaneously using particularly few projected dimensions.

At this point, we compare Theorem 2 to the better understood case of two balls.
In this case, A1 D r1I and A2 D r2I, and so Theorem 2 gives that

w\ �
p

N �
r1 C r2

kc1 � c2k2 � .r1 C r2/
C

1
p
2

:

If we consider the regime in which r1 C r2 �
1
2
kc1 � c2k2, then we recover the

case of two balls to within a factor of 2, suggesting that the analysis is tight (at
least in this case). For a slightly more general lower bound, note that a projection
maintains separation between two ellipsoids only if it maintains separation between
balls contained in each ellipsoid. The radius of the largest ball in the ith ellipsoid
is equal to the smallest eigenvalue �min.Ai/ of the shape matrix Ai, and the center
of this ball coincides with the center ci of its parent ellipsoid. As such, we can
again appeal to the case of two balls to see that Theorem 2 is reasonably tight for
ellipsoids of reasonably small eccentricity �max.Ai/=�min.Ai/. Closed-form bounds
for general ellipses with high eccentricity are unwieldy, but Figure 4 illustrates
that our bound is far from tight when the ellipsoids are close to each other. Still,
the bound improves considerably as the distance increases. As such, we leave
improvements to Theorem 2 as an open problem (in particular, finding a closed-
form characterization of the phase transition in terms of the cis and Ais).

3.3 The Case of Multiple Convex Sets

Various classification tasks require one to distinguish between several different
classes, and so one might ask for a random projection to maintain pairwise linear
separability. For a fixed projection dimension M, let 	ij denote the probability that
convex classes Si and Sj collide after projection. Then the union bound gives that
the probability of maintaining separation is 
 1 �

P
i;jWi<j 	ij.

This use of the union bound helps to illustrate the freedom which comes with
a random projection. Recall that Theorem 2 requires that projecting the ellipsoids
onto the line spanned by the difference c1� c2 of their centers maintains separation.
In the case of multiple ellipsoids, one might then be inclined to project onto the span
of fci � cjgi;jWi<j. Generically, such a choice of projection puts M D

	K
2



D ˝.K2/,
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Fig. 4 Phase transition for a random projection to keep ellipsoids separated. (a) Fixing the ambient
dimension to be N D 40, then for each � D 1 W 400 and M D 1 W 40, we conducted ten trials.
For each trial, we randomly drew A1 and A2 as iid standard Wishart-distributed N � N matrices
with N degrees of freedom (i.e., Ai D XX>, where X is N � N with iid N .0; 1/ entries), along
with an M � N matrix P with iid N .0; 1/ entries. Plotted is the proportion of trials for which the
ellipsoids are disjoint after applying P (we did not record whether the ellipsoids were separated
before projection). For each of the 160,000 trials, the shape matrices satisfied � � kA1ek2 C
kA2ek2, thereby rendering Theorem 2 irrelevant. (b) Next, we performed the same experiment,
except we changed the distribution of A1 and A2 so that e is in the null space of both, and in
the orthogonal complement of e, they are iid standard Wishart-distributed .N � 1/ � .N � 1/
matrices with N � 1 degrees of freedom. As such, the corresponding ellipsoids resided in parallel
hyperplanes, and kA1ek2 C kA2ek2 D 0 so that Theorem 2 applies. For each trial, we stored the
bound on w\ from Theorem 2 and calculated the sample average of the squares of these bounds
corresponding to each � D 1 W 400. The red curve plots these sample averages (or 40, whichever is
smaller)—think of this as an upper bound on the phase transition. As one might expect, this bound
appears to sharpen as the distance increases

where K is the total number of classes. On the other hand, suppose each pairwise
distance kci � cjk is so large that the .i; j/th Gaussian width satisfies

w\ <

vuu
t2 log

�
1

p

 
K

2

!�
:

Then by Corollary 1, taking M D 8 log.
	K
2



=p/C1 D Op.log K/ ensures that classes

Si and Sj collide after projection with probability 	ij � p=
	K
2



, and so the probability

of maintaining overall separation is 
 1 � p. Of course, we will not save so much
in the projection dimension when the convex bodies are closer to each other, but we
certainly expect M < K2 in reasonable cases.

At this point, we note the similarity between the performance M D O.log K/
and what the Johnson–Lindenstrauss lemma guarantees when the classes are each
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a single point. Indeed, a random projection of M D ˝�.log K/ dimensions suffices
to ensure that pairwise distances are preserved to within a factor of 1 ˙ � with
constant probability; this in turn ensures that pairwise separated points remain
pairwise separated after projection. In fact, the proof technique for the Johnson–
Lindenstrauss lemma is similar: First prove that a random projection typically
preserves the norm of any vector, and then perform a union bound over all

	K
2




difference vectors. One might be inspired to use Johnson–Lindenstrauss ideas to
prove a result analogous to Theorem 2 (this was actually an initial attempt by
the authors). Unfortunately, since Johnson–Lindenstrauss does not account for
the shape matrices Ai of the ellipsoids, one is inclined to consider worst-case
orientations, and so terms like kAiek2 are replaced by spectral norms kAik2 in the
analysis, thereby producing a strictly weaker result. Dasgupta [6] uses this Johnson–
Lindenstrauss approach to project a mixture of Gaussians while maintaining some
notion of separation.

4 Random Projection Versus Principal Component Analysis

In this section, we compare the performance of random projection and principal
component analysis (PCA) for dimensionality reduction. First, we should briefly
review how to perform PCA. Consider a collection of data points fxig

p
iD1 � R

N , and
define the empirical mean by Nx WD 1

p

Pp
iD1 xi. Next, consider the empirical inertia

matrix:

ḃ WD
1

p

pX

iD1

.xi � x/.xi � Nx/
> D

1

p

pX

iD1

xix
>
i � NxNx

>:

The eigenvectors of ḃ with the largest eigenvalues are identified as the principal
components, and the idea of PCA is to project fxig

p
iD1 onto the span of these

components for dimensionality reduction.
In this section, we will compare random projection with PCA in a couple of

ways. First, we observe some toy examples of data sets that illustrate when PCA is
better and when random projection is better. Later, we make a comparison using a
real-world hyperspectral data set.

4.1 Comparison Using Toy Examples

Here, we consider a couple of extreme data sets which illustrate when PCA
outperforms random projection and vice versa. Our overarching model for the data
sets will be the following: Given a collection of disjoint balls fSig

K
iD1 in R

N , we
independently draw p data points uniformly from S WD

SK
iD1 Si. When p is large,

we can expect ḃ to be very close to
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˙ WD
1

vol.S/

KX

iD1

Z

Si

xx>dx � ��>

by the law of large numbers; here, � 2 R
N denotes the mean of the distribution.

Recall that the projection dimension for PCA is the number of large eigenvalues
of ḃ . Since the operator spectrum is a continuous function of the operator, we can
count large eigenvalues of ˙ to estimate this projection dimension. The following
lemma will be useful to this end:

Lemma 2. Consider a ball of the form S WD cC rB, where B � R
N denotes the

ball centered at 0 of radius 1. Define the operator:

W WD
Z

S
xx>dx:

Then the span of c and its orthogonal complement form the eigenspaces of W with
eigenvalues:

�c D rNkck2 vol.B/C CrNC2; �c? D CrNC2;

respectively, where C is some constant depending on N.

Proof. Pick any vector v 2 R
N of unit norm. Then

v>Wv D
Z

B
v>.cC ry/.cC ry/>vrNdy D .v>c/2 � rN vol.B/

CrNC2v>
�Z

B
yy>dy

�
v:

Notice that the operator
R
B yy>dy is invariant under conjugation by any rotation

matrix. As such, this operator is a constant C multiple of the identity operator. Thus,
v>Wv is maximized at �c when v is a normalized version of c and minimized at
�c? whenever v is orthogonal to c. ut

We start by considering the case where S is composed of two balls, namely,
S1 WD cC rB and S2 WD �cC rB. As far as random projection is concerned, in this
case, we are very familiar with the required projection dimension: ˝	.Nr2=kck2/.
In particular, as kck approaches r, a random projection cannot provide much
dimensionality reduction. To compare with PCA, note that in this case,˙ is a scalar
multiple of W1 CW2, where

Wi WD

Z

Si

xx>dx:

Moreover, it is easy to show that W1 D W2. By Lemma 2, the dominant eigenvector
of Wi is c, and so PCA would suggest to project onto the one-dimensional subspace
spanned by c. Indeed, this projection always preserves separation, and so in this
case, PCA provides a remarkable savings in projection dimension.
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Now consider the case where S is composed of 2N balls fSn;1g
N
nD1 [ fSn;2g

N
nD1

defined by Sn;1 WD enC rB and Sn;2 WD �enC rB, where en denotes the nth identity
basis element. Then ˙ is a scalar multiple of

PN
nD1.Wn;1 CWn;2/, where

Wn;i WD

Z

Sn;i

xx>dx:

Recall that Wn;1 D Wn;2. Then ˙ is simply a scalar multiple of
PN

nD1 Wn;1. By
Lemma 2, the Wn;1s are all diagonal, and their diagonals are translates of each other.
As such, their sum (and therefore ˙ ) is a scalar multiple of the identity matrix—in
this case, PCA would choose to not project down to fewer dimensions. On the other
hand, if we take

M >

0

@

s

N

�
2r
p
2

�2
C 1C

vu
ut2 log

�
1

p

 
2N

2

!�
1

A

2

C 1;

then by Corollary 1, a random projection maintains separation between any fixed
pair of balls from fSn;1g

N
nD1[fSn;2g

N
nD1 with probability 
 1� p=

	
2N
2



, and so by the

union bound, the balls are pairwise separated with probability
 1�p. In particular,
if r D O.N�1=2/, then we can take M D Op.log N/.

Overall, random projection performs poorly when the classes are close, but
when there are multiple sufficiently separated classes, you can expect a dramatic
dimensionality reduction. As for PCA, we have constructed a toy example for which
PCA performs well (the case of two balls), but in general, the performance of PCA
seems difficult to describe theoretically. Whereas the performance of random pro-
jection can be expressed in terms of “local” conditions (e.g., pairwise separation),
as the last example illustrates, the performance of PCA can be dictated by more
“global” conditions (e.g., the geometric configuration of classes). In the absence
of theoretical guarantees for PCA, the following subsection provides simulations
with real-world hyperspectral data to illustrate its performance compared to random
projection.

4.2 Simulations with Hyperspectral Data

One specific application of dimensionality reduction is the classification of hyper-
spectral data. For this application, the idea is to distinguish materials by observing
them across hundreds of spectral bands (like the red, green, and blue bands that
the human eye detects). Each pixel of a hyperspectral image can be viewed as a
vector of spectral information, capturing how much light of various frequencies is
being reradiated from that portion of the scene. A hyperspectral image is naturally
represented as a data cube with two spatial indices and one spectral index, and a
common task is to identify the material observed at each pair of spatial indices.
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Fig. 5 The Indian Pines hyperspectral data set [13]. Each pixel corresponds to a different type of
vegetation or crop. The ground truth image of labels is depicted on the left, and a sample band of
the data set is displayed on the right

To do this, one might apply per-pixel classification, in which a classifier simply
identifies the material in a given pixel from its spectral content, ignoring any spatial
context. Since the spectral information is high-dimensional, it is natural to attempt
dimensionality reduction before classification. A popular choice for this task is
PCA [15, 22], and in this subsection, we provide some preliminary simulations to
compare its performance with random projection.

All experiments described in this subsection were conducted using the Indian
Pines hyperspectral data set [13]. This data set consists of a hyperspectral image
with 145 � 145 pixels, each containing spectral reflectance data represented by a
vector of length N D 200. Each pixel corresponds to a particular type of vegetation
or crop, such as corn or wheat, with a total of 17 different classes (see Figure 5 for
an illustration).

For our simulations, the task will consist of using the known labels of a training
set (a small subset of the 21; 025 D 145 � 145 pixels) to make accurate predictions
for the remainder of the pixels. To keep the simulations fast, each simulation
considers a small patch of pixels. More precisely, given a patch of p pixels and
a prescribed training ratio r, we pick a random subset of the pixels of size rp to
be the training set. We use the labels from this training set to train a classifier
that will then attempt to guess the label of each of the other .1 � r/p pixels from
the location of its spectral reflectance in 200-dimensional space. The classifier
we use is MATLAB’s built-in implementation of multinomial logistic regression.
Performance is measured by classification error and runtime.

Given this setting, for different values of projection dimension M, we draw an
M � N matrix P with iid N .0; 1/ entries and replace every spectral reflectance
data point x by Px. In the degenerate case M D N, we simply take P to be the
identity matrix. For comparison, we also use principal component analysis (PCA)
for dimensionality reduction, which will interrogate the training set to identify
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M principal components before projecting the data set onto the span of these
components. An immediate advantage of random projection is that it allows the
sensing mechanism to blindly compress the data, as it does not need a training set
to determine the compression function.

Figure uses different patches of the Indian Pines data set and different training
ratios to compare both the classification accuracy and runtime of multinomial
logistic regression when applied to various projections of the data set. The first
experiment focuses on a small patch of 225 pixels, and the second considers a
patch of 3481 pixels. These experiments reveal a few interesting phenomena. First
of all, dimensionality reduction leads to impressive speedups in runtime. Perhaps
more surprising is the fact that there seems to be an improvement in classification
performance after projecting the data. We are far from completely understanding
this behavior, but we suspect it has to do with regularization and overfitting.

It is also interesting how similar random projection and PCA perform. Note that
the PCA method has an unfair advantage since it is data-adaptive, meaning that
it uses the training data to select the projection, and in practical applications for
which the sensing process is expensive, one might be interested in projecting in a
nonadaptive way, thereby allowing for less sensing. Our simulations suggest that
the expense is unnecessary, as a random projection will provide almost identical
performance. As indicated in the previous subsection, random projection is also
better understood as a means to maintain linear separability, and so there seems to
be little benefit in choosing PCA over random projection (at least for this sort of
classification task).

5 Future Work

One of the main points of this paper is that random projections can maintain
separation between sufficiently separated sets, and this is useful for classification
in the projected domain. Given the mindset of compressed sensing, it is impressive
that the sets need not be low-dimensional to enjoy separation in the projected
domain. What this suggests is a more general notion of simplicity that is at play, of

J
Fig. 6 The performance of classification by multinomial logistic regression after projecting onto
subspaces of various dimensions M. Depicted are two particular patches of the entire Indian Pines
data set—the top uses a patch of 225 pixels, while the bottom uses a patch of 3481 pixels. In
each case, the first two plots in the first row depict the ground truth labels in the patch, as
well as the random training set we selected. The third plot compares, for different values of
projection dimension M, the classification error incurred with random projection and with principal
component analysis. The fourth plot shows the runtime (in seconds) for different values of M. The
second and third rows depict the classification outcomes when using random projection and PCA,
respectively. One can see that dimensionality reduction not only speeds up the algorithm but also
improves the classification performance by discouraging overfitting
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which low-dimensionality and sufficient separation are mere instances. Obviously,
understanding this general notion is a worthy subject of future work.

From a more applied perspective, it would be worth investigating alternative
notions of distortion. Indeed, linear separability is the best-case scenario for
classification, but it is not at all necessary. After identifying any worthy notion of
distortion, one might study how much distortion is incurred by random projection,
and hopefully some of the ideas contained in this paper will help.

One of our main results (Theorem 2) provides a sufficient number of rows
for a random projection to maintain separation between ellipsoids. However, as
illustrated in Figure 4, this bound is far from optimal. Considering this case of two
ellipsoids is somewhat representative of the more general case of two convex sets
(as we identified using Theorem 1), improvements to Theorem 2 would be rather
interesting. In particular, it would be nice to characterize the phase transition in
terms of the ellipsoids’ parameters, as we already have in the case of two balls.

Finally, the random projections we consider here all have iid N .0; 1/ entries,
but real-world sensing systems may not enjoy this sort of flexibility. As such, it
would be interesting to extend the results of this paper to more general classes of
random projections, in particular, random projections which can be implemented
with a hyperspectral imager (say).

6 Appendix: Proofs

6.1 Proof of Gordon’s Escape Through a Mesh Theorem

This proof is chiefly based on the following result, which appears as Corollary 1.2
in [10]:

Gordon’s Comparison Theorem. Let S be a closed subset of Sn�1. Draw an M�N
matrix P with iid N .0; 1/ entries. Then

E

�
min
x2S
kPxk2

�

 �M � w.S/;

where �M WD Ekgk2 and g is a random M-dimensional vector with iid N .0; 1/

entries.
To prove the escape theorem, consider the function:

fSWP 7! min
x2S
kPxk2:

Gordon’s comparison theorem gives that EŒfS� 
 �M � w.S/, and so

Pr
�

Y \ S D ;
�
D Pr

�
min
x2S
kPxk2 > 0

�
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D Pr
�

min
x2S
kPxk2 >

	
�M � w.S/



�
	
�M � w.S/


�


 Pr
�

min
x2S
kPxk2 > EŒfS� �

	
�M � w.S/


�
: (1)

Next, we note that fS is Lipschitz with respect to the Frobenius norm with constant
1, and so we can appeal to (1.6) of [17] to get

Pr
�

fS.P/ > EŒfS� � t
�

 1 � e�t2=2 8t > 0: (2)

Taking t D �M � w.S/ and applying (2) to (1) then gives the result.

6.2 Proof of Lemma 1

Let C� denote the cone generated by the Minkowski difference S1 � S2. We will
show C� D Circ.˛/ by verifying both containments.

We begin by finding the smallest ˛ 2 Œ0; 
=2� for which C� � Circ.˛/. By the
definition of Circ.˛/, this containment is equivalent to

cos˛ � inf
z2C�

hz; c1 � c2i

kzkkc1 � c2k
D min

z2S1�S2

hz; c1 � c2i

kzkkc1 � c2k
: (3)

To find the smallest such ˛, we solve this optimization problem. Taking d WD c1�c2,
then S1 � S2 D .r1 C r2/B C d, and so we seek to

minimize f .y/ D
hyC d; di

kyC dkkdk
subject to kyk � r1 C r2:

Quickly note that the objective function is well-defined over the feasibility region
due to the assumption r1 C r2 < kdk. We first claim that f .y/ is minimized on the
boundary, i.e., where kyk D r1 C r2. To see this, suppose kyk < r1 C r2, and letting
Pd? denote the orthogonal projection onto the orthogonal complement of the span
of d, take t > 0 such that ky C tPd?yk D r1 C r2. Then y C tPd? y lies on the
boundary and

f .yC tPd?y/ D
hyC tPd?yC d; di

kyC tPd?yC dkkdk
D

hyC d; di

kyC tPd?yC dkkdk

<
hyC d; di

kyC dkkdk
D f .y/:

As such, it suffices to minimize subject to kyk D r1 C r2. At this point, the theory
of Lagrange multipliers can be applied since the equality constraint g.y/ WD kyk2 D
.r1 C r2/2 is a level set of a function whose gradient rg.y/ D 2y does not vanish
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on the level set. Thus, the minimizers of f with g.y/ D .r1 C r2/2 satisfy rf .y/ D
��rg.y/ D �2�y for some Lagrange multiplier � 2 R.

To continue, we calculate rf .y/. It is actually easier to calculate the gradient of
h.u/ WD hu; di=kukkdk:

rh.u/ D
1

kuk2

�
d �

�
u

kuk
; d

�
u

kuk

�
:

Note that rh.u/ D 0 only if u is a nontrivial multiple of d, i.e., only if u maximizes
h (by Cauchy–Schwarz). Also, it is easy to verify that hu;rh.u/i D 0. Overall,
changing variables u  y C d gives that any minimizer y\ of f subject to kyk D
r1 C r2 satisfies

rf .y\/ D �2�y\ for some � 2 R; (4)

rf .y\/ ¤ 0; (5)

hy\ C d;rf .y\/i D 0: (6)

At this point, (4) and (5) together imply that rf .y\/ is a nontrivial multiple of y\,
and so combining with (6) gives

hy\ C d; y\i D 0:

As such, 0, d, and y\ C d form vertices of a right triangle with hypotenuse kdk,
and the smallest ˛ satisfying (3) is the angle between d and y\ C d. Thus, sin˛ D
ky\k=kdk D .r1 C r2/=kc1 � c2k.

It remains to prove the reverse containment, Circ.˛/ � C�, for this particular
choice of ˛. Define

G WD fz W hz; di D kzkkdk cos˛; kzk D ky\ C dkg:

Then Circ.˛/ is the cone generated by G, and so it suffices to show that G � S1 �
S2 D .r1 C r2/B C d. To this end, pick any z 2 G, and consider the triangle with
vertices 0, d, and z. By definition, the angle between d and z is ˛, and the side z has
length ky\C dk. As such, by the side-angle-side postulate, this triangle is congruent
to the triangle with vertices at 0, d, and y\ C d. This implies that the side between z
and d has length kz�dk D ky\k D r1Cr2, and so z D .z�d/Cd 2 .r1Cr2/BCd,
as desired.

6.3 Proof of Theorem 2

This proof makes use of the following lemma:

Lemma 3. Take an n � n matrix A and let g have iid N .0; 1/ entries. Then
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r
2



kAkF � EkAgk2 � kAkF:

Proof. Let A D UDV be the singular value decomposition of A. Since the Gaussian
is isotropic, EkAgk2 D EkDgk2, and since the function x 7! x2 is convex, Jensen’s
inequality gives

EkDgk2 �
q
EkDgk22 D

vuut
nX

iD1

D2
iiEg2i D kDkF D kAkF:

Similarly, since x 7! kxk2 is convex, we can also use Jensen’s inequality to get

EkDgk2 D E

vu
ut

nX

iD1

D2
iig
2
i 


vu
ut

nX

iD1

.EjDiigij/
2 D Ejg1j

vu
ut

nX

iD1

D2
ii D

r
2



kAkF;

which completes the proof. ut

To prove Theorem 2, let C� denote the cone generated by the Minkowski
difference S1�S2. We will exploit Proposition 1, which gives the following estimate
in terms of the polar cone C �� WD fw W hw; zi � 0 8z 2 C�g:

w\ � Eg

h
kg �˘C �

�
.g/k2

i
;

where g has iid N .0; 1/ entries and ˘C �

�
denotes the Euclidean projection onto

C �� . Instead of directly computing the distance between g and its projection onto
C �� , we will construct a mapping ĕ which sends g to some member of C �� , but for
which distances are easier compute; indeed kg� ĕ.g/k2 will be an upper bound on
kg�˘C �

�
.g/k2. Consider the polar decomposition c2� c1 D �e, where � > 0. Then

we can decompose g D g1eC g2, and we define ĕ.g/ to be the point in C �� of the
form ˛eC g2 which is closest to g. With this definition, we have

kg �˘C �

�
.g/k2 � kg � ĕ.g/k2 D min jg1 � ˛j s.t. ˛eC g2 2 C �� :

To simplify this constraint, we find a convenient representation of the polar cone:

C �� D fw W hw; zi � 0 8z 2 C�g

D fw W hw; u � vi � 0 8u 2 S1; v 2 S2g

D fw W hw; c2 � c1i 
 hw;A1xi � hw;A2yi 8x; y 2 Bg

D
n
w W hw; c2 � c1i 
 max

x2B
hw;A1xi Cmax

y2B
hw;�A2yi

o
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D
n
w W hw; c2 � c1i 
 max

x2B
hA>1 w; xi Cmax

y2B
h�A>2 w; yi

o

D fw W hw; c2 � c1i 
 kA1wk2 C kA2wk2g;

where the last step uses the fact that each Ai is symmetric. The constraint ˛eC g2 2
C �� is then equivalent to

˛� 
 kA1.˛eC g2/k2 C kA2.˛eC g2/k2:

At this point, we focus on the case in which the projection e>S1 is disjoint from
e>S2. In this case, we have the following strict inequality:

max
x2B
hc1 C A1x; ei D max

u2S1
hu; ei < min

v2S2
hv; ei D min

y2B
hc2 C A2y; ei;

and rearranging then gives

� D hc2 � c1; ei > max
x2B
hA1x; ei Cmax

y2B
h�A2x; ei

D max
x2B
hx;A>1 ei Cmax

y2B
hx;�A>2 ei D kA1ek2 C kA2ek2:

As such, taking

˛ 
 ˛� WD
kA1g2k2 C kA2g2k2

� �
	
kA1ek2 C kA2ek2


 (7)

produces a point ˛eC g2 2 C �� , considering

˛� 
 ˛
	
kA1ek2CkA2ek2



CkA1g2k2CkA2g2k2 
 kA1.˛eCg2/k2CkA2.˛eCg2/k2;

where the last step follows from the triangle inequality. Note that if g1 
 ˛�, then
we can take ˛ D g1 to get kg� ĕ.g/k2 D 0. Otherwise, kg� ĕ.g/k2 � jg1�˛�j D
˛� � g1. Overall, we have

kg �˘C �

�
.g/k2 � kg � ĕ.g/k2 � .˛� � g1/C:

By the monotonicity of expectation, we then have

w\ � Eg

h
kg �˘C �

�
.g/k2

i
� Eg.˛

� � g1/C D Eg2

h
Eg1

h
.˛� � g1/C

ˇ̌
ˇg2
ii
: (8)

To estimate the right-hand side, we first have

Eg1

h
.˛�� g1/C

ˇ̌
ˇg2
i
D

Z 1

�1

.˛�� z/Cd˚.z/ D ˛�˚.˛�/C
1
p
2


e�.˛
�/2=2; (9)
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which lies between ˛�=2 and ˛� C 1=
p
2
 since ˛ 
 0.

Let Pe? denote the n � n orthogonal projection onto the orthogonal complement
of the span of e. Appealing to Lemma 3 with A WD AiPe? then gives

EkAig2k2 D EkAiPe?gk2 � kAiPe?kF � kAikF;

where the last inequality follows from the fact that each row of AiPe? is a projection
of the corresponding row in Ai and therefore has a smaller 2-norm. Considering (7),
this implies

Eg2˛
� �

kA1kF C kA2kF

� �
	
kA1ek2 C kA2ek2


 ;

which combined with (8) and (9) then gives

w\ � Eg2

h
Eg1

h
.˛� � g1/C

ˇ̌
ˇg2
ii
�

kA1kF C kA2kF

� �
	
kA1ek2 C kA2ek2


 C
1
p
2
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Weak Phase Retrieval

Sara Botelho-Andrade, Peter G. Casazza, Dorsa Ghoreishi, Shani Jose,
and Janet C. Tremain

Abstract Phase retrieval and phaseless reconstruction for Hilbert space frames
is a very active area of research. Recently, it was shown that these concepts are
equivalent. In this paper, we make a detailed study of a weakening of these concepts
to weak phase retrieval and weak phaseless reconstruction. We will give several
necessary and/or sufficient conditions for frames to have these weak properties. We
will prove three surprising results: (1) Weak phaseless reconstruction is equivalent
to phaseless reconstruction. That is, it never was weak; (2) weak phase retrieval is
not equivalent to weak phaseless reconstruction; (3) weak phase retrieval requires
at least 2m � 2 vectors in an m-dimensional Hilbert space. We also give several
examples illustrating the relationship between these concepts.

Keywords Phase retrieval · Weak phase retrieval · Norm retrieval · Spark ·
Complement property

1 Introduction

The problem of retrieving the phase of a signal, given a set of intensity measure-
ments, has been studied by engineers for many years. Signals passing through linear
systems often result in lost or distorted phase information. This partial loss of phase
information occurs in various applications including speech recognition [4, 14, 15]
and optics applications such as X-ray crystallography [3, 11, 12]. The concept of
phase retrieval for Hilbert space frames was introduced in 2006 by Balan, Casazza,
and Edidin [1], and since then it has become an active area of research [2, 5, 9,
13, 16]. Phase retrieval deals with recovering the phase of a signal given intensity
measurements from a redundant linear system. In phaseless reconstruction the
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unknown signal itself is reconstructed from these measurements. In recent literature,
the two terms were used interchangeably. However, it is not obvious from the
definitions that the two are equivalent. Recently, authors in [6] proved that phase
retrieval is equivalent to phaseless reconstruction in both the real and complex case.

Phase retrieval has been defined for vectors as well as for projections. Phase
retrieval by projections occur in real-life problems, such as crystal twinning [10],
where the signal is projected onto some higher-dimensional subspaces and has to
be recovered from the norms of the projections of the vectors onto the subspaces.
We refer the reader to [8] for a detailed study of phase retrieval by projections. At
times these projections are identified with their target spaces. Determining when
subspaces fWig

n
iD1 and fW?i g

n
iD1 both do phase retrieval has given way to the notion

of norm retrieval [7], another important area of research.
While investigating the relationship between phase retrieval and phaseless

reconstruction, in [6] it was noted that if two vectors have the same phase, then
they will be zero in the same coordinates. This gave way to a weakening of phase
retrieval, known as weak phase retrieval. In this work, we study the weakened
notions of phase retrieval and phaseless reconstruction. One limitation of current
methods used for retrieving the phase of a signal is computing power. Recall that a
generic family of .2m � 1/-vectors in R

m does phaseless reconstruction; however,
no set of .2m � 2/-vectors can (see [1] for details). By generic we are referring
to an open dense set in the set of .2m � 1/-element frames in H

m. We started
with the motivation that weak phase retrieval could be done with m C 1 vectors
in R

m. However, it will be shown that the cardinality condition can only be relaxed
to 2m � 2. Nevertheless, the results we obtain in this work are interesting in their
own right and contribute to the overall understanding of phase retrieval. We provide
illustrative examples in the real and complex cases for weak phase retrieval.

The rest of the paper is organized as follows: In Section 2, we give basic
definitions and certain preliminary results to be used in the paper. Weak phase
retrieval is defined in Section 3. Characterizations are given in both real and complex
case. Also, the minimum number of vectors needed for weak phase retrieval is
obtained. In Section 4, we define weak phaseless reconstruction and prove that it
is equivalent to phase retrieval in the real case. We conclude by providing certain
illustrative examples in Section 5.

2 Preliminaries

In this section, we introduce some of the basic definitions and results from frame
theory. Throughout this paper, H

m denotes an m-dimensional real or complex
Hilbert space, and we will write R

m or C
m when it is necessary to differentiate

between the two. We start with the definition of a frame in H
m.

Definition 1. A family of vectors ˚ D f�ig
n
iD1 in H

m is a frame if there are
constants 0 < A � B <1 so that for all x 2 H

m
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Akxk2 �
nX

iD1

jhx; �iij
2 � Bkxk2;

where A and B are the lower and upper frame bounds of the frame, respectively.
The frame is called an A-tight frame if A D B and is a Parseval frame if A D
B D 1.

In addition, ˚ is called an equal norm frame if k�ik D k�jk for all i; j and is
called a unit norm frame if k�ik D 1 for all i D 1; 2; : : : n.

Next, we give the formal definitions of phase retrieval, phaseless reconstruction,
and norm retrieval. Note that, here, phase of vector x D reit is taken as eit.

Definition 2. Let ˚ D f�ig
n
iD1 2 H

m be such that for x; y 2 H
m

jhx; �iij D jhy; �iij; for all i D 1; 2; : : : ; n:

˚ yields

(i) phase retrieval with respect to an orthonormal basis feig
m
iD1 if there is a

j� j D 1 such that x and �y have the same phase. That is, xi D �yi, for all
i D 1; 2; : : : ;m, where xi D hx; eii.

(ii) phaseless reconstruction if there is a j� j D 1 such that x D �y.
(iii) norm retrieval if kxk D kyk.

We note that tight frames f�ig
m
iD1 for Hm do norm retrieval. Indeed, if

jhx; �iij D jhy; �iij; for all i D 1; 2; : : : ;m;

then

Akxk2 D
mX

iD1

jhx; �iij
2 D

mX

iD1

jhy; �iij
2 D Akyk2:

Phase retrieval in R
m is classified in terms of a fundamental result called the

complement property, which we define below:

Definition 3 ([1]). A frame ˚ D f�ig
n
iD1in H

m satisfies the complement property
if for all subsets I � f1; 2; : : : ; ng, either spanf�igi2I D H

m or spanf�igi2Ic D H
m.

A fundamental result from [1] is:

Theorem 1 ([1]). If ˚ does phaseless reconstruction, then it has complement
property. In R

m, if ˚ has complement property, then it does phase retrieval.
It follows that if ˚ D f�ig

n
iD1 does phase retrieval in R

m, then n 
 2m � 1.
Full spark is another important notion of vectors in frame theory. A formal

definition is given below:

Definition 4. Given a family of vectors ˚ D f�ig
n
iD1 in H

m, the spark of ˚ is
defined as the cardinality of the smallest linearly dependent subset of ˚ . When
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spark.˚/ D mC 1, every subset of size m is linearly independent, and in that case,
˚ is said to be full spark.

We note that from the definitions it follows that full spark frames with n 
 2m�1
have the complement property and hence do phaseless reconstruction. Moreover, if
n D 2m � 1, then the complement property clearly implies full spark.

3 Weak Phase Retrieval

In this section, we define the notion of weak phase retrieval and make a detailed
study of it. We obtain the minimum number of vectors required to do weak phase
retrieval. First we define the notion of vectors having weakly the same phase.

Definition 5. Two vectors in H
m, x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/

weakly have the same phase if there is a j� j D 1 so that

phase.ai/ D �phase.bi/; for all i D 1; 2; : : : ;m; for which ai 6D 0 6D bi:

In the real case, if � D 1 we say x; y weakly have the same signs, and if � D �1
they weakly have opposite signs.

In the definition above, note that we are only comparing the phase of x and y
for entries where both are non-zero. Hence, two vectors may weakly have the same
phase but not have the same phase in the usual sense. We define weak phase retrieval
formally as follows:

Definition 6. If for any x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in H
m, the

equality

jhx; �iij D jhy; �iij; for all i D 1; 2; : : : ;m;

implies that x; y weakly have the same phase, then the family of vectors f�ig
n
iD1 in

H
m does weak phase retrieval.
Observe that the difference between phase retrieval and weak phase retrieval is

that in the latter it is possible for ai D 0 but bi 6D 0.

3.1 Real Case

Now we begin our study of weak phase retrieval in R
m. The following proposition

provides a useful criteria for determining when two vectors have weakly the same
or opposite phases. In what follows, we use Œm� to denote the set f1; 2; : : : ;mg.

Proposition 1. Let x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in R
m. The

following are equivalent:

1. We have

sgn .aiaj/ D sgn .bibj/; for all aiaj ¤ 0 ¤ bibj:



Weak Phase Retrieval 225

2. Either x; y have weakly the same signs or they have weakly opposite signs.

Proof. .1/) .2/: Let

I D f1 � i � m W ai D 0g and J D f1 � i � n W bi D 0g:

Let

K D Œm� n .I [ J/:

So i 2 K if and only if ai 6D 0 6D bi. Let i0 D min K. We examine two cases:

Case 1: sgn ai0 D sgn bi0 .
For any i0 6D k 2 K, sgn .ai0ak/ D sgn .bi0bk/ implies sgn ak D sgn bk. Since
all other coordinates of either x or y are zero, it follows that x; y weakly have the
same signs.

Case 2: sgn ai0 D �sgn bi0 .
For any io 6D k 2 K, ai0ak D bi0bk implies sgn ak D �sgn bk. Again, since
all other coordinates of either x or y are zero, it follows that x; y weakly have
opposite signs.

.2/) .1/: This is immediate.
The next lemma will be useful in the following proofs as it gives a criteria for

showing when vectors do not weakly have the same phase.

Lemma 1. Let x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ be vectors in R
m. If

there exists i 2 Œm� such that aibi ¤ 0 and hx; yi D 0, then x and y do not have
weakly the same or opposite signs.

Proof. We proceed by way of contradiction. If x and y weakly have the same
signs, then ajbj 
 0 for all j 2 Œm�, and in particular we arrive at the following
contradiction:

hx; yi D
nX

jD1

ajbj 
 aibi > 0:

If x and y weakly have opposite signs, then ajbj � 0 for all j 2 Œm�, and by reversing
the inequalities in the expression above, we get the desired result.

The following result relates weak phase retrieval and phase retrieval. Recall that
in the real case, it is known that phase retrieval, phaseless reconstruction, and the
complement property are equivalent [1, 6].

Corollary 1. Suppose ˚ D f�ig
n
iD1 2 R

m does weak phase retrieval but fails
complement property. Then there exist two vectors v;w 2 R

m such that v ? w
and

jhv; �iij D jhw; �iij for all i: (1)

Further, v and w are disjointly supported.
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Proof. By the assumption, ˚ D f�ig
n
iD1 fails complement property, so there exists

I � Œn�, s.t. A D Spanf�igi2I ¤ R
m and B D Spanf�igi2Ic ¤ R

m. Choose kxk D
kyk D 1 such that x ? A and y ? B. Then

jhxC y; �iij D jhx � y; �iij for all i=1, 2, . . . , n:

Let w D xC y and v D x � y. Then v ? w. Observe

hw; vi D hxC y; x � yi D kxk2 C hy; xi � hx; yi � kyk2 D 0:

Moreover, the assumption that ˚ does weak phase retrieval implies v and w have
weakly the same or opposite phases. Then it follows from Lemma 1 that viwi D 0

for all i D 1; 2; : : : ;m, and so v and w are disjointly supported.

Example 1. In R
2 let �1 D .1; 1/ and �2 D .1;�1/. These vectors clearly fail

complement property. But if x D .a1; a2/, y D .b1; b2/, and we have

jhx; �iij D jhy; �iij; for i D 1; 2;

then

ja1 C a2j
2 D jb1 C b2j

2 and ja1 � a2j
2 D jb1 � b2j

2:

By squaring these out and subtracting the result, we get:

4a1a2 D 4b1b2:

Hence, either x; y have the same signs or opposite signs. That is, these vectors do
weak phase retrieval.

With some particular assumptions, the following proposition gives the specific
form of vectors which do weak phase retrieval but not phase retrieval.

Proposition 2. Let ˚ D f�ig
n
iD1 2 R

m be such that ˚ does weak phase retrieval
but fails complement property. Let x D .a1; a2; : : : ; am/; y D .b1; b2; : : : bm/ 2 R

m

such that xC y ? x � y and satisfy equation (1). If aibi ¤ 0, ajbj ¤ 0 for some i; j,
and all other coordinates of x and y are zero, then

jaij D jbij; for i D 1; 2:

Proof. Without loss of generality, take x D .a1; a2; 0; : : : ; 0/ and y D

.b1; b2; 0; : : : ; 0/. Observe that both x C y and x � y either weakly have the same
phase or weakly have the opposite phase. Thus, by Corollary 1, xC y and x� y have
disjoint support as these vectors are orthogonal. Also,

xC y D .a1 C b1; a2 C b2; 0; : : : ; 0/ and x � y D .a1 � b1; a2 � b2; 0; : : : ; 0/:
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Since xC y and x � y are disjointly supported, it reduces to the cases where either
a1 D ˙b1 and a2 D �b2. In both cases, it follows from equation (1) that jaij D jbij

for all i D 1; 2; : : : ;m:
The next theorem gives the main result about the minimum number of vectors

required to do weak phase retrieval in R
m. Recall that phase retrieval requires n 


2m � 1 vectors.

Theorem 2. If f�ig
n
iD1 does weak phase retrieval on R

m, then n 
 2m � 2.

Proof. For a contradiction assume n � 2m � 3 and choose I � Œn� with I D Œm �
2�. Then jIj D m � 2 and jIcj � m � 1. For this partition of Œn�, let x C y and
x � y be as in the proof of Corollary 1. Then x C y and x � y must be disjointly
supported which follows from the Corollary 1. Therefore, for each i D 1; 2; : : : ;m,
ai D �ibi, where �i D ˙1 for each i and ai; bi are the ith coordinates of x and y,
respectively. Observe the conclusion holds for a fixed x and any y 2 .spanf�gi2I/

?

and dim .spanf�igi2I/
? 
 2. However, this poses a contradiction since there are

infinitely many distinct choices of y in this space, while our argument shows that
there are at most 2m possibilities for y.

Contrary to the initial hopes, the previous result shows that the minimal number
of vectors doing weak phase retrieval is only one less than the number of vectors
doing phase retrieval. However, it is interesting to note that a minimal set of vectors
doing weak phase retrieval is necessarily full spark, as is true for the minimal
number of vectors doing phase retrieval, as the next result shows.

Theorem 3. If ˚ D f�ig
2n�2
iD1 does weak phase retrieval in R

n, then ˚ is full spark.

Proof. We proceed by way of contradiction. Assume ˚ is not full spark. Then there
exists I � f1; 2; : : : ; 2n�2gwith jIj D n such that dim spanf�igi2I � n�1. Observe
that the choice of I above implies jIcj D n � 2. Now we arrive at a contradiction by
applying the same argument used in (the proof of) Theorem 2.

It is important to note that the converse of Theorem 3 does not hold. For example,
the canonical basis in R

2 is trivially full spark but does not do weak phase retrieval.
If ˚ is as in Theorem 3, then the following corollary guarantees it is possible to

add a vector to this set and obtain a collection which does phaseless reconstruction.

Corollary 2. If ˚ is as in Theorem 3, then there exists a dense set of vectors F in
R

n such that f g [ ˚ does phaseless reconstruction for any  2 F.

Proof. We observe that the set of  2 R
n such that ˚ [ f g is full spark is dense

in R
n. To see this let G D

S
I�Œ2n�2�
jIjDn�1

spanf�igi2I . Then G is the finite union of

hyperplanes, so Gc is dense and f g[˚ is full spark for any  2 Gc. To verify that
this collection of vectors is full spark. Note that either a subcollection of m-vectors
is contained in ˚ , then it spans R

n, or the subcollection contains the vector  . In
this case, denote I � Œ2n � 2� with jIj D n � 1 and suppose

P
i2I ai�i C a D 0.

Therefore, a D �
P

i2I ai�i and if a ¤ 0 then a 2 spanf�igi2I , a contradiction.
It follows a D 0 and since ˚ is full spark (see Theorem 3), in particular, f�igi2I are
linearly independent; it follows that ai D 0 for all i 2 I.
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3.2 Complex Case

An extension of Proposition 1 in the complex case is given below:

Proposition 3. Let x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in C
m. The

following are equivalent:

1. If there is a j� j D 1 such that phase .ai/ D �phase .bi/, for some i, then
phase .aiaj/ D �

2phase .bibj/; i 6D j and aj 6D 0 6D bj:

2. x and y weakly have the same phase.

Proof. .1/) .2/: Let the index sets I; J, and K be as in Proposition 1. By .1/, there
is a j� j D 1 such that phase .ai/ D �phase .bi/ for some i 2 K.

Now, for any j 2 K; j 6D i,

phase .aiaj/ D phase .ai/ phase .aj/ D �phase .bi/ phase .aj/:

But phase .aiaj/ D �
2 phase .bibj/ D �

2 phase .bi/phase .bj/. Thus, it follows that
phase .aj/ D � phase .bj/. Since all other coordinates of either x or y are zero, it
follows that x; y weakly have the same phase.
.2/ ) .1/: By definition, there is a j� j D 1 such that phase .ai/ D

� phase .bi/ for all ai 6D 0 6D bi: Now, .1/ follows immediately as phase .aiaj/ D

phase .ai/phase .aj/:

4 Weak Phaseless Reconstruction

In this section, we define weak phaseless reconstruction and study its characteriza-
tions. A formal definition is given below:

Definition 7. A family of vectors f�ig
n
iD1 in H

m does weak phaseless reconstruc-
tion if for any x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in H

m, with

jhx; �iij D jhy; �iij; for all i D 1; 2; : : : ; n; (2)

there is a j� j D 1 so that

ai D �bi; for all i D 1; 2; : : : ;m; for which ai 6D 0 6D bi:

In particular, f�ig does phaseless reconstruction for vectors having all non-zero
coordinates.

Note that if ˚ D f�ig
n
iD1 2 R

m does weak phaseless reconstruction, then it does
weak phase retrieval. The converse is not true in general. Let x D .a1; a2; : : : ; am/

and y D .b1; b2; : : : ; bm/. If ˚ D f�ig
n
iD1 2 R

m does weak phase retrieval and
jfijaibi ¤ 0gj D 2, then ˚ may not do weak phaseless reconstruction. If aibi D ajbj

where aibi ¤ 0 and ajbj ¤ 0, then we certainly cannot conclude in general that
jaij D jbij (see Example 2).
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Theorem 4. Let x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in R
m. The

following are equivalent:

I. There is a � D ˙1 so that

ai D �bi; for all ai 6D 0 6D bi:

II. We have aiaj D bibj for all 1 � i; j � m, and jaij D jbij for all i such that
ai 6D 0 6D bi:

III. The following hold:

A. Either x; y have weakly the same signs or they have weakly the opposite
signs.

B. One of the following holds:

(i) There is a 1 � i � m so that ai D 0 and bj D 0 for all j 6D i.
(ii) There is a 1 � i � m so that bi D 0 and aj D 0 for all j 6D i.

(iii) If (i) and (ii) fail and I D f1 � i � m W ai 6D 0 6D big, then the
following hold:

(a) If i 2 Ic then ai D 0 or bi D 0.
(b) For all i 2 I, jaij D jbij.

Proof. .I/) .II/ W By .I/ ai D �bi for all i such that both are non-zero, so aiaj D

.�bi/.�bj/ and so aiaj D �
2bibj. Since � D ˙1 it follows that aiaj D bibj for all i; j

(that are non-zero). The second part is trivial.
.II/) .III/ W
(A) This follows from Proposition 1.
(B) (i) Assume ai D 0 but bi 6D 0. Then for all j 6D i, we have aiaj D 0 D bibj

and so bj D 0.
(ii) This is symmetric to (i).
(iii) If (i) and (ii) fail, then by definition, for any i, either both ai and bi are zero

or they are both non-zero, which proves (A). (B) is immediate.
.III/) .I/ W The existence of � is clear by part A. In part B, .i/ and .ii/ trivially

imply (I). Assume .iii/; then for each i such that ai ¤ 0 ¤ bi and jaij D jbij, then
ai D ˙bi.

Corollary 3. Let ˚ be a frame for Rm. The following are equivalent:

1. ˚ does weak phaseless reconstruction.
2. For any x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in R

m, if

jhx; �iij D jhy; �iij for all i;

then each of the equivalent conditions in Theorem 4 holds.

The following theorems provide conditions under which weak phase retrieval is
equivalent to weak phaseless reconstruction.
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Proposition 4. Let ˚ D f�ig
n
iD1 do weak phase retrieval on vectors x D

.a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ in H
m. If jIj D jfi W aibi ¤ 0gj 
 3

and aiaj D bibj for all i; j 2 I, then ˚ does weak phaseless reconstruction.

Proof. If i; j; k are three members of I with aiaj D bibj, aiak D bibk, and akaj D

bkbj, then a short calculation gives a2i ajak D b2i bjbk and hence jaij D jbij. This
computation holds for each i 2 I, and since ˚ does phase retrieval, there is a j� j D
1 so that phase ai D � phase bi for all i. It follows that ai D � bi for all i D
1; 2; : : : ;m.

It turns out that whenever a frame contains the canonical basis, then weak phase
retrieval and phaseless reconstruction are the same.

Proposition 5. Let the frame ˚ D f�ig
n
iD1 2 R

m does weak phase retrieval. If ˚
contains the canonical basis, then ˚ does phaseless reconstruction.

Proof. Let x D .a1; a2; : : : ; am/ and y D .b1; b2; : : : ; bm/ 2 R
m. By definition

of weak phase retrieval, ˚ satisfies the equation 2. In particular, for �i D ei, the
equation 2 implies that jaij D jbij; 8i D 1; 2; : : : ;m, hence the theorem.

We conclude this section by showing the surprising result that weak phaseless
reconstruction is same as phaseless reconstruction in R

m, i.e., it is not really weak.

Theorem 5. Frames which do weak phaseless reconstruction in R
m do phaseless

reconstruction.

Proof. For a contradiction assume ˚ D f�gniD1 � R
m does weak phaseless

reconstruction but fails the complement property. Then there exists I � Œn� such
that Spani2I �i ¤ R

m and Spani2IC �i ¤ R
m. Pick non-zero vectors x; y 2 R

m such
that x ? Spani2I �i ¤ R

m and y ? Spani2IC �i ¤ R
M . Then for any c ¤ 0, we have

jhxC cy; �iij D jhx � cy; �iij for all i 2 Œn�:

Now we consider the following cases where xi and yi denotes the ith coordinate
of the vectors x and y.

Case 1: fi W xi ¤ 0g \ fi W yi ¤ 0g D ;

Set c D 1 and observe since x ¤ 0 there exists some i 2 Œn� such that
xi ¤ 0 and yi D 0 and similarly there exists j 2 Œn� such that yj ¤ 0 but
xj D 0. Then x C y and x � y have the same sign in the ith-coordinate but
opposite signs in the jth coordinate; this contradicts the assumption that ˚
does weak phaseless reconstruction.

Case 2: There exists i; j � Œn� such that xiyi ¤ 0 and xj D 0, yj ¤ 0.
Without loss of generality, we may assume xiyi > 0; otherwise consider

�x or �y. If 0 < c � xi
yi

, then the ith coordinates of x C cy and x � cy

have the same sign, whereas the jth coordinates have opposite signs which
contradicts the assumption. By considering yCcx and y�cx, this argument
holds in the case that yj D 0 and xj ¤ 0.
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Case 3: xi D 0 if and only if yi D 0.
By choosing c small enough, we have that xi C cyi 6D 0 if and only if

xi � cyi 6D 0. By weak phase retrieval, there is a jdj D 1 so that xi C cyi D

d.xi � cyi/. But this forces either xi 6D 0 or yi 6D 0 but not both which
contradicts the assumption for case 3.

It is known [7] that if ˚ D f�ig
n
iD1 does phase retrieval or phaseless recon-

struction in H
m and T is an invertible operator on H

m, then fT�ig
n
iD1 does phase

retrieval. It now follows that the same result holds for weak phaseless reconstruction.
However, this result does not hold for weak phase retrieval. Indeed, if �1 D .1; 1/

and �2 D .1;�1/, then we have seen that this frame does weak phase retrieval in
R
2. But the invertible operator T.�1/ D .1; 0/; T.�2/ D .0; 1/ maps this frame to a

frame which fails weak phase retrieval.

5 Illustrative Examples

In this section, we provide examples of frames that do weak phase retrieval in R
3

and R
4. As seen earlier, the vectors .1; 1/ and .1;�1/ do weak phase retrieval in R

2

but fail phase retrieval.
Our first example is a frame which does weak phase retrieval but fails weak

phaseless reconstruction.

Example 2. We work with the row vectors of

˚ D

2

66
4

�1 1 1 1

�2 �1 1 1

�3 1 �1 1

�4 1 1 �1

3

77
5

Observe that the rows of this matrix form an equal norm tight frame˚ (and hence
do norm retrieval). If x D .a1; a2; a3/ the following is the coefficient matrix where
the row Ei represents the coefficients obtained from the expansion jhx; �iij

2

1=2

2

66666
4

a1a2 a1a3 a2a3
P3

iD1 a2i
E1 1 1 1 1=2

E2 �1 �1 1 1=2

E3 �1 1 �1 1=2

E4 1 �1 �1 1=2

3

77777
5
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Then the following row operations give

1=2

2

666666
666
4

a1a2 a1a3 a2a3
P3

iD1 a2i
F1 D E1 � E2 1 1 0 0

F2 D E3 � E4 �1 1 0 0

F3 D E1 � E3 1 0 1 0

F4 D E2 � E4 �1 0 1 0

F4 D E1 � E4 0 1 1 0

F5 D E2 � E3 0 �1 1 0

3

777777
777
5

1=2

2

66
4

a1a2 a1a3 a2a3
P3

iD1 a2i
F1 � F2 1 0 0 0

F3 C F4 0 0 1 0

F5 � F6 0 1 0 0

3

77
5

Therefore, we have demonstrated a procedure to identify aiaj for all 1 � i 6D j � 3.
This shows that given y D .b1; b2; b3/ satisfying jhx; �iij

2 D jhy; �iij
2, then by the

procedure outlined above, we obtain

aiaj D bibj; for all 1 � i 6D j � 3:

By Proposition 1, these four vectors do weak sign retrieval in R
3. However, this

family fails to do weak phaseless reconstruction. Observe the vectors x D .1; 2; 0/

and y D .2; 1; 0/ satisfy jhx; �iij D jhy; �iij however do not have the same absolute
value in each coordinate.

Our next example is a frame which does weak phase retrieval but fails phaseless
reconstruction.

Example 3. We provide a set of six vectors in R
4 which does weak phase retrieval

in R
4. In this case our vectors are the rows of the matrix:

˚ D

2

66666
66
4

�1 1 1 1 �1

�2 �1 1 1 1

�3 1 �1 1 1

�4 1 1 �1 �1

�5 1 �1 1 �1

�6 1 �1 �1 1

3

77777
77
5

Note that ˚ fails to do phase retrieval as it requires seven vectors in R
4 to do

phase retrieval in R
4. Given x D .a1; a2; a3; a4/; y D .b1; b2; b3; b4/ we assume

jhx; �iij
2 D jhy; �iij

2; for all i D 1; 2; 3; 4; 5; 6: (3)
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Step 1: The following is the coefficient matrix obtained after expanding jhx; �iij
2

for i D 1; 2; : : : ; 6.

1

2

2

66666
6666
4

a1a2 a1a3 a1a4 a2a3 a2a4 a3a4
P4

iD1 a2i
E1 1 1 �1 1 �1 �1 1

2

E2 �1 �1 �1 1 1 1 1
2

E3 �1 1 1 �1 �1 1 1
2

E4 1 �1 �1 �1 �1 1 1
2

E5 �1 1 �1 �1 1 �1 1
2

E6 �1 �1 1 1 �1 �1 1
2

3

77777
7777
5

Step 2: Consider the following row operations, the last column becomes all
zeroes, so we drop it and we get:

2

6666
666
4

F1 D
1
2
.E1 � E4/ 0 1 0 1 0 �1

F2 D
1
2
.E2 � E5/ 0 �1 0 1 0 1

F3 D
1
2
.E3 � E6/ 0 1 0 �1 0 1

A1 D
1
2
.F1 C F2/ 0 0 0 1 0 0

A2 D
1
2
.F1 C F3/ 0 1 0 0 0 0

A3 D
1
2
.F2 C F3/ 0 0 0 0 0 1

3

7777
777
5

Step 3: Subtracting out A1;A2, and A3 from E1;E2;E3, and E4, we get:

2

66
4

E01 D 1 0 �1 0 �1 0

E02 D �1 0 �1 0 1 0

E03 D �1 0 1 0 �1 0

E04 D 1 0 �1 0 �1 0

3

77
5

Step 4: We will show that aiaj D bibj for all i 6D j.
Performing the given operations, we get:

2

666
6666
4

D1 D
�1
2
.E02 C E03/ 1 0 0 0 0 0

A2 0 1 0 0 0 0

D2 D
�1
2
.E01 C E02/ 0 0 1 0 0 0

A1 0 0 0 1 0 0

D3 D
�1
2
.E03 C E04/ 0 0 0 0 1 0

A3 0 0 0 0 0 1

3

777
7777
5

Doing the same operations with y D .b1; b2; b3; b4/, we get:

aiaj D bibj; for all 1 � i 6D j � 4:
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Remark 1. It should be noted that weak phase retrieval does not imply norm
retrieval. We may use the previous example to illustrate this. Let ˚ D f�ig

6
iD1 be

as in Example 3. Suppose ˚ does norm retrieval. Since there are only 6 vectors,
˚ fails the complement property. Now, take x D .1; 1;�1; 1/ ? f�1; �2; �3g and
y D .1; 1; 1; 1/ ? f�4; �5; �6g. Then, we have jhx C y; �iij D jhx � y; �iij for all
i D 1; 2; : : : 6: From the Definition 2 (iii), this implies kx C yk D kx � yk. Since
kxk D kyk, this implies that x ? y, which is a contradiction.

Acknowledgement The second through fifth authors were supported by NSF DMS 1609760, NSF
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Cubatures on Grassmannians: Moments,
Dimension Reduction, and Related Topics

Anna Breger, Martin Ehler, Manuel Gräf, and Thomas Peter

Abstract This chapter provides an overview of recent results on cubature points
in Grassmannians. We address several topics such as moment reconstruction,
dimension reduction, and cubature points in Grassmannians for approximation
tasks. We also provide some new results on the connection between cubatures and
the concept of frames for polynomial spaces.

Keywords Grassmannian · Cubatures · Moment reconstruction · Frames ·
Coverings

1 Introduction

Function approximation, integration, and inverse problems are just few examples of
numerical fields that rely on efficient strategies for function sampling. As particular
sampling rules, the concepts of cubatures in the Euclidean space and the sphere
have been widely investigated to integrate polynomials by a finite sum of sampling
values, cf. [24, 32, 41, 43, 49]. To some extent, cubatures are universal sampling
strategies in the sense that they are highly efficient in many fields. In certain aspects
of function approximation, covering, and integration, they have proved superior
to the widely used random sampling [13, 56]. Recently, cubatures on compact
manifolds have attracted attention, cf. [12, 34, 51]. Integration, covering, and
polynomial approximation from cubatures on manifolds and homogeneous spaces
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have been extensively studied from a theoretical point of view, cf. [22, 26, 36, 45, 56]
and references therein.

The Grassmannian manifold is the space of orthogonal projectors of fixed rank.
While orthogonality is a leading concept in many fields, projectors are intrinsically
tied together with dimension reduction, an important tool in many data analysis
tasks. In this chapter we like to provide a brief overview of recent results on
cubatures in Grassmannian manifolds.

Our starting point in Section 2 is the problem of reconstructing a sparse
(i.e., finitely supported) probability measure � in R

d from its first few moments.
Sparse distributions are indeed uniquely determined by their first few moments, and
Prony’s method has recently been adapted to this reconstruction [8, 44]. According
to the Johnson-Lindenstrauss lemma, low-dimensional projections of � still capture
essential information [21]. Taking the first few moments of low-dimensional
projections only, we now aim to reconstruct the first few moments of �, but we
allow for general probability distributions in Section 3, not necessarily sparse ones,
cf. [11]. A new construction of suitable projections is provided in Theorem 2. It turns
out that the choice of projectors is closely related to cubatures in Grassmannians,
i.e., the set of low-dimensional projectors should form a cubature (see Section 4,
Theorem 3). Hence, the reconstruction of high-dimensional moments from lower-
dimensional ones is naturally related to the concept of Grassmannian cubatures. We
then discuss in Section 5.1 numerical constructions of cubatures in Grassmannians
by minimizing the worst-case integration error of polynomials, cf. [2, 16]. In Sec-
tion 5.2, we go beyond polynomials and briefly discuss sequences of low-cardinality
cubatures that yield optimal worst-case integration error rates for Bessel potential
functions, cf. [12]; see also [16]. The optimal integration errors of cubatures directly
induce schemes for function approximation from samples by replacing the inner
products of L2 orthonormal basis expansions with cubature approximations; see
Section 5.3. Intuitively, good samplings for function approximation should cover
the underlying space well. Indeed in Section 5.4, we recapitulate that sequences
of low-cardinality Grassmannian cubatures are asymptotically optimal coverings,
cf. [15]. To further reflect on the versatility of Grassmannian cubatures, we also
discuss their use in phase retrieval problems; see Section 5.5.

So far, we have outlined the use of Grassmannian cubatures for various topics in
numerical mathematics. Within a single Grassmannian, the rank of the projectors
is fixed. However, the use of projectors with varying ranks offers additional
flexibility and may have benefits in practice; see [40, 59]. Therefore, the concept
of cubatures on unions of Grassmannians is discussed in Section 6. The number
of required cubature points is mainly steered by the dimension of the underlying
polynomial space. By determining the dimensions of polynomial spaces on unions
of Grassmannians, cf. [29], we address one of the necessary prerequisites for
the aforementioned topics within unions of Grassmannians (i.e., approximation
of integrals and functions, moment reconstruction, covering, and phase retrieval).
For special cases, we provide elementary proofs. The general cases need deeper
analysis, for which we refer to [29].
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2 Reconstruction from Moments and Dimension Reduction

2.1 Reconstructing Sparse Distributions from Moments

Our starting point is a high-dimensional random vector X 2 R
d with finite support

fxig
m
iD1 � R

d, i.e., X is distributed according to a discrete probability measure � on
R

d with support fxig
m
iD1 and positive weights faig

m
iD1 satisfying

Pm
iD1 ai D 1, so that

� D

mX

iD1

aiıxi ;

where ıxi denotes the point measure at xi. We now aim to reconstruct � from
knowledge of the moments

m�.�/ WD EX� D
mX

iD1

aix
�
i ; � 2 ; (1)

where  � N
d is some fixed subset. The nonlinear inverse problem of reconstruct-

ing � means to identify its support fxig
m
iD1 and its weights faig

m
iD1. The core idea

of Prony’s method is to determine an ideal I of polynomials on R
d just from the

moments m�.�/, � 2 , through a system of linear equations, such that its zero
locus

V.I/ D fx 2 R
d W f .x/ D 0; 8f 2 Ig

is exactly the point set fxig
m
iD1. The one-dimensional case, expressed in terms of

difference equations, was introduced in [8]; see also [10, 54, 55]; the multivariate
case is treated in [44].

Once I is determined, its zero locus V.I/ D fxig
m
iD1 can be determined by

standard methods [9], and the weights faig
m
iD1 are computed by a system of linear

equations from the Vandermonde system (1).
More specifically, the zero locus V.Ii/ of each ideal

Ii WD
	
.z � xi/

˛ W ˛ 2 N
d; j˛j D 1




is V.Ii/ D fxig, for i D 1; : : : ;m, so that fxig
m
iD1 D V.I/ with I WD I1 � � � Im. Note

that I coincides with

I D
� mY

iD1

.z � xi/
˛i W ˛i 2 N

d; j˛ij D 1; i D 1; : : : ;m
�
;

so that we have dm many generators of the ideal that must now be determined from
the moments m�.�/, � 2 .
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To simplify, let us now suppose that d D 1. In this case, the ideal I is generated
by the single polynomial

p.z/ D .z � x1/ � � � .z � xm/ D

mX

kD0

pkzk

of degree m. Its coefficient sequence fpkg
m
kD0 satisfies

mX

kD0

pkm�.kC �/ D
mX

iD1

x�i ai

mX

kD0

pkxk
i D

mX

iD1

x�i aip.xi/ D 0: (2)

Equation (2) holds for arbitrary values of �. Thus, varying � und using that pm D 1

leads to the linear system of equations

m�1X

kD0

pkm�.kC �/ D �m�.mC �/; � 2 0; (3)

where0 �  such that kC0 � , for all k D 0; : : : ;m. We now attempt to solve
(3) for p0; : : : ; pm�1. Obviously,  must be sufficiently large, so that

H WD
	
m�.kC �/



�20

kD0;:::;m�1
2 R

j0j�m (4)

can have full rank m. From knowledge of p, the eigenvalues of its companion matrix
yield its zeros fxig

m
iD1. Having determined fxig

m
iD1, (1) yields a Vandermonde system

of linear equations to compute the weights faig
m
iD1. Note that the rank condition in

(4) is satisfied for  D f0; : : : ; 2m � 1g and 0 D f0; : : : ;m � 1g, cf. [52] and [53]
for an overview of Prony’s methods.

The case d > 1 is more involved but can essentially be treated similarly. In [44]
it is shown that # D O.md/ suffices to ensure reconstruction, while # D O.md/
suffices if fxig

m
iD1 are in general position.

Concerning numerical stability, one has to differentiate between the idea of
Prony’s method as presented here and stable numerical variants for implementation
as for example ESPRIT [57], MUSIC [58], and finite rate of innovation [60]. These
algorithms perform excellent in many applications. If � and k are chosen as proposed
in (2), the system matrix (4) is a Hankel matrix that can be factored into

H D A>DA

with a diagonal matrix D D diag.ai/
m
iD1 and a Vandermonde matrix A D .xk

i /
m�1;m
kD0;iD1.

For d > 1, a similar factorization holds, where A is a generalized Vandermonde
matrix. Due to the Vandermonde structure of A, its condition number tends to be
large if the minimal separation distance �� is small or if there are large corner
deviations ˛�, i.e.,
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�� WD min
i;jD1;:::;m

i¤j

kxi � xjk2 � 0 or ˛� WD max
iD1;:::;m
jD1;:::;d

j log
	
jhxi; ejij



j  0:

This pinpoints stable performances when the measure � has well-separated
support without large growing, respectively, damping factors and with well-behaved
weights.

Note that the Prony method works beyond probability measures and can deal
with xi 2 C

d, ai 2 C and to this end also with � 2 Z
d. Indeed, if 0 in (2) is chosen

as 0 � �Nd, then the resulting system matrix becomes a Toeplitz matrix, which is
preferred in some literature on Prony’s method.

2.2 Dimension Reduction

The idea of dimension reduction is that properties of interest of a high-dimensional
random vector X 2 R

d may still be captured within its orthogonal k < d dimensional
projection, i.e., in PX, where P is an element in the Grassmannian space

Gk;d WD fP 2 R
d�d
sym W P2 D PI trace.P/ D kg:

Here, R
d�d
sym is the set of symmetric matrices in R

d�d. Consider two sparsely
distributed independent random vectors

X;Y �
mX

iD1

aiıxi : (5)

Their difference X � Y is distributed according to

X � Y �
mX

i;jD1

aiajıxi�xj :

For P 2 Gk;d, the magnitude of the differences is distributed according to

kPX � PYk2 �
mX

i;jD1

aiajıkPxi�Pxjk2 :

In fact, for 0 < � < 1 and k with d 
 k 
 4 log.m/
�2=2��3=3

, there is P 2 Gk;d, such that

.1 � �/kX � Yk2 �
d

k
kPX � PYk2 � .1C �/kX � Yk2 (6)
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holds with probability 1. This is the direct consequence of realizations of the
Johnson-Lindenstrauss lemma applied to the deterministic point set fxig

m
iD1, cf. [21].

Note that (6) tells us that the dimension reduction still preserves essential
information of X and Y . At this point though, we just know of its existence, and we
have not yet specified any particular projector P such that (6) holds; see [1, 21, 46]
for different types of random choices.

We should point out that PX and PY are contained in a k-dimensional subspace
of R

d but still have d entries as vectors in d dimensions. The actual dimension
reduction takes place by applying Q 2 Vk;d with Q>Q D P, where

Vk;d WD fQ 2 R
k�d W QQ> D Ikg

denotes the Stiefel manifold. The inequality (6) becomes

.1 � �/kX � Yk2 �
d

k
kQX � QYk2 � .1C �/kX � Yk2;

where QX;QY 2 R
k are properly dimension-reduced random vectors still contain-

ing the information of the pairwise differences up to a factor 1˙ �.

3 High-Dimensional Moments from Lower-Dimensional
Ones

3.1 Moments and Spanning Sets

We shall now combine dimension reduction with a modified problem, which is
related to the reconstruction from moments. First, we drop the sparsity conditions
and allow arbitrary probability measures � on R

d. Let X 2 R
d be some random

vector with unknown Borel probability distribution on R
d. Suppose we do not have

access to its moments, but we observe the first few moments of order T of low-
dimensional linear projections, i.e., for fQjg

n
jD1 � Vk;d, we measure

E.QjX/
s; s 2 N

k; jsj � T: (7)

We cannot reconstruct � directly, but we aim to determine the first few high-
dimensional moments

EXr; r 2 N
d; jrj � T: (8)

In other words, we know the first few moments of order T of the dimension-
reduced random vectors QjX 2 R

k, j D 1; : : : ; n, and our task is to reconstruct
the high-dimensional moments, cf. [11]. The idea is to interpret moments as
algebraic polynomials and represent desired high-degree polynomials as products
of polynomials of lower degree.
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Polynomials of total degree T on R
d, denoted by PolT.Rd/, are decomposed by

PolT.R
d/ D

TM

tD0

Homt.R
d/;

where Homt.R
d/ denotes the space of homogeneous polynomials of degree t on R

d.
Let x 2 R

d be a vector of unknowns; then .Qjx/s is a homogenous polynomial of
degree jsj. If

f.Qjx/
s W j D 1; : : : ; n; s 2 N

k; jsj D tg (9)

spans Homt.R
d/, then each monomial of order t is a linear combination of elements

in (9), i.e., for r 2 N
d with jrj D t, there are coefficients cj;s such that

xr D

nX

jD1

X

s2Nk; jsjDt

cj;s.Qjx/
s; for all x 2 R

d: (10)

Hence, the linearity of the expectation yields that all high-dimensional moments of
order t can be reconstructed from the low-dimensional moments

E.QjX/
s; j D 1; : : : ; n; jsj D t:

Let us summarize the above discussion:

Theorem 1. Let X 2 R
d be a random vector, and, for fQjg

n
jD1 � Vk;d, suppose that

(9) spans Homt.R
d/. Then any moment EXr, for r 2 N

d with jrj D t, is a linear
combination of

fE.QjX/
s W j D 1; : : : ; n; s 2 N

k; jsj D tg;

where the coefficients are independent of the distribution of X and are taken from
(10).
Thus, we aim to find fQjg

n
jD1, such that (9) spans Homt.R

d/ for each t � T . This is
the topic of the subsequent section. Note that spanning sets in finite dimensions are
also called frames.

3.2 Frames for Polynomial Spaces

The most excessive dimension reduction in Theorem 1 corresponds to k D 1. In this
case, we observe that we only need to take care of the maximal t D T:

Proposition 1. Let fQjg
n
jD1 � V1;d and x 2 R

d be a vector of unknowns.
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a) If f.Qjx/tgnjD1 is a frame for Homt.R
d/, then f.Qjx/t�1gnjD1 is a frame for

Homt�1.R
d/.

b) If f.Qjx/t�1gnjD1 is linearly independent in Homt�1.R
d/, then f.Qjx/tgnjD1 is

linearly independent in Homt.R
d/.

Proof.

a) Let f be an arbitrary element in Homt�1.R
d/. There is g 2 Homt.R

d/ such that
its first partial derivative @1g coincides with f . Since f.Qjx/tgnjD1 is a frame for
Homt.R

d/, there are coefficients fcjg
n
jD1 such that g D

Pn
jD1 cj.Qjx/t. Therefore,

we obtain

f .x/ D
nX

jD1

cj.Qje1/t.Qjx/
t�1;

which verifies part a).
b) Suppose that 0 D

Pn
jD1 cj.Qjx/t. Applying all partial derivatives yields

0 D

nX

jD1

cj.Qjei/t.Qjx/
t�1; i D 1; : : : ; d:

The linear independence assumption implies cj.Qjei/ D 0, for i D 1; : : : ; d, and,
therefore, cj D 0, for j D 1; : : : ; n, since Qj ¤ 0.

Part a) of Proposition 1 tells us that if f.Qjx/tgnjD1 is a frame for Homt.R
d/, then

f.Qjx/
s W j D 1; : : : ; n; s 2 N; jsj � tg (11)

is a frame for Polt.Rd/. The proof directly shows that the first low-dimensional
moments are sufficient to reconstruct the first high-dimensional moments.

Next, we provide a general construction recipe of fQjg
n
jD1 � V1;d that covers

arbitrary d and t. Note that the dimension of Homt.R
d/ is

	tCd�1
d�1



.

Theorem 2. Let fvig
d
iD1 be pairwise different positive real numbers, let f˛jg

tCd�1
jD1

be pairwise different nonnegative integers, and let V D .v
˛j

i /i;j denote the associated
.tC d � 1/� d-Vandermonde-type matrix. Suppose that the

	tCd�1
d�1



� d matrix Q is

built from all minors of V of order d � 1. We denote the rows of Q by Q1; : : : ;Qn,
where n D

	tCd�1
d�1



. Then f.Qjx/tgnjD1 is a basis for Homt.R

d/.

Proof. We expand .Qjx/t by the multivariate binomial formula

.Qjx/
t D

X

˛2Nd ; j˛jDt

 
t

˛

!

Q˛
j x˛:
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The coefficients are put into the j-th row of a matrix M1 2 R
n�n, i.e.,

M1 D
�
. t
˛ /Q˛

j

�

j;˛
:

We must now check that M1 is invertible.
Dividing each column ˛ by its respective binomial coefficient

	 t
˛



yields the

matrix M2 D
	
Q˛

j



j;˛ 2 R

n�n, and M1 is invertible if and only if M2 is. Let c denote
the product of all minors of order d of V . It follows from [61] that

det.M2/ D cd�1:

The Vandermonde structure yields that c ¤ 0, so that M2 and hence M1 are
invertible. Thus, f.Qjx/tgnjD1 is indeed a basis for Homt.R

d/.
Note that normalization of the rows of Q in Theorem 2 yields fQjg

n
jD1 � V1;d, and

f.Qjx/tgnjD1 is a basis for Homt.R
d/. Thus, for each s � t, f.Qjx/sgnjD1 is a frame for

Homs.R
d/ according to Proposition 1.

4 Frames vs. Cubatures for Moment Reconstruction

4.1 Frames and Cubatures on the Sphere and Beyond

So far, we have seen that reconstruction of high-dimensional moments from low-
dimensional ones is related to frames for Homt.R

d/. Next, we shall relate such
frames to cubature points. Let Homt.S

d�1/ denote the space of homogeneous
polynomials Homt.R

d/ restricted to the sphere S
d�1. For points fQjg

n
jD1 � S

d�1

and weights f!jg
n
jD1 � R, we say that f.Qj; !j/g

n
jD1 is a cubature for Homt.S

d�1/ if

Z

Sd�1

f .x/dx D
nX

jD1

!jf .Qj/; for all f 2 Homt.S
d�1/;

where dx denotes the standard measure on the sphere normalized to have mass one.
Note that for k D 1, the Stiefel manifold V1;d coincides with S

d�1. It turns out that
the frame property of f.Qjx/sgnjD1 is related to the concept of cubature points:

Theorem 3. Let fQjg
n
jD1 � V1;d and x 2 R

d be a vector of unknowns.

a) If f.Qjx/tgnjD1 is a frame for Homt.R
d/, then there are weights f!jg

n
jD1 � R, such

that f.Q>j ; !j/g
n
jD1 is a cubature for Homt.S

d�1/.

b) If there are weights f!jg
n
jD1 � R such that f.Q>j ; !j/g

n
jD1 is a cubature for

Hom2t.S
d�1/, then f.Qjx/tgnjD1 is a frame for Homt.R

d/.
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Proof. a) Since f.Qjx/tgnjD1 is a frame for Homt.R
d/, for each a 2 S

d�1, there are
coefficients fcj.a/gnjD1 � R such that

.a>x/t D
nX

jD1

cj.a/.Qjx/
t:

Note that the mapping a 7! cj.a/ can be chosen to be continuous, for each j D
1; : : : ; n. Therefore, we derive

Z

Sd�1

.a>x/tda D
nX

jD1

.Qjx/
t
Z

Sd�1

cj.a/da D
nX

jD1

.Qjx/
t!j;

with!j D
R
Sd�1 cj.a/da. Since the above equality holds for all x 2 R

d, f.Q>j ; !j/g
n
jD1

is a cubature for Homt.S
d�1/.

b) Note that Homt.S
d�1/ is a reproducing kernel Hilbert space, and let us denote

its reproducing kernel with respect to the standard inner product by Kt. For now, we
restrict x and a to the sphere. The reproducing property yields

.a>x/t D
Z

Sd�1

.z>x/tKt.z; a/dz:

The mapping z 7! .z>x/tKt.z; a/ is contained in Hom2t.S
d�1/, so that the cubature

property yields

.a>x/t D
nX

jD1

!j.Qjx/
tKt.Q

>
j ; a/ D

nX

jD1

.Qjx/
tcj.a/;

where cj.a/ D !jKt.Q>j ; a/. A homogeneity argument concludes the proof.
Note that the degree of the homogeneous polynomials in Part b) of Theorem 3 is
not the same (2t for the cubatures and t for the frame). The degree 2t is due to
multiplication of two homogeneous polynomials of degree t, which is not just an
artifact of the proof. There are indeed cubatures for Homt.S

d�1/, whose cardinality
is lower than the dimension of Homt.R

d/; see [37], for instance.
In fact, Theorem 3 holds in much more generality in suitable finite dimensional

reproducing kernel Hilbert spaces. Let .˝; �/ be a finite measure space, and let F
be a linear subspace of continuous functions in L2.˝; �/. For points fqjg

n
jD1 � ˝

and weights f!jg
n
jD1 � R, we say that f.qj; !j/g

n
jD1 is a cubature for F if

Z

˝

f .x/d�.x/ D
nX

jD1

!jf .qj/; for all f 2 F :

The following result generalizes Theorem 3:
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Proposition 2. Let K W ˝ �˝ ! R be a symmetric kernel that linearly generates
F , i.e., K.x; y/ D K.y; x/ for x; y 2 ˝, and

F D spanfK.a; �/ W a 2 ˝g: (12)

For fqjg
n
jD1 � ˝, the following holds:

a) If fK.qj; �/g
n
jD1 is a frame for F , then there are weights f!jg

n
jD1 � R, such that

f.qj; !j/g
n
jD1 is a cubature for F .

b) If there are weights f!jg
n
jD1 � R such that f.qj; !j/g

n
jD1 is a cubature for the

linear span of F � F , then fK.qj; �/g
n
jD1 is a frame for F .

The proof of Proposition 2 is structurally the same as for Theorem 3 with K.x; y/ D
.x>y/t and F D Homt.S

d�1/, so we omit the details.

Remark 1. Part b) of Proposition 2 implies n 
 dim.F/. Analoguous results in
[23], for instance, are restricted to positive weights.

4.2 Moment Reconstruction with Cubatures in Grassmannians

To switch to the Grassmannian setting, we first note that Q 2 V1;d if and only if
Q>Q 2 G1;d. Moreover, the kernel

Kt;1 W G1;d � G1;d ! R; .P;R/ 7! trace.PR/t

linearly generates Homt.G1;d/. Let Homt.Gk;d/ denote the restrictions of homoge-
neous polynomials of degree t on R

d�d
sym to the Grassmannian Gk;d. For x 2 S

d�1, it
holds that

.Qx/2t D Kt;1.Q
>Q; xx>/; (13)

so that Hom2t.S
d�1/ corresponds to Homt.G1;d/. According to (13) we deduce that

for fQjg
n
jD1 � V1;d the set f.Qjx/2tgnjD1 is a frame for Hom2t.R

d/ if and only if

fKt;1.Q>j Qj; �/g
n
jD1 is a frame for Homt.G1;d/. Similarly, f.Q>j ; !j/g

n
jD1 is a cubature

for Hom2t.S
d�1/ if and only if f.Q>j Qj; !j/g

n
jD1 is a cubature for Homt.G1;d/.

Therefore, we can switch to the Grassmannian setting to formulate the following
moment reconstruction result:

Corollary 1 ([11]). For r 2 N
d with jrj � t � d, there are coefficients ar

s 2 R,
s 2 N

d, jsj D jrj, such that if f.Pj; !j/g
n
jD1 is a cubature for Homt.G1;d/, then any

random vector X 2 R
d satisfies

EXr D

nX

jD1

!j

X

s2Nd ; jsjDjrj

ar
sE.PjX/

s: (14)
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For Qj 2 V1;d and Pj 2 G1;d with Pj D Q>j Qj, one can switch between the moments
of QjX and PjX by the formula

.PjX/
s D Qs

j .QjX/
jsj; s 2 N

d:

It may depend on the context whether PjX or QjX is preferred.

5 Cubatures in Grassmannians

Proposition 2 connects frames and cubatures beyond G1;d and can be applied to the
general Grassmannians Gk;d by˝ D Gk;d, F D Homt.Gk;d/, and the kernel K D Kt;k

given by

Kt;k W Gk;d � Gk;d ! R; .P;R/ 7! trace.PR/t;

cf. [11, 29]. In the following sections, we shall provide further examples for the
usefulness of Grassmannian cubatures beyond moment reconstruction.

5.1 Numerical Construction of Cubatures

Cubatures on Grassmannians with constant weights are constructed in [4] from
group orbits. Here we shall briefly present a method based on numerical minimiza-
tion. The t-fusion frame potential for points fPjg

n
jD1 � Gk;d and weights f!jg

n
jD1 � R

is

FFP.f.Pj; !j/g
n
jD1; t/ WD

nX

i;jD1

!j!i trace.PiPj/
t:

Note that Gk;d is naturally endowed with an orthogonally invariant probability
measure �k;d. Assuming that

Pn
jD1 !j D 1, the fusion frame potential is lower

bounded by

FFP.f.Pj; !j/g
n
jD1; t/ 


Z

Gk;d

Z

Gk;d

trace.PR/td�k;d.P/d�k;d.R/; (15)

cf. [16] and also [2]. Since the constant functions are contained in Homt.Gk;d/, any
cubature must satisfy

Pn
jD1 !j D 1.
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Theorem 4 ([2, 16]). If
Pn

jD1 !j D 1 and (15) holds with equality, then
f.Pj; !j/g

n
jD1 is a cubature for Homt.Gk;d/.

In order to check for equality in (15), we require a more explicit expression for the
right-hand side. In fact, it holds

Z

Gk;d

Z

Gk;d

trace.PR/td�k;d.P/d�k;d.R/ D
X

j
jDt;
`.
/�d=2

C2

.Ik/

C
.Id/
;

where Id denotes the d�d identity matrix and 
 is an integer partition of t with `.
/
being the number of nonzero parts and C
 are the zonal polynomials, cf. [19, 38, 48].
Evaluation of C
 at Ik and Id, respectively, yields

C
.Id/ D 2
j
jj
jŠ

	
d
2






Y

1�i<j�`.
/

.2
i � 2
j � iC j/=
`.
/Y

iD1

.2
i C `.
/ � i/Š;

cf. [27]. Here, .a/
 denotes the generalized hypergeometric coefficient given by

.a/
 WD
`.
/Y

iD1

	
a � 1

2
.i � 1/




i
; .a/s WD a.aC 1/ : : : .aC s � 1/: (16)

Fixing the weights f!jg
n
jD1 � R, say !j D 1=n, for j D 1; : : : ; n, we can now

aim to numerically minimize the t-fusion frame potential FFP.f.Pj; !j/g
n
jD1; t/ over

all sets of n points fPjg
n
jD1 � Gk;d and check for equality in (15), where the right-

hand side can be computed explicitly. Equality can be achieved for suitable relations
between n and t, cf. [33]. See [15, 16] for successful minimizations in G2;4.

5.2 Cubatures for Approximation of Integrals

Cubature points enable us to replace integrals over polynomials by finite sums. We
now aim to go beyond polynomials and keep track of the integration error. Without
loss of generality, we assume k � d

2
throughout since Gd�k;d can be identified with

Gk;d.
The eigenfunctions f'
g`.
/�k of the Laplace-Beltrami operator� on Gk;d are an

orthonormal basis for L2.Gk;d/ and are naturally indexed by integer partitions 
 of
length at most k. Let f��
g`.
/�k be the corresponding eigenvalues, i.e.,

�
 D 2j
jdC 4
kX

iD1


i.
i � i/; (17)
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cf. [42, Theorem 13.2]. Without loss of generality, we choose each '
 to be real
valued, in particular, '.0/ � 1. Essentially following [12, 47], we formally define
.I ��/s=2f by

h.I ��/s=2f ; '
i WD .1C �
/
s=2hf ; '
i; for all `.
/ � k:

The Bessel potential space Hs
p.Gk;d/, for 1 � p � 1 and s 
 0, is

Hs
p.Gk;d/ WD ff 2 Lp.Gk;d/ W kfkHs

p
<1g; where

kfkHs
p
WD k.I ��/s=2fkLp ;

i.e., f 2 Hs
p.Gk;d/ if and only if f 2 Lp.Gk;d/ and .I ��/s=2f 2 Lp.Gk;d/.

The expected worst-case error of integration in Bessel potential spaces of n
independent random points endowed with constant weights is of the order n�

1
2 :

Proposition 3 ([13, 16, 37, 50]). For s > k.d � k/=2, suppose P1; : : : ;Pn are
random points on Gk;d, independently identically distributed according to �k;d then
it holds

vuuuu
t

E

h
sup

f2Hs
2.Gk;d/

kfkHs
2
�1

ˇ̌
ˇ
Z

Gk;d

f .P/d�k;d.P/ �
1

n

nX

jD1

f .Pj/
ˇ̌
ˇ
2i
D cn�

1
2

with c2 D
P

1�`.
/�k.1C �
/
�s.

The following result follows from [12, Theorem 2.12]:

Theorem 5 ([12]). Let s > k.d � k/=p. Any sequence of cubatures f.P.t/j ; !
.t/
j /g

nt
jD1

with nonnegative weights for Homt.Gk;d/, t D 1; 2; : : : ; satisfies, for f 2 Hs
p.Gk;d/,

ˇ̌
ˇ
Z

Gk;d

f .P/d�k;d.P/ �
ntX

jD1

!
.t/
j f .P.t/j /

ˇ̌
ˇ . t�skfkHs

p
:

Let us connect the cardinality nt of the cubature sequence with the strength t.
The lower bound nt & tk.d�k/ follows from results in [23] that also relate to our
Proposition 2. Therefore, the best we can hope for is nt � tk.d�k/:

Definition 1. We call a sequence of cubatures f.P.t/j ; !
.t/
j /g

nt
jD1 of strength t with

t D 1; 2; : : :, satisfying

nt � tk.d�k/ (18)

with nt !1, a low-cardinality cubature sequence.
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Remark 2. For any t D 1; 2; : : :, there exist cubatures f.P.t/j ; !
.t/
j /g

nt
jD1 for

Homt.Gk;d/ with positive weights satisfying (18), cf. [23]. Grassmannian t-designs
are cubatures for Homt.Gk;d/ with constant weights !j D 1=n, for j D 1; : : : ; n.
According to [33] indeed there do exist Grassmannian t-designs that are low-
cardinality cubature sequence, i.e., satisfying (18).
For low-cardinality cubature sequences, Theorem 5 leads to

ˇ̌
ˇ
Z

Gk;d

f .P/d�k;d.P/ �
ntX

jD1

!
.t/
j f .P.t/j /

ˇ̌
ˇ . n

� s
k.d�k/

t kfkHs
p
: (19)

We should point out that analogous results for the sphere are contained in [13, 14].
By comparing Proposition 3 with Theorem 5 for p D 2, we observe that the

condition s > k.d � k/=2 yields that the cubature points’ error rate n
� s

k.d�k/
t is better

than the one for the random points. Given any sequence of points of cardinality nt,

it is noteworthy that the rate n
� s

k.d�k/
t cannot be improved, cf. [12].

5.3 Cubatures for Function Approximation

The basic idea for applying cubature points in function approximation is quite
simple. The standard expansion of any f 2 L2.Gk;d/ in the orthogonal basis
f'
g`.
/�k yields

f D
X

`.
/�k

hf ; '
i'
 �
X

j
j�t
`.
/�k

hf ; '
i'
; (20)

where the approximation is simply derived by truncating the infinite series at j
j �
t. The inner product hf ; '
i is an integral that we approximate by the concept of
cubatures, i.e., the error for approximating the integral by a finite sum is steered by
(19):

X

j
j�t
`.
/�k

hf ; '
i'
 D
X

j
j�t
`.
/�k

Z

Gk;d
f .P/'i.P/d�k;d.P/'i

�
X

j
j�t
`.
/�k

nX

jD1

!jf .Pj/'
.Pj/'
 (21)

D

nX

jD1

!jf .Pj/
X

j
j�t
`.
/�k

'
.Pj/'
 :
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If we define Kt.P;R/ D
P
j
j�t
`.
/�k

'
.P/'
.R/, then we derive the approximation

f �
nX

jD1

!jf .Pj/Kt.Pj; �/: (22)

The right-hand side of (22) is composed of two separate approximations, truncation
of the series (20) and the approximation of the integral via cubatures (21). To obtain
suitable error rates, it turns out that we better replace the sharp truncation by a
smoothed version, i.e., we define the kernel Kt on Gk;d � Gk;d by

Kt.P;Q/ D
X

`.
/�k

h.t�2�
/'
.P/'`.Q/; (23)

where h W R	0 ! R is an infinitely often differentiable and nonincreasing function
with h.x/ D 1, for x � 1=2, and h.x/ D 0, for x 
 1. The smoothed series truncation
becomes the expression

�t.f / WD
Z

Gk;d

f .P/Kt.P; �/d�k;d.P/; (24)

and �t.f / approximates f with an error rate that matches the ones in Theorem 5:

Theorem 6 ([47]). If f 2 Hs
p.Gk;d/, then

kf � �t.f /kLp . t�skfkHs
p
:

To approximate f from finitely many samples, we combine the smoothed truncation
with cubature points to replace the integral by a finite sum. For sample points
fPjg

n
jD1 � Gk;d and weights f!jg

n
jD1, we define

�t.f ; f.Pj; !j/g
n
jD1/ WD

nX

jD1

!jf .Pj/Kt.Pj; �/ (25)

which coincides with (22) but with the kernel Kt from (23). Note that we must
now consider functions f in Bessel potential spaces, for which point evaluation
makes sense. The term �r.t/.f ; f.Pj; !j/g

n
jD1/ is contained in Homt.Gk;d/ for r.t/ D

q
d 4k t2e, cf. [16, Theorem 5]. The following approximation is a consequence of [47,

Proposition 5.3]:
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Theorem 7 ([16]). If f.P.t/j ; !
.t/
j /g

nt
jD1 is a sequence of cubatures with nonnegative

weights for Hom2t.Gk;d/, t D 1; 2; : : :, then, for f 2 Hs
1.Gk;d/,

kf � �r.t/.f ; f.P
.t/
j ; !

.t/
j /g

nt
jD1/kL1

. t�s.kfkL1
C kfkHs

1
/; (26)

where r.t/ D
q
d 4k t2e.

For low-cardinality cubatures, the inequality becomes

kf � �r.t/.f ; f.P
.t/
j ; !

.t/
j /g

nt
jD1/kL1

. n
� s

k.d�k/
t .kfkL1

C kfkHs.L1//; (27)

so that we obtain error rates similar to (19).

5.4 Cubatures as Efficient Coverings

We have seen in the previous sections that cubatures relate to the approximation
of integrals and are also useful to approximate functions from samples. Intuitively,
good samplings for approximation need to cover the underlying space sufficiently
well. Indeed, we shall connect cubatures with asymptotically optimal coverings.

Given any finite collection of points fPjg
n
jD1 � Gk;d, we define the covering radius

� by

� WD �.fPjg
n
jD1/ WD sup

P2Gk;d

min
1�j�n

kP � Pjk;

where k � k denotes the Frobenius norm on the space of symmetric matrices. Note
that the covering radius is simply the radius of the largest hole. Let Br.P/ denote the
closed ball of radius r centered at P 2 Gk;d. Since

Gk;d D

n[

jD1

B�.Pj/

and �k;d.Br.P// � rk.d�k/, for P 2 Gk;d with 0 < r � 1, we deduce

1 D �k;d.Gk;d/ �

nX

jD1

�k;d.B�.Pj// . n�k.d�k/;

which leads to the lower bound n�
1

k.d�k/ . �. Point sequences in Gk;d that match this
lower bound asymptotically in n are referred to as asymptotically optimal coverings.
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Theorem 8 ([15]). Any low-cardinality cubature sequence f.P.t/j ; !
.t/
j /g

nt
jD1 for

Homt.Gk;d/ with positive weights is covering asymptotically optimal, i.e., its

covering radius �.t/ satisfies n�
1

k.d�k/ � �.t/.
Analogous results for the sphere are contained in [14]. Theorem 7 with (27) and
Theorem 8 show the efficiency of low-cardinality cubature points in approximation
and covering.

5.5 Cubatures for Phase Retrieval

To reflect the versatility of Grassmannian cubatures, we now briefly discuss their use
in phase retrieval. The problem of reconstructing vectors from phaseless magnitude
measurements has attracted great attention in the recent literature; see, e.g., [7, 17,
18, 20, 25]. For x 2 R

d, the mapping

Ox W Gk;d ! R; P 7! kPxk2

is a homogeneous polynomial of degree 2, hence contained in Hom2.Gk;d/. Notice
that Ox is in a one-to-one correspondence with the rank-one matrix xx> since

Ox.P/ D x>Px D trace.Pxx>/:

The problem of reconstructing xx> from finitely many samples fOx.Pj/g
n
jD1, where

fPjg
n
jD1 � Gk;d, is known as the phase retrieval problem. Most publications deal

with k D 1. For k > 1, we refer to [3, 6, 28, 30, 31] and references therein.
If there are weights f!jg

n
jD1 such that f.Pj; !j/g

n
jD1 is a cubature for Hom2.Gk;d/,

then xx> can be directly reconstructed via the closed formula

xx> D
d

k

nX

jD1

!j Ox.Pj/
� 1
˛

nX

jD1

!j Ox.Pj/Pj �
ˇ

˛
Id
�
; (28)

where ˛ D 2k.d�k/
d.dC2/.d�1/ and ˇ D k.kdCk�2/

d.dC2/.d�1/ , cf. [3]. However, cubatures for
Hom2.Gk;d/must have at least d.dC1/=2many points. Thus, the number of samples
grows quadratic with the ambient dimension d. We are seeking reconstruction from
fewer samples at the expense of replacing the closed reconstruction formula with a
feasibility problem of a semidefinite program. We consider the problem

find A 2 R
d�d
�0 ; subject to trace.PjA/ D Ox.Pj/; j D 1; : : : ; n; (29)

where R
d�d
�0 denotes symmetric, positive semidefinite matrices in R

d�d.
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Theorem 9 ([3]). There are constants c1; c2 > 0 such that the following holds:
if n 
 c1d and fPjg

n
jD1 � Gk;d are chosen independently identically distributed

according to �k;d, then the matrix xx> is the unique solution to (29) with probability
1 � e�c2n, for all x 2 R

d.
This theorem generalizes results in [17, 18] from k D 1 to k 
 1. If the
projectors fPjg

n
jD1 are sampled from the idealized perfect cubature �k;d, the number

of needed samples grows linearly with d. Next, we shall find a balance between the
deterministic cubatures required for (28) and the full randomness invoked by �k;d

used in Theorem 9.
From here on, we suppose that the length kxk is known to us. To simplify

notation, we make the convention that P0 D Id, hence hxx�;P0i D trace.xx�/ D
kxk2; consider the problem

find A 2 R
d�d
�0 ; subject to trace.APj/ D Ox.Pj/; j D 0; : : : ; n; (30)

where fPjg
n
jD1 � Gk;d and Ox.Id/ WD kxk2. For k D 1, the following result is

essentially due to [39]. The extension to k 
 1 has been derived in [31]:

Theorem 10 ([31]). Suppose that kxk2 is known and that f.Pj; !j/g
n
jD1 is a cuba-

ture with nonnegative weights for Homt.Gk;d/, t 
 3. Let � D
Pn

jD1 !jıPj denote
the corresponding discrete probability measure, where ıPj is the point measure in
Pj. If fPjg

n
jD1 � Gk;d are independently sampled from �, then with probability at

least 1 � e�� , the rank-one matrix xx� is the unique solution to (30) provided that

n 
 c1� td1C2=t log2.d/; (31)

where � 
 1 is an arbitrary parameter and c1 is a constant, which does not depend
on d.
Hence, choosing random projectors distributed according to discrete probability
measures allows us to reconstruct xx> with less than d2 many measurements.

6 Cubatures of Varying Ranks

In the previous sections, we were dealing with cubatures for Grassmannians of fixed
rank. In order to allow more flexibility, we now aim to remove this restriction,
i.e., we shall investigate cubatures for unions of Grassmannians. Our aim is to
provide elementary proofs of some results in [29] that were derived by the use of
representation theoretic concepts.

Given a non-empty set K � f1; : : : ; d � 1g, we define the corresponding union
of Grassmannians by

GK;d WD
[

k2K
Gk;d D fP 2 R

d�d
sym W P2 D P; trace.P/ 2 Kg:
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As for a single Grassmannian, the polynomials on GK;d are given by multivariate
polynomials in the matrix entries of a given projector P 2 GK;d, i.e.,

Polt.GK;d/ WD ff jGK;d W f 2 Polt.R
d�d
sym /g: (32)

The dimension of Polt.GK;d/ is an indicator of the number of points needed to obtain
a cubature on GK;d, cf. Proposition 2 and [23]. To compute this dimension, we shall
first derive a lower bound:

Proposition 4. Let K D fkig
r
iD1 � f1; : : : ; d � 1g and t 2 N0 be given such that

minfk1; d � k1g 
 � � � 
 minfkr; d � krg: (33)

Then it holds

dim.Polt.GK;d// 

sX

iD1

dim.Polt�iC1.Gki;d//; s WD minftC 1; jKjg: (34)

Note that the dimension of each Polt�iC1.Gki;d/ is known, i.e.,

dim.Polt.Gk;d// D
X

j
j�t;
`.
/�minfk;d�kg

D.d; 2
/; (35)

where

D.d; 
/ D
Y

1�i<j� d
2

.li C lj/.li � lj/

.j � i/.d � i � j/
�

8
ˆ̂
<̂

ˆ̂̂
:

Q

1�i� d
2

2li
d�2i ; d odd;

2; d even and 
b d
2 c
> 0;

1; d even and 
b d
2 c
D 0;

(36)
with li WD

d
2
C 
i � i, for 1 � i � d

2
, cf. [35, Formulas (24.29) and (24.41)] and

[4, 5]. Thus, (34) is an explicit lower bound on the dimension of Polt.GK;d/.

Proof (of Proposition 4). We will show that the lower bound (34) is valid for any
ordering of the indices k1; : : : ; kr. In particular it holds for the ordering specified in
(33), which maximizes the right-hand side over all such lower bounds.

For t D 0 or r D 1, the sum in (34) reduces to a single term, so that the lower
bound indeed holds. For fixed t 
 1, we verify the general case by induction over r,
where we proceed from r � 1 to r with r 
 2.

Choose ffigmiD1 � Polt.Rd�d
sym / and fgjg

n
jD1 � Polt�1.Rd�d

sym / such that ffijGk1;d
gmiD1

and fgjjGKnfk1g;dg
n
jD1 are bases for the spaces Polt.Gk1;d/ and Polt�1.GKnfk1g;d/,

respectively. We infer that any linear combination

h WD
mX

iD1

˛ifijGK;d C

nX

jD1

ˇj
	

trace.�/ � k1


gjjGK;d
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is contained in Polt.GK;d/. Suppose now that h vanishes on GK;d. In particular, h
vanishes on Gk1;d, so that ˛i D 0, i D 1; : : : ;m. Vanishing on GKnfk1g;d implies
ˇj D 0, j D 1; : : : ; n. Hence, the function system

˚
fijGK;d

�m

iD1 [
˚	

trace.�/ � k1


gjjGK;d

�n

jD1

is linearly independent in Polt.GK;d/. By using .s � 1/ D minft; r � 1g, we infer by
the induction hypothesis

dim.Polt.GK;d// 
 dim.Polt.Gk1;d//C dim.Polt�1.GKnfk1g;d//


 dim.Polt.Gk1;d//C

.s�1/X

iD1

dim.Pol.t�1/�iC1.GkiC1;d//

D dim.Polt.Gk1;d//C

sX

iD2

dim.Polt�iC1.Gki;d//

D

sX

iD1

dim.Polt�iC1.Gki;d//;

which proves the lower bound (34).
In the case K D fk; d � kg, we can verify that the lower bound is matched by
elementary methods:

Proposition 5. Let 1 � k � d � 1 with k ¤ d
2

and t 
 1. Then it holds

Polt.Gk;d [ Gd�k;d/ Š Polt.Gk;d/˚ Polt�1.Gd�k;d/: (37)

Proof. We consider the restriction mapping

jGk;d W Polt.Gk;d [ Gd�k;d/ �! Polt.Gk;d/; f 7! f jGk;d

and shall verify that the dimension of its null-space satisfies

null.jGk;d / D .trace.�/ � k/Polt�1.Gk;d [ Gd�k;d/: (38)

Since jGk;d is onto and .trace.�/ � k/Polt�1.Gk;d [ Gd�k;d/ is equivalent to
Polt�1.Gd�k;d/, this would imply (37).

It is obvious that the right-hand side in (38) is contained in null.jGk;d /. The latter
can also be deduced from the lower bounds (34). For the reverse set inclusion, let
f 2 null.jGk;d /. We must now check that f jGd�k;d 2 Polt�1.Gd�k;d/.
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To proceed let us denote n WD dim.Polt.Gk;d [ Gd�k;d//. According to [29] (see
also [2]), there are fXjg

n
jD1 � Gk;d [ Gd�k;d and fcjg

n
jD1 � R such that

f .P/ D
nX

jD1

cj trace.XjP/
tjGk;d[Gd�k;d ; P 2 Gk;d [ Gd�k;d:

By applying the binomial formula, we observe that

f C .�1/tC1f .Id � �/ 2 Polt�1.Gk;d [ Gd�k;d/: (39)

Therefore, the assumption f jGk;d � 0 implies that f .I � �/jGk;d 2 Polt�1.Gk;d/. Since
f 7! f .I � �/ is an isomorphism between Polt�1.Gk;d/ and Polt�1.Gd�k;d/, we derive
f jGd�k;d 2 Polt�1.Gd�k;d/. Thus, we have verified (38), which concludes the proof.
Proposition 5 shows that for K D fk; d� kg the inequality in Proposition 4 becomes
an equality. It turns out that equality holds in the general cases as well:

Theorem 11 ([29]). Let K D fkig
r
iD1 � f1; : : : ; d � 1g and t 2 N0 be given such

that

minfk1; d � k1g 
 � � � 
 minfkr; d � krg:

Then it holds

Polt.GK;d/ Š
sM

iD1

Polt�iC1.Gki;d/; s WD minftC 1; jKjg: (40)

Compared to our elementary proofs of Propositions 4 and 5, the proof of Theo-
rem 11 presented in [29] is more involved, using representation theoretic concepts
in combination with orthogonally invariant reproducing kernel decompositions.

Note that Theorem 11 implies that each f 2 Polt.GK;d/, which vanishes on
Polt.Gk1;d/, must contain a factor .trace.�/ � k1/

ˇ̌
GK;d

, i.e., the restriction mapping

jGk1;d
from Polt.GK;d/ to Polt.Gk1;d/, for t 
 1, satisfies

null.jGk1;d
/ D .trace.�/ � k1/Polt�1.GK;d/;

cf. [29].
Our better understanding of the space Polt.GK;d/ enables the study of cubatures

on unions of Grassmannians in the areas of the previous sections. This shall be
addressed in future work.
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A Randomized Tensor Train Singular Value
Decomposition

Benjamin Huber, Reinhold Schneider, and Sebastian Wolf

Abstract The hierarchical SVD provides a quasi-best low-rank approximation of
high-dimensional data in the hierarchical Tucker framework. Similar to the SVD
for matrices, it provides a fundamental but expensive tool for tensor computations.
In the present work, we examine generalizations of randomized matrix decompo-
sition methods to higher-order tensors in the framework of the hierarchical tensor
representation. In particular we present and analyze a randomized algorithm for the
calculation of the hierarchical SVD (HSVD) for the tensor train (TT) format.

Keywords Tensors · Tensor train format · Tensor product approximation ·
Randomized algorithm · Random matrix · Randomized singular value
decomposition · TT-SVD · TT-Decomposition · Randomized decomposition ·
Low-rank approximation

1 Introduction

Low-rank matrix decompositions, such as the singular value decomposition (SVD)
and the QR decomposition, are principal tools in data analysis and scientific
computing. For matrices with small rank, both decompositions offer a tremendous
reduction in computational complexity and can expose the underlying problem
structure. In recent years generalizations of these low-rank decompositions to
higher-order tensors have proven to be very useful and efficient techniques as well.
In particular the hierarchical Tucker [1] and the tensor train [2] format made quite an
impact, as both formats allow to circumvent the notorious curse of dimensionality,
i.e., the exponential scaling of the ambient spaces with respect to the order of the
tensors. Applications of these formats are as various as high-dimensional PDE’s
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like the Fokker-Planck equations and the many particle Schrödinger equations,
applications in neuroscience, graph analysis, signal processing, computer vision,
and computational finance; see the extensive survey of Grasedyck et al. [3]. Also in
a recent paper in machine learning, Cohen et al. [4] showed a connection between
these tensor formats and deep neural networks and used this to explain the much
higher power of expressiveness of deep neural networks over shallow ones.

One of the main challenges when working with these formats is the calculation
of low-rank decompositions of implicitly or explicitly given tensors, i.e., the high-
dimensional analog of the classical SVD calculation. For matrices there exists a
wide range of methods, which allow these calculations with high efficiency and
precision. One particular branch is randomized methods which appear often in the
literature, mostly as efficient heuristics to calculate approximate decompositions. It
was only recently that thanks to new results from random matrix theory, a rigorous
analysis of these procedures became possible; see [5]. In this work we aim to
extend some of these results for randomized matrix decompositions to the high-
dimensional tensor case. To this end we present an algorithm which allows the
efficient calculation of the tensor train SVD (TT-SVD) for general higher-order
tensors. Especially for sparse tensors, this algorithm exhibits a superior complexity,
scaling only linear in the order, compared to the exponential scaling of the naive
approach. Extending the results of [5], we show that stochastic error bounds can
also be obtained for these higher-order methods.

This work focuses on the theoretical and algorithmic aspects of this randomized
(TT-)SVD. However a particular application on our mind is the work in [6, 7], where
we treat the tensor completion problem. That is, in analogy to matrix completion
(see, e.g., [8–10]), we want to reconstruct a tensor from N measurements using
a low-rank assumption. We use an iterative (hard) thresholding procedure, which
requires the (approximate) calculation of a low-rank decomposition in each iteration
of the algorithm. As the deterministic TT-SVD is already a fundamental tool, there
are of course many further possible applications for our randomized variant; see, for
example, [11–13].

We start with a brief recap of tensor product spaces and introduce the notation
used in the remainder of this work. In Section 2 we give an overview of different
tensor decompositions, generalizing the singular value decomposition from matrices
to higher-order tensors. In the second part, a detailed introduction of the tensor
train format is provided. Section 3.1 summarizes results for randomized matrix
decompositions which are important for this work. In Section 3.2 we introduce our
randomized TT-SVD scheme and prove stochastic error bounds for this procedure.
An interesting relation between the proposed algorithm and the popular alternating
least squares (ALS) algorithm is examined in Section 4. Section 5 collects several
numerical experiments showing the performance of the proposed algorithms.
Section 6 closes with some concluding remarks.



A Randomized Tensor Train Singular Value Decomposition 263

1.1 Tensor Product Spaces

Let us begin with some preliminaries on tensors and tensor spaces. For an exhaustive
introduction, we refer to the monograph of Hackbusch [14].

Given Hilbert spaces V1; : : : ;Vd, the tensor product space of order d

V D
dO

iD1

Vi ;

is defined as the closure of the span of all elementary tensor products of vectors
from Vi, i.e.,

V WD span fv1 ˝ v2 ˝ : : :˝ vd j vi 2 Vig :

The elements x 2 V are called tensors of order d. If each space Vi is supplied with
an orthonormal basis f' i

�i
W �i 2 Ng, then any x 2 V can be represented as

x D
1X

�1D1

: : :

1X

�dD1

xŒ�1; : : : ; �d� '
1
�1
˝ � � � ˝ 'd

�d
:

Using this basis, with a slight abuse of notation, we can identify x 2 V with its
representation by a d-variate function, often called hyper matrix,

� D .�1; : : : ; �d/ 7! xŒ�1; : : : ; �d� 2 K ;

depending on discrete variables, usually called indices�i 2 N. Analogous to vectors
and matrices, we use square brackets xŒ�1; : : : ; �d� to index the entries of this
hypermatrix. Of course, the actual representation of x 2 V depends on the chosen
bases ' i of Vi. The index �i is said to correspond to the �-th mode or equivalently
the �-th dimension of the tensor.

In the remainder of this article, we confine to finite dimensional real linear spaces
Vi WD R

ni ; however most parts are easy to extend to the complex case as well. For
these, the tensor product space

V D
dO

iD1

R
ni D R

n1�n2�:::�nd WD span fv1 ˝ v2 ˝ : : :˝ vd j vi 2 R
nig

is easily defined. If it is not stated explicitly, the Vi D R
ni are supplied with the

canonical basis fei
1; : : : ; e

i
ni
g of the vector spaces R

ni . Then every x 2 V can be
represented as

x D
n1X

�1D1

: : :

ndX

�dD1

xŒ�1; : : : ; �d� e1�1 ˝ � � � ˝ ed
�d
: (1)
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We equip the finite dimensional linear space V with the inner product

hx; yi WD
n1X

�1D1

� � �

ndX

�dD1

xŒ�1; : : : ; �d� yŒ�1; : : : ; �d� :

and the corresponding l2-norm kxk D
p
hx; xi. We use the fact that for a Hilbert

space Vi, the dual space V� is isomorphic to Vi and use the identification V ' V�.
For the treatment of reflexive Banach spaces, we refer to [15, 16].

The number of possibly non-zero entries in the representation of x is n1 � � � nd D

…d
iD1ni, and with n D maxfni W i D 1; : : : ; dg, the dimension of the space V scales

exponentially in d, i.e., O.nd/. This is often referred to as the curse of dimensions
and presents the main challenge when working with higher-order tensors.

1.2 Tensor Contractions and Diagrammatic Notation

Important concepts for the definitions of tensor decompositions are so-called
matricizations and contractions introduced in this section.

The matricization or flattening of a tensor is the reinterpretation of the given
tensor as a matrix, by combining a subset of modes to a single mode and combining
the remaining modes to a second one.

Definition 1 (Matricization or Flattening). Let Œn� D f1; 2; : : : ; ng and x 2
R

n1�:::�nd be a tensor of order d. Furthermore let ˛ � Œd� be a subset of the
modes of x, and let ˇ D Œd�n˛ be its complement. Given two bijective functions
�˛ W Œn˛1 � � Œn˛2 � � : : :! Œn˛1 � n˛2 � � � � and �ˇ , respectively.

The ˛-matricization or ˛-flattening

OM˛ W R
n1�:::�nd ! R

m˛�mˇ

x 7! OM˛.x/

of x is defined entry-wise as

xŒi1; : : : ; id� DW OM˛.x/
�
�˛.i˛1 ; i˛2 : : :/; �ˇ.iˇ1 ; iˇ2 ; : : :/

�
: (2)

A common choice for �˛ and �ˇ is �.i1; i2; : : :/ D
P

k ik
Q

j>k nj. The actual choice
is of no significance though, as long as it stays consistent. The matrix dimensions
are given as m˛ D

Q
j2˛ nj and mˇ D

Q
j2ˇ nj.

The inverse operation is the de-matricization or unflattening OM�1. In principle
it is possible to define de-matricization for any kind of matrix, typically called
tensorization. However this requires to give the dimensions of the resulting tensor
and the details of the mapping alongside with the operator. Instead, in this work the
de-matricization is only applied to matrices where at least one mode of the matrix
encodes a tensor structure through a former matricization, in which the details of



A Randomized Tensor Train Singular Value Decomposition 265

the mapping are clear from the context. For all other modes, the de-matricization is
simply defined to be the identity.

The second important tool is tensor contractions, which are generalizations of
the matrix-vector and matrix-matrix multiplications to higher-order tensors.

Definition 2 (Tensor Contraction). Let x 2 R
n1�:::�nd and y 2 R

m1�:::�me be two
tensors of order d and e, respectively, with nk D ml. The contraction of the k-th
mode of u with the l-th mode of v

z WD x ık;l y (3)

is defined entry-wise as

zŒi1; : : : ; ik�1; ikC1; : : : ; id; j1; : : : ; jl�1; jlC1; : : : ; je�

D

nkX

pD0

xŒi1; : : : ; ik�1; p; ikC1; : : : ; id� yŒj1; : : : ; jl�1; p; jlC1; : : : ; je�

or via the matricizations

z D OM�1
�
OMfkg.x/

T OMflg.y/
�
:

The resulting tensor z 2 R
n1�:::�nk�1�nkC1�:::�nd�m1�:::mk�1�mkC1�:::�me is of order dC

e � 2. Note that in order for this operation to be well-defined, nk D ml must hold.
If no indices are specified, i.e., only ı, a contraction of the last mode of the left

operand and the first mode of the right operand is assumed. If tuples of indices
are given, e.g., ı.i;j;k/;.l;p;q/, a contraction of the respective mode pairs (i=l, j=p
k=q) is assumed.1 As writing this for larger tensor expressions quickly becomes
cumbersome, we also use a diagrammatic notation to visualize the contraction.
In this notation a tensor is depicted as a dot or box with edges corresponding to
each of its modes. If appropriate the cardinality of the corresponding index set is
given as well. From left to right, the following shows this for an order one tensor
(vector) v 2 R

n, an order two tensor (matrix) A 2 R
m�n, and an order four tensor

x 2 R
n1�n2�n3�n4 .

v
n

A
m n xn4 n1

n2

n3

If a contraction is performed between the modes of two tensors, the corresponding
edges are joined. The following shows this exemplary for the inner product of two
vectors u; v 2 R

n and a matrix-vector product with A 2 R
m�n and v 2 R

n.

1As one can easily show the order of the contractions does not matter.
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u v A
m

v
n n

There are two special cases concerning orthogonal and diagonal matrices. If
a specific matricization of a tensor yields an orthogonal or diagonal matrix, the
tensor is depicted by a half-filled circle (orthogonal) or a circle with a diagonal
bar (diagonal), respectively. The half filling and the diagonal bar both divide the
circle in two halves. The edges joined to either half correspond to the mode sets of
the matricization, which yields the orthogonal or diagonal matrix. As an example
the diagrammatic notation can be used to depict the singular value decomposition
A D USVT of a matrix A 2 R

m�n with rank r, as shown in the following.

U

m

S V

n

r r

2 Low-Rank Tensor Decompositions

In this section we give an introduction to the low-rank tensor decomposition
techniques used in the remainder of this work. As there are in fact quite different
approaches to generalize the singular value decomposition, and thereby also the
definition of the rank, to higher-order tensors, we start with an overview of the most
popular formats. For an in-depth overview including application, we refer to the
survey of Grasedyck et al. [3]. In the second part, we provide a detailed introduction
of the tensor train format, which is used in the remainder of this work.

The probably best known and classical tensor decomposition is the representation
by a sum of elementary tensor products, i.e.,

x D
rX

iD1

u1;i ˝ u2;i ˝ : : :˝ ud;i (4)

where x 2 R
n1�:::�nd and uk;i 2 R

nk are vectors from the respective vector
spaces. This format is mainly known as the canonical format but also appears in
the literature under the names canonical polyadic (CP) format, CANDECOMP,
and PARAFAC. The canonical or CP rank is defined as the minimal r such
that a decomposition as in (4) exists. Note that in general, there is no unique
CP representation with minimal rank. This is somewhat expected, since even for
matrices, the SVD is not unique if two or more singular values coincide. Some
discussion on the uniqueness can be found in the paper of Kolda and Bader [17]. For
tensors with small canonical rank, (4) offers a very efficient representation, requiring
only O.rdn/ storage instead of O.nd/ for the direct representation. Unfortunately
the canonical format suffers from several difficulties and instabilities. First of all the
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task of determining the canonical rank of a tensor with order d > 2 is, in contrast to
matrices, highly nontrivial. In fact it was shown by [18] that even for order d D 3,
the problem of deciding whether a rational tensor has CP-rank r is NP-hard (and
NP-complete for finite fields). Consequently also the problem of calculating low-
rank approximations proves to be challenging. That is, given a tensor x 2 R

n1�:::�nd

and a CP-rank r, finding the best CP-rank r approximation

x� D argmin
y2Rn1�:::�nd ; CP-rank.y/�r

.kx � yk/ : (5)

The norm k�k used may differ depending on the application. In the matrix case, the
Eckart-Young theorem provides that for the Frobenius and spectral norm, this best
approximation can be straightforwardly calculated by a truncated SVD. In contrast,
De Silva and Lim [19] proved that the problem of the best CP-rank r approximation,
as formulated in (5), is ill-posed for many ranks r 
 2 and all orders d > 2

regardless of the choice of the norm k�k. Furthermore they showed that the set of
tensors that do not have a best CP-rank r approximation is a non-null set, i.e., there
is a strictly positive probability that a randomly chosen tensor does not admit a
best CP-rank r approximation. Finally it was shown by De Silva and Lim [19] that
neither the set fx 2 R

n1�:::�nd j CP-rank.x/ D rg of all tensors with CP-rank r nor
the set fx 2 R

n1�:::�nd j CP-rank.x/ � rg of all tensors with CP-rank at most r
is closed for d > 2. These are some severe difficulties for both the theoretical and
practical works with the canonical format.

The second classical approach to generalize the SVD to higher-order tensors is
the subspace-based Tucker decomposition. It was first introduced by Tucker [20] in
1963 and has been refined later on in many works; see, e.g., [14, 17, 21]. Given a
tensor x 2 R

n1�:::�nd , the main idea is to find minimal subspaces Ui � R
ni , such that

x 2 R
n1�:::�nd is an element of the induced tensor space

U D
dO

iD1

Ui �

dO

iD1

R
ni D R

n1�:::�nd : (6)

Let ri D dim.Ui/ denote the dimension of the i-th subspace and let˚
ui;j; j D 0; : : : ; ri

�
be an orthonormal basis of Ui. If the subspaces are chosen

such that x 2 U , then (1) states that there is a c such that x can be expressed as

x D
r1X

�1D1

: : :

rdX

�d

cŒ�1; �2; : : : ; �d� � u1;�1 ˝ : : :˝ ud;�d : (7)

Usually the basis vectors are combined to orthogonal matrices Ui D .ui;1; : : : ;ui;ri/,
called basis matrices. This leads to the following common form of the Tucker format

xŒ�1; : : : ; �d� D

r1X

�1D1

: : :

rdX

�d

cŒ�1; : : : ; �d�U1Œ�1; �1� : : :UdŒ�d; �d� : (8)
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Fig. 1 Left: A tensor
x 2 R

n1�:::�n6 of order 6.
Right: Its Tucker
decomposition

n1

n2n3

n4

n5
n6

n1

n2n3

n4

n5
n6

r1

r2r3

r4

r5
r6

The order d tensor c 2 R
r1�:::�rd of the prefactors is usually called core tensor. The

d-tuple r D .r1; r2; : : : ; rd/ of the subspace dimensions is called the representation
rank and is associated with the particular representation. The Tucker rank (T-
rank) of x is defined as the unique minimal d-tuple r� D .r�1 ; : : : ; r

�
d /, such that

there exists a Tucker representation of x with rank r�. Equation (8) consists of d
tensor contractions that can be visualized in the diagrammatic notation, which is
exemplarily shown in Figure 1 for d D 6. Note that even for the minimal T-rank, the
Tucker decomposition is not unique, as for any orthogonal matrix Qi 2 R

ri�ri , one
can define a matrix QUi D UiQi and the tensor

Qc Œ�1; : : : ; �d� D

riX

�D1

c Œ�1; : : : ; �; : : : �d�QT Œ�; �i�

such that the tensor x can also be written as

u Œ�1; : : : ; �d� D

r1X

�1D1

: : :

rdX

vdD1

Qc Œ�1; : : : ; �d�U1Œ�1; �1� : : : QUiŒ�i; �i� : : :UdŒ�d; �d�;

which is a valid Tucker decomposition with the same rank.
It is shown by De Lathauwer et al. [21] that the Tucker rank as the minimal d-

tuple is indeed well defined and that the entries ri of the Tucker rank correspond to
the rank of the i-th mode matricization of the tensor. That is

T-rank.x/ D
�

rank. OMf1g.x//; : : : ; rank. OMfdg.x//
�
: (9)

The proof is tightly linked to the fact that a Tucker representation of a tensor x 2
R

n1�:::�nd with minimal representation rank can be obtained by successive singular
value decompositions. This procedure is referred to as the higher-order singular
value decomposition (HOSVD); see [21] for the details. Using truncated SVDs, an
approximation of x by a tensor x� with lower T-rank r� D .r�1 ; : : : r

�
d / � .r1; : : : ; rd/

can be obtained. Where the symbol � denotes an entry-wise �, i.e., .r1; : : : rd/ �

.r�1 ; : : : ; r
�
d / ” ri � r�i 8i. In contrast to the Eckart-Young theorem for matrices,

the approximation x� obtained in this way is not the best T-rank r� approximation
of x. However, it is a quasi-best approximation by a factor

p
d, i.e.,



A Randomized Tensor Train Singular Value Decomposition 269

kx � x�kF �
p

d min
y W T-rank.y/
r�

.kx � ykF/ : (10)

For many applications this quasi-best approximation is sufficient. As for the
canonical format, finding the true best approximation is at the very least NP-hard in
general, as it is shown by [22] that finding the best rank .1; : : : ; 1/ approximation
is already NP-hard. To store a tensor in the Tucker format, only the core tensor
and the basis matrices have to be stored. This amounts to a storage requirement of
O.rd C dnr/, where r WD max.r1; : : : ; rd/ and n WD max.n1; : : : ; nd/. Compared to
the O.nd/, this is a major reduction but does not break the curse of dimensionality
as the exponential scaling in d remains.

A more recent development is the hierarchical Tucker (HT) format, introduced
by Hackbusch and Kühn [1]. It inherits most of the advantages of the Tucker format,
in particular a generalized higher-order SVD; see [23]. But in contrast to the Tucker
format, the HT format allows a linear scaling with respect to the order for the
storage requirements and common operations for tensors of fixed rank. The main
idea of the HT format is to extend the subspace approach of the Tucker format by a
multilayer hierarchy of subspaces. For an in-depth introduction of the hierarchical
Tucker format, we refer to the pertinent literature, e.g., [1, 14, 23]. In this work we
will instead focus on the tensor train (TT) format, as introduced by Oseledets [2].
The TT format offers mostly the same advantages as the more general HT format
while maintaining a powerful simplicity. In fact it can to some extent be seen as a
special case of the HT format; see Grasedyck and Hackbusch [24] for details on the
relation between the TT and HT format.

2.1 Tensor Train Format

In this section we give a detailed introduction to the tensor train (TT) format. In
the formulation used in this work, the TT format was introduced by Oseledets [2];
however an equivalent formulation was known in quantum physics for quite some
time; see, e.g., [25] for an overview. The idea of the TT format is to separate the
modes of a tensor into d order two and three tensors. This results in a tensor network
that is exemplary shown for an order four tensor x D W1 ıW2 ıW3 ıW4 in the
following diagram.

W1 W2 W3 W4

n1

r1

n2

r2

n3

r3

n4

Formally it can be defined as follows.
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Definition 1 (Tensor Train Format). Let x 2 R
n1�:::�nd be a tensor of order d. A

factorization

x DW1 ıW2 ı : : : ıWd�1 ıWd ; (11)

of x, into component tensors W1 2 R
n1�r1 , Wi 2 R

ri�1�ni�ri (i D 2; : : : ; d � 1) and
Wd 2 R

rd�1�nd , is called a tensor train (TT) representation of x. Equivalently (11)
can be given entry-wise as

xŒi1; : : : ; id� D
X

j1

: : :
X

jd�1

W1Œi1; j1� W2Œj1; i2; j2� : : :Wd�1Œjd�2; id�1; jd�1� WdŒjd�1; id� :

The tuple of the dimensions r D .r1; : : : ; rd�1/ of the component tensors is called
the representation rank and is associated with the specific representation. In contrast
the tensor train rank (TT-rank) of x is defined as the minimal rank tuple r� D
.r�1 ; : : : ; r

�
d�1/ such that there exists a TT representation of x with representation

rank equal to r�.
As for the Tucker format, the TT-rank is well defined and linked to the rank of

specific matricizations via

TT-Rank.x/ D
�

rank. OMf1g.x//; rank. OMf1;2g.x//; : : : ; rank. OMf1;2;:::;d�1g.x//
�
:

The proof is again closely linked to the fact that a tensor train decomposition of an
arbitrary tensor can be calculated using successive singular value decompositions.
This procedure is commonly referred to as the TT-SVD. For this work the TT-
SVD is of particular importance as it constitutes the deterministic baseline for
our randomized approach in Section 3.2. In the following we therefore provide a
complete step-by-step description of this procedure.

Tensor Train Singular Value Decomposition (TT-SVD)
The intuition of the TT-SVD is that in every step, a (matrix) SVD is performed to
detach one open mode from the tensor. Figure 2 shows this process step-by-step for
an order four tensor and is frequently referred to in the following description. The
TT-SVD starts by calculating an SVD of the matricization of x D x0, where all
modes but the first one are combined (Figure 2(a)–(c)):

U1S1VT
1 WD SVD

�
OMf1g.x0/

�
; (12)

with U1 2 R
n1�r1 , S1 2 R

r1�r1 , VT
1 2 R

r1�.n2�:::�nd/. The dimension r1 is equal to
the rank of OMf1g .x0/. The resulting matrices

	
S1VT

1



and U1 are each dematricized,

which is trivial for U1 in the first step (Figure 2(d)–(e))
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(j)

W1 W2 M̂(1;2)(W3) S2 V2

n1

r1

n2

r2 r2n3 r3 r3
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Fig. 2 Step-by-step depiction of the TT-SVD by example for an order four tensor

W1 WD OM
�1.U1/ W1 2 R

n1�r1 (13)

x1 WD OM�1
	
S1VT

1



x1 2 R

r1�n2�:::�nd (14)

Note that there holds

W1 ı x1 D OM�1
	
U1S1VT

1



D x0 D x : (15)

In the next step, a matricization of the newly acquired tensor x1 is performed.
The first dimension of the matricization is formed by the first two modes of x1,
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corresponding to the new dimension introduced by the prior SVD and the second
original dimension. The second dimension of the matricization is formed by all
remaining modes of x1 (Figure 2(f)). From this matricization another SVD is
calculated (Figure 2(g)):

U2S2VT
2 WD SVD

�
OMf1;2g.x1/

�
; (16)

with U2 2 R
.r1�n2/�r2 , S2 2 R

r2�r2 , VT
2 2 R

r2�.n3�:::�nd/. As in the first step, U2 and	
S2VT

2



are then dematricized (Figure 2 (i))

W2 WD OM
�1.U2/ W2 2 R

r1�n2�r2 (17)

x2 WD OM�1.S2VT
2 / x2 2 R

r2�n3�:::�nd (18)

and again there holds

W2 ı x2 D OM�1
	
U2S2VT

2



D x1 (19)

)W1 ıW2 ı x2 D x : (20)

The obtained rank r2 is equal to the rank of the matricization OMf1;2g .x/, which
can be shown as follows. First note that Q WD OMf1;2g .U1 ı U2/ 2 R

.n1�n2/�r2 is an
orthogonal matrix, because

	
QQT



Œj; j0� D

X

i

OMf1;2g .W1 ıW2/ Œi; j� OM.1;2/ .W1 ıW2/ Œi; j
0� (21)

D
X

i1;i2;k;k0

W1Œi1; k� W2Œk; i2; j� W1Œi1; k
0� W2Œk

0; i2; j
0� (22)

D
X

i2;k;k0

X

i1

W1Œi1; k� W1Œi1; k
0�

„ ƒ‚ …
IŒk;k0�

W2Œk; i2; j� W2Œk
0; i2; j

0� (23)

D
X

i2;k

W2Œk; i2; j� W2Œk; i2; j
0� (24)

D IŒj; j0� : (25)

Then consider that

OMf1;2g .x/ D OMf1;2g .W1 ıW2 ı x3/ (26)

D OMf1;2g .W1 ıW2/ OMf1g .x2/ (27)

D QS2VT
2 (28)
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holds. This is a valid SVD of OMf1;2g.x/, and since the matrix of singular values is
unique, it follows that in fact rank. OMf1;2g.x// D r2.

This procedure is continued for a total of d � 2 steps and in each step the order
of xi 2 R

ri�niC1�:::�nd shrinks by one. Furthermore there holds

W1 ıW2 ı : : : ıWi ı xi D x (29)

Wi 2 R
ri�1�ni�ri and ri D rank

�
OMf1;:::;ig .x/

�
in every step. The .d � 1/-st step

(Figure 2 (k))

Ud�1Sd�1VT
d�1 D SVD

�
OMf1;2g.xd�1/

�
; (30)

with Ud�1 2 R
.rd�2�nd�1/�rd�1 , Sd�1 2 R

rd�1�rd�1 ;VT
d�1 2 R

rd�1�nd , is special since
the de-matricization of .Sd�1VT

d�1/ yields an order two tensor that is named Wd

instead of xd (Figure 2 (l)-(m))

Wd�1 D OM
�1.Ud�1/ Wd�1 2 R

rd�2�nd�1�rd�1 (31)

Wd D Sd�1VT
d�1 xd 2 R

rd�1�nd : (32)

Finally

W1 ıW2 ı : : : ıWd�1 ıWd D x (33)

is a valid TT representation of x with TT-rank r D .r1; : : : ; rd�1/, whose entries
ri D rank. OMf1;:::;ig .x// are exactly the ranks of the matricizations as asserted.

The same algorithm can also be used to calculate a rank r� D .r�1 ; : : : ; r
�
d�1/

approximation of a tensor x 2 R
n1�:::�nd with TT-rank r � r�. To this end the normal

SVDs are replaced by truncated rank r�i SVDs, yielding a tensor x� of TT-rank r�.
In contrast to the matrix case, x� is in general not the best rank r� approximation of
x. However as shown by [2], it is a quasi-best approximation with

kx � x�k2 �
p

d � 1 min
y W TT-rank.y/
r�

.kx � yk/ : (34)

The computational complexity of the TT-SVD is dominated by the d � 1 matrix
singular value decompositions, with all other contributions being asymptotically
negligible. With n WD max.n1; : : : ; nd/ and r WD max.r1; : : : rd/, the cost scales as
O.ndC1 C

Pd�1
iD1 r2nd�i/ � O.dndC1/, i.e., still exponential in the order. This is

somewhat expected because there are in general nd entries in the original tensor that
have to be considered. Unfortunately x being sparse or otherwise structured incurs
no dramatic change because the structure is generally lost after the first SVD.

Apart from the generalized singular value decomposition, the TT format offers
several further beneficial properties. In particular it is able to break the curse of
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dimensionality, in the sense that the storage complexity of a tensor x 2 R
n1�:::�nd

with TT-rank r D .r1; : : : ; rd�1/ in a minimal TT representation scales as O.dnr2/,
i.e., linearly in the order. Here n WD maxi.n1; : : : ; nd/ and r WD maxi.r1; : : : ; rd�1/.
Additionally also the computational complexity of common operations as additions
and scalar products scales only linearly in the order for fixed ranks; see [2, 14].
Another desirable property is that the set of tensors with rank at most r form a closed
set, and as shown by Holtz et al. [26], the set of tensor with exact rank r forms a
smooth manifold, allowing the application of Riemannian optimization techniques
[27, 28] and dynamical low-rank approximation [29, 30]; see also the review article
[12]. Especially for numerical applications, these properties made the tensor train
one of, if not, the most popular tensor decomposition of recent years.

3 Randomized SVD for Higher-Order Tensors

As shown in the previous section, calculating a low-rank representation or approxi-
mation of a given higher-order tensor is a challenging task, as the complexity of the
tensor train SVD (TT-SVD) scales exponentially in the order. For dense tensors this
is of course somewhat expected as there is an exponential number of entries that
have to be incorporated. Nevertheless also for sparse and structured matrices, the
two decomposition techniques exhibit an exponential scaling. In this section we look
at randomized methods for the calculation of approximate matrix factorizations. For
sparse or structured matrices, these techniques allow for a very efficient calculation
of common matrix factorizations such as the SVD or QR decomposition while
offering rigorous stochastic error bounds. In the second part of this section, we
apply these results to formulate randomized TT-SVD algorithms. We show that
there hold stochastic error bounds similar to the matrix setting. We also show that
this randomized TT-SVD has only linear complexity with respect to the order when
applied to sparse tensors.

3.1 Randomized SVD for Matrices

Randomized techniques for the calculation of SVD or QR factorizations of matrices
have been proposed many times in the literature. However it was only recently
that, thanks to the application of new results from random matrix theory, these
procedures could be analyzed rigorously. We start this section by presenting some
results from the work of Halko et al. [5], which will provide a solid basis for
the randomized tensor factorization methods of the second part of this section. In
this part we restrict ourself to standard Gaussian random matrices, i.e., matrices
whose entries are i.i.d. standard Gaussian random variables. The usage of structured
random matrices is discussed in Section 6.
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In the formulation of Halko et al. [5], the basis of all decompositions is a
randomized method to calculate an approximate low-rank subspace projection

A � QQTA (35)

where A 2 R
n�m is a given matrix and Q 2 R

n�s is an orthogonal matrix
approximately spanning the range of A. Here s D r C p, where r is the desired
rank and p is an oversampling parameter. With this projection at hand, numerous
different low-rank decompositions can be calculated deterministically at low costs.
For example, the singular value decomposition of A can be calculated by forming
B WD QTA and calculating the deterministic SVD USVT D B of B. Using QU D QU

QUSVT D QQTA � A (36)

is an approximate SVD of A containing only the approximation error incurred by
the subspace-projection. The computational costs of the involved operations scale
as O

	
sTmult C s2.mC n/



, where Tmult is the cost to calculate the matrix-vector

product with A, which is O.mn/ for a general matrix but can be much lower for
structured or sparse matrices. In a similar way, other matrix factorizations can also
be computed with low costs if the projection (35) is given.

The main challenge is the calculation of the approximate range Q through
random techniques. For this [5] present the following prototype algorithm. Given
a matrix A 2 R

n1�n2 .

Listing 1 Randomized Range Approximation

I n p u t : A; r; p Outpu t : Q
C r e a t e a s t a n d a r d G a u s s i a n random m a t r i x G 2 R

n2�.rCp/

C a l c u l a t e t h e i n t e r m e d i a t e m a t r i x B WD AG 2 R
n1�s .

Compute t h e f a c t o r i z a t i o n QR D B .

The following theorem proves that the Q obtained in this manner is indeed an
approximation of the range of A in the sense of (35).

Theorem 1 (Halko et al. [5]). Given A 2 R
m�n and s D r C p with p 
 2. For the

projection Q obtained by procedure 1, there holds the following error bounds.

kA �QQTAk �
h
1C 11

p
.rC p/ �min.m; n/

i
�rC1 (37)

with probability at least 1 � 6p�p and for p 
 4 and any u; t 
 1

kA �QQTAk �

"

1C t

s
12r

p

# 
X

k>r

�2k

!1=2
C ut

e
p

rC p

pC 1
�rC1 (38)

with probability at least 1 � 5t�p � 2e�u2=2.
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Let us highlight furthermore that for the operator norm, we have that �rC1 D

inf rank BDrkA � Bkop and for the Frobenius norm there holds

 
X

k>r

�2k

! 1
2

D inf
rank.B/�r

kA � Bk :

3.2 Randomized TT-SVD

In this section we show how the same idea of the randomized range approximation
for matrices can be used to formulate a randomized algorithm that calculates an
approximate TT-SVD of arbitrary tensors. We show that stochastic error bounds
analogous to the matrix case can be obtained. Furthermore we show that for sparse
tensors, this randomized TT-SVD can be calculated in linear complexity with
respect to the order of the tensor, instead of the exponential complexity of the
deterministic TT-SVD.

The idea of our randomized TT-SVD procedure is to calculate nested range
approximations increasing by one mode at a time. The corresponding projector is
composed of separated orthogonal parts, which are calculated using procedure 1.
This is visualized in Figure 3. These orthogonal parts will become the component
tensors W2; : : : ;Wd of the final TT decomposition. The first component tensor W1

is given by contracting the initial x with all orthogonal components, i.e.,

W1 D x ı.2;:::;d/;.2;:::;d/ .W2 ı : : : ıWd/

The exact procedure calculating the orthogonal components and this final contrac-
tion is given in Listing 2.

Listing 2 Randomized TT-SVD

I n p u t : x , Ou tpu t : W1; : : : ;Wd

S e t bdC1 WD x
For j D d; : : : ; 2 :

C r e a t e a G a u s s i a n random t e n s o r g 2 R
sj�1�n1�:::�nj�1

C a l c u l a t e aj WD g ı.2;:::j/;.1;:::;j�1/ bjC1

C a l c u l a t e t h e f a c t o r i z a t i o n RjQj WD OMf1g
	
aj



S e t Wj WD OM�1
	
Qj



i f j = d :
C a l c u l a t e bj D bjC1 ı.j/;.2/ Wj

e l s e
C a l c u l a t e bj D bjC1 ı.j;jC1/;.2;3/ Wj

S e t W1 D b2
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x

≈ Qd = Wd

Qd = Wd

x

Bd

x

bd

≈ Wd−1

Wd−1

x

bd

x

bd−1

≈ Wd−2

Wd−2

x

bd−1

...

Fig. 3 Iterative construction of the tensor bi by subsequent range approximations

At the end of the procedure in Listing 2

x �W1 ıW2 ıW3 ı : : : ıWd

is an approximate TT decomposition of rank s D .s1; : : : ; sd�1/. This final
composition can also be given in terms of contractions with the orthogonal parts,
i.e.,

x �W1 ıW2 ıW3 ı : : : ıWd (39)

D
	
x ı.2;:::;d/;.2;:::;d/ .W2 ı : : : ıWd/



ıW2 ıW3 ı : : : ıWd (40)

D x ı.2;:::;d/;.2;:::;d/ ..W2 ı : : : ıWd/ ı1;1 .W2 ı : : : ıWd// (41)

DW OP2;:::;d.x/ (42)
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x

B2

=

x

P̂2;:::;d

Fig. 4 Depiction of the randomized TT-SVD as the action of the projection operator OP2;:::;d

where the effect of the orthogonal parts can also be seen as the action of an projector
OP2;:::;d. Note that since all parts are orthogonal, this is indeed an orthogonal projector.
This relation is visualized in Figure 4. In the following, it will be useful to also define
the orthogonal projections

OPi;:::;d.x/ WD x ı.i;:::;d/;.i;:::;d/ ..Wi ı : : : ıWd/ ı1;1 .Wi ı : : : ıWd// : (43)

The following theorem shows that there exists an stochastic error bound for this
randomized TT-SVD.

Theorem 2 (Error Bound). Given x 2 R
n1�:::�nd , s D r C p with p 
 4. For every

u; t 
 1, the error of the randomized TT-SVD, as given in Listing 2, fulfills

kx � P2::d.x/k �
p

d � 1 	.r; p/ min
TT-rank.y/�r

kx � yk (44)

with probability at least .1 � 5t�p � 2e�u2=2/d�1. The parameter 	 is given as

	 D 1C t

s
12r

p
C ut

e
p

rC p

pC 1
: (45)

Proof. For syntactical convenience let us define Bi WD
�
OMf1;:::;i�1g.bi/

�T
. Then as

OP2;:::;d is an orthogonal projector, we have

kx � P2::d.x/k2 D kxk2 � kP2::d.x/k2 (46)

D kxk2 �
˝
B2;B2

˛
(47)

D kxk2 �
˝
Q2B3;Q2B3

˛
(48)

D kxk2 �
˝
B3;QT

2Q2B3
˛
: (49)
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For all 2 � i � d, there holds

˝
BiC1;QT

i QiBiC1
˛
D
˝
BiC1;BiC1 � .I �QT

i Qi/BiC1
˛

(50)

D kBiC1k
2 �

˝
BiC1; .I �QT

i Qi/BiC1
˛

(51)

D kBiC1k
2 � k.I �QT

i Qi/BiC1k
2 (52)

D
˝
BiC2;QT

iC1QiC1BiC2
˛
� k.I �QT

i Qi/BiC1k
2 ; (53)

where we used that QT
i Qi is an orthogonal projector as well. Inserting this iteratively

into (46) gives

kx � P2::d.x/k2 D kxk2 � kBdC1k
2 C

dX

iD2

k.I �QT
i Qi/BiC1k

2 (54)

D

dX

iD2

k.I �QT
i Qi/BiC1k

2 ; (55)

where we used that BdC1 as a matricization of bdC1 WD x has the same norm as x
itself. As Qi is obtained in the exact setting of theorem 1, we know that for all i

k.I �QiQT
i /BiC1k

2 (56)

�

2

4

 

1C t

s
12r

p

! 
X

k>r

�2k .BiC1/

!1=2
C ut

e
p

rC p

pC 1
�rC1.BiC1/

3

5

2

(57)

�

2

4

 

1C t

s
12r

p
C ut

e
p

rC p

pC 1

! 
X

k>r

�2k .BiC1/

!1=23

5

2

(58)

� 	2
X

k>r

�2k .BiC1/ (59)

holds with probability at least 1 � 5t�p � 2e�u2=2. Note that the singular values
of BiC1 are the same as of OMf1;:::;i�1g. OPiC1::d.x//; see, e.g., Figure 4. As shown by
Hochstenbach and Reichel [31], the application of an orthogonal projection can only
decrease the singular values. Thereby it follows that

k.I �QiQT
i /BiC1k

2 � 	2
X

k>r

�2k .BiC1/ (60)

D 	2
X

k>r

�2k .
OMf1;:::;i�1g. OPiC1::d.x/// (61)
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� 	2
X

k>r

�2k .
OMf1;:::;i�1g.x// (62)

� 	2 min
rank. OM

f1;:::;i�1g.y//�r
kx � yk2 (63)

� 	2 min
TT-rank.y/�r

kx � yk2 : (64)

As the random tensors g are sampled independently in each step, the combined
probability that the above holds for all i is at least � 
 .1 � 5t�p � 2e�u2=2/d�1, as
asserted.

Note that if the tensor x actually has TT-rank r or smaller, that is, if
minTT-rank.y/�r kx � yk D 0, then the randomized TT-SVD is exact with probability
one. This follows directly from theorem 2 by using t!1; u!1.

Using standard Gaussian random tensors, the computational complexity of
the randomized TT-SVD is bounded by O.dsnd/, which is very similar to the
deterministic TT-SVD presented in Section 2.1. However, as we show in the
following proposition 1, for sparse tensors the complexity scales only linearly in
the order, which is a dramatic reduction compared to the exponential scaling of the
deterministic TT-SVD.

Proposition 1. Assume that x 2 R
n1�:::�nd contains at most N non-zero entries.

Then the computational complexity of the randomized TT-SVD given in Listing 2
scales as O.d.s2N C s3n//.

Proof. First note that if x has at most N non-zero entries, then each bi has at most
si�1N non-zero entries. The fact that x has at most N non-zero entries implies
that, independent of j, there are at most N tuples .k1; : : : ; kj/ such that the sub-
tensor xŒk1; : : : ; kj; �; : : : ; �� is not completely zero. Now each bi can be given as
bi D xı.i;:::;d/;.2;:::;d�iC1/.Wi ı : : : ıWd/. As any contraction involving a zero tensors
results in a zero tensor, bi is non-zero only if the first d � iC 1 modes take values
according to the at most N tuples. As there is only one further mode of dimension
si�1, there can in total be only si�1N non-zero entries in bi.

Creating only the, at most sj�1sjN, entries of g actually needed to perform the
product aj WD g ı.2;:::j/;.1;:::;j�1/ bjC1, this calculation can be done in O.sj�1sjN/.
Calculating the QR of OM.1/

	
aj



has complexity O.s2j�1njsj/. The involved (de-
)matrification actually does not incur any computational costs. Finally the product
bj D bjC1 ı.j;jC1/;.2;3/ Wd�j has complexity O.sj�1sjN/. These steps have to be
repeated d � 1 times. Adding it all up, this gives an asymptotic cost bounded by
O.d.s2N C s3n//, where s WD max.s1; : : : ; sd/. ut
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4 Relation to the Alternating Least Squares (ALS) Algorithm

There is an interesting connection between the proposed randomized TT-SVD and
the popular alternating least squares (ALS) algorithm, which is examined in this
section. Most of this section is still work in progress, but we consider sharing the
ideas worthwhile nevertheless. The ALS itself is a general optimization algorithm,
highly related to the very successful DMRG algorithm known in quantum physics.
We provide only a minimal introduction and refer to the literature for an exhaustive
treatment; see, e.g., [32, 33].

The ALS is used to solve optimization problems on the set of tensors with fixed
TT-rank r, for general objective functionals J W Rn1�:::�nd ! R. The special case
interesting in this work is

J .x/ WD kf � xk2

for a given tensor f 2 R
n1�:::�nd . The global optimum is then exactly the best rank r

approximation

x� WD argminTT-rank.y/Dr ky � fk : (65)

Observing that the parametrization x D � .W1; : : : ;Wd/ D W1 ı : : : ı Wd is
multilinear in the parameters Wi 2 R

ri�1�ni�ri . Hence fixing all components W1

except the i-th component Ui provides a parametrization of x which is linear in
Ui 2 R

ri�1�ni�ri

x WD x.Ui/ WDW1 ı : : : ı Ui ı : : : ıWd (66)

Therefore the original optimization problem in the large ambient space R
n1�:::�nd is

restricted or projected onto a relatively small subspace R
ri�1�ni�ri , where it can be

easily solved,

Wi WD argminUi2Rri�1�ni�ri

	
kW1 ı : : : ı Ui ı : : : ıWd � fk2



: (67)

This procedure is then continued iteratively by choosing another component Wj to
be optimized next, resulting in a nonlinear Gauß Seidel iteration. The process of
optimizing each component exactly once is often called a half-sweep.

Although these ideas can also be applied for the canonical format and general
tensor networks as well, the tensor train and hierarchical Tucker format admit the
possibility to use an orthonormal bases, which can be directly derived from the
components Wi by corresponding (left/right) orthogonalization. With this simple
post processing step, the ALS algorithm performs much better and more stable than
without orthogonalization; see ,.g., [32]. To get started, the ALS algorithm requires
an initial guess, i.e., it needs d � 1 (left /right) orthogonal components. A usual
choice is to use (Gaussian) random tensors for the d � 1 components, possibly
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orthogonalized. The interesting observation is that using this random initialization,
one half-sweep can almost be cast to our proposed randomized TT-SVD and vice
versa, in the sense that numerically exactly the same operations are performed. The
only difference is that, in the picture of the randomized TT-SVD, the random tensor
g is not chosen as a Gaussian random tensor in each step but as the first d � i
(contracted) random components of the ALS initialization. Note that this means
that for the matrix case d D 2, the two methods actually coincide completely.
Would it be possible to extend our error bounds to the setting of using structured
random tensors g and also to cope with the stochastic dependence implied by the
fact that g of different steps are not sampled independently, one could, for example,
prove stochastic error bounds for the first sweep of the ALS, possible not only for
the low-rank approximation setting but also for more general objective functionals
J . Numerical results indeed do suggest that such extensions might be possible.
However, this is devoted to forthcoming research.

5 Numerical Experiments

In order to provide practical proof of the performance of the presented randomized
TT-SVD, we conducted several numerical experiments. All calculations were per-
formed using the xerus C++ toolbox [34], which also contains our implementation
of the randomized TT-SVD. The random tensors used in the following experiments
are created as follows. Standard Gaussian random tensors are created by sampling
each entry independently from N .0; 1/. Sparse random tensors are created by
sampling N entries independently from N .0; 1/ and placing them at positions
sampled independently and evenly distributed from Œn1� � Œn2� � : : : � Œnd�. The
low-rank tensors are created by sampling the entries of the component tensors
W1; : : : ;Wd in representation (11), independently from N .0; 1/, i.e., all compo-
nents Wi are independent standard Gaussian random tensors. In some experiments
we impose a certain decay for the singular values of the involved matrifications.
To this end we create all random components as above; then for i from 1 to d � 1,
we contract Wi ı WiC1 and then re-separate them by calculating the SVD USVT

but replacing the S with a matrix QS in which the singular values decay in the
desired way. For a quadratical decay that is QS WD diag.1; 1

22
; 1
32
; : : : ; 1

2502
; 0; : : : ; 0/,

250 is a cutoff used in all experiments below. Then set Wi D OM�1.U/ and
WiC1 D OM�1.SVT/. Note that since the later steps change the singular values of
the earlier matrification, the singular values of the resulting tensor do not obey the
desired decay exactly. However empirically we observed that this method yields a
sufficiently well approximation for most applications, even after a single sweep.

A general problem is that, as described in Section 2.1, the calculation of the
actual best rank r approximation of higher-order tensors is NP-hard in general.
Moreover to the author’s knowledge, there are no nontrivial higher-order tensors for
which this best approximation is known in advance. Therefore a direct check of our
stochastic error bound (44) using the actual best approximation error is unfeasible.
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Instead most of the numerical experiments use the error of the deterministic TT-SVD
introduced in Section 2.1 for comparison, which gives a quasi-best approximation.
The factor of

p
d � 1 is present in both error bounds, but the remaining error

dependence given by (44) is verifiable in this way.
If not stated otherwise, we use the same values for all dimensions ni D n, target

ranks ri D r, and (approximate) ranks of the solution r�i D r�. In derogation from
this rule, the ranks are always chosen within the limits of the dimensions of the
corresponding matrifications. For example, for d D 8; n D 4; r D 20, the actual
TT-rank would be r D .4; 16; 20; 20; 20; 16; 4/. 256 samples are calculated for
each point, unless specified otherwise. The results for the randomized TT-SVD are
obtained by calculating a rank rC p approximation as described in Section 3.2 and
then using the deterministic TT-SDV to truncate this to rank r. This is done so that in
all experiments, the randomized and the deterministic approximations have identical
final ranks r.

5.1 Approximation Quality for Nearly Low-Rank Tensors

In this experiment we examine the approximation quality of the randomized TT-
SVD for almost exact low-rank tensors, i.e., we create random TT-rank r� tensors
xexact 2 R

n�:::�n and standard Gaussian random tensors n 2 R
n1�:::�nd . The target

tensor is then created as

x WD
xexact

kxexactk
C �

n
knk

; (68)

for some noise level � . Subsequently rank r approximations ydet and yrnd of x are
calculated using the randomized and deterministic TT-SVD. Finally we examine the
relative errors:

�det WD
kx � ydetk

kxk
�rnd WD

kx � yrndk

kxk
: (69)

Figure 5 show these errors for different noise levels � . The parameters are chosen as
d D 10; n D 4; r� D 10; r D 10; and p D 5; with 256 samples calculated for each
method and noise level.

As expected the error of the classical TT-SVD almost equals the noise � for all
samples, with nearly no variance. Independent of the noise level, the error �rnd of the
randomized TT-SVD is larger by a factor of approximately 1:6. The only exception
is in the case � D 0 where both methods are exact up to numerical precision.
In contrast to the classical TT-SVD, there is some variance in the error �rnd.
Notably this variance continuously decreases to zero with the noise level � . These
observations are in agreement with the theoretical expectations, as theorem 2 states
that the approximation error of the randomized TT-SVD is with high probability
smaller than a factor times the error of the best approximation.
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dependency of the oversampling for nearly low-rank tensors. Parameters are d D 10; n D 4; r� D
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5.2 Approximation Quality with Respect to Oversampling

In this experiment we examine the influence of the oversampling parameter p on the
approximation quality. The first setting is similar to the one in experiment 5.1, i.e.,
nearly low-rank tensors with some noise. In contrast to experiment 5.1, the noise
level � D 0:05 is fixed and the oversampling parameter p is varied. For each sample
we measure the error of the approximation obtained by the randomized TT-SVD �rnd

in terms of the error of the deterministic TT-SVD �det. The results for the parameters
d D 10; n D 4; r� D 10; r D 10; � D 0:05 are shown in Figure 6. For small p a
steep decent of the error factor is observed which slowly saturates toward a factor
of approximately one for larger p. The variance decreases at a similar pace.
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Fig. 7 Approximation error of the randomized TT-SVD in terms of the deterministic error
in dependency of the oversampling for tensors with quadratically decaying singular values.
Parameters are d D 10; n D 4; r D 10

In the second setting, tensors with quadratically decaying singular values are
used; see the general remarks at the beginning of the section for the details of the
creation. The behavior of the error factor is visualized in Figure 7 for the same
parameters d D 10; n D 4; r D 10. There are several differences compared to
the first setting. Most obvious for all p the factor is much smaller, i.e., the second
setting is more favorable to the randomized TT-SVD. The same is also true for the
variance. A more subtle difference, at least in the measured range of p, is that there
are many samples for which the error factor is smaller than one, i.e., the randomized
approximation is actually better than the deterministic one.

Very loosely speaking theorem 2 predicts a 1C cp
p dependency of the error factor

with respect to p, which is also roughly what is observed in both experiments.

5.3 Approximation Quality with Respect to the Order

In this third experiment, the impact of the order on the approximation quality is
investigated. Again the first setting uses nearly low-rank tensors with some noise.
The parameters are chosen as d D 10; n D 4; r� D 10; r D 10; � D 0:05. The
result is shown in Figure 8. As in experiment 5.2 in the second setting, target
tensors with quadratically decaying singular values are used. The results for the
parameters d D 10; n D 4; r D 10 are shown in Figure 9. For both settings the
factor slightly increases from d D 4 to d D 7 but then stabilizes to constant values
of approximately 1:65 and 1:95, respectively. The same qualitative behavior is
observed for the variance. This is somewhat better than expected from the theoretical
results. The factor

p
d � 1 in the error term of Theorem 2 is not visible as it is also

present in the error bound of the deterministic TT-SVD. However, the order also
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Fig. 9 Approximation error of the randomized TT-SVD in terms of the deterministic error in
dependency of the order for tensors with quadratically decaying singular values. Parameters are
d D 10; n D 4; r D 10

appears as an exponent in the probability, which should be observed in these results.
The fact that it is not suggest that a refinement of theorem 2 is possible in which this
exponent does not appear.

5.4 Computation Time

In this experiment we verify the computational complexity of the randomized TT-
SVD algorithm, in particular the linear scaling with respect to the order for sparse
tensors. To this end we create random sparse tensors with varying order and and a
fixed number N D 500 entries and measure the computation time of the TT-SVD.
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Fig. 10 Runtime of the deterministic and randomized TT-SVD algorithms for different orders.
Parameters are n D 2; r D 10; p D 10

The other parameters are chosen as n D 2; r D 10; p D 10. Figure 10 shows the
results which clearly confirm the linear scaling of the randomized TT-SVD. As a
comparison also, the runtime of the classical TT-SVD is given for the smaller orders.
While the absolute numbers are of course hardware and implementation depended,
the dramatic edge of the randomized approach is obvious.

5.5 Approximation Quality Using Low-Rank Random Tensors

This final experiment uses the low-rank random tensor approach to the TT-SVD
discussed in Section 4, i.e., instead of the proposed randomized TT-SVD, one half-
sweep of the ALS algorithm with random initialization is performed. The remainder
of the setting is the same as the second one of experiment 5.2, i.e., tensors with
quadratically decaying singular values and parameters d D 10; n D 4; r D 10.
Figure 11 shows the results and also as a comparison the average errors from
experiment 5.2. Apparently the error factor using the ALS half-sweep is somewhat
larger than the one of the randomized TT-SVD, but otherwise exhibits the same
behavior with respect to the oversampling. While there are no theoretical results on
this method yet, this result is encouraging as it suggest that error bounds similar to
theorem 2 are possible for the ALS with random initialization.

6 Conclusions and Outlook

We have shown theoretically and practically that the randomized TT-SVD algorithm
introduced in this work provides a robust alternative to the classical deterministic
TT-SVD algorithm at low computational expenses. In particular the randomized
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TT-SVD is provably exact if applied to a tensor with TT-rank smaller or equal to
the target rank. For the case of actual low-rank approximations, stochastic error
bounds hold. The numerical experiments suggest that these proven bounds are
somewhat pessimistic as the observed error is mostly significantly smaller than
expected. Especially we do not observe a significant deterioration of the error bound
with increased order, as suggested by the current theoretical results. This leaves
room for improvements and we believe that enhanced versions of our theorem are
possible. On the computational side, we have provided efficient implementations of
the proposed algorithm, available in the xerus C++ toolbox. For sparse tensors, we
have shown that the randomized TT-SVD algorithm dramatically outperforms the
deterministic algorithm, scaling only linearly instead of exponentially in the order,
which was verified by measurement of the actual implementation. We believe that
these results show that the randomized TT-SVD algorithm is a useful tool for low-
rank approximations of higher-order tensors.

In order to avoid repetition, we presented our randomized TT-SVD algorithm
only for the popular tensor train format. Let us note however that the very same
ideas can straight forwardly be applied to obtain an algorithm for a randomized
HOSVD for the Tucker format. We expect that they can also be extended to obtain
a randomized HSVD for the more general hierarchical Tucker format, but this is
still work in progress. While an extension to the canonical polyadic format would
certainly be desirable as well, we expect such an extension to be much more evolved,
if possible at all.

A topic of further investigations is the use of structured random tensors in the
randomized TT-SVD. For the matrix case, several choices of structured random
matrices are already discussed in the work of Halko et al. [5]. Transferring their
results to the high-dimensional case could allow choices of randomness which lead
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to reduced computational cost if the given tensor is dense, as it is the case for
matrices. The even more interesting choice however is to use random low-rank
tensors, as already discussed in Section 4. On the one hand, an analysis of this
setting directly benefits the alternating least squares algorithm, as it would result in
error bound for the first half-sweep for a random initial guess. This can be of major
importance as there are mainly local convergence theories for the ALS, which is
why the starting point matters a lot. On the other hand, having error bounds also
for this setting allows computationally fast application of the randomized TT-SVD
to tensors given in various data-sparse formats, e.g., in the canonical, the TT or
HT format, and also combination of those. This is, for example, important for
the iterative hard thresholding algorithm for tensor completion, discussed in the
introduction. Here in each iteration an SVD of a low rank plus a sparse tensor has
to be calculated.
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Versatile and Scalable Cosparse Methods
for Physics-Driven Inverse Problems
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Abstract Solving an underdetermined inverse problem implies the use of a regular-
ization hypothesis. Among possible regularizers, the so-called sparsity hypothesis,
described as a synthesis (generative) model of the signal of interest from a low
number of elementary signals taken in a dictionary, is now widely used. In
many inverse problems of this kind, it happens that an alternative model, the
cosparsity hypothesis (stating that the result of some linear analysis of the signal
is sparse), offers advantageous properties over the classical synthesis model. A
particular advantage is its ability to intrinsically integrate physical knowledge about
the observed phenomenon, which arises naturally in the remote sensing contexts
through some underlying partial differential equation. In this chapter, we illustrate
on two worked examples (acoustic source localization and brain source imaging)
the power of a generic cosparse approach to a wide range of problems governed by
physical laws, how it can be adapted to each of these problems in a very versatile
fashion, and how it can scale up to large volumes of data typically arising in
applications.
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Keywords Inverse problem · Sparse regularization · Cosparsity · Partial
differential equation · Acoustic source localization · Brain source imaging ·
Electroencephalography

1 Introduction

Inverse source problems consist in inferring information from an object in an
indirect manner, through the signals it emits or scatters. This covers in particular
remote sensing, a term coined in Earth sciences [12], to indicate acquisition of
shape or structure data of the Earth’s crust, using signal processing techniques. More
generally, remote sensing considers any method that collects distant observations
from an object, with a variety of possible signal modalities and imaging modes
(active or passive) that usually determine the applied processing technique.

Remote sensing and inverse problems encompass a wide range of practical
applications, many of which play essential roles in various parts of modern
lifestyle: medical ultrasound tomography, electroencephalography (EEG), magne-
toencephalography (MEG), radar, seismic imaging, radio astronomy, etc.

To address inverse problems, an important issue is the apparent shortage of
observed data compared to the ambient dimensionality of the objects of interest.
A common thread to address this issue is to design low-dimensional models able to
capture the intrinsic low dimensionality of these objects while allowing the design
of scalable and efficient algorithms to infer them from partial observations.

The sparse data model has been particularly explored in this context [9, 75, 78].
It is essentially a generative synthesis model describing the object of interest as
a sparse superposition of elementary objects (atoms) from a so-called dictionary.
Designing the atoms in a given application scenario can be challenging. As
documented in this chapter, exploiting dictionaries in the context of large-scale
inverse problems can also raise serious computational issues.

An alternative model is the so-called analysis sparse model, or cosparse model,
whereby the sparsity assumption is expressed on an analysis version of the object
of interest, resulting from the application of a (differential) linear operator. As
we will see, this alternative approach is natural in the context of many inverse
problems where the objects of interest are physical quantities with properties
driven by conservation or propagation laws. Indeed, the fact that such laws are
expressed in terms of partial differential equations (PDEs) has several interesting
consequences. First, using standard discretization schemes, the model (which is
embodied by an analysis operator rather than a dictionary) can be directly deduced
from the knowledge of these PDEs. Moreover, the resulting model description
is often very concise, and the associated linear analysis operator is very sparse,
leading to efficient computations. The framework thus fits very well into iterative
algorithms for sparse regularization and large-scale convex optimization. Finally,
the framework is adaptable to difficult settings where, besides the object of interest,
some other “nuisance” parameters are unknown: uncalibrated sensors, partially
known impedances, etc.
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To demonstrate the scalability and versatility of this framework, this chapter uses
as worked examples two practical scenarios involving two types of signals (namely,
acoustic and electroencephalographic) for illustration purposes. The generic mod-
eling and algorithmic framework of physics-driven cosparse methods which is
described here has however the potential to adapt to many other remote sensing
situations as well.

2 Physics-Driven Inverse Problems

Many quantities of interest that are measured directly or indirectly by sensors are
intimately related to propagation phenomena governed by certain laws of physics.
Linear partial differential equations (PDEs) are widely used to model such laws
including sound propagation in gases (acoustic wave equation), electrodynamics
(Maxwell equations), electrostatic fields (Poisson’s equation), thermodynamics
(heat equation), and even option pricing (Black-Scholes equation), among many
others. When coupled with a sparsity assumption on the underlying sources, these
lead to a number of feasible approaches to address physics-driven inverse problems.

2.1 Linear PDEs

Hereafter, ! denotes the coordinate parameter (e.g., space r and/or time t) of an
open domain �. Linear PDEs take the following form:

Dx.!/ WD
X

jdj��

ad.!/D
dx.!/ D c.!/; ! 2 �; (1)

where ad, x, and c are functions of the variable !. Typically one can think of x.!/
as the propagated field and c.!/ as the source contribution. The function ad denotes
coefficients that may (or may not) vary with !.

Above, d is the multi-index variable with jdj D d1 C : : :C dl, di 2 N0. For a
given d D .d1; : : : ;dl/, Ddx.!/ denotes the dth partial differential of x with respect
to !, defined as:

Ddx.!/ WD
@jdjx

@!
d1
1 @!

d2
2 : : : @!

dl
l

:

In order for continuous Ddx.!/ to exist, one needs to restrict the class of functions
to which x.!/; ! 2 � belongs. Such function spaces are called Sobolev spaces.
In this chapter, functions are denoted by boldface italic lowercase (e.g., f ), while
linear operators acting on these are denoted by uppercase fraktur font (e.g., D;L).
For linear PDEs, linear initial conditions and/or boundary conditions are also
considered, and we denote them as Bx D b. Finally, we compactly write (1),
equipped with appropriate boundary/initial conditions, in linear operator form:
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Lx D c; (2)

where L WD .D;B/ and c WD .c; b/, by abuse of notation. For simplicity, we
consider only self-adjoint operators1 L. With regard to remote sensing, L, x, and
c represent the “channel,” the propagated, and the “source” signal, respectively.

2.2 Green’s Functions

While our final goal is to find c given partial observations of x, let us assume, for
now, that c is given and that we want to infer the solution x.

The existence and uniqueness of solutions x of PDEs, in general, is an open
problem. These are subject to certain boundary and/or initial conditions, which
constrain the behavior of the solution at the “edge” @� of the domain�. Fortunately,
for many types of PDEs, the required conditions are known, such as those provided
by Cauchy-Kowalevski theorem, for PDEs with analytic coefficients. Hence, we do
not dwell on this issue; instead, we assume that the unique solution exists (albeit, it
can be very unstable – PDEs represent archetypal ill-posed problems [40]).

Looking at (2), one may ask whether there exist an inverse operator L�1, such
that we can compute the solution as x D L�1c. Indeed, in this setting such operator
exists and is the gist of the method of Green’s functions for solving PDEs. The
operator is (as expected) of integral form, and its kernel is given by the Green’s
functions g.!; s/, defined as follows:

Dg.!; s/ D ı.! � s/; s 2 �; (3)

Bg.!; s/ D 0; s 2 @�;

where ı.�/ represents Dirac’s delta distribution. In signal processing language, the
Green’s function can be seen as the response of the system (2) to the impulse
centered at s 2 �.

If we assume that b D 0 on @�, it is easy to show that the solution of a linear
PDE is obtained by integrating the right-hand side of (2). Namely, since

Lx.!/ D c.!/ D
Z

�

ı.s � !/c.s/ds D L

Z

�

g.s; !/c.s/ds; (4)

we can identify x.!/ with the integral. Note that g.s; !/ D g.!; s/ for a self-adjoint
operator L, and the latter can be put in front of integration since it acts on !. When
the boundary conditions are inhomogeneous (b ¤ 0), the same approach can be
taken except that one needs two types of Green’s functions: one defined as in (3), and

1The operators for which hLp1; p2i D hp1; Lp2i holds. Otherwise, setting the adjoint boundary
conditions would be required.
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another with ı.! � s/ placed at the boundary (but with Dg D 0, otherwise). Then,
one obtains x1 and x2 from (4), and the solution x is superposition: x D x1 C x2.

Since integration is again a linear operation, we can compactly represent (4) in
the form of a linear operator:

x D Gc; (5)

and, by comparing it with (2), we can deduce that G D L�1.
Green’s functions are available in analytic form only for a restricted set of

combinations of domain geometries/initial/boundary conditions. In such a case,
evaluating g.�; �/ is direct, but the integral (4) may still be difficult to evaluate
to obtain the integral operator G. Functional approximations, such as using a
parametrix [32], can be helpful; however in the most general case, one will have
to resort to numerical approximations, as will be discussed in Section 4.

2.3 Linear Inverse Problem

The inverse problem we are interested in is the estimation of the field x (or,
equivalently, of the source component c) from a limited set of (noisy) field
measurements acquired at a sensor array. In the case of a spatial field, such as a
heat map, the coordinate parameter is spatial ! D r, and each measurement is
typically a scalar estimate of the field at m given locations, yj � x.rj/, perhaps
after some spatial smoothing. In the case of a time series, the coordinate parameter
is time ! D t, and the measurements are obtained by analog-to-digital sampling
(usually at a fixed sampling rate) at t time instants, corresponding to y` � .h?x/.t`/,
where h.t/ is a temporal filter, optionally applied for temporal smoothing. In the
case of a spatiotemporal field, such as an acoustic pressure field, ! D .r; t/ and the
acquired measurement consist of multiple time series obtained by analog-to-digital
sampling (at a fixed sampling rate) at a number of spatial locations, corresponding
to yj;` � .h ?t x/.rj; t`/ with ?t a convolution along the temporal dimension. Except
when the nature of ! is essential for discussion, we use below the generic notation
yj � x.!j/.

Now, we consider a vector y 2 R
m (resp. 2 R

t or 2 R
m�t) of measurements

as described above. Without additional assumptions, recovering c or x given the
measurement vector y only is impossible. Understanding that (2) and (5) are dual
representations of the same physical phenomenon, we term such problems physics-
driven inverse problems.

Algebraic Methods Rigorous algebraic methods for particular instances of
inverse source problems have been thoroughly investigated in the past and are
still a very active area of research. The interested reader may consult, e.g., [40],
and the references therein. A more generic technique (which doesn’t prescribe a
specific PDE), closely related to the numerical framework we will discuss in next
sections, is proposed in [60]. However, its assumptions are strong (although not
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completely realistic), including in particular the availability of analytic expressions
for the Green’s functions. In addition, they must respect the approximate Strang-Fix
conditions [26], and the source signal must follow the finite rate of innovation (FRI)
[82] model, i.e., it should be a weighted sum of Dirac impulses. In practice, it also
requires a high signal-to-noise ratio (SNR), or sophisticated numerical methods in
order to combat sensitivity to additive noise, and possibly a large number of sensors.

Sparse Regularization Fortunately, in reality, the support of the source contribu-
tion c in (1) is often confined to a much smaller subset �0 � � (i.e., c.!/ D
0; 8! 2 �c

0), representing sources, sinks, or other singularities of a physical field.
Two practical examples will be given soon in Section 3. This crucial fact is exploited
in many regularization approaches for inverse source problems, including the one
described in this chapter. Sparsity-promoting regularizers often perform very well
in practice (at least empirically) [52, 66–68]. Even though there exist pathological
inverse source problems so severely ill-posed that the source sparsity assumption
alone is not sufficient [20, 23], such cases seem to rarely occur in practice. Hence,
sparse regularization can be considered as an effective heuristics for estimating
solutions of various inverse source problems, although not as an all-purpose rigorous
methodology for all physics-driven inverse problems.

3 Worked Examples

As an illustration, in the rest of this chapter we consider two physics-driven inverse
problems: acoustic source localization (driven by the acoustic wave equation) and
brain source localization (driven by Poisson’s equation).

3.1 Acoustic Source Localization from Microphone
Measurements

The problem we are concerned with is determining the position of one or more
sources of sound based solely on microphone recordings. The problem arises in
different fields, such as speech and sound enhancement [34], speech recognition
[4], acoustic tomography [58], robotics [80], and aeroacoustics [45]. Traditional
approaches based on time difference of arrival (TDOA) dominate the field [8], but
these usually only provide the direction of arrival of the sound sources and are
generally sensitive to reverberation effects. We take a different approach and use
the physics of acoustic wave propagation to solve the localization problem.

The Wave Equation Sound is the manifestation of acoustic pressure, which is a
function of position r and time t. Acoustic pressure x WD x.r; t/, in the presence of
a sound source, respects the inhomogeneous acoustic wave equation:

�x �
1

v2
@2

@t2
x D c; .r; t/ 2 � WD � � .0; �/; (6)
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where � denotes the spatial domain, � is the Laplacian operator with respect to
the spatial variable r, and v is the speed of sound (around 334m � s�1 at room
temperature, it may depend on space and/or time but is often approximated as
constant). The right-hand side c WD c.r; t/ represents the pressure emitted by a sound
source at position r and time t, if any (if a source is not emitting at some time instant
t, then c.r; t/ is zero at this source position; as an important consequence, c D 0

everywhere, but at the source positions).

Initial and Boundary Conditions To ensure self-adjointness, we impose homoge-
neous initial and boundary conditions,

8r 2 �; x.r; 0/ D 0;
@

@t
x.r; 0/ D 0; (7)

i.e., the acoustic field is initially at rest.
In addition, we may impose Dirichlet (x j@�D 0) or Neumann (rx � n j@�D 0)

boundary conditions, where rx is the spatial gradient (with respect to r) and n is
the outward normal vector to the boundary @� . A generalization is the so-called
Robin boundary condition, which models reflective boundaries, or Mur’s boundary
condition [59]:

8r 2 @�;8tW
@x
@t
C v�rx � n D 0; (8)

where � 
 0 is the specific acoustic impedance (again, possibly dependent on space
and time but reasonably considered as fixed over time). For � � 1, Mur’s condition
approximates an absorbant boundary.

Inverse Problem An array consisting of m omnidirectional microphones, with a
known geometry, outputs the measurements assembled into the vector y 2 R

mt,
where t is the number of time samples. Thus, we assume that the microphones output
discrete signals, with an antialiasing filter and sampler applied beforehand. The goal
is, ideally, to recover the fields x or c from the data y, using prior information that
the sound sources are sparse in the spatial domain � .

Related Work Sound source localization through wavefield extrapolation and
low-complexity regularization was first introduced by Malioutov et al. in [54].
They assumed a free-field propagation model, which allowed them to analytically
compute the associated Green’s functions. The narrowband sound sources were
estimated by applying sparse synthesis or low-rank regularizations. A wideband
extension was proposed in [53], which is, however, a two-stage approach that
implicitly depends on solving the narrowband problem. The free space assumption
was first abandoned by Dokmanić and Vetterli [24, 25], for source localization in the
frequency domain. They used the Green’s function dictionary numerically computed
by solving the Helmholtz equation with Neumann boundary conditions, by the finite
element method (FEM). The wideband scenario was tackled as a jointly sparse
problem, to which, in order to reduce computational cost, a modification of the
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OMP algorithm was applied. However, as argued in [17], this approach is critically
dependent on the choice of frequencies and can fail if modal frequencies are used.
Le Roux et al. [50] proposed to use the CoSaMP algorithm for solving the sparse
synthesis problem in the same spirit.

3.2 Brain Source Localization from EEG Measurements

Electrical potentials produced by neuronal activity can be measured at the surface
of the head using electroencephalography (EEG). The localization of sources of this
neuronal activity (during either cognitive or pathological processes) requires a so-
called head model, aiming at representing geometrical and electrical properties of
the different tissues composing the volume conductor, as well as a source model.

Poisson’s Equation It is commonly admitted that the electrical potential x WD x.r/
at location r within the human head mostly reflects the activity of pyramidal cells
located in the gray matter and oriented perpendicularly to the cortical surface. This
activity is generally modeled by current dipoles. Given the geometry and the scalar
field f� .r/g of electrical conductivities at location r within the head, Poisson’s
equation [10, 55] relates the electrical potential x and the current density j:

� r � .� rx/ D r � j; r 2 � (9)

where � is the spatial domain (interior of the human head) and r � j is the volume
current. The operators r� and r, respectively, denote the divergence and gradient
with respect to the spatial variable r.

Boundary Condition We assume the Neumann boundary condition,

�rx � n D 0; r 2 @�; (10)

which reflects the absence of current outside the human head.

Inverse Problem An array consisting of m electrodes located on the scalp (see
Figure 2) captures the EEG signal y D Œx.r1/; : : : ; x.rm/�

T 2 R
m. The brain source

localization problem consists in recovering from y the electrical field inside the head
(with respect to some reference electrical potential), x, or the current density, j, under
a sparsity assumption on the latter.

Related Work Numerous methods for brain source localization were developed to
localize equivalent current dipoles from EEG recordings. Among them, beamform-
ing techniques [65], subspace approaches [1, 57, 72], and sparse methods [79] are
the most popular. Regarding dictionary-based sparse techniques, the most famous
is MCE (minimum current estimate) [79], which computes minimum `1-norm
estimates using a so-called leadfield matrix, corresponding to discretized Green’s
functions sampled at the electrode locations.
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4 Discretization

A key preliminary step in the deployment of numerical methods to address inverse
problems lies in the discretization of the quantities at hand, which amounts to
convert the continuous PDE model (2) into a finite-dimensional linear model. A
priori, any discretization method could be used within the regularization framework
we propose; here, we limit ourselves to two families of them among the most
common.

4.1 Finite-Difference Methods (FDM)

The simplest way to discretize the original continuous PDE is to replace the
derivatives by finite differences obtained from their Taylor’s expansion at a certain
order, after discretization of the variable domain � itself on a (generally regular)
grid. Consider a grid of discretization nodes f!`g`2I for the domain � and its
boundary @�. For each (multidimensional) index ` corresponding to the interior
of the domain, the partial derivative Ddx.!`/ is approximated by finite linear
combination of values of the vector x D Œx.!`

0

/�`02I associated to indices `0 such
that !`

0

is in the neighborhood of !`. The stencil defining these positions, as well as
the order of the approximation, characterizes a particular FDM. A similar approach
defines approximations to partial derivatives at the boundary and/or initial points.

Example: The Standard Leapfrog Method (LFM) As an example, we describe
here the standard Leapfrog Method (LFM) applied to the discretization of a 2D,
isotropic acoustic wave equation (6). Here, the domain � is three-dimensional,
with variables rx; ry (two spatial coordinates) and t (time). The corresponding
PDE to be discretized only involves second-order derivatives of x with respect
to these variables. By denoting x�i;j WD x.!�i;j/ the field value at grid position
!�i;j WD .rx.i/; ry.j/; �/, the LFM approximation is (for � > 2 and excluding the
boundaries):

Dx.!�i;j/ D
�
@2

@r2x
C @2

@r2y
� 1

v2
@2

@t2

�
x.!�i;j/ �

x�i�1;j�2x�i;jCx�iC1;j

d2x
C

x�i;j�1�2x�i;jCx�i;jC1

d2y
� 1

v2
x�C1

i;j �2xt
i;jCx��1

i;j

d2�
; (11)

where dx; dy and d� denote the discretized spatial and temporal step sizes, respec-
tively. This FDM scheme can be summarized as the use of a 7-point stencil centered
at x�i;j in this case. It is associated to a finite-dimensional linear operator D such that
Dx approximates the discretized version of Dx.!/ in the interior of the domain. The
approximation error is of the order of O.max.dx; dy; dt/

2/.
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Similar formulas for boundary nodes are obtained by substituting a nonexistent
spatial point in the scheme (11) by the expressions obtained from discretized bound-
ary conditions. For instance, for the frequency-independent acoustic, absorbing
boundary condition (8), proposed in [48], e.g., the missing point x�iC1;j behind the
right “wall,” is evaluated as:

x�iC1;j D x�i�1;j C
dx

vd� �i;j

�
x��1

i;j � x�C1
i;j

�
: (12)

When corners (and edges in 3D) are considered, the condition (8) is applied to all
directions where the stencil points are missing. Combining (12) and (11) yields a
linear operator B such that Bx D b approximates the discretized version of Bx.!/ D
b.!/ on the initial/boundary points of the domain.

Concatenating D and B yields a square matrix ˝ (of size n D st where s is the
size of the spatial grid and t the number of time samples).

Using LFM to Solve the Discretized Forward Problem While we are interested
to use the above discretization to solve inverse problems, let us recall how it serves to
address the forward problem, i.e., to estimate x when c is given. Under the assump-
tion Dx D c, the leapfrog relation (11) allows to compute x�C1

i;j using c�i;j and values

of x at two previous discrete time instants (x�.�;�/ and x��1
.�;�/ ). Similarly, homogeneous

boundary conditions (b D 0) translate into relations between neighboring values of
x on the boundaries and over time. For example, the above described discretization
of Mur’s boundary condition yields an explicit expression of x�C1

i;j at the boundary
(see Equation (49) for details.) Neglecting approximation errors, LFM discretization
thus yields a convenient explicit scheme [51] to solve ˝x D c. An example of a 2D
acoustic field discretized by this method is presented in Figure 1. Numerical stability
of explicit FDM schemes, such as LFM, can only be ensured if the step sizes respect
some constraining condition, such as the Courant-Friedrich-Lewy condition for
hyperbolic PDEs [51]. In the abovementioned example, for instance, this condition
translates into vd� =min.dx; dy/ � 1=

p
2. This limits the resolution (for instance in

space and time) achievable by these methods.

Fig. 1 Example of a discretized 2D acoustic pressure field at different time instants
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4.2 Finite Element Methods (FEM)

The finite element method (FEM) is a numerical approximation used to solve
boundary value problems when the solution is intractable analytically due to
geometric complexities and inhomogeneities. Among several variants, the Galerkin
FEM is famous as it is both well-rooted in theory and simple in derivation [35]. In
the Galerkin FEM, a solution is computed in three main steps: 1) the formulation of
the problem in its weak/variational form, 2) the discretization of the formulated
problem, and 3) the choice of the approximating subspace. As an illustrative
example, let’s consider the well-known problem of Poisson’s equation (9) with
Neumann boundary condition (10).

Weak/Variational Formulation The first step aims at expressing the aforemen-
tioned PDE in an algebraic form. For a given test function w.r/ in some (to be
specified) Hilbert space of regular functions H, we have, denoting c D r:j the
volume current which serves as a source term,

Z

�

c.r/w.r/dr D �
Z

�

r � .�.r/rx.r//w.r/dr

D �

Z

@�

n � .�.r/rx.r//w.r/drC
Z

�

rw.r/ � .�.r/rx.r//dr

D

Z

�

rw.r/ � .�.r/rx.r//dr: (13)

The second line in (13) is derived using Green’s identity which is the multidimen-
sional analogue of integration by parts [35], whereas, the last line is deduced from
the Neumann boundary condition (10). Notice that the resulting equality in (13) can
be written as

a.x;w/ D b.w/ 8w 2 H (14)

where a.:; :/ is a symmetric bilinear form on H and b.:/ is a linear function on H.
The equality in (14) is referred to as the weak or the variational formulation of the
PDE in (9)–(10), a name that stems from the less stringent requirements put on the
functions x and c. In fact, the former should be differentiable only once (vs. twice
in the strong formulation), whereas the latter needs to be integrable (vs. continuous
over N� in the strong formulation). These relaxed constraints in the weak form make
it relevant to a broader collection of problems.

Discretization with the Galerkin Method In the second step, the Galerkin method
is applied to the weak form. This step aims at discretizing the continuous problem
in (14) by projecting it from the infinite-dimensional space H onto a finite-
dimensional subspace Hh � H (h refers to the precision of the approximation).
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Denoting f�`g`2I a basis of Hh, any function x in the finite-dimensional subspace
Hh can be written in a unique way as a linear combination x D

P
`2I x`�`.

Therefore, given x a solution to the problem and if we take as a test function w
a basis function �i, the discrete form of (14) is then expressed as

X

`2I

ah.�i;�`/x` D bh.�i/ 8i 2 I (15)

where

ah.�i;�`/ WD

Z

�h

�.r/r�i.r/ � r�`.r/dr (16)

bh.�i/ WD

Z

�h

c.r/�i.r/dr (17)

with �h a discretized solution domain (see next). The discretization process thus
results in a linear system of n WD card.I/ equations with n unknowns fx`g`2I , which
can be rewritten in matrix form ˝x D c. The so-called global stiffness matrix ˝
is a symmetric matrix of size n � n with elements ˝ij D ah.�i;�j/, and c is the
load vector of length n and elements ci D bh.�i/. Notice that, in the case where
�.r/ is a positive function (as in EEG problem for instance), the matrix ˝ is also
positive semidefinite. This property can be easily deduced from the bilinear form
a.:; :/ where a.x; x/ D

R
�
�.r/.rx.r//2dr 
 0 for any function x 2 H and from the

relationship a.x; x/ D xT˝x.
For the considered Poisson’s equation, the stiffness matrix ˝ is also rank

deficient by one. This comes from the fact that x can only be determined up to an
additive constant (corresponding to an arbitrary choice of reference for the electrical
potential it represents), since only the gradient of x appears in Poisson’s equation
with Neumann boundary condition.

Choice of the Approximating Subspace and Discretization Basis The con-
struction of the discretized solution domain �h and the choice of basis functions
f�`g`2I are two pivotal points in FEM since they deeply affect the accuracy of the
approximate solution obtained by solving ˝x D c. They also impact the sparsity
and conditioning of˝, hence the computational properties of numerical schemes to
solve this linear system.

In FEM, the domain is divided uniformly or nonuniformly into discrete elements
composing a mesh, either of triangular shape (tetrahedral in 3D) or rectangular
shape (hexahedral in 3D). The triangular (tetrahedral) mesh is often more adapted
when dealing with complex geometries (see example in Figure 2 for a mesh of a
human head to be used in the context of the EEG inverse problem).

Given the mesh, basis functions are typically chosen as piecewise polynomials,
where each basis function is nonzero only on a small part of the domain around a
given basic element of the mesh, and satisfy some interpolation condition.
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Fig. 2 Left: a sagittal cross section of tetrahedral mesh generated used iso2mesh software [29] for
a segmented head composed of five tissues: gray matter (red), white matter (green), cerebrospinal
fluid (blue), skull (yellow), and scalp (cyan). Right: profile view of a human head wearing an
electrode helmet (m = 91 electrodes). Red stars indicate the real positions of the electrodes on the
helmet, while black dots refer to their projection onto the scalp

˚
rj
�

jD1Wm.

Typical choices lead to families of basis functions whose spatial support overlaps
a little: the support of �i and �` only intersects if they correspond to close mesh
elements. As a result ah.�i;�`/ is zero for the vast majority of pairs i; `, and the
stiffness matrix ˝ is sparse with k˝k0 D O.n/.

Using FEM to Solve the Forward EEG Problem Once again, while our ultimate
goal is to exploit FEM for inverse problems, its use for forward problems is illus-
trative. In bioelectric field problems, a well-known example of problem modeled
by (9)–(10) and solved by FEM is the forward EEG problem that aims at computing
the electric field within the brain and on the surface of the scalp using a known
current source within the brain and the discretized medium composed of the brain
and the surrounding layers (skull, scalp, etc.) [38, 43].

4.3 Numerical Approximations of Green’s Functions

Discretization methods such as FDM or FEM somehow “directly” discretize the
PDE at hand, leading to a matrix˝ which is a discrete equivalent of the operator L.
While (2) implicitly defined x given c, in the discretized world, the matrix˝ allows
to implicitly define x given c as

˝x D c; (18)

with x 2 R
n the discretized representation of x, and similarly for c and c.
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We now turn to the discretization of the (potentially more explicit) integral
representation of x using Green’s functions (5), associated to the integral operator
G, which, as noted in Section 4.3, is often a necessity. One has firstly to discretize
the domain �, the PDE L, the field x, and the source c and secondly to numerically
solve (3) and (4).

Assuming that the equation Lx D c has a unique solution, we expect the
discretized version of L, the matrix ˝ 2 R

n�n, to be full rank. Under this
assumption, we can write

x D �c; with � D ˝�1: (19)

In compressive sensing terminology, � is a dictionary of discrete Green’s functions.
Not surprisingly, the discretized version of the integral operator G is the matrix

inverse of the discretized version of the differential operator L. Hence, c and x can be
seen as dual representations of the same discrete signal, with linear transformations
from one signal space to another. Yet, as we will see, there may be significant
differences in sparsity between the matrices � and ˝: while � is typically a dense
matrix (Green’s functions are often delocalized, e.g., in the context of propagation
phenomena), with k�k0 of the order of n2, the analysis operator is typically very
sparse, with k˝k0 D O.n/. In the context of linear inverse problems where one only
observes y � Ax, algorithms may thus have significantly different computational
properties whether they are designed with one representation in mind or the other.

4.4 Discretized Inverse Problem

We now have all elements in place to consider the discretized version of the
inverse problems expressed in Section 2.3. The signals and measurement vectors
are, respectively, denoted by x 2 R

s, c 2 R
s, and y 2 R

m, in the case of a spatial
field, or x 2 R

st, c 2 R
st, and y 2 R

mt, in the case of the spatiotemporal field. We
denote n the dimension of x and c, which is n D s in the former case and n D st in
the latter.

The vector of measurements y can be seen as a subsampled version of x, possibly
contaminated by some additive noise e. In the case of a spatial field, y D Ax C e,
where A is an m � s spatial subsampling matrix (row-reduced identity) and e is
a discrete representation of additive noise e. In the case of a spatiotemporal field,
the same holds where A is an .mt/ � .st/ block-diagonal concatenation of identical
(row-reduced identity) spatial subsampling matrices. Overall, we have to solve

y D AxC e; (20)
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where A is a given subsampling matrix. Given ˝ (and, therefore, � D ˝�1),
equivalently to (20), we can write

y D A�cC e; (21)

where x and c satisfy (18)–(19).

Sparsity or Cosparsity Assumptions Since A� 2 R
m�s (resp 2 R

mt�st), and
m < s, it is obvious that one cannot recover every possible source signal c from
the measurements y, hence the need for a low-dimensional model on x or on c. As
discussed in Section 2.3, a typical assumption is the sparsity of the source field c,
which in the discretized setting translates into c being a very sparse vector, with
kck0 � n (or well approximated by a sparse vector), possibly with an additional
structure. This gives rise to sparse synthesis regularization, usually tackled by
convex relaxations or greedy methods that exploit the mode x D �c with sparse c.
Alternatively, this is expressed as a sparse analysis or cosparse model on x asserting
that ˝x is sparse.

5 Sparse and Cosparse Regularization

Previously discussed techniques for solving inverse source problems suffer from
two serious practical limitations, i.e., algebraic methods (Section 2.3) impose
strong, often unrealistic assumptions, whereas sparse synthesis approaches based
on numerical Green’s function approaches (Section 3) do not scale gracefully for
nontrivial geometries. Despite the fact that physical fields are not perfectly sparse
in any finite basis, as demonstrated in one of the chapters of the previous issue of
this monograph [64], it becomes obvious that we can escape discretization only for
very restricted problem setups. Therefore, we focus on the second issue using the
analysis version of sparse regularization.

5.1 Optimization Problems

Following traditional variational approaches [70], estimating the unknown parame-
ters x and c corresponds to an abstract optimization problem, which we uniformly
term physics-driven (co)sparse regularization:

min
x;c

fd.Ax � y/C fr.c/ (22)

subject to ˝x D c; Cx D h:
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Here, fd is the data fidelity term (enforcing consistency with the measured data),
whereas fr is the regularizer (promoting (structured) sparse solutions c). The matrix
C and vector h represent possible additional constraints, such as source support
restriction or specific boundary/initial conditions, as we will see in Section 7.

We restrict both fd and fr to be convex, lower semicontinuous functions, e.g., fd
can be the standard sum of squares semimetric and fr can be the `1 norm. In some
cases the constraints can be omitted. Obviously, we can solve (22) for either c or x
and recover another using (18) or (19). The former gives rise to sparse synthesis

min
c

fd.A�c � y/C fr.c/ subject to C�c D h: (23)

or sparse analysis (aka cosparse) optimization problem

min
x

fd.Ax � y/C fr.˝x/ subject to Cx D h: (24)

The discretized PDE encoded in ˝ is the analysis operator. As mentioned, the two
problems are equivalent in this context [28], but as we will see in Section 6, their
computational properties are very different. Additionally, note that the operator
˝ is obtained by explicit discretization of (2), while the dictionary � of Green’s
functions is discretized implicitly (in general, since analytic solutions of (3) are
rarely available), i.e., by inverting ˝, which amounts to computing numerical
approximations to Green’s functions (see Section 4.3).

5.2 Optimization Algorithm

Discretization can produce optimization problems of huge scale (see Sections 6–
7 for examples), some of which can be even intractable. Since (23) and (24) are
nominally equivalent, the question is whether there is a computational benefit in
solving one or another. Answering this question is one of the goals of the present
chapter.

Usually, problems of such scale are tackled by first-order optimization algorithms
that require only the objective and the (sub)gradient oracle at a given point [62].
The fact that we allow both fd and fr to be non-smooth forbids using certain popular
approaches, such as fast iterative soft thresholding algorithm [5]. Instead we focus
on the alternating direction method of multipliers (ADMM) algorithm [27, 33],
which has become a popular scheme due to its scalability and simplicity. Later in
this subsection, we discuss two variants of the ADMM algorithm, convenient for
tackling different issues related to the physics-driven framework.
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Alternating Direction Method of Multipliers (ADMM) For now, consider a
convex optimization problem of the form2

min
z

f .z/C g.Kz � b/; (25)

where the functions f and g are convex, proper, and lower semicontinuous [62].
Either of these can account for hard constraints, if given as a characteristic function
�S .z/ of a convex set S:

�S .z/ WD

(
0 z 2 S;

C1 otherwise.
(26)

An equivalent formulation of the problem (25) is

min
z1;z2

f .z1/C g.z2/ subject to Kz1 � b D z2; (27)

for which the (scaled) augmented Lagrangian [11] writes:

L�.z1; z2; u/ D f .z1/C g.z2/C
�

2
kKz1 � z2 � bC uk22 �

�

2
kuk22 (28)

with � a positive constant. Note that the augmented Lagrangian is equal to the
standard (unaugmented) Lagrangian plus the quadratic penalty on the constraint
residual Kz1 � b � z2.

The ADMM algorithm consists in iteratively minimizing the augmented
Lagrangian with respect to z1 and z2 and maximizing it with respect to u. If the
standard Lagrangian has a saddle point [11, 15], iterating the following expressions
yields a global solution of the problem3:

z.jC1/
1 D arg min

z1
f .z1/C

�

2
kKz1 � b � z.j/2 C u.j/k22 (29)

z.jC1/
2 D prox 1

� g

�
Kz.jC1/

1 � bC u.j/
�

(30)

u.jC1/ D u.j/ C Kz.jC1/
1 � b � z.jC1/

2 : (31)

The iterates z.j/1 and z.j/2 update the primal variables, and u.j/ updates the dual
variable of the convex problem (27). The expression proxf=� .v/ denotes the well-
known proximal operator [56] of the function f=� applied to some vector v:

2The change of notation, in particular from x=c to z for the unknown, is meant to cover both cases
in a generic framework.
3j denotes an iteration index.
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prox 1
� f .v/ D arg min

w
f .w/C

�

2
kw � vk22: (32)

Proximal operators of many functions of our interest are computationally efficient
to evaluate (linear or linearithmic in the number of multiplications, often admitting
closed-form expressions). Such functions are usually termed “simple” in the
optimization literature [14].

Weighted Simultaneous Direction Method of Multipliers (SDMM) The first
ADMM variant we consider is weighted SDMM (simultaneous direction method
of multipliers) [18]. It refers to an application of ADMM to the case where more
than two functions are present in the objective:

min
z;z1:::zf

fX

iD1

fi.zi/ subject to Kiz � bi D zi: (33)

Such an extension can be written [18] as a special case of the problem (27), for
which the iterates are given as follows:

z.jC1/ D arg min
z

fX

iD1

�i

2
kKiz � bi C u.j/i � z.j/i k

2
2; (34)

z.jC1/
i D prox 1

�i
fi

�
Kiz

.jC1/ � bi C u.j/i

�
; (35)

u.jC1/
i D u.j/i C Kiz

.jC1/ � bi � z.jC1/
i : (36)

We can now instantiate (33), with I denoting the identity matrix:

• for the sparse synthesis problem: K1 D I, K2 D A� and K3 D C� ;
• for the sparse analysis problem, by K1 D ˝, K2 D A and K3 D C.

In both cases b1 D 0, b2 D y, and b3 D h, and the functions fi are fr, fd, and 0.
Choice of the multipliers. The multipliers �i only need to be strictly positive, but

a suitable choice can be helpful for the overall convergence speed of the algorithm.
In our experiments, we found that assigning larger values for �i’s corresponding to
hard constraints (e.g., kAz�yk2 � " or C�c D h) and proportionally smaller values
for other objectives was beneficial.

The weighted SDMM is convenient for comparison, since it can be easily shown
that it yields iteration-wise numerically identical solutions for both the synthesis
and analysis problems, if the intermediate evaluations are exact. However, solving
a large system of normal equations per iteration of the algorithm seems wasteful in
practice. For an improved efficiency, another ADMM variant is more convenient,
known as the preconditioned ADMM or the Chambolle-Pock (CP) algorithm [14].

Chambolle-Pock (CP) For simplicity, we demonstrate the idea on the setting
involving only two objectives, as in (27). The potentially expensive step is the
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ADMM iteration (29), due to the presence of a matrix K in the square term.
Instead, as proposed in [14] and analysed in [74], an additional term is added to
the subproblem

z.jC1/
1 D arg min

z1
f .z1/C

�

2
kKz1 � b � z.j/2 C u.j/k22 C

�

2
kz1 � z.j/1 k

2
P; (37)

where kvkP D vTPv. A clever choice is P D 1
��

I � KTK, which, after some
manipulation, yields:

z.jC1/
1 D prox� f

�
z.j/1 C �KTu.j/ � ��KT

�
Kz.j/1 � b � z.j/2

��
: (38)

Thus, P acts as a preconditioner and simplifies the subproblem.
In the original formulation of the algorithm [14], the z2 and u updates are merged

together. The expression for u.jC1/, along with a straightforward application of
Moreau’s identity [15], leads to

z.jC1/ D prox� f

	
z.j/ C �KT 	2u.j/ � u.j�1/

 (39)

u.jC1/ D prox�g�

	
u.j/ � �

	
Kz.jC1/ � b




;

where the primal variable index has been dropped (z instead of z1), since the
auxiliary variable z2 does not appear explicitly in the iterations any longer. The
function g� represents the convex conjugate 4 of g, and the evaluation of its
associated proximal operator proxg� .�/ is of the same computational complexity
as of proxg .�/, again thanks to Moreau’s identity.

As mentioned, different flavors of the CP algorithm [14, 19] can easily lend
to settings where a sum of multiple objectives is given, but, for the purpose of
demonstration, in the present chapter, we use this simple formulation involving
only two objectives (the boundary conditions are presumably absorbed by the
regularizers in (23) and (24)). We instantiate (39):

• in the synthesis case, with K D A� , z D c, f D fr and g D fd.
• in the analysis case, we exploit the fact that A has a simple structure and set K D
˝, z D x, f .�/ D fd.A�/, and g.�/ D fr.�/. Since A is a row-reduced identity matrix,
and thus a tight frame, evaluation of the proximal operators of the type proxfd .A�/
is usually as efficient as evaluating proxfd .�/, i.e., without composition with the
measurement operator [11]. Moreover, if proxfd .�/ is separable component-wise
(i.e., can be evaluated for each component independently), so is the composed
operator proxfd .A�/.

Accelerated Variants If the objective has additional regularity, such as strong
convexity, accelerated variants of ADMM algorithms are available [22, 36]. Thus,
since the evaluation of proximal operators is assumed to be computationally

4g�.�/ WD supz g.z/� zT�.
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“cheap,” the main computational burden comes from matrix-vector multiplications
(both in CP and SDMM) and from solving the linear least squares subproblem
(in SDMM only). For the latter, in the large-scale setting, one needs to resort
to iterative algorithms to approximate the solution (ADMM is robust to inexact
computations of intermediate steps, as long as the accumulated error is finite [27]).
These iterative algorithms can often be initialized (warm-started) using a previous
iterations’ estimate, which may greatly help their convergence. We can also control
the accuracy, thus ensuring that there is no large drift between the sparse and
cosparse versions.

5.3 Computational Complexity

The overall computational complexity of the considered algorithms results from a
combination of their iteration cost and their convergence rate.

Iteration Cost It appears that the iteration cost of ADMM is driven by that of
the multiplication of vectors with matrices and their transposes. In practice, most
discretization schemes, such as finite-difference (FD) or finite element method
(FEM), are locally supported [51, 76]. By this we mean that the number of nonzero
coefficients required to approximate L, i.e., nnz.˝/, is linear with respect to n,
the dimension of the discretized space. In turn, applying ˝ and its transpose is
in the order of O.n/ operations, thanks to the sparsity of the analysis operator.
This is in stark contrast with synthesis minimization, whose cost is dominated by
much heavier O.mn/ multiplications with the dense matrix A� and its transpose.
The density of the dictionary � is not surprising; it stems from the fact that the
physical quantity modeled by x is spreading in the domain of interest (otherwise,
we would not be able to obtain remote measurements). As a result, and as will be
confirmed experimentally in the following sections, the analysis minimization is
computationally much more efficient.

Convergence Rate In [14], the authors took a different route to develop the
CP algorithm, where they considered a saddle point formulation of the original
problem (25) directly. The asymptotic convergence rate of the algorithm was
discussed for various regimes. In the most general setting considered, it can be
shown that, for ��kKk � 1 and any pair .z; u/, the weak primal-dual gap is
bounded and that, when ��kKk < 1, the iterates z.j/; u.j/ converge (“ergodic
convergence”) to saddle points of the problem (25). Thus, it can be shown that
the algorithm converges with a rate of O. 1j /. In terms of the order of iteration count,
this convergence rate cannot be improved in the given setting, as shown by Nesterov
[62]. However, considering the bounds derived from [14], we can conclude that the
rate of convergence is proportional to:

• the operator norm kKk (due to the constraint on the product �� );
• the distance of the initial points .z.0/; u.0// from the optimum .z�; u�/.
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In both cases, a lower value is preferred. Concerning the former, the unfortunate fact
is that the ill-posedness of PDE-related problems is reflected in the conditioning of
˝ and � . Generally, the rule of thumb is that the finer the discretization, the larger
the condition number, since either (or both) k˝k or k�k can grow unbounded [31].

Multiscale Acceleration A potential means for addressing the increasing condition
numbers of ˝ and � is to apply multiscale schemes, in the spirit of widely used
multigrid methods for solutions of PDE-generated linear systems. The multigrid
methods are originally exploiting smoothing capabilities of Jacobi and Gauss-Seidel
iterations [69] and are based on hierarchical discretizations of increasing finesses.
Intuitively, the (approximate) solution at a lower level is interpolated, and forwarded
as the initial point for solving a next-in-hierarchy higher-resolution problem, until
the target (very) high-resolution problem (in practice, more sophisticated schemes
are often used). In the same spirit, one could design a hierarchy of discretizations
for problems (23) or (24) and exploit the fact that k˝k and kA�k are reducing
proportionally to lowering discretization finesse. At the same time, matrix-vector
multiplications become much cheaper to evaluate.

Initialization Strategy Finally, for the synthesis optimization problem (23), we
often expect the solution vector c� to be sparse, i.e., to mostly contain zero
components. Therefore, a natural initialization point would be c.0/ D 0, and we
expect kc� � c.0/k to be relatively small. However, as mentioned, the synthesis
version is not generally preferable, due to high per-iteration cost and memory
requirements. On the other hand, we do not have such a simple intuition for
initializing z.0/ for the cosparse problem (24). Fortunately, we can leverage the
multiscale scheme described in the previous paragraph: we would solve the analysis
version of the regularized problem at all levels in hierarchy, except at the coarsest
one, where the synthesis version with c.0/ D 0 would be solved instead. The
second problem in hierarchy would be initialized by the interpolated version of
z� D �c�, with c� being the solution at the coarsest level. Ideally, such a scheme
would inherit good properties of both the analysis- and synthesis-based physics-
driven regularization. In Section 6.2, we empirically investigate this approach, to
confirm the predicted performance gains.

6 Scalability

In this section we empirically investigate differences in computational complexity of
the synthesis and analysis physics-driven regularization, through simulations based
on the weighted SDMM (34), and the multiscale version of the Chambolle-Pock
algorithm (39). First, we explore the scalability of the analysis compared to the
synthesis physics-driven regularization, applied to the acoustic source localization
problem (results and discussions are adopted from [47]). Next, we demonstrate
the effectiveness of the mixed synthesis-analysis multiscale approach on a problem
governed by Poisson’s equation.
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6.1 Analysis vs Synthesis

Let us recall that, for acoustic source localization, we use the finite-difference time-
domain (FDTD) standard leapfrog (SLF) method [51, 76] for discretization of the
acoustic wave equation (6) with imposed initial/boundary conditions. This yields a
discretized spatiotemporal pressure field x 2 R

nt and a discretized spatiotemporal
source component c2 R

nt, built by vectorization and sequential concatenation of
t corresponding n-dimensional scalar fields. The matrix operator ˝ is a banded,
lower triangular, sparse matrix with a very limited number of nonzeros per row
(e.g., maximum seven in the 2D case). Note that the Green’s function dictionary
� D ˝�1 cannot be sparse, since it represents the truncated impulse responses of
an infinite impulse response (“reverberation”) filter. Finally, the measurements are
presumably discrete and can be represented as y � Ax, where A2 R

mt�nt is a block
diagonal matrix, where each block is an identical spatial subsampling matrix.

Optimization Problems To obtain Ox and Oc, we first need to solve one of the two
optimization problems:

Ox D arg min
x

fr.˝�x/C fd.Ax � y/ subject to ˝@�x D 0 (40)

Oc D arg min
c

fr.c�/C fd.A�c � y/ subject to c@� D 0; (41)

where the matrix ˝@� is formed by extracting rows of ˝ corresponding to
initial conditions (7), and boundary conditions (8), while ˝� is its complement
corresponding to (the interior of) the domain itself. Analogously, the vector c@�
corresponds to components of c such that ˝@�x D ˝@��c D c@� (due to
˝@� ? � ), while c� is the vector built from complementary entries of c. The data
fidelity term is the `2 norm constraint on the residual, i.e., fd D �fujkuk2�"g .A � �y/,
where � is the characteristic function defined in Equation (26).

Source Model and Choice of the Penalty Function for Source Localization
Assuming a small number of sources that remain at fixed locations, the true source
vector is group sparse: denoting by fcj 2 R

tgjD1:::s the subvectors of c corresponding
to the s discrete spatial locations in � , we assume that only few of these vectors are
nonzero. As a consequence the regularizer fr is chosen as the joint `2;1 group norm
[42] with non-overlapping groups associated to this partition of c.

Detection of Source Locations Given the estimated Ox, or equivalently Oc, the
localization task becomes straightforward. Denoting fOcj 2 R

tgjD1:::s the subvectors
of Oc corresponding to discrete locations in � , estimated source positions can be
retrieved by setting an energy threshold on each Ocj. Conversely, if the number of
sound sources k is known beforehand (for simplicity this is our assumption in the
rest of the text), one can consider the k spatial locations with highest magnitude
kOcjk2 to be the sound source positions.
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Fig. 3 Localization of two simulated sources (stars) by a 20-microphone random array (dots) in
3D

Results An example localization result of this approach is presented in Figure 3.
The simulated environment is a reverberant 3D acoustic chamber, with boundaries
modeled by the Neumann (hard wall) condition, corresponding to highly reverberant
conditions that are difficult for traditional TDOA methods cf. [8]. The problem
dimension is n D st � 3 � 106.

Empirical Computational Complexities To see how the two regularizations
scale in the general setting, we explicitly compute the matrix A� and use it in
computations. The SDMM algorithm (34) requires solving a system of normal
equations, with a coefficient matrix of size n � n with n D st. Its explicit inversion
is infeasible in practice, and we use the least squares minimum residual (LSMR)
[30] iterative method instead. This method only evaluates matrix-vector products;
thus its per-iteration cost is driven by the (non)sparsity of the applied coefficient
matrix, whose number of nonzero entries is O.st/, in the analysis, and O.smt2/,
in the synthesis case. In order to ensure there is no bias towards any of the two
approaches, an oracle stopping criterion is used: SDMM iterations stop when the
objective function fr.c.j// falls below a predefined threshold, close to the ground
truth value. Given this criterion, and by setting the accuracy of LSMR sufficiently
high, the number of SDMM iterations remains equal for both the analysis and
synthesis regularizations.
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Fig. 4a Computation time vs problem size: (left) per inner iteration, (right) total. Solid line,
average; dots, individual realizations

In Figure 4a, the results with varying number of time samples t are presented,5

verifying that the two approaches scale differently with respect to problem size.
Indeed, the per-iteration cost of the LSMR solver grows linearly with t, in the
analysis case, while being nearly quadratic for the synthesis counterpart. The
difference between the two approaches becomes striking when the total computation
time is considered, since the synthesis-based problem exhibits cubic growth (in fact,
above a certain size, it becomes infeasible to scale the synthesis problem due to high
memory requirements and computation time).

Keeping the problem size n D st fixed, we now vary the number of microphones
m (corresponding to a number of measurements mt). We expect the per-iteration
complexity of the analysis regularization to be almost independent of m, while the
cost of the synthesis version should grow linearly. The results in the left part of
Figure 4b confirm this behavior. However, we noticed that the number of SDMM
iterations decreases with m for both models, at the same pace. The consequence is
that the total computation time increases in the synthesis case, but this computation
time decreases when the number of microphones increases in the analysis case,
as shown in the right graph. While perhaps a surprise, this is in line with recent
theoretical studies [16, 73] suggesting that the availability of more data may enable
the acceleration of certain machine learning tasks. Here the acceleration is only
revealed when adopting the analysis viewpoint rather than the synthesis one.

5The spatial dimensions remain fixed to ensure solvability of the inverse problem.
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Fig. 4b Computation time vs number of measurements: (left) per inner iteration, (right) total.
Solid line, average; dots, individual realizations

6.2 Multiscale Acceleration

The back-to-back comparison of the analysis and synthesis regularizations reveals
that the former is a preferred option for large-scale problems, when a numerically
identical SDMM algorithm (34) is used. We are now interested to understand how
the two approaches behave when more suitable, but nonidentical versions of the CP
algorithm (39) are used instead. To investigate this question, let us consider a very
simple one-dimensional differential equation:

�
d2x.r/

dr2
D c.r/; (42)

with x.0/ D x.�/ D 0 (e.g., modeling a potential distribution of a grounded thin
rod, with sparse “charges” c.r/).

Optimization Problems Given the discretized analysis operator ˝ and the dic-
tionary � , and assuming, for simplicity, noiseless measurements y D Ax�,
physics-driven regularization boils down to solving either of the following two
problems:

Ox D arg min
x
k˝xk1 subject to Ax D y (43)

Oc D arg min
c
kck1 subject to A�c D y (44)

As noted in Section 5.3, the operator norms k˝k and k�k are key quantities
for convergence analysis. To obtain ˝ and � , we apply finite (central) differences,
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here at n points with the dicretization step ır D 1=n. We end up with the well-
known symmetric tridiagonal Toeplitz6 matrix ˝, i.e., the 1D discrete Laplacian
operator, with a “stencil” defined as ır2Œ�1; 2; �1�. Its singular values admit
simple analytical formula [76]:

�i D 4n2 sin2
�

 i
2n

�
; i D 1 : : : n: (45)

We can immediately deduce k˝k � 4n2 and k�k � 1=
2, which is very
unfavorable for the analysis approach, but appreciated in the synthesis case.7 The
situation is opposite if a discretization with unit step size is applied. Note that we
can safely scale each term in the objective (24) by a constant value, without affecting
the optimal solution x�. Provided that fr can be factored – for the `1 norm in (43) we
have k˝xk1 D jwjk 1w˝xk1, w ¤ 0 – we can normalize the problem by multiplying
with 1=ır2, which yields k 1

ır2
˝k � 4, irrespective of the problem dimension n.

Numerical Experiments Considering the multiscale scheme described in Sec-
tion 5.3, we would preferably solve the non-normalized synthesis problem at the
coarsest scale, and consequently solve the normalized analysis problems from the
second level in hierarchy onward. However, to see the benefits of the multiscale
approaches more clearly, here we turn a blind eye on this fact and use the non-
normalized finite-difference discretization for both approaches (thereby crippling
the analysis approach from the start). To investigate the influence of different aspects
discussed in Section 5.3, we set the target problem dimension to n D 104 and build
a multiscale pyramid with 5 levels of discretization, the coarsest using only 500
points to approximate (42).

Optimization Algorithms Six variants of the CP algorithm (39) are considered:

• Analysis: the matrices˝ and A are built for the target (high-resolution) problem,
and the algorithm is initialized by an all-zero vector (x.0/ D 0).

• Analysis multiscale: A set of analysis operators and measurement matrices is
built for each of the five scales in hierarchy. At the coarsest scale, the algorithm
is initialized by an all-zero vector; at subsequent scales, we use a (linearly)
interpolated estimate Ox from the lower hierarchical level as a starting point.

• Synthesis (zero init): Analogous to the first, single-scale analysis approach, the
target resolution problem is solved by the synthesis version of CP initialized by
an all-zero vector z.0/ D 0.

• Synthesis (random init): Same as above, but initialized by a vector whose
components are sampled from a high-variance univariate normal distribution.

6Note that, in this simplistic setting, a fast computation of ˝�1c using the Thomas algorithm [77]
could be exploited. The reader is reminded that this is not a generally available commodity, which
is the main incentive for considering the analysis counterpart.
7The value of kA�k is actually somewhat lower than k�k; it depends on the number of
microphones m and their random placement.
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• Synthesis multiscale: Analogous to analysis multiscale approach, a set of
reduced dictionary matrices A� is built for each scale in hierarchy. The algorithm
at the coarsest scale is initialized by an all-zero vector, and the estimation-
interpolation scheme is continued until the target resolution.

• Mixed multiscale: We use the solution of the synthesis multiscale approach at the
coarsest scale to initialize the second level in hierarchy of the analysis version.
Then, the analysis multiscale proceeds as before.

Performance Metrics Even with an oracle stopping criterion, the number of
iterations between different versions of the CP algorithm may vary. To have
comparable results, we fix the number of iterations to 104, meaning that the full-
resolution (single-scale) approaches are given an unfair advantage, due to their
higher per-iteration cost. Therefore, we output two performance metrics: i) a
relative error, � D kOx � x�k=kx�k, Ox and x� being respectively the estimated and
the ground truth (propagated) signal8 and ii) processing time for the given number
of iterations. The experiments are conducted for different values of m, the number
of measurements.

Results The results presented in Figure 5 (left) confirm our predictions: the
synthesis approach initialized with all-zeros and the proposed mixed synthesis-
analysis approach perform better than the rest in terms of the relative error metric. It
is clear that improper initialization significantly degrades performance – notably, for
the synthesis algorithm initialized randomly and the two analysis approaches. The
single-scale analysis version is the slowest to converge, due to its large Lipschitz
constant k˝k2 at ır D 1=n and trivial initialization. However, processing time
results on the right graph of Figure 5 reveal that synthesis-based approaches imply
much higher computational cost than the analysis ones, even if the multiscale
scheme is applied. In addition their computational performance suffers when the
number of measurements increases – which is, naturally, beneficial with regard
to the relative error – due to the increased cost of matrix-vector products with
G D A� (where G is precomputed once and for all before iterating the algorithm).
Fortunately, the mixed approach is mildly affected, since only the computational
cost at the coarsest scale increases with m.

7 Versatility

In this section we demonstrate the versatility of physics-driven cosparse regulariza-
tion. First, we discuss two notions of “blind” acoustic source localization enabled
by the physics-driven approach. All developments and experiments in this part refer
to 2D spatial domains; however, the principles are straightforwardly extendable

8This metric is more reliable than the corresponding one with respect to the source signal, since
small defects in support estimation should not disproportionately affect performance.
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Fig. 5 Median performance metrics (logarithmic scale) wrt number of measurements (shaded
regions correspond to 25%–75% percentiles). Left, relative error �; right, processing time

to three spatial dimensions. In the second subsection, we apply the regularization
to another problem, using a different discretization method: source localization in
electroencephalography with FEM. There we consider a three-dimensional problem,
with physically relevant domain geometry (real human head).

7.1 Blind Acoustic Source Localization

The attentive reader may have noticed that so far no explicit assumption has been
made on the shape of the spatial domain under investigation. In fact, it has been
shown in [46] that the proposed regularization facilitates acoustic source localization
in spatial domains of exotic shape, even if there is no line of sight between
the sources and microphones. This is an intriguing capability, as such a scenario
prevents the use of more traditional methods based on TDOA. One example is
presented in Figure 6 (left), termed “hearing behind walls.” Here the line of sight
between the sources and microphones is interrupted by a soundproof obstacle; hence
the acoustic waves can propagate from the sources to the microphones only by
reverberation. Yet, as shown with the empirical probability (of exactly localizing all
sources) results in Figure 6 (right), the physics-driven localization is still possible.
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Fig. 6 Left, hearing behind walls scenario; right, empirical probability of accurate localization
given the gap width w and number of sources k (results from [46])

However, an issue with applying physics-driven regularization is that it comes
with the strong assumption of knowing the parametrized physical model almost
perfectly. In reality, such knowledge is not readily available; hence there is an inter-
est in inferring certain unknown physical parameters directly from the data. Ideally,
such estimation would be done simultaneously with solving the original inverse
problem, which is the second notion of “blind” localization in this subsection. For
the acoustic wave equation (6) and boundary conditions (8), various parameters
could be unknown. In this section, we consider two of them: sound speed v and the
specific acoustic impedance � . Note that imposing a parameter model is necessary
in this case; otherwise, these blind estimation problems would be ill-posed.

Blind Localization and Estimation of Sound Speed (BLESS) The speed of
sound v is usually a slowly varying function of position and time, e.g., due to a
temperature gradient of space caused by an air conditioner or radiator. Provided that
the temperature is in steady state and available, one could approximate v as constant.
However, if such approximation is very inaccurate, the physical model embedded
in the analysis operator will be wrong. The effects of such model inaccuracies
have been exhaustively investigated [13, 39] and are known to significantly alter
regularization performance. Therefore, our goal here is to simultaneously recover
the pressure signal (in order to localize sound sources) and estimate the sound speed
function v. For demonstrational purpose, we regard v WD v.r/, i.e., a function that
varies only in space.

To formalize the problem, consider the FDM leapfrog discretization scheme
presented in (11). Instead of a scalar sound speed parameter v, we now have a vector
unknown corresponding to the sampled function vij D v.rx.i/; ry.j// > 0. Denoting
q 2 R

n the vector with stacked entries qi;j D v�2i;j , we can represent the analysis
operator ˝ as follows:

˝ D ˝1 C diag .q/˝2; (46)

where the singular matrices ˝1 and ˝2 are obtained by factorizing wrt v in (11).
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Assume the entries of q are in some admissible range Œv�2max; v
�2
min�, e.g., given

by the considered temperature range in a given environment. Moreover, assume
that v and q are slowly varying functions. We model this smoothness by a vector
space of polynomials of degree r � 1 in the space variables (constant over the time
dimension), which leads to the model q D Fa, where F is a dictionary of sampled
polynomials and a is a weight vector [7].

Adding a as an unknown in (40) (instantiated, e.g., with fd a simple quadratic
penalty), and introducing the auxiliary sparse variable c, yields the optimization
problem:

min
x;c;a

fr.c�/C �kAx � yk22

subject to ˝ D ˝1 C diag .Fa/˝2; v�2max � Fa � v�2min (47)

˝x D c; c@� D 0:

Unfortunately, due to the presence of the bilinear term diag .Fa/˝2x relating
optimization variables x and a, (47) is not a convex problem. However, it is biconvex
– fixing either of these two makes the modified problem convex again; thus its
global solution is attainable. This enables us to design an ADMM-based heuristic,
by developing an augmented Lagrangian (28) comprising the three variables:

L�1;�2.c; x; a; u1; u2/ D fr.c�/C ��D0 .c@�/

C
�1

2
k .˝1 C diag .Fa/˝2/ x � cC u1k

2
2 C

�2�

2
kAx � yC u2k

2
2

C �v�2
max
�
v�2

min
.Fa/ �

�1

2
ku1k

2
2 �

�2

2
ku2k

2
2: (48)

From here, the ADMM iterates are straightforwardly derived, similar to (29)–(31).
We skip their explicit formulation to reduce the notational load of the chapter.

In order to demonstrate the joint estimation performance of the proposed
approach, we vary the number of sources k and microphones m. First, a vector Qa is
randomly generated from centered Gaussian distribution of unit variance. Then, a is

computed as the Euclidean projection of Qa to a set
n
a j u�2max � FŒr�nulla � u�2min

o
. We

let umin D 300m/s and umax D 370m/s and use Neumann boundary conditions. The
performance is depicted as an empirical localization probability graph in Figure 7a,
for two values of the degree r of the polynomials used to model the smoothness of q.
One can notice that the performance deteriorates with q less smooth (i.e., with larger
r), since the dimension of the model polynomial space increases. When localization
is successful, q is often perfectly recovered, as exemplified in Figure 7b.

8Vertical axis, k=m, the ratio between the number of sources and sensors; horizontal axis, m=s, the
proportion of the discretized space occupied by sensors
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Fig. 7a Empirical localization probability with estimated sound speed. Vertical axis, k=m, the
ratio between the number of sources and sensors; horizontal axis, m=s, the proportion of the
discretized space occupied by sensors
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Fig. 7b The original sound speed (left) v and the estimate (right) Ov (the diamond markers indicate
the spatial position of the sources)

Cosparse Acoustic Localization, Acoustic Impedance Estimation and Signal
Recovery (CALAIS) A perhaps even more critical acoustic parameter is the
specific boundary impedance � in (8). While we may have an approximate guess
of the sound speed, the impedance varies more abruptly, as it depends on the type of
material composing a boundary of the considered enclosed space [49]. The approach
recently proposed in [3] relies on the training phase using a known sound source,
allowing one to calibrate the acoustic model for later use with unknown sources in
the same environment. Here we present a method [6] to avoid the calibration phase,
and, as for the sound speed, to simultaneously infer the unknown parameter � and
the acoustic pressure x.

Now we consider discretization of the spatial domains’ boundary. Let ˝@� rep-
resent the subset of rows of the analysis operator ˝ corresponding to the boundary
conditions only, and let ˝0 denote the matrix corresponding to initial conditions
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only (we have ˝@� D Œ˝T
0 ˝

T
@� �

T
, up to a row permutation). To account for

Mur’s boundary conditions, FDM discretization can be explicitly written as:

x�C1
i;j .1C �

�i;j
/�

h
2.1 � 2�2/x�i;j C �

2.x�i;jC1 C x�i;j�1/C 2�
2x�i�1;j �

�
1 � �

�i;j

�
x��1

i;j

i
D 0; (49)

where � D vd�=dx D vd� =dy. Denote 	 D
�
�1;1 �2;1 : : : �i;j : : :

��T
the vector

of inverse acoustic impedances, i.e., of specific acoustic admittances, which we
assume does not change in time. We introduce the matrix S which distributes the
admittances stored in 	 at appropriate positions in discretized space and repeats
these across all time instances Œ1; t�. Factorizing (49) with respect to ”, we can
represent ˝@� (up to an adequate row permutation) as:

˝@� D

2

6
66
4

˝@� 1

˝@� 1
: : :

˝@� 1

3

7
77
5

„ ƒ‚ …
˝@� 1

C diag .S	/

2

6
66
4

˝@� 2

˝@� 2
: : :

˝@� 2

3

7
77
5

„ ƒ‚ …
˝@� 2

: (50)

where the rows of each block ˝@� 1
(resp.) ˝@� 2

are indexed by the space
coordinate, while the blocks themselves are indexed by time.

Note that, for standard rooms, the boundaries are composed of walls, floor,
ceiling, windows, etc. At least on macroscopic scale, each of these structures is
approximately homogeneous. Hence, we suppose that 	 admits a piecewise constant
model, provided we take care of the ordering of elements within 	. This weak
assumption usually holds in practice, unless the discretization is very crude. To
promote such a signal model, the discrete total variation norm k	kTV D kr	k1
is commonly used.

This model, along with the assumption that the initial/boundary conditions are
homogeneous, inspires the following optimization problem:

min
x;	

fr.˝�x/C k	kTV C �k˝@� xk22;

subject to ˝0x D 0; Ax D y; 	 � 0 (51)

˝@� D ˝@� 1 C diag .S	/˝@� 2 ;

where � is a user-defined positive constant. Therefore, we end up with another
biconvex problem and propose to address it again by an ADMM heuristics. As
in the previous case, one proceeds by defining the augmented Lagrangian which
determines the algorithm. We do not develop these steps here, due to spatial
constraints.
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Fig. 8 RMSE for k D 1, k D 2 (top); and k D 3, k D 4 (bottom) simulated sources

To illustrate the performance and robustness of the approach, we propose a
somewhat challenging experimental setup. Within a simulated 2D spatial domain,
modeled by high-resolution LFM discretization, we randomly distribute k sources
and m microphones. The ground truth admittance is generated such that it approxi-
mately satisfies the assumed model – a white Gaussian noise is added to a piecewise
constant vector 	 to account for model inaccuracy. The measurements y are also
corrupted by noise, such that per-sample SNR is 20dB. Finally, the matrices
˝� , ˝@� 1 , ˝@� 2 , and S, used in the optimization problem (51), are obtained
by discretizing the physical model by a low-resolution LFM. This embeds some
inaccuracy at the PDE modeling level, making simulations more physically relevant.

The results in Figure 8 are with respect to average Euclidean distance between
ground truth source locations (empirical root-mean-square error (RMSE)) and the
estimated ones. The dashed line denotes the spatial step size of the coarse grid; thus
the errors below this threshold are tolerated. The median RMSE values indicate
that localization is possible provided that the number of microphones is sufficiently
high. The error increases with the number of sources to localize, but usually remains
lower than the double of spatial step size, suggesting that the sources are localized
in their true, immediate neighborhoods.

7.2 Cosparse Brain Source Localization

Most source localization algorithms use one of the two following source models:
the point source model, which explains the data with a small number of equivalent
current dipoles, and the distributed source model, which uses thousands of dipoles.
Whereas the latter allows for an estimation of the spatial extent of the source,
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it requires to make assumptions about the spatial source distribution, which may
lead to blurred (or even distorted) solutions [37]. On the other hand, the former
often gives helpful first approximations and superior performance in environments
where there are few sources which are clustered [37]. Regarding head models,
they aim at representing geometrical and electrical properties of the different
tissues composing the volume conductor. Various models were proposed going from
concentric homogeneous spheres with isotropic conductivities for which analytic
computations of Green’s functions are possible, to realistically shaped models with
refined tissue conductivity values [81].

FEM Discretization and Head Model As seen in Section 4.2, FEM can be used
to discretize Poisson’s equation with Neumann boundary condition (9)–(10) and
derive an equation of the form ˝ x D c where the so-called linear analysis operator
[61] ˝ is the stiffness matrix and vectors x and c respectively contain the potential
and total current flow values at the different nodes of the mesh. A realistic head
model obtained from anatomical imaging modalities, such as computed tomography
(CT) and structural magnetic resonance imaging (sMRI), is segmented, and a linear
tetrahedral mesh of n nodes is then generated to divide it into small elements where
a unique conductivity value is assigned to each one. In Figure 9, we illustrate the
different steps performed to come to the sought algebraic system.

As previously explained in Section 4.2, the .n � n/ matrix ˝ is symmetric,
positive semidefinite, rank deficient by one and sparse with only few components in
each row [69]. Generally, instead of considering the singular linear system˝x D c,
another possibility is to transform it into a regular one and solve this instead. The
regular system is chosen such that its unique solution belongs to the set of solutions
of the original singular system. As described in [10], the easiest approach is to fix
the value of the potential to zero in one node. The special structure of the matrix
˝ then allows us to cancel the corresponding row and column in ˝ and also the
respective entry in the right-hand side vector c. This leads to a system for which the
.n�1�n�1/ resulting matrix is symmetric, sparse, and positive definite, as it can be

Fig. 9 The different steps of preprocessing in discretizing realistic head volume using FEM
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derived from a bilinear form satisfying the same properties as a.:; :/ in Section 4.2.
By abuse of notation, we still denote it ˝. The solution of this system solves the
initial system with a zero potential value in the reference node.

Source Model We consider the following assumptions:

A1. There are g possible current sources that cover the volume of the gray matter
G .

A2. Each current source is modeled as a “pure” dipole, consisting in a point
dipole characterized by its position �q and moment pq D kpqk2 nq where
kpqk2 and nq correspond to the activity level and the orientation of the
dipole, respectively. In this model, the current density is expressed as j DPg

qD1 pq ı.�q/ [71].
A3. Each current dipole is oriented orthogonally to the cortical surface (pq is the

normal to the cortical surface at position �q).
A4. At most k (k < m) current dipoles have non-negligible activity.

In addition to the “pure” dipole, there are other numerical methods used to model
the current dipole, such as the subtraction potential method and the direct potential
approach using Saint Venant’s principle [71, 83]. Though the “pure” dipole is a
mathematical idealization of the real “physical” dipole that has finite current and
separation between its monopoles, it is frequently used for its simple derivation.

According to the variational form introduced in (15), the component ci in the
load vector is

ci D

Z

�h

r � j �i.r/ dr: (52)

By applying Green’s identity to (52), using the fact that no current sources are
present in the scalp @�, considering the expression of the domain �h as a union
of d tetrahedra �e

h present in the mesh, and eventually assuming that each dipole
position �q coincides with a node position in G , appropriate calculations lead to
rewrite the entry in the load vector as:

ci D

(
�pq �

P
e2di
re�i.�q/ if ri D �q

0 otherwise,
(53)

where re�i is the gradient of function �i over element �e
h . By injecting the

expression of dipole moment in (53) and in the case of nonzero ci, the latter can
be expressed as the product ci D kpqk2 nq �

P
e2di
re�i.�q/, which allows us to

factorize vector c as c D B z where B is a .n�1�n�1/ diagonal matrix defined by

Bi;i D

(
�nq �

P
e2di
re�i.�q/ if ri D �q

1 otherwise.
(54)
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In addition, z is an .n � 1/-dimensional sparse vector with n � 1 � g known zero
elements defined as

zi D


kpqk2 if ri D �q

0 otherwise.
(55)

Consequently, matrix B conveys our knowledge about the orientation of the g
dipoles of the gray matter G , while the nonzero elements in vector z represent the
activity of dipoles restricted to the cortical volume. It is noteworthy that, even when
dipoles positions do not coincide with node positions, the factorization of vector c
is still possible. However, in that case, the matrix B is no longer a square matrix but
rather a tall matrix (not left invertible), which makes the computation of ˝ more
complicated. In addition, the assumption on the dipole position is still realistic and
affordable by using a dense mesh in G .

Overall Model Combining the properties ˝x D c, the source model c D Bz,
and the observation model y D Ax, the brain source localization defined above can
finally be reformulated as a cosparse analysis model fitting problem given by:


Q̋ x D z

y D Ax;
(56)

where the analysis operator Q̋ is given by Q̋ D B�1 ˝ and the sensing matrix A is
an m � n � 1 row-reduced identity matrix. As B is diagonal, Q̋ is still sparse.

Optimization Problem To address the cosparse analysis model fitting prob-
lem (56), we express the following convex optimization problem:

min
x
k Q̋ 1 xk1 C �k Q̋ 2 xk22 (57)

subject to A x D y:

where Q̋ 1 is the (g � n � 1) submatrix of Q̋ obtained by extracting the rows of
Q̋ corresponding to the support set of the gray matter G , whereas Q̋ 2 corresponds

to the rows indicated by the complementary set NG . By choosing the appropriate
weight �, the cosparse solution of the optimization problem (57) will fulfill the
assumptions (A1) to (A4). Namely, k Q̋ 1 xk1 will promote sparsity at the surface
of the cortex, while �k Q̋ 2 xk22 will attenuate the signal in the other regions. The
linear constraints A x D y ensure that the model fits the electrode measurements.
Depending on the resolution of the cubic grid tuned by n, the problem can
reach considerably large scale. Therefore, we use the Chambolle-Pock method as
described in Section 5.2.

Experiments and Performance Criterion One scenario was considered for a
comparison of performance between the analysis and synthesis approaches. It aims
at studying the influence of the SNR.
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More particularly, k D 2 synchronous epileptic dipoles were placed in G at
�1 D Œ�71; 31; 92�T and �2 D Œ�70; 27; 92�T, respectively, (locations are given
in centimeters). Note that the origin (O) of the head model was defined as the
intersection of the O-Cz axis (z-axis), the O-T4 axis (x-axis), and the O-Fpz axis
(y-axis). A physiologically relevant model [41] was used to generate the time
series corresponding to epileptic activity. It is noteworthy that this activity was the
same for both epileptic dipoles, leading to synchronous epileptic sources. On the
other hand, the background activity, i.e., the activity of non-epileptic dipoles of G ,
was generated as Gaussian and as temporally and spatially white. Its power was
controlled by a multiplicative coefficient in order to get different SNR values.

As far as the head model is concerned, we used a realistic head model obtained
from sMRI. Ninety-one electrodes (m D 91) were placed on the scalp using
the 10-5 system [63]. In addition, in order to apply the FEM and compute the
analysis operator ˝, we created a linear tetrahedral mesh of n D 180585 nodes.
Consequently, the size of Q̋ and the number of dipoles of G were .n�1/�.n�1/ D
180584 � 180584 and g D 3110, respectively.

The quality of the source localization was quantified for each method by means
of the average root-mean-square error (RMSE), which is defined by:

RMSE D
1

k mc

kX

qD1

mcX

iD1

min
1�j�k

k�q �b�jk (58)

where mc is the number of realizations fixed to 71, where �q is the ground truth
position of the q-th epileptic dipole, and whereb�j is the j-th dipole location estimated
during the i-th Monte Carlo trial. It is noteworthy that from one realization to
another, the temporal dynamics of the g dipoles of G were changed while the
location of the three epileptic dipoles stayed unchanged.

Figure 10 shows the RMSE criterion at the output of both algorithms as a function
of the SNR. It appears that the analysis method is more robust with respect to the
presence of noise than the synthesis one. Indeed, it succeeds in localizing perfectly
both epileptic dipoles beyond 12 dB, while the synthesis-based method does not
manage to do it perfectly.

Note that in such a practical context for which the brain sources are synchronous,
the analysis method was also shown to overcome the RapMUSIC (recursively
applied MUSIC) [57] and FO-D-MUSIC (fourth-order deflationary MUSIC) [1]
algorithms [2]. In fact, RapMUSIC and FO-D-MUSIC are sequential versions of
the subspace approach MUSIC (multiple signal classification) [72] based on second-
order (SO) and fourth-order (FO) statistics, respectively.
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Fig. 10 Behavior of the analysis and synthesis approaches as a function of the SNR for k D 2

epileptic dipoles and m D 91 electrodes (solid line, average; dots, individual realizations)

8 Summary and Conclusion

In many physics-driven inverse problems, one can leverage both a sparsity hypoth-
esis on some source term and the properties of the underlying PDE. A classical
approach to combine these ingredients is to build a dictionary of Green’s function of
the PDE and to exploit traditional techniques (`1 regularization) for sparse synthesis
reconstruction to estimate the source field. Yet, for high spatial and/or temporal
resolutions, precomputing Green’s functions can be challenging, and the synthesis
version of the `1 optimization problem may become numerically intractable due to
polynomial complexities of too high degree in the overall size of the discretization.

An alternative is to discretize the PDE itself, e.g., through a finite-difference
scheme or the finite element methods, which naturally leads to very sparse
analysis operators rather than dictionaries. While the two approaches (synthesis
and analysis) are formally equivalent, a primary advantage of the cosparse analysis
regularization is a much smaller iteration cost. Although demonstration of the full
potential of the existing cosparse approaches on real acoustic or EEG data remains
to be done, results shown on simulated data allow to support our claims on their
interest. Overall, as illustrated in this chapter, a promising approach to achieve
precision and scalability is to combine the synthesis approach and the analysis
one in a multiscale optimization strategy. Besides scalability, the cosparse analysis
approach opens interesting perspectives regarding the ability to solve extended
inverse problems where some physical parameters such as impedance or speed of
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sound may be unknown. Using FEM, it allows to handle complex geometries, and
as demonstrated on some brain source localization problems, it offers competitive
robustness to noise.

Beyond model-based methods, an intensive research in machine learning has
recently inspired several training-based approaches, e.g., [3, 21, 44], which, how-
ever, either focus on a specific aspect of the problem at hand or even neglect
its explicit physical nature. Instead, we feel that a promising research avenue are
pretrained physics-driven cosparse models, potentially leading to “fully learnable”
methods, unrestricted by parameterization or the geometry of the environment.
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Total Variation Minimization in Compressed
Sensing

Felix Krahmer, Christian Kruschel, and Michael Sandbichler

Abstract This chapter gives an overview over recovery guarantees for total
variation minimization in compressed sensing for different measurement scenarios.
In addition to summarizing the results in the area, we illustrate why an approach that
is common for synthesis sparse signals fails and different techniques are necessary.
Lastly, we discuss a generalization of recent results for Gaussian measurements to
the subgaussian case.

Keywords Compressed sensing · Total variation minimization · Gradient
sparsity

1 Introduction

The central aim of compressed sensing (CS) [4, 8] is the recovery of an unknown
vector from very few linear measurements. Put formally, we would like to recover
x 2 R

n from y D AxC e 2 R
m with m� n, where e denotes additive noise.

For general x, recovery is certainly not possible; hence additional structural
assumptions are necessary in order to be able to guarantee recovery. A common
assumption used in CS is that the signal is sparse. Here for x we assume
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kxk0 WD jfk 2 Œn�W xk ¤ 0gj � s;

that is, there are only very few nonzero entries of x. And say that x is s-sparse
for some given sparsity level s � n. We call a vector compressible if it can be
approximated well by a sparse vector. To quantify the quality of approximation, we
let

�s.x/q WD inf
kzk0�s

kz � xkq

denote the error of the best s-sparse approximation of x.
In most cases, the vector x is not sparse in the standard basis, but there is a

basis ‰, such that x D ‰z and z is sparse. This is also known as synthesis sparsity
of x. To find an (approximately) synthesis sparse vector, we can instead solve the
problem of recovering z from y D A‰z. A common strategy in CS is to solve a basis
pursuit program in order to recover the original vector. For a fixed noise level ", it is
given by

minimizekzk1 such that kAz � yk2 � ": (1)

While this and related approaches of convex regularization have been studied in
the inverse problems and statistics literature long before the field of compressed
sensing developed, these works typically assumed the measurement setup was
given. The new paradigm arising in the context of compressed sensing was to
attempt to use the remaining degrees of freedom of the measurement system to
reduce the ill-posedness of the system as much as possible. In many measurement
systems, the most powerful known strategies will be based on randomization, i.e.,
the free parameters are chosen at random.

Given an appropriate amount of randomness (i.e., for various classes of random
matrices A, including some with structure imposed by underlying applications), one
can show that the minimizer Ox of (1) recovers the original vector x with error

kx � Oxk2 � c

�
�s.x/1
p

s
C "

�
I (2)

see, e.g., [1] for an elementary proof in the case of subgaussian matrices without
structure and [16] for an overview, including many references, of corresponding
results for random measurement systems with additional structure imposed by
applications. Note that (2) entails that if x is s-sparse and the measurements are
noiseless, the recovery is exact.

For many applications, however, the signal model of sparsity in an orthonormal
basis has proven somewhat restrictive. Two main lines of generalization have
been proposed. The first line of work, initiated by [31], is the study of sparsity
in redundant representation systems, at first under incoherence assumptions on
the dictionary. More recently, also systems without such assumptions have been
analyzed [5, 20]. The main idea of these works is that even when one cannot recover
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Fig. 1 The original Fabio image (left) and the absolute values after application of a discrete
gradient operator (right).

the coefficients correctly due to conditioning problems, one may still hope for a
good approximation of the signal.

The second line of work focuses on signals that are sparse after the application
of some transform; one speaks of cosparsity or analysis sparsity [24]; see, e.g.,
[13] for an analysis of the Gaussian measurement setup in this framework. A
special case of particular importance, especially for imaging applications, is that
of sparse gradients. Namely, as it turns out, natural images often admit very sparse
approximations in the gradient domain; see, e.g., Figure 1. Here the discrete gradient
at location i D .i1; : : : ; in/ is defined as the vector with its n entries given by	
.rz/i



j D ziCej � zi, j D 1; : : : ; n, where ej is the j-th standard basis vector.

A first attempt to recover a gradient sparse signal is to formulate a compressed
sensing problem in terms of the sparse gradient. When this is possible (for instance,
in the example of Fourier measurements [4]), applying (1) will correspond to
minimizing krzk1 DW kzkTV , the total variation seminorm. Then (under some
additional assumptions) compressed sensing recovery guarantees of the form (2)
can apply. This proof strategy, however, only allows for showing that the gradient
can be approximately recovered, not the signal. When no noise is present and the
gradient is exactly sparse (which is not very realistic), this allows for signal recovery
via integrating the gradient, but in case of noisy measurements, this procedure is
highly unstable.

Nevertheless, the success motivates to minimize the total variation seminorm if
one attempts to recover the signal directly, not the gradient. In analogy with (1), this
yields the following minimization problem.

minimize kzkTV D krzk1 such that kAz � yk2 � ":

For A the identity (i.e., not reducing the dimension), this relates to the famous
Rudin-Osher-Fatemi functional, a classical approach for signal and image denoising
[34]. Due to its high relevance for image processing, this special case of analysis
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sparsity has received a lot of attention recently also in the compressed sensing
framework where A is dimension reducing. The purpose of this chapter is to give
an overview of recovery results for total variation minimization in this context
of compressed sensing (Section 2) and to provide some geometric intuition by
discussing the one-dimensional case under Gaussian or subgaussian measurements
(to our knowledge, a generalization to the latter case does not appear yet in the
literature) with a focus on the interaction between the high-dimensional geometry
and spectral properties of the gradient operator (Section 3).

2 An Overview over TV Recovery Results

In this section, we will give an overview of the state-of-the-art guarantees for the
recovery of gradient sparse signals via total variation minimization. We start by
discussing in Section 2.1 sufficient conditions for the success of TV minimization.

Subsequently, we focus on recovery results for random measurements. Inter-
estingly, the results in one dimension differ severely from the ones in higher
dimensions. Instead of obtaining a required number of measurements roughly on
the order of the sparsity level s, we need

p
sn measurements for recovery. We will

see this already in Section 2.2, where we present the results of Cai and Xu [3] for
recovery from Gaussian measurements. In Section 3, we will use their results to
obtain refined results for noisy measurements as well as guarantees for subgaussian
measurements, combined with an argument of Tropp [37]. In Section 2.3 we will
present results by Ward and Needell for dimensions larger or equal than two showing
that recovery can be achieved from Haar-incoherent measurements.

2.1 Sufficient Recovery Conditions

Given linear measurements Ax D y for an arbitrary A 2 R
m�n and a signal x with

krxk0 � s, a natural way to recover x is by solving

minimize krzk1 such that Az D y: (3)

For I � Œn� we denote AI as the columns of A indexed by I, and for a consecutive
notation, we denote IT

I r as the rows of r indexed by I and I as the identity matrix.
The following results can also be easily applied to analysis `1-minimization, where
any arbitrary matrix D 2 R

p�n replaces r in (3), as well as to any real Hilbert space
setting [21].

In many applications it is important to verify whether there is exactly one
solution of (3). Since r is not injective here, we cannot easily use the well-known
recovery results in compressed sensing [9] for the matrix Ar�. However, a necessary
condition can be given since x can only satisfy Ax D y and .rx/Ic D 0 if

ker.IT
Icr/ \ ker.A/ D f0g:
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If r is replaced by the identity, this is equivalent to AI being injective. Since this
injectivity condition is unavoidable, we assume for the rest of this section that it is
satisfied.

The paper [24] provides sufficient and necessary conditions for uniform recovery
via (3). The conditions rely on the null space of the measurements and are hard to
verify similar to the classical compressed sensing setup [36]. The following result
is a corollary of these conditions. It no longer provides a necessary condition but is
more manageable.

Corollary 2.1. [24] For all x 2 R
n with s WD krxk0, the solution of (3) with

y D Ax is unique and equal to x if for all I � Œn� with jIj � s it holds that

8w 2 ker.A/nf0gW k.rw/Ik1 < k.rw/Ick1:

To consider measurements for specific applications, where it is difficult to prove
whether uniform recovery is guaranteed, one can empirically examine whether
specific elements x solve (3) uniquely. For computed tomography measurements,
a Monte Carlo Experiment is considered in [12] to approximate the fraction of all
gradient s-sparse vectors to uniquely solve (3). The results prompt that there is a
sharp transition between the case that every vector with a certain gradient sparsity is
uniquely recoverable and the case that TV minimization will find a different solution
than the desired vector. This behavior empirically agrees with the phase transition
in the classical compressed sensing setup with Gaussian measurements [7].

To efficiently check whether many specific vectors x can be uniquely recovered
via (3), one needs to establish characteristics of x which must be easily verifiable.
Such a nonuniform recovery condition is given in the following theorem.

Theorem 2.1. [12] It holds that x 2 R
n is a unique solution of (3) if and only if

there exists w 2 R
m and v 2 R

n�1 such that

rTv D ATw; vI D sign.rx/I ; kvIck1 < 1: (4)

The basic idea of the proof is to use the optimality condition for convex optimization
problems [33]. Equivalent formulations of the latter theorem can be found in [13, 39]
where the problem is considered from a geometric perspective. However, verifying
the conditions in Theorem 2.1 still requires solving a linear program where an
optimal v for (4) needs to be found. In classical compressed sensing, the Fuchs
Condition [10] is known as a weaker result as it suggests a particular w in (4) and
avoids solving the consequential linear program. The following result generalizes
this result to general analysis `1-minimization.

Corollary 2.2. If x 2 R
n satisfies

k.IT
Icr.r

TIIcIT
Icr C ATA/�1rsign.rx//Ik1 < 1

then x is the unique solution of (3).
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2.2 Recovery from Gaussian Measurements

As discussed above, to date no deterministic constructions of compressed sensing
matrices are known that get anywhere near an optimal number of measurements.
Also for the variation of aiming to recover approximately gradient sparse mea-
surements, the only near-optimal recovery guarantees have been established for
random measurement models. Both under (approximate) sparsity and gradient
sparsity assumptions, an important benchmark is that of a measurement matrix
with independent standard Gaussian entries. Even though such measurements are
hard to realize in practice, they can be interpreted as the scenario with maximal
randomness, which often has particularly good recovery properties. For this reason,
the recovery properties of total variation minimization have been analyzed in detail
for such measurements. Interestingly, as shown by the following theorem, recovery
properties in the one-dimensional case are significantly worse than for synthesis
sparse signals and also for higher-dimensional cases. That is why we focus on this
case in Section 3, providing a geometric viewpoint and generalizing the results to
subgaussian measurements.

Theorem 2.2. [3] Let the entries of A 2 R
m�n be i.i.d. standard Gaussian random

variables, and let Ox be a solution of (3) with input data y D Ax0. Then

1. There exist constants c1; c2; c3; c4 > 0, such that for m 
 c1
p

sn.log nC c2/

P.8x0W krx0k0 � sW Ox D x0/ 
 1 � c3e
�c4
p

m:

2. For any 	 2 .0; 1/, there are constants Qc1; Qc2 > 0 and a universal constant
c2 > 0, such that for s 
 Qc0 and .s C 1/ < n

4
. If m � Qc1

p
sn � Qc2, there exist

infinitely many x0 2 R
n with krx0k0 � s, such that P.Ox ¤ x0/ 
 1 � 	.

This scaling is notably different from what is typically obtained for synthesis
sparsity, where the number of measurements scales linearly with s up to log factors.
Such a scaling is only obtained for higher-dimensional signals, e.g., images. Indeed,
in [3], it is shown that for dimensions at least two, the number of Gaussian
measurements sufficient for recovery is

m 


(
c2s log3 n; if d D 2

cds log n; if d 
 3;

where the constant cd depends on the dimension.
Furthermore, as we can see in Theorem 2.5, this is also the scaling one obtains

for dimensions larger than 1 and Haar-incoherent measurements. Thus the scaling of
p

sn is a unique feature of the one-dimensional case. Also note that the square root
factor in the upper bound makes the result meaningless for a sparsity level on the
order of the dimension. This has been addressed in [14], showing that a dimension



Total Variation Minimization in Compressed Sensing 339

reduction is also possible if the sparsity level is a (small) constant multiple of the
dimension.

The proof of Theorem 2.2 uses Gordon’s escape through the mesh Theorem [11].
We will elaborate on this topic in Section 3.

In case we are given noisy measurements y D Ax0 C e with kek2 � ", we can
instead of solving (3) consider

minimize krzk1 such that kAz � yk2 � ": (5)

If rx0 is not exactly, but approximately sparse, and our measurements are
corrupted with noise, the following result can be established.

Theorem 2.3. [3] Let the entries of A 2 R
m�n be i.i.d. standard Gaussian random

variables, and let Ox be a solution of (5) with input data y satisfying kAx0 � yk2 � ".
Then for any ˛ 2 .0; 1/, there are positive constants ı; c0; c1; c2; c3, such that for
m D ˛n and s D ın

P

�
kx0 � Oxk2 � c2

minjSj�s k.rx0/Sck1
p

n
C c3

"
p

n

�

 1 � c0e

�c1n:

This looks remarkably similar to the recovery guarantees obtained for com-
pressed sensing; note however that the number of measurements needs to be
proportional to n, which is not desirable. We will present a similar result with
improved number of measurements in Section 3.5.

Theorem 2.4 (Corollary of Theorem 3.4). Let x0 2 R
n be such that krx0k � s

for s > 0 and A 2 R
m�n with m 
 C

p
ns log.2n/ be a standard Gaussian matrix.

Furthermore, set y D Ax0 C e, where kek � " denotes the (bounded) error of
the measurement and for some absolute constants c; Qc > 0 the solution Ox of (12)
satisfies

P

 

kOx � x0k >
2"

c 4
p

ns.
p

log.2n/ � 1/

!

� e�Qc
p

ns:

Note, however, that in contrast to Theorem 2.3, this theorem does not cover
the case of gradient compressible vectors but on the other hand Theorem 3.4 also
incorporates the case of special subgaussian measurement ensembles. Also, if we
set s D ın, we reach a similar conclusion as in Theorem 2.3.

2.3 Recovery from Haar-Incoherent Measurements

For dimensions d 
 2, Needell and Ward [25, 26] derived recovery results
for measurement matrices having the restricted isometry property (RIP) when
composed of the Haar wavelet transform. Here we say that a matrix ˆ has the RIP
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of order k and level ı if for every k-sparse vector x it holds that

.1 � ı/kxk22 � kˆxk22 � .1 � ı/kxk
2
2:

The results of [25, 26] build upon a connection between a signal’s wavelet
representation and its total variation seminorm first noted by Cohen, Dahmen,
Daubechies, and DeVore [6].

Their theorems yield stable recovery via TV minimization for Nd-dimensional
signals. For d D 2, notably these recovery results concern images of size N � N.

Several definitions are necessary in order to be able to state the theorem. The
d-dimensional discrete gradient is defined via rWRCd

! C
Nd�d and maps x 2 C

Nd

to its discrete derivative which, for each ˛ 2 ŒN�d is a vector .rx/˛ 2 C
d composed

of the derivatives in all d directions. Up to now, we have always used the anisotropic
version of the TV seminorm, which can be seen as taking the `1 norm of the discrete
gradient. The isotropic TV seminorm is defined via a combination of `2 and `1
norms. It is given by kzkTV2 WD

P
˛2ŒN�d k.rz/˛k2. The result in [25] is given in

terms of the isotropic TV seminorm but can also be formulated for the anisotropic
version.

Furthermore, we will need to concatenate several measurement matrices in order
to be able to state the theorem. This will be done via the concatenation operator
˚WLin.Cn;Ck1 /�Lin.Cn;Ck2 /! Lin.Cn;Ck1Ck2 /, which “stacks" two linear maps.

Finally, we need the notion of shifted operators. For an operator BWCNl�1

�.N � 1/ � Nd�l ! C
q, these are defined as the operators B0l WC

Nd
! C

q and
B0l WCNd

! C
q concatenating a column of zeros to the end or beginning of the l-th

component, respectively.

Theorem 2.5 ([25]). Let N D 2n and fix integers p and q. Let AWCNd
! C

p be a
map that has the restricted isometry property of order 2ds and level ı < 1 if it is
composed of the orthonormal Haar wavelet transform. Furthermore let B1; : : : ;Bd

with BjWC
.N�1/Nd�1

! C
q be such that B D B1 ˚ B2 ˚ � � � ˚ Bd has the restricted

isometry property of order 5ds and level ı < 1
3
. Consider the linear operator M D

A˚ ŒB1�01˚ ŒB1�01˚� � �˚ ŒBd�0d˚ ŒBd�
0d . Then MWCNd

! C
m with m D 2dqCp,

and for all x 2 C
Nd

we have the following. Suppose we have noisy measurements
y DM.x/C e with kek2 � ", then the solution to

Ox D argminzkzkTV2 such that kM.z/ � yk2 � "

satisfies

1. kr.x � Ox/k2 � c1
�
krx�.rx/Sk1;2p

s
C
p

d"
�

,

2. kx � OxkTV2 � c2
�
krx � .rx/Sk1;2 C

p
sd"
�

,

3. kx � Oxk2 � c3d log N
�
krx�.rx/Sk1;2p

s
C
p

d"
�
;

for some absolute constants c1; c2; c3.



Total Variation Minimization in Compressed Sensing 341

From the last point of the previous theorem, we see that for noiseless measure-
ments and gradient sparse vectors x, perfect recovery can be achieved provided
the RIP assumption holds. Subgaussian measurement matrices, for example, will
have the RIP, also when composed of the Haar wavelet transform H (this is a direct
consequence of rotation invariance). Moreover, as shown in [17], randomizing the
column signs of an RIP matrix will, with high probability, also yield a matrix that
has the RIP when composed of H. An important example is a subsampled Fourier
matrix with random column signs, which relates to spread spectrum MRI (cf. [30]).

2.4 Recovery from Subsampled Fourier Measurements

Fourier measurements are widely used in many applications. Especially in medical
applications as parallel-beam tomography and magnetic resonance imaging, it is
desirable to reduce the number of samples to spare patients’ burden. In Section 2.1,
this is a motivation for introducing algorithmic checks for unique solutions of (3). In
this section, we consider a probabilistic approach where an incomplete measurement
matrix A 2 C

m�n chosen from the discrete Fourier transform on C
N is considered.

Therefore we consider a subset # of the index set f�bn=2c C 1; : : : ; dn=2eg,
where # consists of m integers chosen uniformly at random and, additionally,
0 2 #. Hence, we want to recover a signal, sparse in the gradient domain, with a
measurement matrix A D .e2
 ikj=n/k2#;j2Œn�. In [4] the optimal sampling cardinality
for s-sparse signals in the gradient domain was given and enables to recover one-
dimensional signals from O.k log.n// Fourier samples. It naturally extends to two
dimensions.

Theorem 2.6. [4] With probability exceeding 1�	, a signal z, which is k-sparse in
the gradient domain, is the unique solution of (3) if

m & k.log.n/C log.	�1//:

As already discussed in the introduction, the proof of this result proceeds via
recovering the gradient and then using that the discrete gradient (with periodic
boundary conditions) is injective. Due to the poor conditioning of the gradient,
however, this injectivity results do not directly generalize to recovery guarantees for
noisy measurements. For two (and more) dimensions, such results can be obtained
via the techniques discussed in the previous subsection.

These techniques, however, do not apply directly. Namely, the Fourier (measure-
ment) basis is not incoherent to the Haar wavelet basis; in fact, the constant vector
is contained in both, which makes them maximally coherent. As observed in [29],
this incoherence phenomenon only occurs for low frequencies; the high-frequency
Fourier basis vectors exhibit small inner products to the Haar wavelet basis. This
can be taken into account using a variable density sampling scheme with sampling
density that is larger for low frequencies and smaller for high frequencies. For such
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a sampling density, one can establish the restricted isometry for the corresponding
randomly subsampled discrete Fourier matrix combined with the Haar wavelet
transform with appropriately rescaled rows [18]. This yields the following recovery
guarantee.

Theorem 2.7 ([18]). Fix integers N D 2p;m; and s such that s & log.N/ and

m & s log3.s/ log5.N/: (6)

Select m frequencies f.! j
1; !

j
2/g

m
jD1 � f�N=2C 1; : : : ;N=2g2 i.i.d. according to

P
�
.!

j
1; !

j
2/ D .k1; k2/

�
D CN min

�
C;

1

k21 C k22

�

DW 	.k1; k2/; �N=2C 1 � k1; k2 � N=2; (7)

where C is an absolute constant and CN is chosen such that 	 is a probability
distribution.
Consider the weight vector � D .�j/

m
jD1 with �j D .1=	.!

j
1; !

j
2//

1=2, and assume
that the noise vector � D .�j/

m
jD1 satisfies k� ı �k2 � "

p
m, for some � > 0.

Then with probability exceeding 1 � N�C log3.s/, the following holds for all images
f 2 C

N�N:
Given noisy partial Fourier measurements y D F#f C � , the estimation

f # D argming2CN�NkgkTV such that k� ı .F#g � y/k2 � "
p

m; (8)

where ı denotes the Hadamard product, approximates f up to the noise level and
best s-term approximation error of its gradient:

kf � f #k2 . krf � .rf /sk1
p

s
C ": (9)

A similar optimality result is given in [28], also for noisy data and inexact
sparsity. In contrast to the previous result, this result includes the one-dimensional
case. The key to obtaining such a result is showing that the stable gradient recover
implies the stable signal recovery, i.e.,

kzk2 . � C kzkTV with kAzk2 � �: (10)

Again the sampling distribution is chosen as a combination of the uniform dis-
tribution and a decaying distribution. The main idea is to use this sampling to
establish (10) via the RIP. We skip technicalities for achieving the optimality in
the following theorem and refer to the original article for more details.
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Theorem 2.8. [28] Let z 2 C
n be fixed and x be a minimizer of (5) with " D

p
mı for some ı > 0, m & k log.n/.1 C log.	�1//, and an appropriate sampling

distribution. Then with probability exceeding 1 � 	, it holds that

krz � rxk2 .
�
ı
p

kC C1
kPrzk1
p

k

�
;
kz � xk2
p

n
. C2

�
ı
p

s
C C1

kPrzk1
k

�
;

where P is the orthogonal projection onto a k-dimensional subspace,

C1 D log.k/ log1=2.m/, and C2 D log2.k/ log.n/ log.m/:

In the two-dimensional setting, the result changes to

krz � rxk2 .
�
ı
p

kC C3
kPrzk1
p

k

�
; kz � xk2 . C2

�
ı C C3

kPrzk1
k

�
;

with remaining C2 and

C3 D log.k/ log.n2=k/ log1=2.n/ log1=2.m/:

These results are optimal since the best error one can archive [26] is kz � xk2 .
kPrzk1k�1=2.

The optimality in the latter theorems is achieved by considering a combination of
uniform random sampling and variable density sampling. Uniform sampling on its
own can achieve robust and stable recovery. However, the following theorem shows
that the signal error is no longer optimal, but the bound on the gradient error is still
optimal up to log factors. Here (10) is obtained by using the Poincaré inequality.

Theorem 2.9 ([28]). Let z 2 C
n be fix and x be a minimizer of (5) with " D

p
mı

for some ı > 0 and m & k log.n/.1 C log.	�1// with random uniform sampling.
Then with probability exceeding 1 � 	, it holds that

krz � rxk2 .
�
ı
p

kC C
kPrzk1
p

k

�
;
kz � xk2
p

n
. .ı
p

sC CkPrzk1/;

where P is the orthogonal projection onto a k-dimensional subspace and C D
log.k/ log1=2.m/.

3 TV Recovery from Subgaussian Measurements in 1D

In this section, we will apply the geometric viewpoint discussed in [38] to the
problem, which will eventually allow us to show the TV recovery results for noisy
subgaussian measurements mentioned in Section 2.2.
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As in the original proof of the 1D recovery guarantees for Gaussian mea-
surements [3], the Gaussian mean width will play an important role in our
considerations.

Definition 3.1. The (Gaussian) mean width of a bounded subset K of R
n is

defined as

w.K/ WD E sup
x2K�K

hg; xi;

where g 2 R
n is a vector of i.i.d. N .0; 1/ random variables.

In [3], the mean width appears in the context of the Gordon’s escape through the
mesh approach [11] (see Section 3.4), but as we will see, it will also be a crucial
ingredient in applying the Mendelson small-ball method [15, 22].

The mean width has some nice (and important) properties; it is, for example,
invariant under taking the convex hull, i.e.,

w.ch.K// D w.K/:

Furthermore, it is also invariant under translations of K, as .K�x0/�.K�x0/ D K�
K. Due to the rotational invariance of Gaussian random variables, that is, Ug � g,
we also have that w.UK/ D w.K/. Also, it satisfies the inequalities

w.K/ D E sup
x2K�K

hg; xi � 2E sup
x2K
hg; xi � 2E sup

x2K
jhg; xij;

which are equalities if K is symmetric about 0, because then K D �K and hence
K � K D 2K.

3.1 M� Bounds and Recovery

In order to highlight the importance of the Gaussian mean width in signal recovery,
we present some arguments from [38]. Thus in this section we present a classical
result, the M� bound, which connects the mean width to recovery problems, cf. [38].
Namely, recall that due to rotational invariance, the kernel of a Gaussian random
matrix A 2 R

m�n is a random subspace distributed according to the uniform
distribution (the Haar measure) on the Grassmannian

Gn;n�m WD fV � R
nW dim.V/ D n � mg:

Consequently, the set of all vectors that yield the same measurements directly
correspond to such a random subspace.

The average size of the intersection of this subspace with a set reflecting the
minimization objective now gives us an average bound on the worst-case error.
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Theorem 3.1 (M� Bound, Theorem 3.12 in [38]). Let K be a bounded subset of
R

n and E be a random subspace of Rn of drawn from the Grassmannian Gn;n�m

according to the Haar measure. Then

E diam.K \ E/ � C
w.K/
p

m
; (11)

where C is absolute constant.
Given the M� bound, it is now straightforward to derive bounds on reconstruc-

tions from linear observations. We first look at feasibility programs – which in
turn can be used to obtain recovery results for optimization problems. For that,
let K � R

n be bounded and x 2 K be the vector we seek to reconstruct from
measurements Ax D y with a Gaussian matrix A 2 R

m�n.

Corollary 3.1 ([23]). Choose Ox 2 R
n, such that

Ox 2 K and AOx D y;

then one has, for an absolute constant C0,

E sup
x2K
kOx � xk2 � C0

w.K/
p

m
:

This corollary directly follows by choosing C0 D 2C, observing that Ox�x 2 K�K
and that the side constraint enforces A.Ox � x/ D 0.

Via a standard construction in functional analysis, the so-called Minkowski
functional, one can now cast an optimization problem as a feasibility program so
that Corollary 3.1 applies.

Definition 3.2. The Minkowski functional of a bounded, symmetric set K � R
n is

given by

k � kK WR
n ! RW x 7! infft > 0W x 2 tKg:

So the Minkowski functional tells us how much we have to “inflate" our given
set K in order to capture the vector x. Clearly, from the definition we have that if K
is closed

K D fxW kxkK � 1g:

If a convex set K is closed and symmetric, then k � kK defines a norm on R
n.

Recall that a set K is star shaped, if there exists a point x0 2 K, which satisfies
that for all x 2 K, we have ftx0 C .1 � t/xW t 2 Œ0; 1�g � K. It is easy to see that
convex sets are star shaped, but, for example, unions of subspaces are not convex,
but star shaped.
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For bounded, star shaped K, the notion of k � kK now allows to establish a direct
correspondence between norm minimization problems and feasibility problems.
With this observation, Corollary 3.1 translates to the following result.

Corollary 3.2. For K bounded, symmetric, and star shaped, let x 2 K and y D Ax.
Choose Ox 2 R

n, such that it solves

min kzkK with Az D y;

then

E sup
x2K
kOx � xk2 � C0

w.K/
p

m
:

Here Ox 2 K is due to the fact that the minimum satisfies kOxkK � kxkK � 1, as
x 2 K by assumption.

This result directly relates recovery guarantees to the mean width; it thus remains
to calculate the mean width for the sets under consideration. In the following
subsections, we will discuss two cases. The first one directly corresponds to the
desired signal model, namely, gradient sparse vectors. These considerations are
mainly of theoretical interest, as the associated minimization problem closely relates
to support size minimization, which is known to be NP hard in general. The second
case considers the TV minimization problem introduced above, which then also
yields guarantees for the (larger) set of vectors with bounded total variation.

Note, however, that the M� bound only gives a bound for the expected error. We
can relate this result to a statement about tail probabilities using Markov’s inequality,
namely,

P.sup
x2K
kx � Oxk2 > t/ � t�1E sup

x2K
kx � Oxk2 � C0

w.K/

t
p

m
:

In the next section, we compute the mean width for the set of gradient sparse
vectors, that is, we now specify the set K in Corollary 3.1 to be the set of all vectors
with energy bounded by one that only have a small number of jumps.

3.2 The Mean Width of Gradient Sparse Vectors in 1D

Here [27] served as an inspiration, as the computation is very similar for the set of
sparse vectors.

Definition 3.3. The jump support of a vector x is given via

Jsupp.x/ WD fi 2 Œn � 1�W xiC1 � xi ¤ 0g:
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The jump support captures the positions, in which a vector x changes its values.
With this, we now define the set

Ks
0 WD fx 2 R

nW kxk2 � 1; jJsupp.x/j � sg:

The set Ks
0 consists of all s-gradient sparse vectors, which have two-norm smaller

than one. We will now calculate the mean width of Ks
0 in order to apply Corollary 3.1

or 3.2.
Note that we can decompose the set Ks

0 into smaller sets KJ \ Bn
2 with KJ D

fxW Jsupp.x/ � Jg, jJj D s and Bn
2 D fx 2 R

nW kxk2 � 1g. As we can’t add any
jumps within the set KJ , it is a subspace of Rn. We can even quite easily find an
orthonormal basis for it, if we define

.eŒi;j�/k WD
1

p
j � iC 1

(
1; if k 2 Œi; j�

0; else
:

As we can align all elements of J D fj1; j2; : : : ; jsg with 1 � j1 < j2 < : : : < js D n,
we see that feŒ1;j1�; eŒj1C1;j2�; eŒj2C1;j3�; : : : ; eŒjs�1C1;js�g forms an ONB of KJ . Now, we
can write all elements x 2 KJ \ Bn

2 as x D
Ps

iD1 ˛ieŒji�1C1;ji� by setting j0 WD 0. The
property that x 2 Bn

2 now enforces (ONB) that k˛k2 � 1. Now, note that Ks
0 D �Ks

0,
so we have

w.Ks
0/ D E sup

x2Ks
0�Ks

0

hg; xi D 2E sup
x2Ks

0

hg; xi:

Using the decomposition Ks
0 D

S
jJjDs

	
KJ \ Bn

2



, we get

w.Ks
0/ D 2E sup

jJjDs
sup

x2KJ\Bn
2

hg; xi:

Now

sup
x2KJ\Bn

2

hg; xi � sup
˛2Bs

2

sX

iD1

˛ihg; eŒji�1C1;ji�i D sup
˛2Bs

2

sX

iD1

˛i

jiX

kDji�1C1

gk
p

ji � ji�1
„ ƒ‚ …

DWGJ
i

:

Note that GJ
i is again a Gaussian random variable with mean 0 and variance 1.

Furthermore, the supremum over ˛ is attained, if ˛ is parallel to GJ , so we have
supx2KJ\Bn

2
hg; xi D kGJk2. Also note that GJ has i.i.d. entries, but for different J1; J2,

the random vectors GJ1 and GJ2 may be dependent. Our task is now to calculate
E supjJjDs kG

Jk2. As it has been shown, for example, in [9], we have that
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r
2




p
s � EkGJk2 �

p
s;

and from standard results for Gaussian concentration (cf. [27]), we get

P.kGJk2 

p

sC t/ � P.kGJk2 
 EkGJk2 C t/ � e�t2=2:

By noting that jfJ � Œn�W jJj D sgj D
	n

s



, we see by a union bound that

P. sup
jJjDs
kGJk2 


p
sC t/ �

 
n

s

!

P.kGJk2 

p

sC t/ �

 
n

s

!

e�t2=2:

For the following calculation, set X WD supjJjDs kG
Jk2. By Jensen’s inequality

and rewriting the expectation, we have that

e�EX � Ee�X D

Z 1

0

P.e�X 
 �/d�:

Now, the previous consideration showed that

P.e�X 
 e�.
p

sCt/
„ ƒ‚ …
DW�

/ D P.X 

p

sC t/ �

 
n

s

!

e�t2=2 D

 
n

s

!

e�.log.�/=��
p

s/2=2;

Computing the resulting integrals yields

e�EX �

 
n

s

!

e�s=2�
p
2
e.

p
sC�/2=2:

Using a standard bound for the binomial coefficients, namely,
	n

s



� es log.en=s/,

we see

e�EX � es log.en=s/�s=2C.
p

sC�/2=2Clog.�/Clog.
p
2
/;

or equivalently

�EX � s log.en=s/ � s=2C .
p

sC �/2=2C log.�/C log.
p
2
/

By setting � D
p

s log.en=s/ and assuming (reasonably) large n, we thus get

EX � 5
p

s log.en=s/:

From this, we see that
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w.Ks
0/ � 10

p
s log.en=s/:

It follows that the Gaussian mean width of the set of gradient sparse vectors is
the same as the mean width of sparse vectors due to the similar structure. If we want
to obtain accuracy ı for our reconstruction, according to Theorem 3.1, we need to
take

m D O
�

s log.en=s/

ı2

�

measurements.
In compressed sensing, the squared mean width of the set of s-sparse vectors

(its so-called statistical dimension) already determines the number of required
measurements in order to recover a sparse signal with basis pursuit. This is the
case because the convex hull of the set of sparse vectors can be embedded into the
`1-ball inflated by a constant factor.

In the case of TV minimization, as we will see in the following section, this
embedding yields a (rather large) constant depending on the dimension.

3.3 The Extension to Gradient Compressible Vectors Needs
a New Approach

In the previous subsection, we considered exactly gradient sparse vectors. However
searching all such vectors x that satisfy Ax D y is certainly not a feasible task.
Instead, we want to solve the convex program

min kzkTV with Az D y;

with kzkTV D krzk1 the total variation seminorm. Now if we have that x 2 Ks
0, we

get that

kxkTV � 2k˛k1 � 2
p

sk˛k2 D 2
p

s;

with ˛ as in Section 3.2, so Ks
0 � K

2
p

s
TV WD fx 2 Bn

2W kxkTV � 2
p

sg. As K
2
p

s
TV is

convex, we even have ch.Ks
0/ � K

2
p

s
TV . We can think of the set K

2
p

s
TV as “gradient-

compressible" vectors.

In the proof of Theorem 3.3 in [3], the Gaussian width of the set K
4
p

s
TV

has been calculated via a wavelet-based argument. One obtains that w.K
2
p

s
TV / �

C
pp

ns log.2n/ with C � 20 being an absolute constant. In this section we
illustrate that proof techniques different from the ones used in the case of synthesis
sparsity are indeed necessary in order to obtain useful results. In the synthesis case,
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the one-norm ball of radius
p

s is contained in the set of s-sparse vectors inflated
by a constant factor. This in turn implies that the mean width of the compressible
vectors is bounded by a constant times the mean width of the s-sparse vectors.

We will attempt a similar computation, that is, to find a constant, such that the

set K
2
p

s
TV is contained in the “inflated" set cn;sch.Ks

0/. Then w.K
2
p

s
TV / � cn;sw.Ks

0/.
Although this technique works well for sparse recovery, where cn;s D 2, it pitiably
fails in the case of TV recovery as we will see below.

Let us start with x 2 K
2
p

s
TV . Now we can decompose J WD Jsupp.x/ D J1 ] J2 ]

: : : Jp with jJkj � s in an ascending manner, i.e., for all k 2 Ji; l 2 JiC1, we have that
˛k < ˛l. Note that the number p of such sets satisfies p � n

s . Similarly as above, we

now write x D
PjJj

iD1 ˛ieŒji�1C1;ji� D
Pp

kD1

P
i2Jk

˛ieŒji�1C1;ji�. From this, we see that

x D
pX

kD1

k˛Jkk2
X

i2Jk

˛i

k˛Jkk2
eŒji�1C1;ji�

„ ƒ‚ …
2Ks

0

:

The necessary factor cn;s can be found by bounding the size of k˛Jkk2, namely,

max.k˛Jkk2/ �

pX

kD1

k˛Jkk2
C�S
� k˛k2„ƒ‚…

�1

p
p �

r
n

s
:

From this, we see that K
2
p

s
TV �

p n
s ch.Ks

0/. To see that this embedding constant
is optimal, we construct a vector, for which it is needed.

To simplify the discussion, suppose that n and s are even and sjn. For even n, the

vector x1 D .

q
1�.�1/k"

n /k has unity norm, lies in K
2
p

s
TV for " < 2

p
s

n and has jump
support on all of Œn�!

For a vector x 2 R
n and an index set I � Œn�, we define the restriction of x to I by

.xjI/j WD

(
xj, if j 2 I

0, else:

By splitting Jsupp.x1/ into sets J1; : : : ; Jn=s and setting ak D
p n

s x1jJk 2 Ks
0, we see

that x1 D
Pn=s

kD1

p s
n ak, and in order for this to be elements of cn;sch.Ks

0/, we have
to set cn;s D

p n
s . This follows from

x1 D
n=sX

kD1

x1jJk D

n=sX

kD1

r
s

n

p

p
ak D

n=sX

kD1

1

p

�r
n

s
ak

�

„ ƒ‚ …
2
p

n
s Ks

0

2

r
n

s
ch.Ks

0/
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and no smaller inflation factor than
p n

s can suffice.
So from the previous discussion, we get

Lemma 3.1. We have the series of inclusions

ch.Ks
0/ � K

2
p

s
TV �

r
n

s
ch.Ks

0/:

In view of the results obtainable for sparse vectors and the `1-ball, this is very

disappointing, because Lemma 3.1 now implies that the width of K
2
p

s
TV satisfies

w.K
2
p

s
TV / � w

�r
n

s
ch.Ks

0/

�
D

r
n

s
w.Ks

0/ � 10
p

n log.e.n � 1/=s/;

which is highly suboptimal.
Luckily, the results in [3] suggest that the factor n in the previous equation can be

replaced by
p

sn. However, they have to resort to a direct calculation of the Gaussian

width of K
2
p

s
TV . The intuition why the Gaussian mean width can be significantly

smaller than the bound given in Lemma 3.1 stems from the fact that in order to
obtain an inclusion, we need to capture all “outliers" of the set – no matter how
small their measure is.

3.4 Exact Recovery

For exact recovery, the M� bound is not suitable anymore, and, as suggested in [38],
we will use “Gordon’s escape through the mesh" in order to find conditions on
exact recovery. Exact recovery for TV minimization via this approach has first been
considered in [3].

Suppose we want to recover x 2 Ks
0 from Gaussian measurements Ax D y.

Given that we want our estimator Ox to lie in a set K, exact recovery is achieved, if
K \ fzWAz D yg D fxg. This is equivalent to requiring

.K � x/ \ fz � xWAz D yg
„ ƒ‚ …

Dker.A/

D f0g:

With the descent cone D.K; x/ D ft.z � x/W t 
 0; z 2 Kg, we can rewrite this
condition as

D.K; x/ \ ker.A/ D f0g;

by introducing the set S.K; x/ D D.K; x/ \ Bn
2, we see that if
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S.K; x/ \ ker.A/ D ;;

we get exact recovery. The question, when a section of a subset of the sphere with a
random hyperplane is empty, is answered by Gordon’s escape through a mesh.

Theorem 3.2 ([11]). Let S � S
n�1 be fixed and E 2 Gn;n�m be drawn at random

according to the Haar measure. Assume that Ow.S/ D E supu2Shg; ui <
p

m and
then S \ E D ; with probability exceeding

1 � 2:5 exp

 

�
.m=
p

mC 1 � Ow.S//2

18

!

:

So we get exact recovery with high probability from a program given in
Theorem 3.1 or 3.2, provided that m > Ow.S.K; x0//2.

Let’s see how this applies to TV minimization. Suppose we are given x 2 Ks
0 and

Gaussian measurements Ax D y. Solving

min kzkTV with Az D y;

amounts to using the Minkowski functional of the set K D fz 2 R
nW kzkTV �

kxkTVg, which is a scaled TV ball.
In [3], the null space property for TV minimization given in Corollary 2.1 has

been used in order to obtain recovery guarantees.
They consider the set, where this condition is not met

S WD fx0 2 Bn
2W 9J � Œn�; jJj � s; k.rx0/Jk1 
 k.rx0/Jck1g;

and apply Gordon’s escape through the mesh to see that with high probability, its
intersection with the kernel of A is empty, thus proving exact recovery with high
probability. Their estimate to the mean width of the set S

Ow.S/ � c 4
p

ns
p

log.2n/

with c < 19 is essentially optimal (up to logarithmic factors), as they also show
that w.S/ 
 C 4

p
ns. So uniform exact recovery can only be expected for m D

O.psn log n/ measurements.
Let us examine some connections to the previous discussion about the descent

cone.

Lemma 3.2. We have that for K D fz 2 R
nW kzkTV � kxkTVg defined as above and

x 2 Ks
0, it holds that S.K; x/ � S .

Proof. Let y 2 S.K; x/. Then there exists a x ¤ z 2 K, such that y D z�x
kz�xk2

. Set
J D Jsupp.x/; then, as z 2 K, we have that kzkTV � kxkTV , or
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X

i2J

j.rx/ij 

X

i2J

j.rz/ij C
X

i62J

j.rz/ij

Now, by the triangle inequality and this observation, we have

X

i2J

j.rx/i � .rz/ij 

X

i2J

j.rx/ij � j.rz/ij 

X

i62J

j.rz/ij D
X

i62J

j.rx/i � .rz/ij:

The last equality follows from the fact that rx is zero outside of the gradient support
of x. Multiplying both sides with 1

kz�xk2
gives the desired result

k.ry/Jk1 D
1

kz � xk2

X

i2J

j.rx/i � .rz/ij




1

kz � xk2

X

i62J

j.rx/i � .rz/ij D k.ry/Jck1:

The previous lemma shows that the recovery guarantees derived from the null
space property and via the descent cone are actually connected in a very simple
way.

Clearly, now if we do not intersect the set S , we also do not intersect the set
S.K; x/, which yields exact recovery, for example, with the same upper bounds on
m as for S . Even more specifically, in the calculation of Ow.S/ given in [3], an
embedding into a slightly larger set QS D fx 2 Bn

2W kxkTV � 4
p

sg is made. This
embedding can also quite easily be done if we note that kxkTV � 2

p
s, as we showed

above, and kzkTV � kxkTV .
Note that the same discussion also holds for higher-dimensional signals, such

that the improved numbers of measurements as given in Section 2.2 can be applied.

3.5 Subgaussian Measurements

Up to this point, all our measurement matrices have been assumed to consist of
i.i.d. Gaussian random variables. We will reduce this requirement in this section to
be able to incorporate also subgaussian measurement matrices into our framework.

Definition 3.4. A real valued random variable X is called subgaussian, if there
exists a number t > 0, such that EetX2 < 1. A real valued random vector is called
subgaussian, if all of its one-dimensional marginals are subgaussian.
An obvious example of subgaussian random variables is Gaussian random variables,
as the expectation in Definition 3.4 exists for all t < 1. Also, all bounded random
variables are subgaussian.

Here, we rely on results given by Tropp in [37] using the results of Mendel-
son [15, 22]. We will consider problems of the form
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min kzkTV such that kAz � yk � "; (12)

where A is supposed to be a matrix with independent subgaussian rows. Further-
more, we denote the exact solution by x0, i.e., Ax0 D y. We pose the following
assumptions on the distribution of the rows of A.

(M1) EAi D 0,
(M2) There exists ˛ > 0, such that for all u 2 S

n�1 it holds that EjhAi; uij 
 ˛,
(M3) There is a � > 0, such that for all u 2 S

n�1 it holds that P.jhAi; uij 
 t/ �
2 exp.�t2=.2�2//,

(M4) The constant � WD �
˛

is small.

Then the small-ball methods yield the following recovery guarantee (we present
the version of [37]).

Theorem 3.3. Let x0 2 R
n and A 2 R

m�n be a subgaussian matrix satisfying (M1)-
(M4) above. Furthermore, set y D Ax0 C e, where kek � " denotes the (bounded)
error of the measurement. Then the solution Ox of (12) satisfies

kOx � x0k �
2"

maxfc˛��2
p

m � C�w.S.K; x0// � ˛t; 0g

with probability exceeding 1� e�ct2 . D.K; x0/ denotes the descent cone of the set K
at x0, as defined in the previous section.

From this we see that, provided

m 
 QC�6w2.S.K; x0//;

we obtain stable reconstruction of our original vector from (12). Note that the
theorem is only meaningful for t D O.pm/, as otherwise the denominator vanishes.

In the previous section, we have shown the inclusion S.K; x0/ � S for x0 2 K0
s ,

and hence we have that

w.S.K; x0/ � w.S/ � c 4
p

ns
p

log.2n/:

So we see that for m 
 QC�6
p

ns log.2n/, we obtain the bound

kOx � x0k �
2"

maxfc˛��2
p
QC�3 4
p

ns
p

log.2n/ � C� 4
p

ns
p

log.2n/ � ˛t; 0g

D
2"

maxf�.c
p
QC � C/ 4

p
ns
p

log.2n/ � ˛t; 0g

with high probability. We conclude that, given the absolute constants c;C, we
need to set QC 
 C2

c2
in order to obtain a meaningful result. Combining all our

previous discussions with Theorem 3.3, we get
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Theorem 3.4. Let x0 2 R
n, m 
 QC�6

p
ns log.2n/ and A 2 R

m�n be a subgaussian
matrix satisfying (M1)–(M4). Furthermore, set y D Ax0C e, where kek � " denotes
the (bounded) error of the measurement, constants c;C; QC > 0 as above, and t �
�.c
p
QC�C/ 4

p
ns
p

log.2n/
˛

. Then the solution Ox of (12) satisfies

P

 

kOx � x0k >
2"

�.c
p
QC � C/ 4

p
ns
p

log.2n/ � ˛t

!

� e�ct2 :

We can, for example, set t D �.c
p
QC � C/ 4

p
ns (for n 
 2) to obtain the bound

P

 

kOx � x0k >
2"

�.c
p
QC � C/ 4

p
ns.
p

log.2n/ � 1/

!

� e�Qc�
p

ns:

For example, for i.i.d. standard Gaussian measurements, the constant � D
q

2



.
Note that in the case of noise-free measurements " D 0, Theorem 3.4 gives

an exact recovery result for a wider class of measurement ensembles with high
probability. Furthermore with a detailed computation of w.S.K; x0//, one may be
able to improve the number of measurements for nonuniform recovery. It also
remains open, whether the lower bounds of Cai and Xu for the case of Gaussian
measurements can be generalized to the subgaussian case. In fact, our numerical
experiments summarized in Figure 2 suggest a better scaling in the ambient
dimension, around N1=4, in the average case. We consider it an interesting problem
for future work to explore whether this is due to a difference between Rademacher
and Gaussian matrix entries, between uniform and nonuniform recovery, or between
the average and the worst case. Also, it is not clear whether the scaling is in fact N1=4

or if the observed slope is just a linearization of, say, a logarithmic dependence.
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Fig. 2 Average error of recovery from Rademacher measurements in 1d with m measurements and
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4
.



356 F. Krahmer et al.

4 Discussion and Open Problems

As the considerations in the previous sections illustrate, the mathematical proper-
ties of total variation minimization differ significantly from algorithms based on
synthesis sparsity, especially in one dimension. For this reason, there are a number
of questions that have been answered for synthesis sparsity, which are still open for
the framework of total variation minimization. For example, the analysis provided
in [19, 32] for deterministically subsampled partial random circulant matrices, as
they are used to model measurement setups appearing in remote sensing or coded
aperture imaging, could not be generalized to total variation minimization. The
difficulty in this setup is that the randomness is encoded by the convolution filter, so
it is not clear what the analogy of variable density sampling would be.

Another case of practical interest is that of sparse 0=1 measurement matrices.
Recently it has been suggested that such measurements increase efficiency in
photoacoustic tomography, while at the same time, the signals to be recovered (after
a suitable temporal transform) are approximately gradient sparse. This suggests
the use of total variation minimization for recovery, and indeed empirically, this
approaches yields good recovery results [35]. Theoretical guarantees, however, (as
they are known for synthesis sparse signals via an expander graph construction [2])
are not available to date for this setup.
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Compressed Sensing in Hilbert Spaces

Yann Traonmilin, Gilles Puy, Rémi Gribonval, and Mike E. Davies

Abstract In many linear inverse problems, we want to estimate an unknown
vector belonging to a high-dimensional (or infinite-dimensional) space from few
linear measurements. To overcome the ill-posed nature of such problems, we
use a low-dimensional assumption on the unknown vector: it belongs to a low-
dimensional model set. The question of whether it is possible to recover such an
unknown vector from few measurements then arises. If the answer is yes, it is also
important to be able to describe a way to perform such a recovery. We describe
a general framework where appropriately chosen random measurements guarantee
that recovery is possible. We further describe a way to study the performance of
recovery methods that consist in the minimization of a regularization function under
a data-fit constraint.
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1 Introduction

Many signal processing tasks aim at estimating a signal x from its observation y.
The signal x can often be described by a continuous physical phenomenon, and the
observations y are made of a finite collection of scalar measurements. The most
basic example of such observations is a sampled version of the signal x (e.g., for
a sound recorded at a given sampling rate, the continuous x is the electrical signal
produced by the microphone over time). More generally, we consider observations
y modeled as

y D AxC e (1)

where x 2 H, y 2 F , and H;F are Hilbert spaces of finite or infinite dimension. The
operator A is a linear map, and e is a noise whose energy kekF is bounded. In most
cases, the operator A models a finite number of measurements m. This Hilbert space
setting is a way to have a general view of signal recovery problems in classical
finite- or infinite-dimensional spaces where signals (in a wide sense: time series,
images, videos, . . . ) are modeled, e.g., the space of continuous signals with finite
energy L2.Rd/, the space of bandlimited signals with finite energy or its equivalent
after sampling, `2.Rd/, or the finite-dimensional vector space R

d.

1.1 Observation Model and Low-Complexity Signals

Observing a continuous signal with finitely many linear measurements induces an
information loss. If no further prior information on the signal is available, recovering
x from y is generally not possible. However, if an (approximate) hypothesis of “low
complexity” on x is available, enforcing the hypothesis in the recovery process can
ensure that we are able to estimate x with reasonable accuracy. Low complexity can
be defined in several ways. It often means that the signal lives in a “low-dimensional
model” or can be described by few parameters. Two classical examples where low
complexity helps to recover the signal are:

• Sampling of periodic bandlimited signals in H D L2.R/: if the signal is known
to be bandlimited with cutoff frequency B, it is possible to recover it perfectly
provided it is sampled at a rate at least 2B.

• Compressed sensing in H D R
n: if the signal is known to have at most k non-zero

samples in R
n, it can be recovered with high probability from m random Gaussian

(or Fourier) observations provided m & k log.n/ [11]. (we use the symbol & to
say that there is an absolute constant C such that if m 
 Ck log.n/, recovery is
possible with high probability.) Similarly, if the signal is an n � n matrix with
rank at most r, in the space H D R

n�n, it can be recovered with high probability
from m & rn random Gaussian observations [14].

In the following, the notion of low complexity is summarized by the fact that
x is well approximated by an element of a so-called model set ˙ , where ˙ � H
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is low-dimensional according to a notion of dimension that will be specified. The
considered notion of dimension will be defined in Section 3.1 and is related to
the number of unknowns we need to estimate to characterize the signal. In the
context of linear inverse problems with such low-dimensional models, the first
objective is to obtain conditions on the linear operator A and the model set ˙
that guarantee a possible recovery. From this perspective, the analysis of “low-
complexity recovery” is an extension of classical analyses of sparse recovery or
low-rank matrix recovery. A second objective, related to the field of compressed
sensing, is dimension reduction, where the goal is to design a linear operator A (often
with randomness) so that low-complexity recovery is possible, with an emphasis on
allowing the dimension m of the observation to be small.

1.2 Decoders

As the ultimate task is to recover x from y, the analysis of the observation of x must
be held together with the study of the methods used to recover x from y, which
we call decoders. In this chapter, we consider the general class of decoders which
consist in minimizing a regularizer under a data-fit constraint. We study estimates
x� of x of the form

x� 2 argmin
z2H

f .z/ s:t: kAz � .AxC e/kF � �: (2)

Formulation (2) covers many decoders proposed in the literature, even though other
formulations exist (e.g., minimizing kAz � .Ax C e/kF under a constraint on f .z/
or using a Lagrangian formulation). The study presented in this chapter does not
require x� to be the unique minimizer of (2). It must be noted that this formulation
somehow emphasizes practical signal processing applications because an estimation
� of the observation noise energy kekF is often available (e.g., in photography the
noise level can be estimated using aperture time and light conditions; in image pro-
cessing more advanced techniques allow to estimate noise level from an image [37]).

The main parameter of the decoder is the regularizer f . Its role is to force the
estimate belonging to the chosen model set. The form of the data-fit constraint (k �
kF ) influences the types of noise that the decoder can robustly manage. This raises
interesting questions that are, however, out of the scope of this chapter. The main
qualities required for a decoder are (1) to provide exact recovery of vectors x 2 ˙ in
the noiseless setting and (2) to be stable to observation noise and robust to modeling
error.

We emphasize the role of two classes of decoders: “ideal” decoders and convex
decoders.

• Given a problem with a model set ˙ , the ideal decoder corresponds to minimiz-
ing (2) using f WD $˙ , the characteristic function of ˙ , i.e., $˙.x/ D 0 if x 2 ˙ ,
$˙.x/ D 1 otherwise. This decoder is called ideal, as it enforces perfectly the
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fact that the solution must belong to˙ (the prior on the unknown). Unfortunately,
it is generally hard to calculate efficiently as the function to minimize is both
non-convex and non-smooth. Consequently, we often use a heuristic for the
minimization or turn to a convex proxy to this minimization.

• The decoder is said to be a convex decoder when f is convex. Such a decoder is
often easier to compute as the minimization problem has no local minimum other
than the global minima even if this does not guarantee that the minimization can
be efficiently performed; see, e.g., tensor recovery problems [28]. State of the art
shows that having some additional hypothesis on the linear operator A enables to
guarantee stability and robustness of certain convex decoders for classical model
sets ˙ .

1.3 The RIP: A Tool for the Study of Signal Recovery

As we just saw, studying signal recovery amounts to studying the interactions
between the model ˙ , the regularization f , and the measurement operator A. We
propose here to use a tool that enables us to separate the study of A with respect to
˙ from the study of f with respect to˙ : the restricted isometry property (RIP). It is
generally defined in our setting for a linear observation operator A on the so-called
secant set ˙ �˙ WD fx � x0 W x 2 ˙; x0 2 ˙g.

Definition 1 (RIP). The linear operator A W H! F satisfies the RIP on the secant
set ˙ �˙ with constant ı if for all x 2 ˙ �˙ :

.1 � ı/kxk2H � kAxk2F � .1C ı/kxk
2
H (3)

where k � kH and k � kF are Euclidean norms on H and F .
This property is a famous sufficient condition on A to guarantee the success

of convex decoders (2) in the case of sparse and low-rank signal recovery for
appropriately chosen regularization f [13, 15, 17, 21, 25, 34]. Intuitively, the RIP
requires the operator A to preserve the distance between any two elements of˙ (see
Figure 1). Moreover, a lower RIP is a necessary condition for the existence of stable
and robust decoders: given A and ˙ , if a stable and robust decoder exists then, up
to a global rescaling, A satisfies a lower RIP on the secant set ˙ �˙ [8, 18].

For example, in the case of sparse recovery, it is possible to show two facts.

• Fact 1: Random Gaussian matrices of size m� n satisfy the RIP on the set of 2k-
sparse vectors (the secant set of the set of k-sparse vectors) with constant ı < 1

with high probability, provided m & ı�2k log.n/.
• Fact 2: As soon as A satisfies this RIP with constant ı < 1=

p
2, it is guaranteed

that minimization (2) with f .�/ D k � k1, the `1-norm, yields stable and robust
recovery of all k-sparse vectors [9].

We see that the study of recovery guaranteed in this case is separated in two steps:
(1) a study of the behavior of the linear operator A with respect to the model set ˙
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Stable & Robust
Decoder

RIP on

Fig. 1 A graphical representation of the equivalence between the existence of stable robust
decoders and the RIP on the secant set. Operators satisfying the RIP approximately preserve
distances between elements of ˙ .

Fig. 2 Structure of the
framework: The RIP
framework allows to separate
the study of dimension
reduction and of decoding.

Low dimensional model

RegularizationMeasurement

Dimension
reduction

Stable and robust
decodingRIP +

(in terms of RIP property) and (2) a study of the behavior of the regularizer f with
respect to the model set ˙ that has consequences for all operators satisfying a RIP
with a small enough constant.

The framework presented in the following generalizes these features in order
to manage not only the classical sparse recovery/low-rank recovery and related
compressed sensing theory but much beyond to many sorts of low-dimensional
model sets.

1.4 A General Compressed Sensing Framework

The remaining part of this chapter shows how it is possible to generalize the steps
we just mentioned. The proposed framework1 consists in answering the following
questions (summarized in Figure 2):

• Low-dimensional model: when is ˙ “low-dimensional”? (Section 2)
• Dimension reduction: given ˙ , is there an operator A that satisfies the RIP on
˙ �˙? What level of dimension reduction can it achieve? (Section 3)

1This chapter gives a unified view of the latest developments in the area found in [33] and [38].
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• What is a good regularizer? Given˙ and f , does a RIP of A on˙ �˙ guarantee
that f recovers the elements of ˙? (Section 4)

Section 5 mentions generalizations that were left out of the main of the chapter
in order to keep the exposition accessible and discusses what challenges we face to
go beyond this general compressed sensing framework in Hilbert spaces.

2 Low-Dimensional Models

We begin by precisely describing the low-dimensional models that will be consid-
ered in this chapter. We then focus on a model of structured sparsity in levels, which
we will use as a running example to illustrate the different concepts used in this
chapter.

2.1 Definition and Examples

The results presented in [33] show that one can always construct a linear operator
A that satisfies the RIP on ˙ � ˙ if its normalized secant set S.˙/ has a finite
intrinsic dimension. The normalized secant set of ˙ is defined as

S.˙/ WD


z D
y

kykH
W y 2 .˙ �˙/ n f0g

�
:

We substitute S for S.˙/ hereafter to simplify notations. We illustrate in Figure 3
the RIP on the normalized secant set which is equivalent to the RIP on the secant
set.

In this chapter, we measure the intrinsic dimension of S using the upper box-
counting dimension, which is linked to the notion of covering number.

Definition 2 (Covering Number). Let ˛ > 0 and S � H. The covering number
N.S; ˛/ of S is the minimum number of closed balls (with respect to the norm k�kH)
of radius ˛, with centers in S , needed to cover S .

The upper box-counting dimension is then defined as follows.

RIP on

Fig. 3 A characterization of the RIP: the RIP on the normalized secant set. The image of the
secant set must lie within a distance ı of the unit sphere.
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Definition 3 (Upper Box-Counting Dimension). The upper box-counting dimen-
sion of S is

boxdim.S/ WD lim sup
˛!0

logŒN.S; ˛/�=logŒ1=˛�:

Hence, as soon as k > boxdim.S/, there exists a model-set dependent constant
˛S 2 .0; 1=2/ such that N.S; ˛/ � ˛�k for all ˛ � ˛S . Further, if the covering
number satisfies

N.S; ˛/ �
�

C

˛

�k

(4)

then boxdim.S/ � k.
We choose this definition of intrinsic dimension for two reasons. First, for

many useful signal models – e.g., sparse vectors, low-rank matrices, and smooth
manifolds – the upper box-counting dimension of the normalized secant set is
known. The results presented in this chapter can thus be directly applied to these
sets, without additional work. Second, one should be careful with the definition
of intrinsic dimension used in an infinite-dimensional space. Indeed, for some
definitions of dimension, there are examples where it is impossible to perform
dimension reduction on vectors belonging to a set having a finite dimension (i.e.,
the set cannot be linearly and stably embedded in a finite-dimensional space [35,
Chapter 6.1]). The upper box-counting dimension of the normalized secant set does
not suffer from this issue.

In the following, we will say informally that a model ˙ is low-dimensional if
boxdim.S.˙// is small compared to the ambient dimension of the Hilbert space H
(which may be infinite). In many examples, the dimension boxdim.S/ is of the order
of the number of parameters needed to describe elements of the model, as in the case
of classical sparsity or low-rank matrices. For k-sparse vectors, the dimension of the
normalized secant set S is of the order of k [25, Section C.2]. For n � n matrices of
rank lower than r, the dimension of the normalized secant set S is of the order of rn.

2.2 Structured Sparsity . . .

As a running example, we use a refinement of the notion of sparsity as a way to
introduce the general framework: we consider a model of structured sparsity in
levels.

We start by describing structured sparsity, a now classical generalization of the
plain sparsity model. In many applications, signals are not only sparse but also
clustered in groups of significant coefficients in a transformed domain (Fourier
domain, Radon domain,. . . ). Structured sparsity (also called group sparsity) is the
assumption that the signal is supported on a few groups of coefficients [5, 24, 27].
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Formally, we consider an orthonormal Hilbert basis .ei/i2N of H and a finite
collection G of non-overlapping finite groups of indices, i.e., subsets g � N with
jgj < 1 and g \ g0 D ; whenever g ¤ g0. The restriction of the vector x 2 H
to the group g is xg WD

P
i2ghx; eiiei. A group support is a subset T � G, and

the restriction of x to the group support T is xT WD
P

g2T xg. The group support
of x 2 H, denoted gsupp.x/, is the smallest T � G such that xT D x. The size
of the group support of x, denoted jgsupp.x/j, is the cardinality of gsupp.x/ (to be
distinguished from the number of non-zero coordinates in x).

Given an integer k, the k-group-sparse model is defined as

˙k WD fx 2 H; jgsupp.x/j � kg: (5)

Let d be the size of the biggest group. We have the following covering of S.˙k/:

N.S.˙k/; ˛/ �
	

C
˛


dk
(6)

where C is a constant depending on d.

2.3 . . . in Levels

Consider a collection of J orthogonal spaces Hj � H each equipped with a kj-
group-sparse model ˙j as defined in (5) (each with its Hilbert basis and its set Gj of
groups). Since the subspaces are orthogonal, there is a natural isomorphism between
their direct sum and their Cartesian product. It is simpler to work with the latter, and
structured sparsity in levels is associated with the model (see Figure 4)

˙ WD

8
<

:
x 2 H; x D

JX

jD1

xj; xj 2 ˙kj

9
=

;
; (7)

which is identified in the Cartesian product of the models ˙k1 �˙k2 � : : : �˙kj .
Two examples where this model is useful are medical imaging (MRI) and

simultaneous signal and noise sparse modeling [2, 36, 39]:

• In MRI, the different levels where the signal is sparse are wavelet scales. MRI
images are generally sparser at fine wavelet scales than large wavelet scales. This
allows for more flexibility in the modeling of the signal than the simple sparsity
model.

Fig. 4 A representation of structured sparsity in levels in H. A structured sparsity in level model
is formed by different structured sparsity models in orthogonal subspaces.
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• Simultaneous signal and noise sparse modeling is a convenient setting for the
separation of a signal sparse in some domain from noise that is sparse in
another domain. An observed signal y is modeled as the superimposition of two
components, y D A1x1 C A2x2, where A1x1 is the signal of interest, x1 lives in
the (structured) sparse model ˙k1 , A2x2 is noise, and x2 lives in the (structured)
sparse model ˙k2 . This model is also related to the separation of transients from
stationary parts in audio or for the decomposition of images into cartoon and
texture [32]. As y D ŒA1 A2�x with x D ŒxT

1 ; xT
2 �

T , this corresponds to a two-level
(structured) sparse model for x.

For structured sparsity in levels, we have [38]

N.S; ˛/ � N.S.˙k1 ; ˛/ � : : : � N.S.˙kj/; ˛/

�
	C1
˛


d1k1
� : : : �

	CJ
˛


dJkJ
(8)

where Cj are constants that are of the order of the dimension of each level times
the maximum size of groups dj in level j. Hence, up to log factors, the upper box-
counting dimension of S in this case is of the order of

P
djkj.

3 Dimension Reduction with Random Linear Operators

Now that we have defined the notion of dimension of a model˙ that we work with,
and the desirable RIP property of a linear operator A, the remaining question is: how
to construct a dimension-reducing linear operator A W H! R

m that satisfies the RIP
on ˙ �˙?

Consider an MRI-like scenario with a sparsity in level signal model˙k1�: : :�˙kJ

in a wavelet basis. The fact that the signals in˙ have a support restricted to the first J
wavelet scales implies that their energy decreases at high frequencies. Intuitively, it
thus seems unnecessary to probe very high frequencies in the measurement process
for this type of signals [1]. A good approximation of the signals can be obtained
by probing all frequencies up to a certain bandlimit B. This process corresponds to
a projection from the infinite-dimensional space H to a finite-dimensional space of
size B. However, the dimension B, though finite, might still be reduced. Indeed, the
signals are not just concentrated in the first J wavelet scales, but they are also sparse
in levels. A dimension-reducing step can thus be envisioned after the projection
onto the first B Fourier coefficients with, e.g., a random Gaussian matrix. Ideally

the final dimension m should satisfy, up to log factors, m D O
�PJ

jD1 kj

�
(of the

order of the number of parameters describing the model). Intuition thus suggests to
build the operator A in two steps: a projection onto a finite (but high)-dimensional
space followed by a multiplication with a random matrix. In fact, the authors of [33]
present such a construction in the general setting that first projects the signal onto
a subspace H � H of finite (but potentially large) dimension and then reduces the
dimension using a random linear operator on H (see Figure 5).
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noitcudeRnoitcejorP

⊂ H → Linear space H ⊂ H → Linear space = R
m

Low-dimension Finite dimension Low dimension

boxdim(S( )) < ∞ dim(H) = d < ∞ m � d

Fig. 5 Strategy for dimension reduction: We aim at reducing the dimension of vectors belonging
to ˙ leaving an infinite-dimensional space H.

Fig. 6 Construction of H. Top left: cover of S with N.S; ˛/ balls of radius ˛. Top right: the centers
of the balls, indicated by the red crosses, form an ˛-cover, denoted by C, for S. Bottom left: H is
defined as the linear span of the vectors in C. Bottom right: H approximates S with precision ˛.

3.1 Projection on a Finite-Dimensional Subspace

Assuming that boxdim.S/ is finite, we will see that, given 0 < ˛ < 1, there always
exists a finite-dimensional subspace H � H such that

.1 � ˛/kxkH � kPHxkH � kxkH (9)

for all x 2 ˙ �˙ , where PH denotes the orthogonal projection onto H.
In the example of Fourier sampling of signal sparse in a Haar basis, it is possible

to directly exhibit such a projection PH by sampling low Fourier frequencies.
However, one can generally construct H as follows. First, build an ˛-cover of the
normalized secant set S . As boxdim.S/ is finite, N.˛;S/ < C1 balls are sufficient
to build this cover. Let now C be the set containing the center of these balls. It is
then sufficient to take H D span C; see Figure 6 and [33]. We remark that in the
worst case, the cardinality of C is exponential in the dimension of S; hence, H can
have a dimension of the order of ec.˛/�boxdim.S/. Yet the important message to take
away at this stage is that:

If the normalized secant set S.˙/ has a finite upper box-counting dimension, then
there exists a finite-dimensional subspace H � H that approximates all vectors in

S with precision ˛.
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In the next section, we describe how to further reduce the dimension to m D
O.boxdim.S// after this first projection.

3.2 Dimension Reduction Step

After the projection onto the finite-dimensional space H of the previous section, the
goal is now to reduce the dimension down to O.boxdim.S//. As most compressive
sensing techniques use random observations to reduce the dimension, it seems
natural to follow this route.

Denote by d the dimension of the subspace H and .e1; : : : ; ed/ an arbitrary
orthonormal basis of H. By abuse of notation, identify the projection onto H with
the linear operator PH W H ! R

d that returns the coordinates of the orthogonal
projection onto H in the basis .e1; : : : ; ed/. The idea is now to compose PH with a
random matrix M 2 R

m�d to build A W H! R
m, i.e., A D MPH . Ideally, we would

like A to satisfy the RIP, and m � O.boxdim.S//: a number of measurements of the
order of the dimension of the model. In this case, we would be assured that the ideal
decoder is stable and robust and that the reduction of dimension is close to optimal.

3.2.1 Randomized Dimension Reduction

To exhibit a linear operator A satisfying the RIP with constant ı, one can first
identify a finite-dimensional subspace H � H such that (9) holds with ˛ small
enough and then build a random M W Rd ! R

m satisfying a RIP with small enough
constant ı0. Sometimes one is directly provided with a random linear operator from
H ! R

m and needs to check whether the RIP holds with high probability. The
approach described in [33] makes it possible to handle both cases. With a slight
abuse of notation, in this subsection, H stands either for the original Hilbert space
(case of a given random operator) or for R

d (two-step construction considered
above).

Consider M a random linear operator from H to R
m. An example results from

the independent draw of m identically distributed random vectors ai 2 H, so that for
x 2 H, Mx WD .hai; xi/miD1. A convenient way to help M satisfy the RIP is to choose
its probability distribution so that, for any vector x 2 H,

EMkMxk22 D kxk
2
H: (10)

With the above isotropy assumption, a draw M of the random linear operator satisfies
the RIP on ˙ �˙ if, and only if,

ˇ̌
kMxk22 � E QMk

QMxk22
ˇ̌
� ıkxk2H; (11)
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for all x 2 ˙ �˙ , where we emphasize with the QM notation that the expectation E

is with respect to a linear operator with the same distribution as the one from which
the particular M is drawn. As discussed in Section 5, even without the isotropy
assumption (10), one can establish dimension reduction results using (11) as a
generalized definition of the RIP [33].

To prove that M satisfies the RIP, the authors in [33] require it to satisfy two
concentration inequalities. Define

hMWH �! R

x 7�! kMxk22 � kxk
2
H:

The assumption is that there exist two constants c1; c2 2 .0;1� such that for any
fixed y; z 2 S.˙/ [ f0g,

PM fjhM.y/ � hM.z/j 
 � ky � zkHg � 2e�c1m�2 ; for 0 � � � c2=c1 (12)

PM fjhM.y/ � hM.z/j 
 � ky � zkHg � 2e�c2m�; for � 
 c2=c1: (13)

By taking z D 0 in (12) and (13), we see that the above properties imply that, for any
given vector in the normalized secant set, y 2 S , with high probability on the draw
of M, the quantity kMyk22 stays close to its expected value EMkMyk22 D kyk

2
H D 1.

Proving that the RIP holds consists in showing that, with high probability on the
draw of M, this property actually holds uniformly for all vectors in S , not just for
any fixed vector y 2 S . Among other properties, this generalization to the entire set
S is proved by using the fact that for any fixed y; z 2 S , if ky � zkH is small then the
difference between kMyk22 � kMzk22 and E QMk

QMyk22 � E QMk
QMzk22 is also small with

high probability.
These concentration inequalities together with the finite dimension of S suffice

to conclude on a sufficient number of measurements for M to satisfy the RIP [33,
Theorem II.2].

Theorem 1. Let M W H! R
m be a random linear map that satisfies (12) and (13).

Assume that boxdim.S/ < s (there exists 0 < ˛S <
1
2

such that N.S; ˛/ � ˛�s for
all 0 < ˛ < ˛S ).

Then for any �; ı0 2 .0; 1/, M satisfies the RIP on ˙ � ˙ with constant ı � ı0
with probability of at least 1 � � provided that

m 

1

ı20

C

min.c1; c2/
max


s log

�
1

˛S

�
; log

�
6

�

��
; (14)

where C > 0 is an absolute constant.
This theorem states that if the random operator M satisfies appropriate concen-

tration inequalities and the set S has finite upper box-counting dimension, then
reducing the dimension of the vectors in ˙ is possible (recall that these vectors
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possibly live in an infinite-dimensional space). A number of measurements m of the
order of the dimension of the secant set S (only) are sufficient to be able to recover
elements of ˙ , whatever the ambient dimension of H (which can be infinite).
We remark that the sufficient number of measurements grows as the RIP constant
decreases (the closer A is to an isometry for elements in S). In particular, the typical
log n factor appearing in standard results for compressed sensing of k-sparse vectors
in H D R

n is in fact related to ˛S rather than the ambient dimension. Related results,
independent of the ambient dimension, have been achieved for manifold embedding
[20, 23].

For a fixed dimension of S , if we wish to ensure an arbitrarily small probability
that the RIP fails to hold, � � 6 .˛S/

s, then the number of measurements m
also grows as � approaches zero. Vice versa, as the ratio between m and its

minimum value m0 D
1
ı2

C
min.c1;c2/

s log
�
1
˛S

�
grows, the RIP holds with probability

exponentially close to 1.

Remark 1. The sufficient condition m 
 m0 is not necessary. There are actually
pathological sets˙ whose normalized secant set has an infinite upper box-counting
dimension and for which some operators M W H ! R

m with only m D 1

measurement satisfy the RIP [33].

3.2.2 Some Examples

When given a random linear operator A W H ! R
m, one can leverage the above

result to check whether A satisfies the RIP with high probability. Alternatively, one
can construct such an operator by pursuing the strategy described at the beginning
of this section. We now need to choose the matrix M 2 R

m�d. Examples of matrices
M 2 R

m�d such that the operator A D MPH satisfies (12) and (13) are:

• matrices with independent random Gaussian entries with mean 0 and variance
1=m;

• matrices whose entries are independent random Bernoulli variables ˙1=
p

m;
• matrices whose rows are independently drawn from the Euclidean sphere of

radius
p

d=m in R
d using the uniform distribution.

If M is one of the above matrices (or more generally a matrix with independent
subgaussian rows), considering the orthogonally projected model set ˙ 0 D PH˙ ,
its normalized secant set S 0 D S.˙ 0/, and s > boxdim.S 0/ D boxdim.S/, we have
[33] M satisfies the RIP on ˙ 0 � ˙ 0 with constant ı0 < ı0 with high probability
provided

m 

C0

ı20
max


s log

�
1

˛S0

�
; log

�
6

�

��
; (15)

where C0 is a constant that depends on the distribution of M.
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3.3 Summary

To summarize, a generic strategy (a way to implement the strategy in Figure 5) to
build a compressive sensing measurement operator for a set˙ that has a normalized
secant set S of finite upper box-counting dimension is:

1. Find a (potentially high-dimensional) finite-dimensional space H whose orthog-
onal projection operator satisfies (9). A generic construction of such a space is
presented in Section 3.1.

2. Compose this projection operator with a random projection operator M (a random
matrix) such that (12) and (13) hold.

Now that we have described how we can build operators preserving low-
complexity models, we can turn to the study of the performance of methods used to
recover x from y.

4 Performance of Regularizers for the Recovery of
Low-Dimensional models

As they satisfy the RIP, the linear operators A built with the technique just described
in Section 3 preserve the low-dimensional model ˙ in the sense that stable
reconstruction of vectors from ˙ is possible with the so-called ideal decoder. Yet,
this decoder is often intractable in practice as it involves possibly non-convex and/or
non-smooth optimization. We now turn to general decoders, with an emphasis on
convex decoders: minimization algorithms are well known for such decoders, and
they are often possible to implement with off-the-shelf algorithms, as in the classical
cases of basis pursuit (`1-norm minimization) or nuclear norm minimization.

4.1 Convex Decoders and Atomic Norms

In the framework of minimization (2), it is interesting to consider a particular class
of convex functions: atomic norms with atoms included in the model set ˙ [17].
Considering a set A � H, commonly called the set of atoms, the corresponding
atomic “norm” is built using the convex hull of A .

Definition 4 (Convex Hull). The convex hull of a set A is

conv.A/ WD
n
x D

X
ciai W ai 2 A; ci 2 RC;

X
ci D 1

o
(16)

Definition 5 (Atomic Norm). The atomic “norm” induced by the set A is defined
as

kxkA WD inf ft 2 RC W x 2 t � conv.A/g (17)
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where conv.A/ is the closure of conv.A/ in H. The function kxkA is a convex gauge
that is not always a norm. It is a norm if A is symmetrical and bounded. We will
keep the term atomic norm in the general case as an abuse of notation. This norm is
finite only on the set

E.A/ WD RC � conv.A/ D fx D t � y; t 2 RC; y 2 conv.A/g � H: (18)

It can be extended to H by setting kxkA WD C1 if x … E.A/.
Atoms are often normalized: a vector u is normalized if kukH D 1.

Remark 2. Atomic norms are interesting because given any convex regularization
function, it is always possible to find an atomic norm that performs noiseless
recovery better (in the sense that it permits recovery for more measurement
operators A [38]).

4.1.1 Classical Examples of Atomic Norms

As pointed out in [17], many well-known norms used for low-complexity recovery
are atomic norms:

• `1-norm in R
n: A is the set of canonical orthonormal basis vectors multiplied by

a real scalar with modulus 1, i.e., the normalized 1-sparse vectors.
• Nuclear norm: A is the set of normalized rank-one matrices.
• Gauge generated by a finite polytope: A is composed of the vertices of a

polytope.
• Spectral norm: A is the set of normalized orthogonal matrices.

4.1.2 Group Norms in Levels

For our running example, the model ˙ D ˙1 � : : : ˙J associated with structured
sparsity in levels, we consider a similar class of atomic norms: the group norms in
levels.

Given the subspace Hj associated with the jth level, Sj.1/ � Hj its unit sphere,
Gj its set of groups, and ˙1;j the associated one-group-sparse model, consider the
collection of atoms of the jth level

Aj WD ˙1;j \ Sj.1/: (19)

The corresponding atomic norm is associated with the finite-dimensional space

E.Aj/ D span.feigi2[g2Gj
/
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and simply given by

kxkAj D

(P
g2G kxgkH; x 2 E.A/I

C1; x … E.A/
(20)

The norm kxkAj is called a group norm, a structured norm, or a mixed `1� `2-norm
[41].

A natural regularizer for the structured sparsity in level model is defined as
follows in H1 � : : : �HJ:

fw W .x1; : : : xJ/ 7! w1kx1kA1 C : : :C wJkxJkAJ (21)

with weights wj > 0. We will show in the next sections that setting appropriately
the weights in each level can yield recovery guarantees of various strengths.

4.1.3 Atomic Norm Associated with a Union of Subspace Model

Many classical model sets˙ (the set of sparse vectors, the set of low-rank matrices,
etc.) are homogeneous: if x 2 ˙ then ˛x 2 ˙ for any scalar. As such they are (finite
or infinite) unions of subspaces. Given any union of subspaces ˙ � H, the norm
associated to its normalized atoms

A.˙/ WD ˙ \ S.1/ (22)

will be of particular interest for the RIP analysis described in the next sections. As
a shorthand notation, we define

k � k˙ WD k � k˙\S.1/: (23)

This norm is sometimes useful as a regularizer to perform recovery (i.e., by choosing
f .z/ D kzk˙ in minimization (2)). For the particular case where ˙ is the set of k-
sparse vectors, k � k˙ is known as the k-support norm [3]. It is known to yield stable
recovery guarantees for certain k-sparse vectors [3]; however, it has been shown
that these results cannot be made uniform for all k-sparse vectors (and consequently
similar negative results hold for structured sparsity in levels) [38]. We show in
Figure 7 a representation of the `1-norm and of the k-support norm k�k˙ for k D 2 in
3D (H D R

3), which are two atomic norms induced by normalized atoms included
in the model set ˙ .
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(a) ‖ · ‖1 (b) ‖ · ‖Σ

Fig. 7 The unit ball of k � k1 (left) and the unit ball of k � k˙ (k-support norm) for˙ D ˙2 the set
of two-sparse vectors in 3D (right).

4.2 Stable and Robust Recovery of Unions of Subspaces

The main result from [38] states that the stability of any decoder of the form (2) is
guaranteed provided the linear operator A satisfies a RIP on the secant set ˙ � ˙
with a constant ı < ı˙.f / holds, where ı˙.f / is a constant that depends only on the
regularizer f and the model set ˙ (we give and discuss the definition of ı˙.f / in
Section 4.3).

4.2.1 Stable Recovery in the Presence of Noise

Elements of the model can be stably recovered [38, Theorem 1.2]:

Theorem 2 (RIP Condition for Stable Recovery of a Union of Subspaces).
Assume that ˙ is a union of subspaces. Then, for any continuous linear operator A
on H that satisfies the RIP on the secant set˙�˙ with constant ı < ı˙.f /, we have
for all x 2 ˙ , e 2 F such that kekF � � (recall that � is an estimation of the noise
level used as a parameter of the decoder), with x� the result of minimization (2),

kx� � xkH � C˙.f ; ı/ � .kekF C �/ (24)

where C˙.f ; ı/ < C1.
We refer the reader to [38, Theorem 1.2] for an explicit expression of C˙.f ; ı/. It
is increasing with respect to the RIP constant ı : the worse the RIP constant is,
the worse the stability constant is (see, e.g., its expression for structured sparsity in
levels in Theorem 4).
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4.2.2 Robustness to Modeling Error

Regarding robustness to modeling error, generic results often use the so-called
A-norm [8] (not to be confused with the atomic norm, here the A refers to the
measurement operator) as an intermediate tool to measure the distance from a vector
x to the model set ˙ . Given a constant C, the A-norm is defined by

k � kA;C WD C � kA � kF C k � kH: (25)

It is more convenient to express robustness results with respect to a norm that does
not depend on the measurement operator A. We provide here a robustness result
where the modeling error with respect to the regularizer f is used (this is more in-
line with the classical literature for `1 minimization of nuclear norm minimization).
Consider the (symmetrized) distance with respect to f :

df .x; ˙/ D inf
Qx2˙

f .x � Qx/C f .Qx � x/

2
: (26)

When f is a positively homogeneous, nonnegative, and convex regularizer that
bounds the A-norm, robustness with respect to df also generally holds [38, Theorem
3.2]:

Theorem 3. Let ˙ be union of subspaces. Let f be positively homogeneous,
nonnegative, and convex with f .x/ < C1 for x 2 ˙ . Consider a continuous linear
operator A satisfying the RIP on ˙ �˙ with constant ı < ı˙.f / and a noise level
kekF � �. Denote C˙ the constant from Theorem 2, and assume that for all u 2 H,
kukA;C˙ � Cf ;A;˙ � f .u/ for some Cf ;A;˙ <1. Then, for all x 2 H, e 2 F , such that
kekH � 	 � �, any minimizer x� of (2) satisfies

kx� � xkH � C˙ � .kekF C �/C 2Cf ;A;˙ � df .x0;˙/: (27)

Remark 3. To apply this theorem, we need Cf ;A;˙ < 1. This is the case for most
classical examples (sparse recovery with `1-norm, low-rank matrix recovery with
the nuclear norm). It is also true for the case where f being a convex gauge induced
by a bounded closed convex set containing 0 and H is of finite dimension.

Remark 4. Both Theorems 2 and 3 can be extended to the case where ˙ is a cone
instead of a union of subspaces, with a definition of ı˙.f / adapted compared to the
one given later in Section 4.3 (see Section 5).

4.2.3 Example: The Case of Sparsity in Levels

Consider the model set ˙ corresponding to our running example of structured
sparsity in levels, and choose as a regularizer the weighted atomic norm fw.�/ defined
in (21). One can show [38, Theorem 4.1] that ı˙.fw/ 
 1p

2
for J D 1 and
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ı˙.fw/ 

1

p
2C J�2w

for J 
 2, where �w WD max.wj
p

kj/=min.wj
p

kj/. In particular, for the particular
weights wj D 1=

p
kj, we have ı˙.fw/ 
 1p

2CJ
for J 
 2.

In comparison, Ayaz et al. [4] gave a uniform recovery result with the mixed `1�
`2-norm for structured compressed sensing under a RIP hypothesis. They showed
that a RIP constant ı <

p
2� 1 for vectors in the secant set guarantees the recovery

of vectors from the model. The above result shows that the RIP constant of Ayaz
et al. can be improved to 1p

2
. In [2], a model of sparsity in levels was introduced:

it is in fact a structured sparsity in level model with classical sparsity (each group
is reduced to a single coordinate) in each level. In [6], Bastounis et al. showed that
when the model˙ is sparse in levels and f .�/ D

P
j k�kAj D k�k1 (i.e., with weights

wj D 1, in this case, �2w D �
2
1 is the maximum ratio of sparsity between levels), the

RIP with constant ı D 1=
p

J.�1 C 0:25/2 C 1/ on ˙ � ˙ guarantees recovery.
This constant is improved to the constant ı˙.fw/ 
 1=

p
2C J when weighting the

norm of each level with wj D 1=
p

kj. The above result further extends the work of
Bastounis et al. to general structured sparsity. The following theorem [38, Theorem
4.3] summarizes the result with this optimal weighting:

Theorem 4. Let ˙ be the model set associated with structured sparsity in levels,
and consider f D fw as a regularizer, with the adapted weights wj D 1=

p
kj.

Suppose the continuous linear operator A satisfies the RIP with constant ı < ı˙.f /
on the secant set ˙ �˙ . Then for all x 2 H, e 2 F such that kekF � �, and x� the
result of minimization (2), we have

kx� � xkH � C˙.f ; ı/.kekF C �/C D˙.f ; ı/ � df .x; ˙/ (28)

where :

• For J D 1, ı0 D
1p
2
, C˙.f ; ı/ �

2
p
1Cı

1�ı
p
2

and D˙.f ; ı/ D 2.1 C
p
1C ıC˙.f ; ı//=

p
k.

• For J 
 2, ı0 D
q

1
2CJ , C˙.f ; ı/ �

.1C
p
1CJ/
p
1Cı

1�ı
p
2CJ

and D˙.f ; ı/ D 2
p
2.1 C

p
1C ıC˙.f ; ı//.

This result recovers classical guarantees with `1 minimization for sparse recov-
ery. Since ı˙.f / 
 1=

p
2C J for J 
 2, combining Theorem 4 for ı < 1=

p
2C J

with results from Section 3 yields [38] that

m 
 O

0

@J
JX

jD1

�
kjdj C kj log

�
3ejGjj

kj

��
1

A :

subgaussian measurements are sufficient to guarantee stable and robust recovery
with fw, where wj D 1=

p
kj.
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Remark 5. The factor J might seem pessimistic, and we attribute its presence to the
generality of the result. Should the structure of the observation matrix A be taken
into account, better results can be achieved. In fact, if A is a block diagonal matrix
where each block Aj has size mj � nj, uniform recovery guarantees with the `1-norm
hold if and only if uniform recovery holds on each block: this is possible as soon as
each block Aj of A satisfies the RIP with some constant ıj <

1p
2

on ˙j �˙j, which

is in turn exactly equivalent to the RIP with constant ı < 1p
2

on ˙ �˙ .

Remark 6. To make sense of Theorem 4 in the infinite-dimensional setting, the
domain where the regularizer f is finite must be extended outside of E.˙/ while
keeping a finite constant D˙.f ; ı/ . This can be done on a case-by-case basis when
properties of A and f allow to conclude. For example, as Adcock and Hansen in [2],
consider the following setting: H D `2.N/ with Hilbert basis .ei/iD1;C1. Consider
˙ a sparsity in level model in .e1; ::; eN/. Let f D k � k1. Then f is an extension of
the definition of fw in E.˙/ to the whole space H (with wj D 1 for all j). In [2], the
measurement operator A is a collection of (Fourier) measurements that have a strong
balancing property. The important fact here is that this property requires kAHAk1 �
C0 where k � k1 is the maximum of the `1-norms of the coefficients of AHA (where
AH is the Hermitian conjugate of A). With such a hypothesis, for any u 2 H, we
have kAuk22 D jhu;A

HAuij � kAHAuk1kuk1 � kAHAk1kuk1kuk1 � C0kuk21. Thus
in this case the A-norm is bounded by the `1-norm: k � kA;C � .1C C

p
C0/kuk1.

4.3 Definition and Calculation of ı˙ .f/

When˙ is a union of subspaces, the sufficient RIP constant for recovery of elements
of ˙ with f is defined as

ı˙.f / WD inf
z2Tf .˙/nf0g

sup
x2˙

ı˙.x; z/: (29)

where

ı˙.x; z/ WD
�Rehx; zi

kxkH
q
kxC zk2˙ � kxk

2
H � 2Rehx; zi

: (30)

And Tf .˙/ is the set of descent vectors of f at points of ˙ :

Tf .˙/ WD fz 2 H W 9x 2 ˙ = f .xC z/ � f .x/g (31)

It is important to note that the constant ı˙.f / only depends on the geometry of
˙ and f . This constant measures the quality of f as regularizer to recover elements
of ˙ under a RIP assumption: the larger the ı˙.f /, the weaker the assumption on
the linear operator A to ensure stable and robust recovery in Theorem 3.
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To obtain concrete results, one needs to lower bound the above expression. As
the supremum in the expression of ı˙.f / is a priori hard to compute explicitly, for
z 2 Tf .˙/, one can intuitively seek an element x 2 ˙ that maximizes the correlation
with �z (i.e., such that �Rehx; zi is maximized). For the model associated with
structured sparsity in levels, with the regularizer f D fw and weights wj D 1=

p
kj,

this consists in taking x D �zT where T is the support such that zT 2 ˙ and zT

concentrate the most energy of z. With such an x, denoting zTc D z � zT , one can
show that

ı.�zT ; z/ D
1

r
kzTck

2
˙

kzTk
2
H
C 1

(32)

Since z 2 Tf .˙/, one shows that the fact that zT concentrates the most
energy implies that f .zTc/ � f .zT/, which in turn allows one to conclude that
kzTck

2
˙=kzTk

2
H � 1 C J is bounded using a control of kzTck

2
˙ obtained by

extending Cai’s sparse decomposition of polytopes [9]. This leads to the bound
ı˙.fw/ 
 1=

p
2C J mentioned in Section 4.2.3.

5 Generality of the Whole Framework

The proof of the existence of random linear maps that reduce dimension while
satisfying the RIP is valid for any finite-dimensional model set ˙ in any Hilbert
space. The guarantees for convex decoders from Section 4 allow to define a critical
RIP value for any union of subspaces ˙ and any regularizer f (for some pairs, this
may yield ı˙.f / D 0, e.g., the right-hand side of Figure 7). Overall, the compressive
sensing framework described in this chapter is thus very general, and we give here
an overview of examples where it applies.

5.1 A Flexible Way to Guarantee Recovery

The following list summarizes the results of the combined framework of Sections 3
and 4 for classical pairs of model ˙ and regularizer f . It states the model ˙ , the
considered regularizer f , a lower bound on our sufficient RIP constant ı˙.f /, and a
sufficient number of (random subgaussian) measurements m to guarantee recovery
using the construction from Section 3.

• ˙ D Linear subspace of dimension n, f D indicator function $˙ or k � k˙ .
- ı˙.f / D 1: This sufficient RIP constant was already known, e.g., [8].
- Sufficient number of measurements: m & n.
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• ˙ D k-sparse vectors in dimension n, f D `1-norm.
- ı˙.f / 
 1=

p
2. This is the sharp RIP constant of Cai et al. [9] (sharpness will

be discussed in the next section).
- Sufficient number of measurements: m & klog.n/.

• ˙ DMatrices of rank lower than r in dimension n � n, f D nuclear norm.
- ı˙.f / 
 1=

p
2. This is also the sharp RIP constant of Cai et al. [9].

- Sufficient number of measurements: m & rn.
• ˙ D Finite union of k 1D-half-spaces with coherence �.˙/, f D k � k˙ .

- ı˙.f / 

2.1��.˙//
3C2�.˙/

.

- Sufficient number of measurements: m & log.k/=ı˙.f /2.
• ˙ D Permutation matrices of dimension n � n, f D k � k˙ .

- ı˙.f / 
 2
3
.

- Sufficient number of measurements: m & n log.n/.

Combining the formalism of [33] with that of [38], these models can also be
considered in an infinite-dimensional space H, which is convenient to handle analog
compressive sensing scenarios. Stable recovery guarantees are still valid in this
infinite-dimensional setting. For robustness, one must make sure that the constant
Cf ;A;˙ is finite. For convex f , this might need some further assumptions on the
behavior of f and A outside of the space E.˙/ (the subspace spanned by ˙ ) as
mentioned in Section 4.2.3.

5.2 Uniform vs Nonuniform Recovery Guarantees

The framework described in this chapter focuses on uniform recovery guarantees
for arbitrary linear operators. Another trend of general framework for compressive
sensing focuses on nonuniform guarantees for Gaussian observations. In particular,
Chandrasekaran et al. [17] studied the general nonuniform recovery from Gaussian
observations with atomic norms. In this case, the goal is to show that, for any
element x of the model, atomic norm minimization will recover x from Ax with high
probability on the draw of A. In contrast, in the framework presented in this chapter,
we established conditions so that (with high probability) the same linear operator A
(i.e., a particular draw of a random operator) allows to stably and robustly recover
all elements of the model with arbitrary regularizers. Moreover, these results are
proved for general random matrices (typically, subgaussian matrices).

5.3 Extensions

The guarantees for convex decoders for unions of subspaces from Section 4 have
further been extended to the case where the model set is a cone (positively
homogeneous sets) [38, Theorem 3.1]. This covers models such as (subsets of) the
cone of positive semi-definite matrices or that of nonnegative matrices.
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Beyond the pure Hilbert norm setting described in this chapter, the generalized
definition of the RIP from equation (11) or its further generalizations to arbitrary
norms in H can be used [33] to establish dimension reduction results for structured
acquisition. An example is the use of random rank-one projections (which are a
subset of sub-exponential random matrices) [10], which offer a computationally
efficient way to gather linear observations of a matrix, thus making them an
interesting observation method for algorithmic purposes in the low-rank matrix
recovery problem. While the RIP constant ı˙.f / has not been extended to such
settings yet, such developments seem accessible.

5.4 Sharpness of Results?

In [33] the finite dimension of the normalized secant set allows one to conclude on
the possibilities in terms of dimension reduction. Only a number of measurements
of the order of the dimension is sufficient. However, this hypothesis is not necessary.
It is possible to find a model ˙ whose normalized secant set S has infinite upper
box-counting dimension such that there exists a measurement operator with the
RIP on S . Hence, a weaker necessary and sufficient condition on the “dimension”
of S could exist to guarantee the existence of measurement operators with stable
dimension reduction capabilities.

In terms of recovery for arbitrary regularizers, it has been shown that a sufficient
RIP constant can be provided. For classical families of models and regularizers
(sparse recovery with the `1-norm and low-rank matrix recovery with the nuclear
norm), as well as for structured sparsity and the associated group norm, the constant
ı˙.f / is sharp in the following way: we know that there exist RIP matrices with
constant arbitrarily close to ı˙.f / (here 1=

p
2) which do not permit uniform

recovery [10, 19] for some dimension of H and some sparsity k (or rank r).
Considering sparsity in levels, we observe that ı˙.f / complies with the necessary
dependency on the ratios of sparsity between levels and the number of levels J [6].
These sharpness results all consider families of models and regularizers: it is a worst-
case sharpness among these families of regularizer. However, one can consider the
question of strong sharpness: for a given model ˙ and regularizer f , what is the
biggest RIP constant sufficient to guarantee recovery?

5.5 New Frontiers: Super-Resolution and Compressive
Learning

Much of the algorithmic and mathematical techniques revolving around the notion
of sparsity in the context of inverse problems and compressive sensing have
been developed with finite-dimensional models, involving, e.g., a discretization of
the time domain or of the frequency domain. However, the physical phenomena
underlying the acquisition of modern data from the analog world are rather
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intrinsically continuous [40]. The generic framework for inverse problems and
dimension reduction presented in this chapter is directly set up in an arbitrary Hilbert
space setting, and as such it opens new perspectives for handling the analog nature
of many problems.

Super-resolution is one such problem. In super-resolution, one aims at recovering
spikes combinations of few spikes from their low-pass observation. While spikes
are usually modeled with Dirac measures, which can be considered as belonging to
certain Banach spaces of measures (e.g., equipped with the total variation norm),
one way of bringing super-resolution close to the content of this chapter is to
consider a kernel metric, which will bring a Hilbert structure to such Banach
spaces [26]. Intuitively, this amounts to choosing a high resolution at which we
will measure energy in the signal space. In this context, all the results on recovery
guarantees and dimension reduction hold. Several questions remain standing: is it
possible to find a sufficient RIP constant ı˙.f / that also holds in this context? Do
usual models in Banach spaces have a normalized secant set with finite dimension?
With the work of [12, 16, 22], we already know that low-pass filtering allows to
recover spikes up to some resolution with a convex decoder.

Another related problem is compressive learning. In [7, 29] it is shown empiri-
cally that Gaussian mixtures can be recovered from a so-called sketch of the data,
which can be considered as random Fourier measurements of their probability
density. Recent works suggest that for an appropriately chosen kernel metric, the
secant set of sufficiently separated mixtures of Diracs is of finite dimension for
appropriately chosen kernel metric [30]. It is then possible to guarantee the success
of the ideal decoder with random observations. Practical results have been obtained
using a greedy heuristic approach to the problem [31]. These results seem to indicate
a possible generalization of the theory of dimension reduction and convex recovery
to these problems.
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